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ABSTRACT

Context. Weak lensing is one of the most readily available diagnostic tools to measure the total density profiles of distant clusters
of galaxies. Unfortunately, it suffers from the well-known mass-sheet degeneracy, so that weak lensing analyses cannot lead to fully
reliable determinations of the total mass of the clusters. One possible way to set the relevant scale of the density profile would be to
make a direct measurement of the magnification produced by the clusters as gravitational lenses; in the past, this objective has been
addressed in a number of ways, but with no significant success.

Aims. We revisit a suggestion made a few years ago for this general purpose, based on the use of the fundamental plane as a standard
rod for early-type galaxies. Here we move one step further, beyond the simple outline of the idea given earlier, and quantify some
statistical properties of this innovative diagnostic tool, with the final goal of identifying clear guidelines for a future observational test
of concrete cases, which turns out to be well within the current instrument capabilities.

Methods. The study is carried out by discussing the statistical properties of fundamental plane measurements for a sample of early-
type source galaxies behind a massive cluster, for which a weak lensing analysis is assumed to be available. Some general results are
first obtained analytically and then tested and extended by means of dedicated simulations.

Results. We proceed with determining the optimal way of using fundamental plane measurements to determine the mass scale of a
given cluster, which we find to be the study of a sample of early-type galaxies behind the cluster distributed approximately uniformly
on the sky. We discuss the role of the redshift distribution of the source galaxies, in relation to the redshift of the lensing cluster and
to the limitations of fundamental plane measurements. Simple simulations are carried out for clusters with intrinsic properties similar
to those of the Coma cluster. We also show that, within a realistic cosmological scenario, substructures do not contribute much to the
magnification signal that we are looking for, but add only a modest amount of scatter.

Conclusions. We find that for a massive cluster (M»y > 10'° M) located at redshift 0.3 + 0.1, a set of about 20 fundamental plane
measurements, combined with a robust weak lensing analysis, should be able to lead to a mass determination with a precision of 20%
or better.

Key words. gravitational lensing: weak — galaxies: clusters: general — galaxies: fundamental parameters — dark matter

1. Introduction principle, the mass-sheet degeneracy can be removed with the
determination of the absolute value of « at a single point in the
lens plane where (@) # 1. One can assume that the surface mass
density vanishes at the boundaries of the image, far from the
lens, and that the average value of k along the sides of the field
of observation is zero. However, these assumptions require the
field of view to be sufficiently large, which is not always pos-
sible. Moreover, current structure formation models predict that
many clusters of galaxies have non-vanishing surface mass den-
sities far from the lens center, so the first assumption is bound to
lead to total mass estimates being significantly underestimated.
Another possibility is to assume that the minimum value of « is
(1) Zeroso that the mass density is everywhere positive, which might

seem a plausible assumption. The problem with this approach is

Weak lensing is a powerful tool for probing the mass distribu-
tion of massive clusters of galaxies. By studying the distortion
induced by the lens on images of extended background sources,
weak lensing techniques have often been used to measure the
masses of clusters of galaxies (see e.g. Lombardi et al. 2000;
Clowe & Schneider 2002; Broadhurst et al. 2005; Clowe et al.
2006; Gavazzi et al. 2009). However, weak lensing suffers from
a fundamental limitation set by the so-called mass-sheet degen-
eracy: the projected surface mass density map (@) can be deter-
mined only up to transformations of the form

k(@) = (@) = k(@) +1 - A.

In other words, weak lensing measurements alone are unable to
constrain the total mass of a lens, unless further assumptions are
made.

Although many strategies have been proposed to break this
degeneracy, no definitive solution has been found so far. In
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that noise can produce negative values of «, and adjusting the
overall density profile on the basis of a noise feature may not
be wise. A popular solution is to fit weak lensing measurements
to parametric model mass distributions, usually NFW (Navarro
et al. 1997) profiles. This method has the disadvantage that it
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relies on an assumed mass profile for the lens, which might dif-
fer from that of the actual cluster, thus reducing the power of
weak lensing as a mass measurement technique.

If we wish to find an assumption-free method to break the
mass-sheet degeneracy, additional information must be added
to the weak lensing measurements. Several attempts have been
made in this direction. One possibility is to include magnifica-
tion information in the data set because measurements of the
magnification and of the shear field can lead to a direct deter-
mination of the surface mass density «. Broadhurst et al. (1995)
proposed a method based on the study of the number counts of
faint background galaxies to help determine the magnification.
Their technique was successfully used in a few cases of par-
ticularly massive clusters (Fort et al. 1997; Taylor et al. 1998;
Broadhurst et al. 2005; Umetsu et al. 2011). However, for this
method a detailed calibration of nontrivial model quantities, such
as the number counts of unlensed sources, is essential. Moreover,
the count process in the central regions of rich clusters is made
difficult by bright cluster members that hide the faintest back-
ground galaxies.

The form of the invariance transformation given in Eq. (1) is
referred to a fixed source redshift: the same transformation re-
ferred to a source at a different redshift changes by means of the
coefficient that multiplies the term 1 — A. In other words, each
portion of the redshift space suffers from a different invariance
transformation, so that in principle the mass-sheet degeneracy
can also be broken by combining lensing information from im-
ages of sources at different known redshifts. Bradac et al. (2004)
investigated this possibility in the context of weak lensing, con-
sidering the hypothetical case in which the individual redshifts of
the lensed background galaxies are available. They showed that,
under these favorable circumstances, the mass-sheet degeneracy
can be broken for critical clusters (i.e. those that can produce
multiple images), but still not for subcritical ones.

A significant improvement can come from the addition of
information from strongly lensed images (i.e. arcs or multi-
ple images), provided that the redshifts of the strongly lensed
sources differ from the mean redshift of the sources used for the
weak lensing analysis. Several methods based on the inclusion of
strong lensing information have been devised and applied to real
cases (Bradac et al. 2005a,b; Cacciato et al. 2006; Diego et al.
2007; Merten et al. 2009). However, strongly lensed images can
only be produced by critical clusters. Thus, for subcritical clus-
ters the mass-sheet degeneracy still remains a fundamental prob-
lem in the determination of the total mass.

In this context, Bertin & Lombardi (2006, BLO6 from now
on) proposed a new method to measure the lensing magnification
induced by a cluster, which can be used to break the mass-sheet
degeneracy. They showed that estimates of the magnification can
be obtained by observing background early-type galaxies. Early-
type galaxies can be treated as standard rods, in virtue of the em-
pirical law of the fundamental plane. From a fundamental plane
analysis, the intrinsic effective radius of an early-type galaxy can
be recovered with a 15% accuracy (BL06). By measuring the ob-
served (magnified) effective radius, the magnification can then
be derived.

In this paper, we investigate the potential of this technique. In
particular, we wish to determine the accuracy to which the total
mass of a cluster can be determined by combining fundamental
plane measurements with a weak lensing study. This is done by
prescribing a method to break the degeneracy and studying its
properties, both analytically and with the aid of simulations. In
principle, substructures in the lensing cluster can introduce noise
in the magnification signal, so that a given measurement might
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be used to set interesting constraints on the amount of substruc-
ture rather than the mass of the cluster. We also study this issue
in this paper, with the use of numerical simulations. We then ad-
dress the problem of identifying the optimal conditions for both
the lens and source galaxies in order to get a reliable measure-
ment in concrete cases.

The structure of the paper is the following. In Sect. 2, we
present the basic lensing equations and present the problem of
the mass-sheet degeneracy. In Sect. 3, we show how fundamental
plane measurements can be used to infer the magnification and
present a simple method to use these measurements to break the
mass-sheet degeneracy. In Sect. 4, the statistical properties of
this method are studied. In Sect. 5, we address the issue of how
substructures can influence the magnification signal we seek to
measure. In Sect. 6, we describe the simulations set up to test the
method and show the results. Conclusions are drawn in Sect. 7.

2. Weak lensing preliminaries
2.1. Basic notation and equations

We start by introducing the projected surface mass density of
a given lens, X(@). The nature of the lensing equations make it
convenient to introduce the dimensionless surface mass density
(0, z) for a source at redshift z, defined as

2(0) ¢ D,
where X = 2
2er(2) ¢ o

4dnG DdDd5 .
Here Dy, Ds, Dy are the angular diameter distances of both the
lens and source with respect to the observer, and of the source
with respect to the lens, respectively. The surface mass density
is referred to a fiducial source at infinite redshift such that

k(0. 2) = Z(2)x(8), 3

k(0,2) =

through the cosmological weight function

limz'—mo z:Cl’ (Z/)
Zer(2)

Here H(z — z;) is the Heaviside step function, which takes into
account that the images of sources at redshifts lower than that of
the lens are not lensed.

An important quantity that enters the weak lensing problem
is the redshift-dependent reduced shear g(6, z)

__Z2)y()
90.9 = T Zon@

Z(z) = H(z—z4). “

&)

where the shear y(68) can be expressed as a nonlocal function of
«(0)

DO - 0)x(0)d* ¢, (6)
R2

1
¥(0) = —
T

with  D(f) = (7)

(0 -6
Weak lensing consists of the study of the distortion induced by
the lens on the images of background sources. This can be done
in terms of a complex ellipticity €, defined from the quadrupole
moments Q;; of the surface brightness as

011 — 02 +2i012

Q11 + 0 +2,/010n - 07,

€
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Seitz & Schneider (1997) showed that the image ellipticity is
related to the intrinsic (unlensed) source ellipticity €’ in the way

€ +90.2)
——  if|g(0, 1
T+g0.0€ l9(6. )] <
€= ©))
1 0,2)e™ .
M OtherWISe'

€* +¢g(0, 2)*

Therefore, under the assumption that the intrinsic ellipticity dis-
tribution of background sources is isotropic, the expectation
value of the observed ellipticity for sources at redshift z is

9(0,2)
Ele(2)] = 1
g*(0,2)

In the general case of sources distributed in redshift, the approx-
imation

if |g(0,2)| < 1

(10)
otherwise.

Ele = 2O

72
1- o)
holds for « < 0.6 as shown by Seitz & Schneider (1997), where
(Z") are the moments of the redshift probability distribution of
the background galaxies.

(1)

2.2. The mass-sheet degeneracy

By averaging over image ellipticities of background galaxies and
identifying (€) with E[€], we can estimate the quantity Eq. (11)
in the field of observation. Since y depends on « through Eq. (6),
relation (11) can then be inverted and the surface mass density «
can be recovered from the observed average ellipticity. Practical
realizations of this picture were provided by Kaiser (1995), Seitz
& Schneider (1997) and Lombardi & Bertin (1999).

It can be shown that the quantity E[e€] in Eq. (11), which is
the observable quantity, is invariant under transformations of the
form

k(0) = K'(0) = k() + w(l = A), (12)
where we introduce
= ﬂ (13)

2
This is the mass-sheet degeneracy for the general case of sources
distributed across a range of redshifts: with ellipticity measure-
ments it is only possible to recover the surface mass density up to
the above transformation. In the simplified case that all sources
are at the same redshift z, the invariance transformation reduces
to Eq. (1), where «(6, z) = k(0).

In principle, the mass-sheet degeneracy can be broken with
a local measurement of the magnification. The magnification
(6, 2) is related to x(6) and y(0) through the relation

_ 2_ 52 2|7t

(8, 2) = |[1 - Z@x@O) - Z* Q@) . (14)
By measuring (€) and u(z) and combining Eq. (11) with (14), we
obtain a two-equation system in terms of « and y, which can be
solved for «, thus breaking the mass-sheet degeneracy. We need
to know, however, the redshift z to which the magnification mea-
surement is referred to, to calculate the cosmological weight Z(z)
that enters Eq. (14).

3. Breaking the mass-sheet degeneracy

We introduce a mass measurement method based on the com-
bined use of weak lensing and magnification measurements.

3.1. The fundamental plane

The fundamental plane (FP from now on; Dressler et al. 1987;
Djorgovski & Davis 1987) is an empirical scaling law that ap-
plies to early-type galaxies (E/SO). It relates three well-defined
observable quantities for these objects: the effective radius, R.,
the effective surface brightness, (SB)., and the central velocity
dispersion of the stellar component, 0. The three quantities are
related according to the relation

logR. =logre +10og Da(z) = alogoy + 5(SB). + v, (15)

where «, 3, and y are empirically determined coefficients that de-
pend on the waveband of observation, 7, is the effective radius in
angular units, and Da(z) is the angular diameter distance of the
galaxy at redshift z. The existence of this relation has been exten-
sively confirmed by a number of studies of both field and clus-
ter galaxies out to cosmological distances (e.g. Jorgensen et al.
1993; Bender et al. 1998; Treu et al. 1999). The measurement of
the FP parameters for the most distant sample of objects to date
was carried out by van der Wel et al. (2005, vdWO05 from now
on), who examined early-type galaxies out to z ~ 1.1. This rela-
tion is observed to hold with a 0.07 scatter in log r., or 15% in re,
rather independently of the position on the FP plane (Jgrgensen
et al. 1996) and to increase with increasing redshift (Treu et al.
2005). Treu et al. (2005) quantified the increase in the scatter in
log 7. in the FP relation as do-, /dz = 0.032 £ 0.012, which trans-
lates into a scatter of 23% in r, at z = 1. It is still unclear whether
the source of this scatter is totally intrinsic or can be reduced by
improving the observational precision. Auger et al. (2010) esti-
mated the intrinsic scatter in the FP to be as low as 11%.

Observations have been used to measure a variation in the
coefficient y with redshift, quantified as dy/dz = 0.58*)0¢ by
Treu et al. (2005). For cluster galaxies, there is evidence of a
slower evolution (see e.g. Wuyts et al. 2004, vdWO05), such that
the FP of cluster galaxies appears to differ from that of field
galaxies. In vdWO035, it was shown that this difference is insignifi-
cant for massive (M > 2x10'! M) galaxies, and a similar result
was found by van Dokkum & van der Marel (2007). According
to vdWO035, the scatter in the FP is also smaller for the more mas-
sive objects. Evidence of a variation in the coefficients @ and 8
with redshift has also been reported (Treu et al. 2005), but this is
generally assumed to be less significant.

3.2. The FP seen through a lens

As shown in BLO6, the FP changes in a well-defined way when
viewed through a gravitational lens. Both the surface brightness
(SB). and the central velocity dispersion o7 are lens-invariant.
Therefore, by measuring these two quantities for early-type
galaxies and by making use of the FP relation given in Eq. (15) it
is possible to obtain an estimate of the effective radius of the ob-
served galaxy, R(epp). By measuring the redshift of the galaxy, it is
then possible to convert this measurement of the effective radius
to angular units, réFP). By observing the effective radius ré"bs),
magnified by the lens effect, the lens magnification will then be
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given by the square of the ratio of the intrinsic size to the ob-
served image size, as

(réobs) )2
H /FP)
With a 15% scatter in the FP relation, the same error will affect
our estimate of the intrinsic effective radius, réFP), which trans-
lates into a ~30% error in the magnification.

The quantity that is lens invariant is the intrinsic surface
brightness, which in general differs from the observed surface
brightness. Nevertheless, van der Wel et al. (2005) showed that
the intrinsic surface brightness of galaxies at high redshift can
be effectively measured by fitting Sersic models convolved with

the PSF. We expect this task to be made easier by the magnifying
effect of lensing.

(16)

3.3. A minimum-y? approach

The method presented here has been developed and tested for
noncritical lenses only, although it can be generalized to the crit-
ical case. Therefore, from now on we assume that the lens does
not have critical curves, unless stated differently. This is also the
most interesting case, because it is for subcritical lenses that the
problem of the mass-sheet degeneracy is harder to overcome.

Suppose we performed a weak lensing analysis of a clus-
ter, that led to the determination of the average distortion (€)(6)
within the field of view. By inverting the distortion map (for in-
stance with the nonparametric method of Lombardi & Bertin
1999), it is possible to recover the surface mass density of the
lens (@) up to the invariance transformation Eq. (12). Then, sup-
pose that we performed a set of Ngp FP measurements, through
which we estimate the magnification in a corresponding number
of positions {6;} on the image plane.

Among the infinitely possible mass density maps compati-
ble with the distortion measurements, spanned by Eq. (12), we
select the one for which the accordance with the observations of
magnified early-type galaxies is best. To do so, we first transform
the estimates of the magnification into estimates of the surface
mass density, K™ (;), making use of Egs. (11) and (14). This
requires that we know the average distortion in the image po-
sition, (€)(6;), determined from the weak lensing study, and the
redshift z; of each galaxy, which can be measured with the same
spectroscopic observation necessary to measure 0. The expres-
sion that gives k™ (6,) in terms of u(6;), (€)(6;), and z; is

(PP —b - \b? —a(c—1/p)
a 9

(17)
where
aEZ?(l— 1 |<e>|2), bEZi( Zi |<e>|2-1), (18)
' w? (Z)? w{Z)?
72
= 1-—— ey and Z =Z(z). (19)
(zy*

The minus sign for the square root in Eq. (17) reflects our as-
sumption that the lens is everywhere subcritical.
The fit is performed by minimizing the penalty function
Nrp 1 )2
2 _
¥= D, — ko @)+ =0 -«TL,

i=1 i

(20)

where k() is the surface mass density distribution inferred from
the weak lensing reconstruction, and o? are suitably chosen

i
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weights. The minimum-y? condition can be found by imposing
dx?/02 = 0, which leads to the determination of the estimator A
for the parameter A

Nrp

35 6~ ] e 8) - )

-1 7

Nrp

1
= lko () - wP

i=1 i

A=

21

The choice of the weights o-l.2 that enter this y> function re-
quires particular care. When attempting to minimize y?, the val-
ues of o; are taken to be proportional to the measurement errors
of the quantity over which the fit is performed, which, in the
present case, is the surface mass density . By assuming that
the errors come only from the FP measurements (i.e. under the
assumption of perfect weak lensing measurements), error prop-

agation in k™ gives
7 2 2
[1—z<z>K12—% (1-2) Kk @
Akpp = oFp(2) 207 , (22

Z(2) [1-Z(2)K] - (1—52 20
@U-Z@d-= S ICRC

where opp(z) is the scatter in r, of the FP. Therefore, Akgp de-
pends on the value of k, which is the quantity we try to determine
with the fit. This complicates the definition of the weights. One
would be tempted to define o; = Ax(x™(8),)), but by doing so
we would introduce a bias in the estimate of A: this is because a
greater weight would be given to measurements in which fluctu-
ations give higher values of the magnification, relative to cases
in which y is underestimated. The fit would then yield preferen-
tially higher mass estimates.

The solution we propose is an iteration procedure, seeded
by the definition of the weights based on the model surface mass
density ko obtained from weak lensing: in Eq. (22) we identify «p
with k and define
oi = Akpp (ko (6))) - (23)
We can then minimize the y? function and obtain a new estimate
of the density map. If A, is the value of the parameter A obtained
from the fit with Eq. (21), then this new model for the surface
mass density will be given by
K1 = A(O)KO + w(l — ﬁ(o)) . 24)
At this point, we can update the weights to this new model by
redefining o; = Akpp[x1(6;)] and iterate the procedure. Figure 1
outlines the basic steps of the method. The method converges
quickly and the final solution is found to be invariant under trans-
formations of the form given in Eq. (12) of the input surface
mass density map k.

Equation (20) is only one possible definition of a y? func-
tion for our problem. We could have defined a y? in terms of
other quantities, such as the magnification u or its inverse |det A.
The advantage of our choice lies in the minimum y? condition
dx?/02 = 0 being a linear function of A. This makes it relatively
easy to study the statistical properties of the method, which is
the subject of Sect. 4.
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‘ Weak lensing reconstruction ‘

- |

> |01 = Ak, ()], 2)

Iteration Fit

n=n+1

Fig. 1. Fitting process.

4. Statistical properties of the method

To assess the reliability of the method introduced to break the
mass-sheet degeneracy, it is necessary to study in detail the sta-
tistical properties of the results obtained. In particular, we wish
to clarify whether the estimate of the total mass resulting from
this procedure is biased, and to determine the expected uncer-
tainty.

To do this, we need to discuss the conditions of observa-
tion first. It would obviously be preferable to work with a large
number of measurements, but a practical limit is imposed by the
telescope time required to measure velocity dispersions. We be-
lieve that a reasonable number of FP measurements that can be
effectively carried out in an observational campaign is Ngp = 20.
Another important issue is the possibility of Pnding a suffi-
cient number of sources behind the observed gravitational lens.
BLO6 estimated the number density of practically observable
sources to be ~2 arcmin~2. This estimate was based on a study
of magnitude-number counts of early-type galaxies (Glazebrook
et al. 1995). This sets a limit on the field of view required to
have sufficiently high quality statistics of FP measurements. It
also tells us that, unless a large field of view is examined, the
observer does not have much freedom in selecting objects. Our
statistical study takes into account these important factors.

In this section, the weak lensing study is assumed to provide
a perfect reconstruction of the surface mass density map, except
for the mass-sheet degeneracy. Since the fit method is invariant
under tranformations of the form given in Eq. (12) on the input
density map «o(#), we can also assume without further restric-
tions that xy(8) is the exact surface mass density of the lens

ko(6) = Kirue (0) = x(6). (25)

On the basis of these assumptions, we study the statistical prop-
erties of the estimator A at the first iteration (i.e. A(y)). The results
obtained will provide information about the error in the deter-
mination of the mass density map «;(6) after the first iteration.
Since the method converges quickly, there is little difference be-
tween «(0) and the final density map, hence we consider the
difference between «; and the exact density map x when evalu-
ating our errors.

4.1. Errorin A

We define the expectation value of the estimator A to be

(26)

where we introduced

L o) o) = T =

We assume that the number of FP measurements Ngp is fixed,
and that the image positions are randomly distributed. We denote
by Py (6, z) the probability distribution in redshift and the image
position of the observed galaxies.

Given these definitions, we write the quantities E{/;} that en-
ter Eq. (26) as

Nrp

= | [ Poc(0r2) a0z [ Po(™)as™,
j=1

(28)

where P, is the probability distribution for the estimates of «

from a FP measurement. We assume that PK(KEFP)) is a Gaussian
function with dispersion o;, centered on the exact value of the
surface mass density given by

- s0f |

20'1.2

P (™.t ) -

; exp1 —

(29)
2n0?

The validity of this assumption will be discussed in Appendix A.

We then perform the integration in dKEFP) in Eq. (28), which
yields

lﬂmw—mz

o
fd/(gFP)PK (KgFP)) I = : , (30)
! ! Nrp
(o) o]
=17
from which, together with Eq. (26), it easily follows that
E{) =1. 3D

Since the input density map was assumed to be the exact surface
mass density of the lens (xo(6) = «(8)), this result implies that
the expectation value for the reconstructed surface mass density
distribution is the exact one: the estimator A is not biased.

As a second step, we study the second moment of the proba-
bility distribution for A, the variance: Var() = E{1%} — EX{1}. A
similar calculation leads to

1

Var(1) = E{?} - E* {3} = , (32)

Nrp

> k(@) -’

i i

where the angle brackets indicate that the expression must be
averaged over the possible image positions and source redshifts.
We note that in the limit of high Npp the variance has the
typical behavior ~1/Ngp. We have exactly Var(1) o« 1/Ngp in
the case of a uniform sheet of constant surface mass density.
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4.2. Error in the total mass

We have just shown the basic results about the accuracy of the
method in determining the parameter 4. We now examine the
problem of how an error in A translates into errors in the esti-
mated total mass M of the lens.

The total mass inside the field of view is given by the integral
of k over the observed portion of the image plane ®

M =%.Dj} f «(6)d?6, (33)
e}

where Dy is the angular diameter distance of the lens relative to

the observer. The surface mass density is subject to the invari-

ance transformation given in Eq. (12). The expectation value of

the measured mass M is

E{M} = uDiE { f@ k@) +w(1-2)| d29} =M,

where we made use of Eq. (31), and X, = X (zy — o). If the
estimator for A is not biased, then there is also no bias in the
estimate of the total mass.

We now consider the variance in M. A straightforward cal-
culation based on Eq. (31) gives

(34)

2
Var (M) = E{M*| - E*{M} = (M — wE,D? f dze) Var (1).
(€]
(35)

By taking the square root of Eq. (35) and dividing it by M, we
obtain the expected relative dispersion of M

o (%)

wi - 1‘0’(2),

K

(36)

where k is the average surface mass density inside the field of
view and o(A) is the square root of Eq. (32), namely the disper-
sion of .

This result allows us to calculate, for a given lens, the ac-
curacy with which its mass can be measured. For fixed average
surface mass density &, the only quantity that determines this
accuracy is the precision of the determination of A, o(1). This
quantity might depend on the shape of the lens mass distribution,
so that lenses with certain characteristics may be more suitable
candidates than others. This issue, which is important for deter-
mining which lenses are the ideal candidates for an application
of the present technique, is addressed in the next subsection by
studying () and o<(M) for different lens models.

4.3. Simple examples

To more clearly understand the above results, it is useful to focus
on simple situations. We start by discussing the case with Ngp =
1 and consider the quantity in brackets in Eq. (32)

1
E——— (37)
— [« (6)) —w]?
7]

Then, as a first example, we consider an approximate represen-
tation of the nonsingular isothermal sphere (NIS), which has a
density profile given by

2
p 1
Pl = 5 (38)
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Fig. 2. J,, as defined in Eq. (37), as a function of « (i.e. image position)
for a NIS lens with o, = 1000 kms™ and r. = 58.8 kpc, for three
source redshifts.

The projected mass density «(8) of a NIS is given by

o? 1 1

x(6) = = ke .
262 1+ @Dy/re)? N1+ ODy/r)?

(39)

We take o, = 1000 kms™ and r. = 58.8 kpc and place the
lens at redshift zg = 0.3, so that the projected surface mass den-
sity at the center is x(0) = 1. In Fig. 2, we plot the quantity J;
as a function of « (i.e. image position) for a source at redshift
zs = 0.6,0.8, 1.0. For this and the following examples, the value
of w is computed by assuming a redshift distribution of weak
lensing measurements P\ - (z) o« 72 exp(—z/z0) with zo = 2/3,
as in Bradac et al. (2004), while the scatter in the FP is assumed
to be ogp = 0.15. It can be seen that J; increases with increas-
ing «, although mildly. This result suggests that, for a given lens
observed within a given field of view, it would be preferable to
perform FP measurements on objects whose images lie where
the surface mass density is lower, as the expected dispersion in A
is smaller. However, it is important to recall the assumptions
that underlie this result. In particular, we assume that no error
comes from the weak lensing analysis. When this assumption is
dropped the situation changes. Real cases are more complex: as
we show in Sect. 6, weak lensing reconstructions tend to under-
estimate the surface mass density in the central parts of the lenses
and overestimate it in the outskirts. Therefore, normalizing the
overall mass scale of a lens with FP measurements limited to
particular regions of the image plane can be risky, because bi-
ases can be introduced. The impact of weak lensing errors on
the measurement of the mass is reduced by sampling the image
plane uniformly. This issue is discussed further in Sect. 6.2.

As a second step, we consider the variation in Var(;l) as a
function of the average surface mass density k of the lens, for
two simple lens models, again in the case Npp = 1. As lens mod-
els, we consider NIS lenses with various values of o, and r.
but fixed central surface mass density k. = 1. Equation (39)
shows that NIS lenses with different values of . and fixed «. are
rescaled only in the angular dimension. Therefore, for a given
lens, changing r. and keeping «. fixed is equivalent to choosing
a different field of view.

For comparison, we also considered lenses of constant sur-
face mass density «(f) = k and no shear. In Fig. 3, we plot
the variance in A as a function of & for these two lens models,
for a single source at fixed redshift z; = 0.8. The space aver-
age in Eq. (32) was calculated by ignoring the effects of the
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Fig. 3. Var(1) as a function of the average surface mass density & for
two lens models: a NIS with x(0) = 1 (solid line) and a sheet of constant
surface mass density and no shear (dotted line).
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Fig. 4. o(M)/M as a function of the average surface mass density & for
two lens models: a NIS with x(0) = 1 (solid line) and a sheet of constant
surface mass density and no shear (dotted line).

magnification on the image position probability Pg(6). The value
of the variance in the estimator A is found to be similar for the
two kinds of lens, for fixed average density k. This result is pre-
sumably a consequence of the mild dependence of J; on «, as
observed in the plot of Fig. 2.

Finally, we calculate the dispersion in the measurement of
the mass, o-(M)/M for the two cases considered above, plotting
the results in Fig. 4. The results for the two lenses are practically
indistinguishable. This result, which reflects the similarity of the
values of o-(1) found for the two lenses, suggests that the shape
of the mass distribution plays little role in determining the accu-
racy of the mass measurement, while the decisive factor is the
average surface mass density within the field of view, k.

We recall that these results were obtained by assuming that
the image positions are distributed randomly. This may not be
true if the observer plays an active role in the object selection.
For example, one may wish to sample the field uniformly, avoid-
ing close pairs of images. In this way, the image positions will be
correlated, which will affect the value of o(1). However, given
the already mild dependence of Var(1) on the image position (see
Fig. 2), we do not expect our results to change significantly.

5. Substructure effects

In some galaxy-galaxy strong lensing systems, we note that
while it is relatively easy to build smooth lens models that
closely reproduce the multiple image positions of distant QSOs,
the same models are unable to reproduce the observed flux ratios
of these images (e.g. Kent & Falco 1988; Hogg & Blandford
1994; Falco et al. 1997). It is now common belief that these
flux ratio anomalies may be due to the presence of substruc-
tures, and several attempts have been made to develop suitable
lens models that take substructure into account, such as those
by Mao & Schneider (1998), Metcalf & Madau (2001), Bradac
et al. (2002), and Chiba (2002). The argument of these studies
is supported by the following reasoning: a substructure with an
Einstein radius comparable to the angular size of the source’s
light emitting region can cause a significant change in its ap-
parent size, while its position on the lens plane can be almost
unaffected. This condition is relatively easy to obtain in the case
of a compact source such as a distant QSO lensed by a galaxy;
objects as massive as a typical globular cluster (~10° M) can
indeed appreciably change the flux received from such a source,
if properly aligned. This effect is enhanced in the proximity of
critical curves (i.e. curves where |det A| ~ 0). Since

u = |det A|™! , (40)

1
- ’(1 - k)2 = y]?

if |[det A| ~ 0 a small change in « can produce a large change in
the magnification.

Weak lensing is a good tracer of the surface mass density
averaged over finite portions of the image plane, but is insensi-
tive to small-scale variations in the projected mass distribution.
Weak lensing methods recover the reduced shear g by averaging
the distortion signal over a number of background galaxies over
angular scales of tens of arcseconds (e.g. see Lombardi et al.
2000). Therefore, they only provide smoothed mass density pro-
files. If we wish to break the mass-sheet degeneracy with magni-
fication measurements, we must be sure that these magnification
measurements also reflect the properties of this smoothed mass
profile. Substructures modify the lensing signal in a nontrivial
way and can complicate the interpretation of magnification mea-
surements. For the purpose of constraining the total mass of the
lens, the contribution from smaller clumps has the same effect as
noise.

The problem is addressed with the aid of numerical simu-
lations. We construct a model cluster as a superposition of a
smooth principal halo and a number of smaller subhalos. We
generate images of background early-type galaxies, compare the
observed magnification with that inferred from a smooth lens
model, and then analyze the results.

In this section, we use the terms clump, halo, subclump, sub-
halo, and substructure synonymously to refer to mass concentra-
tions inside a galaxy cluster.

5.1. Modeling substructure in clusters of galaxies

It is unclear how much substructure is present in clusters of
galaxies. Cosmological simulations predict the existence of a
large number of subhalos of mass M < 1010 M, but observa-
tions have failed to prove their presence, so far. Here we adopt
a conservative approach and take into account the possibility
that substructures are present in the abundances predicted by
ACDM models.
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5.1.1. Masses and spatial distribution of subclumps

N-body simulations of structure formation on cluster scales
based on the ACDM scenario have shown that the dark matter
halos that maintain their identity after the formation process can
be approximately described by a power-law mass function
d_N o M—(1+a)

dm ’

with @ ~ 0.9-1, as demonstrated for example in the papers
by Tormen et al. (1998), Ghigna et al. (2000), De Lucia et al.
(2004), and Gao et al. (2004). These dark matter subclumps are
believed to account for a few percent of the total mass of the
cluster. We note that the mass fraction in substructure also de-
pends on the age of the cluster: as a cluster evolves the subhalos
merge with the main halo until the whole structure virializes and
fewer substructures are left.

Given these results, we model clusters in a semi-analytic
way. A smooth mass density profile for the main halo is cho-
sen; a distribution of subclumps is randomly generated from the
mass distribution given by Eq. (41), with the total mass in sub-
structures fixed; these subclumps are randomly distributed with
a spatial probability distribution proportional to the mass density
of the main halo. More details about the practical realization of
this procedure are given below.

Numerical simulations have also shown that more massive
clumps tend to be located far from the cluster center, where only
small scale halos survive the merging process (Tormen et al.
1998; Ghigna et al. 2000). For simplicity, we adopted a uniform
spatial distribution of subhalos, as appropriate for the kind of
study we wish to perform.

(41)

5.1.2. Internal structure of subclumps

For the description of the internal structure of dark matter subha-
los, we follow the work of Metcalf & Madau (2001), who devel-
oped numerical simulations to study the effects of subclumps in
galaxies on the measured lensing magnification of distant QSOs.
In our work, we extend the use of their tools to galaxy cluster en-
vironments. Metcalf & Madau modeled subclumps as truncated
singular isothermal spheres. The advantage of using singular
isothermal spheres is that their lensing properties can be eas-
ily described analytically. On the other hand a singular isother-
mal sphere (hereafter SIS) has infinite mass. For this reason, a
truncation radius is introduced. For a clump of mass m at radial
distance R from the center of the main halo, the truncation radius
is taken to be equal to the fidal radius r;, which is estimated as
(Metcalf & Madau 2001)

m 1A
re=R [3M(R)] , (42)
where M(R) is the mass of the main halo enclosed by the sphere
of radius R. With this choice, if M(R) grows less steeply than R
(both SIS and NFW models have this property), then clumps
closer to the center tend to be more compact than those that lie
far from the center.

Once the mass and truncation radius of the clump are fixed
there is a unique truncated singular isothermal sphere (hereafter
TSIS) with those characteristics. In particular, if we adopt the
following notation for the density of a TSIS

2
Ty

2nGr?

ifr<n

p(r) = 43)

0 elsewhere,
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the parameter o, (often called the velocity dispersion) is given
in terms of the mass m of the clump by

g2 Gm _ Gm"
"7 2r 2R

[BM(R)]'. (44)

5.2. Lensing simulations
5.2.1. General prescriptions

A simulated cluster is generated with the procedure described in
Sect. 5.1. For the main halo, we adopt a nonsingular isothermal
sphere as described in Eq. (38). Subhalos with a mass distribu-
tion given by Eq. (41) and cumulative mass that accounts for a
fraction f of the total mass of the cluster within 7,9y are then
added to this smooth component. Here 7 represents the radius
of the sphere whose mean density is 200 times the critical den-
sity at the redshift of the object, and My is the corresponding
mass. The total mass in subhalos is then fMypy. A direct ap-
plication of Eq. (41) results in a very large number of clumps
with very small mass. These small clumps are not relevant to the
lensing problem because they produce negligible effects on the
magnification of extended images such as those of early-type
galaxies. Moreover, the inclusion of a large number of clumps
increases the computational effort required to run the simula-
tions, so that it is useful to introduce a cutoff to the lower range
of possible masses. A reasonable choice for this lower mass cut-
off is a value my,;, for which the typical lensing deflection angle
is only a small fraction of the angular size of the source consid-
ered.

To test how the results of our simulations depend on the as-
sumed internal structure of clumps, we also adopted an alterna-
tive (and non realistic) internal profile: we assumed clumps to be
point masses. The TSIS clump clearly produces a smaller deflec-
tion angle up to r;. For distances larger than r, the two clumps
will produce equal values of the deflection angle, as they both act
as if they were point masses located at the center. For this rea-
son, the effects on magnification produced by a point mass will
be generally higher than those produced by an extended lens of
the same mass. Therefore, if we study the problem of the mag-
nification induced by substructure by modeling substructure as
point masses we can obtain an upper limit to the effects of sub-
structure on the magnification.

5.2.2. Practical realization

We simulate the observed image of a circular early-type galaxy
with effective radius R. = 5 kpc at redshift z; = 0.8 being lensed
by a NIS cluster with substructures at redshift zg = 0.3. The
parameters of the NIS model chosen for the test of the method
are taken from a study of the Coma cluster by De Boni & Bertin
(2008), who found the best-fit parameters for the description of
the dark matter halo as a NIS model of . = 88 kpc and o, =
1156 kms™".

We fix the mass fraction in substructure f and generate sub-
structures with the procedure described above, with a lower mass
cutoff of mumin, = 10° M. This value was chosen because, for the
redshift configuration of our system, the Einstein radii of point
masses less massive than my,, are smaller than 0.3 kpc, thus with
little impact on the distortion of the images chosen for our study.
We note that in a situation in which all the substructures account
for a fraction f of the total mass of the cluster, those with masses
greater than my,, will in general account for a lower fraction f”
of the total mass. A fraction f — f’ will consist of clumps with
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m < Mpiy. Since the lensing effect of these low-mass clumps is
small we simulate them by adding a smooth component for a
fraction f — f of the total mass. We generated clusters with val-
ues of f equal to 0.05, 0.10, and 0.15. In these three situations
and with the adopted value of my;,, the corresponding value of f”
is 0.029, 0.061, and 0.093, respectively.

To simulate the image formation we proceed as follows, tak-
ing inspiration from the work by Metcalf & Madau (2001). We
define a field of view of 4 x4 arcmin? centered on the main halo.
We then define a grid over the entire field of view. The resolu-
tion of the grid is such that the observed effective radius of the
early-type galaxy sources in the absence of magnification is ten
grid cells long.

At every grid point, the lensing deflection angle is computed.
The contribution of the subclumps is calculated in the following
way: the clumps are first assumed to be point masses and the
deflection angle generated by each clump is calculated at every
grid point. Only for the clumps that lie within the field of view
considered is the deflection angle inside the circle of radius r;
then corrected with the expression for the deflection angle of a
TSIS lens (Metcalf & Madau 2001)

1 /1 /1

——4/— — l+arctan 4/ —=-1 ifa<1,
a a2 a?

1

- ifa>1,
a

a(x) = ap (45)

where a = xr./ri, x = r/r.. More simply, a = r/r;.. In contrast
to Metcalf & Madau (2001), we calculate once the deflection
angle for all the grid points in the field, taking into account the
contribution to & of every subhalo in the lens.

Once the map of the deflection angle over the field of view
is created, images of early-type galaxies are generated with a
uniform distribution on the lens plane.

The effects of the magnification on the image position dis-
tribution are neglected, i.e. a uniform distribution in the image
plane is adopted. A rigorous treatment of this aspect would re-
quire knowledge of the luminosity function of our target galax-
ies, but this is beyond the goals of this paper. Nevertheless, we
explored different scenarios by applying importance sampling to
the outcome of our simulations. In particular, we examined two
different probability distributions, the first proportional to the
magnification, and the other inversely proportional to the magni-
fication. The difference in the results from the uniform case was
less than 15%, indicating that our approximation does not alter
the conclusions of our study.

Sources are described with circular de Vaucouleurs profiles,
truncated at r.. Images are then constructed in the following way.
We define a square in the image plane centered on the adopted
location for the image center. The size of this square is chosen
so that the length of its sides are a few times the effective ra-
dius times the linear stretching (~u'/?) produced by the smooth
component of the lens. In this way, the observed image is guar-
anteed to lie within this square. Each pixel inside the square is
then mapped to the source plane with the lens equation of the
simulated cluster, where the deflection angle is calculated with
the procedure described above. Since gravitational lensing pre-
serves surface brightness, the brightness of each pixel in the im-
age plane is taken to be equal to the brightness of the corre-
sponding point in the source plane to which it is mapped. Pixels
mapped outside the circle of radius r. around the center of the
source do not belong to the observed image. The observed mag-
nification is then defined as the ratio of the total brightness of

H_

Fig. 5. Strongly lensed image in the proximity of a massive subhalo.

the image to that of the source. This gives us the flux magnifi-
cation, which is equal to the size magnification because of the
conservation of surface brightness.

This procedure introduces an error related to the pixelization
of the definition of the observed image. The relevance of this er-
ror source was checked while running our simulations. We first
performed the simulations for a smooth lens without substruc-
tures, and compared the magnification measured with the above
procedure with the theoretical value of the magnification in the
image centroid, given by the model. The results of this test were

D)

A
2 0018 = _0.027, (46)
U U

where Au/u and o(u)/u are the average relative offset and stan-
dard deviation between the theoretical and measured magnifica-
tions, respectively. The test was performed with a grid resolution
such that the length of a pixel is a tenth of .. The resulting typ-
ical error in the magnification is on the order of a few percent.
This is much smaller than the ~30% error expected for a mea-
surement of the magnification of an early-type galaxy with the
use of the FP relation. Given this result, we adopted the same
grid resolution for the actual simulations.

In the simulations with substructures, a small fraction of the
images display strong lensing features (multiple images, arcs,
or rings). This is because the deflection angle for a TSIS lens
approaches a finite value as the distance to the center approaches
zero, as can be seen from Eq. (45). For such strongly lensed
images, the observed magnification calculated with the above
method is very different from the magnification obtained with a
smooth lens model. These events are rather rare (typically a few
per 1000 images). On the other hand, if this situation occurred in
an actual observation it would be easily recognized as a strong
lensing feature. A highly distorted image, as an arc is, would not
be suitable for a FP measurement. Therefore these images are
removed from our analysis. An example of discarded image is
shown is Fig. 5. In cases like this, we always wish to ensure sure
that the arc feature will be recognizable under realistic observing
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conditions, i.e. that the arc-like shape will not be smeared out by
a realistic PSF. In this example the larger arc is a few arcseconds
long and can be easily identified.

At the same time, we also took care not to make excessive
use of this procedure, for the following reason. The capabil-
ity of a clump of a given mass to form arcs and multiple im-
ages depends on its internal structure. In our model, we assumed
TSIS mass profiles, but the real case is likely to be very differ-
ent. Meneghetti et al. (2003) showed that semi-analytic models
with NFW subhalos provide closer agreement with the observed
statistics of arcs than models with SIS subclumps. Then, if in our
simulation we observed an arc created by a massive subhalo, the
same clump with a more realistic internal structure might not
have produced an arc but only a highly distorted image whose
magnification could have been measured. For these images, the
value of the observed magnification is likely to differ signifi-
cantly from the value inferred by assuming a smooth mass dis-
tribution. Thus by eliminating them from the analysis, we would
bias the results towards a closer accordance between observed
magnifications and smooth model magnifications. This problem
is more relevant to the simulations in which clumps are treated
as point masses, as they are more capable of producing arcs.

On the other hand, the most significant departures of the ob-
served magnifications from the smooth case are for images in the
proximity of the most massive (m > 10'! M) subclumps. This is
in agreement with the work by Meneghetti et al. (2007, see dis-
cussion in their Sect. 6.2.1). These are galaxy-scale objects and it
is unlikely that they exist only in dark form. In other words, such
substructures are likely to be easily identified with a luminous
component. Therefore, for an image that lies in the proximity of
one of these objects we should be immediately aware that part of
the observed magnification could be caused by this substructure,
which could equally cause a bias in interpreting this data as a
tracer of the smooth component of the cluster. Moreover, a num-
ber of gravitational lensing studies have been presented in which
the lensing contribution of individual galaxies is incorporated
into the analysis (see e.g. Natarajan et al. 2004). Therefore, the
same thing could be done for images of early-type galaxies close
to cluster member galaxies, which is the situation discussed here.

When multiple images are observed (such as the pair in
Fig. 6), we take the magnification measurement obtained with
the larger image only. In a realistic situation, if FP measure-
ments were carried out on both the images, it would be relatively
easy to label them as a pair and then infer the presence of a sub-
structure. We decided to adopt the more conservative approach
in which the observer does not see the counterimage.

5.3. Results

We studied image magnifications with three realizations of sim-
ulated clusters, with a mass fraction in substructures f of 0.05,
0.10, and 0.15. For each case, we adopted two different mod-
els for the internal structures of the subclumps: TSIS and point
mass. For each case we generated Ny = 10000 sources with
the procedure described above. For each source, we studied the
observed in the presence of substructure, s, and the magnifi-
cation that would be observed with a smooth mass distribution,
Msmooth- In Tables 1 and 2, we report the differences between the
measured values of pgps and pgmeotn- In particular, we introduce
the average relative difference, defined as

Ng
_ z : Hsubs,i — Hsmooth,i
- 9
m

i=1 HMsmooth,i

(47)
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Fig. 6. Multiple image system. This image (and others with similar
properties) is not discarded, since the shape of the image on the left
is not so strongly distorted and in general it may not be recognized as
part of a multiple image system. In such cases, only the larger image is
considered for the analysis.

Table 1. TSISs subhaloes.

f Aufp oulp Nrg
0.05 0.005 0.061 4
0.10 0.014 0.077 6
0.15 0.018 0.091 20

Notes. Diffefrences between magnifications in the presence and in
the absence of substructure, for three cluster realizations. Clumps are
modeled as TSISs. Each simulation run was performed by generating
10000 images. N is the number of strongly lensed images that were
rejected in each run.

Table 2. Point mass subhaloes.

f A/J//J Ou //J Nrej
0.05 -0.014 0.052 41

0.10  0.002 0.063 104
0.15 0.027  0.075 127

Notes. Differences between magnifications in the presence and in the
absence of substructure, for three cluster realizations. Clumps are mod-
eled as point masses. Each simulation run was performed by generating
10000 images. Ny is the number of strongly lensed images that were
rejected in each run.

and the expected mean relative error

Oy 1

N; u u 2
subs,i — Msmooth,i
M Ng Z ( i )

S =1 Msmooth,i

(48)

For completeness, we also record the number Ny of rejected
images in each simulation run.

The quantity that is most relevant to our study is the disper-
sion in the observed magnification around the expected value,
o,. As expected, this quantity increases with increasing mass
fraction in substructure. However, the values of this dispersion
are somehow small. This is rather good news, because it means
that the magnification of early-type galaxies is more sensitive to
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the smooth component of the mass distribution, which accounts
for the bulk of the mass, and is therefore a quantity suited to
constraining the total mass of the lens.

The case of point mass substructures deserves further dis-
cussion. As noted above, point masses are expected to pro-
duce larger differences between the observed magnification
and fsmooth. From a first look at the results of Tables 1 and 2,
it seems that the opposite situation is realized. However, in the
simulation with point mass substructures the number of strongly
lensed images that is rejected is larger than in the TSIS case. This
means that a significant fraction of the sources whose images are
rejected in the point mass case would be included in the analy-
sis if lensed by a model with TSIS substructures. Presumably,
the images of these sources are magnified by substructures and
they contribute significantly to the value of the measured disper-
sion. This means that in the TSIS case the observed higher value
of the dispersion is determined by a small number (less than 1
in 100) of images, and by excluding them from the analysis we
would obtain a dispersion not larger than the one observed in
the point mass simulation. This result is in qualitative agreement
with the work of Meneghetti et al. (2007). They showed that
in a more realistic cluster realization the probability of having
a tangential-to-radial magnification (equivalent to observed axis
ratio for circular sources) larger than 5 is less than 3% (see Fig. 7
of the cited paper). They also claim that, in their case, substruc-
tures account for 30% of the strong lensing cross-section (the
smoothed version of their cluster is still a critical cluster, unlike
our case), meaning that the above percentage must be scaled ac-
cordingly to be compared with our study.

On the basis of these results, we conclude that the magnifi-
cation of early-type galaxies is little influenced by the presence
of substructure. Substructure seems to have a significant effect
on the image that we detect only when present in large amounts,
which is an unlikely scenario. Current estimates of the mass frac-
tion in substructure based on numerical simulations is tipically
f <0.10 (Tormen et al. 1998; Ghigna et al. 2000). These results
provide support for the technique of magnification measurement
based on the use of the FP relation, and set a solid basis for the
adoption of the technique described in this paper in solving the
problem of the mass-sheet degeneracy.

6. Testing the method

The goal of the study presented in this section is to clarify the
extent to which the results obtained in Sect. 4 also hold in more
realistic situations.

We take a model cluster lens, apply the mass measurement
technique to synthetic weak lensing and magnification data sim-
ulated for this model, and then analyze the results obtained. In
particular, we compare the dispersion in the measurement of the
mass obtained in these simulations with the dispersion expected
by considering the effects of FP measurements only, obtained
from Eq. (36): if the two quantities do not differ substantially,
then it means that weak lensing errors do not play an important
role and that the theoretical treatment of Sect. 4 can be practi-
cally applied.

Before addressing the problem in full, it is interesting to
study how the errors in the weak lensing analysis alone influ-
ence the estimates of the total mass of the lens. In other words,
we wish to clarify the typical error in the estimate of M in the
hypothetical case of perfect FP measurements. This situation is
simulated first and a realistic case in its full aspects is studied
later.

6.1. Simulations

We now describe the ingredients necessary to set up the simula-
tions.

6.1.1. The lens model

We adopt a NIS model to describe the lens. The choice of a
smooth model for the lens is suggested by the results of the anal-
ysis described in Sect. 5 about the effects of substructures on the
magnification of the images of early-type galaxies.

The parameters of the NIS model chosen for this test are the
same as those adopted for the description of the smooth com-
ponent of the lens model used in the simulations of Sect. 5:
re =88 kpcand o, = 1156 kms™".

6.1.2. Weak lensing data

We base our simulation of weak lensing measurements on the
work of Bradac et al. (2004). The procedure adopted is the fol-
lowing:

— we generate background galaxies with a uniform spatial dis-
tribution in a 4 x 4 arcmin® field of view (magnification
effects on the spatial distribution of images are neglected).
Three different values of the number density are chosen:
n = 30, 50, and 70 arcmin™2;

— each galaxy is assigned a redshift, taken from the distribution
PEWL)(Z) o ZZG—Z/ZO’ (49)
where zg = 2/3, as suggested by Brainerd et al. (1996). This
is a standard choice for weak lensing simulations;

— each background galaxy is then assigned an intrinsic ellip-
ticity drawn from a truncated Gaussian distribution

1
2n02[1 —exp(=1/202)]

Pe () = exp {- €'’ /202}, (50)

where o = 0.25. This is also a standard choice for weak
lensing simulations (e.g. see Bartelmann et al. 1996; Seitz &
Schneider 1997);

— for each galaxy, the resulting ellipticity is calculated from
Eq. (9);

— an artificial measurement error is added, so that the resulting
measured ellipticity €” is
€" =€+ €T, (51)

where € is a random error generated from a Gaussian dis-

tribution with dispersion o = 0.1. In adding the errors, we

ensure that |¢”| < 1.

The data are then processed with the finite-field inversion tech-
nique of Seitz & Schneider (1997). A grid in the image plane
is defined. At each grid point {i, j}, the average ellipticity (€) is
estimated from the observed ellipticities € of background galax-
ies as

Ng

<€>i,j = Z W (|0i,‘,- - ak‘) >

k=1

(52)

where W(@) is a Gaussian with dispersion A, such that
nAg* = 12.
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6.1.3. FP measurements

After the weak lensing reconstruction, which provides a model
density map ko(6) up to the invariance transformation given by
Eq. (12), the simulation proceeds with the generation of Ngp =
20 early-type galaxies and the related FP measurements. This is
done as follows.

The position of each galaxy is generated randomly with a
uniform distribution on the image plane (again, the effects of
magnification in the spatial probability distribution of images are
not considered). Each galaxy is then assigned a redshift in the
range 0.5 < z < 1.0. The upper limit reflects the redshift limit
reached by the FP measurements carried out so far. The lower
limit instead is set because the lensing signal for sources too
close to the lens is too low. The simulation also requires a spec-
ification of the shape of the redshift distribution of the observed
early-type galaxies, PEFP)(z). This quantity depends on the intrin-
sic luminosity function of early-type galaxies, which in general
varies with redshift, and also on the object selection procedure.
Given these uncertainties, for our simulations we adopted a uni-
form distribution to reduce the computational effort. It is also
assumed that no error is introduced in the determination of the
individual redshifts.

For each early-type galaxy, the quantity /T/u = ri" ) /et
is then generated from a Gaussian distribution with 15% disper-
sion, centered on the true value given by the model. This disper-
sion should reflect the observed scatter in r, of the FP relation. In
our case, we adopted an optimistic estimate of this latter quan-
tity.

6.2. Results

Under the observation conditions described above (Ngp = 20),
the expected dispersion in the estimate of the total mass of the
lens, calculated from Eq. (36) and therefore ignoring weak lens-
ing errors, is

o (1) o
7o = =7 =021 (7).

where opp is the dispersion in 7, of the FP, averaged over red-
shift.

To more accurately quantify the effects of weak lensing, the
simulations were first performed in the hypothetical case of per-
fect magnification measurements (KEF P = «(0,)), from which we
obtained an estimate of the dispersion in the measurement of the
total mass introduced by weak lensing errors only. The results
of the simulations relative to this particular case are presented
in Sect. 6.2.1, while in Sect. 6.2.2 we report those obtained in
a more realistic situation, in which the simulated magnification
measurements have a 30% dispersion.

We consider a mass density map «wy () obtained from weak
lensing and transformed with Eq. (12) to reproduce the exact
value of the lens mass within the field of view. Since weak lens-
ing reconstructions typically produce smoothed density maps,
we expect kwr(6) to underestimate the surface mass density in
the central parts of the lens, and to be higher than the true value
in the outer parts. This is indeed what is observed in the sim-
ulations: in Fig. 7, we plot the difference xwr.(0) — «(€) for an
example case of weak lensing reconstruction.

This property has some consequences for the process of fit-
ting the density map to FP measurements. Since the expecta-
tion value of P is approximately the true surface mass density,
measurements close to the center will tend to give estimates k)

(53)
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30"
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Fig.7. Contour plot of the difference «xwi.(6) — «(8), where k(0) is the
true surface mass density of the lens and «wy () is a weak lensing recon-
struction of the lens yielding the same total mass. In the central region
the reconstructed profile underestimates the surface mass density, while
in a significant region of the image plane the opposite case occurs.

Table 3. Weak lensing errors only. Ngp = 1.

n(arcmin?)  AM/M  o(M)/M
30 0.010 0.32
50 0.002 0.26
70 -0.007 0.23

Notes. Relative mean error and standard deviation in the measured
value of the total mass of the lens, for three different values of the num-
ber density of background galaxies, n.

higher than «wy () and therefore will bias the measurement of
the total mass towards higher values (recalling that xwp. (@) was
defined as the density map that corresponds to the correct value
of the mass). In contrast, FP measurements in parts of the lens
plane where kw, —« > 0 will tend to bias the mass towards lower
values. Thus, if we distribute the sources uniformly we expect
that this potential source of bias can be overcome statistically.
This effect is more evident when there is no error in ¥¥P: in that
case, the errors in the estimate of the total mass are only due to
errors in the weak lensing analysis.

6.2.1. Ideal case: perfect magnification measurements

A thousand simulation runs were performed for three different
values of the number density of background galaxies: n = 30,
50, 70 arcmin~2, and two different numbers of FP measurements:
NFP =1and NFP =20.

In Tables 3 and 4, the relative mean errors AM/M = (M —
M)/M and dispersion o(M)/M obtained in these simulations are
reported. As expected, the error in the determination of the total
mass decreases as the number density of background galaxies
increases. However, the dependence of o(M) on n is mild: this
means that the number density of background galaxies is not a
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Table 4. Weak lensing errors only, where Ngp = 20.

n(aremin?)  AM/M  o(M)/M

30 0.010 0.069
50 0.008 0.060
70 0.006 0.055

Table 5. General case. Ngp = 20.

n(arcmin?)  AM/M  o(M)/M

30 0.015 0.22
50 0.003 0.22
70 0.011 0.21

critical factor in the effectiveness of the method. It can also be
seen that with a single magnification measurement the total mass
is poorly constrained, as expected. This result indicates that with
a single local estimate of the surface mass density, regardless of
how accurate, it is difficult to break the mass-sheet degeneracy.

On the other hand, in the case of Ngp = 20 FP measurements
the dispersion is only a few percent.

Another significant result is that there is practically no bias in
the estimate of the total mass (AM/M =~ 0). This result is clearly
a consequence of the assumption of a uniform spatial distribu-
tion for the FP measurements. If we manage to select a sufficient
number of early-type galaxies more or less uniformly distributed
in the field of view there is a good chance that the final measure-
ment of the mass will be unbiased. This is a great advantage
of the present technique with respect to the use of strong lens-
ing information. Strong lensing features are typically limited to
the central regions of clusters. Since the surface mass density in
the central parts of a cluster obtained from weak lensing is typi-
cally underestimated, the inclusion of strong lensing data might
then lead to higher estimates of the total mass. With the present
method, this effect can be kept under control.

In principle, substructures can also introduce noise into the
weak lensing signal. The nonparametric reconstruction method
used here can recover features on the scale of the smooth-
ing length or larger, as shown by Seitz & Schneider (1997).
However, King et al. (2001) and Clowe et al. (2004) showed that
the effects of small-scale substructures are of modest importance
for weak lensing measurements. Therefore we can conclude that
the results presented here do not depend on our choice of a sim-
plified cluster model.

Additional noise in the weak lensing measurements can be
introduced by the presence of uncorrelated large-scale structure
along the line of sight. This was studied extensively by Hoekstra
(2003). He found that the contribution of structures not associ-
ated with the cluster is significant at large radii, but is negligible
for the relatively small fields of view considered in our work (a
few arcminutes).

6.2.2. The realistic case

Finally we report the results of the simulations performed in
the most general case, in which realistic conditions for both the
weak lensing and the FP measurements are simulated. In this
case the simulations are performed for n = 30, 50, 70 arcmin 2
and Ngp = 20. In Table 5, the results for 1000 simulation runs
are reported.

The results confirm the picture that emerged in Sect. 6.2.1:
weak lensing errors play little role in determining the final

1.4 T T T T T T
1.2
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O'%.O 02 04 06 08 1.0 12 14
aLogog + 3 (SB), + v+ 0.58%

Fig. 8. Ngp = 20 simulated FP measurements, plotted in FP space. The
straight line is the FP expected in the absence of lensing, viewed edge-
on. Positions in the FP space are corrected for the evolution of the FP
with redshift, following Treu et al. (2005).

dispersion in the estimate of the total mass. The observed dis-
persion is practically equal to the one obtained in Eq. (53) by as-
suming perfect weak lensing measurements. This test, although
limited to a single lens model, confirms that it is possible, with
a sufficient number of FP measurements uniformly distributed
across the image plane, to break the mass-sheet degeneracy, at
least for Coma cluster-like lenses at intermediate redshift.
Finally, to more clearly illustrate the effect of a cluster on
lensed early-type galaxies, we show in Fig. 8 a set of simulated
FP measurements, compared with the FP relation expected in the
absence of lensing. We consider Npp = 20 objects in the redshift
interval 0.5 < z < 1.0 generated and placed randomly behind
the same cluster lens used for the previous simulations. In con-
structing this plot, we assumed local values of the FP coefficients
(@ =1.25,8=0.32,y = =8.970 (Jgrgensen et al. 1996; recom-

puted for Hy = 65 kms™! Mpc_1 by Treu et al. 2005), corrected
for evolution following Treu et al. (2005): y(z) = y(0) + 0.58z.
The scatter in the FP is assumed to be 20% in r.. The signature
of the lensing signal can clearly be seen as an upward shift in the
FP space.

7. Conclusions and discussion

We have presented a new lensing-based method for the measure-
ment of the mass of galaxy clusters. This method relies on the
joint use of weak lensing data and magnification information,
where the latter is obtained from FP measurements of back-
ground early-type galaxies.

A statistical study of the method was carried out, and simu-
lations were performed to test the importance of the presence of
substructures and of errors in the weak lensing analysis on the
success of the measurement.

Our main conclusions are the following:

— The most important quantity on which the effectiveness of
the method depends is the mean surface mass density within
the field of view of observation, k, while little role is played
by the shape of the mass distribution.

— Substructures contribute the most with a scatter of a few per-
cent in individual magnification measurements.

— Weak lensing errors introduce only a small dispersion into
the final estimate of the total mass.

On the basis of these results, we now discuss the best lens can-
didates for an application of the present technique.

A37, page 13 of 15


http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201016309&pdf_id=8

A&A 532, A37 (2011)

15

& 10

Yo (kg-m~

zs = 0.4

02 03 04 05 06 0.7 0.8 09 1.0

Zs

Fig. 9. Critical density (in kg m™2) as a function of source redshift for
three different values of the lens redshift: zg = 0.1, 0.2, 0.4.

An important limit to the applicability of this method is the
difficulty in performing FP measurements, since they require

The quantity k clearly depends on the mass distribution of
the lens but also on the size of the field of observation, which
is set by the observer. How critical is the choice of this latter
quantity for determining a value k = 0.3? One can always re-
strict the observations to the inner regions of a given cluster,
to increase k. However, there is a limit set by the number den-
sity of background early-type galaxies for which FP measure-
ments can be effectively performed. This number density was
estimated in BLO6 to be ~2 arcmin™2. Therefore, if we wish to
find Ngp = 20 objects suitable for our purposes, we need to cover
a field of view of 10 arcmin?.

At this point, we can try to determine the minimum mass a
cluster should have in order to have a mean surface mass density
% = 0.3 within a circle of area A = 10 arcmin’ (and radius * =
V10/n =~ 1.8 arcmin). Fixing the lens redshift zg = 0.3, this
value of the surface mass density within the circle corresponds
to a value of the enclosed projected mass equal to Mgy = 4.2 X
10'* M. For a NFW profile with concentration parameter ¢ =
10, this value corresponds to a limiting virial mass
My, = 8.0 x 10" Mo, (54)
and similar values hold for different values of the concentra-
tion ¢. The quantity M, is the minimum mass a NFW cluster
should have in order to satisfy ¥ > 0.3 within a circle of area

a significant amount of telescope time. A realistic number of A = 10 arcmin® in the sky. In that case, the mass of the cluster

FP measurements that can be performed in an observational
campaign is ~20. Given this, we can fix Ngp = 20 and discuss
which systems can be most practically analyzed with this num-
ber of magnification measurements.

One of the most important factors in determining whether a
cluster can be realistically studied with our technique or not is
its redshift. The redshift must be sufficiently high for the crit-
ical density to be low enough, to allow for higher values of «
for a given physical surface mass density. On the other hand, the
redshift must also be sufficiently low to ensure that there is an
acceptable number of early-type galaxies behind the cluster for
which FP measurements can be performed. The current observa-
tional capabilities and the lack of a calibration of the FP relation
at very high redshifts set z ~ 1.0 as the highest redshift for which
these measurements can be performed today.

Bearing this in mind, we plot in Fig. 9 the value of the crit-
ical density as a function of source redshift for three different
values of the lens redshift. It can be seen that with a lens redshift
zg = 0.1 the resulting critical density is significantly higher than
in the other cases at the source redshifts of interest and for this
reason this case should be discarded. At the opposite end, for a
lens redshift zg = 0.4 the critical density is indeed the smallest
for source redshifts higher than ~0.8, but the range of source red-
shifts for which the critical density is significantly low is limited
to zg > 0.6, and shrinks rapidly for increasing zq. On the basis of
these simple considerations, we conclude that a suitable redshift
range for our lens cluster is zqg ~ 0.2—0.4. A thorough analysis of
the problem would require a detailed knowledge of the redshift
distribution of the observable early-type galaxies.

We can then ask which intrinsic physical characteristics a
cluster should have to be efficiently probed with FP measure-
ments.

If we assume, conservatively, a mean dispersion in the FP re-
lation of 20% in r, it can be shown from Eq. (36) that to ob-
tain a mass estimate with a precision of 20% or better with
Ngp = 20 FP measurements with a uniform distribution in
redshift between z = 0.5 and z = 1.0, the average surface mass
density of the lens should be k > 0.3.
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within the circle could be measured with a 20% or better preci-
sion with 20 FP measurements and a weak lensing analysis.

If we wish to extend the analysis to the outer parts of a
cluster, we must increase the number of FP measurements, to
compensate for the lower average surface mass density k.

If we wish to improve the sensitivity to less massive clus-
ters, we must either increase the number of FP measurements
for a fixed aperture or choose a smaller aperture for fixed Ngp. In
any case, a higher number density of sources is needed, which
cannot be obtained without an improvement in the observational
capabilities. This shows that the number density of observable
sources is indeed a key factor and confirms that the lens redshift
should not be too high.

A possible alternative strategy is to select only the brighter
objects, since it has been recognized that the FP scatter decreases
with increasing mass (Treu et al. 2005; van der Wel et al. 2005):
this would allow a more precise estimate of the magnification
for a given lens and fixed number of FP measurements. The fea-
sibility of this approach would depend critically on the number
density of background sources.

On the basis of this discussion, we conclude that the value
of M3, given by Eq. (54) is an estimate of the minimum mass
a cluster should have to allow for a mass measurement with the
present method. The value is on the high side, but there are in-
deed many clusters that have observed values of Mg higher
than this threshold. Well-studied examples are A1689, A1703,
A370, and RX J1347-11 (see Broadhurst et al. 2008 for a re-
view). All these systems display strong lensing features that al-
low for a good estimate of the mass distribution in the inner
(6 < 1 arcmin) regions of the clusters. One might believe that
the availability of strong lensing data would rule out the need
for other observations in such clusters. Nevertheless, the addi-
tion of FP measurements can greatly enhance the tightness of
any constraints on the mass distribution within a radius at least
two times larger.

In summary, the method presented in this paper is, because
of its nonparametric form, a potentially powerful tool for break-
ing the mass-sheet degeneracy in lensing studies of clusters of
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galaxies. As shown in Sect. 4, it also allows for a relatively easy
estimate of the accuracy of the total mass measurement.

In addition, the method can be extended by allowing the
inclusion of magnification measurements obtained by different
means, for example from the observation of type Ia supernovae
(see, e.g., Holz 2001; Goobar et al. 2002; Jonsson et al. 2010).
The statistical framework developed in this paper can be applied
with little effort to these more general situations, and therefore
can be used as a reference framework to estimate the degree of
precision of other methods that rely on the combination of weak
lensing and magnification measurements.

Appendix A: Probability distribution
of the estimates of xrp

Here we will discuss the choice of a Gaussian probability distri-
bution for the estimates kgp of the surface mass density obtained
by combining FP and weak lensing measurements. The observ-
able quantity is the ratio r = '/ of the galaxy effective
radius inferred from the FP relation to the observed (magnified)
effective radius. Of these two quantities, the first, with its 15%
dispersion, is by far the one with the larger uncertainty. Thus, if
the probability distribution of the estimate of rP) is Gaussian,
the ratio » will have a nearly Gaussian distribution as well. Let
us assume this is the case.

The surface mass density «? at the image position can be
expressed as a function of magnification y, galaxy redshift z and
average distortion (€), as in Egs. (17)—(19). We assume that no
error comes from the measurements of z and (€), in accordance
with the hypotheses of Sect. 4. The only error source is then the
measurement of the magnification. Note that, if " depends
linearly on the ratio r, then «F? will also have a Gaussian prob-
ability distribution. However, the dependence of x” on mag-
nification is more complicated than a simple linear relation. In
reality, kP is given by

@y —b— b*—alc-r?)
K = .

(A.1)
a
Now, if the condition
b* - ac < ar* (A.2)
holds, then the square root can be approximated by
Vb? —ac + ar? ~ ar (A.3)

and (A.1) becomes linear. As a consequence, the Gaussianity
of r translates into the Gaussianity of P, At this point, we
need to demonstrate the validity of Eq. (A.2). The ratio r is
typically of order 1, unless there are large magnifications. Thus,
it is sufficient to prove that b> — ac < a. We begin by noting
that a ~ Zl.z[l — O(e)P)]. The quantity |(e)| is typically small,
except in the proximity of critical curves, while the combi-
nation of weights that multiplies [(€)|* in a is on the order of
unity. Similarly, b ~ Z;[1 — O((e)|*)] and ¢ ~ 1 — O(|(€)|?). The
quantity > —ac is then on the order of Z?O(|{(€)*) < 1. Since the

right-hand side of Eq. (A.2) is on the order of unity, Eq. (A.2) is
satisfied. This implies that the dependence of «) on r is approx-
imately linear. If the probability distribution of r is Gaussian,
which is reasonable, the same applies to k™.
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