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ABSTRACT 1 

 2 

Study Design. Case-control. 3 

Objectives. To execute an echocardiographic comparison between trained 4 

and untrained spinal cord injury (SCI) subjects and to evaluate whether 5 

long-term heart adjustments to endurance training are comparable with 6 

those observed in able-bodied (ABL) subjects. 7 

Setting. Italy. 8 

Methods. We enrolled: 1) 17 male SCI patients (lesion level T1-L3, 34±8 9 

years, BMI 23.0±2.8 kg/m2), 10 of whom were aerobically trained for >5 10 

years (SCIT); 2) 18 age, sex and BMI-matched ABL subjects (35±6 years, 11 

BMI 23.6±2.8 kg/m2), 10 of whom were aerobically trained for >5 years 12 

(ABLT). Training frequency and volume were recorded by a dedicated 13 

questionnaire. All subjects underwent a trans-thoracic echocardiography; 14 

SCI subjects also performed an exhaustive incremental exercise test. 15 

Comparisons were made between ABL and SCI groups; within each group, 16 

between trained and untrained subjects (ANOVA). 17 

Results. Effects of SCI. Compared to ABL subjects, SCI patients showed 18 

lower end-diastolic volume (76±21 vs 113±23 ml, P<0.05) and ejection 19 

fraction (61±7 vs 65±5%, P <0.05). Effects of Training. Compared to 20 

untrained status, the intra-ventricular septum thickness (SCI, +18%; ABL 21 

+4%), the posterior wall thickness (SCI, +17%; ABL +2%) and the total 22 
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normalized heart mass (SCI, +48%; ABL +5%) were higher in both SCIT 23 

and in ABLT. VO2peak was higher in SCIT subgroup compared to SCIU.  24 

Conclusions. Heart seems to positively adapt to long-term endurance 25 

training in SCI patients. Regular exercise may therefore increase heart size, 26 

septum and posterior wall thickness, which likely contributed to improved 27 

VO2peak. These morphological and functional changes may reduce 28 

cardiovascular risk in SCI individuals. 29 

 30 

Keywords: spinal cord injury, training, endurance, left ventricle, 31 

echocardiography.32 
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INTRODUCTION 33 

The positive effects of endurance training on heart morphology and function 34 

are well acknowledged in able-bodied (ABL) individuals: besides the 35 

typical development of bradycardia and the improvement in coronary 36 

perfusion, cardiac morphology usually shifts towards a physiologic left 37 

ventricular hypertrophy, with increased mass and internal volume of the left 38 

ventricle, and improved systolic and diastolic functions (for a review, see 39 

Pavlik et al.1). In ABL endurance trained individuals, the increased stroke 40 

volume finally yields an augmented cardiac output during exercise 41 

compared to untrained subjects.2 42 

A previous study demonstrated a reduction in left ventricular mass and 43 

dimension in tetraplegic subjects,3 and a more recent study showed an 44 

altered left ventricular diastolic function and a subclinical decrease in 45 

systolic function in spinal cord injury (SCI) individuals.4 In these patients 46 

the reduced venous return due to the loss of sub-lesional vascular 47 

sympathetic innervation and of muscular pump may cause a reduced 48 

adaptation of stroke volume to exercise,5 which needs to be compensated by 49 

a higher sub-maximal heart rate, compared to that observed in ABL 50 

subjects.6,7 Indeed, Dela et al. demonstrated a stroke volume increase of 51 

about +35% in paraplegics compared to a +50% increase in able bodied 52 

people during a steady-state moderate exercise.5 This may limit cardiac 53 
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output during physical workout which would directly relate to a lower 54 

VO2peak.  55 

While the known heart adaptations to endurance training have been 56 

confirmed by some proponents of exercise in SCI people,8 such adaptations 57 

have been questioned by other opponents of exercise.9 Gates and coworkers 58 

found no differences in left ventricular structure and function between 59 

endurance- and power-trained SCI athletes compared with sedentary SCI 60 

subjects.9 Moreover, it is still uncertain whether in SCI subjects the 61 

exercise-induced modifications of myocardial structure and function can be 62 

preserved in the long term by maintaining an adequate level of aerobic 63 

physical fitness. 64 

Aims of this study were to compare baseline echocardiographic parameters 65 

between SCI and ABL subjects, and to assess whether heart adjustments to 66 

long-term training are comparable in SCI and ABL subjects. In addition, we 67 

aimed at evaluating the differences in maximal aerobic capacity and the 68 

relationship between echocardiographic parameters and maximal oxygen 69 

uptake between sedentary and trained SCI individuals. 70 

 71 

 72 

 73 

 74 

 75 
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MATERIALS AND METHODS 76 

 77 

Subjects 78 

We enrolled 17 male SCI patients (lesion level T1-L1, ASIA Scale A, age 79 

34±8 years, Body Mass Index (BMI) 23.6±2.8 kg/m2), 10 of whom were 80 

aerobically trained (SCIT) for  at least 5 years. In addition, 18 age- and BMI-81 

matched ABL male subjects (35±6 yrs, BMI 23.0±2.8 kg/m2), 10 of whom 82 

were aerobically trained (ABLT) for at least 5 years were recruited. None of 83 

the subjects was a current smoker and no one had arterial hypertension or 84 

diabetes. Other exclusion criteria were the presence of severe cardiac 85 

diseases (cardiomyopathies, cardiac failure, moderate to severe cardiac 86 

valvulopathies, recent myocardial infarction, ventricular aneurysms) which 87 

could limit the cardiac function and/or cause a left ventricular remodelling. 88 

The demographic data of the enrolled subjects, stratified according to 89 

pathology and training status (T, trained; U, untrained), is shown in Table 1. 90 

After receiving a full explanation of the purpose of the study and of the 91 

experimental procedures, all subjects signed a written informed consent. 92 

The study was approved by the ethical committee of the Don C. Gnocchi 93 

Foundation and performed according to the principles of the Declaration of 94 

Helsinki. 95 
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Statement of Ethics. We certify that all applicable institutional and 96 

governmental regulations concerning the ethical use of human volunteers 97 

were followed during the course of this research. 98 

 99 

Experimental procedures 100 

Echocardiography. All subject underwent a trans-thoracic echocardiography 101 

(mod. Sequoia Acuson 512, Siemens, Germany, equipped with a 3.5 MHz 102 

phased-array transducer). According to the statements of the American 103 

Society of Echocardiography Standards10 the following parameters were 104 

measured: 1) Left Ventricular (LV) End-Diastolic Diameter (EDD) and 105 

Volume (EDV); 2) Intra-Ventricular Septum  Thickness (IVST, end-106 

diastole); 3) Posterior Wall Thickness (PWT, end-diastole); 4) Ejection 107 

Fraction (EF), calculated from the apical four-chamber view as:  108 

[(EDV-ESV)/EDV)*100],  109 

where EDV is End Diastolic Volume and ESV is End Systolic Volume;  110 

5) LV mass (LVM), calculated according to the Devereux and Reicheck 111 

formula,11 and normalized per body surface area: 112 

LVM = 1.04.[(LVID + PWT + IVST)3-(LVID)3]-13.6 g,  113 

where LVID is diastolic LV internal diameter, PWT is Posterior Wall 114 

Thickness and IVST is Intra-Ventricular Setptum  Thickness; 6) Peak early 115 

inflow velocity (E), peak atrial inflow velocity (A) and peak early/atrial 116 

velocity ratio (E/A); 7) Iso-Volumic Relaxation Time (IVRT), defined as 117 
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the time interval between aortic valve closure and mitral valve opening, 118 

which reflects the rate of left ventricular relaxation.12 119 

Incremental exercise test. An incremental exercise test up to exhaustion was 120 

executed on a separate day on SCI subjects only. The testing procedure was 121 

performed by an adapted wheelchair ergometer (Ergotronic 4000, Sopur, 122 

Germany). The exercise protocol began at an initial velocity of 2 km.h-1 and 123 

continued with 3-min steps, with a speed increment of 2 km.h-1 per step; the 124 

test was stopped at the volitional exhaustion. This protocol is similar to that 125 

reported in Hartung et al.13, which measured maximal oxygen uptake by 126 

steps of 2 min and increments of 3 km*h-1. In our protocol we chose to 127 

increase the step time and reduce the velocity increment: in this way, 128 

oxygen consumption for each step is likely to reach a sufficiently long 129 

steady-state in the last phase of each step. Three-minute steps on manual 130 

ergometers were used by other Authors14.  131 

Respiratory gases were collected at rest for about 3 min and during the last 132 

minute of each exercise step. The following parameters were measured: 133 

heart rate (HR, bpm) by continuous electrocardiographic recording in V5 134 

lead (Cardioline Delta 1 Plus, Italy); volumes and O2 and CO2 135 

concentrations in expired air (% vol)(Oxygen Analyser, Servomex, UK, and 136 

Binos C, Fisher Rosemouth, Germany), collected in 150 l Douglas bags. 137 

Gas analyzers were calibrated before each experiment. 138 
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Physical activity questionnaire. All the trained ABL and SCI individual 139 

were athletes referring to the Sports Medicine Centre of the Don C. Gnocchi 140 

Foundation (Milan, Italy) for pre-participation screening in agonistic 141 

activities during the last 5 years. The training duration was therefore 142 

retrieved by their individual clinical records: one subject was classified as 143 

“long-trained endurance athlete” if he had a history (>5 years) of endurance 144 

training (e.g. long distances in track and field, wheelchair marathon, hand-145 

bike, swimming, Nordic skiing, etc.)  at least 3 times weekly (1.5 hours at 146 

least for each training session). The actual training status of the subjects was 147 

assessed by the localized Italian version of the validated IPAQ 148 

(International Physical Activity Questionnaire) questionnaire.15 The study 149 

participants were classified as “sedentary” if they were categorized in the 150 

“lowest activity level” of the Questionnaire. The duration of the sedentary 151 

status, if any, was finally assessed by a non-validated recall questionnaire on 152 

previous recreational/sport activities in ABL subjects.  153 

Based on the questionnaires results, we divided each of the SCI and the 154 

ABL groups in 2 further sub-groups: SCIT (trained)(n=10), SCIU 155 

(untrained)(n=7), ABLT (n=10) and ABLU (n=8). 156 

Statistical analysis. If not otherwise stated, results are shown as 157 

mean±standard deviation (SD). All parameters were normally distributed 158 

(Shapiro-Wilk test) and there were no missing data. The one-way analysis 159 

of variance (ANOVA) was preliminary applied to verify the data matching 160 
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between the 4 trained and untrained sub-groups. A 2 x 2 factorial ANOVA 161 

was then used to evaluate the differences in echocardiographic parameters 162 

between the 4 sub-groups, and the post hoc LSD Fisher test was applied 163 

where appropriate. The statistical regression was computed by the least 164 

squared method, and the r coefficient was then calculated.  165 

The level of statistical significance was set at P<0.05. Statistical analyses 166 

were performed using the Statistical software package Statistica 7.0 167 

(StatSoft, USA). 168 

 169 

 170 

RESULTS 171 

The demographic and anthropometric data of the enrolled subjects, stratified 172 

according to pathology and training status (T, trained; U, untrained), were 173 

matched between groups (Table 1). 174 

 175 

Echocardiography  176 

SCI vs ABL subjects. To assess the statistical differences in cardiac 177 

parameters due to SCI, we pooled SCIT and SCIU data and ABLU and ABLT 178 

data. SCI patients showed significantly lower EDD (44.3±5.6 vs 47.5±5.4 179 

mm, P=0.04) and EDV (76.2±20.8 vs 112.9±22.9 ml, P=0.001) than ABL 180 

subjects, respectively. Similarly, the ejection fraction (60.7±7.0 vs 181 

65.3±5.3 %, P=0.03) was significantly lower in SCI compared to ABL 182 
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individuals. Surprisingly, the IVST was slightly but significantly higher in 183 

SCI subjects (9.5±1.3 vs 8.7±0.7 mm, P=0.02), whereas the PWT (9.2±1.3 184 

vs 8.6±0.7 mm) did not significantly differ, although a trend towards a 185 

higher value in SCI group was perceived. The LVM normalized per body 186 

surface area was not significantly different between SCI (71.6±21.0 g.m-2) 187 

and ABL (76.2±14.8 g.m-2) subjects. The peak early inflow velocity (E: 188 

0.66±0.14 m.s-1 in SCI and 0.71±0.14 m.s-1 in ABL), peak atrial inflow 189 

velocity (A: 0.48±0.10 m.s-1 in SCI and 0.44±0.07 m.s-1 in ABL) and peak 190 

early/atrial velocity ratio (E/A: 1.56±0.56 in SCI and 1.66±0.39 in ABL) did 191 

not differ between SCI and ABL groups. Finally, the IVRT was 192 

significantly higher in SCI subjects (103±8 ms) compared to ABL 193 

individuals (56±9 ms)(p<0.001). 194 

Sub-group analysis in trained vs untrained subjects. The main 195 

echocardiographic parameters, stratified according to the training status, are 196 

shown in Table 2. In particular, The SCIT subgroup showed higher IVST 197 

values and a trend towards an increased PWT compared to the SCIU 198 

subgroup. Furthermore, LVM normalized per surface area was significantly 199 

higher (+48%) in SCIT vs SCIU subgroup (P=0.01 in the pairwise 200 

comparison at the post-hoc test). Such positive trend (+5%) was observed 201 

also between the ABLT and the ABLU subgroups although it did not reach 202 

the statistical significance (pairwise comparison at the post-hoc test). 203 
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Conversely, EDD and EDV were unchanged in SCIT vs SCIU , subjects 204 

whereas in ABLT subjects EDV was higher than in ABLU subjects (P=0.006 205 

in the pairwise comparison at the post-hoc test). 206 

Exercise test. The maximal velocity achieved on the wheelchair ergometer, 207 

the peak O2 consumption (pVO2) and the resting and peak heart rate (HR) in 208 

the paraplegic group, stratified according to training status, are shown in 209 

Table 3. Significantly higher maximal velocity (+52%) and peak VO2 210 

(+63%) were observed in the SCIT compared to the SCIU subgroup. Resting 211 

HR was significantly lower in SCIT subgroup (-13%), whereas peak HR was 212 

not different between subgroups. 213 

None of the echocardiographic parameters significantly correlated with peak 214 

oxygen uptake, except for the Aortic Flow Velocity, which showed a 215 

significant positive relationship with peak VO2 (Figure 1) in SCI subjects, 216 

independently from the training status. Finally, although not reaching the 217 

statistical significance (p=0.07), a positive trend was observed between peak 218 

oxygen consumption and normalized LVM (Figure 2) in the pooled data of 219 

paraplegic subjects. 220 

 221 

 222 

DISCUSSION 223 

The main finding of this study is that, despite some differences in left 224 

ventricular dimensions and function, SCI individual have similar training 225 
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response as ABL subjects. A regimen of regular aerobic physical activity 226 

may therefore positively change heart morphology and function in 227 

paraplegics, thus limiting their cardiovascular risk. 228 

In healthy subjects the end-diastolic dimensions are closely related to 229 

preload and venous compliance, and their increase with aerobic training is 230 

related to an increased stroke volume. We observed lower end-diastolic 231 

dimensions of the left ventricle in paraplegics compared to ABL subjects, 232 

which suggests a compromise that may result in a lower stroke volume and 233 

therefore a higher HR when exercising or working: this is similar to what 234 

was observed after prolonged bed rest.16 In SCI patients, the chronic 235 

cardiovascular deconditioning due to prolonged wheelchair permanence and 236 

the reduced venous return due to the sub-lesional (i.e. splanchnic and lower 237 

limbs vasculature) blood pooling may be among the leading causes for this 238 

left ventricular atrophy.6 However, in this study the IVST was surprisingly 239 

higher in paraplegic subjects (both trained and untrained) compared to 240 

healthy individuals, and there was also a trend toward an increased PWT 241 

(P=0.13). IVST and PWT are usually increased in endurance athletes, as a 242 

response of symmetrical cardiac hypertrophy; therefore, their higher values 243 

in both trained and untrained paraplegics were unexpected. However, as 244 

recently proposed by Matos-Souza et al.,4 this may suggest that the 245 

chronically reduced venous return may have been compensated by a 246 

subsequent activation of the hormonal regulatory system, such as the renin-247 
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angiotensin-aldosterone system, in order to maintain blood pressure. This, in 248 

turn, may have stimulated LV remodeling, increasing left ventricular wall 249 

thickness. Interestingly, such effect seems not to occur during the ABL 250 

individual long-term adaptation to training, as suggested by the significance 251 

of the interaction term of factorial ANOVA (Table 2): IVST and PWT 252 

increased in SCI subjects only. In addition, EDV tended to decrease in SCI 253 

and to increase in ABL subjects (with significant interaction), suggesting 254 

probable different mechanisms of adaptation to the training stimulus, which 255 

deserves further research. Other previous findings suggest a higher neuro-256 

hormonal influence on the cardiovascular control of SCI subjects.15 It is 257 

possible that these neuro-hormonal changes (as an increased norepinephrine 258 

level or an activation of the renin-angiotensin-aldosterone system), coupled 259 

with the typical blood pressure instability,18 contribute to the increased 260 

cardiovascular risk which characterize paraplegic people. 261 

The diastolic function, as assessed by E, A and E/A ratio, was not 262 

significantly impaired in our SCI individuals. This data is consistent with 263 

what was obtained by Eysmann et al.19 by conventional echocardiography, 264 

whereas more recently Matos-Sousa et al.4 demonstrated a lower early 265 

diastolic filling in a group of paraplegics compared to ABL subjects. 266 

Interestingly, we reported a higher IVRT in our SCI individuals, which may 267 

suggest some difficulties in the very early diastolic filling. Maybe, the 268 

possible reduction of LV compliance in paraplegics may have been 269 
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compensated by an increased isovolumic relaxation time in order to fill the 270 

LV adequately, without compromising the subsequent diastolic filling.  271 

Another possible consequence of the impaired venous return in SCI 272 

individuals is that stroke volume cannot be adequately increased during 273 

incremental exercise. Indeed, as previously demonstrated by Hopman et al.6, 274 

stroke volume is significantly reduced in paraplegics either at maximal and 275 

submaximal working level (about -20% and -25% at 40 and 60% of the 276 

maximal power output) during an incremental arm-cranking test, compared 277 

to ABL subjects. This finally limits the maximal cardiac output and 278 

therefore the maximal VO2 measured in SCI people. Our data confirm this 279 

hypothesis as, on average, the maximal oxygen uptake of the trained 280 

paraplegic subgroup only halved the average value commonly found in 281 

aerobically trained able-bodied people. However, the maximal oxygen 282 

uptake was significantly higher and the resting HR was significantly lower 283 

in SCIT vs SCIU subgroup, demonstrating the positive effects of long-term 284 

endurance training on the whole cardiovascular function and a shift towards 285 

the parasympathetic predominance of HR control, which can be typically 286 

observed in aerobically trained athletes.  287 

Besides training status, we noticed a positive and significant relationship 288 

between aortic flow velocity, which can be considered a surrogate marker of 289 

stroke volume, and peak oxygen uptake in the SCI groups. This suggests 290 

that even though in paraplegics the aerobic performance may be influenced 291 
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by the reduction of stroke volume induced by the sub-lesional blood pooling, 292 

such inability appears to be partially compensated by physical training 293 

(Figure 1). In addition, the LVM normalized per body surface area was 294 

significantly increased in SCIT compared to SCIU subgroup, and there was a 295 

clear trend, although the statistical regression was just below the 296 

significance limits, between LVM and peak VO2 (Figure 2). It is 297 

acknowledged the LVM  is increased by long term endurance training, and 298 

that it represents an independent predictor of maximal work capacity.20 299 

Therefore, our findings suggest that aerobic training is able to induce a 300 

physiologic ventricular hypertrophy even in SCI people. This last data is in 301 

agreement with other previous results on the effect of endurance training on 302 

oxygen uptake in paraplegics21 and of high intensity interval training on 303 

peak stroke volume in SCI subjects.8 In addition, these results parallel those 304 

of Dorfman et al.16 who showed that the cardiac atrophy which follows the 305 

prolonged bed rest can be reversed by training. Finally, although Gates et 306 

al.9 described only small adaptations of left ventricle to aerobic training, 307 

they however reported a trend towards an increase in left ventricular mass in 308 

SCI athletes, which is in line with the present findings.  309 

In conclusion, this study showed a reduced diastolic filling capacity, an 310 

altered heart morphology similar to that of the deconditioned heart in SCI 311 

patients with respect to ABL subject. However, in trained paraplegics heart 312 

seemed to positively adapt to training, as normalized heart mass and left 313 
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ventricular wall thickness were both increased: these changes persisted  314 

after 5-year training, and parallels those observed in able-bodied individuals.  315 

Therefore, despite some possible limitations in venous return, aerobic 316 

training in SCI individuals seems to promote a physiologic cardiac 317 

hypertrophy, which may reverse the pathologic left ventricular atrophy 318 

typically occurring after SCI. Such heart adaptations are similar to what was 319 

found in ABL subjects. This may be relevant from a clinical point of view, 320 

as aerobic training may contribute to significantly reduce cardiovascular risk, 321 

which is known to be higher in SCI people.22 322 

 323 

 324 

STUDY LIMITATIONS 325 

This is a case-control study: longitudinal designs would have been 326 

preferable in determining the effects of training on heart structure. In 327 

addition, we cannot exclude that the small sample size of our study groups 328 

could have affected data generalizability.  329 

The heart dimensional and functional measures were obtained from 330 

conventional trans-thoracic echocardiography: maybe, the more recent 331 

spectral techniques in tissue Doppler imaging may have added further 332 

results, especially on diastolic function. 333 

We did not perform the incremental test in ABL subjects, because they were 334 

not used to the wheelchair propulsion on the wheelchair rolling ergometer. 335 
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Thus the results of such tests could not be easily compared between ABL 336 

and SCI group. Finally, all the able-bodied athletes enrolled in this study 337 

had a prevalent use of lower limbs during their training, whereas the trained 338 

paraplegic used upper limbs during training. Although we consider this 339 

aspect of minor relevance for heart adaptation to training, we cannot 340 

exclude that this may have produced unpredictable results.  341 

 342 
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Table 1. Demographic and anthropometric features of the enrolled subjects, 

divided for pathology and training status. Data are mean±SD. P value (one-

way ANOVA). 

 

 

 

P, significance value from one-way ANOVA. 

 SCIU SCIT ABLU ABLT P 

n 7 10 8 10  

Lesion level T1-L3 T1-L1 - -  

Age (yrs) 36±10 33±7 33±6 33±8 0.55 

Weight (kg) 73±10 70±8 73±14 72±6 0.87 

Height (cm) 173±8 178±3 174±7 177±6 0.28 

BMI (kg/m2) 24.1±3.1 22.1±2.3 24.3±3.7 23.0±1.9 0.29 
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Table 2. Echocardiographic parameters divided for pathology and training 

status. Data are mean±SD. The last 3 columns show the P values estimated 

by the factorial ANOVA for the effects of lesion, training and for their 

interaction. Abbreviations: LVEDD, Left Ventricular End Diastolic 

Diameter; IVST: Intra-Ventricular Septum Thickness; PWT: Posterior Wall 

Thickness; EDV: End Diastolic Volume; EF: Ejection fraction; E: peak 

early inflow velocity; A: peak atrial inflow velocity; IVRT: Iso-Volumic 

Relaxation time. ns: not significant. 

 

Parameter 

 

SCIU 

 

SCIT 

 

ABLU 

 

ABLT 

Effect 
of 

SCI 

Effect of 
training 

Inter-
action 

EDD, mm 41.4 ± 5.3 46.6 ± 5.1 46.0 ± 5.8 48.7 ± 5.1 0.040 ns ns 

IVST, mm 8.6 ± 0.8 10.2 ± 1.1 8.3 ± 1.9 8.6 ± 0.7 0.020 0.014 0.001 

PWT, mm 8.4 ± 1.1 9.8 ± 1.2 8.2 ± 1.9 8.4 ± 0.7 ns ns 0.050 

EDV, ml 80.4 ± 18.7 72.6 ± 21.7 108.9 ± 30.2 125.0 ± 20.5 0.001 ns 0.009 

EF, % 61.4±4.6 60.1±8.8 67.4±5.4 63.6±4.8 0.030 ns ns 

LVM, gr.m-2 56.3±17.5 83.1±15.7 74.0±16.2 78.0±14.1 ns 0.014 ns 

E, m.s-1 0.66±0.17 0.66±0.11 0.70±0.17 0.71±0.12 ns ns ns 

A, m.s-1 0.50±0.11 0.46±0.10 0.44±0.71 0.43±0.08 ns ns ns 

E/A 1.64±0.80 1.49±0.30 1.59±0.47 1.70±0.34 ns ns ns 

IVRT, ms 107.9±17.7 100.6±15.7 54.6±13.8 57.7±9.9 0.001 ns ns 
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Table 3. Maximal velocity achieved on the wheelchair ergometer, peak O2 

consumption (VO2), resting and peak heart rate in the paraplegic group 

divided for training status. Data are mean±SD. 

 

 

 

P, significance value from unpaired Student’s t test. 

 

 

 

 

 SCIU SCIT P 

Maximal Velocity, 

km.h-1 

4.73 ± 0.98 7.20 ± 1.30 0.001 

Peak VO2, l.min-1.kg-1 13.3 ± 3.3 21.8 ± 4.8 0.001 

Resting Heart Rate, 

bpm 

77 ± 10 67 ± 7 0.05 

Peak Heart Rate, bpm  140 ± 19 150 ± 16 ns 
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TITLES AND LEGENDS TO FIGURES 

 

Figure 1. Relationship between aortic flow velocity and maximal oxygen 

uptake in the groups of paraplegic subjects. 

 

Figure 2. Relationship between normalized LV mass and maximal oxygen 

uptake in the groups of paraplegic subjects. 
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Figure 1.  
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Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


