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confidentiality. Cryptographers developed a theoretical 
solution more than 25 years ago: secure multiparty compu-
tation. According to this concept, multiple parties compute 
a function on their joint confidential input. Each party 
learns the result but nothing else about the other parties’ 
inputs. The “Secure Multiparty Computation” sidebar de-
scribes this subfield of cryptography in more detail and 
provides an example of its use.

The adoption of secure multiparty computation for 
real-world business problems still faces four key obstacles. 
First, researchers must analyze observed inefficiencies in 
the supply chain and derive a formula that accurately ad-
dresses them. Second, researchers must develop a secure 
protocol to implement this computation. Designing such 
protocols is a challenging task, as their efficiency is low and 
performance optimizations often require manual security 
verification. Third, researchers must carry out practical 
experiments to evaluate the solution’s computational 
performance. Finally, there must be a risk assessment 
to determine how adoption will impact the economic 
environment.

CASE STUDY: AEROENGINE SUPPLY CHAIN
The European research project SecureSCM (www. 

securescm.org) has completed all four of these steps in a 
case study using an aeroengine parts manufacturer’s real 
supply chain. 

T he Internet’s ubiquity and the advent of cloud 
computing enable new forms of collaboration, 
while services such as Facebook and Twitter let 
people communicate and interact in novel ways. 

These trends impact businesses as well as consumers, but 
can companies safely operate in this new world?

It is well known that effective supply-chain collabora-
tion reduces inefficiencies such as excess costs, inadequate 
service levels, and environmental pollution. Nevertheless, 
companies often do not collaborate due to a lack of trust: 
they fear that data they share could be used outside its 
intended purpose. For example, business partners need to 
know one another’s production costs to optimally schedule 
warehousing and production, but they could also use such 
information to manipulate future price negotiations.

Researchers have long tried to reconcile these two 
conflicting goals of information sharing and protecting 
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Figure 1. Supply chain of the shroud nozzle, part of an aeroengine’s low-pressure turbine. 
The supply chain includes the shroud nozzle manufacturer, an external manufacturer that is 
an outsourcing partner, and multiple component suppliers. The final customer is the engine 
manufacturer.
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In the aerospace industry, coordination among supply- 
chain actors is critical to success. During program execu-
tion, many parts flow from one stage of the supply chain to 
the next, and at each stage these parts are assembled into 
a new component and continue their flow. This movement 
of products forms a pyramidal supply chain: at the apex 
is the program leader firm; below and directly connected 
to it are three or more prime partners, each in charge of a 
main section of the aircraft such as the engine, airframe, 
and avionics. 

Prime partners manage numerous suppliers that 
provide the most important component modules. For ex-
ample, in the engine section of the supply chain, the prime 
partner decouples the engine into the low-pressure tur-
bine, the high-pressure turbine, the combustion chamber, 
the gearbox, and so on, and assigns the detailed design and 
manufacturing of these modules to different suppliers. As 
in the previous stage, the module suppliers require their 
own parts and raw materials. Given this complex network 
of firms and relationships, synchronizing product flow is 
essential to efficiently managing stock.

Downstream companies leading the supply chain are 
linked by long-term partnerships because designing and 
assembling engines and other complete aircraft parts re-
quire both highly specialized skills and knowledge and 
considerable research investment. In contrast, upstream 
firms that produce nonaerospace-specific products exploit 
short-term business opportunities.

The SecureSCM case study focused on the supply chain 
of the shroud nozzle, which is part of the engine’s low- 
pressure turbine. Figure 1 shows the supply chain’s 
structure, which includes 
the shroud nozzle man-
ufacturer, an external 
manufacturer that is an out-
sourcing partner, and five 
component suppliers. The 
final customer is the engine 
manufacturer.

We interviewed the vari-
ous actors in the supply 
chain, who provided sev-
eral reasons for protecting 
the confidentiality of their 
data. The manufacturer 
wanted to protect short-
term market demand and 
its capacity by limiting the 
external manufacturer’s 
awareness of its business 
power. The suppliers sought 
to protect their capacity and 
maintain low costs by not 
causing the manufacturer 

to look to other potential suppliers. They also wanted to 
conceal their production, warehousing, and shipping costs 
and their inventory status from the manufacturers to pro-
tect their business and production strategy. Moreover, and 
somewhat orthogonal to trust, all of the parties desired 
to protect their confidential data to meet their partners’ 

SECURE MULTIPARTY COMPUTATION 

S ecure multiparty computation is a cryptographic technique 
that allows several parties to compute any function without any 

party having to disclose its input to another. Each party’s input 
remains private to that party, but the result can be made available 
to all, or only to a subset, of the other parties.

Consider the following simple example. Alice, Bob, and Charlie 
each have a number xA, xB, and xC, respectively, as private input and 
want to compute x = xA + xB + xC. However, they do not want to dis-
close their private data to one another. Alice chooses a random 
number r and privately sends r + xA to Bob. Bob adds his input and 
privately sends r + xA + xB to Charlie. Charlie does the same with his 
input and sends r + xA + xB + xC back to Alice. Alice recalls r,  
subtracts it from the received value r + xA + xB + xC, and announces  
x = xA + xB + xC. Observing the messages exchanged between Alice, 
Bob, and Charlie, it is easy to see that none of them learns the input 
of the other parties—for example, Alice’s random choice  
r blinds the value she sends to Bob, and Alice does not see the  
message (including r + xA + xB) Bob sends to Charlie.

Cryptography research has proven that such a protocol exists 
for any efficiently computable function for any finite number of 
parties. It is important to note that secure computation does not 
rely on a trusted third party to perform computations and ensure 
data privacy, but is based on decentralized computation imple-
mented through cryptographic protocols.
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expectations: a firm unable to protect its confidential data 
is not a good partner.

PROBLEM ANALYSIS
In standard operating mode, the shroud nozzle man-

ufacturer procures four components from different 
suppliers that are delivered to a raw materials and com-
ponent warehouse. Depending on the production schedule, 
the manufacturer transports these components to a facility 
where they are preassembled. It then ships the preassem-
bled components to a different warehouse, from which 
they are delivered to a different manufacturing plant for 
final assembly, testing, and quality control.

In general, this part of the supply chain is characterized 
by a stable production schedule that the program leader 
determines well in advance. Sometimes, however, the 
program leader must, on short notice, order spare parts, 
which can lead to an upsurge in demand that the current 
supply chain cannot easily handle. The manufacturer has 
no means to quickly change production schedules and 
obtain extra parts from its standard suppliers. To cover this 
additional demand and satisfy its customers’ service-level 
requirements, the manufacturer employs, on a contract 
basis, an external manufacturer that procures the nec-
essary components, assembles the shroud nozzle, and 
delivers it to the manufacturer.

The outsourcing partner charges a premium price that 
exceeds the standard supply-chain cost by an order of 
magnitude. The manufacturer would therefore like to 
implement a system that enables it to quickly reschedule 
production to accommodate short-term demand peaks. 
However, the manufacturer has no information about the 
suppliers’ capacity and thus cannot quickly place orders 
with them. One reason for this is that the suppliers are not 
willing to share detailed real-time information about their 

capacity utilization and ability to provide 
additional components.

To remedy this problem, SecureSCM 
proposed a rapid deployment system, 
depicted in Figure 2, that utilizes the sup-
pliers’ short-term capacity data to quickly 
adapt manufacturing production sched-
ules. The objective is to minimize total 
cost—including supply, manufacturing, 
inventory, and backordering costs—while 
respecting all relevant capacity con-
straints and fulfilling overall customer 
demand. 

We formulated this optimization prob-
lem using linear programming, which 
minimizes an objective function subject 
to linear equality and inequality con-
straints. The objective function is the 
sum of all supply-chain costs; the equal-

ity constraints model the flow of goods, and the inequality 
constraints implement the capacity constraints. To protect 
sensitive and private data, the protocol relies on secure 
multiparty computation. 

SECURE MULTIPARTY COMPUTATION 
PROTOCOL

Secure multiparty computation uses generic cryp-
tographic protocols to protect data privacy and deliver 
correct outputs in the presence of an adversary—which 
can be a single entity or a coalition of parties—that con-
trols communications. There are two basic models: in the 
passive adversary model, semi-honest parties reveal some 
secret data but otherwise continue to follow the protocol; 
in the active adversary model, parties deviate from the 
protocol to carry out malicious attacks. 

Generic protocols for multiparty computation are 
roughly based on either homomorphic encryption or linear 
secret sharing. Both schemes represent a computable func-
tion as a Boolean or arithmetic circuit over a finite field or 
ring; linear functions of secret values are locally computed, 
while multiplication requires interaction between parties. 
With homomorphic encryption, the parties encrypt their 
secret inputs. With secret sharing, the parties randomly 
split their secret inputs into shares and give one share to 
each of the other parties. If enough parties combine their 
shares, they can reconstruct the secret; otherwise, they 
learn nothing about it. We used protocols based on linear 
secret sharing in the case study because they are more 
efficient than those based on homomorphic encryption.

The performance of generic protocols is insufficient 
for secure linear programming and similar large-scale 
applications. Our first task, therefore, was to develop a 
collection of efficient protocols based on linear secret shar-
ing for operations on primitive data types and arrays.1,2 
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Figure 2. SecureSCM’s rapid deployment system quickly and cost-effectively 
adapts manufacturing production schedules to component suppliers’ short-
term capacity information.
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Current protocols provide all basic operations with binary, 
signed integer, and signed fixed-point data types as well 
as secret indexing for vectors and matrices. Floating-point 
protocols are still too complex for large-scale applica-
tions. We constructed the protocols using a small set of 
building blocks based on the same security model and 
cryptographic techniques, thus simplifying analysis and 
application development.

The protocols’ effectiveness is primarily determined 
by the amount of exchanged data (communication com-
plexity) and the number of sequential interactions (round 
complexity). Our pragmatic approach focused on achieving 
maximum efficiency while meeting rigorous but realistic 
security requirements. We obtained important perfor-
mance and scalability improvements by precomputing 
secret random values and optimizing the building blocks 
for parallel computation of large batches of operations. 
In particular, we reduced communication complexity by 
encoding data in small fields that match the size of the 
data types; this is possible for protocols based on secret 
sharing because privacy does not rely on computational 
assumptions (as it does in the case of homomorphic en-
cryption), and share conversions between different fields 
are efficient. Furthermore, families of building blocks that 
exploit different tradeoffs allow the application developer 
to select the variant that best suits the algorithm and ex-
ecution environment.

Research on solving linear programs has produced 
two types of iterative algorithms: interior-point methods 
have polynomial complexity, but simplex techniques can 
require exponentially many iterations in the worst case. 
However, this is rarely an issue, and simplex algorithms 
are more suitable for secure computation due to their sim-
pler iterations.

Previous secure linear programming protocols3 solved 
only linear programs for which the null solution is feasi-
ble—that is, it does not violate any constraint. Because this 
condition is generally not satisfied, we developed a two-
phase simplex protocol for solving any linear program. The 
inputs are shared-secret values representing the constraints 
(capacities) and the objective function (costs), while the out-
puts are the shared-secret final simplex data and a public 
value indicating the termination condition: optimal, un-
bounded, or infeasible. The termination condition proved 
useful in the case study for debugging the supply-chain 
model. The simplex data structure is protected throughout 
the computation through secret sharing as well as secret 
indexing, a cryptographic method that hides the indexes of 
changes in the simplex data. To avoid exponentially many 
iterations, the protocol also reveals the number of iterations.

The type of simplex algorithm a secure multiparty 
computation protocol uses has an important impact on 
performance and scalability. The algorithm must take into 
account the complexity of the secure operations: arithme-

tic, comparison, and indexing. After evaluating different 
variants, we obtained the most efficient protocol with a 
simplex algorithm using fixed-point arithmetic.4 This algo-
rithm reduces communication complexity by using more 
compact data types, more efficient data structures, and 
fewer secure comparisons (one of the main performance 
bottlenecks). It is thus more suitable than other algorithms, 
including some variants that are superior for nonsecret 
data. 

IMPLEMENTATION
Implementing secure multiparty computation protocols 

is difficult: the programmer must manage complicated 
cryptographic routines and handle many auxiliary tasks, 
such as communication. To address this challenge, we 
designed L1, a small programming language that makes 
it easier to rapidly implement and evaluate such protocols 
during a project cycle.5 

L1 is a procedural language similar to C or Java that 
also supports parallel execution. It offers primitives for 
cryptographic operations, such as homomorphic encryp-
tion and secret sharing, as well as for synchronous and 
asynchronous communication. All communication occurs 
over secure and authenticated channels using the Secure 
Sockets Layer protocol. The programmer can combine 
different secure computation protocols and even partially 
reveal intermediate results, if deemed safe. 

An L1 program represents the code run by a specific 
player, instead of the function implemented by all players, 
but also incorporates player-specific code, such that the 
same program can be used for all parties. Consider the 
following example:

1    send(1, “share_” + id(), share);

2    1: {

3      for (int32 i=1; i<=players; i++)

4        shares[i]=readInt(“share_”+i);

5      output(reconstruct(shares));

6    }

Line 1 sends all parties’ shares to the first party. The player-
specific code in lines 2-6 tells the first party to receive all 
shares and to reconstruct and output the secret. 

The type of simplex algorithm a secure 
multiparty computation protocol 
uses has an important impact on 
performance and scalability.
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After implementing a protocol in L1, we evaluate it using 
a testbed. Because protocol performance depends on the 
computer system as well as the network characteristics, 
we simulate two scenarios. In one scenario, the servers 
are connected via a local area network (LAN). This could 
be the case if the parties are cohosts in a common data 
center. In the other, more common, scenario, the servers 
are connected via a wide area network (WAN). In this case, 
we reduce the bandwidth and increase network latency.

For our case study, we connected eight servers repre-
senting the various supply-chain actors. Each server had 
a dual-core 2.6-GHz AMD Opteron 885 processor and 4 
Gbytes of RAM. For brevity, we report here only the re-
sults of our best protocol variant. For the LAN scenario, 
with a bandwidth of 1,000 Mbits per second and a latency 
of 1 millisecond, the protocol runtime was 41 minutes 
and 4 seconds. For the WAN scenario, with a bandwidth 
of 10 Mbps and a latency of 20 ms, the runtime was  
1 hour, 1 minute, and 38 seconds—a reasonable perfor-
mance penalty for business purposes.

RISK ASSESSMENT
Secure multiparty computation prevents supply-chain 

partners from learning one another’s input, but it does not 
prevent them from altering their own. Partners who cannot 
reconcile their objectives with the common good might be 
tempted to distort the optimization to yield results more 
favorable to themselves. It is therefore necessary to assess 
the risk of any conflicts of interest. 

Supply-chain actors are characterized by strategic in-
terdependence—the payoff (typically in revenue) for any 
action depends on what the other actors do. All actors 
attempt to maximize their own payoff vis-à-vis others’ 
response strategies, and equilibrium is attained when no 
actors would obtain a higher payoff by unilaterally deviat-
ing from their course. 

In such a scenario, it is possible to compute a risk profile 
for each actor based on several factors that could contrib-
ute to selfish behavior: 

•• fairness—the actor’s perception of the supply chain’s 
fairness, modeled as the distance between its fairness 
value (the average of the contributions that each actor 
gives to all possible coalition configurations) and the 
actor’s actual profit obtained from the chain; 

•• payoff—the actor’s perception of the potential out-
come of a unilateral action; and

•• context—the actor’s role and position within the 
supply chain.

We translate these three factors into a probability value 
and then compute a risk profile for each actor in the supply 
chain by multiplying the probability of a unilateral attack 
by its impact. It is then an easy matter to set up an incen-
tive scheme that defines the way benefits and penalties 
devolve to the actors, motivates collaborative behavior, and 
punishes disruptive behavior.

Researchers can use a prototype supply-chain risk 
simulator that emerged from the SecureSCM project6 to 
simulate a particular attack in different scenarios and pre-
dict the supply chain’s response (www.mathworks.com/
matlabcentral). 

S ecureSCM demonstrates the practical applicability 
of secure multiparty computation to online busi-
ness collaboration. Using part of an aeroengine 

manufacturer’s supply chain, we designed and imple-
mented a collaborative planning system that protects the 
confidentiality of private data while rapidly adapting to 
changing business needs. To our best knowledge, this 
is the first system to run secure multiparty protocols on 
such a large problem instance. 

While data confidentiality is a clear prerequisite of 
online business collaboration, it is not sufficient. Because 
partners must put their trust in electronic systems, user ac-
ceptance is a critical issue. Secure multiparty computation 
raises the risk of selfish behavior, and all parties must feel 
confident that no one can game the system. Nevertheless, 
the companies we worked with in the case study have 
expressed an interest in ultimately adopting the system, 
which we continue to improve.

Secure multiparty computation can facilitate other 
forms of collaboration besides supply-chain management. 
Whenever parties working together are reluctant to ex-
change data due to confidentiality or privacy concerns, this 
approach can be beneficial. For example, law-enforcement 
agencies have successfully used secure multiparty compu-
tation in criminal investigations.7  
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