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ABSTRACT
Although pulsars are some of the most stable clocks in the Universe, many of them are observed
to ‘glitch’, i.e. to suddenly increase their spin frequency ν with fractional increases that range
from �ν/ν ≈ 10−11 to 10−5. In this paper, we focus on the ‘giant’ glitches, i.e. glitches
with fractional increases in the spin rate of the order of �ν/ν ≈ 10−6, that are observed in
a subclass of pulsars including the Vela. We show that giant glitches can be modelled with
a two-fluid hydrodynamical approach. The model is based on the formalism for superfluid
neutron stars of Andersson & Comer and on the realistic pinning forces of Grill & Pizzochero.
We show that all stages of Vela glitches, from the rise to the post-glitch relaxation, can be
reproduced with a set of physically reasonable parameters and that the sizes and waiting times
between giant glitches in other pulsars are also consistent with our model.
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1 IN T RO D U C T I O N

The timing of radio pulsars provides us with one of the most sta-
ble clocks in the universe. Many pulsars exhibit, however, sudden
increases in the spin rate, known as ‘glitches’. To date, there have
been glitches reported in more than 100 pulsars1 (Melatos et al.
2008; Espinoza et al. 2011), with fractional jumps in the spin rate
of �ν/ν ≈ 10−11 to 10−5.

There is still no clear consensus on the origin of these phenom-
ena, but it is thought that glitches (at least the giant glitches that are
observed in somewhat older, colder pulsars such as the Vela) are
due to angular momentum being stored in a superfluid component of
the star that is temporarily decoupled from the charged component
to which the electromagnetic emission is anchored. When the two
components recouple, there is a sudden transfer of angular momen-
tum to the crust, which gives rise to the observed spin-up (Anderson
& Itoh 1975). A superfluid rotates by forming a quantized array of
vortices, the distribution of which determines the rotational profile
of the star. The main idea at the base of most glitch models is that
vortices can pin to the crustal lattice (Anderson & Itoh 1975; Alpar
1977; Pines et al. 1980; Alpar et al. 1981; Anderson et al. 1982),

�E-mail: b.d.l.haskell@uva.nl
1 http://www.jb.man.ac.uk/pulsar/glitches/gTable.html

allowing a lag to build up between the superfluid and the charged
component.

Following the seminal work of Baym, Pethick & Pines (1969),
several models have been developed to explain the dynamical evo-
lution of the pinned superfluid coupled to the crust, mainly with
the intent of explaining the observed time-scales of days to months
in the post-glitch recovery of the Vela pulsar. Essentially, one can
distinguish two classes of models, those that assume that the relax-
ation is due to the weak coupling between the superfluid and the
crust due to the interaction between free vortices and the coulomb
lattice of nuclei (Jones 1990, 1992, 1998a) and those which rely on
the creep model based on the seminal work of Alpar et al. (1984a)
and later adaptations (Alpar et al. 1984b; Link, Epstein & Baym
1993; Larson & Link 2002). In this case, the assumption is that as
a lag develops between the crust and the superfluid, vortices creep
through the crust at a rate that is highly temperature-dependent,
gradually transferring angular momentum and leading to a steady-
state spin-down. However, when the lag approaches a critical value,
it is possible for an instability to trigger a catastrophic unpinning
event associated with a sudden transfer of angular momentum to the
crust, after which vortices repin and a new equilibrium is reached.
These models work remarkably well in explaining the post-glitch
relaxation, but struggle to explain the exact nature of the pertur-
bation which triggers it. Such an event may be triggered by large
temperature perturbations (Link & Epstein 1996), caused for ex-
ample by starquakes (Baym & Pines 1971; Cheng et al. 1992), the
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interactions of the proton vortices and the crustal magnetic field (Se-
drakian & Cordes 1999) or, in the presence of strong crustal pinning,
a two-stream instability in the superfluid flow may develop, leading
to a sudden transfer of angular momentum (Glampedakis & Ander-
sson 2009). Recently, however, Warszawski & Melatos (2011) have
shown that glitches can be triggered by unpinning avalanches of the
vortex array, leading to very promising results for the overall glitch
size and waiting time distributions (see also Melatos & Warszawski
2009; Warszawski & Melatos 2010).

An entirely different mechanism was proposed by Ruderman
(1991), who suggested that vortices pinned to the crust stress it
to the point of fracture and then move outwards with the matter
they are pinned to. Several other ‘starquake’ models have been
proposed (Epstein & Link 2000; Franco, Link & Epstein 2000),
but they are all based on the main assumption that a starquake
triggers the outward motion of vortices pinned to the matter and
the local rearrangement of the crust then causes an increase of the
angle between the rotation axis and the magnetic axis, leading to
an increased electromagnetic braking torque on the star. Note that
starquakes had been invoked as a possible explanation for pulsar
glitches very soon after the first observations, but had been ruled out
as they could not account for the giant glitches of the Vela (Baym
& Pines 1971; Ruderman 1975). This mechanism may, however,
play a role in other systems, and in fact there is some evidence that
smaller glitches in younger and hotter pulsars such as the Crab may
be linked to starquakes (Middleditch et al. 2006). Furthermore, it
has been suggested that the glitch may not be exclusively linked
to vortex dynamics in the crust, but that the interaction between
the vortices and the superconducting flux tubes in the core may
contribute to the event (Ruderman, Zhu & Chen 1998; Sidery &
Alpar 2009).

One of the main difficulties in constructing a glitch model is,
however, the relative lack of realistic calculations for the pin-
ning forces. Several calculations exist of the pinning energy and
of the force per pinning site (Alpar 1977; Alpar et al. 1984a;
Epstein & Baym 1988; Link & Epstein 1991; Pizzochero, Viverit &
Broglia 1997; Jones 1998b; Donati & Pizzochero 2003, 2004, 2006;
Avogadro et al. 2007), but such calculations of the pinning force
neglect the finite length of the vortices and rely on simplified ge-
ometries. Recently, however, Link (2009) has analysed the motion
of a vortex in a random potential and, even more crucially, Grill &
Pizzochero (in preparation) have obtained realistic estimates of the
pinning force per unit length of the vortex, the quantity that can
be directly compared to the Magnus force which tends to push the
vortices out and force the superfluid into corotation with the crust.

Pizzochero (2011) has recently shown that a simple analytic
model, based on the catastrophic unpinning paradigm and the realis-
tic pinning forces calculated by Grill & Pizzochero (in preparation)
(see also Grill 2011), can describe glitches in the ‘Vela’-like pulsars,
which are typically older, exhibit larger glitches (�ν/ν ≈ 10−7 to
10−6) and always show a decrease in the frequency derivative after
the glitch (Espinoza et al. 2011). Essentially, the assumption is that
as the star spins down, the vorticity is accumulated in the strong
pinning region and then released once the resulting Magnus force
exceeds the maximum of the pinning force.

In order to make quantitative predictions for the observed jump in
frequency and subsequent relaxation of the crust, it is, however, also
necessary to describe the evolution of the various fluid components
that form the neutron star (NS). In order to do this, it is convenient
to follow a hydrodynamical approach that does not deal with vortex
motion directly, but rather follows the evolution of the separate
fluid components. In particular, we shall make use of the multifluid

formalism developed by Andersson & Comer (2006) and recently
applied, albeit in a much simpler formulation, to the study of pulsar
glitches by Sidery et al. (2010). In the following, we shall thus go
beyond the analytic model of Pizzochero (2011) and show how the
realistic pinning results of Grill & Pizzochero (in preparation) can be
incorporated into this formalism and used to accurately reproduce,
for a reasonable range of parameters, the observed properties of
pulsar glitches. Furthermore, as we will discuss in the following
sections, we will assume that the relaxation is entirely due to the
mutual friction between the superfluid component and the ‘normal’
fluid. In a sense, we are thus taking the view of Jones (1992) that the
relaxation is due to the dynamics of vortices close to corotation with
the superfluid, rather than to vortex ‘creep’. Note, however, that the
creep model has been shown to be consistent with the observed
relaxation time-scales of the Vela pulsar in the linear regime (Alpar,
Cheng & Pines 1989), and we can thus qualitatively account for
it by rescaling the mutual friction parameters, as will be discussed
in the following. Finally, let us also point out that an effect that is
neglected in this preliminary model is that of Ekman pumping at
the crust–core interface, which has been shown, together with shear
viscosity, to be relevant in explaining the post-glitch relaxation times
(van Eysden & Melatos 2010) and should be included in future
developments.

Let us stress that such detailed theoretical work is crucial at this
time, as the new Low Frequency Array (LOFAR) radio telescope
has just come online and begun observations of pulsars and fast
radio transients (Stappers et al. 2011). As development continues,
LOFAR and in the future the Square Kilometre Array (SKA) are
likely to not only provide a wealth of data on both known and new
glitching pulsars, but also resolve (or at least tightly constrain) the
glitch rise time, thus allowing us to test our theoretical understand-
ing of the glitch mechanism (Smits et al. 2009). Furthermore, a
glitch may trigger a gravitational wave (GW) burst which could
be detectable by next generation GW observatories (Bennett, van
Eysden & Melatos 2010; Sidery et al. 2010). By accurately de-
termining the glitch time, LOFAR and the SKA could be used to
trigger a directed GW search.

Finally, the constructions of long-term hydrodynamical simula-
tions of NS interior could also be extended to model not only large
pulsar glitches, but more generally pulsar timing noise, in order
to understand the role that the interior dynamics of the star plays
compared to magnetospheric processes, which have been shown to
be at work in some systems (Lyne et al. 2010). This is an issue that
is of great importance for the current efforts to detect GWs with
pulsar timing arrays (Hobbs et al. 2010).

2 TWO -FLUI D EQUATI ONS O F MOTI ON

We model the pulsar as a two-fluid system of superfluid neutrons and
a charged component, which consists of the crust and the charged
particles in the interior. As the neutrons are superfluid, they will
rotate by forming an array of quantized vortices, the interaction of
which with the fluids will give rise to a weak coupling between the
components, known as mutual friction. To describe the equations of
motion of the crust and of the superfluid, we shall use the two-fluid
formalism for NS cores developed by Andersson & Comer (2006).
We thus do not consider the equations of motion of the vortices,
but rather model the macroscopic motion of two dynamical degrees
of freedom, representing the superfluid neutrons and a neutral con-
glomerate of protons, electrons and all non-superfluid components
that are strongly coupled to them. Assuming that the individual
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species are conserved, we have the standard conservation laws,

∂t ρx + ∇i

(
ρxv

i
x

) = 0, (1)

where the constituent index x may be either p or n. The Euler
equations take the form(
∂t + vj

x∇j

) (
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i + εxw
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j
yx∇iv
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where w
yx
i = v

y
i − vx

i (y �= x) and μ̃x = μx/mx represents the
chemical potential (in the following, we assume that mp = mn).
Moreover, � represents the gravitational potential, and the param-
eter εx encodes the entrainment effect. The force on the right-hand
side of (2) can be used to describe other interactions, including dis-
sipative terms (Andersson & Comer 2006). We will focus on the
vortex-mediated mutual friction force. This means that we consider
a force of the form (Andersson, Sidery & Comer 2006)
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where 
j is the angular frequency of the neutron fluid (a hat rep-
resents a unit vector), κ = h/2mn represents the quantum of cir-
culation and nv is the vortex number per unit area. In particular,
the quantity κnv is linked to the rotation rate of the neutrons and
protons by the relation (where r̃ is the cylindrical radius)

κnv = 2
[

n + εn(
p − 
n)

] + r̃
∂

∂r̃

[

n + εn(
p − 
n)

]
. (4)

One can express the mutual friction force in terms of a dimensionless
‘drag’ parameter R such that (Andersson et al. 2006)

B = R
1 + R2

and B′ = R2

1 + R2
, (5)

and is related to the usual drag parameter γ by the relation

R = γ

κρn
. (6)

Note that for R � 1 (which is relevant in our context), one has
B ≈ R and B′ � B.

In our model, we shall consider the two components to be rotating
around the same axis defined by 
̂p. Furthermore, the protons in the
crust (to which the magnetic field is assumed to be anchored) are
bound in ions which form a crystalline solid and are connected to
the protons in the core on an Alfvén crossing time-scale, which for a
NS core is of the order of a few seconds (or possibly less if the core
is superconducting) and thus much shorter than the dynamical time-
scales we are interested in (except possibly for the glitch rise time).
Accounting for the elastic forces in the crust and Alfvén waves in the
core is clearly a prohibitive task, so as a first approximation we shall
account for these effects by considering the proton conglomerate to
be rigidly rotating. We make no such assumptions for the neutrons
which will, in fact, develop differential rotation if vortices migrate
to different regions of the star, as can be seen from equation (4).

Following Sidery et al. (2010), we can write the equations of
motion for the angular frequency of the two components in the
form


̇n(r̃) = Q(r̃)

ρn

1

1 − εn − εp
, (7)


̇p(r̃) = −Q(r̃)

ρp

1

1 − εn − εp
− A

Ip

3

p, (8)

where we have defined

Q(r̃) = ρnκnvB(
p − 
n) (9)

and

A = B2 sin θ2R6

6c3
, (10)

with B the surface magnetic field strength, θ the inclination angle
between the field and the rotation axis and Ip the moment of inertia
of the proton fluid in the star. Note that the coupling between the
components depends only on the dissipative mutual friction coef-
ficient B and not on B′. If we now assume rigid rotation for the
protons, i.e. a constant 
p, we can multiply equation (8) by r̃2ρn

and integrate over the volume, thus recasting the system in the form

Ip
̇p = −A



3

p
+

∫
r̃2Q(r̃)

1

1 − εn − εp
dV , (11)


̇n(r̃) = Q(r̃)

ρn

1

1 − εn − εp
. (12)

3 T H E P I N N I N G F O R C E

Although vortex pinning in the crust has been suggested as the
main mechanism behind pulsar glitches more than 20 years ago by
Anderson & Itoh (1975), until recently very little work has been
devoted to obtaining realistic estimates of the pinning force. The
main difficulty lies in the fact that, although there have been several
estimates of the pinning energy and thus of the force per pinning
site (Alpar et al. 1984a), it is in fact the pinning force per unit length
acting on a vortex that is the relevant quantity to compare with the
Magnus force if one is to understand when a vortex line can unpin
(Anderson et al. 1982).

In fact it has been argued by Jones (1997) that if one considers
an infinitely long vortex line and averages over the various orienta-
tions with respect to the lattice, the pinning force will be negligible.
Recent calculations by Grill & Pizzochero (in preparation) have
shown that for realistic configurations in which one considers a vor-
tex to be rigid over length-scales of 100–1000 Wigner–Seitz radii,
the averaging process over mesoscopic length-scales and different
orientations of the lattice does indeed reduce the strength of the pin-
ning force with respect to previous estimates based on the pinning
force per pinning site. However, the values obtained in these calcu-
lations, which are in fact the first realistic estimate of the pinning
force per unit length, are still large enough to explain pulsar glitches
(Pizzochero 2011).

It is beyond the scope of the present work to make a compari-
son between various superfluid gap models and equations of state
[however, see the discussion in Pizzochero, Seveso & Haskell (in
preparation); Seveso (2010), who find that the main qualitative fea-
tures of the model remain unchanged], as at present we are mainly
interested in understanding how to reproduce the main features of
a glitch with a simplified large-scale hydrodynamical NS model.
Furthermore, we shall use a Newtonian model to describe the mu-
tual friction dissipation between the two components, as at present
the relativistic prescription for doing this is not fully developed.
Given the inaccuracies inherent to a Newtonian calculation of a NS
model, any comparison between realistic equations of state would
be at least dubious. Furthermore, there are, as we shall see, huge un-
certainties associated with the values of the mutual friction coupling
parameters that would make such a calculation meaningless.

In this work, we shall focus on the case of continuous straight
vortices that thread the whole star, as in Pizzochero (2011), and
extract the main features of the calculation of Pizzochero et al. (in
preparation) to construct a simplified model for the maximum lag
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Figure 1. A schematic representation of the geometry of our problem. We
show a NS section in which the shaded area represents the strong pinning
region of the crust (out of scale). The star is threaded by straight continuous
vortices. Clearly, the larger the portion of a vortex immersed in the pinning
region, the stronger the effective pinning force, leading to a sharp maximum
for large cylindrical radii, as shown in Fig. 2.

that can be developed. Note that we do not consider the possibility
of a turbulent tangle of vortices, which would modify the vortex
dynamics and the form of the mutual friction force (see e.g. Melatos
& Peralta 2007). The inclusion of such effects is beyond the scope
of this paper, but should clearly be the focus of future work.

In our picture, the maximum pinning force is obtained by balanc-
ing the Magnus force over a whole vortex, and the critical unpin-
ning lag between the two components (�
 = 
n − 
p) will have
cylindrical symmetry and be a function of the cylindrical radius
r̃ = r sin(θ ) only. Close to the rotation axis, the radial behaviour is
thus due to the Magnus force, as the vortices encounter a roughly
similar number of pinning sites. The critical lag thus falls off as
≈1/r̃ until it reaches a minimum value of �
 ≈ 10−4 rad s−1 at
the base of the crust [note that in the analytic model of Pizzochero
et al. (in preparation), the minimum is at somewhat higher densi-
ties, deeper in the outer core]. The critical lag then rises steeply in
the equatorial region as the vortices are now completely contained
in the pinning region (as illustrated schematically in Fig. 1) and
reaches a maximum value of �
 ≈ 10−2 rad s−1, in the inner crust.
We model this behaviour as a linear rise of the lag between the
minimum and maximum values. As we continue to move outwards,
the lag then decreases linearly again as the vortices annihilate in
the outer regions of the crust where the neutrons are no longer
superfluid. A schematic representation of this is given in Fig. 2.

4 EQUATI O N O F STAT E A N D D R AG
PA R A M E T E R S

Let us discuss the fiducial NS model that we adopt for our calcula-
tions. We consider a 1.4 M�, with a radius R = 12 km, and assume
that the base of the pinning region is at r = 11.15 km, at a density
ρ = 9.6 × 1013, which is roughly consistent with the estimates of
Pizzochero et al. (in preparation). We take the background equation
of state of our NS to be an n = 1 polytrope, which allows us to make
use of the explicit solution for the density profile:

ρ = ρc
sin α

α
, (13)

with

α = πr

R
and ρc = πM

4R3
. (14)

This gives us a value It = 1.57×1045 for the total moment of inertia.
However, we need to consider the proton and neutron densities
separately, so, following Reisenegger & Goldreich (1992), we shall
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Figure 2. The top panel shows our approximation of the critical unpinning
lag �
 = 
n − 
p for a 12 km, 1.4 M� star, modelled as an n = 1
Newtonian polytrope. In the bottom panel, we show for comparison the
critical unpinning lag for a realistic model of a 12 km, 1.4 M� star obtained
by solving the Tolman–Oppenheimer–Volkoff equations and using the SLy
equation of state (Chabanat et al. 1998) as discussed in Pizzochero et al. (in
preparation).

consider a proton fraction xp of the form

xp = ρp

ρ
= 0.05

(
ρ

1014 g cm−3

)
, (15)

where ρ = ρp + ρn is the total density.
Finally, in a fully consistent model, one should be able to ob-

tain the entrainment coefficients directly from the equation of state.
There are, however, few realistic fully consistent equations of state
for superfluid NS matter. Entrainment coefficients have, however,
been obtained for the cores of stars containing hyperons (Gusakov,
Kantor & Haensel 2009a,b), and for the crust one can rely on calcu-
lations of the proton effective mass (Chamel 2006; Chamel & Carter
2006; Chamel, Pearson & Goriely 2011) which is related to our en-
trainment coefficients by the relation (Prix, Comer & Andersson
2002)

εp = 1 − m∗
p

mp
, (16)
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where mp is the bare proton mass and m∗
p is the proton effective

mass. Recent calculations by Chamel (2006) suggest that the proton
effective mass is slightly lower than the bare mass in the core but can
be larger in the crust. This means that the entrainment parameters
will vanish close to the base of the crust (Carter, Chamel & Haensel
2006). As this is the region we are mainly interested in for our
evolutions and given the introductory nature of this work, we shall
take εp = εn = 0.

The discussion of the mutual friction coefficients is more com-
plex. The mechanisms that give rise to mutual friction are in fact
different in different regions of the star. In the core, we expect
electron scattering of vortices to be at work, coupling neutrons and
protons on a time-scale of τ ≈ 10 rotational periods (Alpar et al.
1984b; Andersson et al. 2006) (which for the Vela pulsar would
give a time-scale of slightly less than a second). Another possi-
bility is that, if the protons are in a type II superconducting state,
the interaction between flux tubes and vortices will couple the two
components on an even shorter time-scale (Sidery & Alpar 2009),
although if the flux tube tangle is sufficiently strong to ‘pin’ the
vortices this may lead to the opposite being true and the core being
effectively decoupled for most of the evolution (Ruderman et al.
1998; Link 2003). We shall discuss this possibility in more detail in
the following.

In the crust, on the other hand, it has been shown by Jones (1992)
(see also Jones 1990; Epstein & Baym 1992) that coupling to sound
waves in the lattice will be the main source of dissipation for low
velocities of the vortices with respect to the lattice (≤102 cm s−1),
while dissipation due to the excitation of Kelvin waves in the vor-
tices will dominate for large relative velocities.

In Table 1, we show the values of the drag parameters in the crust,
for both these interactions, obtained from Jones (1990) by using re-
cent values of the vortex–nucleus interaction (Donati & Pizzochero
2006). Unfortunately, there is a large uncertainty associated with
this calculation, as one must not only evaluate the energy dissipated
by the interaction of the vortex with a single pinning site, but also
sum coherently over the length-scale associated with vortex rigidity
[which Grill & Pizzochero (in preparation) and Grill (2011) find
to be of the order of 102–103 Wigner–Seitz radii]. The summation
procedure leads to a poorly constrained reduction factor δ, which
Jones (1990) finds to be of the order of δ ≈ 10−4. This is consistent
with the results of Grill & Pizzochero (in preparation), who find that
averaging over mesoscopic vortex length-scales and different crys-
tal orientations leads to a reduction of up to two orders of magnitude
in the pinning force per unit length compared to previous estimates
that were obtained directly from the pinning force per pinning site.
Given the scalings in the expressions for the drag parameters of

Table 1. Drag parameters in the crustal regions defined by Negele &
Vautherin (1973). In the last two lines, we have applied a reduction fac-
tor δ = 10−4, as described in the text. Rp indicates the drag parameter due
to phonon excitations and Rk that due to Kelvin excitations.

Zone 1 2 3 4 5

ρ (×1014g cm−3) 0.015 0.096 0.34 0.78 1.3
Rp (×10−5) 1.6 0.7 5.8 0.025 0.0
Rk (×102) 290 5.8 340 0.085 0.0
Bp (×10−5) 1.6 0.7 5.8 0.025 0.0
Bk (×10−2) 0.003 0.18 0.003 11.64 0.0

δ = 10−4

Bp (×10−9) 1.6 0.7 5.8 0.025 0.0
Bk (×10−2) 30.8 5.8 27.1 0.04 0.0

Jones (1990), this would lead to a reduction factor δ ≈ 10−4 for the
drag parameters. There is thus a large uncertainty associated with
the values in Table 1 and, furthermore, drag parameters R � 1 are
dubious as for such a strong interaction the perturbative treatment
of Jones (1990) breaks down (Epstein & Baym 1992). This suggests
that for our qualitative study, we may take a constant drag param-
eter throughout the crust and study how the results depend on its
variation.

In particular, we shall consider values in the region Bp ≈ 10−10

for the weak drag due to the interaction with lattice phonons and
Bk ≈ 10−3 for the strong drag due to Kelvin wave excitation. For
the core, on the other hand, we shall consider electron scattering
off vortex cores as the main source of dissipation (Alpar, Langer &
Sauls 1984b). In this case, we take for the mutual friction coefficient
(Andersson et al. 2006)

Bc = 4 × 10−4

(
δm∗

p

mp

)2
(

δm∗
p

m∗
p

)1/2 ( xp

0.05

)7/6
ρ

1/6
14 , (17)

where m∗
p is the effective proton mass, δm∗

p = m∗
p − mp and ρ14

is the density in units of 1014 g cm−3. However, given that we are
already taking the drag parameter to be a constant in the crust, we
shall also consider constant drag in the core. This choice is more
than adequate given that we are not using a realistic prescription
for the density profile or the effective mass. We shall thus consider
drag parameters in the region of Bc ≈ Rc ≈ 5 × 10−4. Note that
microscopically the exact nature of the superconductor in the NS
interior is still open to debate (Jones 2006). The values we use are
consistent with the core being in a type I superconducting state
(Sedrakian 2005) [although see Jones (2006), for a discussion of
strong drag in a type I superconductor] and with the possibility
that one has a type II superconductor and the drag is strong, either
as a consequence of the magnetic field geometry (Sidery & Alpar
2009) or due to a significant number of vortices cutting though the
magnetic flux tubes. We do not consider here the possibility that
vortices are strongly pinned to flux tubes in a type II superconductor
and the most of the core is thus decoupled from the crust. This is
clearly an interesting possibility which shall be the object of future
work.

In our model, the exact value of the drag parameter acting on a
vortex section depends critically on the region we are considering,
as not only do the parameters depend on density, but the very nature
of the drag varies from crust to core. We shall therefore integrate
over a whole vortex and define an ‘effective’ drag coefficient which
depends only on cylindrical radius (as shown in Fig. 3) by averaging
over the vortex length. Our effective drag parameter thus depends
mainly on how sizeable a portion of the vortex is immersed in the
core (i.e. the stronger drag region) rather than in the crust.

5 D E S C R I P T I O N O F T H E M O D E L

5.1 Core

Let us now describe the evolution of the system as it spins down due
to the electromagnetic torque. First of all, let us focus on the central
regions of the star. Here the vortices will stretch through the fluid
core and only a small portion will experience pinning to the crustal
lattice. This set-up is in fact very similar to that used to study the
spin-up of superfluid helium in a container. In this case, the vortices
are only pinned to the surface of the container and unpin once the
Magnus force integrated over a vortex is approximately equal in
magnitude to the tension (see e.g. Adams, Cieplak & Glaberson
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Figure 3. The average drag parameter R as a function of cylindrical radius,
obtained by averaging the core contribution Rc and crust contribution Rp

over the length of a vortex. Note that we consider only the drag due to phonon
excitation (Rp) in the crust as we are assuming that Kelvin waves can only
be excited once the maximum critical unpinning lag has been exceeded.
The horizontal line corresponds to R of the order of 10−4, which gives a
coupling time-scale of the order of 1 min for the Vela pulsar.

1984; Sonin 1987):

TL ≈ ρnκ
2

4π
ln

(
b

ξ

)
, (18)

with b the intervortex spacing and ξ the vortex core radius. This is in
fact natural as we can expect that once the Magnus force exceeds the
tension, the vortex will no longer behave rigidly, but we can expect
reconnection and Kelvin waves to be excited, possibly developing
turbulence and leading to a number of vortices to unpin and begin
to ‘creep’ radially outwards (Schwarz 1984) [although bundles of
vortices could be significantly more rigid (Ruderman & Sutherland
1973)]. For average parameters, the Magnus force in the core will
exceed the line tension almost immediately once a lag begins to
develop (�
c ≈ 10−13), leading to the conclusion that (as in 4He)
unpinned vorticity dominates for most of the time, and repinning
can only take place if the two components are essentially comoving
(i.e. �
 < �
c). Note that the situation is radically different in the
crust, where the vortex line is fully immersed in the lattice and is
pinned in several points. In this case, we can expect it to move freely
only once the maximum pinning force of Section 3 is exceeded.

Let us, however, stress that the assumption of free vortices is
not crucial for our model. One can, in fact, easily account for the
fact that possibly not all vortices will be free to move, but at any
given time only a small fraction will be free, and subject to the drag
force. Following Jahan-Miri (2005, 2006), we shall assume that the
instantaneous number density of free vortices nm is given,

nm = ξnv, (19)

where nv is the total number density of vortices and ξ is the frac-
tion of unpinned vortices at a given time. By now averaging over
time, we can obtain an effective mutual friction parameterBE = ξB.
Note that in principle, ξ could be obtained from the standard thermal
‘creep’ model (Alpar et al. 1984a; Link, Epstein & Baym 1992). In
the following, we shall, however, not attempt to model this, as there
are huge theoretical uncertainties on the unpinning probability and

observational constraints are also very model-dependent. Neverthe-
less, by varying ξ and thus reducing the ‘effective’ drag parameter,
we can account for vortex ‘creep’ in the linear regime, which has
been used to interpret the relaxation phase of Vela glitches (Alpar
et al. 1989).

The details of the steady state are, however, not crucial for our
formulation, which is fortunate as not only vortex creep but also
vortex repinning is still poorly understood, although efforts are
being made to tackle this problem (Sedrakian 1995; Link 2009).
Eventually the system will settle down to an equilibrium state in
which both fluids are spinning down at the same rate and the lag
can be estimated, from equations (7) and (8), to be

�
(r̃) ≈ − 
̇

2B(r̃)

, (20)

where B is the effective (averaged) mutual friction parameter, and
we have neglected the effect of entrainment and differential rotation
in equation (4). We will see in the following that this is actually a
very good approximation to the equilibrium lag.

5.2 Strong pinning region

The repinning region, i.e. the equatorial region in which the pin-
ning force rises steeply, deserves a separate discussion. As the vor-
tices encounter what is, effectively, a barrier, we shall assume that
they repin almost immediately. As we discuss below, this is effec-
tively a situation in which the vortices ‘creep’ steadily outwards, i.e.
move outwards with, on average, a low velocity. This suggests that
Kelvin–phonon interactions will be strongly suppressed and that we
can consider weak mutual friction coefficients, due to interactions
with lattice phonons, in the region Bp ≈ Rp ≈ 10−10, as described
in the previous sections and as done in Fig. 3.

In fact, as the drag description is not valid close to repinning
(Link 2009), one could argue that the form of the mutual friction in
(3) is also not valid. Strictly speaking, this is true, but, as the full
problem of the motion of a vortex in a strong pinning potential is
at present intractable, we shall assume that the coupling given by
mutual friction with the weak drag given by the interaction with
phonons in the lattice is a good approximation.

The whole discussion could also be made rigorous by following
the approach of Andersson, Haskell & Samuelsson (2011) and as-
suming that an extra ‘pinning’ force is acting on the vortices and
defining an effective mutual friction parameter. However, given that
we do not have a consistent description of an effective pinning force
(but only the maximum pinning force), we shall simply assume that
all vortices are pinned below the critical velocity, and then relax
to their steady-state configuration once the critical unpinning lag is
exceeded. This is equivalent to assuming that below the critical ve-
locity, only a very small fraction of the vortices can ‘creep’, which
is reasonable due to the sharp rise in the pinning force.

This leads to the neutrons relaxing to their steady-state rotational
rate on a time-scale τr ≈ 1/2
B ≈ 108 s (for B ≈ 10−10 and
assuming the rotation rate of the Vela pulsar, i.e. ν ≈ 11 Hz). During
this time, the protons will have spun down, increasing the difference
in rotational rate between the proton fluid and the neutrons that
are still pinned. Given the strong radial dependence of the critical
unpinning lag, this leads to vortices in regions further out in the
star unpinning, while the inner regions are still relaxing to their
equilibrium state. Essentially, one has an unpinning ‘front’ that is
moving out radially. To obtain a simple estimate, let us assume that
the front moves at approximately a constant speed vr = �r/τg,

with τg = �
max/|
̇|, which leads to a speed of approximately
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vr ≈ 
̇�r/�
max ≈ 10−4 cm s−1, where �r = 400 m is the width
of the strong pinning region and �
max ≈ 10−2 is the maximum
in the lag in the equatorial region (i.e. the front sweeps the whole
pinning region in the time it takes for the lag to reach the maximum
critical value). Note that we have also used the spin-down rate
appropriate for the Vela pulsar, i.e. ν̇ ≈ 10−11 Hz s−1.

This means that the vortices that have unpinned from parts of
the star closer to the rotation axis are clustered in this region, over
a length-scale l ≈ τrvr ≈ 104 cm. We shall assume that it is this
region that gives rise to the glitch once the maximum lag is exceeded
and the vortices can no longer be pinned, thus no longer ‘creep’, but
are free to escape radially outwards. Naturally this is an approximate
estimate and in a realistic set-up the speed of the unpinning ‘front’
will not be constant and depend on the radial profile of the pinning
force and of the drag coefficients. However, given the simplified set-
up we are using for this study, we shall see that the above argument
can still provide us with a reasonable order of magnitude estimate
of the size of the region that gives rise to the glitch.

5.3 Glitch

Once the maximum lag has been reached, we shall assume that the
pinning force can no longer contrast the Magnus force and that the
vortices move out. They very rapidly reach a state of corotation with
the neutrons, leading to velocities of ≈104 cm s−1 with respect to
the lattice. In this regime, Kelvin–phonon dissipation will certainly
dominate and recouple the neutrons and protons on a very short
time-scale, giving rise to the rapid exchange of angular momentum
that characterizes the glitch. Consistently with our prescription for
the electron–phonon dissipation, we shall take the mutual friction
coefficient for Kelvin–phonons to be Bk ≈ 10−3, and assume that
it acts only in the region that has not relaxed to a steady state, i.e.
the region in which the lag is greater than the equilibrium value:

�
 > − 
̇

2Bp

. (21)

We can estimate the relaxation time-scale in the crust as τ =
1/2
Bp and assume that the pinning front moves through the strong
pinning region over a period of 3 years (the approximate waiting
time between glitches for the Vela pulsar, which shall be the main
focus of our investigation), i.e. with a velocity v ≈ 4×10−4 cm s−1.
The region which is still relaxing to its equilibrium state will then
have a thickness of

� ≈ vτ ≈ 3 × 10−6

Bp
. (22)

For a drag parameter Bp ≈ 10−10, one would then have approx-
imately all of the strong pinning region involved in the glitch. A
more quantitative analysis is shown in Fig. 4 where we show the
edge of the non-relaxed region as a function of the drag param-
eter, obtained by measuring where the lag between neutrons and
protons deviates from the analytic estimate in (21). We cannot ex-
tend the numerical analysis to very weak drag; nevertheless, we
see that the region becomes larger for weaker drag and that ex-
trapolating our results, we would have the whole crust involved
in the glitch for Bp ≈ 2 × 10−10. The extrapolation was obtained
by fitting a function of the form, inspired by the estimate in (21),
f (x) = a − b/(Rp/10−10), where the best-fitting parameters were
a = 34.77±13.7 m and b = 955.8±101.9 m, which are in reason-
able agreement (within factors of a few) with the analytical estimate.
We shall thus assume that for Bp < 2 × 10−10, Kelvin oscillations
of the vortices can be excited in the whole strong pinning region.

Figure 4. We plot the extent of the region in which Kelvin oscillations
can be excited as a function of the weak drag parameter Rp. Note that the
whole strong pinning region is 400 m thick, as indicated by the horizontal
line. We extrapolate the value of the drag parameter for which the whole
region is involved by fitting a function of the form, inspired by the estimate
in (21), f (x) = a + b/(Rp/10−10), where the best-fitting parameters were
a = 34.77 ± 13.7 m and b = 955.8 ± 101.9 m. As we can see, the whole
strong pinning region participates in the glitch for Rp < 2 × 10−10, as
expected from the analytical estimates.

5.4 Post-glitch relaxation

Subsequent to the glitch, neutrons and protons will still be in ap-
proximate corotation only in the interior regions that are coupled on
time-scales shorter than the glitch rise time. In the exterior core, the
lag between neutrons and protons will have decreased by a factor
of �
 ≈ 10−4 due to the glitch itself (in fact, the proton fluid
may now be rotating faster than the neutron fluid in some parts of
the star). The neutrons and protons then return to their steady-state
configurations with the time-scale appropriate to the average mu-
tual friction parameter B of Fig. 3, at the cylindrical radius we are
considering, thus naturally recoupling the core on time-scales that
range from the glitch rise time in the innermost regions to months in
the outermost regions (i.e. r̃ ≈ 11 km). As far as the strong pinning
region is concerned, we shall assume that the vortices repin after
the glitch, and gradually unpin (or begin to ‘creep’) again as a lag
builds up due to the protons’ spinning down. As already discussed,
the details of the repinning are highly uncertain, but given the weak
coupling in the crust, the details of such a mechanism will only
impact on the longer relaxation time-scales.

6 R ESULTS

In order to set up the pre-glitch conditions for our system, we impose
that the two fluids rotate at the same rate and then begin to evolve in
time. This would clearly not be the correct condition if, say, we are
considering the situation immediately following a previous glitch.
However, as we are setting up the situation for the next glitch, we are
only interested in obtaining a steady state on long time-scales (i.e.
the interglitch time-scale, which is approximately 3 years for the
Vela pulsar). As we intend to evolve the system for approximately
3 years, we cannot evolve the whole interior, which would require
us to deal with coupling time-scales of seconds, but assume that it
is always coupled to the crust by including its moment of inertia in
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that of the charged component, and only evolve the region between
r̃ = 11.15 and 11.55 km (i.e. the outer core in which the value
of the drag parameter becomes small and varies rapidly, and the
strong pinning region of the inner crust, up to the maximum of the
critical lag). We neglect the outer crust, which we do not expect to
be a bad approximation, as its moment of inertia is small compared
to that of the other regions of the star. The equations of motion
are thus integrated only up to the maximum of the pinning force,
where we impose that the spatial derivative of the neutron angular
velocity must vanish, i.e. ∂
n/∂r = 0, which is appropriate if
the vortices are still pinned at that point. Note that this condition
requires the vortices to be pinned homogeneously and thus assumes
an abundance of available pinning sites. At every time-step, we thus
evaluate the integral in (11) and then evolve the coupled equations in
(11)–(12) forward in time with a four-step Runge–Kutta algorithm.

Once the maximum of the lag in the strong pinning region is
reached, we initiate the glitch by switching to strong Kelvin drag
(Bk) in the region that has not relaxed, i.e. the region for which
�
 > −
̇/2Bp
. At this point, we track the evolution of the
whole core by extending the numerical grid and filling the re-
gion that has not previously been evolved with the prescription
�
 = −
̇/2Bc
. As can be seen in Fig. 5, this is indeed a good
approximation for the initial condition, given that the time-scale
on which the interior reaches a steady state is considerably shorter
than the interglitch time-scale. When the strong drag regions have
reached their equilibrium lag, we switch off the Kelvin drag and as-
sume that the vortices have repinned. We then follow the immediate
post-glitch relaxation by evolving the whole star over a time-scale
of days.

Schematically, the procedure is as follows.

(i) Initially corotating fluids are evolved in time with a constant
external spin-down torque acting on the charged component. In the
crust, we check at each time-step if a grid point is above or below
the critical unpinning lag at that radius, i.e. if �
(r̃) > �
crit(r̃).
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Figure 5. We compare, in the strong pinning region of the crust, the an-
alytical prediction for the lag �
 between neutrons and protons to the
value obtained in our simulations just before the glitch. The calculation was
performed for Bp = 10−9. As can be seen from the figure, the analytical
estimate is a very good approximation, except for the outer region in which
the system has not yet reached equilibrium. It will thus be a good approxi-
mation for the core, in which the coupling time-scale between neutrons and
protons is considerably shorter than in the crust.

If it is below, the region is pinned and the neutrons are evolved with
the rule 
̇n = 0. If the lag has exceeded the critical lag, the full
system of coupled equations is evolved, with B = Bp.

(ii) Once the maximum unpinning lag has been reached, we
initiate the glitch. We identify the region of the crust that has not yet
relaxed to its steady state, as set by the weak phonon drag, i.e. the
region in which �
 > −
̇/2Bp
. In this region, we set B = Bk.
We thus allow for strong Kelvin drag and rapid recoupling.

(iii) In the crustal regions for which we have setB = Bk, we check
at each time-step which grid points have reached equilibrium, as set
by the strong drag coefficient this time. If this is the case, i.e. if
�
 ≈ −
̇/2Bk
, we assume that the region has repinned and

̇n = 0.

(iv) The procedure continues and in the pinned regions, we check
if the lag has exceeded the critical unpinning lag, in which case
we evolve the full coupled equations with B = Bp (i.e. with weak
phonon coupling).

To summarize, we set up a system of corotating fluids with pinned
vortices in the crust and evolve it in time. As the lag increases, the
depinning front moves through the crust. Once the maximum critical
lag is reached, the vortices move rapidly outwards and strong Kelvin
mutual friction recouples the components, giving rise to the glitch.
After the glitch, the lag has decreased throughout the star and each
region relaxes to equilibrium on a time-scale determined by the
local values of the (average) mutual friction.

6.1 The Vela pulsar

Let us first of all examine the case of the Vela pulsar, which is the
prototype system for giant glitches. The Vela (PSR B0833−45 or
PSR J0835−4510) has a spin frequency ν ≈ 11.19 Hz and spin-
down rate ν̇ ≈ −1.55 × 10−11 Hz s−1. Giant glitches are observed
roughly every 2–3 years and have relative frequency jumps of the
order of �ν/ν ≈ 10−6. The spin-up is instantaneous to the accuracy
of the data, with the best constraint being an upper limit of 40 s for
the rise time obtained from the 2000 glitch (Dodson et al. 2001)
[a similar upper limit of 30 s was obtained from the analysis of the
2004 glitch, but was less significant due to the quality of the data
(Dodson et al. 2007)]. The glitch is usually fitted to a model consist-
ing of permanent steps in the frequency and frequency derivative
and a series of transient terms that decay exponentially. It is well
known that at least three are required to fit the data, with decay
time-scales that range from months to hours (Flanagan 1996). Re-
cent observations of the 2000 and 2004 glitch have shown that an
additional term is required on short time-scales, with a decay time
of approximately a minute. The fitted values for the relaxation of
these two glitches are shown in Table 2. The spin-down rate always
increases after a glitch with larger relative increases (up to a factor
of 10) which decay on the shorter time-scales and smaller (a few
per cent) increases that decay on the longer time-scales of days and
months. Note that a further two glitches were detected in 2008 and
2010, but no timing analysis has yet been published.

Consistently with the results of Grill & Pizzochero (in prepara-
tion), Grill (2011) and Pizzochero (2011), we take the maximum
of the critical unpinning lag to be �
c = 10−2, which naturally
leads to a glitch recurrence time of roughly 3 years (the exact time
depends on the choice of drag parameters, but is always approxi-
mately 1100 d). Our simulations can then reproduce glitches with
fractional rises �ν/ν ≈ 10−6 for a range of parameters. In Fig. 6,
we show the rise time and the ‘instantaneous’ size of the glitch, i.e.
the size at the end of the rise, as a function of the strong Kelvin
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Table 2. The fitted values for the relaxation of the
Vela 2000 and Vela 2004 glitches from Dodson et al.
(2001) and Dodson et al. (2007). After removing the pre-
glitch spin-down, the fit on the residuals is performed
with a function of the type f (t) = �pF + �pḞ t +∑

i fi exp (−t/τi ).

2000 2004

�pF (Hz) 3.454 35E−05 2.2865E−05
�pḞ (Hz s−1) −1.0482E−13 −1.0326E−13
f1 (×10−6 Hz) 0.02 54
f2 (×10−6 Hz) 0.31 0.21
f3 (×10−6 Hz) 0.193 0.13
f4 (×10−6 Hz) 0.2362 0.16
τ1 1.2 ± 0.2 min 1 ± 0.2 min
τ2 0.53 d 0.23 d
τ3 3.29 d 2.10 d
τ4 19.07 d 26.14 d

drag parameter Rk. As expected, the larger the drag parameter, the
shorter the rise time and the larger the glitch. This is simply due to
the fact that the faster the glitch (or rather the stronger the Kelvin
drag parameter with respect to the drag in the core), the smaller the
fraction of the core superfluid neutrons that can remain coupled to
the crust and contribute to its moment of inertia during the glitch.

However, a strong Kelvin drag will lead to rise times of the order
of seconds, well below the observational upper limit of 40 s and thus
well below the observational capabilities of current radio telescopes
that can, for the Vela pulsar, at best deal with 10-s folds. The rise
will then be followed by a rapid relaxation. In fact, if we then extract
the glitch size 40 s after the glitch is initiated, as shown in Fig. 7, we
see that the situation is reversed. The stronger the drag, the smaller
the glitch after 40 s, as an initially larger jump in frequency relaxes
faster and leads, in fact, to a lower frequency after 40 s, which is
illustrated in Fig. 8. In Fig. 7, we also see that stronger phonon drag
parameters in the crust gives rise to smaller glitches, as more of the
crust has relaxed to its equilibrium configuration and less angular
momentum is available to be exchanged.

While the magnitude of the strong Kelvin drag affects mainly
the glitch size and rise time, the strength of the drag in the core
will affect, as shown in Figs 9 and 10, the size of the glitch itself
(as it determines the amount of core superfluid that participates
in the glitch) but also crucially affect the short-term post-glitch
relaxation. In Fig. 10, we can see that a weaker drag in the core
leads to less of the superfluid coupling to the crust and thus to
a larger glitch, which however relaxes, on a time-scale of several
minutes, more than in the case of stronger coupling. Unfortunately,
the short time-scale component of the relaxation is not strongly
constrained by observations, as it was only measurable in the 2000
and 2004 glitches, with vastly different magnitudes, as can be seen
from Figs 11 and 12. The results in Fig. 12 would, however, indicate
that a core drag parameter Rc ≈ 10−5 is still marginally consistent
with observation, but that there is no evidence for a much weaker
drag, due for example to the fact that most vortices are pinned (either
to the crust or to flux tubes in the core) and only a small fraction
of them can creep. It would thus appear that the observations of the
short-term relaxation are consistent with a mutual friction drag in the
range Rc ≈ 10−4 − 10−3, consistent with theoretical expectations
for electron scattering off vortex cores. This is encouraging, given
the approximate treatment of the drag parameter in this work. Note,
however, that quantitative statements are not easy to make as there
is a large degeneracy between the various parameters that enter the
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Figure 6. In the top panel, we plot the size of the glitch (at the end of
the rise) and in the bottom panel the rise time, both as a function of the
strong Kelvin drag parameter Rk. For these simulations, we have taken
Rp = 10−10 and Rc = 5 × 10−4. Note that the segments joining the points
are to guide the eye only, and not the result of a fitting procedure.

model. For example, in Fig. 13 we show that the uncertainty on the
time of the glitch, which is of about 30 s, can lead to an uncertainty
on the value of the drag parameters.

In Fig. 11, we show the longer time-scale components of the
relaxation. These also appear consistent with a strong core drag
due to electron scattering, although a slower spin-down may be
preferred on a time-scale of days. Quantitative statements regarding
the longer relaxation time-scales (days to months) are, however,
hindered by computational and theoretical issues. On the one hand,
evolving the full system of coupled equations for longer than a
few days is computationally challenging, on the other, theoretical
uncertainties regarding repinning after a glitch and creep begin to
have a significant impact on the results for these longer time-scales,
while they do not affect short time-scales of minutes or hours. In
order to obtain truly quantitative results for longer time-scales, it
would be necessary to address these theoretical issues and also
to include a realistic density dependence of the drag parameters.
Finally, other effects are likely to play a role in the relaxation time-
scale, notably friction at the crust–core interface (van Eysden &
Melatos 2010), the inclusion of which would require us to relax
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Figure 7. The size of the glitch, extracted 40 s after it is initiated, as a
function of the drag parameters. In the top panel, we plot the glitch size as
a function of the strong drag parameter Rk. In this case, the stronger the
drag, the smaller the glitch, as an initially larger glitch relaxes faster and is,
in fact, smaller after 40 s. The remaining drag parameters were taken to be
Rp = 5 × 10−11 and Rc = 4 × 10−4. In the bottom panel, we show the
glitch size as a function of the weak drag parameter Rp. Again for larger
values of the drag, we obtain a smaller glitch, as in this case more of the fluid
in the crust has relaxed to its equilibrium configuration prior to the glitch
and less angular momentum is available to be exchanged. The remaining
drag parameters were taken to be Rk = 6×10−4 and Rc = 4×10−4. Note
that the segments joining the points are to guide the eye only, and not the
result of a fitting procedure.

the rigid rotation assumption for the charged component, which is
beyond the scope of this paper but will be the focus of future work.

7 G I A N T G L I T C H E R S

So far, we have only applied our model to the giant glitches of the
Vela pulsar. Giant glitches have, however, been observed in several
other pulsars and we would expect them to also occur when the
system reaches the maximum critical lag for unpinning. As already
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Figure 8. The first 40 s of the glitch for two values of the Kelvin drag
parameter Rk. A stronger drag (i.e. a shorter coupling time-scale) gives rise
to an initially larger glitch that, however, rapidly relaxes to a lower spin rate
than that of a glitch involving a weaker drag parameter.
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Figure 9. The size of the glitch, extracted 40 s after it is initiated, as a
function of the core drag parameter. Weaker drag parameters give rise to
larger glitches as less of the core can contribute to the moment of inertia
during a glitch. The remaining drag parameters were set at Rp = 5 × 10−11

and Rk = 1 × 10−3. Note that the segments joining the points are to guide
the eye only, and not the result of a fitting procedure.

mentioned, this need not be the case for smaller glitches that are
likely to be due to random unpinning and may be, for example,
described in terms of vortex avalanche dynamics (Warszawski &
Melatos 2011). In fact, recent observations support the view that
there is a bimodal distribution in the glitch size, with two differ-
ent populations, the ‘giant’ glitchers and pulsars that only exhibit
smaller glitches (Espinoza et al. 2011). We shall thus focus on the
population of ‘Vela-like’ pulsars that show giant glitches, as defined
by Espinoza et al. (2011), which are shown on the P –Ṗ diagram
in Fig. 14. In particular, seven of these objects have multiple giant
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Figure 10. We plot the post-glitch residuals after subtracting the pre-glitch
spin-down. The top panel shows the first 15 min of the relaxation for three
values of the core drag parameter Rc. We can see that a weaker drag in the
core leads to less of the superfluid coupling to the crust and thus to a larger
glitch, which however relaxes, on a time-scale of several minutes, more than
in the case of stronger coupling.

Figure 11. The post-glitch residuals, rescaled as in Fig. 12, but for a longer
time-scale of 2 d.

glitches, and one can thus derive an approximate waiting time be-
tween glitches. In Fig. 15, we plot the waiting time as a function of
the spin-down rate ν̇. The data appear consistent with our theoreti-
cal expectation that a pulsar that is spinning down faster will build
up the critical lag on a shorter time-scale and glitch more often.
In particular, we can see that most systems lie close to the Vela in
the P –Ṗ diagram and also glitch roughly every few years, but the
X-ray pulsar J0527–6910, which is spinning down approximately
an order of magnitude faster glitches every few months, while the
lower limits on slower pulsars indicate that they may glitch every
decade.

Naturally, the situation will be complicated by the fact that these
pulsars also exhibit smaller glitches, which may transfer part of
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Figure 12. We plot the post-glitch residuals after subtracting the pre-glitch
spin-down and having scaled all the results so that the glitch has decayed
to the same frequency after 10 min. The bottom panel is a zoom-in of the
top panel. It is clear that stronger drag parameters provide a better fit to the
Vela 2000 relaxation fit (for which the data were of better quality) and that
very weak drag parameters are still excluded by the Vela 2004 relaxation fit.
It would appear that the observations are consistent with a drag parameter
in the range Rc ≈ 10−4 to 10−3, as expected theoretically for electron
scattering off vortex cores. A very weak drag, due to only a small fraction
of the vortices’ ‘creeping’, would not appear to be consistent with the short
time-scale components of the relaxation.

the angular momentum before a giant glitch, and by the fact that
the critical lag will also depend, albeit weakly (Pizzochero et al.,
in preparation), on the mass and radius of the star. Given these
limitation, our model would, however, appear to be consistent with
the observed inter(giant)glitch waiting time. Let us stress although
data are available to study the distribution of waiting times for
smaller glitches (see e.g. Melatos et al. 2008; Espinoza et al. 2011),
we shall not present such a study here as our model only predicts
the average waiting time of giant glitches, which are assumed to
occur once the maximum critical lag is exceeded.
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Figure 13. We plot the post-glitch residuals, rescaled as in Fig. 12, to
illustrate the degeneracy between the assumed glitch epoch and the strength
of the drag in the core. We show the effect of assuming that the glitch
has occurred 30 s before the assumed epoch. We can see that the curve for
Rc = 4 × 10−4 now produces a smaller glitch and gives a better fit to
the Vela 2000 data. The curve thus appears closer to that given by taking
Rc = 9 × 10−4 but not adjusting the glitch epoch.

Figure 14. The location of the giant glitching pulsars as identified by Es-
pinoza et al. (2011) in the P –Ṗ diagram. This is the population of pulsars
that show large steps in the frequency (�ν ≈ 10−4 Hz) and always exhibit
an increase in the spin-down rate after the glitch.

Unfortunately, only the Vela is currently observed at short enough
intervals to allow a fit for the short time-scale transient terms in the
relaxation, so more accurate tests are not currently possible for other
pulsars. It would be of great interest if such observations for other
giant glitchers were to become possible with the new generation of
radio telescopes such as LOFAR and the SKA.
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Figure 15. We plot the approximate waiting time between glitches for the
pulsars that have shown multiple giant glitches, as a function of the spin-
down rate. We also include two pulsars that have shown only one glitch but
also have a long baseline for the observations and can thus provide us with an
interesting lower limit on the waiting time. The data appear consistent with
the notion that giant glitches can occur once a critical lag of approximately
�
 = 10−2 is reached. In fact, the Vela-like pulsars glitch every few years,
but the X-ray pulsar J0527−6910, which is spinning down approximately
an order of magnitude faster, glitches every few months, while the lower
limits on slower pulsars indicate that they may glitch every decade. In fact,
the data appear to be well described by a fit of the form y = A/x, as shown
in the figure, with y the waiting time in seconds, x the frequency derivative
and A = 1.082 212 × 10−3 Hz.

8 C O N C L U S I O N S

We have presented a hydrodynamical two-fluid model of pulsar
glitches that can consistently model all phases of the glitch itself.
Our model can be successfully applied to the giant glitches of the
Vela pulsar, for which we can reproduce the approximate waiting
time between glitches, the size of the glitch and the short-term post-
glitch relaxation. The main assumption is that a giant glitch will
occur once the system exceeds the maximum lag that the pinning
force in the crust can sustain. This naturally gives rise to a waiting
time between glitches that depends on the pulsar spin-down rate (i.e.
it is the time it takes the crust to spin down by the required amount)
and to a maximum size for the glitch. Both these quantities depend
only weakly on the mass and radius of the star (Pizzochero et al.,
in preparation) and our model can, in fact, reproduce these features
successfully also for the general population of ‘giant glitchers’, i.e.
the pulsars for which giant glitches such as those of the Vela have
been observed (Espinoza et al. 2011).

In our model, the coupling between the charged component
(which we assume to be rigidly rotating) and the superfluid neu-
trons is given by the vortex-mediated mutual friction. Our results
suggest that the mutual friction will be weak in the crust, possibly
due to the fact that not all vortices are free, but rather that the strong
pinning force gives rise to a situation in which most vortices are
pinned and only a small fraction can ‘creep’ outwards. Only once
the maximum unpinning lag is exceeded can the vortices move out
freely, a process which can excite Kelvin oscillations and give rise
to a strong drag and recoupling of the two components on a very
short time-scale, i.e. a glitch. The short-term post-glitch relaxation
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of the Vela, on the other hand, suggests that the magnitude of the
drag in the core of the NS is consistent with theoretical expectations
for electron scattering of magnetized vortex cores. Our model does
not support the notion that, at least on short time-scales, a signifi-
cant number of vortices is pinned in the core (as could, for example,
be the case if one has a type II superconductor and vortices cannot
cross flux tubes, effectively decoupling the core and the crust). A
detailed analysis of the case in which the core consists of a type II
superconductor will be a focus of future work in order to obtain
more quantitative results and constraints on NS interior physics.
Some vortices that cross the core may, however, be weakly pinned
to the crust, and vortex repinning and creep (also in the core) may
play a role on the longer time-scales associated with the recovery.

Another effect which will have an impact on the post-glitch re-
covery is the Ekman flow at the crust–core interface. This effect
has been shown to be important in fitting the post-glitch recovery
of the Vela and Crab pulsars by van Eysden & Melatos (2010),
and future adaptations of our model should relax the rigid rotation
assumption for the charged component and include the effect of
Ekman pumping. Further developments should also include more
realistic models for the drag parameters in the star, as the density
dependence of the coupling strength clearly has an impact on the
amount of angular momentum that can be exchanged on different
time-scales. Truly quantitative results could then be obtained with
the use of realistic equations of state together with consistent esti-
mates of the pinning force, such as those of Grill & Pizzochero (in
preparation) and Grill (2011).

Note that we have assumed that a giant glitch only occurs when
the maximum critical lag is reached. If unpinning could be trig-
gered earlier, this could generate smaller glitches. In fact, cellular
automaton models have shown that the waiting time and size distri-
butions of pulsar glitches can be successfully explained by vortex
avalanche dynamics related to random unpinning events (Melatos
& Warszawski 2009; Warszawski & Melatos 2010, 2011). In its
present form, our model cannot predict such a distribution of glitch
sizes and waiting times, but can describe successfully average glitch
parameters and waiting times of giant glitches. It would thus be of
great interest to use our long-term hydrodynamical models, with re-
alistic pinning forces, as a background for such cellular automaton
models that model the short-term vortex dynamics. Such a model
could then also be extended to model not only large pulsar glitches,
but more generally pulsar timing noise, an issue that is of great
importance for the current efforts to detect GWs with pulsar timing
arrays (Hobbs et al. 2010).

Finally, the next generation of radio telescopes, such as LOFAR
and the SKA, is likely to provide much more precise timing data for
radio pulsars and is likely to set much more stringent constraints on
the glitch rise time and short-term relaxation, thus allowing us to test
our models and probe the coupling between the interior superfluid
and the crust of the NS with unprecedented precision.
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