
Chapter 5.1 – Protecting Data in Outsourcing Scenarios

Sabrina De Capitani di Vimercati, Sara Foresti, Pierangela Samarati

DTI - Università degli Studi di Milano
via Bramante, 65 - 26013 Crema, Italy

firstname.lastname@unimi.it

Abstract

Goal of this chapter is to describe the main solutions being devised for protecting

data confidentiality and integrity in outsourcing scenarios. In particular, we illustrate

approaches that guarantee data confidentiality by applying encryption or a combination

of encryption and fragmentation. We then focus on approaches that aim at guaranteeing

data integrity in storage and in query computation. Finally, we present some issues that

still need to be investigated for ensuring privacy and security of data outsourced to external

servers.

keywords : Data outsourcing, index, selective encryption, confidentiality constraint, frag-

mentation, integrity

1 Introduction

The rapid advancements in Information and Communication Technologies (ICTs) have brought

to the development of new computing paradigms, where the techniques for processing, storing,

communicating, sharing, and disseminating information have radically changed. Individuals

and organizations are more and more resorting to external servers [28] for the storage and the

efficient and reliable dissemination of information. The main consequence of this trend is the

development of a data outsourcing architecture on a wide scale. While data outsourcing intro-

duces many benefits in terms of management and availability of information, it also introduces

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187862976?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

new privacy and security concerns. In fact, data are no more under the direct control of their

owners, and their confidentiality and integrity may then be put at risk. The need for a proper

protection of outsourced data is also exacerbated by the sensitive nature of the information

collected and stored at external servers. Outsourced data often include sensitive information

(e.g., identifying information [8, 21, 22], financial data, health diagnosis) whose protection is

mandatory. Individuals as well as companies require the protection of their sensitive informa-

tion not only against external users breaking into the system but also against malicious insiders.

In many cases, the external server is relied upon for ensuring availability of data but should not

be allowed to read the data it stores. Protection must therefore be also ensured against possible

honest-but-curious servers, that is, servers that honestly manage data but may not be trusted

by the data owner to read their content. Ensuring effective and practical data protection in such

contexts is a complex task that requires to design effective approaches allowing data owners to

specify privacy requirements on data, and techniques for enforcing such requirements in data

storage and processing. Data privacy and integrity issues in outsourcing scenarios have then

captured the attention of the research community and several advancements have been pro-

posed (e.g., see [40]). The main goal of this chapter is to investigate different approaches that

have been proposed by the research community for protecting the confidentiality and integrity

of outsourced data. In particular, we consider a scenario where data are stored in relational

databases. The techniques discussed can however be adopted for protecting any kind of data.

The remainder of this chapter is organized as follows. Section 2 describes different approaches

for efficiently evaluating queries and enforcing access control policies over outsourced encrypted

data. Encryption, however, makes access to stored data inefficient because it is not always

possible to directly evaluate queries on encrypted data. Section 3 then describes alternative so-

lutions that grant data confidentiality and efficient query evaluation. These approaches model

privacy requirements through confidentiality constraints, and enforce them by combining frag-

mentation and encryption, and possibly involving the data owner for storing a limited portion

of sensitive data. Section 4 describes the main approaches for protecting data integrity in

2

storage and query computation. Section 5 presents some open issues that are currently under

investigation by the research community for providing data privacy and integrity and for sup-

porting complex protection requirements in outsourcing scenarios. Finally, Section 6 concludes

the chapter.

2 Data encryption

A possible solution for protecting outsourced data from the server storing them consists in ap-

plying encryption. Encryption protects the exposure of sensitive information even if the server

is compromised and ensures integrity since data tampering can be detected. Clearly, data de-

cryption cannot be executed at the server side, and therefore solutions have been developed that

allow the external server to execute queries directly on the encrypted data. In the remainder

of this section, we first describe how data are stored at the external server and then illustrate

how query execution and access control are enforced.

2.1 Data organization

Data outsourcing typically involves four parties: a data owner is an organization (or an individ-

ual) who outsources her data to make them available for controlled external release; a user is a

person who can access the outsourced data; a client is the user’s front-end, which is in charge of

translating access requests formulated by the user in equivalent requests operating on the out-

sourced data; a server is the external third party that stores and manages the outsourced data.

We assume that the outsourced data are stored in a relational database. Before outsourcing

a plaintext database B, each relation in the database is mapped to an encrypted relation. In

principle, data can be encrypted by using either a symmetric or an asymmetric encryption func-

tion. However, since symmetric encryption is cheaper than asymmetric encryption, solutions

are typically based on symmetric encryption (e.g., [15, 24]). Data encryption can be applied at

different granularity levels: table, attribute, tuple, or cell. Table and attribute level encryption

3

Patients

SSN Name DoB County Diagnosis Prescription

782619730 Anne 55/01/23 Alameda HIV Nevirapine
946294626 Beth 86/04/05 Fresno Anemia Folic acid
737260262 Cheryl 40/12/23 Napa Arthritis Anti-inflammatory
937360965 Doris 81/07/22 Napa Diabetes Insulin
946259572 Evelyn 65/10/03 Orange HeartAttack Anticoagulants
837350362 Flora 89/03/24 Trinity Diabetes Insulin

(a)

Patientsk

tid etuple In Ib Ic Id

1 zKZlJxV α φ υ θ

2 AJvaAy1 β ς ι κ

3 AwLBAa1 γ χ λ µ

4 mHF/hd8 δ ς η π

5 HTGhoAq ǫ φ υ ρ

6 u292mdo ζ ς σ π

(b)

Figure 1: An example of plaintext relation (a) and the corresponding encrypted relation (b)

imply that the whole relation involved in a query should always be returned since the server

cannot select the data of interest, thus leaving to the client the burden of executing a query on

a potentially huge amount of data. Encryption at the cell level implies an excessive workload

for the client that needs to execute a possibly very large number of decrypt operations. For

these reasons, many proposals adopt encryption at the tuple level, since it represents a good

trade-off between encryption/decryption workload and query execution efficiency.

To directly query encrypted data, a set of indexes (e.g., [15, 24, 27]) are typically stored

with the encrypted relation. Indexes, whose values are computed starting from the plaintext

values of the attributes with which they are associated, allow the server storing the data to

partially evaluate clients’ queries (see Section 2.2). Each relation r in B defined over schema

R(A1, . . . ,An) is then mapped to an encrypted relation rk over schema Rk(tid ,etuple, I i1 , . . . , I ij)

in the encrypted database Bk stored at the external server, with tid a numerical attribute

added to the encrypted relation and acting as a primary key for Rk; etuple the encrypted tuple;

I il, l = 1, . . . , j, index associated with the il-th attribute Ail in R on which conditions need to

be evaluated in the execution of queries. Each tuple t in r is mapped to a tuple tk in rk, where

tk[etuple] = Ek(t) and tk[I il] = f(t[Ail]), l = 1, . . . , j, where E is an encryption function, k is

an encryption key, and f is an indexing function. The resulting encrypted relation rk contains

the same number of tuples as the plaintext relation r, since the number of tuples is not affected

by encryption and indexing.

Example 2.1. Consider plaintext relation Patients in Figure 1(a) and suppose that there

4

Query

Processor

Encrypt

Decrypt

R

Meta

Data

Meta

Data

Query

Executor

k

3) encrypted

result

2) transformed

query
q
s

1) original query
q

4) plaintext

result

metadata

R
k

CLIENT
 SERVER

USER

DATA OWNER

Access Control

Policy

Figure 2: Query evaluation process

is an index for attributes Name (In), DoB (Ib), County (Ic), and Diagnosis (Id). Figure 1(b)

illustrates the corresponding encrypted relation Patientsk, where index values are represented

with Greek letters. For readability, we report the tuples in the plaintext and encrypted relations

in the same order. Note, however, that the order in which tuples are stored in the encrypted

relation is independent from the order in which they appear in the plaintext relation.

2.2 Query execution

The introduction of indexes allows the server to partially evaluate a query q submitted by the

client. Figure 2 illustrates the query evaluation process. The original query q formulated by

the user (who may not be aware of the fact that data have been outsourced) on the plaintext

relation is sent to a trusted client (step 1). The client maps q into two queries: qs operates

on the encrypted relation using indexes, and qc operates on the result of qs. Query qs is then

communicated to the external server (step 2). The external server executes query qs on the

encrypted relation and returns the result to the client (step 3). The client decrypts the result

obtained from the server, and evaluates qc on the resulting relation to possibly remove spurious

tuples (i.e., tuples that do not belong to the final result), and returns the result to the user

5

(step 4). Clearly, the translation of query q into queries qs and qc depends on the kind of indexes

involved in the query since different indexes support different queries (e.g., some indexes do

not support range queries and therefore they have to be executed at the client side). In the

following, we briefly describe the main indexing techniques.

• Encryption-based indexes (e.g., [15]). A simple approach consists in using as index the

result of an encryption function over the actual values. Given a tuple t in r, the value of

index I i, associated with attribute Ai for tuple t, is computed as Ek(t[Ai]), where Ek is

a symmetric encryption function and k the encryption key. This indexing technique has

the advantage of supporting equality queries, that is, queries with conditions of the form

Ai=v and Ai=Aj . In fact, these conditions can be translated into conditions I i=Ek(v) and

I i=I j, respectively, operating on the encrypted relation. Note that the index values for

attributes Ai and Aj must be computed using the same encryption function with the same

key. For instance, suppose that index I n in Figure 1(b) has been obtained by adopting

this method. Then, with reference to the plaintext and encrypted relations in Figure 1,

condition Name like ‘Evelyn’ will be translated as I n=‘ǫ’ on relation Patientsk. Since

encryption-based indexes preserve plaintext distinguishability, all the tuples returned by

the server belong to the result of the original query. As a drawback, this technique does

not easily support range queries, because encryption functions are not order preserving.

We note however that a range condition can be translated into a set of equality conditions,

one for each of the values in the range. For instance, a range condition Name like ‘[A–B]%’

is translated as I n=‘α’ or I n=‘β’.

• Partition-based indexes (e.g., [27]). The domain Di of attribute Ai is partitioned into

a set of non-overlapping subsets of contiguous values, which are usually of the same

size. Each partition is associated with a label that may or may not preserve the order

relationship characterizing values in Di. Given a tuple t in r, the value of index I i,

associated with attribute Ai for tuple t, is the label of the unique partition containing value

t[Ai]. For instance, index I b in Figure 1(b) is obtained by partitioning the domain [1910-

6

01-01,2010-12-31] of attribute DoB in intervals of 20 years, and assigning, in the order,

labels ω, χ, φ, ς, and τ to the resulting partitions. This indexing method allows the server

side evaluation of equality conditions, by translating a condition of the form Ai=v into

condition I i=partition(v), where partition(v) is the label of the partition including value

v. Like for encryption-based indexes, this indexing technique supports the evaluation

of equality conditions between two attributes (i.e., Ai=Aj), provided that the attributes

are defined on the same domain and they have been indexed using the same partition.

Since an index value (i.e., the label associated with a partition) corresponds to different

plaintext values (i.e., all plaintext values belonging to the partition), the query result

computed by the server can include spurious tuples that need to be eliminated by the

client. For instance, with reference to the plaintext and encrypted relations in Figure 1,

condition DoB=‘86/04/05’ is translated as I b=‘ς’. The server therefore returns the second,

fourth, and sixth encrypted tuple. The client decrypts these three tuples, and eliminates

the latter two (whose presence is due to index collision) by reevaluating the condition on

plaintext data. Partition-based indexes do not easily support range queries. In fact, if the

index values are not order-preserving, a condition of the form Ai ≤ v is translated into

condition (I i = idx1)∨ . . .∨ (I i = idxm), where each value idxj , j = 1, . . . , m, is the label

of a partition including plaintext values that are lower than or equal to v. For instance,

condition DoB≤‘83/12/31’ is translated as I b=‘ω’ or I b=‘χ’ or I b=‘φ’ or I b=‘ς’.

• Hash-based indexes (e.g., [15]). Given a tuple t in r, the value of index I i, associated with

attribute Ai for tuple t, is computed as h(t[Ai]), where h is a hash function. The hash

function satisfies three properties: i) it is deterministic, meaning that given two values

v1 and v2 in the domain Di of attribute Ai, if v1 = v2 then h(v1) = h(v2); ii) it generates

collisions that happen when given two values v1 and v2 in the domain Di of attribute Ai,

with v1 6= v2, h(v1) = h(v2); and iii) it is not order preserving. A hash-based index allows

the server side evaluation of equality conditions of the form Ai=v and Ai=Aj that are

translated as I i=h(v) and as I i=I j, respectively (provided the hash function adopted to

7

Evelyn
Anne
 Beth
 Cheryl
 Doris
 Flora

Beth
 Cheryl
 Evelyn
 Flora

Doris
 id node node

1 2, Doris, 3
2 4, Beth, 5, Cheryl, 6
3 7, Evelyn, 8, Flora, 9
4 Anne, 5, t1
5 Beth, 6, t2
6 Cheryl, 7, t3
7 Doris, 8, t4
8 Evelyn, 9, t5
9 Flora, nil, t6

id content

1 8/*5sym,p
2 mw39wio[
3 gtem945/*c
4 gte3/)8*
5 8dq59wq*d’
6 ue63/)w
7 =wco21!ps
8 oieb5(p8*
9 21!p8dq59

(a) (b) (c)

Figure 3: An example of B+tree index (a), its relational representation (b), and the corre-
sponding encrypted relation (c)

define I i is the same used to define I j). For instance, suppose that index I c in Figure 1(b)

has been obtained by adopting a hash-based indexing method. With reference to the

plaintext and encrypted relations in Figure 1, condition County=‘Fresno’ is translated as

I c=h(Fresno)=‘ι’. Since the hash function is not order preserving, hash-based indexes do

not easily support range queries.

• B+-tree indexes (e.g., [15]). A B+-tree data structure is used for indexing data. The

B+-tree index is built by the data owner over the original plaintext values of an attribute

Ai. The B+-tree is then encrypted at node level (i.e., each node of the B+-tree is en-

crypted as a whole) and stored at the server as a table with two attributes: id contains

the node identifier, and content contains an encrypted value representing the node con-

tent. Pointers to children are represented through cross references from the node content

to the node identifiers of its children in the table. For instance, Figure 3(a) illustrates

the B+-tree index built for attribute Name of relation Patients in Figure 1(a). Fig-

ure 3(b) illustrates the relation representing the B+-tree in Figure 3(a), and Figure 3(c)

illustrates the corresponding encrypted relation stored at the external server. B+-tree

indexes support both equality and range queries and, being order preserving, allow the

server to evaluate group by and order by SQL clauses. Since the B+-tree index is

encrypted, the traversal of the index can only be performed by the client. To execute

8

a range query, the client has to perform a sequence of queries that retrieve tree nodes

at progressively deeper levels; when a leaf is reached, the node identifiers in the leaf can

be used to retrieve the tuples belonging to the interval. For instance, with reference to

the plaintext relation in Figure 1(a) and the index structure in Figure 3, condition Name

like ‘[D–Z]%’ (retrieving the names following ‘D’ in lexicographic order) is evaluated by

executing a set of queries for traversing the B+-tree along the path of nodes 1, 3, and 7.

Then, other queries will be produced to traverse the chain of leaves starting from node 7.

For each visited leaf, the client also retrieves the tuples associated with it (i.e., tuple t4

for leaf 7, tuple t5 for leaf 8, and tuple t6 for leaf 9).

• Order preserving encryption indexes (e.g., [2, 45]). Alternative approaches that support

equality and range queries are the Order Preserving Encryption Schema (OPES) [2] and

the Order Preserving Encryption with Splitting and Scaling (OPESS) schema [45]. OPES

is an encryption technique that takes as input a target distribution of index values and

applies an order preserving transformation in a way that the transformed values (i.e.,

the index values) follow the target distribution. Comparison operations can be directly

applied on the encrypted data, thus avoiding the production of spurious tuples. OPESS

adopts splitting and scaling techniques to create index values so that the frequency dis-

tribution of index values is flat (i.e., uniform).

• Privacy homomorphic indexes (e.g., [23, 26]). Although order preserving encryption tech-

niques permit the efficient evaluation of comparison operations, they do not support arith-

metic operations. As a consequence, the evaluation of aggregate functions (e.g., sum, avg)

cannot be delegated to the server. Privacy homomorphic encryption [38] allows the exe-

cution of basic arithmetic operations (i.e., +,−,×) over encrypted data. Their adoption in

the definition of indexes can then allow the server to directly evaluate aggregate functions

as well as execute equality and range queries [26]. As a drawback, the computation of

arithmetic operations over encrypted data is time consuming. Recently, in [23] a fully

9

homomorphic encryption schema has been proposed that supports the computation of an

arbitrary function over encrypted data without the decryption key. While this schema

represents an important theoretical result, it cannot be used in real-world scenarios due

to its exponential computational complexity.

Besides the main indexing techniques illustrated above, many other solutions have been

proposed that aim at better supporting SQL clauses or at reducing the client workload in the

query evaluation process (e.g., [47]).

We conclude this overview on indexing techniques observing that the definition of an index

over an attribute must consider two conflicting requirements: on one hand, the index values

should be related to the corresponding plaintext data well enough to provide for an effective

query execution process; on the other hand, the relationship between indexes and plaintext

data should not open the door to inference and linking attacks. Different indexing methods

can provide a different trade-off between query execution efficiency and data protection from

inference. For instance, with an encryption-based index, index values reproduce exactly the

plaintext values distribution, thus opening the door to frequency-based attacks. An analysis

of the risk of exposure due to the publication of indexes is therefore an important aspect that

however only few proposals have considered. Also, as demonstrated in [7], even a limited

number of indexes can greatly facilitate the task for an adversary who wants to violate the

confidentiality provided by encryption.

2.3 Access control enforcement

The majority of the solutions developed in the data outsourcing scenario focus on the definition

of indexing techniques (e.g., [15, 24, 27]) and therefore no attention is posed on how data are

encrypted. Typically, data are assumed to be encrypted with a key that is shared among all

users that can access the data. As a consequence, all users knowing the encryption key can

access the whole outsourced database. This situation is clearly limiting in a real world scenario,

where different users may instead have different access privileges. However, the enforcement of

10

t1 t2 t3 t4 t5 t6
G 1 1 1 1 0 0
H 1 1 1 1 1 0
I 1 1 1 0 1 1
J 0 0 1 1 1 1
K 1 1 1 1 1 0

Figure 4: An example of access matrix

access restrictions cannot rely on the presence of a reference monitor (as in traditional systems)

at the external server since it is not trusted to enforce the policy itself. Also, access control

enforcement cannot be delegated to the data owner, since this practice presents the crucial

shortcoming that it requires the data owner to be always involved in the processing of every

access request. To overcome this issue, current proposals adopt a multi-key encryption schema

where different data are encrypted with different keys. Although this multi-key approach is

not new [32], the problem related to the definition, management, and evolution of the access

control policy, and therefore of the corresponding encryption, introduces new challenges. We

now discuss the proposals adopting a multi-key encryption schema for enforcing access control

on outsourced data [16, 17].

The data owner defines an access control policy stating who can read what resources (write

operations are performed at the owner’s site). Notations U and R are used to denote the

set of users and resources, respectively, in the system. Resources can be defined at different

granularity levels (e.g., a resource may be a relation, a tuple, or even a cell). The access control

policy is represented through an access matrix A, with a row for each user in U and a column

for each resource in R. Each cell A[ui,r j] can assume two values: 1, if ui is allowed to access r j;

0, otherwise. Given an access matrix A over a set U of users and a set R of resources, acl(r j)

denotes the access control list of resource r j (i.e., the set of users who can access r j).

Example 2.2. Consider relation Patients in Figure 1(a) and a set U={Gilda (G), Heidi (H),

Iris (I), Jessica (J), Kate (K)} of users. Figure 4 represents an example of an access matrix,

where, for example, acl(t1)={G,H,I,K}.

11

A naive solution for enforcing access control through encryption consists in encrypting each

resource with a different key and communicating to each user the set of keys used to encrypt the

resources she can access. Such a solution is clearly unacceptable, since each user has to manage

as many keys as the number of resources she is authorized to access. To limit the number of

keys that each user needs to store and manage a key derivation method is adopted. Basically, a

key derivation method permits to compute an encryption key k i starting from the knowledge of

another key k j and a piece of publicly available information. Key derivation methods are based

on the definition of a key derivation hierarchy that specifies which keys can be derived from

other keys in the system. A key derivation hierarchy can be graphically represented through

a graph, with a vertex for each key and an edge from k i to k j iff k j can be directly derived

from k i. Since key derivation can be recursively applied, a path in the graph from k i to k j

represents the fact that key k j can be directly or indirectly derived from k i. The key derivation

methods proposed in the literature can be classified depending on the supported key derivation

hierarchy, which can be as follows.

• Chain of vertices (e.g., [41]): the key k j of a vertex is computed by applying a one-way

function to the key k i of its predecessor in the chain and no public information is needed.

• Tree hierarchy (e.g., [42]): the key k j of a vertex is computed by applying a one-way

function to the key k i of its direct ancestor in the tree and a publicly available label l j

associated with k j.

• DAG hierarchy (e.g., [3, 4, 5, 14, 18]): a key k j may have more than one direct ancestor

and therefore its derivation is typically based on techniques that are more complex than

the techniques used for chains and trees. Recent approaches [4, 5] working on DAGs are

based on the definition of a set of public tokens . Given two keys k i and k j, a token ti,j is

defined as ti,j=k j⊕f(k i,l j), where l j is a publicly available label associated with k j, ⊕ is

the bitwise xor operator, and f is a deterministic cryptographic function. Graphically,

each token ti,j represents an edge in the key derivation hierarchy, connecting vertex k i to

12

vertex k j . Token ti,j allows the computation of k j through k i and l j . The existence of a

public token ti,j allows a user knowing k i to derive key k j through token ti,j and public

label l j.

Among the key derivation methods proposed in the literature, the technique in [4, 5] seems

the solution that better fits the outsourced scenario since it minimizes the need of re-encrypting

resources and generating new keys when the access control policy changes.

The access control policy defined by the data owner is then translated into an equivalent

encryption policy E , determining which data are encrypted with which key, the keys released

to users, and the key derivation hierarchy. An encryption policy E is equivalent to an access

control policy A if each user can decrypt all and only the resources she is authorized to access.

To define such an encryption policy, the idea is to exploit a key derivation hierarchy induced

by the set containment relationship ⊆ over U . This hierarchy has a vertex for each subset U of

users in U and a path from vertex v i to vertex v j if v i represents a subset of the users represented

by v j. The access control policy represented in A can be enforced by: i) assigning to each user

the key associated with the vertex representing the user in the hierarchy; and ii) encrypting

each resource with the key of the vertex corresponding to its access control list. In this way,

a key can possibly be used to encrypt more than one resource, since all the resources with the

same access control list are encrypted using the same key. Also, each user in the system has to

manage only one key. It is easy to see that the encryption policy defined as mentioned above

is equivalent to the access control policy defined by the data owner, since each user can derive

only the keys associated with vertices that represent sets of users to which the user belongs.

As a consequence, the user can only derive the keys used for encrypting resources for which she

possesses the access privilege [17].

Example 2.3. Consider the portion of the access matrix in Figure 4 that is defined on the set

U ′={G,H,I,J} of users. Figure 5 illustrates the key derivation hierarchy defined over U ′. For

readability, each vertex in the graph is associated with the set of users it represents. Here, dotted

edges represent the associations user-key and resource-key. The encryption policy represented by

13

�� ��
�� ��v5[GH]

((❘❘
❘❘❘

❘❘❘

""❊
❊❊

❊❊
❊❊

❊❊
❊❊

❊❊
t1

G //�� ��
�� ��v1[G]

66♥♥♥♥♥♥♥♥
//

''PP
PPP

PPP
�� ��
�� ��v6[GI] //

""❊
❊❊

❊❊
❊❊

❊❊
❊❊

❊❊
�� ��
�� ��v11[GHI]

))❙❙
❙❙❙

❙❙❙
❙

//

22

t2

H //�� ��
�� ��v2[H]

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥

''PP
PPP

PPP

 ❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆
�� ��
�� ��v7[GJ] //

((❘❘
❘❘❘

❘❘❘
�� ��
�� ��v12[GHJ] //

,,

�� ��
�� ��v15[GHIJ] // t3

I //�� ��
�� ��v3[I]

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥
//

 ❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆
�� ��
�� ��v8[HI]

<<②②②②②②②②②②②②②

((❘❘
❘❘❘

❘❘❘
�� ��
�� ��v13[GIJ]

55❦❦❦❦❦❦❦❦❦
t4

J //�� ��
�� ��v4[J]

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥
//

((PP
PPP

PPP
�� ��
�� ��v9[HJ]

<<②②②②②②②②②②②②②
//�� ��
�� ��v14[HIJ]

;;✇✇✇✇✇✇✇✇✇✇✇✇✇✇
// t5

�� ��
�� ��v10[IJ] //

<<②②②②②②②②②②②②②

66❧❧❧❧❧❧❧❧
t6

Figure 5: An example of encryption policy with a key hierarchy over U ′={G,H ,I,J}

this key derivation hierarchy is equivalent to the access control policy in Figure 4. User Gilda,

for example, knows key k 1 and therefore she can derive all and only the keys k i associated with

vertices in the hierarchy representing a set U of users including G (i.e., v 1, v 5-v 7, v 11-v 13, v 15).

She can therefore decrypt tuples t1, t2, t3, and t4, as defined by the access matrix in Figure 4.

Although this solution is simple and easy to implement, it defines more keys than actually

needed and requires the publication of a great number of tokens, which in turn makes key

derivation less efficient. In fact, the tokens are stored in a public catalog on the server to make

it available to any user. A key derivation then requires a series of client-server interactions. Since

the problem of minimizing the number of tokens in the encryption policy E , while guaranteeing

equivalence with the access control policy A is NP-hard (it can be reduced to the set cover

problem), in [17] the authors propose a heuristic algorithm working as follows.

• Initialization. The algorithm identifies the vertices necessary to enforce A, called material

vertices. Material vertices represent: i) singleton sets of users, whose keys are communi-

cated to the users and that allow them to derive the keys of the resources they are entitled

to access; and ii) the acls of the resources, whose keys are used for encryption.

• Covering. For each material vertex v corresponding to a non-singleton set of users, the

algorithm finds a set of material vertices that form a non-redundant set covering for v ,

which become direct ancestors of v . A set V of vertices is a set covering for v if for each

14

u in v , there is at least a vertex v i in V such that u appears in v i. It is non redundant

if the removal of any vertex from V produces a set that does not cover v .

• Factorization. Whenever there is a set {v 1, . . . vm} of vertices that have n > 2 common

ancestors v′1, . . . , v
′

n, it is convenient to insert an intermediate vertex v representing all

the users in v′1, . . . , v
′

n and to connect each v′i, i = 1, . . . , n, with v , and v with each v j,

j = 1, . . . , m. In this way, the encryption policy includes n +m, instead of n ·m tokens

in the catalog.

Example 2.4. Consider the access control policy in Figure 4. During the initialization phase,

the algorithm identifies the material vertices represented in Figure 6(a). Vertices v 1, . . . , v 5

represent the encryption keys communicated to users, and vertices v 6, . . . , v 10 represent the

encryption keys used to protect resources. Figure 6(b) illustrates the key derivation hierarchy

resulting from the covering phase of the algorithm, which correctly enforces the access control

policy in Figure 4. It is easy to see that this hierarchy does not contain redundant edges.

Figure 6(c) represents the key derivation hierarchy resulting from the factorization of vertices

v 7 and v 8 that have three common direct ancestors (i.e., v 1, v 2, and v 5). To this purpose,

the algorithm inserts non material vertex v 11, representing the set GHK of users, in the key

derivation hierarchy. It then removes the 6 edges connecting v 1, v 2, and v 5 to v 7 and v 8, and

inserts 3 edges connecting v 1, v 2, and v 5 to v 11 and 2 edges connecting v 11 to v 7 and v 8. We

note that the hierarchy in Figure 6(b) has 15 edges, while the hierarchy in Figure 6(c) has 14

edges, thus saving one token.

Whenever there is a change in the access control policy, the key derivation hierarchy and the

resources involved in the change need to be appropriately updated. In particular, if the set of

users who can access a resource r changes due to a grant or revoke operation, the data owner has

to: download the encrypted version of r from the server; decrypt it; update the key derivation

hierarchy if there is not a vertex representing the new set of users in acl(r); encrypt the resource

with the key k ′ associated with the vertex representing acl(r); upload the new encrypted version

15

G //�� ��
�� ��v1[G] t1

H //�� ��
�� ��v2[H]

�� ��
�� ��v7[GHIK]

33

// t2

I //�� ��
�� ��v3[I]

�� ��
�� ��v8[GHJK]

++

�� ��
�� ��v10[GHIJK] // t3

J //�� ��
�� ��v4[J]

�� ��
�� ��v9[HIJK]

++

t4

K //�� ��
�� ��v5[K]

�� ��
�� ��v6[IJ]

,,

t5

t6

(a)

G //�� ��
�� ��v1[G]

**❚❚
❚❚❚

❚❚❚
❚❚❚

$$❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

t1

H //�� ��
�� ��v2[H] //

$$❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

**❚❚
❚❚❚

❚❚❚❚
❚❚

�� ��
�� ��v7[GHIK]

((PP
PPP

PPP

33

// t2

I //�� ��
�� ��v3[I]

��✹
✹✹

✹✹
✹✹

✹✹
✹

44❥❥❥❥❥❥❥❥❥❥❥❥ �� ��
�� ��v8[GHJK] //

++

�� ��
�� ��v10[GHIJK] // t3

J //�� ��
�� ��v4[J]

##●
●●

●●
●

44❥❥❥❥❥❥❥❥❥❥❥ �� ��
�� ��v9[HIJK]

++

t4

K //�� ��
�� ��v5[K]

??⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧

::ttttttttttttttt

44❥❥❥❥❥❥❥❥❥❥❥ �� ��
�� ��v6[IJ]

88rrrrrrr

,,

t5

t6

(b)

G //�� ��
�� ��v1[G]

%%❑
❑❑

❑❑
❑ t1

H //�� ��
�� ��v2[H] //

&&◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
v11[GHK] //

''❖❖
❖❖❖

❖❖
�� ��
�� ��v7[GHIK]

((PP
PPP

PPP

33

// t2

I //�� ��
�� ��v3[I]

��✾
✾✾

✾✾
✾✾

✾✾
✾✾

33❤❤❤❤❤❤❤❤❤❤❤❤❤❤ �� ��
�� ��v8[GHJK] //

++

�� ��
�� ��v10[GHIJK] // t3

J //�� ��
�� ��v4[J]

%%❑
❑❑

❑❑
❑

33❤❤❤❤❤❤❤❤❤❤❤❤❤❤ �� ��
�� ��v9[HIJK]

++

t4

K //�� ��
�� ��v5[K]

FF✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍

33❤❤❤❤❤❤❤❤❤❤❤❤❤❤ �� ��
�� ��v6[IJ]

77♦♦♦♦♦♦♦

,,

t5

t6

(c)

Figure 6: An example of initialization (a), covering (b), and factorization (c) generating an
encryption policy equivalent to the access control policy in Figure 4

of r on the server; and possibly update the public catalog containing the tokens. To limit the

burden for the data owner for managing updates to the access control policy, in [16] the authors

propose a solution based on two layers of encryption, which partially delegates to the server the

management of policy update operations. The first layer of encryption, called Base Encryption

16

Layer (BEL), is directly managed by the data owner, and enforces encryption on the resources

according to the policy existing at initialization time. The BEL is only updated by possibly

inserting tokens (i.e., edges in the key derivation hierarchy). The second layer of encryption,

called Surface Encryption Layer (SEL), is managed by the server under the supervision of the

data owner. The SEL is applied to encrypted resources, and enforces dynamic changes to the

policy by possibly re-encrypting resources and changing the SEL key derivation hierarchy to

correctly enforce updates of the access control policy. A user can then access a resource only if

she knows the keys used at the SEL and at the BEL to encrypt the resource. Note that, since

the server is in charge of managing the encryption of resources at the SEL, it may collude with

a user of the system to decrypt resources that neither the server nor the user can access. This

risk is limited, well defined, and can be reduced at the price of using a higher number of keys

at the BEL, to minimize the situations where, due to a grant operation, resources encrypted

with the same key at the BEL are encrypted with different keys at the SEL [17].

3 Fragmentation for protecting data confidentiality

The approaches described in Section 2 are based on the assumption that all data are sensitive

and therefore they are protected by applying a layer of encryption before outsourcing. Encrypt-

ing the whole dataset has however the disadvantage that it is not always possible to efficiently

execute queries and evaluate conditions over the encrypted data. Furthermore, often what is

sensitive is the association among data more than the data per se. Recent approaches have

therefore put forward the idea of using fragmentation for protecting data confidentiality and

limiting the use of encryption [1, 9, 12, 13]. In the following, we first describe the basic concepts

common to all the fragmentation-based proposals, and then present these proposals more in

details.

17

3.1 Modeling confidentiality requirements

Given a relation r over relational schema R(A1, . . . ,An), with Ai an attribute on domain Di,

i = 1, . . . , n, confidentiality requirements are modeled through confidentiality constraints [1,

9, 12, 13]. A confidentiality constraint c over relation schema R(A1, . . . ,An) is a subset of

attributes in R (i.e., c ⊆ R). Confidentiality constraint c states that, for each tuple t∈r, the

(joint) visibility of the values of the attributes in c is sensitive and must be protected. While

simple, the definition of confidentiality constraints captures different protection requirements.

Confidentiality constraints can be classified as singleton or associations . A singleton constraint

states that the values of the attribute involved in the constraint are sensitive and cannot be

released. For instance, the SSN of patients of a given hospital must be protected from disclosure.

An association constraint states that the association among the values of the attributes in

the constraint is sensitive and cannot be released. For instance, the association between the

Name and the Diagnosis of a patient has to be protected from disclosure. The definition of

confidentiality constraints is a complex problem that should take into consideration possible

relationships among data. In this chapter, we assume that the data owner correctly defines

confidentiality constraints on her data.

A set C of confidentiality constraints is well defined if it is non redundant, that is, iff

∀ci, cj ∈ C, i 6= j, ci 6⊂ cj. Intuitively, a constraint ci such that ci⊆cj , with i 6= j, is redundant

since the satisfaction of cj implies the satisfaction of ci. Note that any subset of attributes in

cj that does not represent a confidentiality constraint can be released.

Example 3.1. Consider relation Patients in Figure 1(a), reported for simplicity in Fig-

ure 7(a). Figure 7(b) illustrates a set of well defined confidentiality constraints, modeling the

following confidentiality requirements:

• the list of SSNs of patients is considered sensitive (c0);

• the association of patients’ names with any other information in the relation is considered

sensitive (c1, . . . , c4);

18

Patients

SSN Name DoB County Diagnosis Prescription

782619730 Anne 55/01/23 Alameda HIV Nevirapine
946294626 Beth 86/04/05 Fresno Anemia Folic acid
737260262 Cheryl 40/12/23 Napa Arthritis Anti-inflammatory
937360965 Doris 81/07/22 Napa Diabetes Insulin
946259572 Evelyn 65/10/03 Orange HeartAttack Anticoagulants
837350362 Flora 89/03/24 Trinity Diabetes Insulin

(a)

c0={SSN}
c1={Name,DoB}
c2={Name,County}
c3={Name,Diagnosis}
c4={Name,Prescription}
c5={DoB,County,Diagnosis}
c6={DoB,County,Prescription}

(b)

Figure 7: An example of relation (a) and of a set of well defined constraints over it (b)

• attributes DoB and County can work as a quasi-identifier [39] and therefore can be exploited

to infer the identity of patients; as a consequence, their associations with both Diagnosis

and Prescription are considered sensitive (c5 and c6).

Given a relation r defined over relation schema R(A1, . . . ,An), and a set C of confidentiality

constraints, the data owner has to outsource r in a way that all sensitive attributes and associ-

ations modeled by C are properly protected. The approaches proposed in the literature address

this problem by applying fragmentation, possibly combined with encoding techniques.

• Fragmentation consists in partitioning the attributes in relational schema R in different

subsets (called fragments), which are then possibly outsourced in place of r . Formally, a

fragment F i is a subset of the attributes in R (i.e., F i ⊆ R), and a fragmentation F is a set

of fragments (i.e., F = {F 1, . . . ,Fm}). Intuitively, fragmentation can be used to protect

sensitive associations, by storing the attributes composing c in different fragments.

• Encoding consists in obfuscating an attribute (set thereof) such that its values are intel-

ligible only to authorized users. Different solutions can be used to obfuscate attribute

values [1] (e.g., encryption). Intuitively, encoding can be used to protect both sensitive

values, by obfuscating them, or sensitive associations, by obfuscating at least one of the

attributes involved.

Current solutions differ in how they fragment the original relation and if and how they adopt

encoding to protect data confidentiality. In the remainder of this section, we will illustrate these

19

solutions in more details, providing a description of how data are fragmented and how queries

can be executed on fragmented data.

3.2 Non-communicating servers

The first approach proposing the use of fragmentation combined with an encoding technique

to protect the confidentiality of sensitive information has been presented in [1].

3.2.1 Data organization

Confidentiality constraints are enforced by fragmenting the original relation R into two frag-

ments F 1 and F 2, stored at two non-communicating servers, who do not know each other.

These fragments are obtained by partitioning the attributes in R in such a way that the at-

tributes composing confidentiality constraints are not stored in the same fragment. Whenever

one of the attributes in R cannot be stored within one of the two fragments without violating a

confidentiality constraint, the attribute is encoded. The encoding of an attribute A∈R consists

in representing the values of the attribute with two different attributes A1 and A2 in F 1 and

F 2, respectively. The original values of attribute A can be reconstructed only by authorized

users, combining the values of attributes A1 and A2. For instance, A1 may contain a random

value rnd , and A2 the result of the xor between the original value of attribute A and rnd

(i.e., t[A]⊕ rnd). Only a user knowing both A1 and A2 can reconstruct the original values of

attribute A in R. A fragmentation F is then defined as a triple 〈F 1,F 2,E〉, where E is the

set of encoded attributes that are stored plaintext neither at F 1 nor at F 2. A fragmentation

F=〈F 1,F 2,E〉 is correct with respect to a set C of confidentiality constraints if ∀c∈C, c 6⊂F 1

and c 6⊂F 2. Adopting this fragmentation model, singleton constraints can only be enforced by

encoding the corresponding attribute. Association constraints can instead be satisfied by frag-

mentation, splitting the attributes in the constraints between F 1 and F 2. However, it is not

always possible to satisfy an association constraint via fragmentation since it may happen that

the attributes involved in an association constraint cannot be split between the two fragments

20

F e
1

tid SSN1 Name1 DoB Diagnosis Prescription

1 α η 55/01/23 HIV Nevirapine
2 β Θ 86/04/05 Anemia Folic acid
3 γ ι 40/12/23 Arthritis Anti-inflammatory
4 δ κ 81/07/22 Diabetes Insulin
5 ǫ Λ 65/10/03 HeartAttack Anticoagulants
6 ζ µ 89/03/24 Diabetes Insulin

F e
2

tid SSN2 Name2 County

1 τ Ω Alameda
2 υ θ Fresno
3 φ σ Napa
4 χ λ Napa
5 ς ξ Orange
6 ω ς Trinity

Figure 8: An example of correct fragmentation in the non-communicating servers scenario

without violating another constraint. In this case, an attribute in the constraint needs to be

encrypted. We note that, besides correctness, F needs also to be complete, meaning that all

the attributes in R are stored either plaintext or encoded in F . Formally, a fragmentation

F=〈F 1,F 2,E〉 is complete with respect to R if R=F 1∪F 2∪E.

At the physical level, fragmentation F=〈F 1,F 2,E〉 with F 1 = {A11 , . . . ,A1i}, F 2 =

{A21 , . . . ,A2j}, and E = {Ae1, . . . ,Ael} translates into two physical fragments F e
1 =

{tid,A11 , . . . ,A1i, A
1
e1
, . . . , A1

el
, } and F e

2 = {tid,A21 , . . . ,A2j , A
2
e1
, . . . , A2

el
}. Attribute tid is

the primary key of both physical fragments and guarantees the lossless join property. It can be

either: 1) the key attribute of the original relation R, if it does not violate any confidentiality

constraint when stored in F 1 or in F 2, or 2) an attribute that is added to both F e
1 and F e

2.

The presence of this attribute guarantees the possibility, for authorized users, to reconstruct

the content of the original relation R.

Example 3.2. Consider relation Patients in Figure 7(a) and the set of confidentiality con-

straints over it in Figure 7(b). An example of correct and complete fragmentation is F={{DoB,

Diagnosis, Prescription}, {County}, {SSN, Name}}. Figure 8 illustrates the corresponding

physical fragments, where, for simplicity, obfuscated values are represented with Greek letters.

Constraint c0 is singleton and therefore can be satisfied only by obfuscating attribute SSN. Asso-

ciation constraints c1, . . . , c4 are satisfied by obfuscating attribute Name, and constraints c5 and

c6 are solved via fragmentation. We note that attribute Name cannot be stored in the clear in a

fragment without violating at least a constraint.

21

In general, given a relation R and a set of well defined constraints C over it, different correct

and complete fragmentations may exist. As an example, the fragmentation F=〈F 1,F 2,E〉, with

E=R, that encodes all the attributes in R is always correct and complete. However, such a

solution is equivalent to encrypt the whole relation, thus nullifying the advantages that the

availability of data in clear form may have on query execution. Among all the fragmentations

of R that enforce C, the one minimizing query evaluation costs at the client side is then to be

preferred. To evaluate the query execution cost, in [1] the authors adopt an affinity matrix

M , with a row and a column for each attribute in R. Each entry M [Ai,Aj] represents the cost

that would be paid in query evaluation if attributes Ai and Aj (i 6= j) are not stored in the

same fragment. Each entry M [Ai,Ai] represents the cost that would be paid if attribute Ai is

encoded (i.e., Ai∈E). As a consequence, the cost of a fragmentation F is defined as the sum

of the cells M [Ai,Aj] such that Ai∈F 1 and Aj∈F 2, and of the cells M [Ai,Ai] such that Ai∈E.

In [1] the authors show that the problem of computing a fragmentation with minimum cost

is NP-hard (the minimum hypergraph coloring problem reduces to it). They therefore propose

three different heuristics working in polynomial time in the number of attributes in R, which

are obtained by combining known approximation algorithms for the min-cut and the weighted

set cover problems.

3.2.2 Query execution

The query execution process must be revised to take into consideration the fact that relation

R is stored in two physical fragments F e
1 and F e

2 managed by two external servers S1 and S2,

respectively. Consider a query q of the form select A from R where Cond, where A is a

subset of attributes in R, and Cond =
∧

i condi is a conjunction of basic predicates of the form

(Ai op v), (Ai op Aj), or (Ai in {vi, . . . , vk}), where Ai, Aj ∈ R, {v, vi, . . . , vk} are constant

values in the domain of attribute Ai, and op is a comparison operator in {=, 6=, >,<,≥,≤}.

Query q is first reformulated as a query operating on the join between the two fragments F e
1

and F e
2. The query execution plan can then be determined by simply generalizing and applying

22

the standard database optimization techniques. This implies that projections can be pushed

down to the servers, just taking care to not project out attribute tid necessary for the join

between F e
1 and F e

2. Selection conditions can be pushed down to the server storing the involved

attributes in clear form. More precisely, the conditions specified in the where clause are split

into: Conds1 that is the conjunction of all basic conditions that involve attributes stored in F e
1

only; Conds2 that is the conjunction of all basic conditions that involve attributes stored in F e
2

only; and Cond c that is the conjunction of all basic conditions defined on encoded attributes or

involving attributes that are not stored in the same fragment. Conditions Conds1 and Cond s2

can then be pushed down to servers S1 and S2, respectively, for their evaluation, while Cond c

can be executed only at the client side together with the join operation.

Once the logical plan has been optimized, it is necessary to determine the physical execution

plan that establishes how the query execution is partitioned among the two servers and the

client. To this purpose, the following two strategies can be applied.

• Parallel strategy . The two servers first evaluate conditions Cond s1 and Conds2, and then

the client computes the join between the results returned by the two external servers and

evaluates Cond c.

• Sequential strategy . One of the two external servers first evaluates condition Cond si and

returns the result to the client who, in turn, sends the projection over attribute tid to

the other storage server. The second server then evaluates Cond sj on the subset of tuples

indicated by the client. Finally, the client refines the result returned by Sj evaluating

Cond c.

The parallel strategy may be more expensive than the sequential strategy since much more

data are transferred from the two servers to the client who has then to perform the join op-

eration. The sequential strategy implies a sequential execution of the queries and may cause

privacy breaches since if the server receiving the values of attribute tid knows query q , then it

can infer what tuples satisfy the conditions evaluated on the other server.

23

Parallel strategy Sequential strategy

rs1 := select tid, Name1

from F e
1

where Diagnosis=‘Diabetes’

rs1 := select tid, Name1

from F e
1

where Diagnosis=‘Diabetes’

rs2 := select tid, Name2

from F e
2

where County=‘Napa’

rs2 := select tid, Name2

from F e
2

where County=‘Napa’ and tid in {4,6}

rc := select Name1 ⊕ Name2 as Name

from rs1 join rs2 on

rs1 .tid=rs2.tid

rc := select Name1 ⊕ Name2 as Name

from rs1 join rs2 on

rs1 .tid=rs2 .tid

Figure 9: An example of query translation in the non-communicating servers scenario

Example 3.3. Consider relation Patients in Figure 7(a), the set of constraints over it in

Figure 7(b), and the fragments in Figure 8. Suppose that a client formulates query q = se-

lect Name from Patients where Diagnosis=‘Diabetes’ and County=‘Napa’, returning the

names of patients living in the Napa county and suffering from diabetes. The conditions operat-

ing at the different parties are: Conds1={Diagnosis=‘Diabetes’}, Conds2={County=‘Napa’},

and Cond c=∅, respectively. Figure 9 illustrates the translation of query q in the queries, for

both the parallel and sequential strategies, operating at each server and at the client side. Here,

we denote with rs1, rs2, and rc the results of queries qs1, qs2, and q c, respectively. The set {4,6}

appearing in qs2 of the sequential strategy represents the identifiers of the tuples in r s1, that is,

the tuples with Diagnosis=‘Diabetes’.

3.3 Multiple fragments

The main limitation of the solution in [1] is that it relies on the absence of communication

between the two storage servers. This assumption is clearly difficult to satisfy in a real world

scenario where a collusion between the servers or the users accessing the data can cause pri-

vacy breaches. To overcome this problem, in [9] the authors present a solution where several

fragments can be all stored at the same server.

24

3.3.1 Data organization

Confidentiality constraints are enforced by fragmenting the original relation R into a set of

unlinkable fragments. The enforcement of association constraints via fragmentation is always

possible since the number of fragments composing F is not fixed a priori. As a consequence,

if an attribute cannot be inserted into an existing fragment without violating a confidentiality

constraint, a new fragment is created and the attribute is inserted in it. All attributes that do

not appear in a singleton constraint can then be represented in the clear in a fragment in F ,

thus improving query execution efficiency. Furthermore, we say that F maximizes visibility ,

since encryption is only applied to protect the values of attributes appearing in singleton con-

straints. A fragmentation F = {F 1, . . . ,F n} is correct with respect to a set C of confidentiality

constraints if: i) ∀c ∈ C, ∀F ∈ F , c 6⊆ F , and ii) ∀F i,F j ∈ F , i 6= j, F i ∩ F j = ∅. The first

condition states that a fragment cannot contain in the clear attributes that form a confidential-

ity constraint. The second condition states that the fragments must be disjoint. In this way,

the fragments composing a fragmentation can be stored at the same external server, since they

cannot be joined to reconstruct the content of the original relation.

At the physical level, each fragment F i={Ai1 , . . . , Ain}∈F translates into a physical frag-

ment F e
i (salt ,enc,Ai1 , . . . , Ain), where attribute salt is the primary key of F e

i and contains a

randomly chosen value, and attribute enc represents the encryption of the attributes in R that

do not belong to the fragment (i.e., R \ F i), combined before encryption in a binary xor with

the salt to prevent frequency attacks [43].

Example 3.4. Consider relation Patients in Figure 7(a) and the set of confidentiality con-

straints over it in Figure 7(b). An example of correct fragmentation that maximizes visibility is

F={{Name}, {DoB, County}, {Diagnosis, Prescription}}. Figure 10 illustrates the physical

fragments storing F . Note that the unique attribute in relation Patients that does not appear

in the clear in any fragment is SSN, since it forms a singleton constraint (c0).

Given a relation R and a set of well defined constraints C over it, different correct fragmen-

25

F e
1

salt enc Name

s11 α Anne
s1
2

β Beth
s13 γ Cheryl
s1
4

δ Doris
s1
5

ε Evelyn
s16 ζ Flora

F e
2

salt enc DoB County

s21 ϑ 55/01/23 Alameda
s2
2

ι 86/04/05 Fresno
s23 κ 40/12/23 Napa
s2
4

λ 81/07/22 Napa
s2
5

µ 65/10/03 Orange
s26 ν 89/03/24 Trinit

F e
3

salt enc Diagnosis Prescription

s31 τ HIV Nevirapine
s3
2

υ Anemia Folic acid
s33 φ Arthritis Anti-inflammatory
s3
4

ϕ Diabetes Insulin
s3
5

χ HeartAttack Anticoagulants
s36 ς Diabetes Insulin

Figure 10: An example of correct fragmentation in the multiple fragments scenario

tations that guarantee maximal visibility may exist. For instance, a fragmentation F where

each attribute that does not appear in a singleton constraint is stored in a different fragment

is correct and guarantees maximal visibility. Such a fragmentation however makes query exe-

cution inefficient. In fact, the evaluation of any query operating on more than one attribute

always requires the client involvement. It is then essential to determine a correct fragmentation

maximizing visibility and limiting the query evaluation burden for the client. The following

metrics have been proposed to measure the quality of a fragmentation.

• Number of fragments [9]. A straightforward approach for computing a fragmentation that

reduces the query evaluation costs consists in minimizing the number of fragments. The

rationale is that with a low number of fragments, more attributes in clear are stored in

the same fragment, thus allowing a more efficient query execution.

• Affinity between attributes [13]. The quality of a fragmentation can be measured in terms

of the affinity between pairs of attributes, which is represented through a traditional

affinity matrix. A fragmentation with high affinity is likely to reduce the query evaluation

costs at the client side.

• Query cost function [11]. If the expected query workload for R is known, a specific cost

function that models the cost of evaluating queries on F can be precisely defined and

minimized.

The problem of computing a fragmentation that minimizes the workload of query execution

at the client side with respect to the three metrics above is NP-hard (either the minimum

26

hypergraph coloring or the minimum hitting set problems reduce to it [9, 11, 13]). The heuristic

algorithms proposed for solving such a problem are all based on the definition of a partial order

relationship, called dominance relationship and denoted �, on fragmentations. A fragmentation

F ′ dominates a fragmentation F , denoted F�F ′, if F ′ can be obtained by merging two or more

fragments in F .

Example 3.5. Consider relation Patients in Figure 7(a), the set of constraints over

it in Figure 7(b), and the following two correct fragmentations that maximize visibil-

ity: F1={{Name}, {DoB, County}, {Diagnosis, Prescription}} and F2={{Name}, {DoB},

{County}, {Diagnosis, Prescription}}. Since F1 can be obtained by merging fragments

{DoB} and {County} in F2, F2�F1.

Note that if F�F ′, then F ′ is clearly composed of a lower number of fragments than F ,

its affinity is higher than the affinity of F , and the evaluation of a query cost function over

it results lower than the evaluation of the same function over F . The rationale is that if the

number of plaintext attributes in a fragment increases, then the affinity increases and the query

costs decrease. We can conclude that, given two fragmentations F and F ′, with F�F ′, F ′ is

always more convenient than F , independently from the metric used to measure the quality

of the solution. The heuristics proposed in [9, 11, 13] aim therefore at computing a minimal

fragmentation that satisfies the following three conditions: i) F is correct; ii) F maximizes

visibility (i.e., association constraints are enforced through fragmentation only); and iii) there

is not another fragmentation F ′ that is correct, maximizes visibility, and that dominates F

(i.e., F�F ′). The algorithms proposed in [9, 11, 13] work in polynomial time in the number of

attributes composing R and constraints in C.

3.3.2 Query execution

Like for the fragmentation model in [1], the query execution process must be revised. Since

each physical fragment F e represents, either plaintext or encrypted, all the attributes in R,

any query q operating on R can be evaluated accessing one physical fragment only. Consider

27

a query q of the form select A from R where Cond, where A is a subset of attributes in

R, and Cond=
∧

i cnd i is a conjunction of basic predicates. The translation process consists

in first splitting Cond=
∧

i cnd i into two sets of conditions, depending on the attributes that

each basic condition in Cond involves and therefore on the party that can evaluate it. In

particular, if F e is the fragment chosen for query evaluation, Cond is split into: Cond s that

is the conjunction of basic conditions that involve only attributes plaintext represented in F e;

and Cond c that is the conjunction of basic conditions involving at least an attribute that is not

plaintext represented in F e. The external server then evaluates condition Cond s and returns

the tuples satisfying it to the client. The client decrypts attribute enc, evaluates Cond c, and

projects the resulting relation over the set A of attributes. We note that the choice of the

fragment on which query q must be evaluated should minimize the computational overhead at

the client side, and therefore limit the number of tuples satisfying Cond s that are returned to

the client. A possible strategy for choosing the fragment may consist in selecting the fragment

on which it is possible to directly execute the most selective conditions, to reduce the amount

of data returned to the client.

Example 3.6. Consider relation Patients in Figure 7(a), the set of constraints over it in

Figure 7(b), and the fragmentation in Figure 10. Suppose now that a client formulates query q

= select Name from Patients where Diagnosis=‘Diabetes’ and County=‘Napa’ returning

the names of patients living in the Napa county and suffering from diabetes. The query can be

translated to operate on each of the three fragments, but the evaluation using either F e
2 or F e

3

is more convenient than using F e
1, since they contain a subset of the attributes appearing in the

conditions of q . The translation of query q in the corresponding queries operating at the server

and at the client side, using either F e
2 or F e

3, are illustrated in Figure 11.

3.4 Departing from encryption

Although the solution illustrated in Section 3.3 limits the adoption of encryption to the at-

tributes that appear in singleton constraints, encryption carries the burden of key management

28

Translation over F e
2 Translation over F e

3

rs := select salt , enc
from F e

2

where County=‘Napa’

rs := select salt , enc
from F e

3

where Diagnosis=‘Diabetes’

rc := select Name

from Decrypt(rs.enc,rs.salt ,k)
where Diagnosis=‘Diabetes’

rc := select Name

from Decrypt(rs.enc,rs.salt ,k)
where County=‘Napa’

Figure 11: An example of query translation in the multiple fragments scenario

and makes query execution expensive. In [10, 12] the authors propose an approach that com-

pletely departs from encryption. This proposal is based on the assumption that the data owner

is willing to store a small portion of the data to satisfy confidentiality constraints.

3.4.1 Data organization

Confidentiality constraints are enforced by fragmenting the original relation R into two frag-

ments F o and F s, where F o is stored at the data owner and F s is stored at the external

server. Intuitively, fragment F o contains sensitive attributes (singleton constraints) and at

least one attribute for each sensitive association. In this way, sensitive attributes as well as

sensitive associations are not exposed to the external server. A fragmentation F=〈F o,F s〉 is

correct with respect to a set C of confidentiality constraints if ∀c ∈ C, c 6⊆ F s. We note that

fragment F o does not need to satisfy this condition (i.e., F o can possibly violate constraints),

since it is stored at the owner side and only authorized users can access it. Furthermore,

to avoid loss of information, all attributes in R should be represented either in F o or in F s

(i.e., F o∪F s=R) (completeness property). At the physical level, fragmentation F=〈F o,F s〉

with F o = {Ao1 , . . . ,Aoi} and F s = {As1 , . . . ,Asj} translates into two physical fragments

F e
o(tid,Ao1 ,. . . ,Aoi) and F e

s(tid,As1 ,. . . ,Asj). Attribute tid is the primary key of both physi-

cal fragments and guarantees the lossless join property (i.e., the correct reconstruction of the

original relation). It can be either: 1) the key attribute of R, if it does not violate confidentiality

constraints when added in F s, or 2) an attribute that is added to both F e
o and F e

s during the

fragmentation process. Note that the attributes stored in fragment F s should not be replicated

29

F e
o

tid SSN Name County

1 782619730 Anne Alameda
2 946294626 Beth Fresno
3 737260262 Cheryl Napa
4 937360965 Doris Napa
5 946259572 Evelyn Orange
6 837350362 Flora Trinity

F e
s

tid DoB Diagnosis Prescription

1 55/01/23 HIV Nevirapine
2 86/04/05 Anemia Folic acid
3 40/12/23 Arthritis Anti-inflammatory
4 81/07/22 Diabetes Insulin
5 65/10/03 HeartAttack Anticoagulants
6 89/03/24 Diabetes Insulin

Figure 12: An example of correct fragmentation departing from encryption

in F o (non-redundancy property) to avoid unnecessary storage at the data owner side and usual

replica management problems.

Example 3.7. Consider relation Patients in Figure 7(a) and the set of well defined constraints

over it in Figure 7(b). An example of a correct fragmentation is F o={SSN, Name, County}

and F s={DoB, Diagnosis, Prescription}. Figure 12 illustrates the corresponding physical

fragments, where an artificial tuple identifier has been added.

Constraint c0 is satisfied by storing attribute SSN in F o. Constraints c1, . . . , c4 are satisfied by

storing attribute Name in F o. Constraints c5 and c6 are satisfied by storing attribute County in

F o.

Given a relation R and a set of well defined confidentiality constraints C over it, there may

exist different fragmentations that are correct, complete, and non-redundant. For instance,

a fragmentation F=〈F o,F s〉, with F o=R and F s=∅, is correct, complete, and non-redundant

but it is clearly not acceptable since it corresponds to not outsourcing the data. It is then

needed to compute a fragmentation that minimizes the data owner’s workload in terms either

of storage, computation, or both. In [12] the authors illustrate the following metrics to measure

the quality of a fragmentation, which differ in the resource whose consumption should be min-

imized (storage vs computation) and on the information available about the system workload

at fragmentation time.

• Number of attributes : the cost of a fragmentation corresponds to the number of attributes

in F o.

30

• Storage space: the cost of a fragmentation corresponds to the physical size of the attributes

in F o.

• Number of queries : the cost of a fragmentation corresponds to the number of queries that

involve at least one of the attributes in F o.

• Number of conditions : the cost of a fragmentation corresponds to the number of conditions

in queries that involve at least one of the attributes in F o.

The problem of computing a fragmentation that minimizes one of the metrics above-

mentioned is NP-hard (the minimum hitting set problem reduces to it [12]). A heuristic algo-

rithm has been proposed that solves the problem for any metric and works in polynomial time

with respect to the number of attributes in R.

3.4.2 Query execution

Similarly to the non-communicating servers approach, a query formulated by users on Rmust be

translated into queries operating on F e
o and F e

s. Consider a query q of the form select A from

R where Cond, where A is a subset of attributes in R, and Cond =
∧

i condi is a conjunction

of basic predicates. As for the fragmentation techniques previously described, condition Cond

is first split into: Condo that is the conjunction of basic conditions operating only on attributes

in F o; Cond s that is the conjunction of basic conditions involving only attributes in F s; and

Condso that is the conjunction of basic conditions involving both attributes in F o and F s.

Condition Conds can be pushed down to the server, while conditions Condo and Cond so are

executed at the owner side, possibly with the support of the server.

The evaluation of a query q can proceed according to the following two different strategies,

depending on the order in which conditions Conds, Condo, and Cond so are evaluated.

• Server-Owner strategy . The external server evaluates condition Conds, the data owner

then computes the join between the result returned by the external server and F o and

evaluates Condo and Cond so.

31

Server-Owner strategy Owner-Server strategy

rs := select tid

from F e
s

where Diagnosis=‘Diabetes’

ro := select tid

from F e
o

where County=‘Napa’

rso := select Name

from F e
o join rs on

F e
o
.tid=rs.tid

where County=‘Napa’

rs := select tid

from F e
s

where Diagnosis=‘Diabetes’ and
tid in {3,4}

rso := select Name

from F e
o join rs on

F e
o.tid=rs.tid

Figure 13: An example of query translation departing from encryption

• Owner-Server strategy . The data owner evaluates condition Condo and sends the pro-

jection over attribute tid to the external server. The external server evaluates condition

Conds on the subset of tuples indicated by the data owner. Finally, the data owner refines

the result received from the server, by evaluating condition Condso.

The choice between these two strategies should take into consideration, besides efficiency

in query evaluation, the fact that if query q is publicly available, the Owner-Server strategy

reveals to the server the tuples that satisfy condition Condo, thus possibly causing privacy

breaches.

Example 3.8. Consider relation Patients in Figure 7(a), the set of constraints over it in Fig-

ure 7(b), and the fragmentation in Figure 12. Suppose now that a client formulates query q =

select Name from Patients where Diagnosis=‘Diabetes’ and County=‘Napa’ returning

the names of patients living in the Napa county and suffering from diabetes. The conditions oper-

ating at the different parties are: Cond s={Diagnosis=‘Diabetes’}, Condo={County=‘Napa’},

and Cond so=∅, respectively. The translation of q into the corresponding queries, for the Server-

Owner and Owner-Server strategies are illustrated in Figure 13. Set {3,4} used in query qs of

the Owner-Server strategy represents the identifiers of the tuples in r o, that is, of the tuples

with County=‘Napa’.

32

4 Protecting data integrity

Besides protecting data confidentiality, it is also necessary to design mechanisms for protecting

the integrity and authenticity of the data. As a matter of fact, users as well as organizations

are increasing their dependency on data for their daily operations, thus making data integrity a

critical issue. Guaranteeing integrity means that techniques should be adopted to easily verify

that the external server does not improperly modify data in storage and that the server provides

a correct response to queries (i.e., the server does not delete or modify data improperly). In

this section, we illustrate the main techniques proposed to guarantee data integrity in storage

and query computation.

4.1 Integrity in storage

Data integrity can be provided at different granularity levels: table, attribute, tuple, or cell

level. The verification of the integrity at the table level and attribute level can be performed

by the client only if she receives the whole table/column. Data integrity at the cell level suffers

from a high verification overhead. For these reasons, the majority of the proposals in the lit-

erature provide data integrity at the tuple level and rely on digital signatures (e.g., [25]). The

data owner first signs, with her private key, each tuple t in a relation, and the signature is

concatenated to the corresponding tuple. The relation is then encrypted and outsourced to the

external server. When a client receives a set of tuples from the external server, she can check

the signature associated with the tuples to detect possible unauthorized changes to the data.

The main drawback of this solution is that the verification cost at the client side grows linearly

with the number of tuples in the query result. To limit this burden, in [34] the authors propose

the adoption of a schema that permits to combine the signature of a set of tuples in a unique

signature. To this purpose, the authors consider three different signature schemas: condensed

RSA encryption schema, a variation of traditional RSA encryption schema, which allows the

aggregation of signatures generated by the same signer; BGLS encryption schema [6] based on

33

bilinear mappings, which supports the aggregation of signatures generated by different signers;

batch DSA signature aggregation whose verification is based on the multiplicative homomorphic

property of these signatures. The signature verification processes for the condensed RSA and

BGLS schemas are more efficient than the signature verification for the batch DSA schema.

Both condensed RSA and BGLS approaches are mutable, meaning that any user who knows

multiple aggregated signatures can compose them, obtaining a valid aggregated signature that

may correspond to the aggregate signature of an arbitrary set of tuples. Although this feature

can be of interest in the process of generating aggregated signatures, it also represents a weak-

ness for the integrity of the data. In [33], the authors propose an extension to condensed RSA

and BGLS techniques that makes them immutable. Such an extension is based on zero knowl-

edge protocols that allow a server to only reveal a proof of the knowledge of the aggregated

signature associated with a query result, instead of revealing the signature itself.

4.2 Integrity in query computation

In addition to provide assurance on the fact that data stored at external servers are protected

from unauthorized changes (data integrity in storage), it is also becoming more and more

important to guarantee the correctness and completeness of query results. The verification

of the integrity of data processing results is particularly difficult to implement, especially in

the emerging large-scale platforms used, for example, in cloud computing. The approaches

proposed in the literature can be classified in the following two categories.

• Authenticated data structures approaches (e.g., [19, 29, 31, 35, 36, 37, 50]) are based on the

definition of an appropriate data structure (e.g., a signature chaining, a Merkle hash tree,

or a skip list). These solutions provide completeness guarantee for the queries operating

on the attribute (set thereof) on which the data structure has been defined. Note that

all these approaches also guarantee data integrity in storage since unauthorized changes

to the data can be detected during the integrity verification process of query results.

34

• Probabilistic approaches (e.g., [30, 46, 48]) are based on the insertion of sentinels in the

outsourced data, which must also belong to the query result. These solutions provide a

probabilistic guarantee of completeness of query results.

Authenticated data structures approaches. One of the first solutions is the signature

chaining approach [35, 36], which has been proposed to verify the completeness of the result of

range queries. Given an attribute A defined over domain D and characterized by a total order

relationship, the content of the outsourced relation is ordered with respect to the value that

attribute A assumes in each tuple. The signature associated with each tuple t i is then computed

by signing the string resulting from the concatenation of h(t i−1) with h(t i), where h is a one-

way hash function and t i−1 is the tuple preceding t i in the order defined by attribute A over

the outsourced relation. If the result of a range query operating on attribute A is not complete

since one tuple, say t i, has been omitted by the external server, the signature verification

process reveals that the result is not complete. In fact, during the verification process, the

client computes a signature for tuple t i+1, that is h(t i−1)||h(t i+1), which is different from the

original signature associated with t i+1 (i.e., h(t i)||h(t i+1)). The main limitation of this solution

is that it guarantees the completeness of the query result only with respect to the attribute

on which the signature chain has been defined. A signature chain has to be defined for each

attribute that may be involved in a range query. As a consequence, the size of the signature

associated with each tuple, and therefore also the time necessary for its verification, increases

linearly with the number of signature chains.

Other approaches are based on the definition of a Merkle hash tree [31]. A Merkle hash

tree is a binary tree, where the leaves contain the hash of one tuple of the outsourced relation,

and each internal node contains the result of the application of a one-way hash function on the

concatenation of the children of the node itself. The root of the Merkle hash tree is signed by

the data owner and communicated to authorized users. The tuples in the leaves of the tree

are ordered according to the value of a given attribute A. Figure 14 illustrates an example of

a Merkle hash tree built over relation Patients in Figure 1(a) for attribute Name. Whenever

35

h
1
=
h
(t
1
)
 h
2
=
h
(t
2
)
 h
3
=
h
(t
3
)
 h
4
=
h
(t
4
)
 h
5
=
h
(t
5
)
 h
6
=
h
(t
6
)
 h
7
=
h
(0
)
 h
8
=
h
(0
)

h
12
=
h
(h
1
||h
2
)
 h
34
=
h
(h
3
||h
4
)
 h
56
=
h
(h
5
||h
6
)
 h
78
=
h
(h
7
||h
8
)

h
5678
=
h
(h
56
||h
78
)
h
1234
=
h
(h
12
||h
34
)

root
=
h
(h
1234
 ||h
5678
)

Figure 14: An example of Merkle hash tree

the external server evaluates a range query operating on A, it returns to the requesting client

the result of the query along with a verification object (VO) including all the information that

the client needs to know to verify the completeness of the query result [19]. In particular, the

computation of the verification object depends on the type of query submitted to the server.

For instance, in case of a selection query that returns a specific tuple, the verification object

includes the values of all the nodes that are sibling of the nodes in the path from the leaf

corresponding to the returned tuple to the root of the tree. The content of the verification

object is necessary to recompute the value of the root and to verify whether the computed

value is equal to the value originally signed by the data owner. If the comparison succeeds, the

query result is correct; it is not correct, otherwise. For instance, with respect to the Merkle

hash tree in Figure 14, the verification object for a query that returns the patient whose name

is Beth (i.e., tuple t2) is represented by gray nodes in the figure. After the proposal in [19],

many different solutions have been presented with the goal of improving the efficiency of the

verification process [29, 37] and to support join operations [50]. Like for signature chaining,

also the adoption of Merkle hash trees requires the definition of a different data structure for

each attribute that can be involved in a query.

Since Merkle hash trees cannot efficiently support updates to the outsourced data, in [20]

the authors propose to use an authenticated skip list for verifying the completeness of query

results. A skip list is a hierarchical data structure that stores an ordered list of elements and

efficiently supports the search, insertion, and removal of elements in the list. The proposal

36

in [20] consists in representing through a relational table, called security table, the skip list

built over the outsourced relation R. To prove the completeness of a query, the user checks the

value of few tuples in the security table. In [20], the authors describe different techniques for

efficiently querying the security table and illustrate how skip lists easily support updates to the

outsourced relation.

Probabilistic approaches. The solutions based on the definition of an authenticated data

structure have the advantage that they provide a guarantee of the completeness of query results

with absolute certainty. The main problem however is that these data structures can be used

only for the specific attribute on which they are built. This implies that the completeness of

queries operating on different attributes cannot be checked. To solve this problem, probabilistic

approaches allow a client to verity the completeness of any query result with high probability,

reducing also the performance overhead. In [48] the authors propose a probabilistic approach

based on the insertion of fake tuples in the relations before outsourcing them. When a client

receives the query result, it checks whether the fake tuples that satisfy the conditions specified

in the query belong to the result. If at least a fake tuple is missing, the query result is not

complete. Clearly, fake tuples must be indistinguishable at the server’s eye from real tuples,

since otherwise the server could compute the query result only on the fake tuples without being

discovered. As proved in [48], even a limited number of fake tuples ensures high probabilistic

guarantee of completeness. The approach in [48] operates on relational databases and has been

then extended to operate on XML data collections [30].

In [46] the authors propose an alternative approach based on the replication, and encryption

with a different key, of a subset of the outsourced tuples. The original encrypted tuples as well

as the duplicated tuples are then mixed all together and stored in the same relation. A query

submitted by the client is translated into two queries determined by applying the two different

encryption keys, and then they are executed on the whole encrypted relation. The client

compares the results obtained by the two queries and verifies whether they both contain the

same duplicate tuples. If a tuple that has been duplicated appears only in one of the two query

37

results, the client can immediately infer that the server has omitted at least a tuple from the

result of one of these queries. Clearly, the server should not be able to determine the pairs of

tuples in the outsourced relation that represent the same plaintext tuple. Like for fake tuples,

the probabilistic guarantee of completeness increases with the number of duplicated tuples.

In [44], the authors present a completely different approach based on the pre-computation

of tokens associated with a batch of queries. Before outsourcing the database, the data owner

evaluates a set of queries on plaintext data and associates with each query a token computed

by applying a one-way cryptographic hash function to the query result concatenated with a

nonce. When the client submits a set of batch queries to the external server, it also includes

one of the tokens previously computed and associated with one query in the batch. The server

executes the queries in the batch and returns to the client the results of the queries along with

a token and the indication of the query to which the token is associated. Such a token has to

match the token previously sent from the client to the server. If this match succeeds, the client

knows that the server has executed all the queries in the batch and that the result of each query

is complete (because the server is not able to identify the query whose token is equal to those

received from the client).

Freshness. Recent proposals address the problem of guaranteeing the freshness [29] of query

results, meaning that queries are always executed on up-to-date data collections. In [49], the

authors propose a solution for both authenticated data structures and probabilistic approaches.

The basic idea behind the solution developed for the authenticated data structure approaches

is to include a timestamp, which is periodically updated, in the data structure itself. If a

client knows how frequently the timestamp is updated, she can check whether the received

verification object (and therefore the data) is up-to-date. For instance, the signature of the

root of a Merkle hash tree can be computed on the concatenation of the hash values of its

children with the timestamp. The external server cannot execute queries on old versions of

the data since a client, by checking the timestamp included in the signature of the root of the

Merkle hash tree, can detect whether the returned query result is based on up-to-date data. The

38

solution proposed for probabilistic approaches adopting fake tuples [48] is based on periodically

changing, in a deterministic way, the fake tuples in the dataset (i.e., new and old fake tuples are

periodically added and deleted, respectively). If a client knows what are the current fake tuples

in the outsourced data, it can verify whether a query result includes all and only the valid fake

tuples that should be present in the instant of time when the query has been executed. At any

time, the fake tuples to be inserted or deleted are generated by functions that are shared with

clients.

5 Open issues

The data outsourcing scenario presents different security issues that need to be carefully ad-

dressed. Besides the problems described in this chapter, there are still other open issues and

challenges that require further investigation and that we briefly describe.

• Multiple relations. Most of the works in the data outsourcing scenario assume that out-

sourced information is stored in a single relation. An interesting open issue consists in

assuming that data are represented through a set of relations that can be possibly joined.

The definition of confidentiality constraints needs then to be extended to capture complex

requirements involving multiple relations. Analogously, the data integrity issues should be

further investigated. We note that there are some attempts that consider the integrity of

data resulting from the combination (join) of multiple tables. These solutions are however

at a preliminary stage and may result difficult to apply in a real world scenario, where

simplicity and efficiency are a must.

• Dynamic datasets. Solutions for protecting outsourced data typically consider static

datasets since the insertion/deletion of data can possibly cause privacy breaches. For

instance, the insertion of a tuple in a fragmented relation translates to the insertion of

a sub-tuple in each of the physical fragments stored at the external server(s). By moni-

toring updates to fragments, a malicious user can reconstruct the associations among the

39

attributes represented in the clear in different fragments, thus violating confidentiality

constraints for the new tuple. It would be then interesting to extend current approaches

to support dynamic datasets.

• Multiple owners. In may real-world situations, the access restrictions on data arise from

the collaboration of multiple parties (owners) that have a say on the data. This situation

calls for novel solutions that should take into consideration the fact that the outsourced

data may have multiple owners that need to collaborate to provide an adequate protection.

• Selective write privileges. A common assumption of all the works in the data outsourcing

scenario is that write operations are permitted only to the owner of the data. This re-

striction however may not be applicable in many scenarios, where users need to cooperate

to reach a common goal. Therefore, it would be interesting to extend current approaches

for access control enforcement to support selective write privileges.

• Instance level protection requirements. Confidentiality constraints are defined at the

schema level and describe which attributes should not be released in combination. There

are however situations where associations are sensitive only when the involved attributes

assume specific values. For instance, the association between the name of a specific pa-

tient and her diagnosis can be considered sensitive only if the diagnosis reveals that the

patient suffers from a rare disease. Novel data protection techniques have then to be

developed that take into consideration also these instance level protection requirements.

• Private access. Most of the solutions that guarantee confidentiality in the data outsourc-

ing scenario are aimed at guaranteeing the privacy of remotely stored data. Another

important issue that still needs to be addressed is represented by query confidentiality.

In fact, a query submitted by a user can be possibly exploited for inferring sensitive in-

formation about the user. For instance, if a user accesses a medical database looking for

information related to a specific disease, the server can infer that the user (or a person

close to her) suffers from that disease. We note that the protection of query confidentiality

40

requires the protection of access patterns as well: even if each query singularly taken can

be considered secure, the monitoring of a sequence of accesses may permit the server to

infer sensitive information.

6 Conclusions

Data outsourcing is emerging today as a successful paradigm for the efficient management

of huge data collections. As a consequence of this trend toward outsourcing, sensitive data

(or data that can be exploited for linking with sensitive data) are now stored on external

servers. Data confidentiality and data integrity can then be at serious risk. In this chapter, we

first provided an overview of recent proposals addressing the data confidentiality issues. We

described solutions based on encryption, a combination of encryption and fragmentation, and

the involvement of the data owner for storing a portion of the data. We then considered the

integrity issues and described different approaches that guarantee the integrity of the data in

storage and the correctness, completeness, and freshness of query results. We concluded the

chapter with an overview of the main open research challenges in the data outsourcing scenario.

Acknowledgments

This work was supported in part by the EU within the 7FP project “PrimeLife” under grant

agreement 216483, by the Italian Ministry of Research within the PRIN 2008 project “PEP-

PER” (2008SY2PH4), and by the Università degli Studi di Milano within the “UNIMI per il

Futuro - 5 per Mille” project “PREVIOUS”.

Exercises

Exercise 1. Consider relation Patients in Figure 1(a), its encrypted version in Fig-

ure 1(b), and query q = “select Diagnosis from Patients where DoB<1970 and

41

County=‘Orange”’. Translate q in a query that can be executed by the external server on

the encrypted relation and determine the tuples returned by the server. Are there any spurious

tuples?

Exercise 2. Consider the following access matrix:

t1 t2 t3 t4 t5 t6

A 1 0 1 1 1 0

B 1 1 0 1 0 1

C 1 0 1 0 0 1

D 0 1 0 0 1 0

E 0 1 0 0 1 0

Determine a key derivation hierarchy by applying the heuristic algorithm described in Sec-

tion 2.3.

Exercise 3. Consider relation Citizen(SSN, Name, DoB, ZIP, Occupation, Annual Income)

and the confidentiality constraints: c0 = {SSN}, c1 = {Name, DoB, ZIP}, c2 = {Name, Annual

Income}, c3 = {DoB, ZIP, Annual Income}, c4 = {Occupation, Annual Income}.

Determine a correct and complete fragmentation of relation Citizen, according to the “non-

communicating servers” fragmentation approach (Section 3.2).

Exercise 4. Consider relation Citizen(SSN, Name, DoB, ZIP, Occupation, Annual Income)

and the confidentiality constraints: c0 = {SSN}, c1 = {Name, DoB, ZIP}, c2 = {Name, Annual

Income}, c3 = {DoB, ZIP, Annual Income}, c4 = {Occupation, Annual Income}.

Determine a correct and minimal fragmentation that maximizes visibility of relation Citizen,

according to the “multiple fragments” fragmentation approach (Section 3.3).

Exercise 5. Consider relation Citizen(SSN, Name, DoB, ZIP, Occupation, Annual Income)

and the confidentiality constraints: c0 = {SSN}, c1 = {Name, DoB, ZIP}, c2 = {Name, Annual

Income}, c3 = {DoB, ZIP, Annual Income}, c4 = {Occupation, Annual Income}.

42

Determine a correct, complete, and non redundant fragmentation of relationCitizen, according

to the “departing from encryption” fragmentation approach (Section 3.4).

Exercise 6. Consider relation Patients in Figure 1(a) and its fragmentation in Figure 8.

Translate query q = select Name, Diagnosis from Patients where DoB>1980 and

County6=‘Napa’, by applying both the parallel and sequential strategies.

Exercise 7. Consider relation Patients in Figure 1(a) and its fragmentation in Figure 10.

Translate query q = select Name, DoB from Patients where Diagnosis=‘Diabetes’ and

County=‘Napa’ assuming to evaluate q on F e
2 .

Exercise 8. Consider relation Patients in Figure 1(a) and its fragmentation in Figure 12.

Translate query q = select Name, Prescription from Patients where

Diagnosis=‘Diabetes’ and DoB<1985 assuming to evaluate q on F e
3 .

References

[1] G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. Kenthapadi, R. Motwani, U. Sri-

vastava, D. Thomas, and Y. Xu. Two can keep a secret: A distributed architecture for

secure database services. In Proc. of CIDR 2005, Asilomar, CA, USA, January 2005.

[2] R. Agrawal, J. Kierman, R. Srikant, and Y. Xu. Order preserving encryption for numeric

data. In Proc. of SIGMOD 2004, Paris, France, June 2004.

[3] S. Akl and P. Taylor. Cryptographic solution to a problem of access control in a hierarchy.

ACM TOCS, 1(3):239–248, August 1983.

[4] M. Atallah, M. Blanton, N. Fazio, and K. Frikken. Dynamic and efficient key management

for access hierarchies. ACM TISSEC, 12(3):18:1–18:43, January 2009.

43

[5] M.J. Atallah, K.B. Frikken, and M. Blanton. Dynamic and efficient key management for

access hierarchies. In Proc. of CCS 2005, Alexandria, VA, USA, November 2005.

[6] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted

signatures from bilinear maps. In Proc. of Eurocrypt 2003, Warsaw, Poland, May 2003.

[7] A. Ceselli, E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, and

P. Samarati. Modeling and assessing inference exposure in encrypted databases. ACM

TISSEC, 8(1):119–152, February 2005.

[8] S. Cimato, M. Gamassi, V. Piuri, R. Sassi, and F. Scotti. Privacy-aware biometrics:

Design and implementation of a multimodal verification system. In Proc. of ACSAC 2008,

Anaheim, CA, USA, December 2008.

[9] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Sama-

rati. Fragmentation and encryption to enforce privacy in data storage. In Proc. of ES-

ORICS 2007, Dresden, Germany, September 2007.

[10] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Sama-

rati. Enforcing confidentiality constraints on sensitive databases with lightweight trusted

clients. In Proc. of DBSec 2009, Montreal, Canada, July 2009.

[11] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Sama-

rati. Fragmentation design for efficient query execution over sensitive distributed databases.

In Proc. of ICDCS 2009, Montreal, Canada, June 2009.

[12] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Sama-

rati. Keep a few: Outsourcing data while maintaining confidentiality. In Proc. of ESORICS

2009, Saint Malo, France, September 2009.

44

[13] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Sama-

rati. Combining fragmentation and encryption to protect privacy in data storage. ACM

TISSEC, 13(3):22:1–22:33, July 2010.

[14] J. Crampton, K. Martin, and P. Wild. On key assignment for hierarchical access control.

In Proc. of CSFW 2006, Venice, Italy, July 2006.

[15] E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, and P. Samarati.

Balancing confidentiality and efficiency in untrusted relational DBMSs. In Proc. of CCS

2003, Washington, DC, USA, October 2003.

[16] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati. Over-

encryption: Management of access control evolution on outsourced data. In Proc. of VLDB

2007, Vienna, Austria, September 2007.

[17] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati. En-

cryption policies for regulating access to outsourced data. ACM TODS, 35(2):12:1–12:46,

April 2010.

[18] A. De Santis, A.L. Ferrara, and B. Masucci. Cryptographic key assignment schemes for

any access control policy. IPL, 92(4):199–205, November 2004.

[19] P.T. Devanbu, M. Gertz, C.U. Martel, and S.G. Stubblebine. Authentic third-party data

publication. In Proc. of DBSec 2000, Schoorl, The Netherlands, August 2000.

[20] G. Di Battista and B. Palazzi. Authenticated relational tables and authenticated skip lists.

In Proc. of DBSec 2007, Redondo Beach, CA, USA, July 2007.

[21] M. Gamassi, M. Lazzaroni, M. Misino, V. Piuri, D. Sana, and F. Scotti. Accuracy and

performance of biometric systems. In Proc. of IMTC 2004, Como, Italy, 2004.

[22] M. Gamassi, V. Piuri, D. Sana, and F. Scotti. Robust fingerprint detection for access

control. In Proc. of RoboCare Workshop 2005, Rome, Italy, May 2005.

45

[23] C. Gentry. Fully homomorphic encryption using ideal lattices. In Proc. of STOC 2009,

Bethesda, MA, USA, May 2009.

[24] H. Hacigümüs, B. Iyer, and S. Mehrotra. Providing database as a service. In Proc. of

ICDE 2002, San Jose, CA, USA, February 2002.

[25] H. Hacigümüs, B. Iyer, and S. Mehrotra. Ensuring integrity of encrypted databases in

database as a service model. In Proc. of DBSec 2003, Estes Park, CO, USA, August 2003.

[26] H. Hacigümüs, B. Iyer, and S. Mehrotra. Efficient execution of aggregation queries over

encrypted relational databases. In Proc. of DASFAA 2004, Jeju Island, Korea, March

2004.

[27] H. Hacigümüs, B. Iyer, S. Mehrotra, and C. Li. Executing SQL over encrypted data in

the database-service-provider model. In Proc. of the SIGMOD 2002, Madison, WI, USA,

June 2002.

[28] K. Kant. Data center evolution: A tutorial on state of the art, issues, and challenges.

Computer Networks, 53(17):2939–2965, December 2009.

[29] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. Dynamic authenticated index struc-

tures for outsourced databases. In Proc. of SIGMOD 2006, Chicago, IL, USA, June 2006.

[30] R. Liu and H. Wang. Integrity verification of outsourced XML databases. In Proc. of CSE

2009, Vancouver, Canada, August 2009.

[31] R.C. Merkle. A certified digital signature. In Proc. of CRYPTO 1989, Santa Barbara, CA,

USA, August 1989.

[32] G. Miklau and D. Suciu. Controlling access to published data using cryptography. In Proc.

of VLDB 2003, Berlin, Germany, September 2003.

46

[33] E. Mykletun, M. Narasimha, and G. Tsudik. Signature bouquets: Immutability for ag-

gregated/condensed signatures. In Proc. of ESORICS 2004, Sophia Antipolis, France,

September 2004.

[34] E. Mykletun, M. Narasimha, and G. Tsudik. Authentication and integrity in outsourced

databases. ACM TOS, 2(2):107–138, May 2006.

[35] M. Narasimha and G. Tsudik. DSAC: Integrity for outsourced databases with signature

aggregation and chaining. In Proc. of CIKM 2005, Bremen, Germany, October–November

2005.

[36] H. Pang, A. Jain, K. Ramamritham, and K.L. Tan. Verifying completeness of relational

query results in data publishing. In Proc. of SIGMOD 2005, Baltimore, MA, USA, June

2005.

[37] H. Pang and K.L. Tan. Authenticating query results in edge computing. In Proc. of ICDE

2004, Boston, MA, USA, April 2004.

[38] R.L. Rivest, L. Adleman, and M.L. Dertouzos. On data banks and privacy homomorphisms.

In R.A. DeMillo, R.J. Lipton, and A.K. Jones, editors, Foundation of Secure Computations.

Academic Press, 1978.

[39] P. Samarati. Protecting respondents’ identities in microdata release. IEEE TKDE,

13(6):1010–1027, November 2001.

[40] P. Samarati and S. De Capitani di Vimercati. Data protection in outsourcing scenarios:

Issues and directions. In Proc. of ASIACCS 2010, Beijing, China, April 2010.

[41] R.S. Sandhu. On some cryptographic solutions for access control in a tree hierarchy. In

Proc. of the 1987 Fall Joint Computer Conference on Exploring Technology: Today and

Tomorrow, Dallas, TX, USA, October 1987.

47

[42] R.S. Sandhu. Cryptographic implementation of a tree hierarchy for access control. IPL,

27(2):95–98, February 1988.

[43] B. Schneier. Applied Cryptography. John Wiley & Sons, 2/E, 1996.

[44] R. Sion. Query execution assurance for outsourced databases. In Proc. of VLDB 2005,

Trondheim, Norway, August–September 2005.

[45] H. Wang and Laks V. S. Lakshmanan. Efficient secure query evaluation over encrypted

XML databases. In Proc. of VLDB 2006, Seoul, Korea, September 2006.

[46] H. Wang, J. Yin, C. Perng, and P.S. Yu. Dual encryption for query integrity assurance.

In Proc. of CIKM 2008, Napa Valley, CA, USA, October 2008.

[47] Z.F. Wang, J. Dai, W. Wang, and B.L. Shi. Fast query over encrypted character data in

database. CIS, 4(4):289–300, December 2004.

[48] M. Xie, H. Wang, J. Yin, and X. Meng. Integrity auditing of outsourced data. In Proc. of

VLDB 2007, Vienna, Austria, September 2007.

[49] M. Xie, H. Wang, J. Yin, and X. Meng. Providing freshness guarantees for outsourced

databases. In Proc. of EDBT 2008, Nantes, France, March 2008.

[50] Y. Yang, D. Papadias, S. Papadopoulos, and P. Kalnis. Authenticated join processing in

outsourced databases. In Proc. of SIGMOD 2009, Providence, RI, USA, June-July 2009.

48

Index

access control, 10

affinity matrix, 22

authenticated data structure, 35

authenticated skip list, 36

Merkle hash tree, 35

signature chaining, 35

verification object, 36

authenticity, 33

Base Encryption Layer, 16

confidentiality constraint, 18

association constraint, 18

singleton constraint, 18

well defined set of constraints, 18

data outsourcing, 1

data owner, 3

digital signature, 33

BGLS, 33

condensed RSA, 33

DSA signature aggregation, 34

encoding, 19

encryption

encrypted relation, 3

encryption policy, 13

multi-key encryption, 11

two layer encryption, 16

fragmentation, 19

completeness, 21, 29

correctness, 20, 25, 29

departing from encryption, 28

maximal visibility, 25

minimality, 27

multiple fragments, 24

non-communicating servers, 20

non-redundancy, 30

freshness, 38

honest-but-curious server, 2

index, 6

B+-tree index, 8

encryption-based index, 6

hash-based index, 7

order preserving encryption index, 9

partition-based index, 6

privacy homomorphic index, 9

inference attack, 10

integrity, 33

integrity in query computation, 34

integrity in storage, 33

key derivation, 12

49

hierarchy, 12

linking attack, 10

probabilistic integrity solution, 37

fake tuple, 37

query token, 38

Surface Encryption Layer, 17

50

