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Università di Napoli “Federico II”

and I.N.F.N., Sezione di Napoli, Italy.

Giancarlo Ferrera3

Dipartimento di Fisica,
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Abstract

We resum to next-to-leading order the distribution in the ratio of the invariant hadron mass mX to the total
hadron energy EX and the distribution in mX in the semileptonic decays B → Xulν. By expanding our
formulas, we obtain the coefficients of all the infrared logarithms at O(α2

S) and of the leading ones at O(α3
S).

We explicitly show that the relation between these semileptonic spectra and the photon spectrum in the radiative
decay B → Xsγ is not a purely short-distance one. There are long-distance effects in the semileptonic spectra
which are not completely factorized by the structure function as measured in the radiative decay and have to
be modelled in some way.
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1 Introduction

Semileptonic B decays
B → Xu + l + ν, (1)

where Xu is any hadron final state coming from the fragmentation of the up quark, are interesting processes
for the study of strong interactions as well as of weak interactions. The computation of the spectra in (1) is
often non trivial because of the presence of double infrared logarithms in the perturbative expansion, which
formally diverge in the endpoints and therefore must be resummed to all orders in the QCD coupling αS [1].
In all generality, large logarithms come from the so-called threshold region, defined as the one having

mX ≪ EX ≤ mb, (2)

where mX and EX are the invariant mass and total energy of the final hadron state Xu and mb is the beauty
mass. We find useful to summarize here the main results of [2, 3]. The infrared logarithms in process (1) can
be organized in a series of the form

Σ[u; α(Q)] = 1 +

∞
∑

n=1

2n
∑

k=1

Σnk αn(Q) logk

(

1

u

)

, (3)

and can be factorized into the universal QCD form factor Σ. The Σnk’s are numerical coefficients whose explicit
expressions can be obtained from [3] and α = αS is the QCD coupling. Q is the hard scale of the process and
is determined by the final hadron energy:

Q = 2EX . (4)

We have defined the hadron variable

u =
1 −

√

1 − (2mX/Q)
2

1 +

√

1 − (2mX/Q)
2

≃
(

mX

Q

)2

(0 ≤ u ≤ 1), (5)

involving the ratio of the invariant hadron mass to the hard scale, where in the last member we have taken the
leading term in the threshold region (2) only. As it is well known, the QCD form factor in eq. (3) contains at
most two logarithms for each power of α, coming from the overlap of the soft and the collinear region in each
emission. Note that the hard scale Q enters the argument of the infrared logarithms 1/u ≃ Q2/m2

X as well as
the argument of the running coupling α = α(Q). One can obtain a factorized form for the triple differential
distribution — which is the most general distribution in process (1) — from which all other spectra can be
obtained by integration:

1

Γ

∫ u

0

d3Γ

dxdwdu′ du′ = C [x, w; α(w mb)] Σ [u; α(w mb)] + D [x, u, w; α(w mb)] , (6)

where

w =
2EX

mb
(0 ≤ w ≤ 2); x =

2El

mb
(0 ≤ x ≤ 1). (7)

Γ is the total semileptonic width, C [x, w; α] is a short-distance coefficient function independent on u and
D [x, u, w; α] is a remainder function not containing infrared logarithms (i.e. short-distance dominated) and
vanishing for u → 0 as well as for α → 0. The explicit expressions of these functions have been given in [3].

The properties of semileptonic decay spectra are best understood comparing them with the simpler radiative
decay

B → Xs + γ. (8)

In such decay we have indeed:

Q = mb

(

1 − q2

m2
b

+
m2

X

m2
b

)

= mb

(

1 +
m2

X

m2
b

)

≃ mb, (9)
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where qµ is the 4-momentum of the real photon — in general of the probe. In the radiative decays (8) the hard
scale is therefore independent on the kinematics and is fixed by the beauty mass. In the semileptonic decay (1),
qµ is the dilepton momentum and we have the more general situation 0 ≤ q2 ≤ m2

b ; the hard scale is given in
this case by

Q ≃ mb

(

1 − q2

m2
b

)

(10)

and depends on the dilepton invariant mass squared q2: it cannot be identified with the heavy flavor mass mb.
Kinematic configurations with

mX ≪ Q ≈ mb (11)

as well as with
mX ≪ Q ≪ mb (12)

are possible. In fact, in the radiative decays, for example, the average hadron energy is

〈EX〉rd =
1

2
mb [1 + O(α)] , (13)

while in the semileptonic ones we have the smaller value [3]

〈EX〉sl =
7

20
mb [1 + O(α)] . (14)

In general, semileptonic spectra may or may not involve integration over the hadron energy EX and, according
to [2, 3], have a different infrared structure in the two cases. In [3] we have studied in detail the simpler case of
the distributions not integrated over the hadron energy, i.e. over the hard scale Q, which have the same infrared
structure of the hadron invariant mass distribution in the radiative decay (8):

1

ΓR

∫ ts

0

dΓR

dt′s
dt′s = CR(α)

(

1 +

∞
∑

n=1

2n
∑

k=1

Σnk α(mb)
n logk 1

ts

)

+ DR(ts; α). (15)

We have defined ts = m2
Xs

/m2
b = 1 − xγ , with xγ = 2Eγ/mb, ΓR is the total radiative width, CR(α) is a

short-distance coefficient function and DR(ts; α) is a short-distance remainder function.

In this paper, we attack the distributions integrated over the hadron energy, which have a more complicated
infrared structure than the one in (8).

In sec. 2 we resum to next-to-leading order (NLO) the distribution in the hadron variable u defined before.
The infrared logarithms appearing in the perturbative expansion of this spectrum,

1

Γ

∫ u

0

dΓ

du′
du′ = CU (α)

(

1 +

∞
∑

n=1

2n
∑

k=1

ΣUnk α (mb)
n

logk 1

u

)

+ DU (u; α), (16)

coincide in first order with those in the decay (8): ΣU12 = Σ12 and ΣU11 = Σ11, while they differ in higher
orders. CU (α) is a short-distance coefficient function and DU (u; α) is a short-distance remainder function whose
explicit expressions will be given in sec. (2).

In sec. 3 we compute to NLO the distribution in the variable

t =
m2

X

m2
b

(0 ≤ t ≤ 1), (17)

i.e. the distribution in the invariant hadron mass squared. The infrared logarithms appearing in this distribution,

1

Γ

∫ t

0

dΓ

dt′
dt′ = CT (α)

(

1 +

∞
∑

n=1

2n
∑

k=1

ΣTnk α (mb)
n

logk 1

t

)

+ DT (t; α), (18)
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differ also at the O(α) single logarithm level from the corresponding ones in (8): ΣT11 6= Σ11. We also define
a non-minimal factorization-resummation scheme which seems to have better convergence properties of the
perturbative series than the minimal one.

We define for both spectra effective form factors which resum the large logarithmic corrections. These form
factors involve a convolution of a process-dependent coefficient function with the universal QCD form factor Σ
entering the radiative decay (8) and the triple differential distribution in the decay (1). The definition of the
effective form factors we give is, in a sense, non perturbative, because we do not look at the explicit perturbative
expansion of Σ.

Finally, in sec. 4, we draw our conclusions and we consider generalizations of our results.

2 Distribution in the hadron mass/energy ratio

In this section we compute the resummed distribution in the variable u (defined in the introduction) to next-
to-leading order (NLO). That is accomplished by integrating the resummed double distribution in u and w
obtained in sec. (4) of [3] over w:

1

Γ

dΓ

du
=

∫ 1+u

0

dw
1

Γ

d2Γ

dwdu
. (19)

By replacing the resummed expression on the r.h.s. of eq. (19), we obtain:

1

Γ

dΓ

du
=

∫ 1+u

0

dw CH(w; α)σ [u; α(w mb)] +

∫ 1+u

0

dw dH(u, w; α). (20)

CH(w; α) is a short-distance coefficient function having an expansion in powers of α:

CH(w; α) = C
(0)
H (w) + α C

(1)
H (w) + α2 C

(2)
H (w) + O(α3), (21)

with

C
(0)
H (w) = 2w2(3 − 2w); (22)

C
(1)
H (w) =

CF

π
2w2(3 − 2w)

[

Li2(w) + log w log(1 − w) − 35

8
− 9 − 4w

6 − 4w
log w

]

, (23)

where CF = (N2
c − 1)/(2Nc), Nc = 3 is the number of colors and α = α(mb). σ (u; α) is the differential QCD

form factor:

σ(u; α) =
d

du
Σ(u; α), (24)

with Σ(u; α) being the cumulative form factor considered in the introduction,

Σ(u; α) = 1 + α Σ(1)(u) + α2 Σ(2)(u) + O(α3) (25)

and

Σ(1)(u) = − CF

π

[

1

2
log2 u +

7

4
log u

]

. (26)

Finally, dH(u, w; α) is a short-distance remainder function whose explicit expression is not needed here. We are
interested in the threshold region (2), which can also be defined as the one having

u ≪ 1. (27)

Since large logarithms originate only from the first integral on the r.h.s. of eq. (20), in order to isolate them,
let us neglect at first the contribution from the remainder function dH(u, w; α). The small terms for u → 0

3



will be included later on, by expanding the resummed expression and comparing with fixed-order spectrum,
as discussed at the end of sec. 2 of [3]. The integration of the first term on the r.h.s. of eq. (20) over the
hadron energy is not trivial because the coefficient function CH(w; α) depends on w as well as the QCD form
factor σ[u; α(w mb)], which depends on w via the scale of the coupling α = α(w mb). Unlike the distributions
considered in [3], we cannot factor out in this case the universal form factor σ.

Since it is technically simpler to deal with partially-integrated form factors rather than with differential
ones, let us define the event fraction

RU (u) =

∫ u

0

1

Γ

dΓ

du′
du′, (28)

which has the end-point values:
RU (0) = 0; RU (1) = 1. (29)

The spectrum in u is trivially obtained by differentiation:

1

Γ

dΓ

du
=

d

du
RU (u). (30)

Integrating both sides of eq. (20), we obtain:

RU [u; α(mb)] =

∫ u

0

du′
∫ 1+u′

0

dw CH(w; α)σ[u′; α(w mb)] + O(u, α)

=

∫ u

0

du′
∫ 1

0

dw CH(w; α)σ[u′; α(w mb)] +

∫ u

0

du′
∫ 1+u′

1

dw CH(w; α)σ[u′; α(w mb)] +

+ O(u; α), (31)

where by O(u; α) we denote terms which vanish for u → 0 as well as for α → 0. The second integral in the last
member of the r.h.s. extends to a kinematic region in w which is O(u) and therefore can be dropped in the
threshold region; we can therefore assume tree-level kinematics:

0 ≤ w ≤ 1. (32)

By exchanging the order of the integrations in the remaining integral, we obtain:

RU [u; α(mb)] =

∫ 1

0

dw CH(w; α)Σ[u; α(w mb)] + O(u; α). (33)

Substituting the explicit expressions for the coefficient function given in eq. (21) and of the QCD form factor
given in eq. (25), we obtain:

∫ 1

0

dw CH(w; α)Σ(u; α) = 1 − α CF

π

[

1

2
log2 u +

7

4
log u +

335

144

]

+ O(α2). (34)

The next step is to factorize the event fraction RU (u; α) into:

• a QCD form factor ΣU (u; α) containing the long-distance contributions, i.e. the log 1/u terms diverging
for u → 0;

• a coefficient function CU (α) containing the constant terms for u → 0;

• a remainder function DU (u; α), collecting the left-over small contributions O(u; α), vanishing for u → 0
and for α → 0.
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Let us write therefore:
RU (u; α) = CU (α)ΣU (u; α) + DU (u, α). (35)

The coefficient function, the form factor and the remainder function can all be expanded in powers of α:

CU (α) = 1 + α C
(1)
U + α2 C

(2)
U + O(α3); (36)

ΣU (u; α) = 1 + α Σ
(1)
U (u) + α2 Σ

(2)
U (u) + O(α3); (37)

DU (u; α) = α D
(1)
U (u) + α2 D

(2)
U (u) + O(α3). (38)

The knowledge of soft-gluon dynamics allows the resummation of the dominant terms to all orders in α in ΣU ;
this is instead not possible for the coefficient function and the remainder function, which are not long-distance
dominated and for them one has to use truncated expansions.

The above conditions do not completely specify the form of the form factor, of the coefficient function and of
the remainder function, so we have to select a factorization scheme. Let us choose a minimal scheme, in which
the form factor contains only logarithmic terms:

ΣU (u; α) = 1 +

∞
∑

n=1

2n
∑

k=1

ΣUnk αn Lk. (39)

where

L ≡ log
1

u
. (40)

From the above definition, it follows that ΣU has the same normalization as Σ:

ΣU (1; α) = 1, (41)

which holds to any order in α. We obtain in first order:

Σ
(1)
U (u) = − CF

π

[

1

2
log2 u +

7

4
log u

]

; (42)

C
(1)
U = − 335

144

CF

π
. (43)

Note that
Σ

(1)
U (u) = Σ(1)(u). (44)

As we are going to explicitly show later in this section, this property does not hold in higher orders of α. For
α(mb) = 0.22, we have a first order correction to the coefficient function of − 21.7%.

The remainder function is obtained by imposing consistency between the resummed expression and the
fixed-order one (matching). By expanding to first order in α the resummed expression (35) and imposing the
equality with the full O(α) result, one obtains [4]:

D
(1)
U (u) =

CF

π

[u(15624− 2688u− 1352u2 + 141u3)

5040
− 21 − 84u − 29u2 + 6u3

210
u logu

]

. (45)

As required, the remainder function goes to zero in the elastic point u = 0 (as u logu). Taking u = 1 in
eq. (35), we obtain the following relation between the coefficient function and the remainder function in the
upper endpoint:

CU (α) = 1 − DU (1; α), (46)

which holds to any order in α and is verified in first order (see eqs. (43) and (45)).
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The minimal scheme has been defined above by looking at the explicit form of the event fraction RU (u; α)
as a power series in α: one reorganizes the series picking up the logarithmic terms and putting them into the
effective form factor ΣU . It is also possible to give a different definition of the minimal scheme which does not
make use of the explicit expansion of the event fraction. Since

∫ 1

0

dw CH(w; α)Σ [u; α(w mb)] = CU (α)ΣU (u; α) (47)

and
ΣU (1; α) = 1, (48)

we can define the coefficient function to all orders as:

CU (α) =

∫ 1

0

dw CH(w; α). (49)

The effective form factor is therefore written as:

ΣU (u; α) =

∫ 1

0
dw CH(w; α)Σ[u; α(w mb)]

∫ 1

0 dw CH(w; α)
. (50)

The definition (50) of the minimal scheme has the following phenomenological advantage. One may wish to use
for Σ(u; α), instead of the perturbative expression, for example the result of a fit to some experimental data
or a non-perturbative model4. In these cases, Σ(u; w) does not depend on the coupling and therefore cannot
be expanded in α, but the effective form factor ΣU in the minimal scheme can still be computed by means of
eq. (50).

The representation of the effective form factor ΣU given in eq. (50) allows us to make a few general comments:

• ΣU (u; α) factorizes all the threshold logarithms in the spectrum but is, unlike Σ(u), process dependent.
That is because it involves the convolution of the universal form factor Σ(u; α) with the process-dependent
coefficient function over all the hadron energies. CH(w; α) has the role of a probability distribution: it
gives the probability for the hadronic subprocess with hard scale Q = w mb to occur. In the u distribution
hadronic subprocesses with all the possible hard scales Q from zero up to mb do contribute, while in the
radiative decay (8) Q is kinematically fixed to the upper value mb. The relation between these two spectra
therefore is not a purely short-distance one: to relate these two distributions one has to model in some
way the variation of the form factor Σ[u; α(Q)] with Q ranging from mb down to zero. In agreement with
physical intuition, the problem in the computation of the u distribution is the estimate of the contributions
from small hard scales, Q ≪ mb, where perturbation theory is expected to fail. However, since CH ∝ Q2,
small hard scales give a small contribution to the total. We may say that the u spectrum is “protected”
from long-distance effects related to large logarithms with a large coupling, i.e. related to the region in
eq. (12);

• since α(w mb) = α(mb) + O(α2), the effective form factor and the universal form factor coincide in first
order, as already found by explicit computation (see eq. (44));

• were not for the dependence of the form factor Σ = Σ[u; α(w mb)] on w through the running coupling,
α = α(w mb), the effective form factor ΣU would coincide with the universal one Σ to all orders.

Let us now discuss the higher orders in the perturbative expansion of ΣU (u; α). One has to insert in eq. (50):

• the QCD form factor Σ, whose next-to-next-to-leading order corrections (NNLO) are now well established
due to the recent revaluation of the resummation constant D2 in [5];

4For the coefficient function, one can still use the perturbative result. That is because the coefficient function, unlike the form
factor, is short-distance dominated, and therefore its perturbative evaluation is more reliable.
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• the coefficient function CH(w; α), which is known to O(α), i.e. to NLO (cfr. eq. (21)),

and perform the integration over w. To obtain the truncated expansion of ΣU , one simply replaces the truncated
expansions of Σ and of CH , expands the product and integrates term by term.

The exponential structure of the threshold logarithms in Σ(u; α) is partially spoiled in ΣU (u; α) because
of the integration over the hard scale Q = w mb, but it is not completely ruined. In order to simplify the
representation of the large logarithms, it is therefore convenient to introduce the exponent of the form factor
also in the effective case, i.e. to define GU as:

ΣU = eGU . (51)

Expanding the exponent in powers of α up to third order included, we have an expansion of the same form of
G, defined in [3], that is:

GU (u; α) =
∞
∑

n=1

n+1
∑

k=1

GUnk αn Lk = GU12αL2 + GU11αL + GU23α
2L3 + GU22α

2L2 + GU21α
2L + · · · , (52)

where

L ≡ log
1

u
≥ 0 (53)

and α ≡ α(mb). In order to explicitly see the effects of the integration over the hard scale, let us give the
coefficients GUij up to the third order in terms of the corresponding coefficients Gij of the radiative decay (8)
and of the resummation constants Ai, Bi, Di and of the β-function coefficients βi [3]:

GU12 = G12; (54)

GU11 = G11; (55)

GU23 = G23; (56)

GU22 = G22 −
5

12
A1β0; (57)

GU21 = G21 −
5

6
β0

(

B1 + D1

)

; (58)

GU34 = G34; (59)

GU33 = G33 −
5

6
A1β

2
0 ; (60)

GU32 = G32 −
5

6
A2 β0 −

1

36
A1

(

23 β0
2 + 15 β1

)

− 5

6
β0

2
(

B1 + 2 D1

)

− 5

6
A1

2 β0 z(2) +

−
(

547

216
− 2 z(3)

)

CF

π
A1 β0 , (61)

where z(a) =
∑∞

n=1 1/na is the Riemann Zeta function and the explicit expressions of the Gij have been given
in sec. (2) of [3]. For a reference use in phenomenological analysis, let us also give the explicit expressions for the
coefficients, which can be checked against the second and third order computations of the u spectrum as soon

7



as the latter will become available. We report only the coefficients differing from the starting ones, GUij 6= Gij :

GU22 =
CF

π2

[

− nf

48
− CF z(2)

2
+ CA

(

− 5

96
+

z(2)

4

)

]

; (62)

GU21 =
CF

π2

[

nf

(

−5

6
+

z(2)

6

)

+ CA

(

215

48
− 17 z(2)

12
− z(3)

4

)

+ CF

(

3

32
+ z(2) +

z(3)

2

)

]

; (63)

GU33 =
CF

π3

[

− 11

432
n2

f + CA nf

(

95

216
− z(2)

12

)

+ C2
A

(

−2471

1728
+

11 z(2)

24

)

+

+ CF nf

(

1

16
+

z(2)

4

)

− 11

8
CF CA z(2) +

1

3
C2

F z(3)

]

; (64)

GU32 =
CF

π3

[

n2
f

(

49

432
− z(2)

36

)

+ CF CA

(

−23177

10368
+

155 z(2)

96
− 11 z(3)

12
+

5 z(4)

4

)

+

+ CF nf

(

2971

5184
− 17 z(2)

48
− z(3)

12

)

+ C2
F

(

−7 z(3)

4
+

z(4)

4

)

+ CA nf

(

−1709

1728
+

19z(2)

72
− z(3)

24

)

+

+ C2
A

(

1541

864
− 4 z(2)

9
+

77 z(3)

48
− 11 z(4)

16

)

]

, (65)

where CA = Nc = 3 and nf is the number of active flavors. Let us make a few comments about the results
obtained:

• it is remarkable that we could explicitly compute GU32 with the knowledge of the first two orders of the
coefficient function CH(w; α) only (cfr. eqs. (22) and (23)). We can compute also the coefficients GUn,n−1

for n > 3, i.e. the exponent GU to NNLO. As explained in detail in [6, 3], NNLO means indeed that for
each power of α we can compute the three principal logarithms:5

GUn,n+1 αn Ln+1, GUn,n αn Ln, GUn,n−1 αnLn−1. (67)

By general counting arguments, one would expect that the NNLO corrections to ΣU also require the

knowledge of the NNLO contribution to the coefficient function, i.e. of the O(α2) term C
(2)
H (w). That

is actually not the case because the NNLO contributions proportional to C
(2)
H (w) cancel between the

numerator and the denominator in the definition of the effective form factor in eq. (50). However, a
complete NNLO resummation of the u-spectrum also requires the knowledge of the second-order correction

to the coefficient function C
(2)
U , and for that C

(2)
H (w) is needed (see eq.(49));

• Since the coefficients of the threshold logarithms in the u distribution and in the photon spectrum in the
radiative decay (8) differ from two loops on in NLO, the cancellation of long-distance effects in the ratio
considered in [4]

R(u) =
dΓR/dts(ts = u)

dΓ/du(u)
(68)

is not exact but occurs only in leading order. As previously discussed, the u distribution has additional
long distance effects with respect to the radiative decay related to small hadron energies.

5If we look instead at the form factor itself, ΣU , NNLO means that we can compute for any n all the coefficients ΣUnk with
n − 1 ≤ k ≤ 2n:

ΣUn,2n αn L2n, ΣUn,2n−1 αn L2n−1, · · · , ΣUn,n αn Ln, ΣUn,n−1 αn Ln−1. (66)

For instance for n = 3 we can compute the coefficients of the logarithms from power six down to power two included.
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The differential spectrum in u is obtained from the event fraction RU (u) by differentiation:

1

Γ

dΓ

du
= CU (α)σU (u; α) + dU (u; α), (69)

where we have defined

σU (u; α) ≡ d

du
ΣU (u; α) ; dU (u; α) ≡ d

du
DU (u; α). (70)

The coefficient function is clearly the same in the partially-integrated spectrum and in the differential one, while
the remainder function is obtained by differentiation and reads:

d
(1)
U (u) =

CF

π

[

36 − 8u − 8u2 + u3

12
− 7 − 56u − 29u2 + 8u3

70
log u

]

. (71)

3 Hadron mass spectrum

In this section we resum to NLO the distribution in the invariant hadron mass squared, i.e. the distribution in
the variable

t =
m2

X

m2
b

=
u w2

(1 + u)2
≃ u w2 (0 ≤ t ≤ 1), (72)

where in the last member we have kept the leading term for u → 0 only. This distribution is obtained by
integrating the distribution in the hadron variables u and w with the previous kinematic constraint:

1

Γ

dΓ

dt
=

∫

D

dudw
1

Γ

d2Γ

dudw
δ

[

t − u w2

(1 + u)2

]

; (73)

the integration covers the whole phase space D of the hadron variables:

∫

D

dudw =

∫ 2

0

dw

∫ 1

max[0,w−1]

du =

∫ 1

0

du

∫ 1+u

0

dw. (74)

It is convenient to evaluate the event fraction, defined like in the previous distribution as:

RT (t) =

∫ t

0

dt′
1

Γ

dΓ

dt′
, (75)

with the end-point values RT (0) = 0 and RT (1) = 1. Integrating both sides of eq. (73), one obtains:

RT (t) =

∫

D

dudw
1

Γ

d2Γ

dudw
θ

[

t − u w2

(1 + u)2

]

. (76)

By inserting the resummed form for the double hadron distribution and neglecting at first the remainder
function, we obtain:

RT (t; α) =

∫

D

dudw CH(w; α)σ [u; α(w mb)] θ

[

t − u w2

(1 + u)2

]

+ O(t, α), (77)

where by O(t, α) we denote terms which are zero at the threshold and vanish for α = 0. In order to isolate the
large logarithms, let us simplify the domain D into the unit square

0 ≤ u, w ≤ 1 (78)

and simplify the kinematic constraint as well as:

θ
[

t − u w2/(1 + u)2
]

→ θ[t − u w2]. (79)

9



Let us observe that the variable t keeps unitary range even after such approximations. We then obtain:

RT (t; α) =

∫ 1

0

∫ 1

0

dudw CH(w; α)σ [u; α(w mb)] θ
[

t − uw2
]

+ O(t, α)

=

∫

√
t

0

dw CH(w; α) +

∫ 1

√
t

dw CH(w; α)Σ
[

t/w2; α(w mb)
]

+ O(t, α). (80)

Let us remark that the present case is more involved with respect to the one treated in the previous section,
because the hadron mass squared t is a combination of both variables used for threshold resummation, namely
u and w. Neglecting infinitesimal terms for t → 0, the expression above can be further simplified by neglecting
the first integral and integrating the second integrand over w down to zero,

RT (t; α) =

∫ 1

0

dw CH(w; α)Σ
[

t/w2; α(w mb)
]

+ O(α, t). (81)

By inserting the first-order expressions for the coefficient function and the form factor given in the previous
section, we obtain:

∫ 1

0

dw CH(w; α)Σ
[

t/w2; α(w mb)
]

= 1 − α CF

π

[

1

2
log2 t +

31

12
log t +

637

144

]

+ O(α2). (82)

As anticipated in the introduction, we have a different coefficient for the single logarithm with respect to the
hadron mass distribution in the radiative decay (8) or the u distribution of the previous section.

As with the u distribution, we introduce a resummed form of the event fraction as:

RT (t; α) = CT (α)ΣT (t; α) + DT (t; α). (83)

All the functions above have an expansion in powers of α:

CT (α) = 1 + α C
(1)
T + α2 C

(2)
T + O(α3); (84)

ΣT (u; α) = 1 + α Σ
(1)
T (t) + α2 Σ

(2)
T (t) + O(α3); (85)

DT (t; α) = α D
(1)
T (t) + α2 D

(2)
T (t) + O(α3). (86)

Let us consider a minimal factorization scheme, where only logarithms in t are factorized in the effective form
factor ΣT . Since we will consider a different scheme later on in this section, let us denote the quantities in the
minimal scheme with a bar. The first-order corrections to the form factor and the coefficient function in the
minimal scheme read:

Σ̄
(1)
T (t) = − CF

π

[

1

2
log2 t +

31

12
log t

]

;

C̄
(1)
T = − CF

π

637

144
= − 1.87744. (87)

Note that the correction to the coefficient function is very large: for α(mb) = 0.22 it amounts to − 41.3%.

We now expand the resummed result in powers of α and compare with the fixed order result, which is known
to full order α [7, 8]:

RT (t; α) = 1 + α R
(1)
T (t) + α2 R

(2)
T (t) + O(α3), (88)

with

R
(1)
T (t) = − CF

π

[

1

2
log2 t +

31

12
log t +

637

144
− 97

18
t +

25

18
t3 − 61

144
t4 +

(

5

3
t − 3

2
t2 +

1

6
t4
)

log t

]

. (89)

10



We obtain for the remainder function in first order:

D̄
(1)
T (t) =

97

18
t − 25

18
t3 +

61

144
t4 −

(

5

3
t − 3

2
t2 +

1

6
t4
)

log t. (90)

Since
Σ̄T (1; α) = 1, (91)

taking t = 1 in eq. (83), we obtain a relation between the coefficient function and the remainder function in the
endpoint:

C̄T (α) = 1 − D̄T (1; α). (92)

It is a trivial matter to verify that the above relation holds true for our first-order expressions.

A compact definition of the minimal scheme can be given as follows. Since

∫ 1

0

dw CH(w; α)Σ
[

t/w2; α(w mb)
]

= C̄T (α) Σ̄T (t; α) , (93)

the coefficient function in the minimal scheme can be defined taking t = 1 in the above equation and using (91):

C̄T (α) ≡
∫ 1

0

dw CH(w; α)Σ
[

1/w2; α(w mb)
]

. (94)

The effective form factor then reads:

Σ̄T (t; α) ≡
∫ 1

0 dw CH(w; α)Σ
[

t/w2; α(w mb)
]

∫ 1

0
dw CH(w; α)Σ [1/w2; α(w mb)]

. (95)

Let us comment the above result. The effective form factor involves a convolution over the hadron energy
w of the coefficient function and the universal form factor, which cannot be reduced to an ordinary product
by the standard moment transform. That is because the variable w enters not only in the first argument of
Σ = Σ

[

t/w2; α(w mb)
]

but also in the scale of the coupling α = α(w mb). Analogously to the u distribution,
there are long-distance effects in the effective form factor related to small hadron energies w ≪ 1, which are
suppressed by the coefficient function. In the present case, however, there is an additional mechanism suppressing
the small energy contributions: since Σ is evaluated in t/w2, small w’s correspond to a large argument u = t/w2

of Σ(u), where there are no large logarithms, log 1/u ∼ O(1), and one is inclusive at the parton level. We may
say that this spectrum is “double protected” from the non-perturbative long-distance effects related to small
hadron energies.

The systematic expansion of the form factor is easily obtained by writing as usual:

Σ̄T = eḠT , (96)

one obtains:

ḠT (t; α) =

∞
∑

n=1

n+1
∑

k=1

ḠTnk αn Lk
t , (97)

where

Lt ≡ log
1

t
(98)
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and

ḠT12 = G12; (99)

ḠT11 = G11 +
5

6
A1; (100)

ḠT23 = G23; (101)

ḠT22 = G22 +
7

24
A2

1 +
5

6
A1β0; (102)

ḠT21 = G21 +
5

6
A2 + A2

1

[

5

6
z(2) − 47

54

]

− 23

36
A1β0 +

7

12
A1(B1 + D1) +

+
5

6
β0D1 + A1

CF

π

[

547

108
− 4z(3)

]

; (103)

ḠT34 = G34; (104)

ḠT33 = G33 +
83

648
A3

1 +
7

12
A2

1β0 +
10

9
A1β

2
0 ; (105)

ḠT32 = G32 +
5

3
A2 β0 +

5

3
β0

2 D1 +
83

216
A1

2 (B1 + D1) + A1
2 β0

(

35 z(2)

12
− 47

27

)

+ A1
2 CF

π

(

22747

1728
− 12 z(4)

)

+
7

12
A1 A2 −

1

18
A1

(

23 β0
2 − 15 β1

)

+
7

12
A1 β0

(

B1 + 2D1

)

+

+ A1 β0
CF

π

(

547

108
− 4 z(3)

)

+ A1
3

(

−1117

1296
+

7 z(2)

12
− 5 z(3)

6

)

. (106)

For comparison with future higher-order computations, let us give the explicit values of the coefficients ḠTij 6=
Gij :

ḠT11 =
31 CF

12 π
; (107)

ḠT22 =
CF

π2

[

− 11 nf

48
+ CF

(

7

24
− z(2)

2

)

+ CA

(

35

32
+

z(2)

4

)

]

; (108)

ḠT21 =
CF

π2

[

nf

(

z(2)

6
− 83

144

)

+ CF

(

941

288
+

11

6
z(2) − 7

2
z(3)

)

+ CA

(

107

32
− 11

6
z(2) − z(3)

4

)

]

;(109)

ḠT33 =
CF

π3

[

37

1296
n2

f + CF CA

(

77

144
− 11 z(2)

8

)

+ CF nf

(

− 5

144
+

z(2)

4

)

+

+ CA nf

(

− 25

162
− z(2)

12

)

+ C2
A

(

1057

5184
+

11 z(2)

24

)

+ C2
F

(

83

648
+

z(3)

3

)

]

; (110)

ḠT32 =
CF

π3

[

(

263

2592
− z(2)

36

)

n2
f + CF CA

(

28493

10368
+

457 z(2)

96
− 77 z(3)

12
+

5 z(4)

4

)

+

+ CF nf

(

−2353

5184
− 47 z(2)

48
+

11 z(3)

12

)

+ C2
F

(

60287

5184
+

7 z(2)

12
− 31 z(3)

12
− 47 z(4)

4

)

+

+ CA nf

(

−6515

5184
+

17z(2)

36
− z(3)

24

)

+ C2
A

(

31841

10368
− 229 z(2)

144
+

77 z(3)

48
− 11 z(4)

16

)

]

.(111)

Let us make a few remarks:

• The coefficient of the single logarithm at O(α) is different from the previous case as well as from the
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radiative decay:
ḠT11 6= GU11 = G11, (112)

because ḠT11 takes a kinematic contribution from A1, i.e. from the double logarithm at one loop in Σ.

The logarithmic structure of ḠT radically differs from that of G because the integration variable w enters
not only the argument of the running coupling α = α(w mb) but also the argument of the logarithm
L = log(t/w2);

• If the hard scale was set by the heavy flavor mass, Q = mb (a kind of frozen coupling case with respect to

the real case) we would have the following values for the coefficients: Ḡfr
T22 = G22 + 7/24 A2

1 + 5/4 A1β0

and Ḡfr
T33 = G33 + 83/648 A3

1 + 7/8 A2
1β0 + 35/18 A1β

2
0 .

As discussed in the previous section, in phenomenological studies one may want to replace the perturbative
expression of Σ(u; α) with a fit to some experimental data or with a non-perturbative model. The minimal
scheme cannot be used directly in these circumstances because the effective form factor Σ̄(t; α) involves the
integration of Σ(u; α) in the unphysical region u > 1. There are various ways to deal with this problem. One
way could be for example replacing Σ(u; α) with the non-perturbative quantity Σnp(u; w) for u ≤ 1, while still
keeping the perturbative Σ(u; α) in the unphysical region u > 1. The perturbative form factor is indeed an
analytic function of u, which can be continued to any value of u. To avoid the inclusion of the perturbative
Σ(u; α) for u > 1, let us consider instead a non-minimal scheme with an effective form factor defined as:

ΣT (t; α) =

∫ 1

0 dw CH(w; α) Σ̃
[

t/w2; α(w mb)
]

∫ 1

0
dw CH(w, α)

, (113)

where the standard form factor Σ(u; α) has been extended to arguments larger than one, u > 1, since:

Σ̃(u; α) ≡
{

Σ(u; α) for u ≤ 1;
1 for u > 1.

(114)

Because of the definition, it holds:
ΣT (1; α) = 1. (115)

Explicitly one has (cfr. the r.h.s. of eq. (80)):

∫ 1

0

dw CH(w; α) Σ̃
[

t/w2; α(w mb)
]

=

∫

√
t

0

dw CH(w; α) +

∫ 1

√
t

dw CH(w; α)Σ
[

t/w2; α(w mb)
]

. (116)

The coefficient function is given in the new scheme by:

CT (α) =

∫ 1

0

dw CH(w, α). (117)

By inserting in eq. (113) the perturbative expansions for CH and for Σ, we obtain:

Σ
(1)
T (t) =

CF

π

[

− 1

2
log2 t − 31

12
log t − 151 − 232 t3/2 + 81 t2

72

]

(118)

and

C
(1)
T = −CF

π

335

144
= − 0.98735. (119)

The first of the above equations shows that ΣT , unlike Σ̄T , is not defined in a minimal factorization scheme,
i.e. it does not contain only logarithmic terms αn Lk

t , but also contributions of a different form. Note that
the coefficient function in (119) has a much smaller value than in the minimal scheme, giving a hint of better
convergence of the perturbative series in the modified scheme.
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Matching with the first-order spectrum, one obtains for the remainder function in the modified scheme:

D
(1)
T (t) =

CF

π

[

97

18
t − 29

9
t3/2 +

9

8
t2 − 25

18
t3 +

61

144
t4 −

(

5

3
t − 3

2
t2 +

1

6
t4
)

log t

]

. (120)

The coefficients of the logarithms in the exponent of the form factor GT are the same in the minimal scheme
and in the modified one:

GTij = ḠTij for j ≥ 1. (121)

The non logarithmic coefficients in the modified scheme are given by (ḠT10 = 0 and ḠT20 = 0 by definition of
minimal scheme):

GT10 = − 23

36
A1 +

5

6
(B1 + D1); (122)

GT20 = − 23

36
A2 +

7

24
(B1 + D1)

2 +
5

6
(B2 + D2) +

23

36
β0 B1 +

+ A1 (B1 + D1)

(

− 47

54
+

5 z(2)

6

)

+ A2
1

(

2057

2592
− 23 z(2)

36
+

5 z(3)

6

)

+

+
CF

π
(B1 + D1)

(

547

108
− 4 z(3)

)

+
CF

π
A1

(

− 90121

5184
+

10 z(3)

3
+ 12 z(4)

)

. (123)

Explicitly:

GT10 = − CF

π

151

72
; (124)

GT20 =
CF

π2

{

CA

(

−344

81
+

3

2
z(2) +

5

24
z(3)

)

+ nf

(

971

1296
− 5

36
z(2)

)

+

+ CF

(

−79889

3456
− 53

36
z(2) +

119

12
z(3) + 12 z(4)

)

}

. (125)

The relations between the coefficient function in the minimal scheme and in the modified one are obtained
imposing that

CT eGT = C̄T eḠT + O(t; α) (126)

and read:

C
(1)
T = C̄

(1)
T − GT10;

C
(2)
T = C̄

(2)
T − C̄

(1)
T GT10 +

1

2
G2

T10 − GT20. (127)

The first equation can be directly verified by inserting our first-order expressions. The second order correction
to the coefficient function is unknown at present in either scheme and its determination requires a full two-loop
calculation; the second of the above equations simply allows us to transform the coefficient function from one
scheme to another one.

The Babar collaboration has recently presented the differential spectrum in t [9], which is obtained from the
previous one by differentiation:

1

Γ

dΓ

dt
=

d

dt
RT (t). (128)

Due to their relevance, let us present explicit formulas. The resummed spectrum reads:

1

Γ

dΓ

dt
= CT (α)σT (t; α) + dT (t; α) (129)

where
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• the coefficient function is the same as in the event fraction, since it is independent on t;

• the effective form factor is

σT (t; α) =
d

dt
ΣT (t; α). (130)

More explicitly:

σT (t; α) =

∫ 1√
t dw/w2 CH(w; α)σ[t/w2; α(w mb)]

∫ 1

0
dw CH(w; α)

=

∫ 1

t
du/(2

√
t u)CH

(

√

t/u; α(w mb)
)

σ
[

u; α
(

mb

√

t/u
)]

∫ 1

0
dw CH(w; α)

, (131)

where a double representation as an integral over w or over u respectively has been given;

• the remainder function is:

dT (t; α) =
d

dt
DT (t; α) = α d

(1)
T (t) + α2 d

(2)
T (t) + O(α3). (132)

The explicit value of the first-order correction is:

d
(1)
T (t) =

CF

π

[

67

18
− 29

6

√
t +

15

4
t − 25

6
t2 +

55

36
t3 − 5

3
log t + 3t log t − 2

3
t3 log t

]

. (133)

Let us make a comment about the non-perturbative effects entering the differential mass distribution. The
expression for the effective form factor σT (t; α) at the second member of eq. (131) involves an integration over
w from

√
t up to one. Since the running coupling is evaluated in Q = w mb, the smallest hard scale contributing

to the distribution is
Qmin =

√
t mb = mX . (134)

In order to avoid the infrared pole in the coupling — the well-known Landau pole — implying a breakdown of
the perturbative scheme, one has to impose the condition

mX ≫ ΛQCD, (135)

which is also very reasonable from the physical viewpoint. Resummed perturbation theory therefore signals that
the hadron mass distribution cannot be computed for hadron masses of the order of the hadron scale because
of the appearance of the Landau pole6.

4 Conclusions

In this work we have presented next-to-leading resummed expressions for the distribution in the final hadron
mass/energy ratio and for the distribution in the invariant hadron mass in the semileptonic decays

B → Xu + l + ν. (136)

By expanding our formulas, we have obtained the coefficients of all the infrared logarithms to O(α2) and of the
leading ones to O(α3). These two spectra have different logarithmic structures from each other, which are both

6The universal QCD form factor σ [u; α(Q)] has an infrared singularity at u = exp [−1/(2 β0 α(Q))], related to the Landau pole
for mX ≈

√

ΛQCDQ ≫ ΛQCD . We assume that the latter has been regulated in some way; for a recent discussion see for example
[10].
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different also from that one in the radiative decay (8). That occurs because these spectra involve integration
over the total hadron energy EX , which sets the hard scale Q of the hadronic subprocess in (136):

Q = 2EX . (137)

Long distance effects manifest in perturbation theory in the form of large infrared logarithms, which are usually
factorized and resummed in QCD form factors. Universality of long-distance effects therefore shows up in
perturbation theory as the occurrence of equal form factors in different distributions. That implies that the
spectra we have considered in this work have different long-distance effects from each other as well as from the
radiative decay (8). There is no simple connection between these semileptonic spectra and the hadron mass
distribution in radiative decays. For both spectra, we have introduced effective, i.e. process dependent, form
factors, which factorize the large logarithms to all orders in perturbation theory. These effective form factors
can also be computed in a phenomenological way by inserting, in place of the perturbative QCD form factor
Σ [u; α(w mb)], the form factor Σnp(u; w) computed with a non-perturbative model or a fit to experimental
data. In the case of the distribution in the hadron mass squared t, we have also considered a non-minimal
factorization-resummation scheme, which seems to have better convergence properties of the perturbative series
with respect to the minimal one.

There are other important semileptonic spectra which have similar properties to those of the distributions
considered here, i.e. long distance effects which cannot be factorized into a process independent form factor, to
be extracted for example from the radiative decay [11].

Finally, we have also shown that the cancellation of long-distance effects in the ratio constructed in [4] occurs
only in leading order while it is violated at the level of α2 log2

(

1
u

)

terms.
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