
ar
X

iv
:0

70
7.

31
62

v2
  [

he
p-

ph
] 

 2
3 

O
ct

 2
00

7

UB-ECM-PF-07/22

July 2007

Triple Higgs boson production in the Linear Collider

Giancarlo Ferreraa, Jaume Guaschb,c, David López-Vala, Joan Solàa,c
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Abstract. Triple Higgs boson production (3H) may provide essential information to

reconstruct the Higgs potential. We consider 3H-production in the International Linear

Collider (ILC) both in the Minimal Supersymmetric Standard Model (MSSM) and in

the general Two-Higgs-doublet Model (2HDM). We compute the total cross-section for

the various 3H final states, such as H+ H− h0, H0 A0 h0, etc. and compare with the more

traditional double Higgs (2H) boson production processes. While the cross-sections for

the 2H final states lie within the same order of magnitude in both the MSSM and

2HDM, we find that for the 3H states the maximum 2HDM cross-sections, being of

order 0.1 pb, are much larger than the MSSM ones which, in most cases, are of order

10−6 pb or less. Actually, the 3H processes could be the dominant mechanism for Higgs

boson production in the 2HDM. Ultimately, the origin of the remarkable enhancement

of the 3H channels in the 2HDM case (for both type I and type II models) originates in

the structure of the trilinear Higgs boson couplings. The extremely clean environment

of the ILC should allow a relatively comfortable tagging of the three Higgs boson

events. In view of the fact that the MSSM contribution is negligible, these events

should manifest themselves mainly in the form of 6 heavy-quark jet final states. Some

of these signatures could be spectacular, and in case of being detected would constitute

strong evidence of an extended Higgs sector of non-supersymmetric origin.
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1 Introduction

There is no doubt that the Higgs sector is the most paradigmatic one in the structure of any

modern quantum field theory (QFT) aiming at a good phenomenological description of electroweak

interactions in particle physics. The main reason for this is twofold: i) the Higgs mechanism is

the only known consistent quantum field theoretical procedure to generate masses for all the

elementary particles; ii) we have found no Higgs boson yet – not even the single one predicted

by the successful standard model (SM) of the strong and electroweak interactions–, and therefore

we don’t know if Higgs bosons exist at all or if, on the contrary, there are extensions of the SM

containing a richer spectrum of Higgs boson particles, some of them electrically charged and some

of them electrically neutral. Let us note that if failure of point ii) would persist for long, especially

after the LHC and the future linear colliders ILC and/or CLIC had already amply swept their

maximum energy ranges and luminosities, we could find ourselves in a sort of cul-de-sac because

this would also mean that we would not have substantiated point i) either, which is tantamount

to say that we would have not found any experimental evidence of the most powerful theoretical

mechanism known up to date for building renormalizable models of particle interactions. It is

therefore a momentous task to search for Higgs bosons and unveil their ultimate nature.

Surely a linear e+e− collider will be instrumental to accomplish this aim because it is the

cleanest high-precision machine we can think of for studying particle interactions. No doubt, if

Higgs bosons are around, the linear collider will help either to discover them or to identify the

precise nature of the Higgs particle(s) previously uncovered at the LHC. In particular, once a

neutral Higgs boson has been identified, we would like to know if it is the neutral SM Higgs boson,

or if it belongs to some supersymmetric (SUSY) extension of the SM, or if on the contrary it

has nothing at all to do with SUSY. If, alternatively, the identified Higgs boson is charged we

would like to know to which extension of the SM it can be ascribed. A particularly well-motivated

possibility along these lines is the Minimal Supersymmetric Standard Model (MSSM) [1]. But

another, simpler, one is just the general (unconstrained) Two-Higgs-Doublet Model (2HDM) [2].

Double Higgs boson (2H) production in a linear collider has been investigated in great detail

in the literature, although mainly in the MSSM [3–5]. Such process cannot proceed in the SM

at the tree-level, so we know that if we would detect a sizeable rate of 2H final states in a e+e−

collider it would be an unmistakable sign of physics beyond the SM. However, a tree-level analysis

of these pairwise-produced unconventional Higgs bosons is most likely insufficient to unravel their

true nature. Therefore, a dedicated work on radiative correction calculations has been undertaken.

A rich literature exists indeed on the one-loop calculation of the cross-sections for the two-particle

final states

e+e− → 2H (2H ≡ h0 A0; H0 A0; H+H−) , (1.1)

essentially in the MSSM case 1. Similarly, the two-body final states e+e− → Zh and e+e− → Ah

(with h = h0H0) are long known to be complementary to each other in the MSSM [3]. There are

also studies considering radiative corrections to charged Higgs production in e+e− collisions within

1See [6–8], and also the extensive report [9] and references therein.
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the 2HDM [10], and double and multiple Higgs production at the LHC [11], but to our knowledge

a complete analysis of the processes (1.1) in the general 2HDM is lacking [12].

In another vein, triple Higgs boson (3H) production may open new vistas in our desperate

hunting for the mass generation mechanism. These processes can be very important because they

carry essential information to reconstruct the Higgs boson potential and thus of the Higgs mech-

anism itself. The Higgs potential of any renormalizable QFT may contain in general mass terms,

trilinear Higgs boson self-interactions and quartic self-interactions. For instance, the trilinear cou-

pling HHH has been investigated phenomenologically in TeV-class linear colliders in Ref. [4, 7, 8]

through the double-Higgs strahlung process e+e− → HHZ or the WW double-Higgs fusion mech-

anism e+e− → H+H−νeνe. These processes involve vertices like ZZH, WWH, ZZHH, WWHH

and HHH, and are possible both in the SM and in extensions of the SM, like the MSSM and the

general 2HDM. Unfortunately the cross-section turns out to be rather small (of order of a fb at

most) both in the SM and in the MSSM [7]. Even worse is the situation with the triple Higgs

boson production in the MSSM, unless in some specific configuration of the parameter space with

resonant enhancement of the signal, see Section 3. Out of the resonance, the typical cross-sections

are of order of 0.01 fb or less [7]. In the previous reference it has been shown that if the double

and triple Higgs production cross sections would yield sufficiently high signal rates, the system

of couplings and corresponding double/triple Higgs production cross sections could be solved for

all trilinear Higgs self-couplings up to discrete ambiguities, by using these processes. However, in

practice the cross sections are too small to be all measurable.

In this letter we wish to study the trilinear coupling HHH in the general 2HDM case by focusing

on exclusive triple Higgs boson final states produced at the ILC. We find that there are scenarios

where the HHH coupling could actually be identified relatively easily. This is because in the general

2HDM it can be highly enhanced as compared to the MSSM case (which is purely gauge). To show

the phenomenological impact of this enhancement, and also to briefly compare with the MSSM

situation, we compute the 3H production cross-sections for all possible CP-conserving final states

both in the MSSM and the 2HDM. The seven allowed triple-Higgs boson channels can be sorted

out in three main classes:

1) e+e− → H+H−h , 2) e+e− → hhA0 , 3) e+e− → h0H0A0 , (h = h0,H0,A0) (1.2)

where in class 2) we understand that the two neutral Higgs bosons h must be the same, i.e.

the allowed final states are (h hA0) = (h0h0A0), (H0H0A0) and (A0A0A0). We show that the

2HDM cross-sections can be several orders of magnitude larger than the corresponding MSSM

ones. Interestingly enough, the 3H cross-sections can be comparable and even significantly larger

than the 2H cross-sections irrespective of the latter being computed in the MSSM or in the 2HDM.

2 General 2HDM: relevant interactions and restrictions

In this section we shall briefly present the interactions and phenomenological restrictions relevant

to our calculation. Let us recall that the general 2HDM is obtained by canonically extending the

SM Higgs sector with a second SUL(2) doublet with weak hypercharge Y = 1, so that it contains

3



4 complex scalar fields arranged as follows:

Φ1 =

(

Φ+
1

Φ0
1

)

(Y = +1) , Φ2 =

(

Φ+
2

Φ0
2

)

(Y = +1) . (2.1)

In the supersymmetric case, in order to construct a consistent superpotential [1] one replaces Φ1

with the conjugate (Y = −1) SUL(2) doublet

H1 =

(

H0
1

H−
1

)

≡ ǫΦ∗
1 =

(

Φ0∗
1

−Φ−
1

)

(Y = −1) . (2.2)

Here ǫ = i σ2. For simplicity we stick to the canonical form (2.1) because we need not presume

SUSY, the correspondence with the MSSM case being now clear (Φ1 = −ǫH∗
1 ).

In this framework the most general structure of the CP-conserving, gauge invariant, renormalizable

Higgs potential preserving the discrete symmetry Φi → (−1)i Φi (i = 1, 2), reads [2]:

V (Φ1,Φ2) = λ1 (Φ†
1 Φ1 − v2

1)
2 + λ2 (Φ†

2Φ2 − v2
2)

2 + λ3

[

(Φ†
1 Φ1 − v2

1) + (Φ†
2 Φ2 − v2

2)
]2

+λ4

[

(Φ†
1Φ1)(Φ

†
2Φ2) − (Φ†

1Φ2)(Φ
†
2Φ1)

]

+ λ5

[

Re(Φ†
1Φ2) − v1 v2

]2
+ λ6

[

Im(Φ†
1Φ2)

]2
(2.3)

λi (i = 1, . . . 6) being dimensionless real parameters. Once the neutral components of the Higgs

doublets acquire non-vanishing VEV’s (vacuum expectation values), the electroweak (EW) sym-

metry SUL(2) × UY (1) breaks down to U(1)em, in such a way that we can obtain the physical

spectrum of the Higgs sector upon diagonalization of Eq. (2.3). We are thus left with two CP-even

Higgs bosons h0, H0, a CP-odd Higgs boson A0 and a pair of charged Higgs bosons H±. The free

parameters in the general 2HDM are usually chosen to be as follows: the masses of the physical

Higgs particles (Mh0,MH0,MA0,MH±); the ratio of the two VEV’s 〈H0
i 〉 ≡ vi/

√
2 (i = 1, 2) giving

masses to the up- and down-like quarks,

tan β ≡ 〈H0
2 〉

〈H0
1 〉

≡ v2

v1
; (2.4)

the mixing angle α between the two CP-even states; and finally the coupling λ5, which cannot be

absorbed in the previous quantities and becomes tied to the structure of the Higgs self-couplings.

In total, we have 7 free parameters, which indeed correspond to the original 6 couplings λi and the

two VEV’s v1, v2 – the latter being submitted to the physical constraint v2 ≡ v2
1 + v2

2 = G−1
F /

√
2,

where GF is Fermi’s constant (equivalently, v2 = 4M2
W /g2, where MW is the W± mass and g the

SUL(2) gauge coupling constant). Incidentally, let us note that the essential parameter (2.4) could

be ideally measured in e+e− colliders [5] e.g. through production and decay of H± or A0 since in

these cases the rates do not involve the mixing angle α. It is also worth noticing that two of the

λi parameters can be directly related to physical Higgs boson masses and to the Fermi constant:

λ4 = 2M2
H±/v2 = 2

√
2GF M2

H± and λ6 = 2M2
A0/v

2 = 2
√

2GF M2
A0. These relations are valid only

at the tree level.

Let us point out that the aforementioned discrete symmetry imposed on (2.3), which is only

softly violated by the dimension-two terms, is necessary to ensure the absence of tree-level flavor

changing neutral currents (FCNC). It is well-known that this discrete symmetry is automatically
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preserved in the MSSM. However in the general case it has to be imposed, and then two main

scenarios arise [2]: 1) In the so-called type I 2HDM one Higgs doublet (Φ2) couples to all of the

SM fermions, whereas the other one (Φ1) does not couple to them at all; 2) In contrast, in the

type II 2HDM the doublet Φ1(resp. Φ2) couples only to down-like (resp. up-like) quarks. In the

latter case, an additional discrete symmetry in the chiral components of the fermion sector, namely

fi → (−1)i fi (for left- and right-handed fields i = 1, 2 respectively), must be imposed in order to

banish the tree-level FCNC processes. Let us recall that the MSSM Higgs sector is a type II one

of a very restricted sort (it is enforced to be SUSY invariant) [1, 2]. We shall not dwell here on

the Higgs boson interactions with fermions (see [2] for details) because they are not involved in

any of our tree-level Higgs boson production processes (1.1-1.2). Let us finally recall that SUSY

invariance of the potential introduces 5 constraints that reduce the number of free parameters

to 2, usually taken to be MA0 and tan β [2]. In particular, SUSY decreets that the two terms

softly breaking the discrete symmetry of the potential must be equal: λ5 = λ6 = 2
√

2 GF M2
A0.

For simplicity, and in order to keep closer to the MSSM structure of the Higgs sector, sometimes

one adopts this setting [13]. We will follow this practice and therefore the final number of free

parameters in our analysis will be 6. They can be arranged as follows:

(Mh0,MH0,MA0,MH±, tan α, tan β) . (2.5)

Essential for our calculation are the trilinear Higgs couplings. These are not explicitly present

in Eq. (2.3), but they are generated after spontaneous breaking of the EW symmetry. In the SM

the trilinear and quartic Higgs couplings have fixed values, which uniquely depend on the actual

mass of the Higgs boson. In the case of the MSSM, and due to the SUSY invariance, the Higgs

self-couplings are of pure gauge nature [2]. This is in fact the reason for the tiny triple-Higgs

boson production rates obtained for the processes (1.2) within the framework of the MSSM [7],

see section 3. In contrast, the general 2HDM accommodates trilinear Higgs couplings with great

potential enhancement. In Table 1 we list those entering our computations, in a form already

accommodating the condition λ5 = λ6. These couplings are written in terms of the physical fields

and Goldstone bosons, which are obtained after rotating the electroweak eigenstates (2.1) into the

physical mass-eigenstates by means of the two diagonalization angles α and β. As can be seen,

the couplings in Table 1 depend on the 6 free parameters (2.5). The behavior and enhancement

capabilities of these Higgs boson self-interactions are at the heart of our calculation of the cross-

sections (1.2) within the general 2HDM (type I and type II).

However, an important point when studying possible sources of unconventional physics is to

ensure that the SM behavior is sufficiently well reproduced up to the energies explored so far.

Such a requirement translates into a number of constraints over the parameter space of the given

model. In particular, this severely limits the a priori enhancement possibilities of the Higgs boson

self-interactions in the 2HDM. First of all we have to keep the theory within a perturbative regime,

which entails that only values in the approximate range 0.1 . tan β . 60 shall be allowed. Also

very important is to maintain the so-called (approximate) SU(2) custodial symmetry [14]. In

models of physics beyond the SM this is done in terms of the parameter ρ, which defines the ratio

of the neutral to charged current Fermi constants. In general it takes the form ρ = ρ0 + δρ, where

5



H±H∓H0 − i e
MW sin θW sin 2β

[

(M2
H± − M2

A0 + 1
2M2

H0) sin 2β cos(β − α)

−(M2
H0 − M2

A0) cos 2β sin(β − α)
]

H±H∓h0 − i e
MW sin θW sin 2β

[

(M2
H± − M2

A0 + 1
2M2

h0) sin 2β sin(β − α)

+(M2
h0 − M2

A0) cos 2β cos(β − α)
]

h0h0H0 − i e cos(β−α)
2 MW sin θW sin 2β

[

(2M2
h0 + M2

H0) sin 2α

−M2
A0 (3 sin 2α − sin 2β)

]

h0H0H0 i e sin(β−α)
2 MW sin θW sin 2β

[

(M2
h0 + 2M2

H0) sin 2α

−M2
A0 (3 sin 2α − sin 2β)

]

A0A0H0 − i e
2MW sin θW sin 2β

[

M2
H0 sin 2β cos(β − α)

−2(M2
H0 − M2

A0) cos 2β sin(β − α)
]

A0A0h0 − i e
2MW sin θW sin 2β

[

M2
h0 sin 2β sin(β − α)

+2(M2
h0 − M2

A0) cos 2β cos(β − α)
]

h0h0h0 − 3 i e
MW sin θW sin 2β

[

M2
h0 [cos(β + α) + 1

2 sin 2α sin(β − α) ]

−M2
A0 cos2(β − α) cos(β + α)

]

H0H0H0 − 3 i e
MW sin θW sin 2β

[

M2
H0 [sin(β + α) − 1

2 sin 2α cos(β − α)]

−M2
A0 sin2(β − α) sin(β + α)

]

G0H0A0 i e
2MW sin θW sin 2β

sin(β − α)
[

M2
H0 − M2

A0

]

G0h0A0 − i e
2MW sin θW sin 2β

cos(β − α)
[

M2
h0 − M2

A0

]

Table 1: Trilinear Higgs boson self-interactions in the Feynman gauge within the 2HDM. Here G0 is the neutral

Goldstone boson. These vertices are involved in the Feynman diagrams of Fig. 1 in section 3. Vertices with gauge

bosons are common with the MSSM and are not included, see [2].

ρ0 is the tree-level value. In any model containing an arbitrary number of doublets (in particular

the 2HDM), we have ρ0 = M2
W /M2

Z cos2 θW = 1, and then δρ represents the deviations from

1 induced by pure quantum corrections. From the known SM contribution and the experimental

constraints [15] we must enforce that the additional quantum effects coming from 2HDM dynamics

ought to satisfy |δρ2HDM | ≤ 10−3. It is thus important to stay in a region of parameter space

where this bound is respected. Let us recall that the 2HDM one-loop contribution is given by [16]

δρ2HDM =
GF

8
√

2 π2

{

M2
H±

[

1 − M2
A0

M2
H± − M2

A0

ln
M2

H±

M2
A0

]

+ cos2(β − α)M2
h0

[

M2
A0

M2
A0 − M2

h0

ln
M2

A0

M2
h0

− M2
H±

M2
H± − M2

h0

ln
M2

H±

M2
h0

]

+ sin2(β − α)M2
H0

[

M2
A0

M2
A0 − M2

H0

ln
M2

A0

M2
H0

− M2
H±

M2
H± − M2

H0

ln
M2

H±

M2
H0

]}

. (2.6)

From this expression it is clear that if MA0 → MH± then δρ2HDM → 0, and hence if the mass

splitting between MA0 and MH± is not significant δρ2HDM can be kept within bounds.

Also remarkable are the restrictions over the charged Higgs masses coming from FCNC radia-

tive B-meson decays, whose branching ratio B(b → sγ) ≃ 3× 10−4 [15] is measured with sufficient

precision to be sensitive to new physics. The (charged) Higgs boson contribution to the aforemen-

tioned decay is positive and increases when MH± decreases. An averaged bound of MH± > 350
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GeV for tan β ≥ 1 ensues from [17]. It must be recalled that this bound does not apply to type-I

models since for them the charged Higgs couplings to fermions are proportional to cot β and hence

the loop contributions are highly suppressed at large tan β. By the same token too light charged

Higgs boson contributions are also restricted at very low tan β ≪ 1 for both type I and type II

models.

Apart from these restrictions, and of course respecting the general Higgs boson mass bounds

obtained from unsuccessful searches at LEP [15], we must consider also the unitarity bounds. Such

bounds come from the fact that the trilinear 2HDM couplings, hereafter denoted C(HHH), can

receive very large enhancements at high tan β. Although unitarity limits can be presented in a

rather detailed and cumbersome way, we shall avoid cluttering and proceed as in [13]. Therefore,

to assess that the 2HDM remains unitary, we will adhere to the practice of bounding the size of

the 2HDM trilinear Higgs boson couplings by the value of their single SM counterpart λ
(SM)
HHH at

the scale of 1 TeV:

|C(HHH)| ≤
∣

∣

∣
λ

(SM)
HHH (MH = 1TeV)

∣

∣

∣
=

3 eM2
H

2 sin θW MW

∣

∣

∣

∣

∣

MH=1TeV

, (2.7)

where −e is the electron charge and θW is the weak mixing angle. The range of Higgs boson

masses and other 2HDM parameters ensuing from this condition fall in the ballpark of the more

complete set of (tree-level) unitarity conditions formulated in various sophisticated – albeit non

fully coincident – ways in the literature [18].

3 Triple Higgs boson production: numerical analysis

Throughout the present work we have made use of the standard algebraic and numerical packages

FeynArts, FormCalc and LoopTools [19] for the obtention of the Feynman diagrams, the analytical

computation and simplification of the scattering amplitudes and the numerical evaluation of the

cross section. Feynman diagrams for the tree-level Higgs-pair production (2H) processes are very

simple and are not shown here, whereas a sample of typical Feynman diagrams for the triple (3H)

Higgs boson production processes is displayed in Fig. 1. Let us first concentrate on the 2H final

states in the general 2HDM. As indicated in the introduction, these are well studied in the MSSM

case. Here we shall report first on the tree-level results for 2H production in both the MSSM and

general 2HDM, mainly to compare with the triple Higgs boson channels which are indeed the main

aim of the present study.

It is not our intention to present here the one-loop analysis of the 2H processes within the

general 2HDM, except to briefly report on those which can only work at the one-loop level 2. For

instance, due to CP-conservation (even more: due to Bose-Einstein statistics), some of the possible

channels (namely e+ e → h0 h0, e+ e → H0 H0, e+ e → A0 A0) are forbidden at the tree level and

can take place only through 1-loop box-type diagrams. We have evaluated the corresponding cross

sections and turn out to be in the range of 10−5 pb (that is to say, they entail around 1 event only

per 100 fb-1 of integrated luminosity), a too minute rate to provide feasible detection signals. Notice

2For details of the full one-loop analysis, see [12].
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Figure 1: Tree-level Feynman diagrams corresponding to three of the triple Higgs boson production processes

indicated in Eq. (1.2). The other four processes proceed through similar collections of diagrams.

that in the SM these tree-level forbidden processes are induced by the same set of box diagrams,

and consequently the SM rates are of the same order. Quite another is the situation with the

other channels, Eq. (1.1), which are CP−allowed at the tree-level and hence furnish sizeable rates.

Since only couplings of the guise Higgs-Higgs-gauge boson play a role, the interactions are of purely

gauge nature and do not differ from the general 2HDM to the MSSM [2]. Therefore, we expect

both models to provide similar cross-sections for all the processes (1.1). For the numerical

evaluation of the 2H cross sections, we have to input specific values for the free 2HDM parameters

defined in section 2, see Eq. (2.5). On the one hand, we will set the mixing angles α, β in such

a way that the aforementioned Higgs-Higgs-gauge boson couplings are optimized. This can be

easily done, for instance by setting α = β in e+ e → h0 A0, in which case the relevant coupling

C(A0h0Z0) ∼ cos(β − α) is maximum. In Fig. 2 we plot the total cross section σ (in pb) as a

function of the center-of-mass energy
√

s (in GeV) for the different channels (1.1). We explore two

different regimes: a) light Higgs masses and b) heavy Higgs masses. To represent these regimes

we use in this case sets I and III of Higgs boson masses in Table 2. Sets I and II differ only in the
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Figure 2: Total cross section σ (in pb) and number of events per 100 fb-1 as a function of Ecm =
√

s for the

tree-level Higgs boson pair production channels (1.1) in the general 2HDM within two regimes of masses: a) light

Higgs bosons and b) heavy Higgs bosons, represented by the mass Sets I and III respectively in Table 2.

Set I Set II Set III

Mh0 (GeV) 100 100 200

MH± (GeV) 120 120 350

MH0 (GeV) 150 150 250

MA0 (GeV) 140 300 340

Table 2: Sets I, II and III of light and heavy Higgs boson masses in the 2HDM. Sets I and III are used for 2H

production in Fig. 2, and Sets II and III for 3H production in Fig. 3 and 4.

CP-odd Higgs mass, MA0, which is substantially lighter in the former as compared to the latter.

Indeed, we wish to use set I for the study of 2H production in order not to artificially suppress it

by mere phase space reasons. On the other hand, set II (together with set III) will be used later

on for the study of 3H production. From Fig. 2a we see that in the light Higgs boson mass regime

the production rates are substantial, attaining in all cases a few thousands events per 100 fb-1 of

integrated luminosity, with maximum values reaching σ(e+ e → H+H−) ∼ 0.1 pb. For heavy Higgs

bosons, Fig. 2b tells us that the achieved production rates are around one order of magnitude

below. Nevertheless, even in these less favored scenarios the predicted rates are still quite sizeable

σmax (
√

s = 1 TeV) MA0 (GeV) tan β

e+e → A0h0 0.013 100 60

e+e → A0H0 0.012 130 60

e+e → H+H− 0.028 100 5.5

Table 3: Maximum cross sections (in pb) for the 2H production channels within the MSSM at
√

s = 1 TeV.
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MSUSY (GeV) 1000

µ(GeV) 200

At(GeV) 1000

Ab(GeV) 1000

Aτ (GeV) 1000

Table 4: Choice of parameters used for the computation of 2H and 3H production in the MSSM.

within the clean ILC environment.

It is of course of interest to contrast the above 2H results with the predicted contributions in the

MSSM case, see Table 3. Recall from section 2 that the MSSM Higgs sector is fully determined (at

the tree-level) by a pair of free parameters, namely tan β and MA0. Taking advantage of this simple

structure of the parameter space, we have systematically searched for the values of (tan β,MA0)

such that the cross section at fixed
√

s = 1 TeV becomes optimal while simultaneously fulfilling

all the phenomenological constraints on the SUSY Higgs masses. Notice that in the MSSM the

charged Higgs boson mass is not so severely restricted as in the case of the general 2HDM models of

type II (see section 2) because the squark and chargino contributions to B(b → sγ) can compensate

for the charged Higgs effects [17]. A default set of MSSM parameters (quoted in Table 4) has been

employed to compute the Higgs boson masses. These include the quantum effects obtained from

the standard code provided by the computational tool package [19], which implements the results

of Ref. [20]. We remark that MSUSY in Table 4 stands for a common value of the LL and RR

soft SUSY-breaking masses in the squark mass matrices. To be sure, the numerical search for

the maximum of σ(2H) for the processes (1.1) has been made under the condition that mh0 is

larger than its lower experimental bound (∼ 90 GeV [15]). Let us also note that, in order to get

more accurate results, a running value for the electromagnetic coupling constant α(MZ) = 1/127.9

has been used. All in all, the (approximate) optimal values obtained for 2H production within

the MSSM are summarized in Table 3. We see that the predicted cross sections are of the order

of 10−2 pb and, as anticipated, they are comparable to the 2HDM values for similar masses.

Therefore, sizeable rates of non-standard Higgs-pair production can be achieved at the ILC for

both SUSY and non-SUSY extended Higgs sectors, and in this sense the two models are difficult

to distinguish using the 2H channels. As mentioned in the introduction, a clear separation between

the two models can only be accomplished through the detailed study of radiative corrections to

2H production in both the MSSM [6] and the 2HDM [12].

Let us now discuss the case of the triple Higgs boson production in e+ e− annihilations within

the general 2HDM. The processes under consideration are those in Eq. (1.2). Again we wish to

compute the cross-sections for them and compare with the corresponding MSSM values. As far

as the 2HDM is concerned, we shall keep making use of two separate regimes of masses, light and

heavy, but in this case they will be represented by sets II and III respectively in Table 2. Actually,

due to the low energy b → s γ constraint (mentioned in section 2) on the charged Higgs boson

mass in type II models, we cannot keep the CP-odd mass MA0 relatively light (as in set I) for these
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Figure 3: Total cross section σ(pb) and number of events per 100 fb-1 for the triple Higgs boson production

processes e+ e− → H+ H− h0 and e+ e− → H+ H− H0 in the general 2HDM as a function of
√

s and for different

values of tanβ. In each case the label of the process and the choice (Set II or Set III) of Higgs boson masses used

for the calculation is indicated, see Table 2.

models. The distinction between the two sets of masses (sets II and III) is thus necessary. Set II

accommodates higher values of MA0 than set I, but only set III reflects a mass region allowed in

type-II 2HDM. In fact, due to the constraint |δρ2HDM | < 10−3 – cf. Eq.(2.6) – it turns out that

not only MH±, but also MA0, must necessarily be heavier in type II models.

The Feynman diagrams for the most prominent triple Higgs boson processes (1.2) are depicted

in Fig. 1. We can see that they involve trilinear Higgs boson couplings of the form indicated in

Table 1. Let us illustrate the origin of the potential enhancement inherent to these couplings by

just focusing on one of them, for example the first one, C(H± H± H0). One can easily check that

for tan β ≫ 1 or tan β ≪ 1 and α ≃ 0, the coupling grows effectively as ∼ tan β or ∼ cot β

respectively. Therefore, the corresponding cross section can be significantly enhanced by a factor

tan2 β or cot2 β respectively. We will mainly explore the enhancement in the large tan β region,

which is more natural and also more efficient. An additional enhancement source in C(H± H± H0)

is the possible mass splittings between the Higgs boson masses, e.g. between M2
A0 and M2

H0 , which

is also subdued in part by the δρ2HDM constraint mentioned above. In contrast to this situation, in
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Figure 4: As in Fig. 3, but for processes e+ e− → h0 h0 A0 and e+ e− → H0 A0 h0.

the MSSM the triple Higgs couplings do not have any such enhancements. Indeed, in the MSSM

the (tree-level) analogous of the coupling under consideration is

CMSSM(H± H± H0) =
−ieMW

sin θW

[

cos (β − α) − cos 2β cos (α + β)

2 cos2 θW

]

. (3.1)

It is patent that there is no source of enhancement, the coupling being gauge-like. In general the

Higgs boson self-couplings in the MSSM undergo radiative corrections [21] (as the Higgs boson

masses themselves), but in practice the 3H cross sections remain rather small [4,7,8]. In contrast,

the enhancement effect of the general 2HDM trilinear couplings, listed in Table 1, can have a much

bigger impact on the cross-sections while respecting all known bounds. In this respect, we recall

that these couplings can also receive radiative corrections in the general 2HDM [22]. However,

we do not include them here because our main goal is to show that the 3H production signal can

be significantly enhanced in the general 2HDM, and for this it suffices to confine ourselves to the

tree-level structure. More refined studies of this signal may be necessary in the future, in which

case the inclusion of corrections should be appropriate.

We have plotted the 3H cross-sections for the general 2HDM in Fig. 3 and 4 for the Higgs
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boson mass sets II and III in Table 2. We see that they can reach the level of ∼ 0.1 pb or more,

therefore implying promising rates of at least 104 events per 100 fb−1 of integrated luminosity.

The larger cross sections are obtained considering light Higgs masses (set II of Tab. 2). This is

because there is a lower suppression of the final phase-space and also because the maximum of the

cross section is reached at lower energies
√

s ∼ (700 − 1000) GeV. Furthermore, as expected, all

the cross-sections are seen to increase approximately as tan2 β due to the behavior of the trilinear

couplings. In the heavy Higgs boson scenario (set III), the maximum is shifted to higher values
√

s ∼ 1500 GeV. Taking into account the presence of the Z boson propagator, the cross section

scales with the energy and thus the corresponding maximum becomes between one to two orders

of magnitude smaller than in the light Higgs boson scenario. These results for set III (adequate to

type II models) translate into rates of O(102 − 103) events per 100 fb−1 of integrated luminosity,

which should still allow comfortable detection of the signal. As for the remaining Higgs production

channels (not considered in our figures), they provide smaller values of the maximum cross-section:

e.g. those with final states H+H−A0 and H0H0A0 yield maximum cross-sections of order 10−2 pb

for set II and (10−3 − 10−4) pb for set III. Finally, channel A0A0A0 is a rather inconspicuous one

due to the phase-space suppression and also to the fact that we have three identical particles in

the final state (hence an additional suppression of 1/3!), leaving maximum cross-sections of order

10−4 pb and 10−5 pb for sets II and III at
√

s = 1400 GeV.

Some technical details are now in order. To find the values of the angles α and β that generate

the maximum of the cross-section σmax(3H) for the various 3H processes we have performed a

systematic scan using the sets II and III of parameters given in Table 2 under the restrictions

mentioned in section 2. The result is that in all cases the largest possible values of tan β are

preferred rather than intermediate or very small ones. However, tan β cannot be arbitrarily large

(or arbitrarily small), not only due to the perturbative bound, but also because of the unitarity

constraint. For this reason in Figs. 3 and 4 we have limited ourselves to plot the cross-sections for

a few values of tan β up to tan β = 40. We have already exemplified how some trilinear couplings

are maximized e.g. for large tan β and α ≃ 0, but others are not so enhanced in this region. Our

numerical scan shows that the following intermediate strategy optimizes the cross-sections: once

tan β is chosen at the largest allowed value, we choose α = π/2 − β − δ, typically with δ = 0.8

(rad.). This is enough to circumvent the unitarity and perturbative restriction and get the optimal

set of cross-sections. These are the ones studied in Figs. 3 and 4. Let us also point out that the

maximum in each process is not severely peaked; we have verified that there is a large region of

parameter space (including α ≃ β) where the cross-sections are still perfectly sizeable (within the

same order of magnitude as σmax). For completeness, let us also mention that the corresponding

values of the parameter λ5 in Figs. 3 and 4 are around λ5 = 3 for set II and λ5 = 4 for set III.

To compare the 2HDM results with the corresponding supersymmetric values we have computed

all the 3H production rates σ(3H) in the framework of the MSSM. We have searched for the optimal

regions of the MSSM parameter space where the largest allowed values for the cross sections are

obtained. Specifically, in Table 5 we provide the maximum value that σ(3H) can achieve for each

process and for two different values of the center-of-mass energy (
√

s = 1 TeV and 1.4 TeV) after

scanning on (MA0 , tan β) for the fixed values of the MSSM parameter space quoted in Table 4.
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σmax (1 TeV) σmax (1.4 TeV) MA0 (GeV) tan β

e+ e− → H+ H− h0 5.6 × 10−6 3.6 × 10−6 135 3

e+ e− → H+ H− H0 1.5 × 10−6 9.1 × 10−7 100 30

e+ e− → h0 h0 A0 1.2 × 10−3 7.3 × 10−4 200 2.5

e+ e− → H0 A0 h0 2.0 × 10−6 1.4 × 10−6 100 5.5

Table 5: Maximum cross-sections (in pb) for the leading 3H processes within the MSSM at two values of the

center of mass energy,
√

s = 1 TeV and 1.4 TeV. The maximizing values of MA0 and tan β are also indicated and

are (approximately) the same at the two energies. The 3H processes non-included are even more suppressed.

Again the latter determine the Higgs boson masses at the quantum level from the results of Ref. [20].

Let us notice from Table 5 that the channel e+ e− → h0 h0 A0 has a cross-section that is substantially

larger than the others, the reason being that it can pick up the resonant decay H0 → h0 h0 whose

branching ratio is non-negligible in these conditions [4]. As a consequence σ(e+ e− → h0 h0 A0) is

of the order of an average 2H cross-section (cf. Table 3) times this branching ratio. This effect

has been studied in detail by including the MSSM radiative corrections to the trilinear coupling,

which turn out to be important in this region and are responsible for B(H0 → h0 h0) being sizeable

(of order 50%). As a result the cross-section can be O(10−3) pb, i.e. of a few fb. This situation is

special in the MSSM, and an accurate evaluation of it depends on the specific choice of parameter

values, see [4, 7]. The great enhancement associated with it gives some hope for measuring this

particular 3H channel in the MSSM.

In the general 2HDM, that resonant situation is not especially noticeable because the 3H

channels are usually of the same order as the 2H ones, if not dominant. Therefore, barring that

resonant process, in all the other cases the MSSM cross sections for 3H production are very small,

reaching maximum values of σ ∼ 10−6 pb at most for the leading processes indicated in Table

5. The remaining 3H channels in the MSSM, namely those with final states H+H−A0, H0H0A0

and A0A0A0, furnish maximum cross-sections in the range (10−7 − 10−8) pb. As a matter of fact,

we can assert that most of the 3H cross-sections in the MSSM are of the same order as – if not

smaller than – the tiny rates for the one-loop 2H processes e+e− → hh (with two identical Higgs

particles in the final state) mentioned in the beginning of this section. In short, we conclude that

the maximum MSSM cross-sections for 3H production are typically 104 times smaller than the

corresponding maximum 2HDM values (even if taking set III of Higgs boson masses). In the light

of these results it becomes clear that the triple Higgs boson channels are in general much more

promising in the 2HDM (both in type I and II) than in the MSSM, and can be fully competitive

with the 2H ones.

4 Discussion and conclusions

We have devoted this work to the study of the triple Higgs boson final states (1.2) produced

in a linear e+e− collider. We have computed the cross-sections for these processes both in the

Minimal Supersymmetric Standard Model (MSSM) and in the general Two-Higgs-Doublet Model
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(2HDM). The results are in principle independent of which kind of 2HDM model is used, type I

or type II, because the 3H processes (1.2) are not sensitive to the Higgs boson interactions with

fermions. However, radiative B-meson decays (characterized by the b → sγ subprocess) place an

important constraint on the lower value of the charged Higgs boson mass of type II models, namely

MH± & 350 GeV, and this fact is what actually puts an upper bound to the 3H cross-sections for

type II models. We have found that within the type I model the triple Higgs boson cross-sections

may comfortably reach 0.1pb for tan β sufficiently large (tan β & 20) or small (tan β < 0.1) 3;

actually, in certain regions of parameter space they can be pushed up to 1pb, the most favorable

process being e+ e− → H+ H− h0. This is also the preferred channel for type II models, but due

to the aforesaid charged Higgs boson mass bound the maximum cross-section is roughly 10 times

smaller, i.e. of order of 0.01pb. The number of events is nonetheless of order 103 per 100 fb−1

of integrated luminosity, and in both cases the cross-section is far larger than in the MSSM. For

example, the maximum cross-section for e+ e− → H+ H− h0 in the MSSM is at most of order

10−6pb, i.e. around 104 times smaller than the corresponding one in general type II Higgs boson

models (of which the MSSM Higgs sector is a very particular case).

Another remarkable fact that we would like to emphasize is that for the general 2HDM models

the maximum cross-sections for the 3H processes (1.2) are comparable or even larger than the

maximum cross-sections for the 2H processes (1.1). Notice that, in spite of having one more particle

in the final state, the mechanism of 3H production is peculiar in that it involves certain trilinear

Higgs boson couplings that can be enhanced in the general 2HDM, e.g. at large tan β > 20. This

enhancement is impossible in the MSSM, due to the purely gauge nature of the Higgs boson self-

interactions in this model which is enforced by the invariance of the potential under supersymmetric

transformations. Incidentally, the 2H cross-sections for the unconstrained 2HDM models are of the

same order as the 2H cross-sections in the MSSM. In view of these facts, we expect that the 3H

production channels in the general 2HDM could be competitive at the ILC and provide a direct

window for uncovering the structure of the Higgs potential.

We have found that the regions of parameter space with the largest possible values of tan β and

relatively small α turn out to maximize the 3H cross-sections. For type II models (characterized

by a heavier spectrum of Higgs boson masses) this means that the dominant decay modes for each

of the Higgs bosons in a typical final state like H+H−h0 will be into heavy quarks. Specifically,

the neutral Higgs boson will decay as h0 → bb and the charged ones as H+ → tb and H− → tb.

The last two decays assume of course MH± > mt + mb, which is indeed always the case due to

the b → sγ constraint for type II models. In this region of parameter space, the alternate Higgs

boson decays into gauge bosons (such as h0 → W+W−,ZZ) are not dominant – in contradistinction

to the SM Higgs boson decays. Other modes like H± → W±h0, even if kinematically open, are

suppressed by trigonometric factors in the coupling strength, viz. cos(β − α) → 0 in the favorable

regions for 3H production. In this region, typically 2/3 of the Higgs boson decays contribute to the

6 heavy-quark jet final states, the rate being larger the larger is tan β. In practice we would expect

seeing a 4-prong final state made out of b- and b-jets together with a tt system decaying in the

3The neighborhood tanβ . 0.1 borders the perturbativity limit of the top quark Yukawa coupling, and thus the

region tan β < 1 becomes rapidly excluded.
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conventional manner. This configuration represents the characteristic signature of the 3H processes

under consideration. Although a dedicated experimental study would be necessary to assess its

real possibilities, we expect that in the extremely clean context of the ILC this signature could

hardly be missed and, if effectively found, it would represent a strong hint of (non-supersymmetric)

Higgs boson physics beyond the SM.
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