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Abstract-Analogously to the well known greedy strategy 
called Orthogonal Matching Pursuit (OMP), we present a new 
algorithm to solve the sparse approximation problem over 
redundant dictionaries where the input signal is restricted to 
be a linear combination of k atoms or fewer from a fixed 

dictionary. The basic strategy of our method rests on a family 
of nonlinear mappings which results to be contractive in a 
interval close to zero. By iterating contractions and projections 
the method is able to extract the most significant components also 
for noisy signal which subsumes an ideal underlying signal having 
sufficiently sparse representation. For reasonable error level, the 
fixed point solution of such a iterative schema provides a sparse 
approximation containing only the nonzero terms characterizing 
the unique sparsest representation of the ideal noiseless sparse 
signal. The heuristic method so derived has been applied both to 
synthetic and real data. The former was generated by combining 
exact signals drawn by usual Bernoulli-Gaussian model and 
Gaussian noise; the later is taken by electrocardiogram (ECG) 
signals with application to the dictionary learning problem. In 
both cases the proposed method outperforms OMP method both 
regarding sparse approximation error and computation time. 

I. INTRODUCTION 

In recent years, a lot of research and application activities 
have been carried out examining sparsity in signal processing 
and adjoining areas [1], [2]. Unfortunately to obtain the best 
sparse approximations for large signal dimensions is non 
polynomial (NP-hard). 

In the spirit of this challenge, here we show the design 
of a fast algorithm which calculates a nearly-optimal sparse 
representation of an arbitrary noisy input signal. The method 
rests on nonlinearities in order to promote sparsity followed 
by projections into linear spaces of fixed low dimensions with 
reduced reconstruction error. In particular, the method consists 
on a refinement of a more general technique [3] based on 
two kinds of Lipschitzian mappings: an asymptotically non
expansive [4] parametric family of nonlinear functions able to 
select near-feasible solutions having the sparsity property and 
a nonexpansive linear map consisting on orthogonal projection 
of near-feasible point along the space of the affine solutions 
of an inhomogeneous linear system. The main purpose of 
this interaction is that of reducing the gap existing between 
the two image spaces, being the first a subspace containing 
sparse points (in the sense of the gO-norm which measures 
the total number of nonzero elements) while the second is 
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a set contammg infinite solutions for the problem at hand. 
By composing the two mappings we face nonlinear problems 
in Banach space for which fixed-points exist. Moreover, they 
may be obtained as the limit of a fixed-point iteration scheme 
defined by repeated images under the mapping of an arbitrary 
starting point in the space. 

As element of comparison we use the popular orthogonal 
matching pursuit algorithm (OMP) [5], [6], [7], [8], which 
has been widely used with the purpose of recovery sparse 
noisy signals. OMP is an iterative greedy algorithm that selects 
at each step the dictionary element best correlated with the 
residual part of the signal. Then it produces a new approxima
tion by projecting the signal onto those elements which have 
already been selected. This technique just extends the trivial 
greedy algorithm which succeeds for an orthonormal system. 
Compared with other alternative methods, a major advantage 
of the OMP is its simplicity and fast implementation. 

To put in evidence the performances of our method with 
respect to those exhibited by OMP we do two kinds of tests. 
The first considers randomly generated synthetic instances of 
a noisy linear system satisfying sparsity requirements. The 
second is an application of dictionary learning aimed to adapt 
dictionaries in order to achieve sparse signal representations. 
Known techniques in this regards are KSVD [9], which is 
a generalizing the K-means algorithm and the Method of 
Optimal Directions (MOD) [10]. The basic waveforms used 
both to learn dictionaries and to test signals outside the training 
sets are electrocardiogram (ECG) signals. We choose this 
application because, as required in many cases, it is of practical 
importance to fix a priori the desired level of sparsity in sparse 
recovery algorithms, expecially when an analytic dictionary 
that fits a signal class is not known. To do this one usually 
relies on several examples of signals chosen in the class and 
sets a dictionary that minimizes the approximation error under 
a specified sparsity constraint. This constraint may be easily 
imposed by sparsity promotion methods that belong to the 
greedy class like Matching Pursuit [11], Orthogonal Matching 
Pursuit and Stagewise Orthogonal Matching Pursuit [12]. 

II. SPARSE REPRESENTATION 

Let consider the problem of finding the sparsest representa
tion possible in an overcomplete dictionary <I> = [<PI, ... , <Pm] 
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asswned to be a collection of m > n atoms or vectors in 
IRn. A sparse representation for a given vector or signal s = 

(Sl, . . .  , sn) expressed as a linear combination of atoms, i.e., 
S = Li ai¢i, is measured in terms of the so-called gO-norm 
II a 110, simply representing the nwnber of non-zero elements 
in a. Usually, the gO-norm is defined as the cardinality of set 
S(a) = {k : ak i- a} , called the support of a. 

More generally, it is not sensible to assume that the available 
data s obey precise equality s = <1?a with a sparse represen
tation II a 110 = k « n. A more plausible scenario assumes 
sparse approximate representation in which there is an ideal 
noiseless signal s (admitting a sparse representation) corrupted 
by noise, leading to the following model: 

s = <1?a + E:, (1) 

in which error or noise E: E IRn gives rise, for instances, to 
measurements or estimates. 

Adopting this noisy setting, the general goal of finding the 
sparsest decomposition of the signal s can be rephrased as the 
constrained minimization problem 

min II s - <1?a 112 
aEIR= 

subject to 

where II . II denotes the g2-norm. 

II a 110 :s; k, (PO) 

However, this optimization problem is generally NP-hard. 
Therefore one seeks computationally efficient algorithms that 
can approximately solve (Po), with the goal of recovering 
as sparse as possible coefficient vectors a. One of the most 
popular algorithms in this area which accomplish this task 
easily and quickly is the so called Orthogonal Matching 
Pursuit algorithm (OMP) together with some of its variants 
as Stagewise Orthogonal Matching Pursuit (STOMP). 

The heuristic strategy adopted in OMP builds up k-element 
approximate representations a step at a time, adding to an 
existing (k - 1 )-element approximation a new term chosen 
in a greedy fashion to minimize the resulting g2 error (over 
all possible choices of the single additional term). When 
stopped after a suitable number of stages (fewer than m), 

one gets a sparse approximate representation. In practice, 
OMP updates the residuals by projecting the observation s 
onto the linear subspace spanned by the columns that have 
already been selected, and the algorithm then iterates. A 
more sophisticated approach and then much performing, which 
replaces the original sparse approximation problem by a linear 
programming problem is the well-known Basis Pursuit [2] 
technique. 

III. SPARSITY PROMOTION BY LrMAPS ALGORITHM 

This section is taken from [3] and is summarized here for 
completeness while the following section presents a variant 
of LrMAPS which is innovative for both the points of view, 
modeling and applications. 

LrMAPS is a new sparse approximation technique which 
consists on a fixed-point iteration schema based on a nonlinear 
mapping aimed to uniformly enhance the sparseness level of 
each iterate. In fact, at each iteration step, every coefficient is 
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either contracted (moved towards zero) or preserved (moved 
far from zero) in order to project the new coefficient vector 
onto the linear subspace spanned by the columns of the matrix, 
which is the affine space associated to the linear model (1). 

To deal with high dimensional data, the method provides a 
parametric family of nonlinear functions F = {Ix : IRm --+ 
IRm I A E IR+} where a component is defined as: 

(2) 

being 0) the Hadamard (elementwise) product. An explana
tion of the fact that each independent variable ai is here 
multiplied by the weight or penalty mono-valued function 
g)'( lai l) = 1- e-),Iail can be found upon close inspection of 
the asymptotic behavior of g)', i.e., when A --+ +00. It becomes 
evident that the penalty vanishing in the limit becoming the 
identity function, as showed by the 

{a, if ai = ° 
lim g)'( lai l) = 

),-Hoo 1, when ai i- ° 

As a consequence 

lim IIx (ai) I = ai ),---++00 for all ai E R 

Combining nonlinear mappings belongings to the family (2) 
and orthogonal projections in the null space of matrix <1?, it can 
be showed that the sequence {a(t)} generated by the following 
fixed-point schema always converges: 

a(t+1) = 
T),,(a(t») = PIx, (a(t») + <1?ts, (3) 

where P = I - Q, with Q = <1? t <1?, is the orthogonal projector 
onto the null space of <1?, <1?t 

= (<1?T<1?)-l<1?T is the Moore
Penrose pseudo-inverse of <1? and {Ad a suitable sequence 
satisfying L:o 1/ At < +00. 

By letting At --+ +00, we derive the LrMAPS heuristic 
which is a finite fixed-point iterative procedure that acts as 
local minimizer of the separable variable function g)'( la l) = 

Li 1- e-)'la,1 which is a continuous approximation of II a 110. 

IV. THE k-LrMAPS ALGORITHM 

The main drawback of LrMAPS is represented by the need 
of providing a right sequence for the parameter A indexing the 
function family in (2) so as to achieve a convergent sequence 
{a(t) h>o. Moreover, even if it has good performances on 
sparse recovery, in general there is no way to upper bound 
the sparsity level which LrMAPS carry out, up to accomplish 
an unnatural thresholding on the final coefficient vector. 

In this section we suggest a new fixed point iterative method 
inspired by the same nonlinear operator which LrMAPS is 
based on. In particular, it is shown that the method is able 
to adaptively find a suitable sequence {Ad for approximately 
solving the problem Po. This choice should also be made in the 
light of relevant constraints imposed on the objective function 
of such a problem, that is to choose k coefficients not null and 
discard the remaining m - k. 
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A. Definition of Parameter A 
Fixed 1 ::; k ::; n, a possible strategy for finding k-sparse 

solutions using LIMAPS consists on choosing At = a;1 at 
time t ?: 0 satisfying 

A (t) at = ak+1 
being o:(t) the absolute values of aCt) rearranged in descending 
order and o:�t�1 its k-th element. The goal of this choice is 
double: 

I) to speed up the process aimed to drop the smallest coef
ficients, i.e., those corresponding to elements OJ ::; at, 
which have indexes in the set A (t) = {j : laJt) 1 ::; ad; 

2) to minimize the solution error induced by a(t) "adjust
ing" the not null coefficients, i.e., those corresponding 
to elements O:j > at which have indexes in the set 
A�t) = {j : lajt) 1 > ad. 

Based upon this strategy, the method should ideally force the 
at values in such a way to have 

hm 9 (Ia I) = 1 - e CXj <It = 

. _I «)1/  {I, 
t---++oo <It J 0, 

ifjEA(t) 
'f' A(t)· 1 J E c 

Clearly, this requires that for I;j j E A (t) the ratio between the 
absolute value of the coefficient lajt) 1 and the parameter at 

tends to infinite, while I;j j E A�t), lajt) 1 must be infinitesimal 
of order greater than that of at, leading to 

B. Convergence Issue 

if j E A(t) 
'f' A(t)· 1 J E c 

The LIMAPS algorithm computes fixed-points of iterated 
nonlinear functions for sparse recovery that are solutions of the 
exact (without noise) model1>a = s. The noisy case described 
by (1) can be recast as exact model for the noisy signal s = 

s - c. Therefore, in the noisy setting the trajectory followed by 
the dynamical system belongs to the affine space {a E IRm : 
1>a = s} associated to linear system (1). 

Starting by these considerations and making the above 
choice for parameter A, if we rewrite (3) as 

a(t+l) = aCt) - Qa(t) - P [aCt) 8 e-1 cx(t)I/<I' ] + 1>ts, 
since at each step t > 0 holds Qa( t) = 1> t s, the present 
iterative system has dynamics described by motion equation 

a(Hl) _ aCt) = P [a(t) 8 e-1cx(t) I/<It ] . (4) 

A typical issue that arises in the field of dynamical systems 
like that described by recurrence equation (4) is the analysis 
of convergence. The question here may be stated in terms of 
convergence in norm of the sequence {a(t)} which amounts 
for instance the requirement 

tE�oo II a(t+l) - aCt) II = 0 
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and thus in turn implies 

II P [aCt) 8 e-1cx(t)I/<It ] 11--+ 0 as t --+ +00. (5) 

To provide empirical evidence on the convergence ratio, in 
Fig. I we plot the curves given by the norm in (5) during 
the first simulation steps of system (4). They are chosen as 
examples for highlighting how it behaves and how is in general 
the slope of the curves which result to be decaying in all 
simulations. Here in particular, k-sparse random instances s E 
IRn and random matrix dictionaries 1> E IRnxm with fixed size 
n = 100 and various m = 200, ... ,1000 have been used. The 
different slopes are mainly due to the ratio min rather than 
the values imposed to the algorithm by means of the sparsity 
parameter k. In fact, the curves do not significantly change 
when we use values for k > k*, where k* is the optimum 
sparsity of the given signal s. 

90 

Fig. I. Plotting of the norm in (5) with sparsity k = 10, size n = 100 and 
� = 200,400,800,1000. 

C. The algorithm 
The overall algorithm, we call k-LIMAPS (which stands for 

k-COEFFICIENTS LIPSCHITZIAN MAPPINGS FOR SPARSITY) , 

is sketched in Algorithm 1. 
It should be noted that the last step of the algorithm 

accomplishes a thresholding of the final point carried out by 
while loop because in some cases it can have some noise 
among the null coefficients, that is those with indexes in the set 
A c. However, experimentally we found that such a coefficients 
reach arbitrary close to zero values as the number of loops 
increases, making the threshold step not every useful. This 
annealing-like behavior which hits the not required coefficients 
exhibited by k-LIMAPS already at the begirming of the first 
iterations, is captured in the plotting of Fig. 2. 

The figure shows a typical behavior of k-LIMAPS : as the 
time increases the values of at decrease up to establish a clear 
separation between null and not null coefficients. Numerically, 
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Algorithm 1 k-LiMAPS 

Require: - a dictionary q, E lRnxm 
- its pseudo-inverse q, t 
- a signal s E lRn 
- a sparsity level k 

1: a+-q,ts 
2: while [cond] do 

3: 17 +-sort (Ial) 
4: A+-l/17k 
5: !3+-h(a) 
6: a+-!3-q,t(q,!3-s) 

<descending order coefficients> 
<sparsity ratio update> 

<increase sparsity> 
<orthogonal projection> 

7: end while 

8: aj +-0 V j S.t. laj I :::; 17k <thresholding> 
Ensure: an approx. solution of s = q,a S.t. II a 110 :::; k 

'''5 = 0 0103 "30 = 7. 72e-04 

/ 
15 20 25 30 1 15 20 25 30 

Sparsity k = 10 

",5 = 0 0191 "30 = 0 0039 

I V 
10 15 20 25 30 1 15 20 25 30 

Sparsity k = 20 

Fig. 2. Sorted absolute values of the a coefficients. The red stencils represent 
the absolute values of at at varius times. They separate the null coefficients 
(black stencils) from the absolute values of those not null (blue stencils). 

the instance reported in the figure is related to a 10-sparse 

signal of length n = 100 on a dictionary of size m = 800 in 

which the input sparsity parameter k of the algorithm is fixed 

to 10 and 20 respectively. Thus the values of CTt (here t = 15 
and 30 are reported) become close to zero within few steps, 

with a delay in the latter case, i.e., when we use k = 20 as 

input for k-LIMAPS . 

V. EMPIRICAL RESULTS 

In order to empirically study how the proposed algorithm 

perfonns, we have carried out two kinds of experiments on 

synthetic and real data respectively. The first was conducted 

on random instances assumed to have the sparsity property, 

while the second was aimed to learn a dictionary for a 

class of electrocardiogram (ECG) signals taken from stan

dard benchmark. Other applications that can benefit from the 

sparsity and overcompleteness concepts include compression, 

regularization in inverse problems and feature extraction. 
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Our experiments were perfonned on AMD Athlon II X4 

630 Processor 64 bit, 2.8 GHz processor with 4 GB of mem

ory, using MATLAB in conjunction with SparseLab, Sparse 

Optimization Toolboxes and KSVD-Toolbox for algorithms 

implementation. The algorithm k-LiMAPS is available online 

at the URL http://dalab.dsi.unimi.itlklimaps. 

A. Comparison on Random instances 
By synthetic instances we mean a collection of instances 

of problem Po satisfying sparsity requirements and defined by 

an ensemble of matrices <I> of size n x m and an ensemble 

of k-sparse vectors s E ]Rn. All matrices have been sampled 

from the uniform spherical ensemble, while each vector s was 

a single realization of a random variable having k nonzeros 

sampled from a standard iid N(O, 1) distribution. 

The performances of the two algorithms on each realization 

are measured according to the quantitative criterion given by 

the mean square error: 

MSE= 
II <I>a - s 112 

n 
A diagram of the integral of the error depicts the perfor-

mances of the two algorithms for a wide variety of instances. 

The average value of such cwnulative error measure is dis-

played as a function of p = kjn and <5 = njm. Fig. 3 displays 

a grid of <5 - p values, with <5 ranging through 50 equispaced 

points in the interval [.01, .5] and p ranging through 100 

equispaced points in [.01, 1]; here the signal length is fixed to 

n = 100. Each point on the grid shows the cwnulated mean 

square error between the original and reconstructed, averaged 

over 100 independent realizations at a given k, m. 
It can be noticed that MSE of OMP increases particularly 

when <5 tends to .5 and p tends to 1, while k-LIMAPS is less 

sensitive with respect to these saturation values. 

B. Comparison on ECG Dictionary Learning 
To show the effectiveness of our algorithm on real data, we 

focus on the dictionary learning task for sparse representation 

applied to ECG signals. Instances are taken from the Physionet 

bank [13], specifically in the class of normal sinus rhythm, 

collecting many patient records with normal cardiac activity. 

We took a long ECG registration relative to a single patient 

and we split the signal into segments of length n = 128, each 

one corresponding to a second of the signal registration and 

sampled with frequency is = n, then we divide the blocks so 

obtained into two groups: training set and test set. 

To perform the dictionary learning task we use KSVD 

and MOD techniques working in conjunction with both the 

pursuit algorithm OMP and our nonlinear method k-LiMAPS 

as sparsity recovery algorithms. In the training phase, the 

algorithms perform 50 iteration steps with a fixed sparsity level 

of 64 coefficients (50% of the signals length), over a dataset 

collecting 512 samples randomly picked from training set. At 

the end of the learning phase, the dictionaries carried out by 

the learning algorithms were tested on 5000 signals picked 

from the test set using the same sparse recovery algorithm 

(OMP or k-LIMAPS ) previously applied in the training phase. 
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K-LiMapS 

o = n/m 

OMP 

�. 

0.5 

p = k/n 

Fig. 3. Each point on the grid shows the cumulative MSE between the original 
s and reconstructed i[>u signals, averaged over 100 independent realizations. 
The grid of 0 - p values is done with 0 ranging through 50 equispaced points 
in the interval [.01,5] and p ranging through 100 equispaced points in [.01, 
I]. 

To evaluate the accuracy of the signal reconstruction, one 

of the most used performance measure in the ECG signal 

processing field is the root mean square difference or PRD, 

together with its normalized version PRDN (which does not 

depend on the signal mean), defined respectively as: 

PRD = 100 * lis - 8112 
IIsl12 

and lis - 8112 PRDN = 100 * 

lis - 8112 ' 
where sand 8 are the original and the reconstructed signals 

respectively, while 8 is the original signal mean. 

As it can be observed in Tables I and II our sparse recovery 

algorithm, applied to the dictionary learning, obtains the best 

results on average for both training algorithms MOD and 

KSVD, with standard deviations comparable to that of OMP. 

TABLE I 
PRO OVER 5000 TEST SIGNALS. 

PRO mean (%) PRO std. dev. 

KSVD-LiMapS 15.86 5.26 

MOD-LiMapS 16.16 5.05 

KSVD-OMP 17.92 5.13 

MOD-OMP 17.41 4.93 

The convergence error is a parameter in evaluating such a 

kind of algorithms. In figure 4 are reported all MSEs ensured 

by the algorithms: also in this case k-LrMAPS outperforms 

OMP with both MOD and KSVD algorithms. 
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TABLE II 
PRDN OVER 5000 TEST SIGNALS. 

KSVD-LiMapS 

MOD-LiMapS 

KSVD-OMP 

MOD-OMP 

200 

PRON mean (%) 

16.17 

15.86 

17.92 

17.42 

4 00 600 
# Iterations 

PRON std. dev. 

5.26 

5.05 

5.13 

4.92 

- KSVD- LiMapS 

-MOD-LiMapS 

-KSVD-OMP 

-MOD-OMP 

800 1000 

Fig. 4. Mean square error over the training set during each iteration of the 
learning process. 

As an example, in Fig. 5 an ECG signal block and the cor

responding recovered signal by means of the two algorithms 

KSVD-LiMapS and MOD-LiMapS are shown. Qualitatively 

speacking, the signals recovered using dictionaries trained with 

OMP suffer from a significant error in the more "flat" regions, 

which are mainly localized nearby the most prominent features 

of a normal electrocardiogram, given by the three graphical 

deflections seen on a typical ECG signal and called QRS 

complex. 

VI. CONCLUSIONS 

This work focuses on a sparsity heuristic for identifying the 

most significant components of a given noisy signal. In par

ticular, we take in exam the case in which an ideal underlying 

signal admits a sparse representation over an overcomplete 

dictionary but we can observe only a noisy version. Even 

if, in general, the problem of finding sparse representations 

must be unstable in the presence of noise, we show that the 

method benefits of its ability to adaptively derive the values 

of the unique parameter that guarantees the stability required 

to extract the exact number of components fixed a priori. 

The heuristic is derived by a version devised for ideal 

noiseless signal which consists on a fixed-point iteration 

scheme which alternates the application of a suitable nonlinear 

mapping to the points of the affine space associated to the 

undetermined system. The convergence as well as the stability 

of the fixed point found after a necessary transition phase is 

showed empirically observing how the ratio of the difference 

between successive iterates decreases. Theoretically, it can be 

shown that the sequence of points given by the trajectory of 
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KSVD-LiMapS PRD: 1.12% MOD-LiMapS PRD: 1.24% 400 400 

300 J-Original 81 --KSVD-LiMapS 300 
I-original ,I --MOD-LiMapS 

200 200 

100 100 

0
1--.1 

-. ..,... ./'- 0
1--.1 

....... ..,... /'-v-- V �- V 
-100 -100 0 20 40 60 80 100 120 0 20 40 60 80 100 120 

KSVD-OMP PRD: 8.18% MOD-OMP PRD: 5.39% 400 400 

J --Original 1 .I--original 1 --KSVD-OMP --MOD-OMP 300 300 

200 200 

100 100 

0
1--..1 

....... ..,... ./'- 0
1--.1 

� .-. /'-v-- V r- V 
-100 -100 0 20 40 60 80 100 120 0 20 40 60 80 100 120 

Fig. 5. Original and reconstructed signal from learned dictionaries. KSVD-LiMapS and MOD-LiMapS obtain less noise over the flat zone (nearby the QRS 
complex) if compared with the KSVD-OMP and MOD-OMP dictionary learning algorithms. 

such a iterative process gives rise to a Cauchy sequence in an 

Hilbert space. 

In the experimental section we showed the ability of our 

algorithm to approximately solve sparse recovery problem 

when the level of sparsity required is fixed in advance. We 

have considered both the case of random generated instances 

and the case of real data picked to ECG signal database with 

application to the dictionary learning. We directly compare 

all accomplished tests with the well-known greedy method 

called Orthogonal Matching Pursuit and we show that the 

proposed method outperforms the latter one obtaining less 

noisy solutions in both kinds of experiment. 
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