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Abstract
Sex hormones modulate proliferation, apoptosis, migration, metastasis and angiogenesis in
cancer cells influencing tumourigenesis from the early hyperplastic growth till the end-stage
metastasis. Although decades of studies have detailed these effects at the level of molecular
pathways, where and when these actions are needed for the growth and progression of hormone-
dependent neoplasia is poorly elucidated. Investigation of the hormone influences in
carcinogenesis in the spatio-temporal dimension is expected to unravel critical steps in tumour
progression and in the onset of resistance to hormone therapies. Non-invasive in vivo imaging
represents a powerful tool to follow in time hormone signalling in the whole body during tumour
development. This review summarizes the tools currently available to follow hormone action in
living organisms.
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Introduction

Neoplastic transformation is a highly regulated and

ordered process, where a sequela of biological events

leads cancer cells to acquire specific phenotypic traits

necessary to escape the strong selective pressure of

the host tumour surveillance (Merlo et al. 2006). In the

current view, cancer development is more related to

the coordinated generation of a new tissue rather than

to the mere disruption of a biological program; the vast

network of intracellular and extracellular signals

involved in carcinogenesis are well coordinated in

time and are characterized by several discrete steps

leading to the acquisition of specific cell functions,

which are commonly observed during cell transfor-

mation (Hanahan & Weinberg 2000). The attempts to

decode the order and timing for the genetic changes

typically associated with carcinogenesis were only

partially successful; this led to formulate the

hypothesis that the process is redundant involving a

large variety of epigenetic/genetic mutations occurring

in oncogenes/oncosuppressors (Esteller 2006), which

cannot be directly associated to specific tumour stages
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(Hanahan & Weinberg 2000). In hormone-related

carcinogenesis, endogenous and exogenous hormones

influence a multiplicity of cell functions. Dysregula-

tion of sex hormone-receptor signalling occurs in the

tumourigenesis of breast, endometrial, ovary, prostate

and testis, where oestrogens, progestin and androgens

have been shown to modulate the proliferation of

epithelial cells, thus increasing the probability of

accumulation of genetic errors. Contribution of sex

hormones to the malignant phenotype, besides the

induction of the initial hyperplasia, is still elusive.

A multidisciplinary approach combining in vivo

imaging with system biology is expected to add

novel insights on the temporal characterization of the

changes stimulated by the hormones, leading to the

progression of hormone-related cancers.
The influence of steroid hormone action
on tumour growth and progression

Sex hormones such as oestrogens, progestins and

androgens are hydrophobic ligands, which bind to
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transcription factors belonging to the superfamily of

intracellular receptors (IRs). These receptors can be

activated by the cognate ligand or in its absence, by

post-translational modifications elicited through the

intracellular signalling of membrane receptors (Weigel

& Moore 2007, Stanisić et al. 2010). Upon ligand

binding, receptor activation occurs via diversified

pathways involving genomic or non-genomic

mechanisms (Migliaccio et al. 2007), i.e. the activated

receptor may directly bind to the DNA-responsive

elements in the regulatory regions of these genes or

may influence other pathways involved in cell

proliferation by interfering with specific proteins in

the cytoplasm (e.g. AKT/PI3K) or in the nucleus (e.g.

NFkB, AP-1 and SP-1). Co-activators, co-repressors

and integrators interact with IRs to mediate their

transcriptional activity; the expression and activity of

these co-regulators may be tissue-specific and in turn

can be modulated by cell metabolism. In the whole

organism, co-regulators integrate positional infor-

mation with signal transduction to produce in each

cell a selective modulation of steroid receptor target

genes. In some target cell, including endocrine-related

tumour cells, the activated receptor is able to stimulate

G1/S-phase transition through the G1 restriction point

by inducing the expression of specific cell cycle

regulators, such as c-myc, c-fos, c-jun and cyclinD1

(Butt et al. 2005, Lamont & Tindall 2010). Stimulation

of these mitogenic pathways eventually promotes the

hyperplastic growth of epithelial cells in reproductive

tissues; however, this proliferative induction does not

entail for the full carcinogenic potential of a

dysregulated steroid hormone signal: indeed, steroid

hormones modulate apoptosis, promote migration,

metastasis and angiogenesis functions in tumour cells

(Kaarbø et al. 2007, Lewis-Wambi & Jordan 2009,

Sarker et al. 2009, Dondi et al. 2010). Current

hypothesis propose that the influence of hormones

extends throughout the carcinogenesis process. In

clinical experience, this is well exemplified by the

fact that anti-hormone drugs are active at different

stages preventing the early tumour onset (William

et al. 2009) or metastasis formation (Boccardo et al.

1999, Howell et al. 2005). How the hormone signalling

is integrated in the process of carcinogenesis and which

is the contribution to the generation of the transformed

phenotype is only partially elucidated; it may be

expected that non-invasive in vivo imaging tools

allowing the investigation of molecular events in

time might help filling this gap. This review aims at

illustrating the in vivo imaging methodologies avail-

able now (supplementary data, see section on

supplementary data given at the end of this article)
R42
and applicable to the measurement in real time, of:

i) receptor expression, ii) hormone production, iii)

receptor activation and iv) receptor-dependent modu-

lation of specific cellular pathways.
Molecular imaging of steroid receptor
expression

Regulation of steroid receptor expression is governed

by complex mechanisms (Stanisić et al. 2010),

including usage of multiple promoters (Sasaki et al.

2003), generation of different splicing variants,

regulation of mRNA stability (Hirata et al. 2003) and

receptor proteolysis (Alarid 2006). These mechanisms

were found, in some case, to be deregulated in tumour

cells, although the existence of a coordinated action

modulating the receptor expression during hormonal

tumourigenesis has not been investigated. The

dynamic view offered by imaging provides a unique

insight on the interrelation between hormone receptor

regulation and tumour insurgence and progression.

This might contribute, for example, to gain information

on the mechanisms underlying the arousal of hormone-

resistant subclones in patients (a tumour evolution that

worsen prognosis and invariably occurs in chronic

treatments with hormonal therapy). In a significant

proportion of such patients, for unknown reasons, a

down-regulation of receptor expression is observed

(Kuukasjärvi et al. 1996, Chen et al. 2004, Sabnis et al.

2008, Musgrove & Sutherland 2009, Zilli et al.

2009). Imaging gives the possibility to isolate tumours

at a precise stage when this event occurs, and hence

allows investigating which signalling pathways are

directly linked to receptor down-regulation. Steroid

receptor expression in tumours is measurable with

positron emission tomography (PET) and single

photon emission computed tomography (SPECT)

(supplementary data, see section on supplementary

data given at the end of this article) using oestrogens,

progestins and androgens chemically labelled with
77Br (Katzenellenbogen et al. 1981, McElvany

et al. 1982), 123I (Zielinski et al. 1989, Rijks et al.

1998), 18F (Kiesewetter et al. 1984, Liu et al. 1992,

Katzenellenbogen et al. 1997, Jonson & Welch 1998)

radioisotopes (for a review on nuclear imaging see de

Vries et al. (2007) and Hospers et al. (2008)). PET

analysis provides an accurate measurement of receptor

expression that correlates with the more classical

immunohistochemical-based quantification of receptor

content (Peterson et al. 2008). These radiotracers have

been largely applied in clinics particularly to the

selection of patients with a chance to respond to

hormonal therapy (for a review see Dunphy & Lewis
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(2009)); however, their use to study the molecular basis

of hormone dependency of endocrine tumour model

have not yet been exploited; it has to be considered the

facts that these methodologies normally require

expensive instrumentation and, most of the time, also

a cyclotron, therefore are restricted to a relatively small

number of laboratories. Recently, Cerenkov radiation

imaging was presented as a novel concept, allowing the

use of conventional optical imaging devices for the

detection of radiotracers, thus opening new perspective

for the in vivo detection of radiolabelled hormones

(Robertson et al. 2009, Hu et al. 2010, Ruggiero et al.

2010, Spinelli et al. 2010).
Molecular imaging of hormone production

In the central nervous system as well as in the

periphery, multiple mechanisms govern the production

and the metabolism of steroid hormones. Dysregula-

tion of this network of signalling pathways contributes

to endocrine tumourigenesis; indeed, drugs that target

steroid hormone synthesis or metabolism are among

the most efficacious for the treatment of hormone-

dependent breast and prostate cancers (e.g. aromatase

inhibitors and GnRH analogues). Hormones, metab-

olites and catabolites are able to bind and activate

different types of receptors that fine-tune the homeo-

stasis of target tissues. A well-characterized example is

the prostate tissue, where a network of hormone signals

controls the tissue physiology and prevents tumour-

igenesis. In the prostate, dihydrotestosterone (DHT)

controls the physiological proliferation, while dysre-

gulation of this signal eventually promotes prostate

cancer cell growth. The inactive androgen, testoster-

one, is either reduced to the active form DHT or

aromatized to 17b-oestradiol (E2); DHT and E2 bind

androgen receptor (AR) and oestrogen receptor (ER)s

respectively, with different and sometime opposing

effects on the prostate target cells (Bilińska et al. 2006,

Carruba 2007, Ellem & Risbridger 2010). Furthermore,

DHT can also be reduced to 5a-androstane-3b,17b-

diol (3b-Adiol), a metabolite which binds and activate

preferentially the ERb isoform (Imamov et al. 2004,

Guerini et al. 2005), but not AR, counteracting DHT

action on the growth of the normal prostate (Weihua

et al. 2002) and on the proliferation, migration and

metastasis of prostate cancer cells (Weihua et al. 2002,

Dondi et al. 2010). When and how perturbation of this

complex hormone balance occurs during prostate

tumourigenesis is not easy to address experimentally.

We need to develop appropriate tools to study the

dynamics of ligand or metabolite production in the

whole organism. Imaging the activity of specific
www.endocrinology-journals.org
enzymes involved in steroidogenesis or the presence

of certain hormones or their metabolites in a tissue

could be very helpful to dissect temporarily each event.

Some of the current methodologies based on reporter

systems may be adapted to the measurement of

the synthesis of ligands for a given steroid receptor

in vivo. Two types of sensors were developed to

measure the hormone production in vivo and both rely

to the ability of the ligand to bind and transcriptionally

activate the steroid receptor: i) genetic two-hybrid

system, where the receptor ‘ligand-binding domain’

(LBD) is fused to the Gal4 DNA binding domain and

ii) an intramolecular folding system based on reporter

genes fused to the receptor LBD. The two-hybrid

system strategy is based on the ligand-dependent

activation of the Gal4–LBD fusion protein, which in

turn induces the transcription of a reporter gene (e.g.

b-galactosidase) driven by a GAL4-responsive

promoter; in this system, the amount of reporter

protein synthesized is directly proportional to the

hormone contents in a given tissue (Mata de Urquiza &

Perlmann 2003). Transgenic reporter mice generated

with these types of biosensors were demonstrated to be

useful tools to investigate the production of endogen-

ous retinoids or thyroid hormones during embryo

development and in mature mice (Solomin et al. 1998,

de Urquiza et al. 2000, Quignodon et al. 2004). The

second strategy is based on a fusion protein containing

the hormone receptor LBD which splits luciferase

polypeptide in two parts; after the hormone binding,

an intramolecular folding occurs and reconstitutes the

luciferase activity. These systems were proven to be

helpful for measuring the activity of selective oestrogen

receptor modulator in cell lines (Paulmurugan &

Gambhir 2006, Paulmurugan et al. 2009). These

sensors, if expressed ubiquitously with appropriate

reporter genes (Weissleder & Pittet 2008), allow for

the in vivo imaging of hormone production.
Molecular imaging of steroid receptor
activity

A major limitation in the studies measuring ligand

and/or receptor distribution within the body is the lack

of any insight on the extent to which the receptor is

activated and contributes to the cell phenotype. Indeed,

the amount of hormones in the blood does not have a

prognostic value in clinic and is usually not indicative

of the state of the activity of the receptor in the tumour;

mechanisms such as receptor desensitization, ligand-

independent activation and tissue-specific interaction

with co-regulators are well known to strongly modulate

sex-steroid signalling pathways. Thus, independent of
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hormone levels or receptor expression, it would be

important to identify the time points when the receptor

activity is actually required or lost during endocrine-

related cancer progression; this information can be

provided by in vivo imaging. A number of systems

have been developed for measuring steroid-receptor

activity in vivo, of which some of them were

specifically designed for in vivo imaging. Since sex-

steroid receptors are transcription factors, receptor

activation is usually measured for its ability to induce

the transcription of a reporter gene. Reporter systems

of this type were applied to the production of

transgenic reporter mice successfully obtained by our

group (Ciana et al. 2001) and other laboratories

(Lemmen et al. 2004, Hsieh et al. 2005), thanks to

the use of an appropriate technology to prevent the

position effects linked to the transgenesis procedure

(Maggi et al. 2004). In these models, it is possible to

measure the state of ER and AR activation in all mouse

tissues. Bioluminescence imaging (supplementary

data, see section on supplementary data given at the

end of this article) applied to these reporter mice
A

In vivo imaging

Baseline 4 weeks 8

Figure 1 Bioluminescence in vivo imaging of breast cancer growth
imaging experiment carried out with an ERE-Luc reporter mouse tre
following a classical mammary carcinogenesis protocol in mice. The
by the time, visible already at week 4 and then very prominent at w
(Promega) 20 min before bioluminescence quantification, to achiev
out with a Night Owl imaging unit (Berthold Technologies, Bad Wil
coupled device slowscan camera equipped with a 25 mm, f/0.95 le
processor and transferred via video cable to a peripheral compone
(Berthold Technologies). (B) Ex vivo imaging of the explanted breas
the breast lesion evident in the mammary gland fat pad. (C) Quant
Photon emission was integrated over a period of 5 min; light emiss
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allowed the measurement of receptor activation in

physiology (Ciana et al. 2003, 2005, Lemmen et al.

2004) and in cancer biology (Fig. 1, Lyons et al. 2006,

Hsieh et al. 2007); in these works, steroid receptor

activation was evaluated in the tumours of living mice,

and was used as a marker to identify those animals that

after hormone ablation were capable of sustaining

tumour growth. Another strategy to measure receptor

activity in vivo was developed by O’Malley’s group

that generated the so called ‘indicator’ mouse models,

allowing the measurement of receptor expression and

activity simultaneously, in vivo (Han et al. 2005,

2009, Ye et al. 2005). ‘Indicators’ are mice genetically

engineered with bacterial artificial chromosome (BAC)

which carries a genomic region of a nuclear receptor

(ER, AR or PR) with the inserted GAL4 DNA-binding

domain and encoding for a fusion protein (ER–GAL4,

AR–GAL4 or PR–GAL4) that displays the same tissue

distribution of the endogenous receptor; in addition,

each BAC also carries a reporter system for the nuclear

receptor activity. The receptor/GAL4 fusion protein

once expressed becomes activated and binds to the
B Ex vivo imaging of
mammary fat pad

C
Photon emission
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in mice. (A) Pictures represent a non-invasive bioluminescence
ated with an oral carcinogen, 7,12-dimethylbenz(a)anthracene,
red oval shows the breast area, in which ER activity is growing
eek 8. Mice received an i.p. injection of 50 mg/kg D-luciferin
e a uniform biodistribution of the substrate; imaging was carried
dbad, Germany), consisting of a Peltier-cooled charge-
ns. Pictures were generated by a Night Owl LB981 image
nt interconnect frame grabber using WinLight32 software
t performed at week 8 shows the ER activity (photon emission) of
ification of photon emission from the breast area of the mouse.
ion is expressed as number of counts/cm2 per second.
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promoter of the reporter system, inducing the

production of a green fluorescence protein (GFP).

Thus, GFP level in the indicator mouse is proportional

to the receptor expression and activation at the same

time. Unfortunately, the GFP used in the generation of

these models is not an ideal reporter for in vivo imaging

(mainly due to the wide overlapping of the peak of the

fluorescence emitted by the GFP and the autofluores-

cence peak naturally present in the tissues). Also in this

case, the appropriate choice of the reporter gene used

in the indicator mouse would allow the in vivo imaging

of receptor expression and activity.
Molecular imaging of signalling pathways
activated by the hormone

Liganded or unliganded modulation of the steroid

receptor results in the activation or inhibition of

intracellular circuitry translating the hormonal

message into phenotypic effects. Sex-steroid receptor

activation in hormone-dependent neoplasia modulates

a broad range of key pathways for tumourigenesis,

including those governing apoptosis, proliferation and

angiogenesis.

Apoptosis

In the war against cancer, one of the major problems

arises from the changes of the tumour phenotype

in terms of sensitivity to proapoptotic treatments

(Shankaranarayanan et al. 2009). In hormone-dependent

tumours, sex-steroid receptors are known to differen-

tially regulate apoptotic pathways depending on the

tumour stage or the cellular context (Lewis-Wambi &

Jordan 2009); in vivo imaging could help to identify the

tumour stage at which this modulation occurs and to

correlate it with the sensitivity of the cells to apoptotic

stimuli. A wide array of non-invasive imaging

techniques has been developed so far to follow the

molecular events specifically occurring during apop-

tosis. It is possible, for example, to measure caspases

activation by using luminescent, fluorescent or radio-

labelled substrates carrying a caspase recognition

sequence (e.g. Asp-Glu-Val-Asp: DEVD) or to

measure expression of annexin V apoptotic marker

with fluorescent/radioactive probes. Most of these

imaging tools are currently used in the development

of new anti-cancer treatment and in clinical studies to

assess treatment responses (Kurihara et al. 2008).
Proliferation

The mechanism underlying stimulation of cancer cell

proliferation by sex hormones has been investigated to
www.endocrinology-journals.org
the molecular details in about four decades of research

in animals and cultured cells. However, there are

preclinical (Zhao et al. 1992) and clinical data (Clarke

et al. 1997, Anderson 2002, Clarke 2004) challenging

the simplest view that hormones are always behaving

as inducer of cell proliferation. These studies suggest

that, during tumour development, the sensitivities of

neoplastic cells to the hormones vary in terms of

proliferative response; thus, it remains unclear whether

the proliferative effects of the hormone is requireddur-

ing specific stages or throughout whole tumour

progression. Non-invasive in vivo imaging may

provide novel insights into this issue allowing to

follow the proliferative activity of every single tumour

during its growth and metastasis and to evaluate its

sensitivity to hormones at every different stage.

Nuclear, magnetic resonance and optical imaging

tools are used to measure cell proliferation in vivo.

Nuclear imaging of proliferation is based on probes

designed to measure in cancer cells: i) the accelerated

DNA synthesis, e.g. nucleotide analogues like

[11C-methyl]TdR, 2 0-deoxy-2 0-fluoro-1-b-D-arabino-

furanosyl)-thymine (FMAU), FLT (1-(2 0-deoxy-2 0-

fluoro-b-D-arabinofuranosyl-uracil)-bromouracil (FBAU),

[18F]fluorothymine) or ii) the accelerated cellular

metabolism, e.g. labelled sugar, 18F-fuorodeoxyglu-

cose (FDG), amino acid (L-[11C-methyl]-methionine

and L-[1-11C]tyrosine ([18F]-fluorocholine) or lipids

([18F]-fluoroethilcholine and [11C]-choline). PET

evaluation of uncontrolled proliferation in hormone-

sensitive breast cancers was applied to evaluate their

response to chemotherapy (Sun et al. 2005, Pio et al.

2006, Kenny et al. 2007, Kim et al. 2007) and for

tumour staging (Kwock et al. 2006, Laprie et al. 2008).

Optical imaging tools, including molecular probes

(selectively binding the tumour cells) or reporter genes

were developed to label tumour growth and are

currently used in preclinical studies to localize as little

as 100–1000 xenografted cancer cells in animal

models; these systems provide a quantitative measure

of cancer growth and metastasis and hence found

useful for screening compounds with anti-cancer

properties. Some reporter system was also applied to

the generation of transgenic reporter mice in which it is

possible to directly measure mitogenic pathways in the

animal tissues. Uhrbom et al. 2004 have generated a

transgenic mouse expressing luciferase only when the

Rb pathway is inactivated and the transformed cells

underwent uncontrolled proliferation; activation of this

biosensor allows the detection of sporadic tumour

arousal and to follow the neoplastic growth in time in

the whole body by using bioluminescence in vivo

imaging. A further refinement of this model refers to
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a recently generated transgenic reporter mouse, in

which luciferase is a measure of all mitogenic signals

in the body (Piaggio G, Maggi A, Ciana P, manuscript

in preparation). In this mouse model, it is possible to

detect proliferation not only in the growing tumour but

also in pre-malignant lesion and in the normal tissues

where proliferation occurs as a physiological response

to tumour growth (e.g. immune system responses,

vessel formation and stroma cells responses). This

model can also be particularly relevant in drug

development to evaluate toxicity of compounds

interfering with the normal homeostatic proliferation

found in body tissues (e.g. bone marrow toxicity).
Angiogenesis

When cancer grows beyond 1–2 mm3 in diameter,

there is a requirement for new blood vessels to supply

nutrients and oxygen. For endocrine cancers, it is still

largely debated whether sex hormones have a role in

this neo-angiogenic process; indeed, there are evidence

for a direct transcriptional control of the hormones on

vascular endothelial growth factor (VEGF) and avb3

integrin genes, two key players in neo-angiogenesis

(Bogin & Degani 2002, Buteau-Lozano et al. 2002,

Hood & Cheresh 2002). However, no mechanistic

hypothesis into this hormone control has been

proposed yet. It would be interesting, for example, to

evaluate the role of endocrine signals on the

mobilization, recruitment and differentiation of endo-

thelial progenitor cells (bone marrow-derived or

resident) and on the subsequent new vessel formation.

Although some system have been devised to label

progenitor stem cells for imaging their fate in the body

(Schroeder 2008) and to evaluate the associated neo-

angiogenesis, to the best of our knowledge, there has

been no report applying imaging technology for the

characterization of sex hormone signalling on new

vessel formation. Several imaging modalities can be

used to visualize neo-angiogenesis with probes

detecting VEGF or avb3 integrins expression, e.g.

PET imaging with radiolabelled antibodies against

VEGF (Nagengast et al. 2007) or ultrasound imaging

of VEGF/VEGF monoclonal antibody conjugated

with microbubbles (Korpanty et al. 2007, Willmann

et al. 2008). Since avb3 integrins recognize specific

component of the extracellular matrix containing

the arginine-glycine-aspartic acid (RGD), RGD-

containing peptides have also been developed

as targeting ligands for imaging neo-vasculature

formation in tumours; indeed, radiolabelled RGD-

containing compounds such as (18)F-Galacto-RGD or

(99m)Tc-NC100692 have been successfully used for
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PET analysis of the neo-angiogenesis associated to

squamous cell carcinoma or breast cancer (Bach-

Gansmo et al. 2006, Beer et al. 2007). Biolumines-

cence modality is also often applied for the detection of

new vessel formation (Fukumura et al. 1998, Snoeks

et al. 2010); in this research line, an interesting

transgenic mouse model was recently developed as a

tool to follow the activation of the hypoxia-inducible

factor1a (Hif1a). Hif1a is a transcription factor

turning on the neo-angiogenesis programme when

cells are under low-oxygen conditions. In this work,

Safran et al. reported the generation of a reporter

mouse ubiquitously expressing a bioluminescent

reporter consisting of the firefly luciferase fused to a

region of Hif1a that is sufficient for oxygen-dependent

degradation. In all tissues of this mouse, any hypoxic

condition induces an increased bioluminescent

emission, which can be detected by optical imaging

(Safran et al. 2006).
Conclusions and perspectives

There is only a limited knowledge on the dynamic

influence of sex steroid hormones on the development

and progression of endocrine-related cancers. New

tools, which would allow the investigation of molecu-

lar events in the spatio-temporal dimension, are

required to follow the steroid hormone message from

its circulation in the body till the activation of

intracellular signalling pathways in the tumour itself

and in the normal tissues. In vivo imaging comprises a

cluster of technologies allowing the measurement of

biological events with respect to time and in the whole

animal, information that is particularly relevant for

hormonal carcinogenesis also in consideration of the

systemic effects of hormones and the complex network

of signals going back-forward from CNS to the

reproductive tissues. Each different imaging modality

presents pros and cons which currently limits the

analysis in terms of sensitivity, resolution and type

of information provided on the biological events

(Massoud & Gambhir 2003; supplementary data, see

section on supplementary data given at the end of this

article). To overcome these limitations, a wealth of

novel systems and novel instrumentations allowing the

integration of different imaging modalities (Stell

et al. 2007a, Tian et al. 2008, Lee & Chen 2009)

have been proposed, including PET/CT (Cherry 2009),

PET/fluorescence/bioluminescence (Kesarwala et al.

2006), PET/MRI (Sauter et al. 2010) and other

combinations of technology, which integrate molecular

information with morphological information and

uncouple spatial resolution with higher degree of
www.endocrinology-journals.org
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sensitivity and deep penetration through body tissues.

Further advancement in the field is also expected in the

way probes and biosensors are designed to widen the

list of molecular events that can be monitored by

in vivo imaging (Stell et al. 2007b, Pysz et al. 2010).

Among them, fluorescence resonance energy transfer

(FRET) and bioluminescence resonance energy

transfer (BRET) are promising technologies which

have already opened up new avenues of measuring

protein–protein and ligand–receptor interactions,

membrane receptor activation and calcium signalling.

Several methodologies based on FRET/BRET biosen-

sors have been applied to the study of the key compo-

nents of the hormone signalling, including ligand

binding (Michelini et al. 2004, De et al. 2005), receptor

dimerization (Schaufele et al. 2005, Powell & Xu

2008) and recruitment of co-regulators (Koterba &

Rowan 2006, Ozers et al. 2007). These methods have

not been fully developed for the study of sex hormone

signal in vivo; however, we expect that BRET and

FRET, when combined with intravital microscopy or

optical detection systems, will significantly improve

the spatio-temporal analysis of hormonal pathways

from single cell to a whole body resolution. More

information are also expected to come from the

application of imaging onto cancer stem cell field

that already gave promising results (Hong et al. 2010);

imaging might help answering several open questions

about the role of sex hormones on the fate of cancer

stem cells (LaMarca & Rosen 2008). This is a rather

important issue, which needs clarification to under-

stand the mechanisms underlying the early events

occurring during hormonal transformation and in the

establishment of resistance.

Obviously, the information provided by in vivo

imaging alone cannot be sufficient to generate a

comprehensive representation of the molecular

pathways involved in tumour development; in this

sense, in vivo imaging represents a good way to identify

tumour stages at which changes in selected molecular

pathways (e.g. sex-hormone receptor signals) occur,

before they produce evident consequences on the

phenotype of transformed cell. Imaging analysis of

different aspects of the steroid hormone signalling is

now expected to drive classical molecular genetics

and genomic studies towards the characterization

of specific steps during carcinogenesis, when the genetic

reprogramming actually occurs. Hopefully, the descrip-

tion of the molecular pathways involved in these steps

will help identifying unique marker signatures of

neoplasia progression and inspire the design of new

therapeutic strategies for hormone-related cancers

and to overcome the problem of drug resistance.
www.endocrinology-journals.org
Supplementary data

This is linked to the online version of the paper at http://dx.

doi.org/10.1530/ERC-10-0332.
Declaration of interest

The authors declare that there is no conflict of interest that

could be perceived as prejudicing the impartiality of the

research reported.
Funding

The financial supports of the CARIPLO Foundation (Grant

2009-2439), the Italian Association for Cancer Rsearch

(AIRC) and the European Community (I.P. EPITRON LSHC

CT 2005 512146) are gratefully acknowledged.
References

Alarid ET 2006 Lives and times of nuclear receptors.

Molecular Endocrinology 20 1972–1981. (doi:10.1210/

me.2005-0481)

Anderson E 2002 The role of oestrogen and progesterone

receptors in human mammary development and

tumourigenesis. Breast Cancer Research 4 197–201.

(doi:10.1186/bcr452)

Bach-Gansmo T, Danielsson R, Saracco A, Wilczek B,

Bogsrud TV, Fangberget A, Tangerud A & Tobin D 2006

Integrin receptor imaging of breast cancer: a proof-

of-concept study to evaluate 99mTc-NC100692.

Journal of Nuclear Medicine 47 1434–1439.

Beer AJ, Grosu A-L, Carlsen J, Kolk A, Sarbia M, Stangier I,

Watzlowik P, Wester H-J, Haubner R & Schwaiger M

2007 [18F]galacto-RGD positron emission tomography

for imaging of alphavbeta3 expression on the neovascu-

lature in patients with squamous cell carcinoma of the

head and neck. Clinical Cancer Research 13 6610–6616.

(doi:10.1158/1078-0432.CCR-07-0528)
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