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Abstract 

The increasing adoption of Cloud-based data processing and storage poses 

a number of privacy issues. Users wish to preserve full control over their 

sensitive data and cannot accept it to be fully accessible to an external storage 

provider. Previous research in this area was mostly addressed at techniques to 

protect data stored on untrusted database servers; however, I argue that the 

Cloud architecture presents a number of specific problems and issues. This 

dissertation contains a detailed analysis of open issues. To handle them, I 

present a novel approach where confidential data is stored in a highly 

distributed partitioned database, partly located on the Cloud and partly on the 

clients.  

In my approach, data can be either private or shared; the latter is shared in a 

secure manner by means of simple grant-and-revoke permissions. I have 

developed a proof-of-concept implementation using an in-memory RDBMS 

with row-level data encryption in order to achieve fine-grained data access 

control. This type of approach is rarely adopted in conventional outsourced 

RDBMSs because it requires several complex steps. Benchmarks of my proof-

of-concept implementation show that my approach overcomes most of the 

problems.  
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1 INTRODUCTION 

Cloud computing, today, provides users with readily available, pay-as-you-go 

computing and storage power, allowing them to dynamically adapt their 

Information Technology (IT) costs to their needs [23]. With Cloud computing, 

users need neither huge investments in the start-up phase nor costly 

competence in IT system management. 

While the Cloud computing concept is drawing much interest, several 

obstacles remain to its widespread adoption [23], including:  

 Current limits of ICT infrastructure: network availability, reliability, 

and quality of service; 

 Differences in the development process of Cloud applications with 

respect to ordinary ones; and, importantly, 

 Privacy risks for confidential information residing in the Cloud.  

Thanks to increasing network availability, the first obstacle is becoming lesser 

and lesser of an issue over time; the second will tend to disappear with the 

training of new developers and by introducing new software development 

methods; the third obstacle, however, is far from being solved and may 

seriously impair the real prospects of Cloud computing. 

This is particularly the case for Public Clouds [3], i.e., those available, upon 

subscription, to the general public (as opposed to Private Clouds operated by 

large enterprises and organizations for their employees). 

Nowadays, the use of Public Clouds is becoming more and more frequent, 

thanks to productivity and collaboration tools (e.g. Google Apps1 , Zimbra2 , 

                                                 

1  www.google.com/a 

http://www.google.com/a
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etc.), online social networks (such as Facebook3  and LinkedIn4 ), etc. Those 

applications/services store a lot of information on the Cloud, many of which is 

confidential. Hence, a strong data access control is needed to prevent 

unauthorized uses. Typically, external access to shared data held in the Cloud 

goes through the usual authentication, authorization, and communication 

phases.  

The access control problem is well acknowledged in the database literature 

and the available approaches guarantee a high degree of assurance. For the 

traditional datacenters’ scenario, where storage is internal to the Enterprise 

and considered trusted, the attacks are expected from the outside. When data 

is outsourced, though, even the data storage and its administrators are 

external to the Enterprise. Therefore, the requirement that the maintainer of 

the datastore may not access or alter the outsourced data is not easily met. 

This is especially the case for commercial Public Clouds like Google App 

Engine for Business, Microsoft Azure Platform or Amazon EC2 platform. 

The privacy issue of Cloud environment is not only related to the datastore 

protection in untrusted servers. In a Cloud-based Data Center, a number of 

serious questions arise about the available services and the stored data [58]: 

 Who controls them? 

 Where are the servers located? 

 Where is the data stored? 

 Which legislation applies to them? 

 Who backs up the servers? 

 Who has access to the servers? 

 How resilient is the service? 

 How do auditors observe? 

 How does users’ security-team engage? 

Hence, new categories of risks come up: 

                                                                                                                                            

2  www.zimbra.com 

3  www.facebook.com 

4  www.linkedin.com 
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 Control: many organizations are uncomfortable with having their data 

managed by systems and staff they neither know nor control; therefore 

the providers must offer a high degree of reputation, security, and 

transparency to win users’ confidence. 

 Privacy: migrating data to a shared computing infrastructure increases 

the potential for unauthorized exposure, privacy breaches, and data 

loss. Authentication and access control techniques, and data replication 

are crucial. 

 Compliance: often the keeping of sensitive data (e.g., customers’ 

identities) is regulated by strict national/international laws, such as the 

Health Insurance Portability and Accountability Act (HIPAA)5  and the 

Sarbanes–Oxley Act (SOX)6 . These and other regulations may severely 

limit the use of Clouds in practice. 

 Security Management: even the simplest task may end up behind layers 

of abstraction or performed by someone else. Providers must supply 

easy-to-use controls to manage security settings for application and 

run-time environments. 

In a well-attended keynote address at ICWS 2010 [58], Elisa Bertino has 

summarized the most important security threats emerged in some of the last 

conferences about Cloud computing: 

 Abuse and Nefarious Use of Cloud Computing 

 Insecure Application Programming Interfaces 

 Malicious Insiders 

 Shared Technology Vulnerabilities 

 Data Loss/Leakage 

 Account, Service & Traffic Hijacking 

 Unknown Risk Profile 

 Loss of governance 

 Lock-in 

 Isolation failure 

                                                 

5  http://www.gpo.gov/fdsys/pkg/PLAW-104publ191/content-detail.html 

6  http://www.gpo.gov/fdsys/pkg/PLAW-107publ204/content-detail.html 
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 Compliance risks 

 Management interface compromise 

 Data protection 

 Insecure or incomplete data deletion 

 Malicious Insider 

 Privileged user access 

 Regulatory compliance 

 Data location 

 Data segregation 

 Recovery 

 Investigative support 

 Long-term viability. 

To complicate the scenario, the availability of many alternatives for Cloud 

sharing (Private, Public, Federated, and Hybrid) and delivery models (IaaS, 

PaaS, and SaaS) makes it difficult, if not impossible, to find universal solutions 

to privacy issues. 

Although there are a number of techniques for preserving privacy of 

outsourced data on untrusted database servers (see chapter 2-Background on 

data protection), I will argue that they cannot be applied directly to the Cloud, 

particularly in the case of Public Cloud. First, these techniques were designed 

for RDBMS, while newer and less structured data models are increasingly 

used on the Cloud (see Section 6.3 - Semantic datastore). Second, besides 

managing data storage, the Cloud hosts all application logic up to the 

presentation layer. Hence, if a Cloud supplier even becomes untrustworthy, it 

can intercept communications between data storage and application logic, can 

monitor the user application memory and can modify (e.g., using Aspect 

Programming) presentation software components used to display application 

output to the final users. 

Essentially, encryption-based techniques for safely outsourcing data to 

untrusted DBMS cannot guarantee the confidentiality of data in the Cloud. 

Even if the data layer is secured through encryption, at some points, on its 

path toward the user, the data will be in plaintext form, i.e., unprotected and 

vulnerable.  
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To maintain data privacy, this dissertation proposes to move the 

entire presentation layer of Cloud applications from Server to 

Client side.  

However, separating the data layer (which would stay in the Cloud) from the 

presentation logics (which would stay in the client) may lead to an inefficient 

cooperation between the two parts.  For this reason, I think it is better to move 

also the data layer into the client. 

To ensure seamless cooperation between the data layer and the presentation 

logic, I propose a highly distributed architecture that is composed of a set of 

local nodes that run the applications and store all the data. Data is replicated 

when needed on all the nodes that access it. The local copies shall be 

synchronized using a central service on the Cloud using encryption, in the 

protocol which I designed, to guarantee data protection during the 

synchronization phase.  

Moreover, the architecture I propose allows fine-grained data access control 

and has the capability to revoke the access rights to a local node. To achieve 

this result, a row-level encrypted database is used. Since this type of 

encryption is rarely adopted in conventional RDBMSs, as it requires several 

complex steps, I propose an extension to add this functionality to In-Memory 

DataBases. 

A test implementation of the architecture and of an extended IMDB was 

realized and used to benchmark the system. 

Finally, I studied and utilized a standard email server on the Cloud as 

Synchronizer, evaluating the impact of this choice in performance and 

scalability. 

1.1 Structure of this dissertation 

This thesis mainly consists of three parts. In the first one (Chapters 2-6) I 

want to give a survey of the state of the art, in particular of: 

 Data protection in outsourced database (protection techniques on 

untrusted servers, data access control, etc.), in Chap. 2; 

 Cryptography in databases (the various level of encryption and the 

granularity in database level encryption), in Chap. 3; 
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 In-memory databases, in Chap. 4; 

 Broadcast  in communication networks and Online Social Networks, in 

Chap. 5; 

 An analysis of Cloud Computing and the peculiarity of Privacy within 

the Cloud, with particular attention to the differences between the 

Cloud environment and the untrusted outsourced data servers, in Chap. 

6. 

In the second part (Chapters 7-10), I present the innovative work: 

 The UML complete layout of a distributed secure architecture for data 

sharing, in Chap. 7; 

 The Scenarios where the proposed system fits, in Chap. 8; 

 The structure, and the custom algorithms for secure data sharing, in 

Chap. 9; 

 A self-assessment of what has been achieved, and a comparison with 

the original goals, in Chap. 10. 

The third part (Chapters 11-16) is dedicated to the pilot implementation and 

its testing, as a way to validate the framework: 

 Implementation and benchmarking, in Chap. 11; 

 Further enhancement to improve scalability of the system, in Chap. 12; 

 Comparison with other approaches, in particular with Broadcast 

Encryption, in Chap. 13; 

 Vulnerability assessment, a key to prevent possible attacks, in Chap. 14; 

 The scenarios for a successful deployment of my system, in Chap. 15, 

and 

 Conclusion and future works, in Chap. 16. 
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Part I - Background and  
state of the art 
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2 BACKGROUND ON DATA 

PROTECTION 

This chapter presents the most important privacy issues in databases outsourcing on 

untrusted servers. I illustrate the main techniques for providing data protection and for 

securing the confidentiality of data stored at external honest-but-curious servers. Then, I 

discuss the state of the art of access control to outsourced data, describing how data can be 

selectively accessed from users and how access rights may change over time.  

2.1 Outsourced storage on untrusted servers  

Data storage involves high costs because it requires physical resources 

(disks, servers, etc.), frequent management procedures (backup, tuning, etc.), 

and skilled administrative staff. 

A cheaper solution is data outsourcing to a specialized provider that takes care 

of the storage within its own specialized structure to offer high availability and 

disaster protection [108]. Delegating data management to outsourced 

untrusted entity implies a risk for confidentiality and privacy, and a potential 

improper use of database information (harvesting, targeting, reselling, etc.) by 

the provider itself [15], since traditional access control techniques prevent 

data access by external users, but not by internal administrators (DBA).  

The main issues for guaranteeing proper protection and access to outsourced 

data are [6]: 

 Data protection: the storage server is responsible of data management 

but should not be authorized to know the actual data content. To 

achieve this goal, almost all the proposed approaches in literature 

employ encryption to secure customers’ data [95][106][109], or on 
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splitting (fragments of the original data) across several or tables 

[110][111][112]. 

 Query execution: if the server stores encrypted information, it is not 

able to execute the users’ queries, at most  it could send the encrypted 

tables involved in the query to the requester, which, then, needs to 

decrypt and query by herself [15]. Also in case of fragmentation, the 

client needs some logic to recombine different subqueries [6]. To 

decrease the client overhead, we try to process the request as far as 

possible on the server, leaving the client with a task of finishing. For 

this purpose, a set of indexes may be added to the encrypted 

information [114][115][109]. The response of server is a trade-off 

between precision (the fraction of the information retrieved that is 

relevant to the user's information need[113]) and privacy, because a 

precision too close to 1 allows statistical data mining, while a precision 

too far from 1 overloads the client. 

 Private access: the server may not inference information storing and 

analyzing the queries. This lead to the concept of oblivious searches on 

public key encrypted data [116]. 

 Data integrity and correctness: in addiction to honest-but-curious 

servers, which are untrusted w.r.t. data access but trusted w.r.t. 

properly enforcing data storage and management, we have also to 

consider totally untrusted server, which can alter stored data or 

queries’ results. In this case, a mechanism to check integrity and 

correctness of data is needed. It may be based on signatures attached to 

tuples in the database [117][118], or on chain structures as skip lists 

[119] that allow the client to the integrity of the returned tuples.  

 Access control enforcement: usually, the existing database access 

control mechanisms assume that the server is in charge of defining and 

enforcing access control. In the case of outsourced data, instead, it is 

unfeasible since the access control policy itself might be sensitive (and 

so it needs to be hidden to the server), access control restrictions might 

depend on the data content (that the server may not read), and an 

untrusted server may alter the access control. At the same time, it is not 

possible to give in charge the access control to data owner, to filter out 
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from the query result the tuples that a client cannot access, because it is 

too expensive and it brings to bottlenecks. A feasible way is the use of 

different encryption keys for different data as proposed, for example, 

for XML documents [121]. To access such encrypted data, users have to 

decrypt them by using the appropriate key. If different users know 

different keys, they have different access rights [120]. 

 Support for selective write privileges: the previous problem considers 

only the “read” access control, but the same happens for “write” access.  

 Data publication and utility: given a database instance containing 

sensitive information, it needs to be "anonymized" to obtain a view 

such that attackers cannot learn any sensitive information from the 

view, and legitimate users can use it to compute useful statistics [122]. 

Data protection and utility can be seen as conflicting goals: the more 

data are encrypted or obfuscated, the less the ability to withdraw 

knowledge and inferences from them. 

 Private collaborative computation: sometimes, the data that comes to a 

client is the result of interaction between many servers that collaborate 

to accomplish a service. In this case, the goal is to perform the 

computation on each server without revealing the data used to the 

extern [123][124].  

2.2 Data protection techniques 

To prevent a server from accessing data stored on its own machines, the 

literature reports three major families of data protection techniques on 

untrusted servers [6]:  

 Data encryption [15]; 

 Data fragmentation and encryption [16], which in turn can be classified 

into two major techniques 

o non-communicating servers [17][18]; 

o unlinkable fragments [19], and 

 Data fragmentation with owner involvement [20]. 

The goal of each of these techniques is to store data on the untrusted server in 

an inaccessible format, using encryption and/or fragmentation, to prevent 
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provider’s access to stored information. In all the scenarios, we can see four 

actors [15], as represented in Figure 1: 

1. An outsourced server that operates on behalf of one or more data 

owners that outsource their data, 

2. A data owner that store information into the server, 

3. A human user that queries the database, and 

4. A client software that elaborates locally the queries. 

 

Figure 1 The actors in protected outsourced storage 

The process is: 

1. The data owner stores information into the server accordingly with the 

used technique (e.g. after having encrypted the information); 

2. The server stores this data;  

3. When a user wants to access data, she creates a Db query Q1 . The query 

is processed by the client software that manipulates it to obtain an 

equivalent query Q2  that is processable by the server (that cannot 

directly access data content). The latter elaborates Q2  and sends the 

result set (a superset of the result set of Q1 ), to the client, which post-

processes it to delete the spurious results and to obtain the right result 

set of Q1 . 
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2.2.1 Data encryption  

If data is outsourced to an untrusted RDBMS (Relational Data Base 

Management Systems), to prevent unauthorized access by the datastore 

manager (DM) of the outsourced, it may be stored in encrypted form. The 

encryption happens on client side, before sending data for storage to the 

external server. 

2.2.1.1 Data Model  

While data can be encrypted at various granularity levels (see Section 3), for 

balancing client workload and query execution efficiency, most proposals 

assume that the database is encrypted at tuple level [6]. For the same reason, 

symmetric encryption is usually preferred over asymmetric encryption since it 

is cheaper [125]. 

Obviously, the DM does not know the encryption keys, which are stored apart 

from the data; the RDBMS receives an encrypted database and works on bit-

streams that only the clients, who hold the decryption keys, can interpret 

correctly.  

In current systems, decryption keys are generated and distributed to trusted 

clients by the data owner or by a trusted delegate [110]. 

It is important to remark that, since data is encrypted, the DBMS cannot index 

it based on plaintext and therefore it cannot resolve all queries.  

Some proposals [24][95][109] solve this problem by providing, for each 

encrypted field to be indexed, an additional indexable field, obtained by 

applying a non-injective transformation f to plaintext values (e.g., a hash of 

the field's content).  

Formally [15], given a plaintext database B, each table ri over schema Ri(Ai1 ,…, 

Ain), where Ri is the i-th relation and Aj the j-th attribute, in B is mapped onto 

a table rik over schema Rik (ID, Etuple, I1 ,…, In) in the corresponding encrypted 

database Bk, where: 

 ID is a numerical attribute added as primary key of the encrypted table; 

 Etuple is the attribute containing the encrypted tuple whose value is 

obtained applying an encryption function Ek to the plaintext tuple, 

where k is the secret key; and  
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 Ij is the index associated with the j-th attribute in Ri.  

Encrypted tuples and indexes can be stored in the same or in a separate table 

[13]. Conventionally, index values are represented with Greek letters. 

Figure 2 shows the transformation of a plain text tuple into an encrypted one. 

 

Figure 2 Data encryption, source: [6] 

 

2.2.1.2 Query execution 

The presence of indexes allows doing most of the work to answer a query at 

server side. Referring to Figure 1, when the user U, which needs not be aware 

that data have been outsourced to a third party, issues a query Q, the latter is 

passed to the client C, which splits it in Qs, which will be executed on the 

server, and Qc, which will be executed on the client. Qs  works on the encrypted 

tables through indexes, and produces a result set RSe (a set of the encrypted 

tuples) that is a superset of RS, the result set for Q. However, due to index 

collisions the transformed query may return spurious tuples, that is, tuples 

that do not belong to RS; for this reason, C receives RSe and, using Qc, filters 

the spurious tuples and performs the needed projections, obtaining RS, which 

is returned to U [15]. 

2.2.1.3 Indexing techniques 

Since a client may have a limited storage and computation capacity, one of the 

primary goals of the query execution process is to minimize the workload at 

the client side , while maximizing the operations that can be computed at the 

server side [120][109]. Different index approaches allow the execution of 
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different types of queries at server-side. In the following, I discuss the main 

type of indexes. 

1.1.1.1.1 Index by encryption 

Each search key value is encrypted using an invertible encryption function 

Ek(). A query on a plaintext relation has to be transformed into a query on the 

corresponding encrypted relation by simply applying the encryption function 

on each value specified in the original query. This technique is simple and has 

the advantage of preserving the distinction between values, but it is often 

possible to guess the correspondence between plaintext and encrypted values 

based on frequency analysis, that is, by comparing the distributions of the 

plaintext values in the plain-text relations with the corresponding 

distributions of the encrypted values [120]. 

1.1.1.1.2 Bucket-Based Index 

This is a variant of the previous technique that reduces, however without 

solving, the risk of inference analysis increasing the number of collisions 

among search values. The domain D of search values is mapped into a set of 

non overlapping partitions P={p1 ,..,pk} whose union covers all D. The index 

does not contain the single value of a tuple, but its equivalence class 

(partition) [109]. 

Using Bucket-Based Index, equality queries can be performed easily, although 

the result set needs to have a precision index < 1 to prevent statistical data 

mining. The trusted client, after receiving the encrypted result set, can decrypt 

it and exclude spurious tuples. Also, range queries are difficult to compute, 

since the transformation f in general shall not (and should not) preserve the 

order relation of the original plaintext data. Specifically, it will be impossible 

for the outsourced RDBMS to answer range queries that cannot be reduced to 

multiple equality conditions (e.g., 1<=x<=3 can be translated into x=1 or x=2 

or x=3) unless specific techniques are applied [109]. An efficient way for 

partitioning the domain of attributes, to minimize the number of spurious 

tuples in the result of a range/equality query, is shown in [126]. 

 

1.1.1.1.3 Index by hashing 
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Bucketing preserves the relation between two adjacent values. Instead, 

using a secure one-way hash function f 7, which takes as input the clear values 

of an attribute and returns the corresponding index values, we obtain the 

same result, but without the proximity relationship [13]. f has two interesting 

properties: 

 Since y=f(x) has a smaller bit-length than x, we still have collisions; and 

 A secure hash function uniformly covers its range (i.e., the output 

probabilities from the hash function are uniform). 

The resulting distribution of hash values is more dispersive, making 

frequency-based attacks ineffective. 

1.1.1.1.1.  Auxiliary B+-tree 

To handle range queries, a solution, among others, is to use an encrypted 

version of a B+-tree to store plaintext values and to maintain the ordering 

[106].  

Definition [127]: A B+-tree of order m is a tree where each internal node 

contains up to m branches (children nodes) and thus store up to m -1 search 

key values. m is also known as the branching factor or the fanout of the tree.  

 The B+-tree stores records (or pointers to actual records) only at the 

leaf nodes, which are all found at the same level in the tree, so the tree 

is always height balanced.  

 All internal nodes, except the root, have between ⌈m/2⌉ and m 

children  

 The root is either a leaf or has at least two children.  

 Internal nodes store search key values, and are used only as 

placeholders to guide the search. The number of search key values in 

each internal node is one less than the number of its non-empty 

children, and these keys partition the keys in the children in the fashion 

of a search tree. The keys are stored in non-decreasing order (i.e. sorted 

in lexicographical order).  

                                                 

7  f must be deterministic and non-injective 
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 Depending on the size of a record as compared to the size of a key, a 

leaf node in a B+-tree of order m may store more or less than m records. 

Typically this is based on the size of a disk block, the size of a record 

pointer, etcetera. The leaf pages must store enough records to remain at 

least half full.  

 The leaf nodes of a B+-tree are linked together to form a linked list. This 

is done so that the records can be retrieved sequentially without 

accessing the B+-tree index. This also supports fast processing of range-

search queries as will be described later.  

Figure 3 represents an example of a B+-tree. 

 

Figure 3 A B+-tree sample 

To adapt to encrypted databases, the B+-tree is built as plaintext structure, 

and then each node is encrypted (to protect the sensitive data) as in Figure 4: 

 

Figure 4 An encrypted B+-tree, source: [15] 

Since data values are encrypted, the tree is managed at the Client side and it is 

read-only in the Server side.  

This structure allows the client to make range queries. The client, starting 

from the root node, traverses the index. At each step, the client receives an 

encrypted node of the index, decrypts it, evaluates its content and then 
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traverses the tree as usual for BST, asking the server for the next node, until 

reaching a leaf [14].  

1.1.1.1.1  Other Approaches 

The previous indexing methods are not the only proposals. Table 1 

summarizes other approaches that try to better support SQL clauses or to 

reduce the amount of spurious tuples in the result produced by the remote 

server, and the supported queries: 

Table 1 Indexing methods supporting queries [15] 
Index Query8 

Equality Range Aggregation 

Bucket-based + O - 

Hash-based + - O 

B+ Tree + + + 

Character oriented + O - 

Privacy homomorphism + - + 

Partition Plaintext and 
Ciphertext (PPC) 

+ + + 

Order Preserving 
Encryption Schema 

(OPES) 

+ + O 

Secure index data 
structures 

+ O - 

 

2.2.2 Data fragmentation  

Often, not all the outsourced data, but only some columns and/or some 

relations are confidential, e.g. the relation between patient and illness, in 

medical field. In this case, it is possible to split the outsourced information in 

two parts, one confidential and the other public. The aim of this solution is to 

minimize the computational load of encryption/decryption.  

A confidentiality constraint c over relational schema R(A1 ,…,An) is a subset of 

attributes of R, i.e. c ⊆ R. Confidentiality constraints can contain a single 

attribute that is sensitive (singleton constraints) or a group of attributes that 

need to be never stored together since their joint visibility is sensitive 

(association constraints). 

Figure 5 shows an example of medical data and a set of well-defined 

constraints over it. 

                                                 

8  +=fully supported, o=partially supported, -=not supported. 
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Figure 5 A fragmentation sample (a) and a set of well-defined constraints 
over it (b), source: [128] 

2.2.2.1 Non-communicating servers  

In this technique, two split databases are stored each in a different 

untrusted server (called, say, S1  and S2 ). The two untrusted servers need to be 

independent and non-communicating to prevent their alliance and 

reconstruction of the complete information. In this scenario, the information 

may be stored encoded or as plaintext at each server [110]. Basically, sensitive 

attributes (singleton constraints) need to be encrypted, while sensitive 

associations can be protected by splitting (fragmenting) the involved 

attributes among the two servers. 

Given a relational schema R, a fragmentation of R is then a triple (F1 , F2, E), 

where fragments F1  and F2  contain a set of attributes in the clear (including a 

tuple identifier to ensure lossless decomposition) and a set E of attributes 

encrypted (i.e., E ⊆ F1  and E ⊆ F2 ).  

Figure 6 shows a correct fragmentation for the sample in Figure 5. 

 

Figure 6 A correct fragmentation sample, source: [128] 

Encrypted attributes and tuple identifier are contained in F1  as in F2 . F1  and F2  

are then stored respectively in S1  and S2 . 

Figure 7 schematizes the resulting structure. 
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Figure 7 Non-communicating servers 

 

1.1.1.1.4 Query execution 

The client decomposes each query Q in two subqueries: Q1 , which is executed 

in S1  on the fragment F1  giving the result set RS1 , and Q2 , which is executed in 

S2  on the fragment F2  giving the result set RS2 . If needed, the join between RS1  

and RS2  is made choosing one of these strategies: 

 Execute Q1  and Q2  in parallel, and then the client joins RS1  and RS2 ; 

 Execute first one sub-query (say it is Q1  in S1 ), then send RS1  to S2  to 

execute Q2  and to make the join with RS1. RS2  is the final result set to 

return to client. 

While the first strategy is heavier since are larger and the client needs local 

computing, the second exposes some plaintext data to one of the server, and 

then is potentially dangerous [110]. 

2.2.2.2 Unlinkable fragments  

In practice, it is not easy to ensure that split servers do not communicate; 

therefore the previous technique may be almost inapplicable. A possible 

remedy is to divide the information in two or more fragments. Each fragment 

contains all the fields of the original information, but some are in clear-text 

while the others are encrypted [19].  

E.g., given the relation R=(SSN, Name, DoB, Zip, Treatment, Illness), the 

physical fragments corresponding to its fragmentation F ={ {Name, DoB ,Zip}, 

{Illness}, {Treatment } } are illustrated in Figure 8: 

DB1 DB2

Server Server

Desktop
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Figure 8 A fragmentation with encryption sample, source: [6] 

Here, enc contains the encryption of all the attributes that are not in plaintext. 

To protect enc from the so-called frequency attacks, a suitable salt is applied 

to it. These fragments may be stored in one or more servers. Figure 9 

schematizes the resulting structure. 

 

Figure 9 Unlinkable fragments 

 

1.1.1.1.5 Choice of fragments 

Generally, given a relational schema R and a set C of confidentiality 

constraints over it, different fragmentations may exist that are both correct 

and non-redundant [128]. The designer must choose wisely to ensure that the 

information cannot be reconstructed. In particular, care should be taken to 

not leave clear-text primary / external keys that could allow reconstructing the 

entire information (the chosen fragments need to be unlinkable). Moreover, 

among the correct fragmentations, the designer has to choose a solution that 

provides minimality. If minimality is characterized by the minimum number 

of fragments, the problem is NP-hard. An alternative definition of minimality 

DB1 DB2

Server

Desktop
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assumes that a solution is minimal if merging any two fragments would break 

at least a confidentiality constraint; using this definition, a heuristic approach 

is proposed in [19]. 

Some tools exist that allow, given a relation table, to produce views (vertical 

fragments) over it, in such a way to protect the privacy of possible sensitive 

information while providing maximal visibility over the data. A sample of 

these tools is Pri-views9 . It is based on a greedy algorithm designed by 

University of Bergamo (UNIBG) and University of Milano (UNIMI) to solve 

the problem of creating unlinkable fragments in the storage of sensitive 

attributes [20]. The used algorithm departs from the use of encryption, while, 

usually, in the literature, this kind of problem has been addressed using both 

fragmentation and encryption.  

1.1.1.1.6 Query execution 

Having plaintext attributes, the queries that can be resolved using only them 

are very efficient since they do not need decryption. 

At query time, the original query is then decomposed in two subqueries:  

 The first, executed on the Server, chooses a fragment (all fragments 

contain the entire information) and selects tuples from it according to 

clear-text values. It returns a result set where some fields are 

encrypted;  

 The second, executed on the Client (only if encrypted fields are involved 

in the query), decrypts the information and removes the spurious 

tuples.  

An example of query in unlinkable fragments scenario is represented in Table 

2: 

                                                 

9  http://www.primelife.eu/results/opensource/60-pri-views 
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Table 2 Query translation using unlinkable fragments [6] 

  

2.2.3 Data fragmentation with owner involvement  

An adaptation of the non-communicating-servers technique consists of 

storing locally the sensitive data and relations, while outsourcing storage of 

the generic data [16], as shown in Figure 10. 

 

Figure 10 Data fragmentation with owner involvement 

The original relational schema R is split in <Fo, Fs>, where the former is stored 

at the data owner, and the latter is stored at the external server. Both have a 

common tuple identifier, to reconstruct the original relation. 

Figure 11 shows a fragmentation for the sample in Figure 5. 

DB1

DB2

Server

Desktop
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Figure 11 An example of physical fragments with owner involvement, 
source: [6] 

The fragmentation <Fo, Fs> of the relational schema R is considered correct if 

it satisfies the following conditions:  

 All attributes in R should appear in at least one fragment, to avoid loss 

of information; and 

 Fs should not violate any confidentiality constraint; 

It need to be non-redundant (Fo and Fs have no attribute in common) to avoid 

unnecessary storage at the data owner side and replica management problems 

[6]. 

To compute a fragmentation to reduce as possible the data owner’s workload, 

a metric for measuring the cost of a fragmentation is needed. In [16], four 

metrics are proposed to respond to different minimization goals: 

 Min-Attr: minimizes the number of attributes in Fo; 

 Min-Size: minimizes the physical size of the attributes in Fo; 

 Min-Query: minimizes the number of queries that involve at least one 

attribute in Fo; 

 Min-Attr: minimizes the number of conditions in queries that are 

evaluated over attributes in Fo; 

Since the problem is NP-hard, a heuristic algorithm was proposed in [16] to 

easily adapt to different metrics. 

1.1.1.1.7 Query execution 

A user query Q must be translated by the client in the queries Qo and Qs on Fo 

and Fs, respectively, plus a Qso that combines the resulting sets of Qo and Qs. Qs 
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is a query that operates only on attributes on the server, while Qo is a query 

that can be evaluated only by the data owner. 

The translation process can use server-owner or owner-server strategy [128]. 

In the former, Qs is evaluated on the server and then the result is sent to the 

owner, which proceeds with the evaluation of Qo and Qso. In the latter, Qo is 

evaluate on the owner, then Qs is evaluate on the server side and, in the end, 

Qso is evaluate again in the owner side. 

An example of the two different strategies for the query  

select Name from MedicalData where Illness=’Asthma’ and zip=’26013’ 

on fragmentation of Figure 11is condensed in Table 3 [128]: 

Table 3 Query translation in fragmentation with owner involvement  

 

2.3 Selective access  

In many scenarios, access to data is selective, with different users having 

different views over the data. Access control can discriminate between read 

and write operations on an entire record or only on a part of it.  

Key management solutions for outsourced databases can be classified in three 

categories: owner side policy enforcement solutions, user-side policy 

enforcement solutions, and solutions where access policy is shared among 

actors (owner/user/server) [7].  

An intuitive way to handle this issue is to encrypt different portions of data 

with different keys that are then distributed to users (according to their access 

privileges) [120]. 
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Limiting our scope to read operations, the access rights defined by the data 

owner can be represented by using an access matrix A, where rows correspond 

to subjects, columns correspond to objects, and entry A [ s; o ] is set to 1  if s 

has permission to access o; 0 (zero) otherwise [29]. An example is represented 

in Figure 12: 

 

Figure 12 An example of access matrix 

The column i of matrix corresponds to the Access Control Lists (ACL i) of the 

tuple ti, while the row j corresponds to the capability list (CAPj) of user uj. 

The simplest solution for access control consists in encrypting each tuple in 

the outsourced database with a different key and assigning to each user the set 

of keys associated with the tuples she can access; but this solution brings to 

the proliferation of a lot of keys per user. 

Access control policies can be translated into equivalent encryption policies 

guided by two basic requirements [6][120]:  

 No more than one key is released to each user, and 

 Each resource is encrypted not more than once.  

In [29][120], to achieve these objectives, a hierarchical organization of keys 

has been envisioned. Basically, users with the same access privileges are 

grouped and each resource is encrypted with a key that corresponds to the set 

of users that can access it. In this way, a single key can be used to encrypt 

more than one resource. The authors consider a user hierarchy whose 

elements are all the possible sets of users in the system together with the 

partial order (≤) naturally induced on it by the subset containment 

relationship. Each user group has associated the tuples whose ACL, defined in 

the access matrix, corresponds to the group itself. A directed acyclic graph 

(DAG) with a node for each set of users, and an edge from node Y to node X if 

X ≤ Y represents the user hierarchy (an example of it is shown in Figure 13). 
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Figure 13 An example of user hierarchy, source: [29] 

By assuming that each node of the hierarchy is associated with a key, the 

access control problem could b e solved by encrypting each tuple with the key 

of the node corresponding to its ACL and by assigning to each user the set of 

keys of the nodes to which she belongs. On this basis, a heuristic algorithm 

that minimizes the total number of distributed keys delivered to all the users 

was proposed in [129].  

An alternative solution (that is based on the same kind of above rights matrix, 

but builds a binary tree whose intrinsic properties contribute to reduce key 

management complexity) was proposed in [130]. Each level of the binary tree 

corresponds to the rights of a user profile. Each user receives the key 

corresponding to her hierarchical level; using it, she can derive all the keys for 

allowed data using derivation mechanisms. Since few keys are assigned for 

user at the top of the hierarchy, while those situated in the bottom receive a 

bigger number of keys, a preliminary sort of user profiling, based on the right 

importance, is used to minimize the average number of delivered keys. 

A solution that organizes data in a binary tree and use also derivation 

mechanisms was proposed in [131]. Since it does not follow any defined data 

placement strategy to group data according to user rights, as the previous 

works did, and allowed data could be disseminated on different parts of the 

binary tree (to avoid data disclosure), the number of received keys could grow 

very quickly especially in a scenario of billion of data blocks [7]. 
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A two level encryption scheme, one before outsourcing data, done by the 

owner and the second, in case of user or role revocation, done by the service 

provider, was proposed in [132]. 

2.4 Dynamic rights management  

A user’s rights may change over time (e.g., the user changes role or 

department). Therefore removing users from group/roles becomes necessary. 

If the key management is not dynamic, this can be achieved on outsourced 

databases as follows [134]:  

 Encrypt data by a new key; 

 Remove the original encrypted data, and 

 Send the new key to the rest of the group.  

The user, unless the database is re-keyed, continues to have access to the data 

[7]. Note that the data owner must perform these operations since the 

untrusted DBMS has no access to the keys. This active role of the data owner , 

however, goes somewhat against the reasons for choosing to outsource data in 

the first place.  

In [7], the authors, exploiting the never-ending trend to lower price-per-

byte storages, propose to replicate n times the source database, where n is the 

number of different roles having access to the database. Each database replica 

is a view, entirely encrypted using the key  created for the corresponding role. 

Each time a role is created, the corresponding view is generated and encrypted 

with a new key, expressly generated for the newly -created role. Users do not 

own the real keys, but receive a token that allows them to address a request-

to-cipher to a set KS of key servers on the Cloud.  

Another important issue, common to many access control policies, concerns 

time-dependent constraints on access permissions [9]. In many real 

situations, it is likely that a user may be assigned a certain role only for a 

limited time. In such case, users need a different key for each time period. A 

time-bound hierarchical key assignment scheme is a method to assign time-

dependent encryption keys and private information to each class in the 

hierarchy. Key derivation will depend also on temporal constraints; once a 

role’s time period expires, users in that role need to be re-authorized. 
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3 CRYPTOGRAPHY IN DATABASES 

In this Chapter I analyse the different levels and granularity of database encryption, and the 

types of attack to database security. 

Confidentiality, integrity and availability are the main properties of 

database protection [135]. Confidentiality has been defined by the 

International Organization for Standardization (ISO) in ISO-177991 0  as 

"ensuring that information is accessible only to those authorized to have 

access"; data integrity assures that none can modify the information without a 

trace; availability provides access to data by authorized users in a reasonable 

time. Along the years, a lot of ACP (Access Control Policy) has been defined, 

based on database model (relational rather than object) and policy control 

(i.e., DAC-Discretionary Access Control, RBACC-Role Based Access Control, 

MAC-Mandatory Access Control)[139]. Traditionally, ACPs are based on the 

assumption that the DBA (DataBase Administrator) is trusted, but this 

assumption no longer holds in outsourced data centers and in the Cloud, 

where the platform-as-a-service (PaaS) provider is external to data owner. A 

solution to this problem is that the DBMS treats only raw-data, encrypted in 

such a way that DBA (or another intruder) cannot read the information. There 

are three main categories of database encryption [28][136]: storage level 

encryption, database level encryption, and application level encryption (as 

represented in Figure 15). 

                                                 
1  ISO/IEC 17799, Jan 4, 2009 
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Figure 15 The three options for database encryption level, source: [28] 

3.1 Storage-level encryption 

In Storage-level encryption (SLE), data is encrypted either at the file level 

(NAS/DAS) or at the block level (SAN) [152]. A short while ago, Toshiba has 

released a hardware implementation of SLE, a family of hard drives - called 

Self-Encrypting Disk1 1 . The system is based on the Opal specifications of 

Trusted Computing Group1 2 , supports native encryption AES 256 and can 

automatically delete its contents if not used by the rightful owner.  

This encryption is not selective; since the storage subsystem has no knowledge 

of database objects and structure, it encrypts an entire support or portions of 

support (i.e. directories or files), without respect to user privileges or to data 

sensitivity. When encrypting only portion of support, there is the additional 

risk that logs and temporary files remain plaintext. It prevents theft of storage 

but it is unsuitable for preventing unauthorized access by an honest-but-

curious system administrator, who must know the encryption key. On the 

other hand, it is entirely transparent to the system, so it needs no database 

modification [28]. 

                                                 

1 1  

http://storage.toshiba.com/main.aspx?Path=StorageSolutions/PCNotebook/

MKxx61GSYGSeries 

1 2  http://www.trustedcomputinggroup.org/developers/storage/specifications/ 
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3.2 Database-level encryption 

Database-level encryption (DLE) secures data as it is written to and read 

from a database. The encryption is applied to the Db at various granularities, 

such as database, tables, columns (most frequently), and rows. It can be 

related with some logical conditions for selecting affected data, too.  

Several database encryption schemes have been proposed in the literature, e.g. 

[136]: 

 In [146] a scheme based on the Chinese-Reminder theorem is 

proposed, where each row is encrypted using different sub-keys for 

different cells. This scheme enables encryption at the level of rows and 

decryption at the level of cells; 

 An extension of the previous scheme that supports multilayer access 

control is proposed in [151]. It classifies subjects and objects into 

distinct security classes that are ordered in a hierarchy, such that an 

object with a particular security class can be accessed only by subjects 

in the same or a higher security class; 

 The scheme presented in [147] proposes encryption for a database 

based on Newton's interpolating polynomials; 

 The scheme presented in [148] is based on the RSA public-key scheme 

and suggests two database encryption schemes: one column oriented 

and the other row oriented; 

 The SPDE scheme is presented in [149]. It encrypts each cell in the 

database individually together with its cell coordinates (table name, 

column name and row-id) to obtain different cipher-text values for 

equal plaintext values (against static analysis), and to prevent a tuple is 

moved to a different location (against splicing attacks) [150]. 

 

One disadvantage of all but the last these schemes is that the basic element in 

the database is a row and not a cell. Thus the structure of the database is 

modified. In addition, all of those schemes require re-encrypting the entire 

row when a cell value is modified. Thus, in order to perform an update 

operation, all the encryption keys should be available [28][136].  
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DLE is not transparent to application as SLE, so it involves some 

modifications to the indexed encrypted data and in stored procedures and 

triggers. The system is slowed down by the encryption overhead. Usually, it is 

not a defence from the curious DBAs [152]. 

3.3 Application-level encryption 

In Application-level encryption (ALE), data is encrypted/decrypted by the 

application that generates it. Plain-text data is made available only at client 

side, while data sent over the network is encrypted [153][95][13].  

The main advantages of this solution are:  

 The encryption keys and the encrypted data stored in the database are 

separated, since the keys never have to leave the application side; and 

 A high flexibility since the encryption granularity and the encryption 

keys can be chosen depending on application logic. 

The price to pay is that this scheme usually involves returning to the client 

larger result sets, which are then filtered at client side, when decrypted. To 

accomplish this result, applications need to be modified and the network 

traffic increases [28]. 

3.4 Granularity in database-level encryption 

Database-level encryption is the most common solution for data 

protection. It can have different types of granularity, namely  [28][136]: 

database, tables, columns, and rows. 

In [29] the granularity is divided into relation level, attribute level, tuple level, 

and element level, while [154] uses the taxonomy: attribute value, record/row, 

attribute/column, and page/block. 

3.4.1 Database 

In this case, the whole database is encrypted using only one key, as if it 

was a single file. The cons of this technique are: 

 It does not allow to define different privileges on each table; 

 The schema definition becomes particularly complex; 
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 The system performance suffers considerable degradation (an 

improvement can be achieved with appropriate caching) [152]; 

 Its security is closely linked to the physical security of the device with 

which the master key is kept. 

For these reasons, the database granularity solution is seldom used. 

3.4.2 Tables 

A specific key encrypts each table separately. Performances are better than 

the previous solution, but still very far from those of a clear-text database, 

because encrypting an existing table can be slow. Encryption affects 

performance only when data is retrieved from or inserted into an encrypted 

column. No reduction in performance occurs for operations involving 

unencrypted columns, even if these columns are in a table containing 

encrypted columns. Accessing data in encrypted columns involves small 

overheads (e.g., in an Oracle 11 database, the overhead associated with 

encrypting or decrypting an attribute is estimated to be around 5%) w.r.t. clear 

text data 1 3 . 

 

The total performance overhead depends on the number of encrypted 

columns and their frequency of access. The columns most appropriate for 

encryption are those containing the most sensitive data. The definition (and 

enforcement) of integrity constraints, foreign keys and indexes is very 

complex (see Section 2.2.1. on Data encryption). 

3.4.3 Columns 

All the data in a column (or set of columns) of a table is encrypted with the 

same key. This is the solution adopted by most DBMS suppliers, e.g. 

                                                 

1 3  

http://download.oracle.com/docs/cd/B28359_01/network.111/b28530/asotr

ans.htm 
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Transparent Data Encryption in Oracle 11G1 4  or Microsoft SQL Server1 5 , as it 

allows encrypting only sensitive data. However, it needs to build ad-hoc 

indexes customized for the expected queries (again, at the expense of 

performance). With this approach, it is also not possible to define access 

privileges on "horizontal" portions of a table such as row sets (e.g., allowing 

access only to rows with id> 100), as it is awkward to encrypt rows with 

different keys depending on the user. These mechanisms usually rely on third-

party applications, or otherwise are implemented using database triggers or 

stored procedures[152]. 

Although column-level encryption permits to reduce the encryption to only 

sensitive columns, it often results in worse performance because it breaks 

many of the indexing, query, and relational tools used by the DBMS [155]. 

3.4.4 Rows 

Each single row in a table is encrypted using a different key. The main 

advantage of this technique is the capability to define access control to a 

subset of data (rows) of a table basing on the distribution of decryption keys. 

Let us assume that we have a table that includes the data of all students in a 

university and we want to grant access to the secretary of each course only to 

data of students enrolled in that course. If we were using database or table-

level encryption, we would have to create a view for each course and grant the 

rights to the corresponding secretary, with the problems outlined above (also, 

data stays readable by the DBAs). Using column-level encryption, the 

permissions must be specified at the field level and, unless appropriate 

indexes or cumbersome procedures are implemented (which may also expose 

the data to inference or statistical attacks), it would be impossible to make the 

information instantly accessible to authorized users. Using row-level 

encryption, instead, it is possible to make available to the authorized user the 

keys (or the key) that can be used to decrypt only the allowed rows. This 

technique, besides ensuring a better management of access permissions, 

                                                 

1 4  http://www.oracle.com/technetwork/database/options/advanced-

security/index-099011.html 

1 5  http://msdn.microsoft.com/en-us/library/bb934049.aspx 
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prevents any kind of statistical analysis on the table, since every relation 

between similar rows is nullified by the different key encryption. In a standard 

RDBMS, however, this technique has significant disadvantages in terms of 

performance and functionality: querying would be possible only through the 

construction of appropriate indexes for each column of the table (with a 

considerable waste of resources both in terms of time and space), while 

foreign keys would be unusable, since the different key encryption breaks 

every relation between equal values. Another major issue concerns the 

management of keys: row-level encryption needs generation and distribution 

of a key for each row of each table encrypted with this method. To solve (or 

alleviate) this problem, some key management techniques can be used, such 

as: 

 Broadcast (or Group) encryption [13]: rows are divided into 

equivalence classes, based on recipients. Every class is encrypted using 

an asymmetric algorithm where the encryption key is made in a way 

that each recipient can decrypt the information using only its own 

private key. Both the public and the private keys are generated by a 

trusted entity. 

 Identity Based Encryption [11]: it bounds the encryption key to the 

identity of recipient. Each recipient generates by itself a key pair used 

to encrypt/decrypt information. 

 Attribute Based Encryption [12]: it bounds the encryption key to an 

attribute (a group) of recipient. Each recipient receives by a trusted 

entity the private key used to decrypt, while the encryption key is 

calculated by the sender. 

However these techniques are complex and therefore, to the best of my 

knowledge, no research prototype or commercial database encryption system 

adopt row encryption. 

3.5 Attacks to database security 

The database security may be compromised by an attacker that can be 

categorized into three classes [156]:  
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 Intruder - A person who gains access to a computer system and tries to 

extract valuable information.  

 Insider - A person who belongs to the group of trusted users and tries 

to get information beyond his own access rights.  

 Administrator - A person who has privileges to administer a computer 

system, but uses his administration rights in order to extract valuable 

information. 

The different types of attack can be classified in passive and active [136]. The 

first category contains the attacks that only read the data without altering it 

and includes [136]: 

 Static leakage: it is an attack that gains information on the database 

plaintext values by observing a snapshot of the database at a certain 

time. E.g., if the database is encrypted in a way that equal plaintext 

values are encrypted to equal ciphertext values, statistics about the 

plaintext values, such as their frequencies can easily be learned.  

 Linkage leakage: it is an attack that gains information on the database 

plaintext values by linking a table value to its position in the index. E.g., 

if the table value and the index value are encrypted the same way (both 

ciphertext values are equal), an observer can search the table cipher 

text value in the index, determine its position and estimate its plaintext 

value.  

 Dynamic leakage: it is an attack that gains information about the 

database plaintext values by observing and analyzing the changes 

performed in the database over a period of time. E.g., if a user monitors 

the index for a period of time, and if in this period of time only one 

value is inserted (no values are updated or deleted), the observer can 

estimate its plaintext value based on its position in the index. 

The second category contains the attacks that modify the database and 

includes [157]: 

 Spoofing: replacing a ciphertext value with a generated value. 

Assuming that the encryption keys are secure, a possible attacker might 

try to generate a valid ciphertext value, and substitute the current valid 

value stored on the disk. Assuming that the encryption keys were not 

compromised, this attack poses a relatively low risk.  
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 Splicing: replacing a ciphertext value with a different cipher text value. 

Under this attack, the encrypted content from a different location is 

copied to a new location under attack.  

 Replay: replacing a cipher text value with an old version previously 

updated or deleted.  
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4 IN-MEMORY DATABASES  

In this Chapter, I illustrate the characteristics of the In-Memory Databases, a proven 

mature technology that takes advantage of the current wide availability of main memory to 

reverse the usual storage strategy, storing the information directly into main memory and 

using the disk only for data backup.  

Magnetic disks are heavily used as primary storage in computer systems 

since their introduction in 1955 with the IBM 350 Disk File device, announced 

by IBM as a component of the IBM 305 RAMAC computer system on 

September 13, 1956 [66].  

Two of the most critical parameters for a magnetic disc are capacity and 

performance. Disc drive capacity refers to the size of storage memory available 

on a disc drive. Disc drive performance describes the speed and efficiency with 

which data can be written to and read from a drive1 6 . 

During these years, the capacity has rapidly grown from the initial 5 million 7-

bit (6-bits plus 1 odd parity bit) characters (about 4.4 megabytes) [67] to the 

actual multiple terabytes size. Instead, the performance has not grown at the 

same speed (see Figure 16 and Figure 17). 

                                                 

1 6  “Disc Drive Capacity and Performance”, Seagate Technical paper, 2001  
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Figure 16 Data sets growth1 7  

 

Figure 17 Disk performance improvements vs. capacity growth1 8  

With the aim to overcome this limitation, particularly heavy in the case of data 

centers and transactional systems, many people have proposed new 

approaches to disk based storage or, as a revolutionary choice, to store data in 

random access memory, using disk only as backup [63]. 

Since 1985, some precursor designed a “memory resident DBMS” [68] where 

data is resident in main memory, but, at that time, RAM capacity was very low 

to permit the storage of large datasets. 

During the last 20 years, the RAM capacity of computers has increased 

exponentially by a factor of 10 every 4 years, following Moore’s Law. The 

graph below illustrates the typical memory configuration installed on personal 

computers since 1980.  

                                                 

1 7 Source: http://wiki.r1soft.com 

1 8  Source: http://wiki.r1soft.com 
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Figure 18 The RAM modules capacity1 9  

At the same time, RAM’s price per byte is falling down quickly, so today there 

are the conditions to effectively use the, “main memory database system” 

(MMDB), also known as in-memory database (IMDB) or as real-time database 

(RTDB). 

“In-memory databases have recently become an intriguing topic for the 

database industry. With the mainstream availability of 64-bit servers with 

many gigabytes of memory a completely RAM based database solution is a 

tempting prospect to a much wider audience.”2 0  

It is important to remark that, while a conventional database system stores 

data on disk but caches it into memory for access, in an IMDB the data resides 

permanently in the main physical memory and there is a backup copy on disk 

[27].  

IMDBs are intended either for personal use (because they are comparatively 

small w.r.t. traditional databases), or for performance-critical systems (for 

their very low response time and very high throughput). They use main 

memory structures, so they need no translation from disk to memory form, 

and no caching and they perform better than traditional DBMSs with Solid 

State Disks.  

In Table 4, I summarize pros and cons for IMDBs. 

                                                 

1 9  Source: Intel 

2 0  http://www.remote-dba.net/t_in_memory_cohesion_ssd.htm 
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Table 4 IMDBs Pros and Cons 
Pros Cons 

Fast transactions 
No translation 
High reliability 

Multi-User Concurrency (few 
locks) 

Complexity of durability ’s 
implementation  

Size limited by main memory 

 

4.1 The impact of in-memory structure 

Main memory is a random-access, byte-addressable device while disk is 

semi-random, block-addressable device. These differences have an impact on 

different aspects of DBMS. 

4.1.1 Data representation 

To optimize space utilization, necessary to hold the active database 

entirely in main memory, compact data structures such as T-trees [70] or 

array structures [71] have been proposed to organize permanent data 

efficiently in main memory. In particular, the relation between two tuples may 

be represented using memory pointers instead of external keys [27] (see 

Figure 19). This permits a smaller storage and a faster access to related 

records. 

 

Figure 19 The usage of pointers in relations 

In conventional DBMS we need translation from stored representation (e.g. 

records in files) to applications’ form; while in IMDBs, since data is stored in 

main memory, we have a unique representation of it.  

4.1.2 Access methods 

While disk-oriented index structures, as B-Tree [72] and derived, are 

intended for block storage and then are designed to minimize the number of 
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disk accesses and the required disk space, main memory index structures are 

designed to reduce overall computation time while using as little memory as 

possible. Since data is in main memory, instead to use associative values <key, 

position> to relate keys to tuples, we can use memory pointers to actual 

attribute values, which remain in their place, giving some clear advantages 

[73]: 

 A single tuple pointer provides the index with access to both the 

attribute value of a tuple and the tuple itself, reducing the size of the 

index;  

 This eliminates the complexity of dealing with long fields, variable 

length fields, and compression techniques in the index, 

 Moving pointers will tend to be cheaper than moving the (usually 

longer) attribute values when updates necessitate index operations, and 

 Since a single tuple pointer provides access to any field in the tuple, 

multi-attribute indices will need less in the way of special mechanisms. 

There are two main types of index structures: those that preserve some 

natural ordering in the data and those that randomize the data. The index 

structures being studied here are (see Figure 20 and Figure 21): arrays, AVL-

Trees, B-Trees, and T -Trees, for the order-preserving class; and Chained 

Bucket Hashing, Linear Hashing and Extendible Hashing, for the randomizing 

class. 

 Arrays [71] use minimal space, providing that the size is known in 

advance or that growth is not a problem, but the computational 

complexity of data movement is O(N)2 1  for each update, so it useful just 

in read-only environment; 

 AVL-Trees [74] use a binary tree search. Updates always affect a leaf 

node and may result in an unbalanced tree, so the tree is kept balanced 

by rotation operations. The disadvantage in AVL-Trees is their poor 

storage utilization, since each tree node holds only one data item, so 

there are two pointers and some control information for every data 

item.  

                                                 

2 1 N is the number of elements of the array  
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 B-Trees [75] are a usual structure for disk indexes, since they are broad 

shallow trees and require few node accesses to retrieve a value. Most 

database systems use a variant of the B-Tree, the B+-Tree, which keeps 

all of the actual data in the leaves of the tree, but in main memory this 

does not speed up the search, while it wastes space. In B-Trees: 

o Storage utilization is good since the pointer to data ratio is small, 

as leaf nodes hold only data items and they comprise a large 

percentage of the tree);  

o Searching is reasonably quick since a small number of nodes are 

searched with a binary search; and  

o Updating is fast since data movement usually involves only one 

node. 

 

Figure 20 Tree structures, source [70] 

 Chained Bucket Hashing [77] is a very fast static structure used both in 

memory and on disk. Since it is static, it never has to reorganize its data 

(advantage), but, for the same reason, it may have very poor behaviour 

in a dynamic environment (disadvantage) because the size of the hash 

table must be estimated before the table is filled. A wrong estimated 

size may affect the performance (too small), or the wasted space (too 

large).  

 Extendible Hashing [78] employs a dynamic hash table. With respect to 

the previous structure, the table size does not need to be known in 
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advance since a hash node contains several items and splits into two 

nodes when an overflow occurs. The directory grows in powers of two, 

doubling whenever a node overloads and has reached the maximum 

depth for a particular directory size. Since any node can cause the 

directory to split, the directory can become very large if the hash 

function is not sufficiently random.  

 Linear Hashing [79] uses a dynamic hash table that grows linearly as it 

splits nodes in predefined linear order. First, the buckets can be 

ordered sequentially, allowing the bucket address to be calculated from 

a base address - no directory is needed. Second, the event that triggers 

a node split can be based on storage utilization, keeping the storage 

cost constant for a given number of elements.  

 Modified Linear Hashing [79] is a variant of the previous structure that 

uses a directory much like Extendible Hashing, except that it grows 

linearly, and chained single-item nodes, allocated from a general 

memory pool. The splitting criteria are based on performance, i.e. the 

average length of the hash chains, rather than storage utilization. 

Monitoring average hash chain length provides more direct control 

over the average search and update times than monitoring storage 

utilization.  

 T-Trees [70] are binary trees, evolved from AVL-Trees and B-Trees, 

with many elements in a node. They retain the intrinsic binary search 

nature of the AVL-Tree united to the good update and storage 

characteristics of the B-Tree. Data movement is required for insertion 

and deletion, but it is usually needed only within a single node. 

Rebalancing is done using rotations similar to those of the AVL-Tree, 

but it is done much less often than in an AVL-Tree due to the possibility 

of intra-node data movement. 
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Figure 21 Hash structures, source: [70] 

4.1.3 Query processing 

The use of a random access memory to maintain data has a deep impact on 

common operations. First of all, we have no advantage in sequential data 

access, so data contiguity loses value. Operations as sorting become useless 

because it is more valuable using pointers to create sorted list instead of 

moving data.  

While data may still be represented by the relational model, the use of 

pointers to express relations naturally brings to a semantic model. The 

relations are surfing following pointers and joins exploit this possibility, 

instead of using external keys [27]. 

The goal is not minimizing the disk accesses, but the processing cost in main 

memory. This depends on the architecture, and then the optimization 

techniques need to be evaluated in the running system. 
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4.1.4 Concurrency control 

Concurrency is defined as the ability of multiple processes and threads to 

access and change the data records at the same time. The lower the contention 

to access and modify data with more users, the better the concurrency, and 

vice versa.  

Database concurrency controls ensure that transactions occur in an ordered 

fashion to protect transactions issued by different users/applications from the 

effects of each other. They must preserve the four characteristics of database 

transactions: atomicity, isolation, consistency and durability , also known as 

ACID. 

Two approaches can be adopted to manage concurrent data access: 

pessimistic and optimistic [80]. Pessimistic concurrency systems assume that 

conflict will occur and it avoids conflicts by acquiring locks on data that is 

being read or modified, so that no other process can modify that data. 

Optimistic concurrency systems assume that transactions are unlikely to 

modify data that another transaction is modifying. This is implemented by 

using versioning technique. This allows readers to see the state of the data 

before the modification occurs as the system maintains previous version of the 

data record before it actually attempts to change it. Usually DBMSs use 

pessimistic approach, while versioned file systems use optimistic approach. 

4.1.4.1 Granularity of locks in a database with 

pessimistic approach 

The granularity of locks in a RDBMS refers to how much of the data is 

locked at one time. In theory, a database server can lock as much as the entire 

database or as little as one column of data. Such extremes affect the 

concurrency (number of users that can access the data) and locking overhead 

(amount of work to process lock requests) in the server.  

Granularity levels are listed below ordered from large to fine granularity [81]: 

Database, Table,  Disk Block or Memory Page,  Record, and Record Field. 

Since the best granularity size depends on the given transaction, DBMS should 

support multiple level so granularity and allows the transaction to pick any 

level it wants. 
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By locking at higher levels of granularity, the amount of work required to 

obtain and manage locks is reduced. If a query needs to read or update many 

rows in a table: 

 It can acquire just one table-level lock 

 It can acquire a lock for each page that contained one of the required 

rows 

 It can acquire a lock on each row 

Less overall work is required to use a table-level lock, but large-scale locks can 

degrade performance, by making other users wait until locks are released. 

Decreasing the lock size makes more of the data accessible to other users. 

However, finer granularity locks can also degrade performance, since more 

work is necessary to maintain and coordinate the increased number of locks. 

To achieve optimum performance, a locking scheme must balance the needs of 

concurrency and overhead. 

In an IMDB, small locking granules are inappropriate, since contention is 

already low because data is memory resident. Usually IMDBs prefer to use 

very large lock granules (e.g. table or database) [82]. 

4.1.5 Logging and Recovery 

Normally, the use of volatile memory-based IMDBs supports the three 

ACID properties [83] of atomicity, consistency and isolation, but lacks support 

for the durability property. To add the latter, when non-volatile random access 

memory (NVRAM) is not available, IMDBs use a combination of transaction 

logging and primary database check-pointing to the system's hard disk: they 

log changes from committed transactions to physical medium and, 

periodically, update a disk image of the database. Having to write updates to 

disk, the write operations are heavier than read-only [27] and impact on 

system performance. Logging policies vary from product to product: some 

leave the choice of when to write the application on file, others do all the 

checkpoints at regular intervals of time or after a certain amount of data 

entered / edited. 

Following are some of the desirable properties of logging and recovery 

algorithms [85]: Reduced log traffic, Speedy logging and recovery, Transaction 
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priority oriented logging and recovery, and Data class oriented logging and 

recovery. 

4.1.5.1 Transaction logging and commit 

processing 

A transaction is a sequence of operations, which may lead to a success or a 

failure. If successful, the result of the operations must be permanent; while in 

case of failure, it must return to its previous state when the transaction [84].  

In an IMDB, transactions need to be stored in a permanent storage until they 

are committed and the final result is written to the log. The transaction 

logging can be divided in REDO and UNDO tails [84]. 

To minimize the impact on performance, IMDBs can use some strategy, main 

of which are: 

 Log driven backups [86] : is composed of a stable memory and recovery 

task, which work in parallel. The stable memory [87] usually consists of 

a main conventional RAM, a Safe RAM which is called the Safe, and a 

conventional disk and stores the log tail that includes both UNDO and 

REDO logs produced by active transactions. Asynchronically, the 

recovery task move transaction from stable memory to the checkpoint 

log. 

 Pre-committing [73]: if the system has not a stable memory, it can do a 

pre-commit, releasing the transaction lock without waiting for the 

information to be written to log. The sequential nature of log ensures 

that transactions cannot commit before others on which they depend. 

This way the response time remains the same but the blocking delay of 

other concurrent transaction is reduced. 

 Group commit [73]: a set of updates are grouped together in one log 

write to amortize the cost of the log write disk I/O over several updates.  

 

4.1.6 Performance 

Thanks to the lower latency time, IMDBs usually have better performance 

then conventional DBMSs, especially in read operations. 
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While in conventional DBMSs the performance is evaluated in terms of disk 

accesses, in IMDBs the metrics is different, e.g., it is related to measure of 

checkpointing/logging. The path to performance improvement may be 

summarized in: Index improvements [70], Parallel and distributed systems 

[89][64][11][92] , and Checkpointing improvement [90] [91]. 

The improvement of performance is particularly important when IMDBs are 

used in Real Time or Multiuser Systems, where they are a good choice for their 

small latency that allows fast responses to events/requests. But IMDB are 

often used in embedded application, where compactness is more valuable than 

performance. 

4.2 Cache vs. IMDB 

Disk cache is a cache or buffer used to hold portions of the disk address 

space contents to capture a significant fraction of the I/O operations. It can 

provide access times and transfer rates significantly better than disk, and can 

improve I/O system performance and thereby postpone or eliminate the 

predicted I/O system bottleneck [93]. 

In recent years there has been a surge in the use of DRAM, driven by the 

performance requirements of large-scale Web applications. For example, both 

Google and Yahoo! store their search indices entirely in DRAM [63]. 

Memcached2 2  provides a general-purpose key-value store entirely in DRAM, 

and it is widely used to offload back-end database systems (however, 

memcached makes no durability guarantees so it must be used as a cache). 

The Bigtable storage system allows entire column families to be loaded into 

memory, where they can be read without any disk accesses [11]. Big-table has 

also explored many of the issues in federating large numbers of storage 

servers. 

The cache is useful only if the page fault rate is low, otherwise the number of 

disk access is not significantly reduced. The 1000x gap in access time between 

DRAM and disk means that a cache must have exceptionally high hit rates to 

                                                 

2 2  http://memcached.org/ 
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avoid significant performance penalties: even a 1% miss ratio for a DRAM 

cache costs a factor of 10x in performance [87]. 

Modern application, e.g. Facebook, have a very limited locality 2 3 , due to 

complex linkages between data (e.g., friendships in Facebook). To obtain 

providing a hit rate of 96.5%, the total amount of memory used by the storage 

system in Facebook equals approximately 75% of the total size of the data 

(excluding images) [87]. Using an IMDB, the memory used is incremented of 

the last 25%, but obtains it guarantees performance independent of access 

patterns or locality. 
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5 BROADCAST ENCRYPTION 

Originally born for signal broadcasting, Broadcast Encryption (BE) schemes are being used 

and adapted in the emerging field of Online Social Networks (OSN), were communities of 

users want to securely share data or messages. OSNs present many analogies with 

distributed databases where data is replicated at more than one node. When a data change 

happens at a node, the node has to propagate it to all copies of the same data resident at 

other nodes. In terms of the underlying network protocols, this implies a lot of messages. BE 

schemes can help to significantly reduce the amount of communications in the network, 

allowing the transmission of a common encrypted message that is understandable by all 

nodes involved. 

Broadcast Encryption (BE) is the cryptographic problem of encrypting 

broadcast content (e.g. TV programs) in such a way that only qualified users 

(e.g. subscribers who have paid their fees) can decrypt the content. 

More formally, “a broadcast encryption system allows a center to 

communicate securely over a broadcast channel with selected sets of users. 

Each time the set of privileged users changes, the center enacts a protocol to 

establish a new broadcast key that only the privileged users can obtain, and 

subsequent transmissions by the center are encrypted using the new broadcast 

key” [35].  The following figure shows an example schema: 
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Figure 22 Broadcast encryption 

A typical scenario is the transmission of broadcast TV show: the entity 

responsible for the spread (the International Broadcast Center) wants to send 

the program to the whole community of viewers. To this end, it is not 

necessary that the source emits a different signal for each user: a single 

transmission is sufficient, as each target device will then be able to capture the 

signal and properly receive the transmitted information.  

Generally BE schemes are classified into two types: symmetric key and public 

key based BE schemes [60]. In the symmetric key setting, the only trusted 

group center GC can generate a broadcast message to users while, in the 

public key setting, any users are allowed to broadcast a message. I denote by U 

the set of users and by R ⊂ U the set of revoked users. The following is a 

formal definition of a symmetric key based BE scheme [60]. 

A BE scheme B is a triple of polynomial-time algorithms (SetUp, BEnc, Dec), 

i.e., setup, broadcast encryption, and decryption [60]: 

SetUp: a randomized algorithm which takes as input a security parameter 1 λ  

and user set U. It generates private information SKEYu for user u ∈ U. Private 

information of group center GC is defined as the set SKEYu of private 

information of all users.  

BEnc: a randomized algorithm which takes as input a security parameter 1 λ , 

private information SKEYU of GC, a set R of revoked users, and a message M 
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to be broadcast. It first generates a session key GSK and outputs (HdrR, 

CGSK, M ) where a header Hdr is information for a privileged user to compute 

GSK and (CGSK, M) is a ciphertext of M encrypted under the symmetric key 

GSK. Broadcast message consists of [R, HdrR , CGSK,M ]. The pair (R, HdrR ) 

and CGSK,M are often called the full header and the body, respectively. 

Dec: a deterministic algorithm which takes as input a user index indu, private 

information SKEYu of u, the set of revoked users R, and a header HdrR. If 

u∈ U\R, it outputs the session key GSK.  

In public key broadcast encryption, the setup algorithm additionally generates 

the public keys PKU of users and PKU instead of the private information SKEYu 

of GC is taken as input in the algorithms BEnc and Dec. 

 

5.1 Broadcast Encryption schemas 

A first scheme involves an initialization phase, which a distinct secret key 

is assigned to each user of the system. To transmit a message M, the source 

concatenates as many copies of M as the number of receivers, by encoding 

each copy with a different secret key. The disadvantage of such scheme is that 

the resulting message has a size that depends on the numbers of intended 

receivers. Rather than a technique of broadcasting, this pattern can be seen as 

a way to unify multiple parallel communications between the International 

Broadcast Center and each of the authorized users [140]. 

An enhancement can be to encrypt the information using a (newly generated) 

session key SK and then to send the session key to the receivers using the 

previous scheme and transmitting the information. Each receiver decrypts the 

message using its own copy of SK. The advantage is that, usually, the length of 

the key is shorter than that of information [140]. 

Another scheme divides the users in groups. At each group is assigned a secret 

key. A user receives the secret keys of all the groups he belongs to. The user 

needs a size store that depends on the number of her affiliation. This scheme 

is unsuitable if the groups are dynamic, since it requires changing keys with 

the composition of the group [38] [140]. 
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5.2 Threshold cryptosystem 

The first real solution for BE were the threshold cryptosystems [38] 

[39].The (s, n)-threshold scheme (threshold scheme "s on n") permits to break 

up a secret information I among N participants, dividing I in N parts I1,. . . , In 

called shares. The shares are constructed so that the knowledge of S (or more) 

shares allows the reconstruction of I, while the knowledge of S-1 (or less) 

shares doesn’t determine any value or subset of values. 

A basic broadcast encryption scheme consists of these phases [37]: 

 Registration: to collect the authorized (identifier of) receivers  

 Key generation: a new group symmetric key  K is generated, based on 

the receivers information 

 Encryption: the information I is encrypted using K obtaining E 

 Decryption: the authorized receivers decrypt E  

A broadcast message M is composed of two parts: a header, which contains 

information that can be used to access the content, and the body, which 

contains the encrypted content. 

There are many schemes for BE, among others: 

 Stateful schemes 

o Logical Key Hierarchy (LKH) [40] 

 Stateless schemes 

o Complete Subtree (CS) [41] 

o Subtree-Difference [42] 

o Layered Subtree-Difference [42] 

The original solution of Shamir is based on polynomial interpolation: since, 

given S points P1 =(x1 ,y1 )..Ps=(xs,ys) with distinct x i, there is one and only one 

polynomial of S-1 such that P(x i)=y i for all i=1..S, Shamir sets P(0)=I and 

broadcast S-1 point Pi.  Only the authorized receivers have an additional good 

point and can recreate the polynomial interpolation and calculate P(0). 

5.3 Distributed key generation 

If the secret key is released by a unique authority, it needs to be trusted. If 

this is not assured, it is better to use a distributed key generation, where every 
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party contributes to the assembly of the key. The following techniques address 

this issue. 

5.3.1 El Gamal 

ElGamal is a public key encryption system that is used in many other 

systems (as IBE and GCC) [141]. It is based on the hardness of computing the 

discrete logarithm. The three phases of ElGamal are: 

1. Key generation: each user generates a public key ) mod ,,( a 

aK  

where: 

a. ρ is a large prime number 

b. σ is a primitive radix of ρ 

c. a, the true secret key, is randomized in the interval [1.. ρ-2] 

2. Encryption: to send a message m ∈ Zp the user randomly chooses a 

number k in the interval [1.. ρ-2] . The ciphertext will be (y,Δ) where: 

a. y= σk mod ρ 

b. Δ=m* σa k mod ρ 

3. Decryption: the receiver obtain the encrypted message (y,Δ) and, using 

her secret key a, calculate  

4. Δy−a=m* σa k* (σk) –a  mod ρ = m mod ρ 

ElGamal has the disadvantage that the ciphertext is twice as long as the 

plaintext. It has the advantage the same plaintext gives a different ciphertext 

(with near certainty) each time it is encrypted. 

 

5.3.2 Identity Based Encryption (IBE) 

While IBE is not a BE system, it is fundamental to understand next BE 

systems as ABE and GCC. 

An Identity Base Encryption (IBE) scheme is a public-key cryptosystem 

where any string is a valid public key. In particular, email addresses and dates 

can be public keys [55]. IBE allows for a sender to encrypt a message to an 

identity without access to a public key certificate. The ability to do public key 

encryption without certificates has many practical applications. For example, 

a user can send an encrypted mail to a recipient, e.g. bobsmith@gmail.com, 

mailto:bobsmith@gmail.com
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without the requiring either the existence of a Public-Key Infrastructure or 

that the recipient be on-line at the time of creation.  

IBE was proposed by Adi Shamir in 1984 [55] but remained an open 

problem for many years, until the Boneh/Franklin's pairing-based encryption 

scheme2 4  [30][54] and the Cocks's encryption scheme [56] based on quadratic 

residues. 

Interesting characteristics of IBE are key expiration, management of user 

credentials (user can choose her PK), and delegation of decryption 

capabilities. 

An identity-based encryption scheme E is specified by four randomized 

algorithms: Setup, Extract, Encrypt, and Decrypt [54]. 

 Setup: takes a security parameter k and returns system parameters and 

master-key. The system parameters include a description of a finite 

message space M, and a description of a finite ciphertext space C. 

Intuitively, the system parameters will be publicly known, while the 

master-key will be known only to the “Private Key Generator" (PKG). 

 Extract: takes as input system parameters, master-key, and an 

arbitrary ID ∈ {0, 1}* and returns a private key d. Here ID is an 

arbitrary string that will be used as a public key, and d is the 

corresponding private decryption key. The Extract algorithm extracts a 

private key from the given public key. 

 Encrypt: takes as input system parameters, ID, and m ∈M. It returns a 

ciphertext c ∈C. 

 Decrypt: takes as input system parameters, c ∈ C, and a private key d. 

It returns m∈M. 

One common feature of all Identity-Based Encryption systems is that they 

view identities as a string of characters.  

Figure 23 shows an example of the flow of the IBE operations. 

                                                 

2 4  The cryptosystem has chosen ciphertext security in the random oracle 

model assuming an elliptic curve variant of the computational Diffie-Hellman 

problem 
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Figure 23 The IBE operations 

5.4 Attribute Based Encryption (ABE) 

As introduced in [44], ABE is a Fuzzy Identity-Based Encryption. In Fuzzy 

IBE an identity is view as set of descriptive attributes. Each community 

member receives a private key depending on its attributes (i.e., the subgroup 

to which it belongs), as showed in Figure 24. Information can be decrypted by 

people that have a certain attribute. For example, a user can have attributes 

such as employee and family and therefore is able to decode either the 

messages sent to collaborators either to relatives.  

More formally, “a Fuzzy IBE scheme allows for a private key for an identity, ω, 

to decrypt a ciphertext encrypted with an identity, ω’ , if and only if the 

identities ω and ω’ are close to each other as measured by the set overlap 

distance metric” . 

Known variants of ABE are [45]: 

 Secure Attribute Based Systems [52] 

 Multi-authority Attribute Based Encryption [47] 

 Key-policy Attribute-based Encryption [43] 

 Cipher-policy Attribute-based Encryption [46] 
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 Provable Secure Ciphertext Policy ABE [48] 

 Attribute Based Encryption with Non-Monotonic Access Structures [51] 

 Predicate Encryption Supporting Disjunctions, Polynomial Equations 

and Inner Products [49] 

 Attribute Based Ring Signatures [50] 

Common to these ABE schemes is the existence of a central trusted authority 

(master) that knows a secret master key and distributes secret attribute keys 

to eligible users. In [53] was presented Distributed Attribute-Based 

Encryption (DABE) to allow an arbitrary number of authorities to 

independently maintain attributes. Even if this scheme is not bound to a 

central server, it does not use a peer mechanism.  

 

Figure 24 An ABE sample 

5.5 Encryption in Online Social Network 

The widespread success of Online Social Network (OSN) has led to a wide 

availability of personal data, which are often crawled by other users or OSN 

itself to target their users. Traditional cryptographic schemes are not adequate 

to protect data from abuse but, at the same time, permit authorized user the 

access to it. The use of public key cryptography forces users to store many 

copies of encrypted data and to know the identities of every community 

member since it doesn’t allow communications based on groups (attributes). 

To solve this problem, new encryption schemes were studied, specifically 

designed for use in an OSN [143] [144]. Here I focus on Persona and GCC, 
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which can be evaluated to adopt similar strategies in the development of my 

system. 

5.5.1 Persona 

Persona [61] is a private OSN that encrypts user data with attribute-based 

encryption (ABE), allowing users to apply fine-grained policies over users who 

may view their data. This architecture achieves privacy by encrypting private 

contents and prevents misuse of a user’s applications through authentication 

based on traditional public key cryptography (PKC). 

Persona divides the OSN entities into two categories: users, who generate the 

content in the OSN, and applications, which provide services to users and 

manipulate the OSN content. 

In Persona, all users store their data encrypted for groups that they define. 

Any user that can name a piece of data may retrieve it, but they can only read 

it if they belong to the group for which the data was encrypted.  

Persona operations are intended to manage group (defined using ABE) 

members and access to resources. The areas covered by Persona are: 

 Group management with the capability to: 

o Add individuals to a group. The user generates an appropriate 

attribute secret key, encrypts this key using the target user's 

public key, and stores the encrypted key on her storage service. 

The target user can retrieve this encrypted key, decrypt it, and 

use it as necessary 

o Define groups based on a group defined by another user 

o Provide other users specific rights to named resources. An 

example of such a right would be the ability to store data on 

another user's storage service 

o Remove a group member. It requires re-keying: all remaining 

group members must be given a new key. Data encrypted with 

the old key remains visible to the revoked member. 

 Publishing and Retrieving Data: private user data in Persona is always 

encrypted with a symmetric key. The symmetric key is encrypted with 

an ABE key corresponding to the group that is allowed to read this data. 

This two phase encryption allows data to be encrypted to groups; reuse 
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of the symmetric key allows Persona to minimize expensive ABE 

operations. 

5.5.2 Group-oriented Convergence Cryptosystem 

(GCC) 

The previous schemes, based on traditional cryptographic techniques have 

limitations when dealing with multiple groups in Online Social Networks, 

since either users must store multiple copies of encrypted data but are unable 

to give data based on membership in multiple groups, or users must know the 

identities of everyone to whom they give access.  

In [57] was introduced a community key management method based on a 

group-oriented convergence cryptosystem (GCC). This method leverages the 

following properties: the community is built on convergence of some users’ 

private keys, the upload and download of resources provide the authentication 

and integrity checking, as well as there exist efficient mechanisms for access 

permission delegation and sophisticated revocation. 

In this environment, the users in social networks are divided into four 

categories: 

 Kernel members (KM): can create and manage a special community by 

collaboration and have rights to publish, delete, access or update 

resources released by other members of the community;  

 Full authorized members (FAM): have full rights to publish and access 

resources in the community, but do not have permissions to delete or 

update resources; 

 Authorized members (AM): can access the resources by using her own 

access permission, but cannot publish these resources; 

 Unauthorized users (UU): may not have permissions to access 

resources published by community members. 

GCC is specified by these algorithms: 

 UserRegister: each user can choose a favourite label, generate a private 

key by herself, and then register her label into the system 

 BuildCommunity: when somebody wants to share resources with 

others, she constructs a community together with a set of trusted 
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friends. Finally, each member gets a community key, which can be used 

to access, manage and maintain the resources in this community; 

 DelegatePermission: when a user wishes to access a community, her 

friends hold the community key can delegate an access per-mission key 

(APK) to her by using this algorithm; 

 UploadResource: if one community member wants to post message and 

resource into the community, she picks the community key, invokes 

this algorithm to encrypt the resource with her private key, and then 

transmits the encrypted data to the storage server;  

 Download-Resource: anytime one community member can obtain the 

encrypted data from the server, and invoke this algorithm to retrieve 

the original post or re-source by her private key and APK. 

GCC can be seen as an extension of IBE and ABE: 

 As IBE, each user chooses its own keys, but without going through a 

centralized server 

 as ABE, allows the encryption of group but the group key is generated 

from public keys of the subjects of communication and does not require 

a trusted server 

Moreover, it allows the revocation and delegation. 

It is interesting that each user has a single private key; the system has as many 

public keys as community, but the public keys are used only to create the 

group key (after this moment, the users decrypt using their secret key). 
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Table 5 Comparison between Persona and GCC 

 

5.6 Similarities between Distributed Databases 

and Online Social Network 

Although, at first glance, the concepts of database and OSN seem totally 

different, I want to investigate their similarities in the field of privacy.  

First, it is clear that the OSN has an internal database (see Figure 25) to store 

the information that dynamically will compose the wall (a space on every 

user's profile page that allows friends to post messages for the user to see 

[160]) of the users. The problem of protecting posts hosted in the OSN is then 

equivalent to protect shared data in an untrusted environment.  

 

Figure 25 The OSN internal storage 

Then, look at the topologies of OSN; traditionally it is represented as a mesh 

network among users [145], often leaving out the central node on the Cloud 
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(the OSN provider). Considering this central element, instead, the resulting 

topology is a star, as depicted in Figure 26: 

 

Figure 26 Topology of an OSN, as a mesh and as a star 

The same topology is shown in Figure 31, where a Distributed Database 

Architecture (DDA) is shown. In the latter, at the center of the star is the 

Synchronizer, which hosts a database. Either the OSN or the Synchronizer is 

untrusted entity that may not access data content, while the network clients 

may access information accordingly to the access policy.  

As every user leaves a post that may be read by multiple users (based on their 

permissions), but not from the server itself, so in the DDA, a user can send 

information to the Central Synchronizer to synchronize the replicated copies 

ensuring privacy in the central node. 

Therefore, it is reasonable to assume that the encryption techniques used in 

the OSN can be adapted for distributed databases. This topic will be addressed 

in Section 13. 
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6 PRIVACY WITHIN THE CLOUD  

In this Chapter, I analyse Cloud storage in the wider context of Cloud computing, which is a 

model for enabling convenient, on-demand network access to a shared pool of configurable 

computing resources that can be rapidly provisioned and released with minimal 

management effort or service provider interaction.  In this model there are more privacy 

issues than in Cloud Storage alone, the main of them I identify in server-side presentation 

layer and semantic model databases.  

Cloud computing includes a plethora of services, usually called XaaS (that 

stays for “everything-as-a-service”). The most common Cloud computing 

service models (i.e., from top to bottom, Software as a Service - SaaS, Platform 

as a Service - PaaS and Infrastructure as a Service - IaaS) are known as SPI.  

An architectural categorization of Cloud technologies as a stack of service 

types was proposed in [96] (see Figure 27). 
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Figure 27 Cloud stack, source: [96] 

The lowest level of the stack is IaaS, where a service provider offers 

computing, storage or networking infrastructure to customers. It contains two 

sublevels: Resource Set and Infrastructure Services. 

 Resource Set may be divided in Physical Resource Set (PRS), which is 

hardware dependent and therefore tied to a hardware vendor, and 

Virtual Resource Set (VRS), which can be built on vendor independent 

hypervisor technology. Examples of PRS services include Emulab [99] 
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and iLO [100]. VRS services include Amazon EC22 5 , Eucalyptus [101], 

Tycoon [98], Nimbus [103], and Open Nebula [104]. 

 Infrastructure Services include Basic Infrastructure Services (BIS), 

which combine computational, storage, and network services, and 

Higher Infrastructure Services (HIS), as Amazon’s Dynamo [102], and 

Google’s Bigtable [11]. 

The second level is PaaS, which contains the provider's resources to run 

custom applications. It groups Programming Environments, such as Sun (now 

Oracle) Project Caroline2 6  and the Django framework2 7 , and Execution 

Environments, such as Google App Engine2 8 , Joyent Reasonably Smart2 9  and 

Microsoft Azure3 0. Each provider can couple a development and an execution 

environment to expose its services.  

The third level is SaaS, where customers use software that is run on the 

provider’s infrastructure. The application developers can either use the PaaS 

layer to develop and run their applications or directly use the IaaS 

infrastructure. Additionally, SaaS can also be hosted in a "conventional" way, 

i.e. without underlying PaaS or IaaS. SaaS may be articulated in Basic 

Application Services, such as OpenId3 1  [105] and Google Maps3 2  services, and 

Composite Application Services, as My Space3 3  or Facebook3 4 . A superset of 

                                                 

2 5  Akamai Technologies Inc., “Akamai edgecomputing. Enabling applications 

that grow your business.” - http://www.akamai.com/dl/whitepapers/ 

Akamai_Enabling_Apps_Grow_Business_ 

2 6  http://labs.oracle.com/projects/caroline/ 

2 7  https://www.djangoproject.com/ 

2 8  http://code.google.com/intl/it-IT/appengine/ 

2 9  http://www.joyent.com/ 

3 0  http://www.microsoft.com/windowsazure/ 

3 1  http://openid.net/ 

3 2  http://maps.google.it/ 

3 3  http://it.myspace.com/ 

3 4  http://www.facebook.com/ 
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the previous service is the “Application Services” tout-court, such as Google 

Docs3 5 , Microsoft’s Office Live3 6  or Auciti Hangout3 7 . 

On top of the traditional SPI scheme, the new level HuaaS has appeared. It 

indicates a set of Cloud services that are processed by a community that 

provides, filters, and catalogs information, such as YouTube3 8 , Amazon 

Mechanical Turk3 9  or Digg4 0. 

In particular, in the realm of IaaS there are a lot of specialized services, 

including storage services. Storage services may be classified as Basic 

Infrastructure Services (BIS), when they only provide basic storage 

functionality (Amazon S34 1 , GoGrid Cloud Storage4 2 , ExpanDrive4 3 , Nirvanix 

Cloud Storage Network4 4 , Rackspace Cloud Files4 5 , etc.), or as Higher 

Infrastructure Services (HIS) when they provide additional functionality, like 

a query language. In this taxonomy, Database-as-a-Service (DBaaS) offerings 

like Amazon SimpleDB4 6  and technologies, such Google Bigtable [11], 10gen 

MongoDB4 7  and Apache HBase4 8  are categorized as HIS.  

DBaaS is a managed service, offered on a pay-per-usage basis, which provides 

on-demand access to a database for the storage of application data [95]. In the 

Cloud, storage is spanned on multiple servers, usually hosted in large data 

centres, whose operators manage the infrastructure.  

                                                 

3 5  http://docs.google.com/ 

3 6  http://www.officelive.com/ 

3 7  http://fun.auciti.com/ 

3 8  http://www.youtube.com/ 

3 9  https://www.mturk.com/ 

4 0  http://digg.com/ 

4 1  http://aws.amazon.com/s3/ 

4 2  http://www.gogrid.com/Cloud-hosting/Cloud-storage.php 

4 3  http://www.expandrive.com/ 

4 4  http://www.nirvanix.com/products-services/storage-delivery-network 

4 5  http://www.rackspace.com/Cloud/Cloud_hosting_products/files/ 

4 6  http://aws.amazon.com/simpledb/ 

4 7  http://www.10gen.com/ 

4 8  http://hbase.apache.org/ 
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6.1.1 Cryptographic Storage Service 

The benefits of using a public Cloud infrastructure are cost reduction, 

availability (anywhere access), and reliability (backups), but it introduces 

significant security and privacy risks for the confidentiality and integrity of 

data. To address these concerns a common solution is the use of cryptographic 

storage, which protects data using encryption to provide [97]: 

 Confidentiality: the Cloud storage provider does not learn any 

information about customer, and 

 Data integrity: any unauthorized modification of customer data by the 

Cloud storage provider can be detected by the customer; 

without giving up to the main benefits of a public storage service: 

 Availability: customer data is accessible from any machine and at all 

times, 

 Reliability: customer data is reliably backed up, 

 Efficient retrieval: data retrieval times are comparable to a public Cloud 

storage service, and 

 Data sharing: customers can share their data with trusted parties. 

The benefits of a CSS can be summarized in: 

 Regulatory compliance: often, law makes organizations responsible for 

the protection of the data that is entrusted to them. Since, in CSS, data 

is stored encrypted, customers can be assured that the confidentiality of 

their data is preserved irrespective of the actions of the Cloud storage 

provider; 

 Geographic restrictions: data may be subject to law of Country of 

physical storing. If data is stored on Cloud, it is not clear its physical 

location. Since, in CSS, data is stored encrypted, any law that pertains 

to the stored data has little to no effect on the customer; 

 Subpoenas: in case of a legal action, the request of data may be made to 

the Cloud provider and the latter could even be prevented from 

notifying the customer. Since, in CSS, data is stored encrypted, the 

Cloud provider has no access to information and needs to turn request 

to the customer. Moreover, the request is managed by the customer 
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under investigation and does not affect the others that store data on the 

Cloud provider; 

 Security breaches: a Cloud storage provider may be legally responsible 

for a security breach. But, in a CSS data is encrypted and data integrity 

can be verified at any time; 

 Electronic discovery: a Cloud provider needs a large amount of 

additional information to prove data integrity. In a CSS, instead, data 

integrity can be verified at any time without additional storing; and 

 Data retention and destruction: in the Cloud it is difficult to prove the 

destruction of previously collected data. In a CSS, even in case of data 

retention, information is not accessible to the provider. 

A cryptographic storage service (CSS) can have a Consumer Architecture or an 

Enterprise Architecture [97].  

6.1.1.1 A Consumer Architecture 

In a Consumer Architecture, three actors collaborate to share data: 

a. A user Alice that stores her data in the Cloud,  

b. A user Bob with whom Alice wants to share data, and  

c. A Cloud storage provider that stores Alice's data. 

The two users run locally a client application that consists of a data processor, 

a data verifier, and a token generator. At the first step, Alice's application 

generates a cryptographic key that is stored locally on Alice's system and that 

it is kept secret from the Cloud storage provider. 

Alice can: 

 Upload data to the Cloud using the data processor. It attaches some 

metadata (e.g., current time, size, keywords etc) and encrypts and 

encodes the data and metadata with a variety of cryptographic 

primitives. The result is sent to the Cloud storage; 

 Verify the integrity of her data using the data verifier. It uses Alice's 

master key to interact with the Cloud storage provider and ascertain the 

integrity of the data; 

 Retrieve data using keywords. The token generator is invoked to create 

a token. The token is sent to the Cloud storage provider who uses it to 
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retrieve the appropriate (encrypted) information which it returns to 

Alice. Alice then uses the decryption key to decrypt the information. 

To share data with Bob: (1) Alice's data processor prepares the data before 

sending it to the Cloud; (2) Bob asks Alice for permission to search for a 

keyword; (3) Alice invokes the token generator to create an appropriate token, 

and the credential generator to generate a credential for Bob, and sends them 

to Bob; (4) Bob sends the token to the Cloud; (5) the Cloud uses the token to 

find the appropriate encrypted documents and returns them to Bob. (6) At any 

point in time, Alice's data verifier can verify the integrity of the data. 

The process is summarized in the following schema: 

 

Figure 28 A Consumer Architecture 

6.1.1.2 An Enterprise Architecture 

In an Enterprise Architecture, three actors collaborate to share data: 

a. An enterprise MegaCorp that stores its data in the Cloud while 

using dedicated machines within its network to run a data 

processor (DP), a data verifier (DV), and a token generator (TG);  

b. A business partner PartnerCorp with whom MegaCorp wants to 

share data; and  

c. A Cloud storage provider that stores MegaCorp's data. 

The process is as follows: (1) each MegaCorp and PartnerCorp employee 

receives a credential that reflects her organization / team / role; (2) MegaCorp 
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employees send their data, together with an associated decryption policy that 

specifies the type of credentials necessary to decrypt it, to the internal 

machine hosting the DP; (3) the latter processes the data using the DP before 

sending it to the Cloud; (4) the PartnerCorp employee sends a keyword to 

MegaCorp's internal machine hosting TG; (5) the dedicated machine returns a 

token; (6) the PartnerCorp employee sends the token to the Cloud; (7) the 

Cloud uses the token to find the appropriate encrypted documents and returns 

them to the employee. (8) At any point in time, MegaCorp's DV can verify the 

integrity of MegaCorp's data. 

The process is summarized in the following schema: 

 

Figure 29 An Enterprise Architecture 

 

6.2 Privacy issues in Cloud computing 

The CSS assumes the distinction between data storage (on the Cloud) and data 

manipulation (in the client or corporation side), while Web 2.0 applications 

are usually hosted by PaaS providers. The most diffused Execution 

Environments on the Cloud handle both data and application management.  

The three main suppliers of Public Cloud Infrastructure (Google App Engine 

for Business, Amazon Elastic Compute Cloud and Windows Azure Platform) 

all include a datastore, and an environment for remote execution summarized 

in Table 6and Table 7. 
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Table 6 Datastore solutions used by public Clouds 
Provider Datastore 

Google  Bigtable  

Amazon  IBM DB2  
IBM Informix Dynamic Server  

Microsoft SQLServer Standard 2005  

MySQL Enterprise  
Oracle Database 11g  

Others installed by users 

Microsoft  Microsoft SQL Azure  

Table 7 Execution environments used by public Clouds 
Provider Execution environment 

Google  J2EE (Tomcat + GWT)  

Python  

Amazon  J2EE (IBM WAS, Oracle WebLogic Server) and others installed by users 

Microsoft  .Net  

 

Let us now go back to the scenario from where this dissertation has started: 

the possibility of an untrustworthy cloud supplier who can intercept 

communications, modify executable software components (e.g., using aspect 

programming), monitor the user application memory, etc. Figure 30describes 

a typical session, where data travels from data storage (DS) to the final user by 

passing through database drivers (e.g. JDBC/ODBC drivers), Object-

Relational Mapping (ORM) layer, until it arrives to the Presentation Layer 

(PL). While, as showed before, DS may be managed in a secure manner, the 

same can not be said about the other layers. The central line in Figure 30 (the 

wall) divides the part in charge of the Cloud and that in charge of User. 
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Figure 30 The wall 

Hence, available techniques for safely outsourcing data to untrusted DBMS no 

longer guarantee the confidentiality of data outsourced to the Cloud.  

The essential point consists in having the data and the user interface 

application logic on the same side of the wall. This is a major difference w.r.t. 

outsourced database scenarios, where presentation was handled by trusted 

clients. In the end, the data must be presented to the user in an intelligible and 

clear form; that is the moment when a malicious agent operating in the Cloud 

has more opportunities to intercept the data. To prevent unwanted access to 

the data at presentation time, it would be appropriate moving the presentation 

logics off the Cloud to a trusted environment that may be an intranet or, at the 

bottom level, a personal computer. 

However, separating data (which would stay in the Cloud) from the 

presentation logics may enable the creation of local copies of data, and lead to 

an inefficient cooperation between the two parts.  

6.3 Semantic datastore  

In Section 2.2-Data protection techniques, I showed many techniques for data 

outsourcing in untrusted servers, primarily designed for untrusted RDBMS. 
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But since, today, Cloud computing approaches largely rely on semantic (non-

relational) DBMSs, those techniques cannot be applied directly. Semantic 

DBMSs do not store data in tabular format, but following the natural structure 

of objects. After more than twenty years of experimentation (see, for instance, 

[10] for the Galileo system developed at the University of Pisa), today, the 

lower performance of these systems is no longer a problem. In the field of 

Cloud computing, there is a particular attention to Google Bigtable.  

"Bigtable is a distributed storage system for managing structured data that is 

designed to scale to a very large size: petabytes of data across thousands of 

commodity servers. In many ways, Bigtable resembles a database: it shares 

many implementation strategies with databases." [11] 

With a semantic datastore like Bigtable, there is a more strict integration 

between in-memory data and stored-data; they are almost indistinguishable 

from the programmer viewpoint. There are not distinct phases when the 

program loads data from disk into main memory or, in the opposite direction, 

when program serialize data on disk. Applications do not even know where the 

data is stored, as it is scattered over the Cloud.  
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Part II - Research questions and 
results 
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7 DESIGN OF A DISTRIBUTED SYSTEM 

FOR INFORMATION SHARING  

This chapter presents the challenges that arise from the context described by the previous 

chapters in Part I of the thesis. My research contribution is the design of a new architecture 

whose goals are data privacy preservation, fine grained access control, and grant-and-

revoke capability. 

From the context described in the previous chapters, three main 

challenges emerge and are addressed by the architecture proposed in this 

thesis: 

 Native Cloud sharing system: in Section 6-Privacy within the Cloud, I 

exposed the peculiarity of Cloud storage considered not as a singleton 

but in the more general perspective of Cloud Computing. It brings to 

state that what presented in Section 2-Background on data protection is 

not perfectly suitable on the Cloud. My research contribution will 

consist in the design of a data sharing system thought for the Cloud 

since birth. 

 Safe system with minimal number of trusted components: to prevent 

privacy leaks in the remote storage, the usual strategies, shown in 

Section 2-Background on data protection, are: i) introducing some 

trusted component during data sharing, or ii) dividing information and 

responsibilities among different untrusted actors. In my research, 

instead, I want to guarantee privacy in an untrusted environment 

where only the data owner is trusted. 

 Platform independent system, built on available standard technologies: 

custom tools were developed for privacy in a well-defined platform (e.g. 
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the schemes for OSN in 5.5-Encryption in Online Social Network). My 

contribution is a framework that is independent from the Cloud 

provider, and uses standard industrial technologies and protocols. 

7.1 Description Language 

I will describe my approach to Cloud data privacy by means of the well-

known Unified Modeling Language (UML). I chose UML, rather than a more 

formal description, i.e., Finite-State Automata (FSA), to emphasize the 

collaboration among the distributed components and their role data exchange.  

UML4 9  is a standardized, general-purpose modeling language for object-

oriented software engineering, which implements the concepts of Model 

Driven Development (MDD) [158], a framework that arose, in the early 

1990’s, in the telecommunications industry. Although UML is a semiformal 

language that lacks a well-defined semantics and then hardly allows formal 

verification, it is widely used in communication protocols design and 

description (e.g. Broadcast Encryption Protocols, see Section 5).  

The strength of MDD is in modelling highly-concurrent processes that are 

state-based and communicate through well-defined messages [159]. It does so 

by a broad range of diagrams that covers requirements analysis (called use 

case diagrams), class components (class diagrams), algorithmic sequences 

(sequence diagrams), component evolutions (state diagrams), etc. The ability 

to extract sequence diagrams from UML executable models will allow us to 

verify and validate the system behaviour, as I will detail in Section 10. 

7.2 The architecture 

I build over the notion introduced in [7] of defining a view for every user 

group/role, but I prevent performance degradation by keeping all data views 

in the user environment.  

                                                 

4 9  http://www.omg.org/spec/UML/2.0/ 
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 Specifically, I atomize the application/database pair, providing a copy per 

user. Every instance runs locally, and maintains only authorized data that is 

replicated and synchronized among all authorized users.  

I will consider a system composed of:  

1. Local agents distributed at client side; 

2. A central synchronization point.  

The following figure shows the proposed architecture: 

 

Figure 31 The architecture 

7.3 The model  

Henceforth, I will use the term dossier to indicate a set of related 

information. My data model may be informally represented by the diagram in 

the following figure: 

  

Figure 32 The model  
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In my model, each node represents a local, single-user application/database 

dedicated to an individual user (un). Each node stores only the dossiers that its 

user may access. Shared dossiers (in this example, d1 ) are replicated on each 

node. When a node modifies a shared dossier, it must synchronize, also using 

heuristics and learning algorithms, with the other nodes that hold a copy of it. 

In Table 8 and Table 9, I give a simple SWOT analysis [162] of this idea. 

Table 8 Strength/Opportunities 
Information sharing using untrusted Synchronizer; 

Small amount of local data, less attractive for attackers; 

Only the final user has clear-text information; 

Unrestrained individual nodes, that can also work offline (with deferred synchronization);  

Simplicity of data management (single user);  

Completeness of local information.  

To clarify the last point, suppose that the user un  wants to know the number of 

the dossier she is treating. In a classic intranet approach, where dossiers 

reside on their owners' servers, in addition to its database,  un  should examine 

the data stores of all other collaborating users. With my approach, instead, I 

will simply perform a local query because the dossiers are replicated at each 

client. 

Table 9 Weaknesses/Threats 
Complexity of deferred synchronization schemes [21];  

Necessity to implement a mechanism for grant/revoke and access control permissions 

 

This last point is particularly important and it deserves further discussion: 

 Each user (except the data owner) may have partial access to a dossier. 

Therefore each node contains only the allowed portion of the 

information, i.e. the dossier does not contain at all the restricted parts; 

 Authorization, i.e., granting to a user uj access to a dossier dk, can be 

achieved by the data owner simply by transmitting to each node only 

the data it is allowed to access, i.e. the restricted attributes are omitted 

(blanked); 

 The inverse operation can be made in the case of a (partial or complete) 

revocation of access rights. An obvious difficulty lies in ensuring that 

data becomes no longer available to the revoked node. This is indeed a 

moot point, as it is impossible – whatever the approach - to prevent 

trusted users from creating local copies of data while they are 

authorized and continue using them after revocation. I am evaluating 
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the opportunity to use watermarking for relational databases [26] to 

provide copyright protection and tamper detection. 



 99 

8 SCENARIOS 

In this Chapter, I define and discuss in depth some business scenarios where the proposed 

architecture naturally fits practical requirements. I will consider three typical scenarios: a 

medical, a group of independent professionals, and a nomadic user scenario, as they 

embody  very general and diffuse patterns of usage. 

As we will see, my approach best fit into a typical Business Collaborative 

Environment scenario, where a group of geographically scattered, associated 

professionals wants to share some structured information. Each actor can 

access only partial data of her interest. Data may be located at different sites. 

In the following, I will discuss three of these scenarios. 

8.1 Medical 

In this scenario, a family doctor shares some medical records with a 

specialist as a Radiologist or a Psychologist and the patients’ invoices with an 

Accountant. Clearly, a Radiologist may not access psychotherapy sessions, as 

well as a Psychologist may not access X-rays. Both of them need access to 

“Patient Master Data”, but only for their patients, a subset of those with the 

family doctor. After finishing the therapy, access to a patient data may even be 

revoked. The scenario is depicted in Figure 33. 
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Figure 33 A medical scenario 

Let us the following real life example: two Family Doctors FD1  and FD2 , two 

Radiologists R1  and R2 , a Psychologist P1 , an Accountant A1 , and three Patients 

Alice, Bob, and Charlie. Alice is with FD1 , R1 , and A1 , while Bob is with FD1 , R2 , 

and P1 , Charlie is with FD1 , and A1 . 

In my distributed system, this is modelled as in Figure 34. 

As we can see, each actor stores data locally in her computer; the Patient’s 

data is replicated in each of her doctors; each actor stores locally only the 

allowed portion of the patient’s data. 

 

Dossier
Invoices
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Radiologist 
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sessions



 101 

 

Figure 34 An instance of medical scenario 
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8.2 Collaboration and sharing between 

independent professionals 

The previous scenario can be generalized to capture the case of 

professionals, such as Lawyers, Engineers, Business Consultants and so on. 

This scenario is challenging because each participant may be bound to 

confidentiality/non-disclosure obligations to her client; these obligations may 

overlap/conflict with each other. The common characteristics of these figures 

are strong data locality, uneven connectivity, and, shall we say, patchy 

cooperation. The framework I develop in this dissertation is designed to adapt 

nicely to these circumstances, thus allowing the application of Cloud 

computing. 

8.3 Nomadic users 

Smartphones and tablets are increasingly becoming popular. All these 

devices now have fairly large storage (for agenda, contacts and other data) that 

acts as a cache when the device is offline. In the case of data shared among a 

network of friend, co-workers, etc., synchronization is guaranteed by a central 

server (e.g. Google Calendar) when connection is up. When shared data is 

sensitive, my system allows a “protected” synchronization without disclosing 

information on a Public Cloud (again, Google Calendar is a good example 

here). 
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9 MY APPROACH: THE iPRIVACY 

SYSTEM 

In this Chapter, I provide a semi-formal description of my architecture and of the 

interaction among its component by means of UML diagrams. I show how the architecture 

satisfies some general requirements, including protecting data privacy , supporting fine-

grained access control and providing a grant-and-revoke capability. 

I am now ready to present in detail my approach, that I named iPrivacy. 

To simplify the discussion, I introduce the following assumptions:  

 Each dossier has only one owner; 

 Only the dossier's owner can change it. 

These assumptions permit the use of an elementary cascade synchronization 

in which the owner will submit the changes to the receivers. However, they 

can be relaxed at the cost of a higher complexity in synchronization [34]. 

My approach consists of two parts: a trusted client and a remote untrusted 

synchronizer (see Figure 35).  

The client maintains local data storage where:  

 The dossiers that she owns are (or at least can be) stored as plaintext; 

 The others, instead, are encrypted each with a different key.  

The Synchronizer stores the keys to decrypt the shared dossiers owned by the 

local client and the modified dossiers to synchronize.  

When another client needs to decrypt a dossier, she connects to the 

Synchronizer and obtains the corresponding decryption key.  

The data and the keys are stored in two separate entities, none of which can 

access information without the collaboration of the other part.  
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Figure 35 Deployment diagram of the distributed system  

9.1 Structure  

From the architectural point of view, I divide the system into two 

packages, a local one (client agent), which contains the dossier plus additional 

information such as access lists, and a remote one (global synchronizer), 

which contains the list of dossiers to synchronize, their decryption keys and 

the public keys of clients.  

A UML view of involved classes is shown in Figure 36: 
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Figure 36 iPrivacy’s class view 

9.2 Grant  

An owner willing to grant rights on a dossier must follow the sequence in 

Figure 37.  



 106 

 

Figure 37 Grant sequence 

Namely, for each receiver, the owner:  

 Generates the decryption key  

 Encrypts it with the public key of the receiver to ensure that others 

cannot read it 

 Signs it with its private key to ensure its origin  

 Sends it to the Synchronizer, which verifies the origin and adds it to the 

storage of the decoding keys. The key is still encrypted with the public 

key of the receiver, so only the receiver can read it.  

9.3 Send  

When an owner modifies a dossier, she sends it to the Synchronizer using 

the sequence in Figure 38.  
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Figure 38 Send sequence 

For each receiver, the owner:  

 Generates a "pending dossier" by removing information that the 

receiver should not have access to;  

 Encrypts the pending dossier with the previously generated decryption 

key; 

 Signs with his own private key to certificate its origin; 

 Sends it to the Synchronizer, which verifies the origin and adds it to the 

storage of "pending dossiers”. Again, the dossier is still encrypted with 

the public key of the receiver, so only the receiver can read it.  
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9.4 Receive  

Periodically, each client updates un-owned dossiers by following the 

sequence in Figure 39.  

  

Figure 39 Receive sequence 

Each client: 

 Requests the "pending dossiers" to the Synchronizer. 

 Stores the (still encrypted) dossier in the local storage; 

 Removes the received dossiers from the Synchronizer. 

9.5 Use  

When a client needs to access an unowned (encrypted) dossier, the 

sequence in Figure 40 is used. 
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Figure 40 Use sequence 

The client:  

 Asks the Synchronizer for the decryption key (that is encrypted by her 

public key); 

 Decrypts it with her private key;  

 Decrypts the dossier by the resulting decryption key. 

If the decryption key does not exist, two options are available:  

 The record is deleted from the local datastore because a revoke 

happened; 

 The record remains cached (encrypted) into the local datastore because 

access rights to it could be restored. 

9.6 Revoke  

To revoke access to a receiver, it is sufficient to delete the corresponding 

decryption key from the Synchronizer. The sequence is designed in the UML 

diagram of Figure 41. 
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Figure 41 Revoke sequence 
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10 CONGRUENCE BETWEEN PLANNED 

AND ACHIEVED GOALS 

Using state diagrams of each component of the system, I will asses to which level my 

architecture satisfies the initial requirements for privacy protection and access control 

management. 

The initial requirements for my project were: privacy protection towards 

Cloud platform, fine-grained data access control, and grant-and-revoke 

permission on shared data. 

At the start, I noted that the Presentation Layer may not rest on the Cloud 

side, exactly to avoid exposing clear-text data to potential inner attacks. For 

this purpose, I moved the presentation logic to the client side. The next step 

was moving also the data layer from Cloud to client side, to prevent 

performance degradation. 

In the end I obtained a distributed architecture and a framework for data 

synchronization, but is the resulting system compliant with the initial 

requirements? 

Let us examine again each component involved in the system: 

 Client, distinct by role in: 

o Sender, and 

o Receiver; 

 Synchronizer, and  

 Network. 
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10.1 The Sender component (client side) 

A Client, when acting as Sender, manages only its own data. It transmits 

the modified local data to the Synchronizer. Obviously, the Sender has both 

the owned dossiers and the related decrypting keys in clear-text form. 

However, this does not violate the requirements. 

The Sender initiated actions are: Grant, Send, and Revoke. 

Essentially, when revoking access rights, the sender decides which dossiers 

have to be shared, who are the receivers, and what part of information each of 

them receives. This role, therefore, is related only to the last of the initial 

requirements. 

10.2 Receiver 

A Client, when acting as Receiver, manages shared (not owned data), 

interacting with the Synchronizer to receive public keys, pending dossiers and 

decrypting keys. 

The actions involved are: Receive, and Use. 

Figure 42 shows the state diagram of a Receiver: 
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Figure 42 Receiver’s state diagram 

Let us analyze each state in detail: 

1. The receiver starts in idle state (state 1) and there it remains until a 

synchronization occurs.  

2. At that moment, the client goes into state 2 and receives some 

(encrypted) dossier, which it stores, still encrypted, in the 

PendingDossiersStore. In this state, the receiver has not yet access to 

information. 

3. When the receiver wants to access a shared dossier, it asks for the 

decrypting key and, if this is present, receives it from the Synchronizer. 

Then the Receiver goes into state 3, where it has either the (encrypted) 

dossier either the related clear-text decrypting key. It will store the 

latter only in main memory, never in the persistent storage. Hence the 

dossier is still encrypted; if the decrypting key is not present, then the 

Receiver goes back into state 2. 
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4. The next step consists of decrypting the shared dossier by the 

decrypting key. The Receiver goes into state 4, in which it has the clear 

text dossier, but it doesn't permanently store this information, limiting 

itself manipulating clear-text data in main memory.  

At DB restart, the Receiver resumes to state 2). 

As a result, in no state there is a permanent storage of clear-text data. 

The received information is limited to the portion that the owner has sent (this 

satisfies the “fine-grained access”, requirement 0). 

If at step 3 the decrypting key is not found, because it was revoked by the 

owner, then the dossier remains inaccessible. Hence, the “grant-and-revoke 

permission on shared data”, requirement 3, is satisfied). 

10.3 Synchronizer 

The Synchronizer manages public keys, pending dossiers and decrypting 

keys. 

The actions in which it is involved are: Grant, Send, Receive, Use, and Revoke. 

Figure 43 describes the state diagram of the Synchronizer: 

 

Figure 43 Synchronizer’s state diagram 

Let us again analyze each state: 

1. At the start, the Synchronizer is empty, i.e. it has nothing stored (state 

1). 
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2. When an owner grants the access for a dossier to another client, the 

Synchronizer goes to state 2, after receiving a decrypting key. That key 

is encrypted by the receiver’s public key, so it is not understandable by 

the Synchronizer.  

3. When the owner sends the pending dossier, this is returned encrypted 

by decrypting key. The Synchronizer passes to state 3, in which it is 

storing either the (encrypted) dossier either the (encrypted) related 

decrypting key. The dossier’s privacy is guaranteed by the decrypting 

key, which, in turn, is guarded by the receiver’s private key . 

4. When the receiver issues a “receive” command, the Synchronizer goes 

back to state 2 and returns the requested dossier, deleting it from its 

storage.  

5. The Synchronizer remains in state 2 if it processes a "use" command by 

the receiver, since this more does not alter the remote storage (it is a 

“read-only” command). 

6. At a “revoke” command issued by the owner, the Synchronizer goes 

back into state 1. 

In no state there is a clear-text data or a clear-text decrypting key, so the 

requirement 1 is satisfied. Requirements 2 and 3 are not applicable to the 

Synchronizer. 

 

10.4 Network 

For the network, as for the Synchronizer, only requirement 1 is applicable. I 

notice that each “message” sent on the network is encrypted: 

 Each decrypting key is encrypted by the receiver’s public key, and 

therefore it is readable only by means of the corresponding private key; 

 Each pending dossier is encrypted by decrypting key, and therefore it is 

readable only having this. Since I have showed that it is understandable 

only by the addressed receiver, for the transitive property, also the 

dossier has the same characteristic. 
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11 EXPERIMENTATION 

A real implementation of my architecture allowed us to test and benchmark the system. The 

realization is composed of a client application that uses a custom in-memory database with 

row-level encryption, and a remote synchronizer to manage inter-node communications.  

To experiment with my architecture I implemented the custom client and 

Synchronizer. The client needs to use row-level encryption. In the usual 

RDBMSs, however, this technique has significant disadvantages in terms of 

performance and functionality: querying would be possible only through the 

construction of appropriate indexes for each column of the table (with a 

considerable waste of resources both in terms of time and space), while the 

constraints and foreign keys would be almost unusable.  

Another major issue concerns the management of keys: row-level encryption 

could potentially lead to the generation and maintenance (and / or 

distribution) of a key for each row of each table encrypted with this method. 

To solve (or reduce) the concern, I use some advanced techniques of key 

management, such as: 

 Broadcast (or Group) encryption [32]: rows are divided into 

equivalence classes, based on recipients. Every class is encrypted using 

an asymmetric algorithm where the encryption key is made in a way 

that each recipient can decrypt the information using only its own 

private key. Both the public and the private keys are generated by a 

trusted entity. 

 Identity Based Encryption [30]: it bounds the encryption key to the 

identity of the recipient. Each recipient generates by itself a key pair 

used to encrypt/decrypt information. 
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 Attribute Based Encryption [31]: it bounds the encryption key to an 

attribute (a group) of recipient. Each recipient receives from a trusted 

entity the private key used to decrypt, while the sender calculates the 

encryption key. 

The complexity of these techniques is a major reason why conventional 

RDBMSs do not use encryption at the row-level. 

To solve or reduce this limitation, I propose to use IMDBs to store the 

encrypted rows. 

While IMDBs are limited by the amount of main memory in the host 

computer, they are well suited to be distributed and replicated across multiple 

nodes to increase capacity and performance. 

The proposed approach works around this limitation: not having a single 

central database containing the whole data, I preferred to give one database 

for each client application. This database contains only owned data, while 

external data will be added (or removed) via the synchronizer, based on access 

permissions. 

To minimize cryptography overhead, I encrypt only rows "received" by other 

nodes, while rows owned by the local node are stored in clear-text form. 

Well-known open-source implementations of IMDB are Apache Derby, 

HyperSQL (HSQLDB) and SQLite. For my implementation, I chose to use 

HyperSQL rel. 2.0. 

 

11.1 HyperSql 

HyperSQL5 0  is a pure Java RDBMS. Its strength is, besides the lightness 

(about 1.3Mb for version 2.0), the capability to run either as a Server instance 

either as a module internal to an application (in-process). 

A database started in-process has the advantage of speed, but it is dedicated 

only to the containing application (no other application can query the 

database). For my purposes, I chose server mode. In this way, the database 

engine runs inside a JVM and will start one or more "in-process” databases, 

listening requests from processes in the local machine or remote computers.  
                                                 

2  www.hsqldb.org 
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For interactions between clients and database server, we can use three 

different protocols: 

 HSQL Server: the fastest and most used. It implements a proprietary 

communication protocol; 

 HTTP Server: it is used when access to the server is limited only to 

HTTP. It consists of a web server that allows JDBC clients to connect 

over http; 

 HTTP Servlet: as the Http Server, but it is used when accessing the 

database is managed by a servlet container or by an application servlet 

(e.g. Tomcat). It is limited to using a single database. 

Several different types of databases (called catalogs) can be created with 

HyperSQL. The difference between them is the methodology  adopted for data 

storage: 

 res: this type of catalog provides for the storage of data into small JAR 

or ZIP files; 

 mem: data is stored completely in the machine’s RAM, so there is no 

persistence of information outside of the application life cycle in the 

JVM; 

 file: data is stored in files residing into the file system of the machine.  

In my work I used the latter type of databases. 

A catalog file can use up to six files on the file system for its operations, the 

most important of which are: 

 .log: used to periodically save data from the database, to prevent data 

loss in case of a crash; and 

 .script: containing the table definitions and other components of the 

DB, plus data of not-cached tables. 

Besides these files, HyperSQL can connect to CSV files.  

A client application can connect to HyperSQL server using the JDBC driver 

(.Net and ODBC drivers are “in late stages of development”), specifying the 

type of database to access (file, mem or res). 

HyperSQL implements the SQL standard either for temporary tables either for 

persistent ones. Temporary tables (TEMP) are not stored on the file system 

and their life cycle is limited to the duration of the connection (i.e. of the 

Connection object). The visibility of data in a TEMP table is limited to the 
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context of connection used to populate it. With regard to the persistent tables, 

instead, HyperSQL provides three different types of tables, according to the 

method used to store the data: 

 MEMORY: it is the default option when a table is created without 

specifying the type. Memory table data is kept entirely in memory, 

while any change to its structure or contents is recorded in .log and 

.script files. These two files are read at the opening of database to load 

data into memory. All changes are saved when closing the database. 

These processes can take a long time in the case of tables larger than 10 

MB. 

 CACHED: when this type of table is chosen, only part of the data (and 

related indexes) is stored in memory, thus allowing the use of large 

tables at the expense of performance. 

 TEXT: the data is stored in formatted files such as .csv. 

In my implementation, I use MEMORY tables. 

Figure 44 summarizes the structure of HyperSQL. 

 

Figure 44 HyperSQL Structure 

The Loader and the Serializer are the main parts of HyperSQL that I analyzed 

and modified. They are the mechanisms that load the data from text files at 

the opening and save them to the database at closing. 
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11.1.1 Loader 

I suppose that the client connects to the DBMS using instructions like: 

Class.forName("org.hsqldb.jdbcDriver" ); 
Connection c = DriverManager.getConnection( 

 "jdbc:hsqldb:file:myDB", "SA", ""); 

 

Having used a catalog of file type, the static method newSession() of class 

org.hsql.DatabaseManager is called. Its task is to open the database or to 

connect to it (if it is already opened). org.hsql.Database is the class that 

represents the instance of the database in memory, so this is the root of all 

data structures designed to contain the information of the database. Once the 

database is loaded into memory, two fundamental classes are used for the 

parsing of text files: org.hsqldb.ParserCommand (for management of sessions 

and statements) and org.hsqldb.Scanner (for the recognition of individual 

SQL tokens). The class responsible for maintaining the database (related to 

the session) is org.hsqldb.SessionData, whose main attributes are: 

private final Database database; 
private final Session session; 
PersistentStoreCollectionSession persistentStoreCollection; 

PersistentStore is the data structure that contains all rows in a database table. 

Specifically, this is an interface implemented by using different classes 

depending on the type of table represented: in my case I use MEMORY tables, 

so that the affected class is the org.hsqldb.persist.RowStoreAVLMemory. 

When the Database object is created, particularly at the invocation of method 

reopen(), the class org.hsqldb.persist.Logger, which is the class that 

represents the interface for I/O to and from text files of the database, is 

instantiated. The starter method of Logger class is openPersistence(), which 

will open the specified database (if the database is new, the related text files 

are created). The class org.persist.Log is instantiated after verifying the 

integrity of the .properties file. My focus is on method open() of this class 

which checks the status of the Database (if it was closed properly, if it was 

modified, and so on) and then instantiates the class 

org.hsqldb.scriptio.ScriptReaderText to read the .script file using the method 

readAll(Session s). The class org.hsqldb.rowio.RowInputTextLog is used to 

read a single line of the database and the object that represents a row in the 



 123 

database is the object Row. Two methods of class ScriptReaderText are 

invoked: 

 readDDL(): reads the DDL statements and initialize a class 

RowInputTextLog for each line read from the .script file. 

 readExistingData(): it extrapolates the values of each single line, 

initializes the row and adds it to the PersistentStore; 

Because of the database file structure, I need to look for Insert statements to 

find the rows of a table. When one of these statements is encountered, it is 

managed by the method processStatement(Session s) of ScriptReaderText 

class. For each field in the row, it checks whether it is primary key and 

determines the data type, then the value of the field is read by the method 

readData (DataType t) of RowInputTextLog class.  

The sequence of operations is shown in the UML diagram of Figure 45. 
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Figure 45 Loader’s sequence 
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11.1.2 Insert 

When the client issues a SQL Insert command, it is managed by the Table 

class, which calls the getNewCachedObject() method() of class 

PersistentStore, which add the node through the RowStoreAVLMemory class. 

In the end, the new data is in place into the self-balancing binary search tree 

in main memory. The persistent storage is not involved in this activity. It will 

be used, instead, in the serializer’s actions. 

The sequence of operations is shown in the UML diagram of Figure 46. 

 

 

Figure 46 SQL Insert sequence 

 

 

11.1.3 Serializer 

The Serializer is the module responsible for saving the modified data into 

.script and .log files. Changes are initially written in .log file and moved to the 

.script file, when a shutdown command is issued.  

The sequence of operations is shown in the UML diagram of Figure 47. 
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Figure 47 Serializer’s sequence 

Each database table is represented by an instance of class org.hsqldb.Table, 

comprising: data structures for the management of content, methods for 

creating a new table, and operations of insert/select rows. When inserting a 

new row, the method insertSingleRow() of the Table class is invoked; the first 

step is to create a new Row object for caching data in memory, which is done 

by the method getNewCachedObject (Session s, Object [ ] data) of 

PersistentStore class. Memory-type tables are kept in a balanced tree structure 

(AVL) implemented in the class org.hsqldb.persist.RowStoreAVLMemory. 

Once a node (i.e. the row being inserted) is built and added to the AVL (this 

operation involves several checks on the contents of the fields and of integrity 

constraints), HyperSQL writes the row into the buffer and then transfers it to 

the text file (data is written to the .log file until shutdown of the database). To 

perform this task, the Logger class utilizes the method 

writeInsertStatement(Session s, Table t, Object [] data), and the method 

writeInsertStatement() of the Log class. Writing to the file is done using the 
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class org.hsqldb.scriptio.ScriptWriterBase (more precisely, in case of memory -

type tables, the ScriptWriterText subclass). The method writeRow(Session s, 

Table t, Object [] data) of ScriptWriterText class writes data to a text buffer 

and, at the end of the procedure, transfers it to the file. The buffer (which is 

only a byte[ ]) is encapsulated in the class RowOutputBase (more precisely, in 

case of memory-type tables, the RowOutputTextLog subclass), which extends 

the HsqlByteArrayOutputStream and provides methods to transform any type 

of data for serializing it into the buffer. Once writing to the buffer is 

completed, the method writeRowOutToFile() of ScriptWriterText class is 

used, which calls the method write(byte [ ] b) of the class OutputStream to 

write into the output stream of .log file. When shutting down the database, 

method writeScript() of Log class is invoked with the following tasks: creating 

temporary file for writing .script file, loading each element of the database into 

memory and writing it to the file by executing the flush() of the OutputStream 

connected to the file.  

In Figure 48 there is an instance of a .script file, containing the SQL 

statements to create and populate the DB. 

 

Figure 48 .script file’s structure 
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11.2 Prototype System 

11.2.1 Client side 

On the client side, using IMDBs, I have only two interactions between each 

local agent and the Synchronizer (see Figure 49). 

 

Figure 49 State diagram of client 

I have modified the classes included in file hsqldb.jar to handle encryption. 

The basic idea was to manage encryption in the .log and .script text files. The 

rows that are owned by the local client are stored in clear-text, while the 

shared rows “granted” by other owners are stored encrypted. 

The values contained in tables are stored in form of SQL insert: 

INSERT INTO table_name(field_1, field_2, …, field_n) VALUES(value_1, value_2, 
…, value_n) 

Earlier, to obtain control access granularity at the field level, I encrypted field 

by field. This way, the text contained in the database file is in the form of: 

INSERT INTO table_name(field_1, field_2, …, field_n) VALUES(pk, 

encrypted_value_2, …, encrypted_value_n) 

The primary key pk needs to be in clear-text, since it is used to retrieve the 

decrypting keys from the central Synchronizer. I dropped this idea because it 

requires changing the I/O code for each possible database type and an 

attacker may obtain some information such as table, primary key and number 

of rows. 

My current solution is to encrypt the whole row by AES symmetric algorithm. 

The encryption overhead is lower than the previous solution and all 

information is hidden to curious eyes. To relate the encrypted row (stored 

locally) to the decrypting key (stored in the remote Synchronizer), I use a new 



 129 

key (id_pending_row). The encrypted row is prefixed by a clear-text header 

containing the id_pending_row delimited by “$” and “@”. The encrypted 

value is then stored in a hexadecimal representation, so a generic row is of the 

form: 

$27@5DAAAED5DA06A8014BFF305A93C957D 

11.2.1.1 Load time 

At load time, the .script file will contain clear-text and encrypted rows, as 

the example shown in Figure 50. 

 

Figure 50 Modified .script file’s structure 

The class whose task is reading the file and loading the appropriate data in 

memory is ScriptReaderText, whose Class Diagram is the showed in Figure 51. 

 

Figure 51 UML of ScriptReaderText class 
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The readLoggedStatement method parses each line of text in the .log or .script 

files and forwards the result to the processStatement method, which loads 

data into memory. 

I changed the readLoggedStatement method to make a preprocessing: if it 

finds a record header (enclosed between $ and @) in the text line, it extracts 

the id_pending_row_received. Using this id, the client requests to the central 

Synchronizer the related decoding key, which it uses to decrypt the entire text 

line and to proceed with normal HyperSQL management. If the decoding key 

is unavailable, the text line is temporarily discarded (it is not deleted if it was 

not received for communication problem with the Synchronizer).  

The sequence of operations is shown in Figure 52. 
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Figure 52 Modified Loader’s sequence 

11.2.1.2 Save time 

The class ScriptWriterText, whose Class Diagram is shown in Figure 53, 

manages the write operations in .log and .script files.  
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Figure 53 UML of ScriptWriterText class 

The affected methods are writeRow and writeRowOutToFile.  

The former deals with building the string that will be written into the text file 

(INSERT INTO ....) witch corresponds to the in memory data. A Table 

instance contains the information about the table structure (table name, field 

names, types of data, constraints, etc.). The values of fields are in an array of 

Object. The SQL insert is written in a text buffer that is stored in the .script file 

by the method writeRowOutToFile. Because each table has an 

id_pending_row_received column, I modified the writeRow method to check 

if the row is owned or shared by another user. In the latter case 

(id_pending_row_received not null), the custom writeRowOutToFileCrypto 

method is used instead of the writeRowOutToFile method. 

WriteRowOutToFileCrypto uses the parameter id_pending_row_received to 

query the related symmetric encryption key from the Synchronizer, needed to 

encrypt the whole buffer. The result is a hexadecimal sequence which is 

prefixed by the below header with the id_pending_row_received. 

The resulting sequence of operations is shown in Figure 54. 
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Figure 54 Modified Serializer’s sequence 

11.2.2 Server side 

When a data owner adds or updates a row in the local database, it needs to 

distribute this change to all the related users. To do this, I put in the Cloud a 

central Synchronizer server that acts as a mailbox. 

It uses a simple database with the following tables: 

 Users: containing, among others, the id and public key of each user; 

 Pending Rows: it contains the rows that were added / modified in the 

local database of the owner, until they are delivered to destination. A 

unique row_id is automatically assigned to each pending row. Other 

information is submission date, sender and receiver. The changed row 

is stored in encrypted form in field encrypted_row; 

 Decrypting keys: contains the keys that are used to decrypt the pending 

rows. Other information is: sender, receiver, expiry date, id_row. 
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At modification time, the owner (client side) has to: 

 Serialize the row; 

 Generate a symmetric key to encrypt it; 

 Encrypt the row; 

 Encrypt the key by the public keys of receivers; 

 Send the encrypted row and the decoding keys to receiver. 

Because I store the serialized row, I haven't to worry about columns data 

types. 

The Synchronizer uses RMI to expose its services to clients. The services are 

grouped into three interfaces: 

 KeyInterface with methods related to encryption keys: depositKey, 

deleteDecriptingKey, getDecriptingKeyByIdPendingRow, 

getPublicKeyByUser; 

 SynInterface with methods for sharing the rows: sendRow, 

getPendingRowForUser, getAllUsers, resendRow; 

 RegistrationInterface to register and manage users: registerUser, 

SelectUserById, selectUserByIdAndPassword. 

Figure 55 shows the Class Diagram of the resulting system. 
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Figure 55 Synchronizer’s class diagram 

11.3 Performances 

In contrast to the usual row-level encryption, which needs 

encryption/decryption at every data access, my solution uses these heavy 

operations only when communicating with Synchronizer, with a clear 

advantage, especially in the case of rarely modified databases. 

11.3.1 Read operations 

The system uses decryption only at start time, when records are loaded 

from the disk into the main memory. Each row is decrypted none (if it is 

owned by local node) or just once (if it is owned by a remote node), so this is 

optimal for read operations. Each decryption implies an access to the remote 

Synchronizer to download the related decrypting key and, eventually, the 

modified row. 
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11.3.2 Write operations 

Write operations occur when a record is inserted/updated into the DB. In 

principle there is no overhead until the client, once it gets online, explicitly 

synchronizes data with the central server. At synchronization time, for each 

modified record, the client needs to: 

 Generate a new (symmetric) key; 

 Encrypt the record, and 

 Dispatch the encrypted data and the decrypting key to the remote 

synchronizer 

In the next Section, I will address the scalability that arises when 

synchronization/write operations are done massively. 

11.3.3 Benchmark 

To guarantee scalability, it is tantamount to measure the overhead that 

encryption brings to the custom version of HyperSQL for iPrivacy (henceforth, 

encHyperSQL). To do so, I wrote a test application that uses the encHyperSQL 

driver and interacts with the other clients through the Synchronizer. It 

performs several distinct activities: 

 Creation of database and sample tables 

 Population of tables with sample values 

 Sharing of a portion of data with another user 

 Receiving shared dossiers from other users 

 Opening the newly created (and populated) database  

At the start, the application receives three parameters: 

 Number of dossiers 

 Number of clients who will be sharing, and 

 Percentage of shared dossiers 

The above setup is needed to evaluate the inherent overhead that I introduce 

in my system w.r.t. the original HyperSQL, regardless of communication 

delays. To minimize the latter, the central Synchronizer and the clients ran on 

the same computer. During experiments, for testing purposes, it was sufficient 
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to use only two clients (to enable data sharing). For the sake of comparison, I 

have set up a “competing” application with the following characteristics: 

 It uses the original HyperSQL driver; 

 It doesn’t share data with other clients, since the original HyperSQL 

has not this capability;  

 When populating the database, it creates the same number of dossiers 

than the previous application; after benchmarking, however, it adds the 

number of shared dossiers, resulting in the same final number of 

dossiers. 

I benchmarked the system using single-table dossiers of about 200 bytes, in 

two batteries of tests; the first with 20%, and the second with 40% of shared 

dossiers, which numbered from 1,000 to 500,000. The results are represented 

by the graphs from Figure 56 to Figure 58. It is worth noting that the overhead 

percentage of the modified solution rapidly decreases (with 100,000 dossiers 

it is around 10%), either in the first battery of tests (Figure 56), and either in 

the second (Figure 57). In the tests, the total delay (load + create + populate + 

receive) is linear in the number of dossiers and is limited, even with a huge 

number of dossiers (Figure 58). Local results can be slightly altered by 

external events not preventable (e.g., garbage collector). 

11.3.4 Results 

The delay of the system is tightly bound to communications effort with the 

central Synchronizer. Computing overhead is limited to just one encryption 

per record at write time and no more than one decryption per record at read 

time. Since I use symmetric encryption, these operations are very fast. The 

benchmark demonstrates that the delay is substantially concentrated in 

database opening, while the subsequent use does not involve additional 

delays, compared to the unmodified version. 
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Figure 56 Overhead when 20% of dossiers are shared 

 

Figure 57 Overhead when 40% of dossiers are shared 
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Figure 58 Total delay 
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12 SCALABILITY 

The previous test implementation used a custom synchronizer that is almost inadequate to 

stress test. For this purpose, I adapted my protocols to use a general email service like Gmail 

as synchronizer, and evaluated the system in a large community. 

The scalability tests need a large users’ network, so I resolved to use an 

email service on the Cloud as Synchronizer. For testing purpose I am using 

Gmail by Google5 1 . For enhancing performance, I want to use a synchroClient 

thread that connects to Gmail to exchange the modified dossiers. Some 

relevant modifications occur for adequate to the existing email architecture: 

1. I have adopted the Internet Message Access Protocol (IMAP) to interact 

with the server; 

2. IMAP lacks the ability for a sender to delete a previously sent message, 

so the revoke is not on charge of Server, but it is given to client; 

3. In the same way, the client is responsible to delete the emails 

accordingly to my algorithm. 

 

12.1 The new architecture 

The resulting architecture can be represented by the class diagram in 

Figure 59, where are represented the following classes: 

1. Client, which represents the client application. Important attributes are 

the structures: 

                                                 

5 1  www.gmail.com 



 142 

a. pkHashMap to store the public keys of collaborators 

b. dkHashMap to store the decrypting keys of dossiers 

c. prList to store the pending rows (the received dossiers ) 

2. Gmail, which represents the email server 

3. PK, which represents the public key 

4. DK, which represents the decoding key  

5. PR, which represents the pending row. 

 

Figure 59 Class diagram 

 

Referencing to Figure 49, the synchroClient runs almost once, at start of 

client, but can run every time the client is online. While in my original 
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approach the client queries the Synchronizer every time it needs to decrypt a 

row, now the synchroClient connects to the email server and receives all the 

messages in a single session. 

The client C sends to Gmail three types of messages: 

1. C’s public key: the message has subject “PK” and the body message 

contains the public key of C. The message is sent to all the clients 

collaborating with C. 

2. Decrypting keys: for each dossier D, a decrypting keys is created at 

every change. The key is then sent to all the clients collaborating with C 

for D, after it has been encrypted using the receiver’s public key. The 

message has subject “DK”+<dossierId> and the body message contains 

the encrypted key. 

3. Modified dossiers: for each dossier D, the message has subject “PR” 

(Pending Row)+<dossierId> and the body message contains the 

dossiers, encrypted using a Decoding Key. The message is sent to all the 

clients collaborating with C for D. 

 

12.2 The synchronization phase 

To synchronize, a client follows the steps in Figure 60: 
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Figure 60 The synchro sequence diagram 
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More in detail: 

1. sendUpdates: 

a. The client sends the PK to all the collaborators (only the very 

first time the collaboration starts); 

b. For each modified dossier D, the client finds the corresponding 

decrypting key DKD and the list of collaborators. For each 

receiver R, the client encrypts DKD using PKR and sends it to R; 

c. For each modified dossier D, the client encrypts it using DKD 

and sends the result to all the collaborators. 

2. receiveUpdate: during this phase, the client receives the emails from 

Gmail and manage them accordingly to the subject. 

a. Subject “PK”: manage the corresponding public key; 

b. Subject starts by “DK”: manage the corresponding decrypting 

key; 

c. Subject starts by “PR”: manage the corresponding pending row. 

12.2.1 managePK 

The activity for managing the PK, as shown in Figure 61, consists of: 

1. Extracting the public key from the body of the email  

2. Adding the couple <sender‘s email address, pk> to the structure 

pkHashMap 

3. Deleting the message 

 

Figure 61 managePK’s activity diagram 

12.2.2 manageDK 

The activity for managing the DK, as shown in Figure 62, consists in: 

1. Extracting the encrypted DK from the body of the email  

2. Decrypting it using the private key of the receiver 
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3. Extracting the dossierId from the body of the email 

4. Adding the couple <dossierId, dk> to the structure dkHashMap 

 

Figure 62 manageDK’s activity diagram 

12.2.3 managePR 

The activity for managing the PR, as shown in Figure 63, consists in: 

1. Extracting the encrypted PR from the body of the email  

2. Extracting the dossierId from the body of the email 

3. Adding the string $dossierId@encryptedPR to the structure prList 

4. Deleting the message 

 

Figure 63 managePR’s activity diagram 

Please, note that, at the end, the row is not decrypted yet. 
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The prList is then usually processed, using the dkHashMap to decrypt it and 

to insert in the memory database the corresponding row. 

12.3 Considerations 

At start time, the client applies the algorithms exposed above to all the 

messages in the email server. At subsequent synchronization, instead, it can 

read only the new messages, which contain the changes occurred in the 

meantime. 

Only the DKs are maintained in the email server, the other messages are 

erased after being read. At a generic moment T the emails’ queue in the email 

server is of the form shown in Table 10. 

Table 10 Emails’ queue 
Dk1  

Decrypting keys of previously 

read pending rows 
A large number 

Dk2  

… 

Dkn  

Pki Public key for new 

collaborations 
Some, frequently none 

Pkj 

Dkd1  
Decrypting key of dossier D, 

encrypted by the public keys 

of the m collaborators 

Some 
Dkd2  

… 

Dkdm  

Prd Pending row for document D Some 

The first band is read only at startup, while the others are read only during the 

subsequent synchronizations.  

Now, let be: 

 NR the number of the (read) messages in the first band 

 NC the number of new collaborators 

 NPR the number of just received dossiers 

 NG the average of collaborators for a given dossier 

 Spk  the size of a public decrypting key (this is a constant quantity, 

depending on number of bits used for asymmetric encryption) 
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 Sdk  the size of a decrypting key (this is a constant quantity, that depends 

on the number of bits used for symmetric encryption), and 

 Sd the size of a dossier 

 

Ses, the size of email queue (minus the header of the messages) is 

approximated by the formula: 

Ses  = NR * Sdk  + NC * Spk  + NPR *( Spk  * NG + Sd) 

In a static environment, where the workgroup is stable and changes are rare, 

the order of Ses  is: 

Ses  = NR * Sdk  

so it is linear in the number of the shared dossiers. 

If ND is the number of the recorded dossiers and Ps  is the percentage of shared 

dossiers, the formula above can be written as: 

Ses  = ND * Ps  * Sdk  

 

Figure 64 Values of Ses for changing values of Ps 

In Figure 64, Ses is plotted for typical percentage values of Ps. These results can 

be easily related with the times one would obtain when downloading emails of 

the same size through Gmail. 

The results of this analysis are particularly interesting in the light of the 

Business Collaborative Environment scenarios described in Section 8. In such 

environment, the value of ND is usually less than 10,000 (e.g., in Italy, the law 

imposes to the family doctors are bound to have less than 2,000 patients; 

similarly, the average number of active legal proceedings a law firm handle is 
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1,5005 2 ), while the typical value of Ps  is less than 20%. As the graph reveals, 

under these conditions, the value of Ses  is very small, about some hundred of 

Kb; hence, the time for downloading the updates from the central server is 

expected to be only a few seconds. 

                                                 

5 2  source: P&P Informatics, ICT manager for legal offices in Italy – www.pep.it 
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13 COMPARISON WITH OTHER 

APPROACHES 

At this time, I don’t know similar architectures to compare with, but I want to analyze my 

data propagation to BE alternatives, to quantify the possible overhead of my approach. I 

compare not only with pure BE schemes, but also with the OSN adapted schemes.  

My system, after all the evolvements, still uses a Multiple AES (M-AES) 

propagation of information to all collaborating nodes which sends a different 

message with the same decrypting key to each receiver. As presented in 

chapter 4, a better solution consists in using broadcast encryption to minimize 

communication overhead. In the following I analyze the application of 

previously seen broadcast methods with my distributed architecture, with a 

particular attention to the aspects of secret keys generation and revocation 

capability. 

13.1 Threshold systems 

These systems assume the presence of one trusted Key Generator that 

assigns (and then knows) the secret key. Moreover, it is intended for spot 

transmission (as TV broadcasting), where the information is protected only 

during communication but not afterwards. It lacks the revocation’s capability, 

e.g. a protected TV transmission may be recorded and reused later. These two 

characteristic make this approach unfeasible for my architecture. 
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13.2 IBE 

It is not a BE system, but it allows users to choose their own key, so it 

doesn’t require a trusted service for private key generation. Using IBE we 

could send encrypted information to each user using her public key. This 

doesn’t diminish the number of messages sent and, since usually information 

size is greater than key size, the messages are heavier. Instead, it permits time-

bounded key, so it would be useful to distribute temporary decrypting keys for 

offline work. 

As a case study, if I use AES 256 bits encryption and a dossier size of 2000Kb, 

I obtain the following graph: 

 

Figure 65 Comparison between using IBE and M-AES 

13.3 ABE 

These systems assume the presence of one (or a group) trusted Key 

Generator that assigns (and then knows) the secret key s. In my architecture, 

the Generator cannot be the central Synchronizer, because otherwise the 

dossiers’ protection disappears. The use of DABE can mitigate this problem, 

since we can use a pool of Key Generators, distributing the responsibility on a 

larger number of actors to diminish the fault risk, but this is not an absolute 

assurance. The generator can be the owner, but this leads to the proliferation 

of keys as every node has to store a different secret key for each possible 

source of dossier. 

Moreover, it lacks the revocation’s capability , which was one of the initial 

requirements. 
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13.4 Persona 

Persona was introduced for OSN, but can be a model to evaluate in my 

system. As this, it encrypts data using symmetric key that is then distributed 

encrypted by a group key (ABE). This would reduce the number of messages 

sent to the other users, which would be limited to only one dossier and only 

one decrypting key. Unfortunately, the use of ABE to manage the group 

encryption brings back to the previous objections. 

13.5 GCC 

This system, introduced for OSN, can be adapted to my scenario. It seems 

a perfect solution because: 

 As IBE, each user autonomously choose her secret key without 

requiring a central key generator; 

 As ABE, it allows the BE, but the group key is generated from the public 

keys of the group’s component and it does not require a trusted server; 

 It allows delegation and revocation of access rights; 

 Each user has only a single private key and, although for each user is 

generated as many public keys as communities, they are used only 

when creating the group key (that is the key which is really used in 

encrypted communications) and then they are not locally stored. 

Although I was able to verify the formal correctness of the algorithm exposed 

in [57], during implementation of my test system some problems emerged.  

1. I was not able to implement the Converge method since: 

a. it is not clear what is the content of },{ iy

i gx  (I supposed it is 

the couples <uid, pk> of interested nodes); 

b. to generate the group key, it needs the computing of 





m

j

vya jiii gg
1

,1)(  where: 

 v i+1 ,j is obtained from inversion of a Vandermonde 

matrix 
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 iy
g  is usually implemented using an immutable 

arbitrary-precision integers (as Java’s BigInteger). 

i. in a first time, I inverted the Vandermonde matrix in R, 

but so the v i+1 ,j were real and it was impossible to 

calculate ia
g .Then, I realize that I have to invert the 

Vandermonde matrix in Zq. ; 

ii. after this step, the product to compute ia
g  uses 

BigInteger^BigInteger, that is not implemented in the 

usual languages (as Java or C++). 

2. if I solve the previous difficulty, I obtain a community key 

)g ,(l , ... ),g ,(l , {g  g
)f(l

1-m

)f(l

1k
1-m1  where each of the (2*m-1) terms is an 

integer of k bits. If I consider the usual values for AES’s key length=256 

bits and k=300 bits, I obtain the graph shown in Figure 66. 

 

Figure 66 Comparison between AES 256 bits and GCC 300 bits 

Even setting k=256 bit in GCC, its performances remains worse than M-AES, 

as shown in Figure 67. 
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Figure 67 Comparison between AES 256 bits and GCC 256 bits 

To make the results comparable, I need to set AES’s key length=128 bits and 

k=64 bits (see Figure 68). 

 

Figure 68 Comparison between AES 128 bits and GCC 64 bits 

13.6 Conclusions 

By tuning BE, one could in theory decrease the amount of data exchanged 

between the local Clients and the central Synchronizer. In practice, however, 

the examined solutions are either inadequate to the initial requirements (i.e. 

Threshold systems, ABE and Persona), or they introduce new complexities 

that cancel out the benefits of broadcasting (IBE and GCC). This result does 

not imply that BE is wholly inappropriate, but it stresses that further 

investigation would be needed before BE is deployed in this scenario. 
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14 VULNERABILITY ASSESSMENT 

My architecture was designed to assure data priv acy, but are there possible vulnerabilities? 

In this Chapter, using UML state diagrams, I present an analytic study of possible system 

failures. 

Having shown in the previous chapters that my architecture meets the 

initial requirements (data protection and revocation of permits), in this 

Chapter, I want to analyze possible vulnerability of my system. I will examine 

every component involved in the algorithms: 

 Client, distinct by role in: 

o Sender; 

o Receiver; 

 Synchronizer, and  

 Network. 

14.1 Client 

The use of IMDBs can lead to data loss if the client is interrupted (e.g. a 

hardware or application failure) before it writes data into the permanent 

storage. If data is owned by the client, there is nothing to do. If data was 

shared with another user, the client can ask to all collaborators to send again 

the shared dossiers. 

Another problem may be the identity theft: if someone succeeds to discovery 

the credential of a client, she can communicate with the synchronizer. If she 

sends her PK to all collaborators, she would have full access to all dossiers, 

since she can: 
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 Send fake dossiers  

 Can receive the dossiers which other clients sent to her. They were 

encrypted by her PK, and then she can decrypt them using her own SK.  

The problems above analyzed are related to client in general. In the following, 

instead, I will discuss the peculiar vulnerability of a client acting as sender or 

receiver. 

14.1.1 Sender 

The sender is autonomous in its work. It manages local data through Data 

Manipulation Language, even in offline state; sometimes, on demand, it sends 

the changes to the receivers through the Synchronizer. It has the control of 

local dossiers and their decrypting key. It receives and stores the public keys 

(PKs) of the collaborators. 

The possible point of failure can be a data crash, which can be resolved 

using the usual methods (backup and restore), or the change of data that are 

not under its control: PKs. It cannot send change if it has not the correct PK of 

each receiver. Let be S the sender and R the receiver. If R changes its PK 

before S sends the updates, but communicates this change to Synchronizer 

only after S has already used the old key to encrypt the data, the latter remains 

not accessible (see the sequence diagram in Figure 69). 
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Figure 69 Fault sequence for sender 

There are at least two ways to prevent this situation,: 

 The receiver doesn’t delete the old SK until it receives the explicit 

confirmation from all the collaborator 

 The receiver can request to an owner to send again a dossier (the 

dossierID is clear text, it is ever accessible). 

14.1.2 Receiver 

Receiver is the most delicate component of the system, because it handles 

data that does not belong to it. My system relies on the assumption that 

shared data is never stored in clear form except that in main memory (volatile) 

and then can be accessed only during a session when the receiver obtains the 

related decrypting key. There is no way to prevent malicious external software 

to scan memory to steal the data or to substitute itself to the genuine client 

program. The other actor in communication, the Synchronizer, has no direct 
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access to client, so it receives only information (as authentication) the client 

itself evaluates. 

The same problem exists if information is remotely stored or if it is on paper: 

when it arrives at the final user, it has uncensored access to it (e.g., she can 

photocopy the document or can do a hard copy of the screen). 

To discourage thefts and detect tampering, I plan to use database 

watermarking [26].  

Another discouragement is the change of decrypting key at every update of a 

dossier. If a user is deleted from the receivers’ list but she did a fraudulent 

copy of it, she cannot access the new version which will use a new decrypting 

key. 

14.2 Synchronizer 

A faulty synchronizer can hide a dossier and the related decrypting key or 

can generate fakes. The Synchronizer must always simultaneously manipulate 

a dossier and its decrypting key to not getting caught. To solve this problem, a 

solution can be the use of two non-communicating synchronizers, one for the 

dossiers and the other for the decrypting keys. Neither can add/delete a 

dossier or a decrypting key without the connivance of the other. A 

synchronizer can refute to send a message, but it is immediately unmasked. 

As any other service in the internet, also the Synchronizer can be attacked 

(e.g., with a Denial Of Service attack), but the prevention of these attacks is 

not inherent to this thesis. 

14.3 Network 

14.3.1 Fault 

The network can temporarily go down at distinct moments (see Figure 

70): 

a. Before client’s initial synchronization: the client cannot receive the 

decrypting keys and it cannot access the shared dossiers until network 

returns up. It can still access the owned dossiers, which are stored in 

clear form.  
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b. After the client’s is synchronized, it has the decrypting keys and the 

complete database in memory. Although it may not send/receive 

updates until the network is back up again, it is otherwise fully 

operational. 

c. During synchronization: the client does not receive all the updates, 

therefore it can have an incomplete DB until network returns up. 

However, the client can still use the shared dossiers for which it has 

already received the key. If the network fault happens after the client 

receives a PK or a PR, but before the Synchronizer deletes it, when 

network returns up, the PK will be treated as a new one, without 

consequences nor disruptions. 

 

Figure 70 Possible network faults 



 161 

14.3.2 Redirection 

Let us now consider the well-known “redirection attack”: it happens when 

the network redirects a client to a fake synchronizer. In this case, the client 

sends and receives messages to and from an unknown (malicious?) server Su . 

This type of attack is easily dealt by my architecture, since one of the key 

assumptions is that server Su  is never trusted. Thus the fake Su  cannot access 

data at any time albeit it may damage the system acting as a faulty server as 

described in 14.2. 

14.4 Conclusions 

The detailed analysis in this Section has shown that the proposed 

architecture is effective in blocking all attacks but one, i.e., the Receiver  attack 

(Section 14.1.2). The final data destination, at some point, has the data in the 

clear so at that moment there are no protections. Yet, not all is lost. As I 

discussed before, the use of database watermarking is a good deterrent. Even 

more importantly, the best defence against those attacks is the reduced 

interest of the attacker has in a very small portion of the whole database. Since 

each node contains only the dossiers of its interest, they are a small percentage 

of the total dossiers in the distributed system. T he effort needed to crack open 

a local node, probably would not be worth the bother. 
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15 EXTENDED SCENARIOS 

My architecture is characterized by data privacy protection, distributed database, 

revocation capability, offline work. These peculiarities make it suitable for other scenarios; 

In this Chapter, I show two of them. 

As exposed in Chapter 8-Scenarios, my architecture perfectly fits in a 

Business Collaborative Environment scenario, but it can be easily extended to 

very different situations that have some common characteristics: 

 The collaborating users are geographically scattered; 

 In the network can be present an untrusted element; 

 The percentage of data shared among users in the group is limited; 

 A simultaneous access to the same record is uncommon; 

 The actors are not always online. 

In the following, I will analyze some of these scenarios. 

15.1 Forced cooperation 

I want to enforce the collaboration between a central authority and the 

branch offices. E.g., I want to manage a tender of an untrusted local public 

administration (LPA), where the bids received by the LPA can be read only 

after an expiration date (see Figure 71).  
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Figure 71 A forced cooperation scenario 

 

The bids can be encrypted and then digitally signed and sent to LPA, while the 

deciphering keys have to be stored in a different place, e.g., a repository owned 

by the Central Public Administration (CPA). Neither LPA nor CPA can access 

the bids without exchanging data, so they control each other. LPA cannot alter 

a bid because it is digitally signed, nor can delete a bid because CPA knows its 

existence (it has the related key) and, for the same reason, it cannot add a fake 

bid. 

15.2 Vehicle to Vehicle Communication 

Even in automotive environment there are private data. E.g., in a car 

crash, information on location, number or identity of transported people can 

be used for ulterior motives and then it needs protection (see Figure 72).  
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Figure 72 An automotive scenario 

When the accident happens, the cars can transmit information on location, 

damage, garage agreement, etc. to a collector, for example a bus. When the 

bus meets the right breakdown truck, it can communicate these data. This 

situation is characterized by limited time rendezvous between actors. My 

architecture, that allows sporadic access to the network, can be adapted to this 

scenario. 
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16 CONCLUSIONS AND OUTLOOK 

In this paper, I discussed the applicability of outsourced DBMS 

approaches to the Cloud and provided the outline of a simple yet complete 

approach for managing confidential data in public Clouds.  

I am fully aware that a number of problems remain to be solved. A major 

weakness of any data outsourcing scheme is the creation of local copies of data 

after it has been decrypted. If a malicious client decrypts data and then it 

stores the resulting plain-text data in a private location, the protection is 

broken, as the client will be available to access its local copy after being 

revoked. In [22], obfuscated web presentation logic is introduced to prevent 

client from harvesting data. This technique, however, exposes plaintext data to 

Cloud provider. The plain-text data manager is always the weak link in the 

chain and any solution must choose whether to trust the client-side or the 

server-side. A better solution [26] is to watermark the local database to 

provide tamper detection. 

Another issue concerns the degree of trustworthiness of the participants. 

Indeed, untrusted Synchronizer never holds plain-text data; therefore it does 

not introduce an additional Trusted Third Party (TTP) with respect to the 

approaches described at the beginning of the paper. However, I need to trust 

the Synchronizer to execute correctly the protocols explained in this paper. 

This is a determining factor that my technique shares with competing 

approaches and, although an interesting topic, it lies beyond the scope of this 

paper. 

In experiment phase, I introduced a simple solution to row-level encryption of 

databases using IMDBs. It can be used in the Cloud to manage very granular 
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access rights in a highly distributed database. This allows for stronger 

confidence in the privacy of shared sensitive data. 

An interesting field of application is the use in (business) cooperative 

environments, e.g. professional networks. In these environments, privacy is a 

priority, but low computing resources don't allow the use of slow and complex 

algorithms. IMDBs and my smart encryption, instead, achieve the goal in a 

more effective way. 
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APPENDIX A PUBLICATIONS 

1. E. Damiani and F. Pagano, “Handling confidential data on the 

untrusted Cloud: an agent-based approach,” Cloud 

Computing 2010, pp. 61-67 

 

Abstract 

Cloud computing allows shared computer and storage facilities to 

be used by a multitude of clients. While Cloud management is 

centralized, the information resides in the Cloud and information 

sharing can be implemented via off-the-shelf techniques for multiuser 

databases. Users, however, are very diffident for not having full control 

over their sensitive data. Untrusted database-as-a-server techniques 

are neither readily extendable to the Cloud environment nor easily 

understandable by non-technical users. To solve this problem, I present 

an approach where agents share reserved data in a secure manner by 

the use of simple grant-and-revoke permissions on shared data. 

 

2. D. Pagano and F. Pagano, “Using in-memory encrypted 

databases on the Cloud,” IWSSC 2011, pp. 30-37 

 

Abstract 

Storing data in the Cloud poses a number of privacy issues. A way to 

handle them is supporting data replication and distribution on the 

Cloud via a local, centrally synchronized storage. In this paper I 

propose to use an in-memory RDBMS with row-level data encryption 
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for granting and revoking access rights to distributed data. T his type of 

solution is rarely adopted in conventional RDBMSs because it requires 

several complex steps. In this paper I focus on implementation and 

benchmarking of a test system, which shows that my simple yet 

effective solution overcomes most of the problems. 

 

3. E. Damiani, F. Pagano and D. Pagano, “iPrivacy: a 

Distributed Approach to Privacy on the Cloud”, in press, 

International Journal On Advances in Security 

 

Abstract 

The increasing adoption of Cloud storage poses a number of privacy 

issues. Users wish to preserve full control over their sensitive data and 

cannot accept that it to be accessible by the remote storage provider. 

Previous research was made on techniques to protect data stored on 

untrusted servers; however I argue that the Cloud architecture presents 

a number of open issues. To handle them, I present an approach where 

confidential data is stored in a highly distributed database, partly 

located on the Cloud and partly on the clients. Data is shared in a 

secure manner using a simple grant-and-revoke permission of shared 

data and I have developed a system test implementation, using an in 

memory RDBMS with row-level data encryption for fine-grained data 

access control. 
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