

SCUOLA DI DOTTORATO IN INFORMATICA

Tesi di Dottorato

XXIV Ciclo

A Distributed Approach to

Privacy on the Cloud

Francesco Pagano

Relatore: Prof. Ernesto Damiani

Correlatore: Prof. Stelvio Cimato

Direttore della Scuola di Dottorato in Informatica:

 Prof. Ernesto Damiani

Anno Accademico 2010/2011

 2

Abstract

The increasing adoption of Cloud-based data processing and storage poses

a number of privacy issues. Users wish to preserve full control over their

sensitive data and cannot accept it to be fully accessible to an external storage

provider. Previous research in this area was mostly addressed at techniques to

protect data stored on untrusted database servers; however, I argue that the

Cloud architecture presents a number of specific problems and issues. This

dissertation contains a detailed analysis of open issues. To handle them, I

present a novel approach where confidential data is stored in a highly

distributed partitioned database, partly located on the Cloud and partly on the

clients.

In my approach, data can be either private or shared; the latter is shared in a

secure manner by means of simple grant-and-revoke permissions. I have

developed a proof-of-concept implementation using an in-memory RDBMS

with row-level data encryption in order to achieve fine-grained data access

control. This type of approach is rarely adopted in conventional outsourced

RDBMSs because it requires several complex steps. Benchmarks of my proof-

of-concept implementation show that my approach overcomes most of the

problems.

 3

Acknowledgements

I want to thank many people who contributed to the final result of this work:

 My family: Antonella, Davide, and Riccardo, who has endured my long

absences for the PhD;

 My uncle Augusto Pagano, who has corrected lots of English errors;

 My tutors, the professors Ernesto Damiani, Alessandro Provetti, and

Stelvio Cimato, for their continuous support;

 The professors Giacomo Fiumara and Luigia Puccio, who helped me in

numerical analysis;

 The professors Elisa Bertino, Sabrina De Capitani di Vimercati, and

Pierangela Samarati, who gave me their seminal papers on privacy in

outsourced servers and in the Cloud.

 4

Table of contents

ABSTRACT .. 2

ACKNOWLEDGEMENTS... 3

TABLE OF CONTENTS ... 4

LIST OF FIGURES .. 9

LIST OF TABLES... 12

1 INTRODUCTION .. 13

1.1 STRUCTURE OF THIS DISSERTATION ... 17

PART I - BACKGROUND AND STATE OF THE ART 19

2 BACKGROUND ON DATA PROTECTION .. 20

2.1 OUTSOURCED STORAGE ON UNTRUSTED SERVERS ... 20

2.2 DATA PROTECTION TECHNIQUES .. 22

2.2.1 Data encryption .. 24

2.2.1.1 Data Model .. 24

2.2.1.2 Query execution.. 25

2.2.1.3 Indexing techniques... 25

1 .1.1.1.1 Index by encryption ... 26

1 .1.1.1.2 Bucket-Based Index ... 26

1 .1.1.1.3 Index by hashing .. 26

1 .1.1.1.1. Auxiliary B+-tree .. 27

1 .1.1.1.1 Other Approaches... 29

2.2.2 Data fragmentation ... 29

2.2.2.1 Non-communicating servers .. 30

1 .1.1.1.4 Query execution.. 31

2.2.2.2 Unlinkable fragments .. 31

1 .1.1.1.5 Choice of fragments ... 32

1 .1.1.1.6 Query execution.. 33

2.2.3 Data fragmentation with owner involvement................................. 34

1 .1.1.1.7 Query execution.. 35

 5

2.3 SELECTIVE ACCESS .. 36

2.4 DY NAMIC RIGHTS MANAGEMENT.. 39

2.5 REFERENCES ... 40

3 CRYPTOGRAPHY IN DATABASES ... 43

3.1 STORAGE-LEVEL ENCRYPTION .. 44

3.2 DATABASE-LEVEL ENCRYPTION .. 45

3.3 APPLICATION-LEVEL ENCRYPTION.. 46

3.4 GRANULARITY IN DATABA SE-LEVEL ENCRYPTION .. 46

3.4.1 Database... 46

3.4.2 Tables .. 47

3.4.3 Columns .. 47

3.4.4 Rows.. 48

3.5 ATTACKS TO DATABASE SECURITY... 49

3.6 REFERENCES ... 51

4 IN-MEMORY DATABASES .. 53

4.1 THE IMPACT OF IN-MEMORY STRUCTURE ... 56

4.1.1 Data representation ... 56

4.1.2 Access methods .. 56

4.1.3 Query processing .. 60

4.1.4 Concurrency control... 61

4.1.4.1 Granularity of locks in a database with pessimistic approach... 61

4.1.5 Logging and Recovery ... 62

4.1.5.1 Transaction logging and commit processing.. 63

4.1.6 Performance .. 63

4.2 CACHE VS. IMDB.. 64

4.3 REFERENCES ... 65

5 BROADCAST ENCRYPTION.. 67

5.1 BROADCAST ENCRYPTION SCHEMAS ... 69

5.2 THRESHOLD CRY PTOSYSTEM .. 70

5.3 DISTRIBUTED KEY GENERATION ... 70

5.3.1 El Gamal ... 71

5.3.2 Identity Based Encryption (IBE).. 71

 6

5.4 ATTRIBUTE BASED ENCRY PTION (ABE) .. 73

5.5 ENCRY PTION IN ONLINE SOCIAL NETWORK... 74

5.5.1 Persona ... 75

5.5.2 Group-oriented Convergence Cryptosystem (GCC) 76

5.6 SIMILARITIES BETWEEN DISTRIBUTED DATABASES AND ONLINE SOCIAL

NETWORK ... 78

5.7 REFERENCES ... 79

6 PRIVACY WITHIN THE CLOUD.. 82

6.1.1 Cryptographic Storage Service .. 86

6.1.1.1 A Consumer Architecture.. 87

6.1.1.2 An Enterprise Architecture ... 88

6.2 PRIVACY ISSUES IN CLOUD COMPUTING ... 89

6.3 SEMANTIC DATASTORE.. 91

PART II - RESEARCH QUESTIONS AND RESULTS............................. 93

7 DESIGN OF A DISTRIBUTED SYSTEM FOR INFORMATION

SHARING ... 94

7.1 DESCRIPTION LANGUAGE ... 95

7.2 THE ARCHITECTURE.. 95

7.3 THE MODEL ... 96

8 SCENARIOS ... 99

8.1 MEDICAL ... 99

8.2 COLLABORATION AND SHA RING BETWEEN INDEPENDENT PROFESSIONALS 102

8.3 NOMADIC USERS ... 102

9 MY APPROACH: THE IPRIVACY SYSTEM 103

9.1 STRUCTURE ... 104

9.2 GRANT... 105

9.3 SEND ... 106

9.4 RECEIVE .. 108

9.5 USE.. 108

9.6 REVOKE ... 109

 7

10 CONGRUENCE BETWEEN PLANNED AND ACHIEVED GOALS

 111

10.1 THE SENDER COMPONENT (CLIENT SIDE)... 112

10.2 RECEIVER .. 112

10.3 SYNCHRONIZER ... 114

10.4 NETWORK .. 115

10.5 REFERENCES ... 116

PART III - VALIDATION .. 117

11 EXPERIMENTATION.. 118

11.1 HY PERSQL ... 119

11.1.1 Loader ... 122

11.1.2 Insert.. 125

11.1.3 Serializer ... 125

11.2 PROTOTY PE SYSTEM .. 128

11.2.1 Client side .. 128

1 1.2.1.1 Load time .. 129

1 1.2.1.2 Save time ... 131

11.2.2 Server side .. 133

11.3 PERFORMANCES .. 135

11.3.1 Read operations ... 135

11.3.2 Write operations .. 136

11.3.3 Benchmark.. 136

11.3.4 Results ... 137

11.4 REFERENCES ... 139

12 SCALABILITY .. 141

12.1 THE NEW ARCHITECTURE.. 141

12.2 THE SYNCHRONIZATION PHASE... 143

12.2.1 managePK... 145

12.2.2 manageDK .. 145

12.2.3 managePR .. 146

12.3 CONSIDERATIONS .. 147

13 COMPARISON WITH OTHER APPROACHES............................ 150

 8

13.1 THRESHOLD SY STEMS.. 150

13.2 IBE .. 151

13.3 ABE ... 151

13.4 PERSONA ... 152

13.5 GCC ... 152

13.6 CONCLUSIONS.. 154

13.7 REFERENCES ... 155

14 VULNERABILITY ASSESSMENT... 156

14.1 CLIENT... 156

14.1.1 Sender .. 157

14.1.2 Receiver ... 158

14.2 SYNCHRONIZER ... 159

14.3 NETWORK .. 159

14.3.1 Fault ... 159

14.3.2 Redirection.. 161

14.4 CONCLUSIONS.. 161

14.5 REFERENCES ... 161

15 EXTENDED SCENARIOS .. 162

15.1 FORCED COOPERATION.. 162

15.2 VEHICLE TO VEHICLE COMMUNICATION .. 163

16 CONCLUSIONS AND OUTLOOK .. 165

REFERENCES .. 167

APPENDIX A PUBLICATIONS .. 172

 9

List of Figures

Figure 1 The actors in protected outsourced storage 23

Figure 2 Data encryption, source: [6] 25

Figure 3 A B+-tree sample 28

Figure 4 An encrypted B+-tree, source: [15] 28

Figure 5 A fragmentation sample (a) and a set of well-defined

constraints over it (b), source: [128] 30

Figure 6 A correct fragmentation sample, source: [128] 30

Figure 7 Non-communicating servers 31

Figure 8 A fragmentation with encryption sample, source: [6] 32

Figure 9 Unlinkable fragments 32

Figure 10 Data fragmentation with owner involvement 34

Figure 11 An example of physical fragments with owner involvement,

source: [6] 35

Figure 12 An example of access matrix 37

Figure 13 An example of user hierarchy, source: [29] 38

Figure 15 The three options for database encryption level, source: [28]

 44

Figure 16 Data sets growth 54

Figure 17 Disk performance improvements vs. capacity growth 54

Figure 18 The RAM modules capacity 55

Figure 19 The usage of pointers in relations 56

Figure 20 Tree structures, source [70] 58

Figure 21 Hash structures, source: [70] 60

Figure 22 Broadcast encryption 68

Figure 23 The IBE operations 73

Figure 24 An ABE sample 74

Figure 25 The OSN internal storage 78

 10

Figure 26 Topology of an OSN, as a mesh and as a star 79

Figure 27 Cloud stack, source: [96] 83

Figure 28 A Consumer Architecture 88

Figure 29 An Enterprise Architecture 89

Figure 30 The wall 91

Figure 31 The architecture 96

Figure 32 The model 96

Figure 33 A medical scenario 100

Figure 34 An instance of medical scenario 101

Figure 35 Deployment diagram of the distributed system 104

Figure 36 iPrivacy’s class view 105

Figure 37 Grant sequence 106

Figure 38 Send sequence 107

Figure 39 Receive sequence 108

Figure 40 Use sequence 109

Figure 41 Revoke sequence 110

Figure 42 Receiver’s state diagram 113

Figure 43 Synchronizer’s state diagram 114

Figure 44 HyperSQL Structure 121

Figure 45 Loader’s sequence 124

Figure 46 SQL Insert sequence 125

Figure 47 Serializer’s sequence 126

Figure 48 .script file’s structure 127

Figure 49 State diagram of client 128

Figure 50 Modified .script file’s structure 129

Figure 51 UML of ScriptReaderText class 129

Figure 52 Modified Loader’s sequence 131

Figure 53 UML of ScriptWriterText class 132

Figure 54 Modified Serializer’s sequence 133

Figure 55 Synchronizer’s class diagram 135

Figure 56 Overhead when 20% of dossiers are shared 138

Figure 57 Overhead when 40% of dossiers are shared 138

Figure 58 Total delay 139

Figure 59 Class diagram 142

 11

Figure 60 The synchro sequence diagram 144

Figure 61 managePK’s activity diagram 145

Figure 62 manageDK’s activity diagram 146

Figure 63 managePR’s activity diagram 146

Figure 64 Values of Ses for changing values of Ps 148

Figure 65 Comparison between using IBE and M-AES 151

Figure 66 Comparison between AES 256 bits and GCC 300 bits 153

Figure 67 Comparison between AES 256 bits and GCC 256 bits 154

Figure 68 Comparison between AES 128 bits and GCC 64 bits 154

Figure 69 Fault sequence for sender 158

Figure 70 Possible network faults 160

Figure 71 A forced cooperation scenario 163

Figure 72 An automotive scenario 164

 12

List of Tables

Table 1 Indexing methods supporting queries [15] 29

Table 2 Query translation using unlinkable fragments [6] 34

Table 3 Query translation in fragmentation with owner involvement36

Table 4 IMDBs Pros and Cons 56

Table 5 Comparison between Persona and GCC 78

Table 6 Datastore solutions used by public Clouds 90

Table 7 Execution environments used by public Clouds 90

Table 8 Strength/Opportunities 97

Table 9 Weaknesses/Threats 97

Table 10 Emails’ queue 147

 13

1 INTRODUCTION

Cloud computing, today, provides users with readily available, pay-as-you-go

computing and storage power, allowing them to dynamically adapt their

Information Technology (IT) costs to their needs [23]. With Cloud computing,

users need neither huge investments in the start-up phase nor costly

competence in IT system management.

While the Cloud computing concept is drawing much interest, several

obstacles remain to its widespread adoption [23], including:

 Current limits of ICT infrastructure: network availability, reliability,

and quality of service;

 Differences in the development process of Cloud applications with

respect to ordinary ones; and, importantly,

 Privacy risks for confidential information residing in the Cloud.

Thanks to increasing network availability, the first obstacle is becoming lesser

and lesser of an issue over time; the second will tend to disappear with the

training of new developers and by introducing new software development

methods; the third obstacle, however, is far from being solved and may

seriously impair the real prospects of Cloud computing.

This is particularly the case for Public Clouds [3], i.e., those available, upon

subscription, to the general public (as opposed to Private Clouds operated by

large enterprises and organizations for their employees).

Nowadays, the use of Public Clouds is becoming more and more frequent,

thanks to productivity and collaboration tools (e.g. Google Apps1 , Zimbra2 ,

1 www.google.com/a

http://www.google.com/a

 14

etc.), online social networks (such as Facebook3 and LinkedIn4), etc. Those

applications/services store a lot of information on the Cloud, many of which is

confidential. Hence, a strong data access control is needed to prevent

unauthorized uses. Typically, external access to shared data held in the Cloud

goes through the usual authentication, authorization, and communication

phases.

The access control problem is well acknowledged in the database literature

and the available approaches guarantee a high degree of assurance. For the

traditional datacenters’ scenario, where storage is internal to the Enterprise

and considered trusted, the attacks are expected from the outside. When data

is outsourced, though, even the data storage and its administrators are

external to the Enterprise. Therefore, the requirement that the maintainer of

the datastore may not access or alter the outsourced data is not easily met.

This is especially the case for commercial Public Clouds like Google App

Engine for Business, Microsoft Azure Platform or Amazon EC2 platform.

The privacy issue of Cloud environment is not only related to the datastore

protection in untrusted servers. In a Cloud-based Data Center, a number of

serious questions arise about the available services and the stored data [58]:

 Who controls them?

 Where are the servers located?

 Where is the data stored?

 Which legislation applies to them?

 Who backs up the servers?

 Who has access to the servers?

 How resilient is the service?

 How do auditors observe?

 How does users’ security-team engage?

Hence, new categories of risks come up:

2 www.zimbra.com

3 www.facebook.com

4 www.linkedin.com

 15

 Control: many organizations are uncomfortable with having their data

managed by systems and staff they neither know nor control; therefore

the providers must offer a high degree of reputation, security, and

transparency to win users’ confidence.

 Privacy: migrating data to a shared computing infrastructure increases

the potential for unauthorized exposure, privacy breaches, and data

loss. Authentication and access control techniques, and data replication

are crucial.

 Compliance: often the keeping of sensitive data (e.g., customers’

identities) is regulated by strict national/international laws, such as the

Health Insurance Portability and Accountability Act (HIPAA)5 and the

Sarbanes–Oxley Act (SOX)6 . These and other regulations may severely

limit the use of Clouds in practice.

 Security Management: even the simplest task may end up behind layers

of abstraction or performed by someone else. Providers must supply

easy-to-use controls to manage security settings for application and

run-time environments.

In a well-attended keynote address at ICWS 2010 [58], Elisa Bertino has

summarized the most important security threats emerged in some of the last

conferences about Cloud computing:

 Abuse and Nefarious Use of Cloud Computing

 Insecure Application Programming Interfaces

 Malicious Insiders

 Shared Technology Vulnerabilities

 Data Loss/Leakage

 Account, Service & Traffic Hijacking

 Unknown Risk Profile

 Loss of governance

 Lock-in

 Isolation failure

5 http://www.gpo.gov/fdsys/pkg/PLAW-104publ191/content-detail.html

6 http://www.gpo.gov/fdsys/pkg/PLAW-107publ204/content-detail.html

 16

 Compliance risks

 Management interface compromise

 Data protection

 Insecure or incomplete data deletion

 Malicious Insider

 Privileged user access

 Regulatory compliance

 Data location

 Data segregation

 Recovery

 Investigative support

 Long-term viability.

To complicate the scenario, the availability of many alternatives for Cloud

sharing (Private, Public, Federated, and Hybrid) and delivery models (IaaS,

PaaS, and SaaS) makes it difficult, if not impossible, to find universal solutions

to privacy issues.

Although there are a number of techniques for preserving privacy of

outsourced data on untrusted database servers (see chapter 2-Background on

data protection), I will argue that they cannot be applied directly to the Cloud,

particularly in the case of Public Cloud. First, these techniques were designed

for RDBMS, while newer and less structured data models are increasingly

used on the Cloud (see Section 6.3 - Semantic datastore). Second, besides

managing data storage, the Cloud hosts all application logic up to the

presentation layer. Hence, if a Cloud supplier even becomes untrustworthy, it

can intercept communications between data storage and application logic, can

monitor the user application memory and can modify (e.g., using Aspect

Programming) presentation software components used to display application

output to the final users.

Essentially, encryption-based techniques for safely outsourcing data to

untrusted DBMS cannot guarantee the confidentiality of data in the Cloud.

Even if the data layer is secured through encryption, at some points, on its

path toward the user, the data will be in plaintext form, i.e., unprotected and

vulnerable.

 17

To maintain data privacy, this dissertation proposes to move the

entire presentation layer of Cloud applications from Server to

Client side.

However, separating the data layer (which would stay in the Cloud) from the

presentation logics (which would stay in the client) may lead to an inefficient

cooperation between the two parts. For this reason, I think it is better to move

also the data layer into the client.

To ensure seamless cooperation between the data layer and the presentation

logic, I propose a highly distributed architecture that is composed of a set of

local nodes that run the applications and store all the data. Data is replicated

when needed on all the nodes that access it. The local copies shall be

synchronized using a central service on the Cloud using encryption, in the

protocol which I designed, to guarantee data protection during the

synchronization phase.

Moreover, the architecture I propose allows fine-grained data access control

and has the capability to revoke the access rights to a local node. To achieve

this result, a row-level encrypted database is used. Since this type of

encryption is rarely adopted in conventional RDBMSs, as it requires several

complex steps, I propose an extension to add this functionality to In-Memory

DataBases.

A test implementation of the architecture and of an extended IMDB was

realized and used to benchmark the system.

Finally, I studied and utilized a standard email server on the Cloud as

Synchronizer, evaluating the impact of this choice in performance and

scalability.

1.1 Structure of this dissertation

This thesis mainly consists of three parts. In the first one (Chapters 2-6) I

want to give a survey of the state of the art, in particular of:

 Data protection in outsourced database (protection techniques on

untrusted servers, data access control, etc.), in Chap. 2;

 Cryptography in databases (the various level of encryption and the

granularity in database level encryption), in Chap. 3;

 18

 In-memory databases, in Chap. 4;

 Broadcast in communication networks and Online Social Networks, in

Chap. 5;

 An analysis of Cloud Computing and the peculiarity of Privacy within

the Cloud, with particular attention to the differences between the

Cloud environment and the untrusted outsourced data servers, in Chap.

6.

In the second part (Chapters 7-10), I present the innovative work:

 The UML complete layout of a distributed secure architecture for data

sharing, in Chap. 7;

 The Scenarios where the proposed system fits, in Chap. 8;

 The structure, and the custom algorithms for secure data sharing, in

Chap. 9;

 A self-assessment of what has been achieved, and a comparison with

the original goals, in Chap. 10.

The third part (Chapters 11-16) is dedicated to the pilot implementation and

its testing, as a way to validate the framework:

 Implementation and benchmarking, in Chap. 11;

 Further enhancement to improve scalability of the system, in Chap. 12;

 Comparison with other approaches, in particular with Broadcast

Encryption, in Chap. 13;

 Vulnerability assessment, a key to prevent possible attacks, in Chap. 14;

 The scenarios for a successful deployment of my system, in Chap. 15,

and

 Conclusion and future works, in Chap. 16.

 19

Part I - Background and
state of the art

 20

2 BACKGROUND ON DATA

PROTECTION

This chapter presents the most important privacy issues in databases outsourcing on

untrusted servers. I illustrate the main techniques for providing data protection and for

securing the confidentiality of data stored at external honest-but-curious servers. Then, I

discuss the state of the art of access control to outsourced data, describing how data can be

selectively accessed from users and how access rights may change over time.

2.1 Outsourced storage on untrusted servers

Data storage involves high costs because it requires physical resources

(disks, servers, etc.), frequent management procedures (backup, tuning, etc.),

and skilled administrative staff.

A cheaper solution is data outsourcing to a specialized provider that takes care

of the storage within its own specialized structure to offer high availability and

disaster protection [108]. Delegating data management to outsourced

untrusted entity implies a risk for confidentiality and privacy, and a potential

improper use of database information (harvesting, targeting, reselling, etc.) by

the provider itself [15], since traditional access control techniques prevent

data access by external users, but not by internal administrators (DBA).

The main issues for guaranteeing proper protection and access to outsourced

data are [6]:

 Data protection: the storage server is responsible of data management

but should not be authorized to know the actual data content. To

achieve this goal, almost all the proposed approaches in literature

employ encryption to secure customers’ data [95][106][109], or on

 21

splitting (fragments of the original data) across several or tables

[110][111][112].

 Query execution: if the server stores encrypted information, it is not

able to execute the users’ queries, at most it could send the encrypted

tables involved in the query to the requester, which, then, needs to

decrypt and query by herself [15]. Also in case of fragmentation, the

client needs some logic to recombine different subqueries [6]. To

decrease the client overhead, we try to process the request as far as

possible on the server, leaving the client with a task of finishing. For

this purpose, a set of indexes may be added to the encrypted

information [114][115][109]. The response of server is a trade-off

between precision (the fraction of the information retrieved that is

relevant to the user's information need[113]) and privacy, because a

precision too close to 1 allows statistical data mining, while a precision

too far from 1 overloads the client.

 Private access: the server may not inference information storing and

analyzing the queries. This lead to the concept of oblivious searches on

public key encrypted data [116].

 Data integrity and correctness: in addiction to honest-but-curious

servers, which are untrusted w.r.t. data access but trusted w.r.t.

properly enforcing data storage and management, we have also to

consider totally untrusted server, which can alter stored data or

queries’ results. In this case, a mechanism to check integrity and

correctness of data is needed. It may be based on signatures attached to

tuples in the database [117][118], or on chain structures as skip lists

[119] that allow the client to the integrity of the returned tuples.

 Access control enforcement: usually, the existing database access

control mechanisms assume that the server is in charge of defining and

enforcing access control. In the case of outsourced data, instead, it is

unfeasible since the access control policy itself might be sensitive (and

so it needs to be hidden to the server), access control restrictions might

depend on the data content (that the server may not read), and an

untrusted server may alter the access control. At the same time, it is not

possible to give in charge the access control to data owner, to filter out

 22

from the query result the tuples that a client cannot access, because it is

too expensive and it brings to bottlenecks. A feasible way is the use of

different encryption keys for different data as proposed, for example,

for XML documents [121]. To access such encrypted data, users have to

decrypt them by using the appropriate key. If different users know

different keys, they have different access rights [120].

 Support for selective write privileges: the previous problem considers

only the “read” access control, but the same happens for “write” access.

 Data publication and utility: given a database instance containing

sensitive information, it needs to be "anonymized" to obtain a view

such that attackers cannot learn any sensitive information from the

view, and legitimate users can use it to compute useful statistics [122].

Data protection and utility can be seen as conflicting goals: the more

data are encrypted or obfuscated, the less the ability to withdraw

knowledge and inferences from them.

 Private collaborative computation: sometimes, the data that comes to a

client is the result of interaction between many servers that collaborate

to accomplish a service. In this case, the goal is to perform the

computation on each server without revealing the data used to the

extern [123][124].

2.2 Data protection techniques

To prevent a server from accessing data stored on its own machines, the

literature reports three major families of data protection techniques on

untrusted servers [6]:

 Data encryption [15];

 Data fragmentation and encryption [16], which in turn can be classified

into two major techniques

o non-communicating servers [17][18];

o unlinkable fragments [19], and

 Data fragmentation with owner involvement [20].

The goal of each of these techniques is to store data on the untrusted server in

an inaccessible format, using encryption and/or fragmentation, to prevent

 23

provider’s access to stored information. In all the scenarios, we can see four

actors [15], as represented in Figure 1:

1. An outsourced server that operates on behalf of one or more data

owners that outsource their data,

2. A data owner that store information into the server,

3. A human user that queries the database, and

4. A client software that elaborates locally the queries.

Figure 1 The actors in protected outsourced storage

The process is:

1. The data owner stores information into the server accordingly with the

used technique (e.g. after having encrypted the information);

2. The server stores this data;

3. When a user wants to access data, she creates a Db query Q1 . The query

is processed by the client software that manipulates it to obtain an

equivalent query Q2 that is processable by the server (that cannot

directly access data content). The latter elaborates Q2 and sends the

result set (a superset of the result set of Q1), to the client, which post-

processes it to delete the spurious results and to obtain the right result

set of Q1 .

 24

2.2.1 Data encryption

If data is outsourced to an untrusted RDBMS (Relational Data Base

Management Systems), to prevent unauthorized access by the datastore

manager (DM) of the outsourced, it may be stored in encrypted form. The

encryption happens on client side, before sending data for storage to the

external server.

2.2.1.1 Data Model

While data can be encrypted at various granularity levels (see Section 3), for

balancing client workload and query execution efficiency, most proposals

assume that the database is encrypted at tuple level [6]. For the same reason,

symmetric encryption is usually preferred over asymmetric encryption since it

is cheaper [125].

Obviously, the DM does not know the encryption keys, which are stored apart

from the data; the RDBMS receives an encrypted database and works on bit-

streams that only the clients, who hold the decryption keys, can interpret

correctly.

In current systems, decryption keys are generated and distributed to trusted

clients by the data owner or by a trusted delegate [110].

It is important to remark that, since data is encrypted, the DBMS cannot index

it based on plaintext and therefore it cannot resolve all queries.

Some proposals [24][95][109] solve this problem by providing, for each

encrypted field to be indexed, an additional indexable field, obtained by

applying a non-injective transformation f to plaintext values (e.g., a hash of

the field's content).

Formally [15], given a plaintext database B, each table ri over schema Ri(Ai1 ,…,

Ain), where Ri is the i-th relation and Aj the j-th attribute, in B is mapped onto

a table rik over schema Rik (ID, Etuple, I1 ,…, In) in the corresponding encrypted

database Bk, where:

 ID is a numerical attribute added as primary key of the encrypted table;

 Etuple is the attribute containing the encrypted tuple whose value is

obtained applying an encryption function Ek to the plaintext tuple,

where k is the secret key; and

 25

 Ij is the index associated with the j-th attribute in Ri.

Encrypted tuples and indexes can be stored in the same or in a separate table

[13]. Conventionally, index values are represented with Greek letters.

Figure 2 shows the transformation of a plain text tuple into an encrypted one.

Figure 2 Data encryption, source: [6]

2.2.1.2 Query execution

The presence of indexes allows doing most of the work to answer a query at

server side. Referring to Figure 1, when the user U, which needs not be aware

that data have been outsourced to a third party, issues a query Q, the latter is

passed to the client C, which splits it in Qs, which will be executed on the

server, and Qc, which will be executed on the client. Qs works on the encrypted

tables through indexes, and produces a result set RSe (a set of the encrypted

tuples) that is a superset of RS, the result set for Q. However, due to index

collisions the transformed query may return spurious tuples, that is, tuples

that do not belong to RS; for this reason, C receives RSe and, using Qc, filters

the spurious tuples and performs the needed projections, obtaining RS, which

is returned to U [15].

2.2.1.3 Indexing techniques

Since a client may have a limited storage and computation capacity, one of the

primary goals of the query execution process is to minimize the workload at

the client side , while maximizing the operations that can be computed at the

server side [120][109]. Different index approaches allow the execution of

 26

different types of queries at server-side. In the following, I discuss the main

type of indexes.

1.1.1.1.1 Index by encryption

Each search key value is encrypted using an invertible encryption function

Ek(). A query on a plaintext relation has to be transformed into a query on the

corresponding encrypted relation by simply applying the encryption function

on each value specified in the original query. This technique is simple and has

the advantage of preserving the distinction between values, but it is often

possible to guess the correspondence between plaintext and encrypted values

based on frequency analysis, that is, by comparing the distributions of the

plaintext values in the plain-text relations with the corresponding

distributions of the encrypted values [120].

1.1.1.1.2 Bucket-Based Index

This is a variant of the previous technique that reduces, however without

solving, the risk of inference analysis increasing the number of collisions

among search values. The domain D of search values is mapped into a set of

non overlapping partitions P={p1 ,..,pk} whose union covers all D. The index

does not contain the single value of a tuple, but its equivalence class

(partition) [109].

Using Bucket-Based Index, equality queries can be performed easily, although

the result set needs to have a precision index < 1 to prevent statistical data

mining. The trusted client, after receiving the encrypted result set, can decrypt

it and exclude spurious tuples. Also, range queries are difficult to compute,

since the transformation f in general shall not (and should not) preserve the

order relation of the original plaintext data. Specifically, it will be impossible

for the outsourced RDBMS to answer range queries that cannot be reduced to

multiple equality conditions (e.g., 1<=x<=3 can be translated into x=1 or x=2

or x=3) unless specific techniques are applied [109]. An efficient way for

partitioning the domain of attributes, to minimize the number of spurious

tuples in the result of a range/equality query, is shown in [126].

1.1.1.1.3 Index by hashing

 27

Bucketing preserves the relation between two adjacent values. Instead,

using a secure one-way hash function f 7, which takes as input the clear values

of an attribute and returns the corresponding index values, we obtain the

same result, but without the proximity relationship [13]. f has two interesting

properties:

 Since y=f(x) has a smaller bit-length than x, we still have collisions; and

 A secure hash function uniformly covers its range (i.e., the output

probabilities from the hash function are uniform).

The resulting distribution of hash values is more dispersive, making

frequency-based attacks ineffective.

1.1.1.1.1. Auxiliary B+-tree

To handle range queries, a solution, among others, is to use an encrypted

version of a B+-tree to store plaintext values and to maintain the ordering

[106].

Definition [127]: A B+-tree of order m is a tree where each internal node

contains up to m branches (children nodes) and thus store up to m -1 search

key values. m is also known as the branching factor or the fanout of the tree.

 The B+-tree stores records (or pointers to actual records) only at the

leaf nodes, which are all found at the same level in the tree, so the tree

is always height balanced.

 All internal nodes, except the root, have between ⌈m/2⌉ and m

children

 The root is either a leaf or has at least two children.

 Internal nodes store search key values, and are used only as

placeholders to guide the search. The number of search key values in

each internal node is one less than the number of its non-empty

children, and these keys partition the keys in the children in the fashion

of a search tree. The keys are stored in non-decreasing order (i.e. sorted

in lexicographical order).

7 f must be deterministic and non-injective

 28

 Depending on the size of a record as compared to the size of a key, a

leaf node in a B+-tree of order m may store more or less than m records.

Typically this is based on the size of a disk block, the size of a record

pointer, etcetera. The leaf pages must store enough records to remain at

least half full.

 The leaf nodes of a B+-tree are linked together to form a linked list. This

is done so that the records can be retrieved sequentially without

accessing the B+-tree index. This also supports fast processing of range-

search queries as will be described later.

Figure 3 represents an example of a B+-tree.

Figure 3 A B+-tree sample

To adapt to encrypted databases, the B+-tree is built as plaintext structure,

and then each node is encrypted (to protect the sensitive data) as in Figure 4:

Figure 4 An encrypted B+-tree, source: [15]

Since data values are encrypted, the tree is managed at the Client side and it is

read-only in the Server side.

This structure allows the client to make range queries. The client, starting

from the root node, traverses the index. At each step, the client receives an

encrypted node of the index, decrypts it, evaluates its content and then

 29

traverses the tree as usual for BST, asking the server for the next node, until

reaching a leaf [14].

1.1.1.1.1 Other Approaches

The previous indexing methods are not the only proposals. Table 1

summarizes other approaches that try to better support SQL clauses or to

reduce the amount of spurious tuples in the result produced by the remote

server, and the supported queries:

Table 1 Indexing methods supporting queries [15]
Index Query8

Equality Range Aggregation

Bucket-based + O -

Hash-based + - O

B+ Tree + + +

Character oriented + O -

Privacy homomorphism + - +

Partition Plaintext and
Ciphertext (PPC)

+ + +

Order Preserving
Encryption Schema

(OPES)

+ + O

Secure index data
structures

+ O -

2.2.2 Data fragmentation

Often, not all the outsourced data, but only some columns and/or some

relations are confidential, e.g. the relation between patient and illness, in

medical field. In this case, it is possible to split the outsourced information in

two parts, one confidential and the other public. The aim of this solution is to

minimize the computational load of encryption/decryption.

A confidentiality constraint c over relational schema R(A1 ,…,An) is a subset of

attributes of R, i.e. c ⊆ R. Confidentiality constraints can contain a single

attribute that is sensitive (singleton constraints) or a group of attributes that

need to be never stored together since their joint visibility is sensitive

(association constraints).

Figure 5 shows an example of medical data and a set of well-defined

constraints over it.

8 +=fully supported, o=partially supported, -=not supported.

 30

Figure 5 A fragmentation sample (a) and a set of well-defined constraints
over it (b), source: [128]

2.2.2.1 Non-communicating servers

In this technique, two split databases are stored each in a different

untrusted server (called, say, S1 and S2). The two untrusted servers need to be

independent and non-communicating to prevent their alliance and

reconstruction of the complete information. In this scenario, the information

may be stored encoded or as plaintext at each server [110]. Basically, sensitive

attributes (singleton constraints) need to be encrypted, while sensitive

associations can be protected by splitting (fragmenting) the involved

attributes among the two servers.

Given a relational schema R, a fragmentation of R is then a triple (F1 , F2, E),

where fragments F1 and F2 contain a set of attributes in the clear (including a

tuple identifier to ensure lossless decomposition) and a set E of attributes

encrypted (i.e., E ⊆ F1 and E ⊆ F2).

Figure 6 shows a correct fragmentation for the sample in Figure 5.

Figure 6 A correct fragmentation sample, source: [128]

Encrypted attributes and tuple identifier are contained in F1 as in F2 . F1 and F2

are then stored respectively in S1 and S2 .

Figure 7 schematizes the resulting structure.

 31

Figure 7 Non-communicating servers

1.1.1.1.4 Query execution

The client decomposes each query Q in two subqueries: Q1 , which is executed

in S1 on the fragment F1 giving the result set RS1 , and Q2 , which is executed in

S2 on the fragment F2 giving the result set RS2 . If needed, the join between RS1

and RS2 is made choosing one of these strategies:

 Execute Q1 and Q2 in parallel, and then the client joins RS1 and RS2 ;

 Execute first one sub-query (say it is Q1 in S1), then send RS1 to S2 to

execute Q2 and to make the join with RS1. RS2 is the final result set to

return to client.

While the first strategy is heavier since are larger and the client needs local

computing, the second exposes some plaintext data to one of the server, and

then is potentially dangerous [110].

2.2.2.2 Unlinkable fragments

In practice, it is not easy to ensure that split servers do not communicate;

therefore the previous technique may be almost inapplicable. A possible

remedy is to divide the information in two or more fragments. Each fragment

contains all the fields of the original information, but some are in clear-text

while the others are encrypted [19].

E.g., given the relation R=(SSN, Name, DoB, Zip, Treatment, Illness), the

physical fragments corresponding to its fragmentation F ={ {Name, DoB ,Zip},

{Illness}, {Treatment } } are illustrated in Figure 8:

DB1 DB2

Server Server

Desktop

 32

Figure 8 A fragmentation with encryption sample, source: [6]

Here, enc contains the encryption of all the attributes that are not in plaintext.

To protect enc from the so-called frequency attacks, a suitable salt is applied

to it. These fragments may be stored in one or more servers. Figure 9

schematizes the resulting structure.

Figure 9 Unlinkable fragments

1.1.1.1.5 Choice of fragments

Generally, given a relational schema R and a set C of confidentiality

constraints over it, different fragmentations may exist that are both correct

and non-redundant [128]. The designer must choose wisely to ensure that the

information cannot be reconstructed. In particular, care should be taken to

not leave clear-text primary / external keys that could allow reconstructing the

entire information (the chosen fragments need to be unlinkable). Moreover,

among the correct fragmentations, the designer has to choose a solution that

provides minimality. If minimality is characterized by the minimum number

of fragments, the problem is NP-hard. An alternative definition of minimality

DB1 DB2

Server

Desktop

 33

assumes that a solution is minimal if merging any two fragments would break

at least a confidentiality constraint; using this definition, a heuristic approach

is proposed in [19].

Some tools exist that allow, given a relation table, to produce views (vertical

fragments) over it, in such a way to protect the privacy of possible sensitive

information while providing maximal visibility over the data. A sample of

these tools is Pri-views9 . It is based on a greedy algorithm designed by

University of Bergamo (UNIBG) and University of Milano (UNIMI) to solve

the problem of creating unlinkable fragments in the storage of sensitive

attributes [20]. The used algorithm departs from the use of encryption, while,

usually, in the literature, this kind of problem has been addressed using both

fragmentation and encryption.

1.1.1.1.6 Query execution

Having plaintext attributes, the queries that can be resolved using only them

are very efficient since they do not need decryption.

At query time, the original query is then decomposed in two subqueries:

 The first, executed on the Server, chooses a fragment (all fragments

contain the entire information) and selects tuples from it according to

clear-text values. It returns a result set where some fields are

encrypted;

 The second, executed on the Client (only if encrypted fields are involved

in the query), decrypts the information and removes the spurious

tuples.

An example of query in unlinkable fragments scenario is represented in Table

2:

9 http://www.primelife.eu/results/opensource/60-pri-views

 34

Table 2 Query translation using unlinkable fragments [6]

2.2.3 Data fragmentation with owner involvement

An adaptation of the non-communicating-servers technique consists of

storing locally the sensitive data and relations, while outsourcing storage of

the generic data [16], as shown in Figure 10.

Figure 10 Data fragmentation with owner involvement

The original relational schema R is split in <Fo, Fs>, where the former is stored

at the data owner, and the latter is stored at the external server. Both have a

common tuple identifier, to reconstruct the original relation.

Figure 11 shows a fragmentation for the sample in Figure 5.

DB1

DB2

Server

Desktop

 35

Figure 11 An example of physical fragments with owner involvement,
source: [6]

The fragmentation <Fo, Fs> of the relational schema R is considered correct if

it satisfies the following conditions:

 All attributes in R should appear in at least one fragment, to avoid loss

of information; and

 Fs should not violate any confidentiality constraint;

It need to be non-redundant (Fo and Fs have no attribute in common) to avoid

unnecessary storage at the data owner side and replica management problems

[6].

To compute a fragmentation to reduce as possible the data owner’s workload,

a metric for measuring the cost of a fragmentation is needed. In [16], four

metrics are proposed to respond to different minimization goals:

 Min-Attr: minimizes the number of attributes in Fo;

 Min-Size: minimizes the physical size of the attributes in Fo;

 Min-Query: minimizes the number of queries that involve at least one

attribute in Fo;

 Min-Attr: minimizes the number of conditions in queries that are

evaluated over attributes in Fo;

Since the problem is NP-hard, a heuristic algorithm was proposed in [16] to

easily adapt to different metrics.

1.1.1.1.7 Query execution

A user query Q must be translated by the client in the queries Qo and Qs on Fo

and Fs, respectively, plus a Qso that combines the resulting sets of Qo and Qs. Qs

 36

is a query that operates only on attributes on the server, while Qo is a query

that can be evaluated only by the data owner.

The translation process can use server-owner or owner-server strategy [128].

In the former, Qs is evaluated on the server and then the result is sent to the

owner, which proceeds with the evaluation of Qo and Qso. In the latter, Qo is

evaluate on the owner, then Qs is evaluate on the server side and, in the end,

Qso is evaluate again in the owner side.

An example of the two different strategies for the query

select Name from MedicalData where Illness=’Asthma’ and zip=’26013’

on fragmentation of Figure 11is condensed in Table 3 [128]:

Table 3 Query translation in fragmentation with owner involvement

2.3 Selective access

In many scenarios, access to data is selective, with different users having

different views over the data. Access control can discriminate between read

and write operations on an entire record or only on a part of it.

Key management solutions for outsourced databases can be classified in three

categories: owner side policy enforcement solutions, user-side policy

enforcement solutions, and solutions where access policy is shared among

actors (owner/user/server) [7].

An intuitive way to handle this issue is to encrypt different portions of data

with different keys that are then distributed to users (according to their access

privileges) [120].

 37

Limiting our scope to read operations, the access rights defined by the data

owner can be represented by using an access matrix A, where rows correspond

to subjects, columns correspond to objects, and entry A [s; o] is set to 1 if s

has permission to access o; 0 (zero) otherwise [29]. An example is represented

in Figure 12:

Figure 12 An example of access matrix

The column i of matrix corresponds to the Access Control Lists (ACL i) of the

tuple ti, while the row j corresponds to the capability list (CAPj) of user uj.

The simplest solution for access control consists in encrypting each tuple in

the outsourced database with a different key and assigning to each user the set

of keys associated with the tuples she can access; but this solution brings to

the proliferation of a lot of keys per user.

Access control policies can be translated into equivalent encryption policies

guided by two basic requirements [6][120]:

 No more than one key is released to each user, and

 Each resource is encrypted not more than once.

In [29][120], to achieve these objectives, a hierarchical organization of keys

has been envisioned. Basically, users with the same access privileges are

grouped and each resource is encrypted with a key that corresponds to the set

of users that can access it. In this way, a single key can be used to encrypt

more than one resource. The authors consider a user hierarchy whose

elements are all the possible sets of users in the system together with the

partial order (≤) naturally induced on it by the subset containment

relationship. Each user group has associated the tuples whose ACL, defined in

the access matrix, corresponds to the group itself. A directed acyclic graph

(DAG) with a node for each set of users, and an edge from node Y to node X if

X ≤ Y represents the user hierarchy (an example of it is shown in Figure 13).

 38

Figure 13 An example of user hierarchy, source: [29]

By assuming that each node of the hierarchy is associated with a key, the

access control problem could b e solved by encrypting each tuple with the key

of the node corresponding to its ACL and by assigning to each user the set of

keys of the nodes to which she belongs. On this basis, a heuristic algorithm

that minimizes the total number of distributed keys delivered to all the users

was proposed in [129].

An alternative solution (that is based on the same kind of above rights matrix,

but builds a binary tree whose intrinsic properties contribute to reduce key

management complexity) was proposed in [130]. Each level of the binary tree

corresponds to the rights of a user profile. Each user receives the key

corresponding to her hierarchical level; using it, she can derive all the keys for

allowed data using derivation mechanisms. Since few keys are assigned for

user at the top of the hierarchy, while those situated in the bottom receive a

bigger number of keys, a preliminary sort of user profiling, based on the right

importance, is used to minimize the average number of delivered keys.

A solution that organizes data in a binary tree and use also derivation

mechanisms was proposed in [131]. Since it does not follow any defined data

placement strategy to group data according to user rights, as the previous

works did, and allowed data could be disseminated on different parts of the

binary tree (to avoid data disclosure), the number of received keys could grow

very quickly especially in a scenario of billion of data blocks [7].

 39

A two level encryption scheme, one before outsourcing data, done by the

owner and the second, in case of user or role revocation, done by the service

provider, was proposed in [132].

2.4 Dynamic rights management

A user’s rights may change over time (e.g., the user changes role or

department). Therefore removing users from group/roles becomes necessary.

If the key management is not dynamic, this can be achieved on outsourced

databases as follows [134]:

 Encrypt data by a new key;

 Remove the original encrypted data, and

 Send the new key to the rest of the group.

The user, unless the database is re-keyed, continues to have access to the data

[7]. Note that the data owner must perform these operations since the

untrusted DBMS has no access to the keys. This active role of the data owner ,

however, goes somewhat against the reasons for choosing to outsource data in

the first place.

In [7], the authors, exploiting the never-ending trend to lower price-per-

byte storages, propose to replicate n times the source database, where n is the

number of different roles having access to the database. Each database replica

is a view, entirely encrypted using the key created for the corresponding role.

Each time a role is created, the corresponding view is generated and encrypted

with a new key, expressly generated for the newly -created role. Users do not

own the real keys, but receive a token that allows them to address a request-

to-cipher to a set KS of key servers on the Cloud.

Another important issue, common to many access control policies, concerns

time-dependent constraints on access permissions [9]. In many real

situations, it is likely that a user may be assigned a certain role only for a

limited time. In such case, users need a different key for each time period. A

time-bound hierarchical key assignment scheme is a method to assign time-

dependent encryption keys and private information to each class in the

hierarchy. Key derivation will depend also on temporal constraints; once a

role’s time period expires, users in that role need to be re-authorized.

 40

2.5 References

 [6] Pierangela Samarati and Sabrina De Capitani di Vimercati: “Data protection in outsourcing scena rios: issues and

directions”, ASIACCS 2010, pp. 1-14

[7] Nadia Bennani, Ernesto Damiani, and Stelvio Cimato: “Toward Cloud-based key management for outsourced

databases”, Computer Software and Applications Conference Workshops (COMPSACW), 2010 IEEE 34th An nual, pp. 232-236

[8] Mikhail J. Atallah, Marina Blanton, and Keith B. Frikken: “Incorporating Temporal Capabilities in Existing Key

Management Schemes”, ESORICS 2007, pp. 515 -530

[9] Alfredo De Santis, Anna Lisa Ferrara, and Barbara Masucci: “New construct ions for provably-secure time-bound

hierarchical key assignment schemes”, Theor. Comput. Sci. 407, pp.213 -230 (2008)

 [11] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Michael Burrows, Tushar

Chandra, Andrew Fikes, and Robert Gruber: “Bigtable: A Distributed Storage System for Structured Data”, OSDI 2006, pp. 205-

218

[12] Victor R. Lesser: “Encyclopedia of Computer Science”, 4th edition. John Wiley and Sons Ltd. 2003, pp.1194 –1196

[13] Ernesto Damiani, Sabrina De Capitani di Vimercati, Sushil Jajodia, Stefano Paraboschi, and Pierangela

Samarati:“Balancing confidentiality and efficiency in untrusted relational DBMSs”,ACM Conference on Computer and Comm.

Security 2003, pp.93-102

[14] Ernesto Damiani, Sabrina De Capitani di Vimercati, Mario Finetti, Stefano Paraboschi, Pierangela Samarati, and

Sushil Jajodia: “Implementation of a Storage Mechanism for Untrusted DBMSs”, IEEE Security in Storage Workshop 2003, pp.

38-46

[15] Sabrina De Capitani di Vimercati, Sara Foresti, Stefano Paraboschi, and Pierangela Samarati: “Privacy of outsourced

data”, In Alessandro Acquisti, Stefanos Gritzalis, Costos Lambrinoudakis, and Sabrina De Capitani di Vimercati: Digital

Privacy: Theory, Technologies and Practices. Auerbach Publications (Taylor and Francis Group) 2007

[16] Valentina Ciriani, Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Stefano Paraboschi, and Pierangela

Samarati: “Fragmentation and Encryption to Enforce Privacy in Data Storage”, ESORICS 2007, pp. 171 -186

[17] Richard Brinkman, Jeroen Doumen, and Willem Jonker: “Using Secret Sharing for Searching”, in Encrypted Data.

Secure Data Management 2004, pp. 18-27

[18] Ping Lin and K. Selçuk Candan: “Secure and Privacy Preserving Outsourcing of Tree Structured Data”, Secure Data

Management 2004, pp. 1-17

[19] Valentina Ciriani, Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Stefano Paraboschi, and Pierangela

Samarati: “Combining fragmentation and encryption to protect privacy in data storage”, ACM Trans. Inf. Syst. Secur. 13(3):

(2010)

[20] Valentina Ciriani, Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Stefano Paraboschi, and Pierangela

Samarati: “Keep a Few: Outsourcing Data While Maintaining Confidentiality”, ESORICS 2009, pp. 440 -455

[24] Hakan Hacigümüs, Balakrishna R. Iyer, and Chen Li, Sharad Mehrotra: “Executing SQL over encrypted data in the

database-service-provider model”, SIGMOD Conference 2002, pp. 216 -227

[28] L. Bouganim and Y. Guo, “Database encryption,” in Encyclopedia of Cryptography and Security, Springer, 2010, 2nd

Edition

[29] E. Damiani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati, “Key management for

multi-user encrypted databases,” StorageSS, 2005, pp. 74 -83

 [33] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi and P. Samarati, “Computing range queries on obfuscated

data,” IPMU, 2004

[106] Alberto Ceselli, Ernesto Damiani, Sabrina De Capitani di Vimercati, Sushil Jajodia, Stefano Paraboschi, Pierangela

Samarati: Modeling and assessing inference exposure in encrypted databases. ACM Trans. Inf. Syst. Secur. (TISSEC) 8(1):119 -

152 (2005)

[107] Ernesto Damiani, Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Stefano Paraboschi, Pierangela

Samarati: Metadata Management in Outsourced Encrypted Databases. Secure Data Management 2005:16-32

[108] Ward, J, O’Sulllivan, M., Shahoumian, T ., and Wilkes, J. 2002. “Appia: Automatic storage area network fabric

design. In Proceedings of the Conference on File and Storage Technologies” (FAST 2002) . The USENIX Association,

Monterey, CA.

 41

[109] Hakan Hacigümüs, Bijit Hore, Balakrishna R. Iyer, Sharad Mehrotra: Search on Encrypted Data. Secure Data

Management in Decentralized Systems 2007:383-425

[110] G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. Kenthapadi, R. Motwani, U. Srivastava, D. Thomas, and

Y. Xu. Two can keep a secret: a distributed architecture for secure database services. In Proc. of the Second Biennial Conference

on Innovative Data Systems Research (CIDR 2005), Asilomar, CA, USA, January 2005.

[111] Valentina Ciriani, Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Stefano Paraboschi, Pierangela

Samarati: Keep a Few: Outsourcing Data While Maintaining Confidentiality. ESORICS 2009:440 -455

[112] Valentina Ciriani, Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Stefano Paraboschi, Pierangela

Samarati: Combining fragmentation and encryption to protect privacy in data storage. ACM Trans. Inf. Syst. Secur. (TISSEC)

13(3) (2010)

[113] Chris Buckley, Ellen M. Voorhees, Evaluating evaluation measure stability, In SIGIR '00: Proceedings of the 23rd

annual international ACM SIGIR conference on Research and development in information retrieval (2000), pp. 33 -40.

doi:10.1145/345508.345543 Key: citeulike:1296575

[114] Agrawal, R. et al., Order preserving encryption for numeric data. In Weikum, G., Konig, A., and Deßloch, S., Eds.,

Proc. of the ACM SIGMOD 2004, Paris, France. ACM, 2004, 563.

[115] Alberto Ceselli, Ernesto Damiani, Sabrina De Capitani di Vimercati, Sushil Jajodia, Stefano Paraboschi, Pierangela

Samarati: Modeling and assessing inference exposure in encrypted databases. ACM Trans. Inf. Syst. Secur. (TISSEC) 8(1):119-

152 (2005)

 [117] M. Xie, H. Wang, J. Yin, and X. Meng. Integrity auditing of outsourced data. In Proc. of the 33rd International

Conference on Very Large Data Bases (VLDB 2007), Vienna, Austria, September 2007.

[118] E. Mykletun, M. Narasimha, and G. Tsudik. Authentication and integrity in outsourced databases. ACM Transactions

on Storage, 2(2):107–138, May 2006.

[119] G. Di Battista and B. Palazzi. Authenticated relational tables and authenticated skip lists. In Proc. of the 21th IFIP

WG11.3 Working Conference on Data and Application Security, Redondo Beach, CA, USA, August 2007.

[120] Ernesto Damiani, Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Stefano Paraboschi, Pierangela

Samarati: Selective Data Encryption in Outsourced Dynamic Environments. Electr. Notes Theor. Comput. Sci. (ENTCS)

168:127-142 (2007)

[121] Miklau, G. and D. Suciu, Control ling access to published data using cryptography , in: Proc. of the 29th International

Conference on Very Large Data Bases , Berlin, Germany, 2003

[122] Vibhor Rastogi, Dan Suciu, Sungho Hong, “The boundary between privacy and utility in data publishing”, In VLDB

'07: Proceedings of the 33rd international conference on Very large data bases (2007), pp. 531 -542.

[123] Florian Kerschbaum, Axel Schröpfer, Antonio Zilli, Richard Pibernik, Octavian Catrina, Sebastiaan de Hoogh, Berry

Schoenmakers, Stelvio Cimato, Ernesto Damiani: Secure Collaborative Supply -Chain Management. IEEE Computer

(COMPUTER) 44(9):38-43 (2011)

[124] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati. Controlled information sharing in

collaborative distributed query processing. In Proc. of the 28th International Conference on Distributed Computing Systems

(ICDCS 2008), Beijing, China, June 2008.

[125] Balakrishna R. Iyer, Sharad Mehrotra, Einar Mykletun, Gene T sudik, Yonghua Wu: A Framework for Efficient

Storage Security in RDBMS. EDBT 2004:147-164

[126] Hore , B., Me hrotra, S., and Tsudik, G., A privacy-preserving index for range queries. In Nascimento, M. et al., Eds.,

Proc. of t he 30th International Conference on Very Large Data Bases , Toronto, Canada. Morgan Kaufmann, 2004, 720.

[127] Ramakrishnan Raghu, Gehrke Johannes - Database Management Systems, McGraw-Hill Higher Education (2000),

2nd edition (en) page 267

[128] M. Bezzi, S. De Capitani di Vimercati, S. Foresti, G. Livraga, S. Paraboschi, P. Samarati, “Data privacy” in

Camenisch, Jan; Fischer-Hübner, Simone; Rannenberg, Kai, “Privacy and Identity Management for Life”, Springer 1st Edition.,

2011, XXIV, 512 p. 122 illus.

[129] C. Blundo, S. Cimato, S. D. C. di Vimercati, A. D. Santis, S. Foresti, S. Paraboschi, and P. Samarati. Efficient key

management for enforcing access control in outsourced scenarios. In SEC, pages 364 –375, 2009

 42

[130] V. El-khoury, N. Bennani, and A. M. Ouksel. Distributed key man-agement in dynamic outsourced databases: A trie-

based approach. In DBKDA ’09: Proceedings of the 2009 First International Conference on Advances in Databases, Knowledge,

and Data Applications, pages 56–61, Washington, DC, USA, 2009. IEEE Computer Society.

[131] W. Wang, Z. Li, R. Owens, and B. Bhargava. Secure and efficient access to outsourced data. In CCSW ’09:

Proceedings of the 2009 ACM workshop on Cloud computing security, pages 55 –66, New York, NY, USA, 2009. ACM.

[132] S. D. C. di Vimercati, S. Forest i, S. Jajodia, S. Paraboschi, and P. Samarati. Over-encryption: management of access

control evolution on outsourced data. In VLDB ’07: Proceedings of the 33rd international conference on Very large data bases,

pages 123–134. VLDB Endow-ment, 2007

[133] Mikhail J. Atallah, Marina Blanton, Nelly Fazio, Keith B. Frikken: Dynamic and Efficient Key Management for

Access Hierarchies. ACM Trans. Inf. Syst. Secur. (TISSEC) 12(3) (2009)

[134] XiuXia T ian, XiaoLing Wang, AoYing Zhou, "DSP RE-Encryption: A Flexible Mechanism for Access Control

Enforcement Management in DaaS," Cloud Computing, IEEE International Conference on, pp. 25 -32, 2009 IEEE International

Conference on Cloud Computing, 2009

[1 4 6] Da v ida GI, Wells DL, Kam JB (1981) A Database Encryption System with subkeys. ACM Tran s. Da ta ba se

Sy st . 6 , 3 1 2 -3 2 8 .

[1 4 7] Bu ehrer D, Chang C (1991) A cryptographic mechan ism for sh a r in g da ta ba ses. Th e In ter n a t ion a l

Con fer en ce on In for m a tion & Sy stem s. Ha n g zh ou , Ch in a , pp. 1 03 9 -1 04 5 .

[1 4 8] [Chang C, Chan CW (2003) A Database Record Encryption Scheme Using RSA Public Key Cry ptosy stem

a n d Its Ma ster Key s. Th e in ter n a t ion a l con fer en ce on Com pu ter n etw or ks a n d m obile com pu tin g .

[1 4 9] Shmueli E, Waisenberg R, Elovici Y, Gudes E (2005) Designing secure indexes for encrypted da ta ba ses .

Pr oceedings of Data and Applicat ion s Secu r ity , 1 9 th A n n u a l IFIP WG 1 1 .3 Wor kin g Con fer en ce, USA .

[1 5 0] Kü hn U (2006) Analysis of a Database and Index Encryption Scheme – Problems and Fixes. Secu r e Da ta

Ma n a g em en t.

[1 5 1] Min -Shiang H, Wei-Pang Y (1997) Multilevel Secure Databa se En cr y ption w ith Su bkey s. Da ta a n d

Kn ow ledg e En g in eer in g 2 2 , 1 1 7 -1 3 1 .

 43

3 CRYPTOGRAPHY IN DATABASES

In this Chapter I analyse the different levels and granularity of database encryption, and the

types of attack to database security.

Confidentiality, integrity and availability are the main properties of

database protection [135]. Confidentiality has been defined by the

International Organization for Standardization (ISO) in ISO-177991 0 as

"ensuring that information is accessible only to those authorized to have

access"; data integrity assures that none can modify the information without a

trace; availability provides access to data by authorized users in a reasonable

time. Along the years, a lot of ACP (Access Control Policy) has been defined,

based on database model (relational rather than object) and policy control

(i.e., DAC-Discretionary Access Control, RBACC-Role Based Access Control,

MAC-Mandatory Access Control)[139]. Traditionally, ACPs are based on the

assumption that the DBA (DataBase Administrator) is trusted, but this

assumption no longer holds in outsourced data centers and in the Cloud,

where the platform-as-a-service (PaaS) provider is external to data owner. A

solution to this problem is that the DBMS treats only raw-data, encrypted in

such a way that DBA (or another intruder) cannot read the information. There

are three main categories of database encryption [28][136]: storage level

encryption, database level encryption, and application level encryption (as

represented in Figure 15).

1 ISO/IEC 17799, Jan 4, 2009

 44

Figure 15 The three options for database encryption level, source: [28]

3.1 Storage-level encryption

In Storage-level encryption (SLE), data is encrypted either at the file level

(NAS/DAS) or at the block level (SAN) [152]. A short while ago, Toshiba has

released a hardware implementation of SLE, a family of hard drives - called

Self-Encrypting Disk1 1 . The system is based on the Opal specifications of

Trusted Computing Group1 2 , supports native encryption AES 256 and can

automatically delete its contents if not used by the rightful owner.

This encryption is not selective; since the storage subsystem has no knowledge

of database objects and structure, it encrypts an entire support or portions of

support (i.e. directories or files), without respect to user privileges or to data

sensitivity. When encrypting only portion of support, there is the additional

risk that logs and temporary files remain plaintext. It prevents theft of storage

but it is unsuitable for preventing unauthorized access by an honest-but-

curious system administrator, who must know the encryption key. On the

other hand, it is entirely transparent to the system, so it needs no database

modification [28].

1 1

http://storage.toshiba.com/main.aspx?Path=StorageSolutions/PCNotebook/

MKxx61GSYGSeries

1 2 http://www.trustedcomputinggroup.org/developers/storage/specifications/

 45

3.2 Database-level encryption

Database-level encryption (DLE) secures data as it is written to and read

from a database. The encryption is applied to the Db at various granularities,

such as database, tables, columns (most frequently), and rows. It can be

related with some logical conditions for selecting affected data, too.

Several database encryption schemes have been proposed in the literature, e.g.

[136]:

 In [146] a scheme based on the Chinese-Reminder theorem is

proposed, where each row is encrypted using different sub-keys for

different cells. This scheme enables encryption at the level of rows and

decryption at the level of cells;

 An extension of the previous scheme that supports multilayer access

control is proposed in [151]. It classifies subjects and objects into

distinct security classes that are ordered in a hierarchy, such that an

object with a particular security class can be accessed only by subjects

in the same or a higher security class;

 The scheme presented in [147] proposes encryption for a database

based on Newton's interpolating polynomials;

 The scheme presented in [148] is based on the RSA public-key scheme

and suggests two database encryption schemes: one column oriented

and the other row oriented;

 The SPDE scheme is presented in [149]. It encrypts each cell in the

database individually together with its cell coordinates (table name,

column name and row-id) to obtain different cipher-text values for

equal plaintext values (against static analysis), and to prevent a tuple is

moved to a different location (against splicing attacks) [150].

One disadvantage of all but the last these schemes is that the basic element in

the database is a row and not a cell. Thus the structure of the database is

modified. In addition, all of those schemes require re-encrypting the entire

row when a cell value is modified. Thus, in order to perform an update

operation, all the encryption keys should be available [28][136].

 46

DLE is not transparent to application as SLE, so it involves some

modifications to the indexed encrypted data and in stored procedures and

triggers. The system is slowed down by the encryption overhead. Usually, it is

not a defence from the curious DBAs [152].

3.3 Application-level encryption

In Application-level encryption (ALE), data is encrypted/decrypted by the

application that generates it. Plain-text data is made available only at client

side, while data sent over the network is encrypted [153][95][13].

The main advantages of this solution are:

 The encryption keys and the encrypted data stored in the database are

separated, since the keys never have to leave the application side; and

 A high flexibility since the encryption granularity and the encryption

keys can be chosen depending on application logic.

The price to pay is that this scheme usually involves returning to the client

larger result sets, which are then filtered at client side, when decrypted. To

accomplish this result, applications need to be modified and the network

traffic increases [28].

3.4 Granularity in database-level encryption

Database-level encryption is the most common solution for data

protection. It can have different types of granularity, namely [28][136]:

database, tables, columns, and rows.

In [29] the granularity is divided into relation level, attribute level, tuple level,

and element level, while [154] uses the taxonomy: attribute value, record/row,

attribute/column, and page/block.

3.4.1 Database

In this case, the whole database is encrypted using only one key, as if it

was a single file. The cons of this technique are:

 It does not allow to define different privileges on each table;

 The schema definition becomes particularly complex;

 47

 The system performance suffers considerable degradation (an

improvement can be achieved with appropriate caching) [152];

 Its security is closely linked to the physical security of the device with

which the master key is kept.

For these reasons, the database granularity solution is seldom used.

3.4.2 Tables

A specific key encrypts each table separately. Performances are better than

the previous solution, but still very far from those of a clear-text database,

because encrypting an existing table can be slow. Encryption affects

performance only when data is retrieved from or inserted into an encrypted

column. No reduction in performance occurs for operations involving

unencrypted columns, even if these columns are in a table containing

encrypted columns. Accessing data in encrypted columns involves small

overheads (e.g., in an Oracle 11 database, the overhead associated with

encrypting or decrypting an attribute is estimated to be around 5%) w.r.t. clear

text data 1 3 .

The total performance overhead depends on the number of encrypted

columns and their frequency of access. The columns most appropriate for

encryption are those containing the most sensitive data. The definition (and

enforcement) of integrity constraints, foreign keys and indexes is very

complex (see Section 2.2.1. on Data encryption).

3.4.3 Columns

All the data in a column (or set of columns) of a table is encrypted with the

same key. This is the solution adopted by most DBMS suppliers, e.g.

1 3

http://download.oracle.com/docs/cd/B28359_01/network.111/b28530/asotr

ans.htm

 48

Transparent Data Encryption in Oracle 11G1 4 or Microsoft SQL Server1 5 , as it

allows encrypting only sensitive data. However, it needs to build ad-hoc

indexes customized for the expected queries (again, at the expense of

performance). With this approach, it is also not possible to define access

privileges on "horizontal" portions of a table such as row sets (e.g., allowing

access only to rows with id> 100), as it is awkward to encrypt rows with

different keys depending on the user. These mechanisms usually rely on third-

party applications, or otherwise are implemented using database triggers or

stored procedures[152].

Although column-level encryption permits to reduce the encryption to only

sensitive columns, it often results in worse performance because it breaks

many of the indexing, query, and relational tools used by the DBMS [155].

3.4.4 Rows

Each single row in a table is encrypted using a different key. The main

advantage of this technique is the capability to define access control to a

subset of data (rows) of a table basing on the distribution of decryption keys.

Let us assume that we have a table that includes the data of all students in a

university and we want to grant access to the secretary of each course only to

data of students enrolled in that course. If we were using database or table-

level encryption, we would have to create a view for each course and grant the

rights to the corresponding secretary, with the problems outlined above (also,

data stays readable by the DBAs). Using column-level encryption, the

permissions must be specified at the field level and, unless appropriate

indexes or cumbersome procedures are implemented (which may also expose

the data to inference or statistical attacks), it would be impossible to make the

information instantly accessible to authorized users. Using row-level

encryption, instead, it is possible to make available to the authorized user the

keys (or the key) that can be used to decrypt only the allowed rows. This

technique, besides ensuring a better management of access permissions,

1 4 http://www.oracle.com/technetwork/database/options/advanced-

security/index-099011.html

1 5 http://msdn.microsoft.com/en-us/library/bb934049.aspx

 49

prevents any kind of statistical analysis on the table, since every relation

between similar rows is nullified by the different key encryption. In a standard

RDBMS, however, this technique has significant disadvantages in terms of

performance and functionality: querying would be possible only through the

construction of appropriate indexes for each column of the table (with a

considerable waste of resources both in terms of time and space), while

foreign keys would be unusable, since the different key encryption breaks

every relation between equal values. Another major issue concerns the

management of keys: row-level encryption needs generation and distribution

of a key for each row of each table encrypted with this method. To solve (or

alleviate) this problem, some key management techniques can be used, such

as:

 Broadcast (or Group) encryption [13]: rows are divided into

equivalence classes, based on recipients. Every class is encrypted using

an asymmetric algorithm where the encryption key is made in a way

that each recipient can decrypt the information using only its own

private key. Both the public and the private keys are generated by a

trusted entity.

 Identity Based Encryption [11]: it bounds the encryption key to the

identity of recipient. Each recipient generates by itself a key pair used

to encrypt/decrypt information.

 Attribute Based Encryption [12]: it bounds the encryption key to an

attribute (a group) of recipient. Each recipient receives by a trusted

entity the private key used to decrypt, while the encryption key is

calculated by the sender.

However these techniques are complex and therefore, to the best of my

knowledge, no research prototype or commercial database encryption system

adopt row encryption.

3.5 Attacks to database security

The database security may be compromised by an attacker that can be

categorized into three classes [156]:

 50

 Intruder - A person who gains access to a computer system and tries to

extract valuable information.

 Insider - A person who belongs to the group of trusted users and tries

to get information beyond his own access rights.

 Administrator - A person who has privileges to administer a computer

system, but uses his administration rights in order to extract valuable

information.

The different types of attack can be classified in passive and active [136]. The

first category contains the attacks that only read the data without altering it

and includes [136]:

 Static leakage: it is an attack that gains information on the database

plaintext values by observing a snapshot of the database at a certain

time. E.g., if the database is encrypted in a way that equal plaintext

values are encrypted to equal ciphertext values, statistics about the

plaintext values, such as their frequencies can easily be learned.

 Linkage leakage: it is an attack that gains information on the database

plaintext values by linking a table value to its position in the index. E.g.,

if the table value and the index value are encrypted the same way (both

ciphertext values are equal), an observer can search the table cipher

text value in the index, determine its position and estimate its plaintext

value.

 Dynamic leakage: it is an attack that gains information about the

database plaintext values by observing and analyzing the changes

performed in the database over a period of time. E.g., if a user monitors

the index for a period of time, and if in this period of time only one

value is inserted (no values are updated or deleted), the observer can

estimate its plaintext value based on its position in the index.

The second category contains the attacks that modify the database and

includes [157]:

 Spoofing: replacing a ciphertext value with a generated value.

Assuming that the encryption keys are secure, a possible attacker might

try to generate a valid ciphertext value, and substitute the current valid

value stored on the disk. Assuming that the encryption keys were not

compromised, this attack poses a relatively low risk.

 51

 Splicing: replacing a ciphertext value with a different cipher text value.

Under this attack, the encrypted content from a different location is

copied to a new location under attack.

 Replay: replacing a cipher text value with an old version previously

updated or deleted.

3.6 References

[1 1] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wa lla ch , Mich a el Bu r r ow s,

Tu shar Chandra, Andrew Fikes, and Robert Gruber: “Bigtable: A Distributed Storage System for Structu r ed Da ta ” ,

OSDI 2 006 , pp. 2 05 -2 1 8

[1 2] V ictor R. Lesser: “Encyclopedia of Computer Science”, 4th edition . Joh n Wiley a n d Son s Ltd. 2 003 ,

pp.1 1 9 4 –1 1 9 6

[1 3] Er n esto Damiani, Sabrina De Capitani di Vimercati, Sushil Jajodia, Stefano Paraboschi, a n d Pier a n g ela

Samarati:“Balancing confidentiality and efficiency in untrusted relational DBMSs”,ACM Conferen ce on Com pu ter

a n d Com m . Secu r ity 2 003 , pp.9 3 -1 02

[2 8] L. Bouganim and Y. Guo, “Database encryption,” in Encyclopedia of Cryptography and Security, Sprin g er ,

[2 9] E. Damiani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Pa r a bosch i, a n d P. Sa m a r a t i, “ Key

m a n a g em en t for m u lt i-u ser en cr y pted da ta ba ses,” Stor a g eSS, 2 005 , pp. 7 4 -8 3

[9 5] Ha kan Hacigümüs, Bala Iy er, Sharad Mehrotra, “Providing Database as a Service”, Proceedings of the 18th

In ter n a t ion a l Con fer en ce on Da ta En g in eer in g (ICDEí02), 2 002 , pp. 1 -1 0

[1 2 5] Ba lakrishna R. Iy er, Sharad Mehrotra, Einar My kletun, Gene Tsudik, Yong h u a Wu : A Fr a m ew or k for

Efficien t Stor a g e Secu r ity in RDBMS. EDBT 2 004 :1 4 7 -1 6 4

[1 2 6] Hor e , B., Me hrotra, S., and Tsudik, G., A privacy-preserving index for range queries. In Nascimento, M. et

a l., Eds., Proc. of t he 30th International Conference on Very Large Data Bases , Toronto, Canada. Morgan Kaufmann,

2 004 , 7 2 0.

[1 2 7] Ramakrishnan Raghu, Gehrke Johannes - Database Management Systems, McGraw-Hill Higher Education

(2 000), 2 n d edit ion (en) pa g e 2 6 7

[1 2 8] M. Bezzi, S. De Capitani di Vimercati, S. Foresti, G. Livraga, S. Paraboschi, P. Samarati, “Data priva cy ” in

Camenisch, Jan; Fischer-Hübner, Simone; Rannenberg, Kai, “Privacy and Identity Management for Life”, Spr in g er

1 st Edit ion ., 2 01 1 , XXIV , 5 1 2 p. 1 2 2 illu s.

[1 3 5] Debor a h Ru ssell, G. T. Ga n g em i: Com pu ter secu r ity ba sics (3 . ed.). O'Reilly 1 9 9 2

[1 3 6] E. Shmueli, R. Vaisenberg, Y. Elovici, C. Glezer, “Database encryption: a n ov er v iew of con tem por a r y

ch a llen g es a n d desig n con sider a t ion s,” SIGMOD Recor d 3 8 (3), 2 009 , pp. 2 9 -3 4

[1 3 7] Microsoft, "Improving data security by usin g SQL Ser v er 2 005 : Usin g SQL Ser v er 2 005 to h elp

pr otectda ta ," Tech n ica l Wh ite Pa per , October 2 005 .

 [1 3 9] A pplication Security, Inc., "Encryption of data at rest ," Wh ite Pa per , A ccessed Nov em ber 2 006 a t

h ttp://w w w .a ppsecin c.com /pr esen ta t ion s/En cr y ption _of_Da ta _a t_Rest .pdf.

 [1 4 6] Da v ida GI, Wells DL, Kam JB (1981) A Database Encryption System with subkeys. ACM Tran s. Da ta ba se

Sy st . 6 , 3 1 2 -3 2 8 .

[1 4 7] Bu ehrer D, Chang C (1991) A cryptographic mechan ism for sh a r in g da ta ba ses. Th e In ter n a t ion a l

Con fer en ce on In for m a tion & Sy stem s. Ha n g zh ou , Ch in a , pp. 1 03 9 -1 04 5 .

[1 4 8] [Chang C, Chan CW (2003) A Database Record Encryption Scheme Using RSA Public Key Cry ptosy stem

a n d Its Ma ster Key s. Th e in ter n a t ion a l con fer en ce on Com pu ter n etw or ks a n d m obile com pu tin g .

[1 4 9] Shmueli E, Waisenberg R, Elovici Y, Gudes E (2005) Designing secure indexes for encrypted da ta ba ses .

Pr oceedings of Data and Applicat ion s Secu r ity , 1 9 th A n n u a l IFIP WG 1 1 .3 Wor kin g Con fer en ce, USA .

 52

[1 5 0] Kü hn U (2006) Analysis of a Database and Index Encryption Scheme – Problems and Fixes. Secu r e Da ta

Ma n a g em en t.

[1 5 1] Min -Shiang H, Wei-Pang Y (1997) Multilevel Secure Databa se En cr y ption w ith Su bkey s. Da ta a n d

Kn ow ledg e En g in eer in g 2 2 , 1 1 7 -1 3 1 .

[1 5 2] U. Mattsson. Database Encryption-How to Balance Security with Per for m a n ce. ITtoolbox Da ta ba se:

h ttp://database.ittoolbox. com/documents/peer publishing/databaseencryption-how-to-ba la n ce-secu r ity -w ith -

per for m a n ce-4 5 03 , Ju ly , 2 005 .

[1 5 3] Mer hotra S, Gore B (2009) A Middleware approach for managing and of outsourced person a l da ta , NSF

Wor ksh op on Da ta a n d A pplica t ion Secu r ity , A r lig n ton , V ir g in ia , Febr u a r y 2 009 .

[1 5 4] Elisa Bertino, Stavros Christodoulakis, Dimitris Plexousakis, Vassilis Christophides, Manolis Kouba r a kis,

Klemens Böhm, Elena Ferrari: Advances in Database Technology - EDBT 2004, 9th Interna t ion a l Con fer en ce on

Ex tending Database Technology, Heraklion, Cr ete, Gr eece, Ma r ch 1 4 -1 8 , 2 004 , Pr oceedin g s EDBT 2 004

[1 5 5] “ Understanding a n d Select in g a Da ta ba se En cr y ption or Token iza t ion Solu t ion ” , Secu r osis:

h ttp://secu r osis.com /r epor ts/Secu r osis_Un der sta n din g _DBEn cr y ption .V _.1 _.pdf, 05 /1 0/2 01 0

[1 5 6] Bou ganim L, Pucheral P (2002) Chip-secured data access: confidential data on untrusted servers. The 28th

In t . Con fer en ce on V er y La r g e Da ta Ba ses, Hon g Kon g , Ch in a , pp. 1 3 1 -1 4 2

[1 5 7] V ingralek R (2002) Gnatdb: A small-footprint, secure database sy stem. The 28th Int'l Conference on Ver y

La r g e Da ta ba ses, Hon g Kon g , Ch in a , A u g u st , pp. 8 8 4 -8 9 3 .

 53

4 IN-MEMORY DATABASES

In this Chapter, I illustrate the characteristics of the In-Memory Databases, a proven

mature technology that takes advantage of the current wide availability of main memory to

reverse the usual storage strategy, storing the information directly into main memory and

using the disk only for data backup.

Magnetic disks are heavily used as primary storage in computer systems

since their introduction in 1955 with the IBM 350 Disk File device, announced

by IBM as a component of the IBM 305 RAMAC computer system on

September 13, 1956 [66].

Two of the most critical parameters for a magnetic disc are capacity and

performance. Disc drive capacity refers to the size of storage memory available

on a disc drive. Disc drive performance describes the speed and efficiency with

which data can be written to and read from a drive1 6 .

During these years, the capacity has rapidly grown from the initial 5 million 7-

bit (6-bits plus 1 odd parity bit) characters (about 4.4 megabytes) [67] to the

actual multiple terabytes size. Instead, the performance has not grown at the

same speed (see Figure 16 and Figure 17).

1 6 “Disc Drive Capacity and Performance”, Seagate Technical paper, 2001

 54

Figure 16 Data sets growth1 7

Figure 17 Disk performance improvements vs. capacity growth1 8

With the aim to overcome this limitation, particularly heavy in the case of data

centers and transactional systems, many people have proposed new

approaches to disk based storage or, as a revolutionary choice, to store data in

random access memory, using disk only as backup [63].

Since 1985, some precursor designed a “memory resident DBMS” [68] where

data is resident in main memory, but, at that time, RAM capacity was very low

to permit the storage of large datasets.

During the last 20 years, the RAM capacity of computers has increased

exponentially by a factor of 10 every 4 years, following Moore’s Law. The

graph below illustrates the typical memory configuration installed on personal

computers since 1980.

1 7 Source: http://wiki.r1soft.com

1 8 Source: http://wiki.r1soft.com

 55

Figure 18 The RAM modules capacity1 9

At the same time, RAM’s price per byte is falling down quickly, so today there

are the conditions to effectively use the, “main memory database system”

(MMDB), also known as in-memory database (IMDB) or as real-time database

(RTDB).

“In-memory databases have recently become an intriguing topic for the

database industry. With the mainstream availability of 64-bit servers with

many gigabytes of memory a completely RAM based database solution is a

tempting prospect to a much wider audience.”2 0

It is important to remark that, while a conventional database system stores

data on disk but caches it into memory for access, in an IMDB the data resides

permanently in the main physical memory and there is a backup copy on disk

[27].

IMDBs are intended either for personal use (because they are comparatively

small w.r.t. traditional databases), or for performance-critical systems (for

their very low response time and very high throughput). They use main

memory structures, so they need no translation from disk to memory form,

and no caching and they perform better than traditional DBMSs with Solid

State Disks.

In Table 4, I summarize pros and cons for IMDBs.

1 9 Source: Intel

2 0 http://www.remote-dba.net/t_in_memory_cohesion_ssd.htm

 56

Table 4 IMDBs Pros and Cons
Pros Cons

Fast transactions
No translation
High reliability

Multi-User Concurrency (few
locks)

Complexity of durability ’s
implementation

Size limited by main memory

4.1 The impact of in-memory structure

Main memory is a random-access, byte-addressable device while disk is

semi-random, block-addressable device. These differences have an impact on

different aspects of DBMS.

4.1.1 Data representation

To optimize space utilization, necessary to hold the active database

entirely in main memory, compact data structures such as T-trees [70] or

array structures [71] have been proposed to organize permanent data

efficiently in main memory. In particular, the relation between two tuples may

be represented using memory pointers instead of external keys [27] (see

Figure 19). This permits a smaller storage and a faster access to related

records.

Figure 19 The usage of pointers in relations

In conventional DBMS we need translation from stored representation (e.g.

records in files) to applications’ form; while in IMDBs, since data is stored in

main memory, we have a unique representation of it.

4.1.2 Access methods

While disk-oriented index structures, as B-Tree [72] and derived, are

intended for block storage and then are designed to minimize the number of

 57

disk accesses and the required disk space, main memory index structures are

designed to reduce overall computation time while using as little memory as

possible. Since data is in main memory, instead to use associative values <key,

position> to relate keys to tuples, we can use memory pointers to actual

attribute values, which remain in their place, giving some clear advantages

[73]:

 A single tuple pointer provides the index with access to both the

attribute value of a tuple and the tuple itself, reducing the size of the

index;

 This eliminates the complexity of dealing with long fields, variable

length fields, and compression techniques in the index,

 Moving pointers will tend to be cheaper than moving the (usually

longer) attribute values when updates necessitate index operations, and

 Since a single tuple pointer provides access to any field in the tuple,

multi-attribute indices will need less in the way of special mechanisms.

There are two main types of index structures: those that preserve some

natural ordering in the data and those that randomize the data. The index

structures being studied here are (see Figure 20 and Figure 21): arrays, AVL-

Trees, B-Trees, and T -Trees, for the order-preserving class; and Chained

Bucket Hashing, Linear Hashing and Extendible Hashing, for the randomizing

class.

 Arrays [71] use minimal space, providing that the size is known in

advance or that growth is not a problem, but the computational

complexity of data movement is O(N)2 1 for each update, so it useful just

in read-only environment;

 AVL-Trees [74] use a binary tree search. Updates always affect a leaf

node and may result in an unbalanced tree, so the tree is kept balanced

by rotation operations. The disadvantage in AVL-Trees is their poor

storage utilization, since each tree node holds only one data item, so

there are two pointers and some control information for every data

item.

2 1 N is the number of elements of the array

 58

 B-Trees [75] are a usual structure for disk indexes, since they are broad

shallow trees and require few node accesses to retrieve a value. Most

database systems use a variant of the B-Tree, the B+-Tree, which keeps

all of the actual data in the leaves of the tree, but in main memory this

does not speed up the search, while it wastes space. In B-Trees:

o Storage utilization is good since the pointer to data ratio is small,

as leaf nodes hold only data items and they comprise a large

percentage of the tree);

o Searching is reasonably quick since a small number of nodes are

searched with a binary search; and

o Updating is fast since data movement usually involves only one

node.

Figure 20 Tree structures, source [70]

 Chained Bucket Hashing [77] is a very fast static structure used both in

memory and on disk. Since it is static, it never has to reorganize its data

(advantage), but, for the same reason, it may have very poor behaviour

in a dynamic environment (disadvantage) because the size of the hash

table must be estimated before the table is filled. A wrong estimated

size may affect the performance (too small), or the wasted space (too

large).

 Extendible Hashing [78] employs a dynamic hash table. With respect to

the previous structure, the table size does not need to be known in

 59

advance since a hash node contains several items and splits into two

nodes when an overflow occurs. The directory grows in powers of two,

doubling whenever a node overloads and has reached the maximum

depth for a particular directory size. Since any node can cause the

directory to split, the directory can become very large if the hash

function is not sufficiently random.

 Linear Hashing [79] uses a dynamic hash table that grows linearly as it

splits nodes in predefined linear order. First, the buckets can be

ordered sequentially, allowing the bucket address to be calculated from

a base address - no directory is needed. Second, the event that triggers

a node split can be based on storage utilization, keeping the storage

cost constant for a given number of elements.

 Modified Linear Hashing [79] is a variant of the previous structure that

uses a directory much like Extendible Hashing, except that it grows

linearly, and chained single-item nodes, allocated from a general

memory pool. The splitting criteria are based on performance, i.e. the

average length of the hash chains, rather than storage utilization.

Monitoring average hash chain length provides more direct control

over the average search and update times than monitoring storage

utilization.

 T-Trees [70] are binary trees, evolved from AVL-Trees and B-Trees,

with many elements in a node. They retain the intrinsic binary search

nature of the AVL-Tree united to the good update and storage

characteristics of the B-Tree. Data movement is required for insertion

and deletion, but it is usually needed only within a single node.

Rebalancing is done using rotations similar to those of the AVL-Tree,

but it is done much less often than in an AVL-Tree due to the possibility

of intra-node data movement.

 60

Figure 21 Hash structures, source: [70]

4.1.3 Query processing

The use of a random access memory to maintain data has a deep impact on

common operations. First of all, we have no advantage in sequential data

access, so data contiguity loses value. Operations as sorting become useless

because it is more valuable using pointers to create sorted list instead of

moving data.

While data may still be represented by the relational model, the use of

pointers to express relations naturally brings to a semantic model. The

relations are surfing following pointers and joins exploit this possibility,

instead of using external keys [27].

The goal is not minimizing the disk accesses, but the processing cost in main

memory. This depends on the architecture, and then the optimization

techniques need to be evaluated in the running system.

 61

4.1.4 Concurrency control

Concurrency is defined as the ability of multiple processes and threads to

access and change the data records at the same time. The lower the contention

to access and modify data with more users, the better the concurrency, and

vice versa.

Database concurrency controls ensure that transactions occur in an ordered

fashion to protect transactions issued by different users/applications from the

effects of each other. They must preserve the four characteristics of database

transactions: atomicity, isolation, consistency and durability , also known as

ACID.

Two approaches can be adopted to manage concurrent data access:

pessimistic and optimistic [80]. Pessimistic concurrency systems assume that

conflict will occur and it avoids conflicts by acquiring locks on data that is

being read or modified, so that no other process can modify that data.

Optimistic concurrency systems assume that transactions are unlikely to

modify data that another transaction is modifying. This is implemented by

using versioning technique. This allows readers to see the state of the data

before the modification occurs as the system maintains previous version of the

data record before it actually attempts to change it. Usually DBMSs use

pessimistic approach, while versioned file systems use optimistic approach.

4.1.4.1 Granularity of locks in a database with

pessimistic approach

The granularity of locks in a RDBMS refers to how much of the data is

locked at one time. In theory, a database server can lock as much as the entire

database or as little as one column of data. Such extremes affect the

concurrency (number of users that can access the data) and locking overhead

(amount of work to process lock requests) in the server.

Granularity levels are listed below ordered from large to fine granularity [81]:

Database, Table, Disk Block or Memory Page, Record, and Record Field.

Since the best granularity size depends on the given transaction, DBMS should

support multiple level so granularity and allows the transaction to pick any

level it wants.

 62

By locking at higher levels of granularity, the amount of work required to

obtain and manage locks is reduced. If a query needs to read or update many

rows in a table:

 It can acquire just one table-level lock

 It can acquire a lock for each page that contained one of the required

rows

 It can acquire a lock on each row

Less overall work is required to use a table-level lock, but large-scale locks can

degrade performance, by making other users wait until locks are released.

Decreasing the lock size makes more of the data accessible to other users.

However, finer granularity locks can also degrade performance, since more

work is necessary to maintain and coordinate the increased number of locks.

To achieve optimum performance, a locking scheme must balance the needs of

concurrency and overhead.

In an IMDB, small locking granules are inappropriate, since contention is

already low because data is memory resident. Usually IMDBs prefer to use

very large lock granules (e.g. table or database) [82].

4.1.5 Logging and Recovery

Normally, the use of volatile memory-based IMDBs supports the three

ACID properties [83] of atomicity, consistency and isolation, but lacks support

for the durability property. To add the latter, when non-volatile random access

memory (NVRAM) is not available, IMDBs use a combination of transaction

logging and primary database check-pointing to the system's hard disk: they

log changes from committed transactions to physical medium and,

periodically, update a disk image of the database. Having to write updates to

disk, the write operations are heavier than read-only [27] and impact on

system performance. Logging policies vary from product to product: some

leave the choice of when to write the application on file, others do all the

checkpoints at regular intervals of time or after a certain amount of data

entered / edited.

Following are some of the desirable properties of logging and recovery

algorithms [85]: Reduced log traffic, Speedy logging and recovery, Transaction

 63

priority oriented logging and recovery, and Data class oriented logging and

recovery.

4.1.5.1 Transaction logging and commit

processing

A transaction is a sequence of operations, which may lead to a success or a

failure. If successful, the result of the operations must be permanent; while in

case of failure, it must return to its previous state when the transaction [84].

In an IMDB, transactions need to be stored in a permanent storage until they

are committed and the final result is written to the log. The transaction

logging can be divided in REDO and UNDO tails [84].

To minimize the impact on performance, IMDBs can use some strategy, main

of which are:

 Log driven backups [86] : is composed of a stable memory and recovery

task, which work in parallel. The stable memory [87] usually consists of

a main conventional RAM, a Safe RAM which is called the Safe, and a

conventional disk and stores the log tail that includes both UNDO and

REDO logs produced by active transactions. Asynchronically, the

recovery task move transaction from stable memory to the checkpoint

log.

 Pre-committing [73]: if the system has not a stable memory, it can do a

pre-commit, releasing the transaction lock without waiting for the

information to be written to log. The sequential nature of log ensures

that transactions cannot commit before others on which they depend.

This way the response time remains the same but the blocking delay of

other concurrent transaction is reduced.

 Group commit [73]: a set of updates are grouped together in one log

write to amortize the cost of the log write disk I/O over several updates.

4.1.6 Performance

Thanks to the lower latency time, IMDBs usually have better performance

then conventional DBMSs, especially in read operations.

 64

While in conventional DBMSs the performance is evaluated in terms of disk

accesses, in IMDBs the metrics is different, e.g., it is related to measure of

checkpointing/logging. The path to performance improvement may be

summarized in: Index improvements [70], Parallel and distributed systems

[89][64][11][92] , and Checkpointing improvement [90] [91].

The improvement of performance is particularly important when IMDBs are

used in Real Time or Multiuser Systems, where they are a good choice for their

small latency that allows fast responses to events/requests. But IMDB are

often used in embedded application, where compactness is more valuable than

performance.

4.2 Cache vs. IMDB

Disk cache is a cache or buffer used to hold portions of the disk address

space contents to capture a significant fraction of the I/O operations. It can

provide access times and transfer rates significantly better than disk, and can

improve I/O system performance and thereby postpone or eliminate the

predicted I/O system bottleneck [93].

In recent years there has been a surge in the use of DRAM, driven by the

performance requirements of large-scale Web applications. For example, both

Google and Yahoo! store their search indices entirely in DRAM [63].

Memcached2 2 provides a general-purpose key-value store entirely in DRAM,

and it is widely used to offload back-end database systems (however,

memcached makes no durability guarantees so it must be used as a cache).

The Bigtable storage system allows entire column families to be loaded into

memory, where they can be read without any disk accesses [11]. Big-table has

also explored many of the issues in federating large numbers of storage

servers.

The cache is useful only if the page fault rate is low, otherwise the number of

disk access is not significantly reduced. The 1000x gap in access time between

DRAM and disk means that a cache must have exceptionally high hit rates to

2 2 http://memcached.org/

 65

avoid significant performance penalties: even a 1% miss ratio for a DRAM

cache costs a factor of 10x in performance [87].

Modern application, e.g. Facebook, have a very limited locality 2 3 , due to

complex linkages between data (e.g., friendships in Facebook). To obtain

providing a hit rate of 96.5%, the total amount of memory used by the storage

system in Facebook equals approximately 75% of the total size of the data

(excluding images) [87]. Using an IMDB, the memory used is incremented of

the last 25%, but obtains it guarantees performance independent of access

patterns or locality.

4.3 References

[2 7] H. Garcia-Molina, K. Salem, “Main Memory Database Systems: An Overview,” IEEE Trans. Kn ow l. Da ta

En g . 4 (6), 1 9 9 2 , pp. 5 09 -5 1 6

[6 3] Joh n K. Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis, Jacob Leverich, David Ma zièr es,

Su bhasish Mitra, Aravind Narayanan, Guru M. Parulkar, Mendel Rosenblum, Stephen M. Rumble, Eric Stratm a n n ,

Ry an Stutsman: The case for RAMClouds: scalable high-performance storage entirely in DRAM. Operating Sy stem s

Rev iew 4 3 (4): 9 2 -1 05 (2 009)

[6 4] Ev an P. C. Jones, Daniel J. Abadi, Samuel Madden: Low ov erhead concurrency control for partitioned main

m em or y da ta ba ses. SIGMOD Con fer en ce 2 01 0: 6 03 -6 1 4

[6 5] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica . Disk -loca lity in da ta cen ter com pu tin g

con sidered irrelevant. In HOTOS’11: Proceedings of the 13th USENIX workshop on Hot topics in operating sy stem s,

2 01 1 .

[6 6] J. M. Harker et al., "A Quarter Century of Disk File Innovation," ibm J Res. Dev ., 1 9 8 1 , pp. 6 7 7 -6 8 9

[6 7] --, "IBM A r ch iv es: IBM 3 5 0 disk stor a g e u n it". 03 .ibm .com . Retr iev ed 2 01 1 -07 -2 0.

[6 8] A rthur C. Ammann, Maria Hanrahan, Ravi Krishn a m u r th y : Desig n of a Mem or y Residen t DBMS .

COMPCON 1 9 8 5 : 5 4 -5 8

[6 9] Gor don E. Moore (1965-04-19). "Cramming more components onto integ r a ted cir cu its". Electr on ics.

Retr iev ed 2 01 1 -08 -2 2 .

[7 0] Lehman T., Carey M., “A Study of Index Structures for Main Memory Database Management Systems”, Int.

Con f. on V LDB, Ky oto, Ja pa n , A u g u st 1 9 8 6

[7 1] A mmann A., Hanrahan M., and Krishna m u r th y R., “ Desig n of a Mem or y Residen t DBMS” , IEEE

COMPCON, Sa n Fr a n cisco, Ca lifor n ia , Febr u a r y 1 9 8 5 .

[7 2] Dou g la s Com er : Th e Ubiqu itou s B-Tr ee. A CM Com pu t. Su r v . 1 1 (2): 1 2 1 -1 3 7 (1 9 7 9)

[7 3] Da v id J. DeWitt, Randy H. Katz, Frank Olken, Leonard D. Shapiro, Michael Stonebraker, David A . Wood:

Im plem en ta t ion Tech n iqu es for Ma in Mem or y Da ta ba se Sy stem s. SIGMOD 1 9 8 4 :1 -8

[7 3] Da v id J. DeWitt, Randy H. Katz, Frank Olken, Leonard D. Shapiro, Michael Stonebraker, David A . Wood:

Im plem en ta t ion Tech n iqu es for Ma in Mem or y Da ta ba se Sy stem s. SIGMOD 1 9 8 4 :1 -8

[7 4] A . Aho, J. Hopcroft and J. D. Ullman, The Design and Analysis of Computer Algorithms, Addison -Wesley

Pu blish in g Com pa n y , 1 9 7 4 .

[7 5] D. Com er , Th e Ubiqu itou s B-Tr ee, Com pu tin g Su r v ey s II,2 (Ju n e 1 9 7 9)

2 3 Locality means that the probability of reference for recently referenced

pages is higher than the average reference probability [94].

 66

[7 6] D. J. A bel: A B-tree structure for large quadtrees. Computer Vision, Gr a ph ics, a n d Im a g e Pr ocessin g

(CV GIP) 2 7 (1):1 9 -3 1 (1 9 8 4)

[7 7] D. Kn u tb, Th e A r t of Com pu ter Pr og r a m m in g , A ddison -Wesley , Rea din g , Ma ss., 1 9 7 3 .

[7 8] R. Fagin, J. Nievergelt, N. Pippenger and H. R. Strong, Extendible Hashin g : A fa st a ccess m eth od for

dy n a m ic liles, A CM Tr a n s. on Da ta ba se Sy stem s 4 ,3 (Sept . 1 9 7 9), 3 1 5 -3 4 4 .

[7 9] W. Litwin, Linear Hashing : A New Tool For File and Table Addressing, Proc. 6th Conf. Ver y La r g e Da ta

Ba ses, Mon tr ea l, Ca n a da , October 1 9 8 0.

[8 0] Da n iel A. Menascé, Tatuo Nakanishi: Optimistic versus pessimistic concurrency control m ech a n ism s in

da ta ba se m a n a g em en t sy stem s. In f. Sy st . (IS) 7 (1):1 3 -2 7 (1 9 8 2)

[8 1] Michael J. Ca r ey : Gr a n u la r ity Hier a r ch ies in Con cu r r en cy Con tr ol. PODS 1 9 8 3 :1 5 6 -1 6 5

[8 2] Tobin J. Lehman and Michael J. Carey, ‘‘A Recovery Algorithm of A High-Performance Memory-Residen t

Da ta ba se Sy stem ,’’ SIGMOD 1 9 8 7

[8 3] ---, A CID (Atomicity, Consistency, Isolation, and Durability) in Dictionary of Mult im edia a n d In ter n et

A pplica t ion s: A Gu ide for Dev eloper s a n d User s (in in g lese), Hoboken , Wiley , 1 9 9 9 .

[8 4] Jim Gray, Andreas Reuter, Transaction Processing - Concepts and Techniques, 1993, Morgan Kaufm a n n ,

ISBN 1 -5 5 8 6 0 -1 9 0-2

[8 5] Ra jendran M. Sivasankaran, Krithi Ramamritham, John A. Stankov ic: System Failure and Recovery. Rea l -

Tim e Da ta ba se Sy stem s 2 001 :1 09 -1 2 4

[8 6] E. Lev y and A. Silb erschatz, “Incremental Recovery in Main Memory Database Systems," IEEE Tr a n s. on

Kn ow ledg e a n d Da ta En g . 4 (6) (Dec. 1 9 9 2) 5 2 9 -5 4 0.

[8 7] George P. Copeland, Tom W. Keller, Ravi Krishnamurthy, Marc G. Smith: The Case For Safe RA M. V LDB

1 9 8 9 :3 2 7 -3 3 5

[8 8] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alex Rasin, Stanley B. Zdonik, Ev an P.

C. Jones, Samuel Madden, Michael Stonebraker, Yang Zhan g , Joh n Hu g g , Da n iel J. A ba di: H -stor e: a h ig h -

per formance, distributed main memory tr a n sa ct ion pr ocessin g sy stem . PV LDB 1 (2):1 4 9 6 -1 4 9 9 (2 008)

[8 9] Gu o, Chao | Li, Kun | Wang, Yong-Yan | Liu, Sheng-Hang | Wang, Hong-An, “The performance analysis of

m ain memory database indices on multi-core processors”, Jisuanji Xuebao (Chinese Journal of Computers) [Jisuanji

Xu eba o (Ch in . J. Com pu t.)]. V ol. 3 3 , n o. 8 , pp. 1 5 1 2 -1 5 2 2 . A u g 2 01 0.

[9 0] Ping Liang, Yunsheng Liu, "A Checkpointing Strategy and Redo Point Strategy for Embedded Rea l -Tim e

Ma in Memory Databases Crash Recovery," Computer Science and Information Engineering, World Congress on, pp.

6 9 6 -7 00, 2 009 WRI Wor ld Con g r ess on Com pu ter Scien ce a n d In for m a tion En g in eer in g , 2 009

[9 1] Qin, Xiong-Pai | Xiao, Yan-Qin | Cao, Wei | Wang, Shan “An efficient checkpointing sch em e for u pda te

in tensive applications in main memory database systems”, Jisuanji Xuebao (Chinese Journal of Computers). Vol. 32,

n o. 1 1 , pp. 2 2 00 -2 2 1 0. Nov . 2 009

[9 2] A leksandr Rayshubskiy, B. Fitch, M. Pitman, R. Germain, “Parallel In-Memory Database”, IBM Resea r ch

Repor t , 2 01 0

[9 3] Smith, A.J., “Disk Cache — Miss Ratio Analysis and Design Considerations,” ACM Tr a n s. on Com pu ter

Sy stem s,V 3 (3), A u g . 1 9 8 5 , pp. 1 6 1 -2 03 .

[9 4] Wolfgang Effelsberg, Theo Härder: Principles of Database Buffer Management. ACM Trans. Database Syst.

(TODS) 9 (4):5 6 0 -5 9 5 (1 9 8 4)

 67

5 BROADCAST ENCRYPTION

Originally born for signal broadcasting, Broadcast Encryption (BE) schemes are being used

and adapted in the emerging field of Online Social Networks (OSN), were communities of

users want to securely share data or messages. OSNs present many analogies with

distributed databases where data is replicated at more than one node. When a data change

happens at a node, the node has to propagate it to all copies of the same data resident at

other nodes. In terms of the underlying network protocols, this implies a lot of messages. BE

schemes can help to significantly reduce the amount of communications in the network,

allowing the transmission of a common encrypted message that is understandable by all

nodes involved.

Broadcast Encryption (BE) is the cryptographic problem of encrypting

broadcast content (e.g. TV programs) in such a way that only qualified users

(e.g. subscribers who have paid their fees) can decrypt the content.

More formally, “a broadcast encryption system allows a center to

communicate securely over a broadcast channel with selected sets of users.

Each time the set of privileged users changes, the center enacts a protocol to

establish a new broadcast key that only the privileged users can obtain, and

subsequent transmissions by the center are encrypted using the new broadcast

key” [35]. The following figure shows an example schema:

 68

Figure 22 Broadcast encryption

A typical scenario is the transmission of broadcast TV show: the entity

responsible for the spread (the International Broadcast Center) wants to send

the program to the whole community of viewers. To this end, it is not

necessary that the source emits a different signal for each user: a single

transmission is sufficient, as each target device will then be able to capture the

signal and properly receive the transmitted information.

Generally BE schemes are classified into two types: symmetric key and public

key based BE schemes [60]. In the symmetric key setting, the only trusted

group center GC can generate a broadcast message to users while, in the

public key setting, any users are allowed to broadcast a message. I denote by U

the set of users and by R ⊂ U the set of revoked users. The following is a

formal definition of a symmetric key based BE scheme [60].

A BE scheme B is a triple of polynomial-time algorithms (SetUp, BEnc, Dec),

i.e., setup, broadcast encryption, and decryption [60]:

SetUp: a randomized algorithm which takes as input a security parameter 1 λ

and user set U. It generates private information SKEYu for user u ∈ U. Private

information of group center GC is defined as the set SKEYu of private

information of all users.

BEnc: a randomized algorithm which takes as input a security parameter 1 λ ,

private information SKEYU of GC, a set R of revoked users, and a message M

 69

to be broadcast. It first generates a session key GSK and outputs (HdrR,

CGSK, M) where a header Hdr is information for a privileged user to compute

GSK and (CGSK, M) is a ciphertext of M encrypted under the symmetric key

GSK. Broadcast message consists of [R, HdrR , CGSK,M]. The pair (R, HdrR)

and CGSK,M are often called the full header and the body, respectively.

Dec: a deterministic algorithm which takes as input a user index indu, private

information SKEYu of u, the set of revoked users R, and a header HdrR. If

u∈ U\R, it outputs the session key GSK.

In public key broadcast encryption, the setup algorithm additionally generates

the public keys PKU of users and PKU instead of the private information SKEYu

of GC is taken as input in the algorithms BEnc and Dec.

5.1 Broadcast Encryption schemas

A first scheme involves an initialization phase, which a distinct secret key

is assigned to each user of the system. To transmit a message M, the source

concatenates as many copies of M as the number of receivers, by encoding

each copy with a different secret key. The disadvantage of such scheme is that

the resulting message has a size that depends on the numbers of intended

receivers. Rather than a technique of broadcasting, this pattern can be seen as

a way to unify multiple parallel communications between the International

Broadcast Center and each of the authorized users [140].

An enhancement can be to encrypt the information using a (newly generated)

session key SK and then to send the session key to the receivers using the

previous scheme and transmitting the information. Each receiver decrypts the

message using its own copy of SK. The advantage is that, usually, the length of

the key is shorter than that of information [140].

Another scheme divides the users in groups. At each group is assigned a secret

key. A user receives the secret keys of all the groups he belongs to. The user

needs a size store that depends on the number of her affiliation. This scheme

is unsuitable if the groups are dynamic, since it requires changing keys with

the composition of the group [38] [140].

 70

5.2 Threshold cryptosystem

The first real solution for BE were the threshold cryptosystems [38]

[39].The (s, n)-threshold scheme (threshold scheme "s on n") permits to break

up a secret information I among N participants, dividing I in N parts I1,. . . , In

called shares. The shares are constructed so that the knowledge of S (or more)

shares allows the reconstruction of I, while the knowledge of S-1 (or less)

shares doesn’t determine any value or subset of values.

A basic broadcast encryption scheme consists of these phases [37]:

 Registration: to collect the authorized (identifier of) receivers

 Key generation: a new group symmetric key K is generated, based on

the receivers information

 Encryption: the information I is encrypted using K obtaining E

 Decryption: the authorized receivers decrypt E

A broadcast message M is composed of two parts: a header, which contains

information that can be used to access the content, and the body, which

contains the encrypted content.

There are many schemes for BE, among others:

 Stateful schemes

o Logical Key Hierarchy (LKH) [40]

 Stateless schemes

o Complete Subtree (CS) [41]

o Subtree-Difference [42]

o Layered Subtree-Difference [42]

The original solution of Shamir is based on polynomial interpolation: since,

given S points P1 =(x1 ,y1)..Ps=(xs,ys) with distinct x i, there is one and only one

polynomial of S-1 such that P(x i)=y i for all i=1..S, Shamir sets P(0)=I and

broadcast S-1 point Pi. Only the authorized receivers have an additional good

point and can recreate the polynomial interpolation and calculate P(0).

5.3 Distributed key generation

If the secret key is released by a unique authority, it needs to be trusted. If

this is not assured, it is better to use a distributed key generation, where every

 71

party contributes to the assembly of the key. The following techniques address

this issue.

5.3.1 El Gamal

ElGamal is a public key encryption system that is used in many other

systems (as IBE and GCC) [141]. It is based on the hardness of computing the

discrete logarithm. The three phases of ElGamal are:

1. Key generation: each user generates a public key) mod ,,(a

aK

where:

a. ρ is a large prime number

b. σ is a primitive radix of ρ

c. a, the true secret key, is randomized in the interval [1.. ρ-2]

2. Encryption: to send a message m ∈ Zp the user randomly chooses a

number k in the interval [1.. ρ-2] . The ciphertext will be (y,Δ) where:

a. y= σk mod ρ

b. Δ=m* σa k mod ρ

3. Decryption: the receiver obtain the encrypted message (y,Δ) and, using

her secret key a, calculate

4. Δy−a=m* σa k* (σk) –a mod ρ = m mod ρ

ElGamal has the disadvantage that the ciphertext is twice as long as the

plaintext. It has the advantage the same plaintext gives a different ciphertext

(with near certainty) each time it is encrypted.

5.3.2 Identity Based Encryption (IBE)

While IBE is not a BE system, it is fundamental to understand next BE

systems as ABE and GCC.

An Identity Base Encryption (IBE) scheme is a public-key cryptosystem

where any string is a valid public key. In particular, email addresses and dates

can be public keys [55]. IBE allows for a sender to encrypt a message to an

identity without access to a public key certificate. The ability to do public key

encryption without certificates has many practical applications. For example,

a user can send an encrypted mail to a recipient, e.g. bobsmith@gmail.com,

mailto:bobsmith@gmail.com

 72

without the requiring either the existence of a Public-Key Infrastructure or

that the recipient be on-line at the time of creation.

IBE was proposed by Adi Shamir in 1984 [55] but remained an open

problem for many years, until the Boneh/Franklin's pairing-based encryption

scheme2 4 [30][54] and the Cocks's encryption scheme [56] based on quadratic

residues.

Interesting characteristics of IBE are key expiration, management of user

credentials (user can choose her PK), and delegation of decryption

capabilities.

An identity-based encryption scheme E is specified by four randomized

algorithms: Setup, Extract, Encrypt, and Decrypt [54].

 Setup: takes a security parameter k and returns system parameters and

master-key. The system parameters include a description of a finite

message space M, and a description of a finite ciphertext space C.

Intuitively, the system parameters will be publicly known, while the

master-key will be known only to the “Private Key Generator" (PKG).

 Extract: takes as input system parameters, master-key, and an

arbitrary ID ∈ {0, 1}* and returns a private key d. Here ID is an

arbitrary string that will be used as a public key, and d is the

corresponding private decryption key. The Extract algorithm extracts a

private key from the given public key.

 Encrypt: takes as input system parameters, ID, and m ∈M. It returns a

ciphertext c ∈C.

 Decrypt: takes as input system parameters, c ∈ C, and a private key d.

It returns m∈M.

One common feature of all Identity-Based Encryption systems is that they

view identities as a string of characters.

Figure 23 shows an example of the flow of the IBE operations.

2 4 The cryptosystem has chosen ciphertext security in the random oracle

model assuming an elliptic curve variant of the computational Diffie-Hellman

problem

 73

Figure 23 The IBE operations

5.4 Attribute Based Encryption (ABE)

As introduced in [44], ABE is a Fuzzy Identity-Based Encryption. In Fuzzy

IBE an identity is view as set of descriptive attributes. Each community

member receives a private key depending on its attributes (i.e., the subgroup

to which it belongs), as showed in Figure 24. Information can be decrypted by

people that have a certain attribute. For example, a user can have attributes

such as employee and family and therefore is able to decode either the

messages sent to collaborators either to relatives.

More formally, “a Fuzzy IBE scheme allows for a private key for an identity, ω,

to decrypt a ciphertext encrypted with an identity, ω’ , if and only if the

identities ω and ω’ are close to each other as measured by the set overlap

distance metric” .

Known variants of ABE are [45]:

 Secure Attribute Based Systems [52]

 Multi-authority Attribute Based Encryption [47]

 Key-policy Attribute-based Encryption [43]

 Cipher-policy Attribute-based Encryption [46]

 74

 Provable Secure Ciphertext Policy ABE [48]

 Attribute Based Encryption with Non-Monotonic Access Structures [51]

 Predicate Encryption Supporting Disjunctions, Polynomial Equations

and Inner Products [49]

 Attribute Based Ring Signatures [50]

Common to these ABE schemes is the existence of a central trusted authority

(master) that knows a secret master key and distributes secret attribute keys

to eligible users. In [53] was presented Distributed Attribute-Based

Encryption (DABE) to allow an arbitrary number of authorities to

independently maintain attributes. Even if this scheme is not bound to a

central server, it does not use a peer mechanism.

Figure 24 An ABE sample

5.5 Encryption in Online Social Network

The widespread success of Online Social Network (OSN) has led to a wide

availability of personal data, which are often crawled by other users or OSN

itself to target their users. Traditional cryptographic schemes are not adequate

to protect data from abuse but, at the same time, permit authorized user the

access to it. The use of public key cryptography forces users to store many

copies of encrypted data and to know the identities of every community

member since it doesn’t allow communications based on groups (attributes).

To solve this problem, new encryption schemes were studied, specifically

designed for use in an OSN [143] [144]. Here I focus on Persona and GCC,

 75

which can be evaluated to adopt similar strategies in the development of my

system.

5.5.1 Persona

Persona [61] is a private OSN that encrypts user data with attribute-based

encryption (ABE), allowing users to apply fine-grained policies over users who

may view their data. This architecture achieves privacy by encrypting private

contents and prevents misuse of a user’s applications through authentication

based on traditional public key cryptography (PKC).

Persona divides the OSN entities into two categories: users, who generate the

content in the OSN, and applications, which provide services to users and

manipulate the OSN content.

In Persona, all users store their data encrypted for groups that they define.

Any user that can name a piece of data may retrieve it, but they can only read

it if they belong to the group for which the data was encrypted.

Persona operations are intended to manage group (defined using ABE)

members and access to resources. The areas covered by Persona are:

 Group management with the capability to:

o Add individuals to a group. The user generates an appropriate

attribute secret key, encrypts this key using the target user's

public key, and stores the encrypted key on her storage service.

The target user can retrieve this encrypted key, decrypt it, and

use it as necessary

o Define groups based on a group defined by another user

o Provide other users specific rights to named resources. An

example of such a right would be the ability to store data on

another user's storage service

o Remove a group member. It requires re-keying: all remaining

group members must be given a new key. Data encrypted with

the old key remains visible to the revoked member.

 Publishing and Retrieving Data: private user data in Persona is always

encrypted with a symmetric key. The symmetric key is encrypted with

an ABE key corresponding to the group that is allowed to read this data.

This two phase encryption allows data to be encrypted to groups; reuse

 76

of the symmetric key allows Persona to minimize expensive ABE

operations.

5.5.2 Group-oriented Convergence Cryptosystem

(GCC)

The previous schemes, based on traditional cryptographic techniques have

limitations when dealing with multiple groups in Online Social Networks,

since either users must store multiple copies of encrypted data but are unable

to give data based on membership in multiple groups, or users must know the

identities of everyone to whom they give access.

In [57] was introduced a community key management method based on a

group-oriented convergence cryptosystem (GCC). This method leverages the

following properties: the community is built on convergence of some users’

private keys, the upload and download of resources provide the authentication

and integrity checking, as well as there exist efficient mechanisms for access

permission delegation and sophisticated revocation.

In this environment, the users in social networks are divided into four

categories:

 Kernel members (KM): can create and manage a special community by

collaboration and have rights to publish, delete, access or update

resources released by other members of the community;

 Full authorized members (FAM): have full rights to publish and access

resources in the community, but do not have permissions to delete or

update resources;

 Authorized members (AM): can access the resources by using her own

access permission, but cannot publish these resources;

 Unauthorized users (UU): may not have permissions to access

resources published by community members.

GCC is specified by these algorithms:

 UserRegister: each user can choose a favourite label, generate a private

key by herself, and then register her label into the system

 BuildCommunity: when somebody wants to share resources with

others, she constructs a community together with a set of trusted

 77

friends. Finally, each member gets a community key, which can be used

to access, manage and maintain the resources in this community;

 DelegatePermission: when a user wishes to access a community, her

friends hold the community key can delegate an access per-mission key

(APK) to her by using this algorithm;

 UploadResource: if one community member wants to post message and

resource into the community, she picks the community key, invokes

this algorithm to encrypt the resource with her private key, and then

transmits the encrypted data to the storage server;

 Download-Resource: anytime one community member can obtain the

encrypted data from the server, and invoke this algorithm to retrieve

the original post or re-source by her private key and APK.

GCC can be seen as an extension of IBE and ABE:

 As IBE, each user chooses its own keys, but without going through a

centralized server

 as ABE, allows the encryption of group but the group key is generated

from public keys of the subjects of communication and does not require

a trusted server

Moreover, it allows the revocation and delegation.

It is interesting that each user has a single private key; the system has as many

public keys as community, but the public keys are used only to create the

group key (after this moment, the users decrypt using their secret key).

 78

Table 5 Comparison between Persona and GCC

5.6 Similarities between Distributed Databases

and Online Social Network

Although, at first glance, the concepts of database and OSN seem totally

different, I want to investigate their similarities in the field of privacy.

First, it is clear that the OSN has an internal database (see Figure 25) to store

the information that dynamically will compose the wall (a space on every

user's profile page that allows friends to post messages for the user to see

[160]) of the users. The problem of protecting posts hosted in the OSN is then

equivalent to protect shared data in an untrusted environment.

Figure 25 The OSN internal storage

Then, look at the topologies of OSN; traditionally it is represented as a mesh

network among users [145], often leaving out the central node on the Cloud

 79

(the OSN provider). Considering this central element, instead, the resulting

topology is a star, as depicted in Figure 26:

Figure 26 Topology of an OSN, as a mesh and as a star

The same topology is shown in Figure 31, where a Distributed Database

Architecture (DDA) is shown. In the latter, at the center of the star is the

Synchronizer, which hosts a database. Either the OSN or the Synchronizer is

untrusted entity that may not access data content, while the network clients

may access information accordingly to the access policy.

As every user leaves a post that may be read by multiple users (based on their

permissions), but not from the server itself, so in the DDA, a user can send

information to the Central Synchronizer to synchronize the replicated copies

ensuring privacy in the central node.

Therefore, it is reasonable to assume that the encryption techniques used in

the OSN can be adapted for distributed databases. This topic will be addressed

in Section 13.

5.7 References

[3 0] D. Bon eh and M. Hamburg, “Generalized Identity Based and Broadcast Encryption Schemes,” ASIACRYPT,

2 008 , pp. 4 5 5 -4 7 0

[3 1] V . Goyal, A. Jain, O. Pandey and A. Sahai, “Bounded Ciphertext Policy Attribute Based Encryption,” ICALP,

2 008 , pp. 5 7 9 -5 9 1

[3 2] A . Fia t a n d M. Na or , “ Br oa dca st En cr y pt ion ,” CRYPTO, 1 9 9 3 , pp. 4 8 0 -4 9 1

[3 5] M. Lu by and J. Staddon, “Combinatorial Bounds for Broadcast Encryption,” EUROCRYPT ,1998, pp. 5 1 2 -

5 2 6

OSN

 80

[3 6] J. Hor w itz, “ A Su r v ey of Br oa dca st En cr y pt ion ,” u n pu blish ed, 2 003

[3 7] A . Obied, “ Br oa dca s t En cr y pt ion ” , u n pu blish ed, 2 005

[3 8] S. Berkovits, “How to Broadcast a Secret, Advances in Cryptology,”- EuroCrypt ’9 1 (Ber lin), Spr in g er -

V er la g , 1 9 9 1 , Lectu r e Notes in Com pu t er Scien ce V olu m e 5 4 7 , pp. 5 3 5 –5 4 1

[3 9] A . Shamir, “How To Share a Secret, “Com m u n ica t ion s of th e A CM, 1 9 7 9 , n o. 2 2 , pp. 6 1 2 –6 1 3 .

[4 0] C. K Wong, M. Gouda, and S. Lam, “Secure group communications using key graphs,” SIGCOMM,1 9 9 8 ,

A CM Pr ess, pp. 6 8 –7 9 .

[4 1] D. Na or, M. Naor, and J. Lotspiech, “Revokation and tracing schemes for stateless receivers,” Advances in

Cr y ptolog y : CRYPTO ’01 , v ol. 2 1 3 9 of Lectu r e Notes in Com pu ter Scien ce, 2 001 , pp. 4 1 –6 2

[4 2] D. Ha levy and A. Shamir, “The LSD Broadcast Encryption S cheme," Advances in Cr y ptolog y : CRYPTO

2 002 (LNCS 2 4 4 2), 2 002 , pp. 4 7 -6 0

[4 3] V .Goyal, O.Pandey, A.Sahai, B.Waters,”Attribute-based encryption for fin e-g r a in ed a ccess con tr ol of

en crypted data,” In: Juels, A., Wright, R.N., di Vimer ca t i, S.D.C. (eds.) A CM Con fer en ce on Com pu ter a n d

Com m u n ica t ion s Secu r ity , pp.8 9 –9 8 . A CM, New Yor k (2 006)

[4 4] A . Sahai and B. Waters, “Fuzzy Identity Based Encryption. In Advances in Cryptology,” Eurocrypt , volume

3 4 9 4 of LNCS , pp. 4 5 7 -4 7 3 . Spr in g er , 2 005

[4 5] Z. Zou , “ Su r v ey of A ttr ibu te Ba sed En cr y ption ” , 2 008 , u n pu blish ed

[4 6] J. Bethencourt, A. Sahai, and B. Waters “Ciphertext-Policy Attr ibu te-Ba sed En cr y ption ,” 2 8 th IEEE

Sy m posiu m on Secu r ity a n d Pr iv a cy (Oa kla n d), 2 007 .

[4 7] M. Chase, “Multi-authority Attribute Based Encryption,” Lecture notes in computer science, pp. 515 -5 1 8 ,

2 007 .

[4 8] L. Cheung and C. Newport, “Provably secure ciphertext policy ABE,” ACM conference on Com pu ter a n d

com m u n ica t ion s secu r ity , pa g es pp.4 5 6 -4 6 5 A CM New Yor k,NY, USA , 2 007 .

[4 9] J. Katz, A. Sahai, and B. Waters, “Predicate Encryption Supp orting Disjunctions, Polynomial Equ a tion s,

a n d In n er Pr odu cts,” Lectu r e n otes in com pu ter scien ce, 4 9 6 5 :1 4 6 , 2 008 .

[5 0] J. Li a n d K. Kim . A ttr ibu te-Ba sed Rin g Sig n a tu r es.8

[5 1] R. Ostrovsky and B. Waters, “Attribute-based encryption with non-monotonic access structures,” 14th ACM

con ference on Computer and commu n ica t ion s secu r ity , pp. 1 9 5 -2 03 . A CM New Yor k, NY, USA , 2 007 .

[5 2] M. Pirretti, P. Traynor, P. McDaniel, and B. Waters, “Secure attribute-based sy stems,” In Proceedings of the

13th ACM conference on Computer and communications security, pp. 99-112. ACM Press New York, NY, USA, 2006 .

[5 3] S. Müller, S. Katzenbeisser, C. Eckert, “Distributed Attribute-Based Encryption,” ICISC, 2008, pp. 2 0 -3 6

[5 4] D. Bon eh, M. K. Franklin, “Identity-Based Encryption from the Weil Pairing,” SIAM J. Comput. 32(3), pp.

5 8 6 -6 1 5 , 2 003

[5 5] A . Shamir, “Identity-Based Cryptosystems and Signature Schemes,” Advances in Cryptology: Proceedin g s

of CRYPTO 8 4 , Lectu r e Notes in Com pu ter Scien ce, 7 , pp.4 7 -5 3 , 1 9 8 4

[5 6] C. Cocks, “An Identity Based Encryption Scheme Based on Quadratic Residues,” Proceedin g s of th e 8 th

IMA In ter n a t ion a l Con fer en ce on Cr y ptog r a ph y a n d Codin g , 2 001

[5 7] Yan Zhu, Zexing Hu, Huaixi Wang, Hongxin Hu and Gail-Joon Ahn, “A Colla bor a t iv e Fr a m ew or k for

Pr ivacy Protection in Online Social Networks,” In Proceedings of the 6th International Conference on Collabor a t iv e

Com pu tin g (Colla bor a teCom 2 01 0), Ch ica g o, Illin ois, USA , October 9 -1 2 , 2 01 0.

[6 0] J. Y . Hwang, D. H. Lee, and J. Lim, “Generic Transformation for Scalable Broadcast Encryption Schemes,”

in Proc. of Advances in Cryptology - Crypto 2005, Lecture Notes in Com pu ter Scien ce, 3 6 2 1 , pp. 2 7 6 -2 9 2 .

[6 1] R. Ba den, A. Bender, N. Spr ing, B. Bhattacharjee, Persona: An Online Social Network with User -Defin ed

Pr iv a cy ,” SIGCOMM’09 , 2 009

[6 2] M. Shand and J. Vuillemin, “Fast Implementation of RSA Cryptography,” Proc. 11th Symp. on Com pu ter

A r ith m etic, 1 9 9 3 .

[1 4 0] Er n est F. Brickell,” Some ideal secret sharing schemes,” in Proceeding EUROCRYPT '89 Proceedings of the

w orkshop on the theory and application of cryptographic techniques on Advances in cryptology Springer -Verlag New

Yor k, In c. New Yor k

 81

[1 4 1] ElGamal, Taher (1985). "A public key cryptosystem and a signature scheme based on discrete logarithm s".

A dv ances in cryptology: Proceedings of CRYPTO 84. Lecture Notes in Computer Scien ce. 1 9 6 . Sa n ta Ba r ba r a ,

Ca lifor n ia , Un ited Sta tes: Spr in g er -V er la g . pp. 1 0 –1 8

[1 4 2] B. Carminati, E. Ferrari, and A. Perego, “Private relationships in social networks,” in ICDE Wor ksh ops.

IEEE Com pu ter Society , 2 007 , pp.1 6 3 –1 7 1 .

[1 4 3] Er ic C. Turner, Subhasish Dasgupta: Privacy on the Web: an Examination of User Concerns, Tech n olog y ,

a n d Implications for Business Organizat ion s a n d In div idu a ls. IS Ma n a g em en t (ISM) 2 0(1):8 -1 8 (2 003)

[1 4 4] Da v is, J., Protecting Privacy in the Cyber Era, IEEE Technology and Society Magazine, Summer 2000, pp.

1 0–2 2

[1 4 5] Y .-Y. Ahn, S. Han, H. Kwak, S. Moon, and H. Jeong. Analysis of Topological Characteristics of Huge Online

Social Networking Services. In Proceedings of the 16th international conference on World Wide Web (WWW’07),

Ba n ff, Ca n a da , Ma y 2 007 .

[1 6 0] D. Kev in. “Facebook is off-the-wall”. Facebook. http://blog.facebook.com/blog.php?post=353 2 9 7 2 1 3 0.

Retr iev ed 2 007 -07 -3 0

 82

6 PRIVACY WITHIN THE CLOUD

In this Chapter, I analyse Cloud storage in the wider context of Cloud computing, which is a

model for enabling convenient, on-demand network access to a shared pool of configurable

computing resources that can be rapidly provisioned and released with minimal

management effort or service provider interaction. In this model there are more privacy

issues than in Cloud Storage alone, the main of them I identify in server-side presentation

layer and semantic model databases.

Cloud computing includes a plethora of services, usually called XaaS (that

stays for “everything-as-a-service”). The most common Cloud computing

service models (i.e., from top to bottom, Software as a Service - SaaS, Platform

as a Service - PaaS and Infrastructure as a Service - IaaS) are known as SPI.

An architectural categorization of Cloud technologies as a stack of service

types was proposed in [96] (see Figure 27).

 83

Figure 27 Cloud stack, source: [96]

The lowest level of the stack is IaaS, where a service provider offers

computing, storage or networking infrastructure to customers. It contains two

sublevels: Resource Set and Infrastructure Services.

 Resource Set may be divided in Physical Resource Set (PRS), which is

hardware dependent and therefore tied to a hardware vendor, and

Virtual Resource Set (VRS), which can be built on vendor independent

hypervisor technology. Examples of PRS services include Emulab [99]

 84

and iLO [100]. VRS services include Amazon EC22 5 , Eucalyptus [101],

Tycoon [98], Nimbus [103], and Open Nebula [104].

 Infrastructure Services include Basic Infrastructure Services (BIS),

which combine computational, storage, and network services, and

Higher Infrastructure Services (HIS), as Amazon’s Dynamo [102], and

Google’s Bigtable [11].

The second level is PaaS, which contains the provider's resources to run

custom applications. It groups Programming Environments, such as Sun (now

Oracle) Project Caroline2 6 and the Django framework2 7 , and Execution

Environments, such as Google App Engine2 8 , Joyent Reasonably Smart2 9 and

Microsoft Azure3 0. Each provider can couple a development and an execution

environment to expose its services.

The third level is SaaS, where customers use software that is run on the

provider’s infrastructure. The application developers can either use the PaaS

layer to develop and run their applications or directly use the IaaS

infrastructure. Additionally, SaaS can also be hosted in a "conventional" way,

i.e. without underlying PaaS or IaaS. SaaS may be articulated in Basic

Application Services, such as OpenId3 1 [105] and Google Maps3 2 services, and

Composite Application Services, as My Space3 3 or Facebook3 4 . A superset of

2 5 Akamai Technologies Inc., “Akamai edgecomputing. Enabling applications

that grow your business.” - http://www.akamai.com/dl/whitepapers/

Akamai_Enabling_Apps_Grow_Business_

2 6 http://labs.oracle.com/projects/caroline/

2 7 https://www.djangoproject.com/

2 8 http://code.google.com/intl/it-IT/appengine/

2 9 http://www.joyent.com/

3 0 http://www.microsoft.com/windowsazure/

3 1 http://openid.net/

3 2 http://maps.google.it/

3 3 http://it.myspace.com/

3 4 http://www.facebook.com/

 85

the previous service is the “Application Services” tout-court, such as Google

Docs3 5 , Microsoft’s Office Live3 6 or Auciti Hangout3 7 .

On top of the traditional SPI scheme, the new level HuaaS has appeared. It

indicates a set of Cloud services that are processed by a community that

provides, filters, and catalogs information, such as YouTube3 8 , Amazon

Mechanical Turk3 9 or Digg4 0.

In particular, in the realm of IaaS there are a lot of specialized services,

including storage services. Storage services may be classified as Basic

Infrastructure Services (BIS), when they only provide basic storage

functionality (Amazon S34 1 , GoGrid Cloud Storage4 2 , ExpanDrive4 3 , Nirvanix

Cloud Storage Network4 4 , Rackspace Cloud Files4 5 , etc.), or as Higher

Infrastructure Services (HIS) when they provide additional functionality, like

a query language. In this taxonomy, Database-as-a-Service (DBaaS) offerings

like Amazon SimpleDB4 6 and technologies, such Google Bigtable [11], 10gen

MongoDB4 7 and Apache HBase4 8 are categorized as HIS.

DBaaS is a managed service, offered on a pay-per-usage basis, which provides

on-demand access to a database for the storage of application data [95]. In the

Cloud, storage is spanned on multiple servers, usually hosted in large data

centres, whose operators manage the infrastructure.

3 5 http://docs.google.com/

3 6 http://www.officelive.com/

3 7 http://fun.auciti.com/

3 8 http://www.youtube.com/

3 9 https://www.mturk.com/

4 0 http://digg.com/

4 1 http://aws.amazon.com/s3/

4 2 http://www.gogrid.com/Cloud-hosting/Cloud-storage.php

4 3 http://www.expandrive.com/

4 4 http://www.nirvanix.com/products-services/storage-delivery-network

4 5 http://www.rackspace.com/Cloud/Cloud_hosting_products/files/

4 6 http://aws.amazon.com/simpledb/

4 7 http://www.10gen.com/

4 8 http://hbase.apache.org/

 86

6.1.1 Cryptographic Storage Service

The benefits of using a public Cloud infrastructure are cost reduction,

availability (anywhere access), and reliability (backups), but it introduces

significant security and privacy risks for the confidentiality and integrity of

data. To address these concerns a common solution is the use of cryptographic

storage, which protects data using encryption to provide [97]:

 Confidentiality: the Cloud storage provider does not learn any

information about customer, and

 Data integrity: any unauthorized modification of customer data by the

Cloud storage provider can be detected by the customer;

without giving up to the main benefits of a public storage service:

 Availability: customer data is accessible from any machine and at all

times,

 Reliability: customer data is reliably backed up,

 Efficient retrieval: data retrieval times are comparable to a public Cloud

storage service, and

 Data sharing: customers can share their data with trusted parties.

The benefits of a CSS can be summarized in:

 Regulatory compliance: often, law makes organizations responsible for

the protection of the data that is entrusted to them. Since, in CSS, data

is stored encrypted, customers can be assured that the confidentiality of

their data is preserved irrespective of the actions of the Cloud storage

provider;

 Geographic restrictions: data may be subject to law of Country of

physical storing. If data is stored on Cloud, it is not clear its physical

location. Since, in CSS, data is stored encrypted, any law that pertains

to the stored data has little to no effect on the customer;

 Subpoenas: in case of a legal action, the request of data may be made to

the Cloud provider and the latter could even be prevented from

notifying the customer. Since, in CSS, data is stored encrypted, the

Cloud provider has no access to information and needs to turn request

to the customer. Moreover, the request is managed by the customer

 87

under investigation and does not affect the others that store data on the

Cloud provider;

 Security breaches: a Cloud storage provider may be legally responsible

for a security breach. But, in a CSS data is encrypted and data integrity

can be verified at any time;

 Electronic discovery: a Cloud provider needs a large amount of

additional information to prove data integrity. In a CSS, instead, data

integrity can be verified at any time without additional storing; and

 Data retention and destruction: in the Cloud it is difficult to prove the

destruction of previously collected data. In a CSS, even in case of data

retention, information is not accessible to the provider.

A cryptographic storage service (CSS) can have a Consumer Architecture or an

Enterprise Architecture [97].

6.1.1.1 A Consumer Architecture

In a Consumer Architecture, three actors collaborate to share data:

a. A user Alice that stores her data in the Cloud,

b. A user Bob with whom Alice wants to share data, and

c. A Cloud storage provider that stores Alice's data.

The two users run locally a client application that consists of a data processor,

a data verifier, and a token generator. At the first step, Alice's application

generates a cryptographic key that is stored locally on Alice's system and that

it is kept secret from the Cloud storage provider.

Alice can:

 Upload data to the Cloud using the data processor. It attaches some

metadata (e.g., current time, size, keywords etc) and encrypts and

encodes the data and metadata with a variety of cryptographic

primitives. The result is sent to the Cloud storage;

 Verify the integrity of her data using the data verifier. It uses Alice's

master key to interact with the Cloud storage provider and ascertain the

integrity of the data;

 Retrieve data using keywords. The token generator is invoked to create

a token. The token is sent to the Cloud storage provider who uses it to

 88

retrieve the appropriate (encrypted) information which it returns to

Alice. Alice then uses the decryption key to decrypt the information.

To share data with Bob: (1) Alice's data processor prepares the data before

sending it to the Cloud; (2) Bob asks Alice for permission to search for a

keyword; (3) Alice invokes the token generator to create an appropriate token,

and the credential generator to generate a credential for Bob, and sends them

to Bob; (4) Bob sends the token to the Cloud; (5) the Cloud uses the token to

find the appropriate encrypted documents and returns them to Bob. (6) At any

point in time, Alice's data verifier can verify the integrity of the data.

The process is summarized in the following schema:

Figure 28 A Consumer Architecture

6.1.1.2 An Enterprise Architecture

In an Enterprise Architecture, three actors collaborate to share data:

a. An enterprise MegaCorp that stores its data in the Cloud while

using dedicated machines within its network to run a data

processor (DP), a data verifier (DV), and a token generator (TG);

b. A business partner PartnerCorp with whom MegaCorp wants to

share data; and

c. A Cloud storage provider that stores MegaCorp's data.

The process is as follows: (1) each MegaCorp and PartnerCorp employee

receives a credential that reflects her organization / team / role; (2) MegaCorp

 89

employees send their data, together with an associated decryption policy that

specifies the type of credentials necessary to decrypt it, to the internal

machine hosting the DP; (3) the latter processes the data using the DP before

sending it to the Cloud; (4) the PartnerCorp employee sends a keyword to

MegaCorp's internal machine hosting TG; (5) the dedicated machine returns a

token; (6) the PartnerCorp employee sends the token to the Cloud; (7) the

Cloud uses the token to find the appropriate encrypted documents and returns

them to the employee. (8) At any point in time, MegaCorp's DV can verify the

integrity of MegaCorp's data.

The process is summarized in the following schema:

Figure 29 An Enterprise Architecture

6.2 Privacy issues in Cloud computing

The CSS assumes the distinction between data storage (on the Cloud) and data

manipulation (in the client or corporation side), while Web 2.0 applications

are usually hosted by PaaS providers. The most diffused Execution

Environments on the Cloud handle both data and application management.

The three main suppliers of Public Cloud Infrastructure (Google App Engine

for Business, Amazon Elastic Compute Cloud and Windows Azure Platform)

all include a datastore, and an environment for remote execution summarized

in Table 6and Table 7.

 90

Table 6 Datastore solutions used by public Clouds
Provider Datastore

Google Bigtable

Amazon IBM DB2
IBM Informix Dynamic Server

Microsoft SQLServer Standard 2005

MySQL Enterprise
Oracle Database 11g

Others installed by users

Microsoft Microsoft SQL Azure

Table 7 Execution environments used by public Clouds
Provider Execution environment

Google J2EE (Tomcat + GWT)

Python

Amazon J2EE (IBM WAS, Oracle WebLogic Server) and others installed by users

Microsoft .Net

Let us now go back to the scenario from where this dissertation has started:

the possibility of an untrustworthy cloud supplier who can intercept

communications, modify executable software components (e.g., using aspect

programming), monitor the user application memory, etc. Figure 30describes

a typical session, where data travels from data storage (DS) to the final user by

passing through database drivers (e.g. JDBC/ODBC drivers), Object-

Relational Mapping (ORM) layer, until it arrives to the Presentation Layer

(PL). While, as showed before, DS may be managed in a secure manner, the

same can not be said about the other layers. The central line in Figure 30 (the

wall) divides the part in charge of the Cloud and that in charge of User.

 91

Figure 30 The wall

Hence, available techniques for safely outsourcing data to untrusted DBMS no

longer guarantee the confidentiality of data outsourced to the Cloud.

The essential point consists in having the data and the user interface

application logic on the same side of the wall. This is a major difference w.r.t.

outsourced database scenarios, where presentation was handled by trusted

clients. In the end, the data must be presented to the user in an intelligible and

clear form; that is the moment when a malicious agent operating in the Cloud

has more opportunities to intercept the data. To prevent unwanted access to

the data at presentation time, it would be appropriate moving the presentation

logics off the Cloud to a trusted environment that may be an intranet or, at the

bottom level, a personal computer.

However, separating data (which would stay in the Cloud) from the

presentation logics may enable the creation of local copies of data, and lead to

an inefficient cooperation between the two parts.

6.3 Semantic datastore

In Section 2.2-Data protection techniques, I showed many techniques for data

outsourcing in untrusted servers, primarily designed for untrusted RDBMS.

 92

But since, today, Cloud computing approaches largely rely on semantic (non-

relational) DBMSs, those techniques cannot be applied directly. Semantic

DBMSs do not store data in tabular format, but following the natural structure

of objects. After more than twenty years of experimentation (see, for instance,

[10] for the Galileo system developed at the University of Pisa), today, the

lower performance of these systems is no longer a problem. In the field of

Cloud computing, there is a particular attention to Google Bigtable.

"Bigtable is a distributed storage system for managing structured data that is

designed to scale to a very large size: petabytes of data across thousands of

commodity servers. In many ways, Bigtable resembles a database: it shares

many implementation strategies with databases." [11]

With a semantic datastore like Bigtable, there is a more strict integration

between in-memory data and stored-data; they are almost indistinguishable

from the programmer viewpoint. There are not distinct phases when the

program loads data from disk into main memory or, in the opposite direction,

when program serialize data on disk. Applications do not even know where the

data is stored, as it is scattered over the Cloud.

 93

Part II - Research questions and
results

 94

7 DESIGN OF A DISTRIBUTED SYSTEM

FOR INFORMATION SHARING

This chapter presents the challenges that arise from the context described by the previous

chapters in Part I of the thesis. My research contribution is the design of a new architecture

whose goals are data privacy preservation, fine grained access control, and grant-and-

revoke capability.

From the context described in the previous chapters, three main

challenges emerge and are addressed by the architecture proposed in this

thesis:

 Native Cloud sharing system: in Section 6-Privacy within the Cloud, I

exposed the peculiarity of Cloud storage considered not as a singleton

but in the more general perspective of Cloud Computing. It brings to

state that what presented in Section 2-Background on data protection is

not perfectly suitable on the Cloud. My research contribution will

consist in the design of a data sharing system thought for the Cloud

since birth.

 Safe system with minimal number of trusted components: to prevent

privacy leaks in the remote storage, the usual strategies, shown in

Section 2-Background on data protection, are: i) introducing some

trusted component during data sharing, or ii) dividing information and

responsibilities among different untrusted actors. In my research,

instead, I want to guarantee privacy in an untrusted environment

where only the data owner is trusted.

 Platform independent system, built on available standard technologies:

custom tools were developed for privacy in a well-defined platform (e.g.

 95

the schemes for OSN in 5.5-Encryption in Online Social Network). My

contribution is a framework that is independent from the Cloud

provider, and uses standard industrial technologies and protocols.

7.1 Description Language

I will describe my approach to Cloud data privacy by means of the well-

known Unified Modeling Language (UML). I chose UML, rather than a more

formal description, i.e., Finite-State Automata (FSA), to emphasize the

collaboration among the distributed components and their role data exchange.

UML4 9 is a standardized, general-purpose modeling language for object-

oriented software engineering, which implements the concepts of Model

Driven Development (MDD) [158], a framework that arose, in the early

1990’s, in the telecommunications industry. Although UML is a semiformal

language that lacks a well-defined semantics and then hardly allows formal

verification, it is widely used in communication protocols design and

description (e.g. Broadcast Encryption Protocols, see Section 5).

The strength of MDD is in modelling highly-concurrent processes that are

state-based and communicate through well-defined messages [159]. It does so

by a broad range of diagrams that covers requirements analysis (called use

case diagrams), class components (class diagrams), algorithmic sequences

(sequence diagrams), component evolutions (state diagrams), etc. The ability

to extract sequence diagrams from UML executable models will allow us to

verify and validate the system behaviour, as I will detail in Section 10.

7.2 The architecture

I build over the notion introduced in [7] of defining a view for every user

group/role, but I prevent performance degradation by keeping all data views

in the user environment.

4 9 http://www.omg.org/spec/UML/2.0/

 96

 Specifically, I atomize the application/database pair, providing a copy per

user. Every instance runs locally, and maintains only authorized data that is

replicated and synchronized among all authorized users.

I will consider a system composed of:

1. Local agents distributed at client side;

2. A central synchronization point.

The following figure shows the proposed architecture:

Figure 31 The architecture

7.3 The model

Henceforth, I will use the term dossier to indicate a set of related

information. My data model may be informally represented by the diagram in

the following figure:

Figure 32 The model

 97

In my model, each node represents a local, single-user application/database

dedicated to an individual user (un). Each node stores only the dossiers that its

user may access. Shared dossiers (in this example, d1) are replicated on each

node. When a node modifies a shared dossier, it must synchronize, also using

heuristics and learning algorithms, with the other nodes that hold a copy of it.

In Table 8 and Table 9, I give a simple SWOT analysis [162] of this idea.

Table 8 Strength/Opportunities
Information sharing using untrusted Synchronizer;

Small amount of local data, less attractive for attackers;

Only the final user has clear-text information;

Unrestrained individual nodes, that can also work offline (with deferred synchronization);

Simplicity of data management (single user);

Completeness of local information.

To clarify the last point, suppose that the user un wants to know the number of

the dossier she is treating. In a classic intranet approach, where dossiers

reside on their owners' servers, in addition to its database, un should examine

the data stores of all other collaborating users. With my approach, instead, I

will simply perform a local query because the dossiers are replicated at each

client.

Table 9 Weaknesses/Threats
Complexity of deferred synchronization schemes [21];

Necessity to implement a mechanism for grant/revoke and access control permissions

This last point is particularly important and it deserves further discussion:

 Each user (except the data owner) may have partial access to a dossier.

Therefore each node contains only the allowed portion of the

information, i.e. the dossier does not contain at all the restricted parts;

 Authorization, i.e., granting to a user uj access to a dossier dk, can be

achieved by the data owner simply by transmitting to each node only

the data it is allowed to access, i.e. the restricted attributes are omitted

(blanked);

 The inverse operation can be made in the case of a (partial or complete)

revocation of access rights. An obvious difficulty lies in ensuring that

data becomes no longer available to the revoked node. This is indeed a

moot point, as it is impossible – whatever the approach - to prevent

trusted users from creating local copies of data while they are

authorized and continue using them after revocation. I am evaluating

 98

the opportunity to use watermarking for relational databases [26] to

provide copyright protection and tamper detection.

 99

8 SCENARIOS

In this Chapter, I define and discuss in depth some business scenarios where the proposed

architecture naturally fits practical requirements. I will consider three typical scenarios: a

medical, a group of independent professionals, and a nomadic user scenario, as they

embody very general and diffuse patterns of usage.

As we will see, my approach best fit into a typical Business Collaborative

Environment scenario, where a group of geographically scattered, associated

professionals wants to share some structured information. Each actor can

access only partial data of her interest. Data may be located at different sites.

In the following, I will discuss three of these scenarios.

8.1 Medical

In this scenario, a family doctor shares some medical records with a

specialist as a Radiologist or a Psychologist and the patients’ invoices with an

Accountant. Clearly, a Radiologist may not access psychotherapy sessions, as

well as a Psychologist may not access X-rays. Both of them need access to

“Patient Master Data”, but only for their patients, a subset of those with the

family doctor. After finishing the therapy, access to a patient data may even be

revoked. The scenario is depicted in Figure 33.

 100

Figure 33 A medical scenario

Let us the following real life example: two Family Doctors FD1 and FD2 , two

Radiologists R1 and R2 , a Psychologist P1 , an Accountant A1 , and three Patients

Alice, Bob, and Charlie. Alice is with FD1 , R1 , and A1 , while Bob is with FD1 , R2 ,

and P1 , Charlie is with FD1 , and A1 .

In my distributed system, this is modelled as in Figure 34.

As we can see, each actor stores data locally in her computer; the Patient’s

data is replicated in each of her doctors; each actor stores locally only the

allowed portion of the patient’s data.

Dossier
Invoices

Family
Doctor

Radiologist

Psychologist

Accountant

Patient
Master
Data

X-rays

Psychotherapy
sessions

 101

Figure 34 An instance of medical scenario

 102

8.2 Collaboration and sharing between

independent professionals

The previous scenario can be generalized to capture the case of

professionals, such as Lawyers, Engineers, Business Consultants and so on.

This scenario is challenging because each participant may be bound to

confidentiality/non-disclosure obligations to her client; these obligations may

overlap/conflict with each other. The common characteristics of these figures

are strong data locality, uneven connectivity, and, shall we say, patchy

cooperation. The framework I develop in this dissertation is designed to adapt

nicely to these circumstances, thus allowing the application of Cloud

computing.

8.3 Nomadic users

Smartphones and tablets are increasingly becoming popular. All these

devices now have fairly large storage (for agenda, contacts and other data) that

acts as a cache when the device is offline. In the case of data shared among a

network of friend, co-workers, etc., synchronization is guaranteed by a central

server (e.g. Google Calendar) when connection is up. When shared data is

sensitive, my system allows a “protected” synchronization without disclosing

information on a Public Cloud (again, Google Calendar is a good example

here).

 103

9 MY APPROACH: THE iPRIVACY

SYSTEM

In this Chapter, I provide a semi-formal description of my architecture and of the

interaction among its component by means of UML diagrams. I show how the architecture

satisfies some general requirements, including protecting data privacy , supporting fine-

grained access control and providing a grant-and-revoke capability.

I am now ready to present in detail my approach, that I named iPrivacy.

To simplify the discussion, I introduce the following assumptions:

 Each dossier has only one owner;

 Only the dossier's owner can change it.

These assumptions permit the use of an elementary cascade synchronization

in which the owner will submit the changes to the receivers. However, they

can be relaxed at the cost of a higher complexity in synchronization [34].

My approach consists of two parts: a trusted client and a remote untrusted

synchronizer (see Figure 35).

The client maintains local data storage where:

 The dossiers that she owns are (or at least can be) stored as plaintext;

 The others, instead, are encrypted each with a different key.

The Synchronizer stores the keys to decrypt the shared dossiers owned by the

local client and the modified dossiers to synchronize.

When another client needs to decrypt a dossier, she connects to the

Synchronizer and obtains the corresponding decryption key.

The data and the keys are stored in two separate entities, none of which can

access information without the collaboration of the other part.

 104

Figure 35 Deployment diagram of the distributed system

9.1 Structure

From the architectural point of view, I divide the system into two

packages, a local one (client agent), which contains the dossier plus additional

information such as access lists, and a remote one (global synchronizer),

which contains the list of dossiers to synchronize, their decryption keys and

the public keys of clients.

A UML view of involved classes is shown in Figure 36:

 105

Figure 36 iPrivacy’s class view

9.2 Grant

An owner willing to grant rights on a dossier must follow the sequence in

Figure 37.

 106

Figure 37 Grant sequence

Namely, for each receiver, the owner:

 Generates the decryption key

 Encrypts it with the public key of the receiver to ensure that others

cannot read it

 Signs it with its private key to ensure its origin

 Sends it to the Synchronizer, which verifies the origin and adds it to the

storage of the decoding keys. The key is still encrypted with the public

key of the receiver, so only the receiver can read it.

9.3 Send

When an owner modifies a dossier, she sends it to the Synchronizer using

the sequence in Figure 38.

 107

Figure 38 Send sequence

For each receiver, the owner:

 Generates a "pending dossier" by removing information that the

receiver should not have access to;

 Encrypts the pending dossier with the previously generated decryption

key;

 Signs with his own private key to certificate its origin;

 Sends it to the Synchronizer, which verifies the origin and adds it to the

storage of "pending dossiers”. Again, the dossier is still encrypted with

the public key of the receiver, so only the receiver can read it.

 108

9.4 Receive

Periodically, each client updates un-owned dossiers by following the

sequence in Figure 39.

Figure 39 Receive sequence

Each client:

 Requests the "pending dossiers" to the Synchronizer.

 Stores the (still encrypted) dossier in the local storage;

 Removes the received dossiers from the Synchronizer.

9.5 Use

When a client needs to access an unowned (encrypted) dossier, the

sequence in Figure 40 is used.

 109

Figure 40 Use sequence

The client:

 Asks the Synchronizer for the decryption key (that is encrypted by her

public key);

 Decrypts it with her private key;

 Decrypts the dossier by the resulting decryption key.

If the decryption key does not exist, two options are available:

 The record is deleted from the local datastore because a revoke

happened;

 The record remains cached (encrypted) into the local datastore because

access rights to it could be restored.

9.6 Revoke

To revoke access to a receiver, it is sufficient to delete the corresponding

decryption key from the Synchronizer. The sequence is designed in the UML

diagram of Figure 41.

 110

Figure 41 Revoke sequence

 111

10 CONGRUENCE BETWEEN PLANNED

AND ACHIEVED GOALS

Using state diagrams of each component of the system, I will asses to which level my

architecture satisfies the initial requirements for privacy protection and access control

management.

The initial requirements for my project were: privacy protection towards

Cloud platform, fine-grained data access control, and grant-and-revoke

permission on shared data.

At the start, I noted that the Presentation Layer may not rest on the Cloud

side, exactly to avoid exposing clear-text data to potential inner attacks. For

this purpose, I moved the presentation logic to the client side. The next step

was moving also the data layer from Cloud to client side, to prevent

performance degradation.

In the end I obtained a distributed architecture and a framework for data

synchronization, but is the resulting system compliant with the initial

requirements?

Let us examine again each component involved in the system:

 Client, distinct by role in:

o Sender, and

o Receiver;

 Synchronizer, and

 Network.

 112

10.1 The Sender component (client side)

A Client, when acting as Sender, manages only its own data. It transmits

the modified local data to the Synchronizer. Obviously, the Sender has both

the owned dossiers and the related decrypting keys in clear-text form.

However, this does not violate the requirements.

The Sender initiated actions are: Grant, Send, and Revoke.

Essentially, when revoking access rights, the sender decides which dossiers

have to be shared, who are the receivers, and what part of information each of

them receives. This role, therefore, is related only to the last of the initial

requirements.

10.2 Receiver

A Client, when acting as Receiver, manages shared (not owned data),

interacting with the Synchronizer to receive public keys, pending dossiers and

decrypting keys.

The actions involved are: Receive, and Use.

Figure 42 shows the state diagram of a Receiver:

 113

Figure 42 Receiver’s state diagram

Let us analyze each state in detail:

1. The receiver starts in idle state (state 1) and there it remains until a

synchronization occurs.

2. At that moment, the client goes into state 2 and receives some

(encrypted) dossier, which it stores, still encrypted, in the

PendingDossiersStore. In this state, the receiver has not yet access to

information.

3. When the receiver wants to access a shared dossier, it asks for the

decrypting key and, if this is present, receives it from the Synchronizer.

Then the Receiver goes into state 3, where it has either the (encrypted)

dossier either the related clear-text decrypting key. It will store the

latter only in main memory, never in the persistent storage. Hence the

dossier is still encrypted; if the decrypting key is not present, then the

Receiver goes back into state 2.

 114

4. The next step consists of decrypting the shared dossier by the

decrypting key. The Receiver goes into state 4, in which it has the clear

text dossier, but it doesn't permanently store this information, limiting

itself manipulating clear-text data in main memory.

At DB restart, the Receiver resumes to state 2).

As a result, in no state there is a permanent storage of clear-text data.

The received information is limited to the portion that the owner has sent (this

satisfies the “fine-grained access”, requirement 0).

If at step 3 the decrypting key is not found, because it was revoked by the

owner, then the dossier remains inaccessible. Hence, the “grant-and-revoke

permission on shared data”, requirement 3, is satisfied).

10.3 Synchronizer

The Synchronizer manages public keys, pending dossiers and decrypting

keys.

The actions in which it is involved are: Grant, Send, Receive, Use, and Revoke.

Figure 43 describes the state diagram of the Synchronizer:

Figure 43 Synchronizer’s state diagram

Let us again analyze each state:

1. At the start, the Synchronizer is empty, i.e. it has nothing stored (state

1).

 115

2. When an owner grants the access for a dossier to another client, the

Synchronizer goes to state 2, after receiving a decrypting key. That key

is encrypted by the receiver’s public key, so it is not understandable by

the Synchronizer.

3. When the owner sends the pending dossier, this is returned encrypted

by decrypting key. The Synchronizer passes to state 3, in which it is

storing either the (encrypted) dossier either the (encrypted) related

decrypting key. The dossier’s privacy is guaranteed by the decrypting

key, which, in turn, is guarded by the receiver’s private key .

4. When the receiver issues a “receive” command, the Synchronizer goes

back to state 2 and returns the requested dossier, deleting it from its

storage.

5. The Synchronizer remains in state 2 if it processes a "use" command by

the receiver, since this more does not alter the remote storage (it is a

“read-only” command).

6. At a “revoke” command issued by the owner, the Synchronizer goes

back into state 1.

In no state there is a clear-text data or a clear-text decrypting key, so the

requirement 1 is satisfied. Requirements 2 and 3 are not applicable to the

Synchronizer.

10.4 Network

For the network, as for the Synchronizer, only requirement 1 is applicable. I

notice that each “message” sent on the network is encrypted:

 Each decrypting key is encrypted by the receiver’s public key, and

therefore it is readable only by means of the corresponding private key;

 Each pending dossier is encrypted by decrypting key, and therefore it is

readable only having this. Since I have showed that it is understandable

only by the addressed receiver, for the transitive property, also the

dossier has the same characteristic.

 116

10.5 References

[7] Na dia Bennani, Ernesto Damiani, and Stelvio Cimato: “ Tow a r d Clou d-ba sed key m a n a g em en t for

ou tsourced databases”, Computer Software and Applications Conference Workshops (COMPSACW), 2010 IEEE 34th

A n n u a l, pp. 2 3 2 -2 3 6

[1 0] A ntonio Albano, Giorgio Ghelli, M. Eugenia Occhiuto, and Renzo Orsini: “Object-Orien ted Ga lileo” , On

Object -Or ien ted Da ta ba se Sy stem 1 9 9 1 , pp. 8 7 -1 04

[1 1] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wa lla ch , Mich a el Bu r r ow s,

Tu shar Chandra, Andrew Fikes, and Robert Gruber: “Bigtable: A Distributed Storage System for Structu r ed Da ta ” ,

OSDI 2 006 , pp. 2 05 -2 1 8

[2 1] Miseon Choi, Wonik Park, and Young-Kuk Kim: “A split sy nchronizing mobile transaction model”, ICUIMC

2 008 , pp.1 9 6 -2 01

[2 6] Ra ju Halder, Shantanu Pal and Agostino Cortesi: “Watermarking Techniques for Rela t ion a l Da ta ba ses:

Survey, Classification and Comparison”, in Journal of Universal Computer Science, vol. 1 6 (2 1), pp. 3 1 6 4 -3 1 9 0

[9 5] Ha kan Hacigümüs, Bala Iy er, Sharad Mehrotra, “Providing Database as a Service”, Proceedings of the 18th

In ter n a t ion a l Con fer en ce on Da ta En g in eer in g (ICDEí02), 2 002 , pp. 1 -1 0

[9 6] A lex a n der Len k, Ma rkus Klems, Jens Nimis, Stefan Tai, Thomas Sandholm, “What's inside the Clou d?

A n a r ch itectu r a l m a p of th e Clou d la n dsca pe” , Pr oceedin g of CLOUD 2 009 , 2 009 , pp . 2 3 -3 1

[9 7] Seny Kamara, Kristin Lauter: Cryptographic Cloud Storage. Financial Cryptography Workshops 2010:136 -

1 4 9

[9 8] K. La i, L. Rasmusson, E. Adar, S. Sorkin, L. Zhang, and B. A. Huberman. Tycoon: an Im plem en tion of a

Distributed Market-Based Resource Allocation System. Multiagent and Grid Systems, 1(3):16 9 –1 8 2 , A u g . 2 005 .

[9 9] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad, T. Stack, K. Webb, and J. Lepr ea u . La r g e -sca le

V irtualization in the Emulab Network Testbed. In Proceedings of the 2008 USENIX Annual Technical Con fer en ce,

2 008 .

[1 00] Hew lett -Pa cka r d. HP In teg r a ted Lig h ts-Ou t 2 User Gu ide. Tech n ica l r epor t , HP, 2 009 .

[1 01] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. So man, L. Youseff, and D. Zagorodnov. Eu ca ly ptu s

open -sou r ce clou d-com pu tin g sy stem . In CCA 08 : Clou d Com pu tin g a n d Its A pplica t ion s , 2 008 .

[1 02] Giuseppa DeCandia and Deniz Hastorun and Madan Jampani and Gunavardhan Kakulapati and Av in a sh

La kshman and Alex Pilchin and Swaminathan Sivasubramanian and Peter Vosshall and Werner V og els. Dy n a m o:

A mazon’s Highly Available Key-Value Store. In ACM Sy m posiu m on Oper a t in g Sy stem s Pr in ciples, 2 007 .

[1 03] K. Keahey and T. Freeman. Contextualization: Providing one-click virtual clusters. In eScience 2008, 2008.

[1 04] B. Sotomayor, R. Montero, I. M. Llorente, and I. Foster. Capacity Leasing in Clou d Sy stem s u sin g th e

Open Nebu la En g in e. In CCA 08 : Clou d Com pu tin g a n d its A pplica t ion s, 2 008 .

[1 05] Da v id Recordon, Drummond Reed: OpenID 2.0: a platform for user-centric identity management. Dig ita l

Iden tity Ma n a g em en t 2 006 :1 1 -1 6

[1 5 8] Fr ance, R.B., Ghosh, S., Trong, T.D., Solberg, A.: Model driven development using uml 2.0: Promises a n d

pit fa lls. IEEE Com pu ter 3 9 (Febr u a r y 2 006) 5 9 –6 6

[1 5 9] Smith, S.; Beaulieu, A.; Phillips, W.G.; Dept. of Electr. & Comput. Eng., R. Mil. Coll. of Canada, Kingston,

ON, Canada, “Modeling and verifying security protocols using UML 2,” Systems Conference (Sy sCon), 2 01 1 IEEE

In ter n a t ion a l 2 01 1 , pp. 7 2 - 7 9

 117

Part III - Validation

 118

11 EXPERIMENTATION

A real implementation of my architecture allowed us to test and benchmark the system. The

realization is composed of a client application that uses a custom in-memory database with

row-level encryption, and a remote synchronizer to manage inter-node communications.

To experiment with my architecture I implemented the custom client and

Synchronizer. The client needs to use row-level encryption. In the usual

RDBMSs, however, this technique has significant disadvantages in terms of

performance and functionality: querying would be possible only through the

construction of appropriate indexes for each column of the table (with a

considerable waste of resources both in terms of time and space), while the

constraints and foreign keys would be almost unusable.

Another major issue concerns the management of keys: row-level encryption

could potentially lead to the generation and maintenance (and / or

distribution) of a key for each row of each table encrypted with this method.

To solve (or reduce) the concern, I use some advanced techniques of key

management, such as:

 Broadcast (or Group) encryption [32]: rows are divided into

equivalence classes, based on recipients. Every class is encrypted using

an asymmetric algorithm where the encryption key is made in a way

that each recipient can decrypt the information using only its own

private key. Both the public and the private keys are generated by a

trusted entity.

 Identity Based Encryption [30]: it bounds the encryption key to the

identity of the recipient. Each recipient generates by itself a key pair

used to encrypt/decrypt information.

 119

 Attribute Based Encryption [31]: it bounds the encryption key to an

attribute (a group) of recipient. Each recipient receives from a trusted

entity the private key used to decrypt, while the sender calculates the

encryption key.

The complexity of these techniques is a major reason why conventional

RDBMSs do not use encryption at the row-level.

To solve or reduce this limitation, I propose to use IMDBs to store the

encrypted rows.

While IMDBs are limited by the amount of main memory in the host

computer, they are well suited to be distributed and replicated across multiple

nodes to increase capacity and performance.

The proposed approach works around this limitation: not having a single

central database containing the whole data, I preferred to give one database

for each client application. This database contains only owned data, while

external data will be added (or removed) via the synchronizer, based on access

permissions.

To minimize cryptography overhead, I encrypt only rows "received" by other

nodes, while rows owned by the local node are stored in clear-text form.

Well-known open-source implementations of IMDB are Apache Derby,

HyperSQL (HSQLDB) and SQLite. For my implementation, I chose to use

HyperSQL rel. 2.0.

11.1 HyperSql

HyperSQL5 0 is a pure Java RDBMS. Its strength is, besides the lightness

(about 1.3Mb for version 2.0), the capability to run either as a Server instance

either as a module internal to an application (in-process).

A database started in-process has the advantage of speed, but it is dedicated

only to the containing application (no other application can query the

database). For my purposes, I chose server mode. In this way, the database

engine runs inside a JVM and will start one or more "in-process” databases,

listening requests from processes in the local machine or remote computers.

2 www.hsqldb.org

 120

For interactions between clients and database server, we can use three

different protocols:

 HSQL Server: the fastest and most used. It implements a proprietary

communication protocol;

 HTTP Server: it is used when access to the server is limited only to

HTTP. It consists of a web server that allows JDBC clients to connect

over http;

 HTTP Servlet: as the Http Server, but it is used when accessing the

database is managed by a servlet container or by an application servlet

(e.g. Tomcat). It is limited to using a single database.

Several different types of databases (called catalogs) can be created with

HyperSQL. The difference between them is the methodology adopted for data

storage:

 res: this type of catalog provides for the storage of data into small JAR

or ZIP files;

 mem: data is stored completely in the machine’s RAM, so there is no

persistence of information outside of the application life cycle in the

JVM;

 file: data is stored in files residing into the file system of the machine.

In my work I used the latter type of databases.

A catalog file can use up to six files on the file system for its operations, the

most important of which are:

 .log: used to periodically save data from the database, to prevent data

loss in case of a crash; and

 .script: containing the table definitions and other components of the

DB, plus data of not-cached tables.

Besides these files, HyperSQL can connect to CSV files.

A client application can connect to HyperSQL server using the JDBC driver

(.Net and ODBC drivers are “in late stages of development”), specifying the

type of database to access (file, mem or res).

HyperSQL implements the SQL standard either for temporary tables either for

persistent ones. Temporary tables (TEMP) are not stored on the file system

and their life cycle is limited to the duration of the connection (i.e. of the

Connection object). The visibility of data in a TEMP table is limited to the

 121

context of connection used to populate it. With regard to the persistent tables,

instead, HyperSQL provides three different types of tables, according to the

method used to store the data:

 MEMORY: it is the default option when a table is created without

specifying the type. Memory table data is kept entirely in memory,

while any change to its structure or contents is recorded in .log and

.script files. These two files are read at the opening of database to load

data into memory. All changes are saved when closing the database.

These processes can take a long time in the case of tables larger than 10

MB.

 CACHED: when this type of table is chosen, only part of the data (and

related indexes) is stored in memory, thus allowing the use of large

tables at the expense of performance.

 TEXT: the data is stored in formatted files such as .csv.

In my implementation, I use MEMORY tables.

Figure 44 summarizes the structure of HyperSQL.

Figure 44 HyperSQL Structure

The Loader and the Serializer are the main parts of HyperSQL that I analyzed

and modified. They are the mechanisms that load the data from text files at

the opening and save them to the database at closing.

 122

11.1.1 Loader

I suppose that the client connects to the DBMS using instructions like:

Class.forName("org.hsqldb.jdbcDriver");
Connection c = DriverManager.getConnection(

 "jdbc:hsqldb:file:myDB", "SA", "");

Having used a catalog of file type, the static method newSession() of class

org.hsql.DatabaseManager is called. Its task is to open the database or to

connect to it (if it is already opened). org.hsql.Database is the class that

represents the instance of the database in memory, so this is the root of all

data structures designed to contain the information of the database. Once the

database is loaded into memory, two fundamental classes are used for the

parsing of text files: org.hsqldb.ParserCommand (for management of sessions

and statements) and org.hsqldb.Scanner (for the recognition of individual

SQL tokens). The class responsible for maintaining the database (related to

the session) is org.hsqldb.SessionData, whose main attributes are:

private final Database database;
private final Session session;
PersistentStoreCollectionSession persistentStoreCollection;

PersistentStore is the data structure that contains all rows in a database table.

Specifically, this is an interface implemented by using different classes

depending on the type of table represented: in my case I use MEMORY tables,

so that the affected class is the org.hsqldb.persist.RowStoreAVLMemory.

When the Database object is created, particularly at the invocation of method

reopen(), the class org.hsqldb.persist.Logger, which is the class that

represents the interface for I/O to and from text files of the database, is

instantiated. The starter method of Logger class is openPersistence(), which

will open the specified database (if the database is new, the related text files

are created). The class org.persist.Log is instantiated after verifying the

integrity of the .properties file. My focus is on method open() of this class

which checks the status of the Database (if it was closed properly, if it was

modified, and so on) and then instantiates the class

org.hsqldb.scriptio.ScriptReaderText to read the .script file using the method

readAll(Session s). The class org.hsqldb.rowio.RowInputTextLog is used to

read a single line of the database and the object that represents a row in the

 123

database is the object Row. Two methods of class ScriptReaderText are

invoked:

 readDDL(): reads the DDL statements and initialize a class

RowInputTextLog for each line read from the .script file.

 readExistingData(): it extrapolates the values of each single line,

initializes the row and adds it to the PersistentStore;

Because of the database file structure, I need to look for Insert statements to

find the rows of a table. When one of these statements is encountered, it is

managed by the method processStatement(Session s) of ScriptReaderText

class. For each field in the row, it checks whether it is primary key and

determines the data type, then the value of the field is read by the method

readData (DataType t) of RowInputTextLog class.

The sequence of operations is shown in the UML diagram of Figure 45.

 124

Figure 45 Loader’s sequence

 125

11.1.2 Insert

When the client issues a SQL Insert command, it is managed by the Table

class, which calls the getNewCachedObject() method() of class

PersistentStore, which add the node through the RowStoreAVLMemory class.

In the end, the new data is in place into the self-balancing binary search tree

in main memory. The persistent storage is not involved in this activity. It will

be used, instead, in the serializer’s actions.

The sequence of operations is shown in the UML diagram of Figure 46.

Figure 46 SQL Insert sequence

11.1.3 Serializer

The Serializer is the module responsible for saving the modified data into

.script and .log files. Changes are initially written in .log file and moved to the

.script file, when a shutdown command is issued.

The sequence of operations is shown in the UML diagram of Figure 47.

 126

Figure 47 Serializer’s sequence

Each database table is represented by an instance of class org.hsqldb.Table,

comprising: data structures for the management of content, methods for

creating a new table, and operations of insert/select rows. When inserting a

new row, the method insertSingleRow() of the Table class is invoked; the first

step is to create a new Row object for caching data in memory, which is done

by the method getNewCachedObject (Session s, Object [] data) of

PersistentStore class. Memory-type tables are kept in a balanced tree structure

(AVL) implemented in the class org.hsqldb.persist.RowStoreAVLMemory.

Once a node (i.e. the row being inserted) is built and added to the AVL (this

operation involves several checks on the contents of the fields and of integrity

constraints), HyperSQL writes the row into the buffer and then transfers it to

the text file (data is written to the .log file until shutdown of the database). To

perform this task, the Logger class utilizes the method

writeInsertStatement(Session s, Table t, Object [] data), and the method

writeInsertStatement() of the Log class. Writing to the file is done using the

 127

class org.hsqldb.scriptio.ScriptWriterBase (more precisely, in case of memory -

type tables, the ScriptWriterText subclass). The method writeRow(Session s,

Table t, Object [] data) of ScriptWriterText class writes data to a text buffer

and, at the end of the procedure, transfers it to the file. The buffer (which is

only a byte[]) is encapsulated in the class RowOutputBase (more precisely, in

case of memory-type tables, the RowOutputTextLog subclass), which extends

the HsqlByteArrayOutputStream and provides methods to transform any type

of data for serializing it into the buffer. Once writing to the buffer is

completed, the method writeRowOutToFile() of ScriptWriterText class is

used, which calls the method write(byte [] b) of the class OutputStream to

write into the output stream of .log file. When shutting down the database,

method writeScript() of Log class is invoked with the following tasks: creating

temporary file for writing .script file, loading each element of the database into

memory and writing it to the file by executing the flush() of the OutputStream

connected to the file.

In Figure 48 there is an instance of a .script file, containing the SQL

statements to create and populate the DB.

Figure 48 .script file’s structure

 128

11.2 Prototype System

11.2.1 Client side

On the client side, using IMDBs, I have only two interactions between each

local agent and the Synchronizer (see Figure 49).

Figure 49 State diagram of client

I have modified the classes included in file hsqldb.jar to handle encryption.

The basic idea was to manage encryption in the .log and .script text files. The

rows that are owned by the local client are stored in clear-text, while the

shared rows “granted” by other owners are stored encrypted.

The values contained in tables are stored in form of SQL insert:

INSERT INTO table_name(field_1, field_2, …, field_n) VALUES(value_1, value_2,
…, value_n)

Earlier, to obtain control access granularity at the field level, I encrypted field

by field. This way, the text contained in the database file is in the form of:

INSERT INTO table_name(field_1, field_2, …, field_n) VALUES(pk,

encrypted_value_2, …, encrypted_value_n)

The primary key pk needs to be in clear-text, since it is used to retrieve the

decrypting keys from the central Synchronizer. I dropped this idea because it

requires changing the I/O code for each possible database type and an

attacker may obtain some information such as table, primary key and number

of rows.

My current solution is to encrypt the whole row by AES symmetric algorithm.

The encryption overhead is lower than the previous solution and all

information is hidden to curious eyes. To relate the encrypted row (stored

locally) to the decrypting key (stored in the remote Synchronizer), I use a new

 129

key (id_pending_row). The encrypted row is prefixed by a clear-text header

containing the id_pending_row delimited by “$” and “@”. The encrypted

value is then stored in a hexadecimal representation, so a generic row is of the

form:

$27@5DAAAED5DA06A8014BFF305A93C957D

11.2.1.1 Load time

At load time, the .script file will contain clear-text and encrypted rows, as

the example shown in Figure 50.

Figure 50 Modified .script file’s structure

The class whose task is reading the file and loading the appropriate data in

memory is ScriptReaderText, whose Class Diagram is the showed in Figure 51.

Figure 51 UML of ScriptReaderText class

 130

The readLoggedStatement method parses each line of text in the .log or .script

files and forwards the result to the processStatement method, which loads

data into memory.

I changed the readLoggedStatement method to make a preprocessing: if it

finds a record header (enclosed between $ and @) in the text line, it extracts

the id_pending_row_received. Using this id, the client requests to the central

Synchronizer the related decoding key, which it uses to decrypt the entire text

line and to proceed with normal HyperSQL management. If the decoding key

is unavailable, the text line is temporarily discarded (it is not deleted if it was

not received for communication problem with the Synchronizer).

The sequence of operations is shown in Figure 52.

 131

Figure 52 Modified Loader’s sequence

11.2.1.2 Save time

The class ScriptWriterText, whose Class Diagram is shown in Figure 53,

manages the write operations in .log and .script files.

 132

Figure 53 UML of ScriptWriterText class

The affected methods are writeRow and writeRowOutToFile.

The former deals with building the string that will be written into the text file

(INSERT INTO) witch corresponds to the in memory data. A Table

instance contains the information about the table structure (table name, field

names, types of data, constraints, etc.). The values of fields are in an array of

Object. The SQL insert is written in a text buffer that is stored in the .script file

by the method writeRowOutToFile. Because each table has an

id_pending_row_received column, I modified the writeRow method to check

if the row is owned or shared by another user. In the latter case

(id_pending_row_received not null), the custom writeRowOutToFileCrypto

method is used instead of the writeRowOutToFile method.

WriteRowOutToFileCrypto uses the parameter id_pending_row_received to

query the related symmetric encryption key from the Synchronizer, needed to

encrypt the whole buffer. The result is a hexadecimal sequence which is

prefixed by the below header with the id_pending_row_received.

The resulting sequence of operations is shown in Figure 54.

 133

Figure 54 Modified Serializer’s sequence

11.2.2 Server side

When a data owner adds or updates a row in the local database, it needs to

distribute this change to all the related users. To do this, I put in the Cloud a

central Synchronizer server that acts as a mailbox.

It uses a simple database with the following tables:

 Users: containing, among others, the id and public key of each user;

 Pending Rows: it contains the rows that were added / modified in the

local database of the owner, until they are delivered to destination. A

unique row_id is automatically assigned to each pending row. Other

information is submission date, sender and receiver. The changed row

is stored in encrypted form in field encrypted_row;

 Decrypting keys: contains the keys that are used to decrypt the pending

rows. Other information is: sender, receiver, expiry date, id_row.

 134

At modification time, the owner (client side) has to:

 Serialize the row;

 Generate a symmetric key to encrypt it;

 Encrypt the row;

 Encrypt the key by the public keys of receivers;

 Send the encrypted row and the decoding keys to receiver.

Because I store the serialized row, I haven't to worry about columns data

types.

The Synchronizer uses RMI to expose its services to clients. The services are

grouped into three interfaces:

 KeyInterface with methods related to encryption keys: depositKey,

deleteDecriptingKey, getDecriptingKeyByIdPendingRow,

getPublicKeyByUser;

 SynInterface with methods for sharing the rows: sendRow,

getPendingRowForUser, getAllUsers, resendRow;

 RegistrationInterface to register and manage users: registerUser,

SelectUserById, selectUserByIdAndPassword.

Figure 55 shows the Class Diagram of the resulting system.

 135

Figure 55 Synchronizer’s class diagram

11.3 Performances

In contrast to the usual row-level encryption, which needs

encryption/decryption at every data access, my solution uses these heavy

operations only when communicating with Synchronizer, with a clear

advantage, especially in the case of rarely modified databases.

11.3.1 Read operations

The system uses decryption only at start time, when records are loaded

from the disk into the main memory. Each row is decrypted none (if it is

owned by local node) or just once (if it is owned by a remote node), so this is

optimal for read operations. Each decryption implies an access to the remote

Synchronizer to download the related decrypting key and, eventually, the

modified row.

 136

11.3.2 Write operations

Write operations occur when a record is inserted/updated into the DB. In

principle there is no overhead until the client, once it gets online, explicitly

synchronizes data with the central server. At synchronization time, for each

modified record, the client needs to:

 Generate a new (symmetric) key;

 Encrypt the record, and

 Dispatch the encrypted data and the decrypting key to the remote

synchronizer

In the next Section, I will address the scalability that arises when

synchronization/write operations are done massively.

11.3.3 Benchmark

To guarantee scalability, it is tantamount to measure the overhead that

encryption brings to the custom version of HyperSQL for iPrivacy (henceforth,

encHyperSQL). To do so, I wrote a test application that uses the encHyperSQL

driver and interacts with the other clients through the Synchronizer. It

performs several distinct activities:

 Creation of database and sample tables

 Population of tables with sample values

 Sharing of a portion of data with another user

 Receiving shared dossiers from other users

 Opening the newly created (and populated) database

At the start, the application receives three parameters:

 Number of dossiers

 Number of clients who will be sharing, and

 Percentage of shared dossiers

The above setup is needed to evaluate the inherent overhead that I introduce

in my system w.r.t. the original HyperSQL, regardless of communication

delays. To minimize the latter, the central Synchronizer and the clients ran on

the same computer. During experiments, for testing purposes, it was sufficient

 137

to use only two clients (to enable data sharing). For the sake of comparison, I

have set up a “competing” application with the following characteristics:

 It uses the original HyperSQL driver;

 It doesn’t share data with other clients, since the original HyperSQL

has not this capability;

 When populating the database, it creates the same number of dossiers

than the previous application; after benchmarking, however, it adds the

number of shared dossiers, resulting in the same final number of

dossiers.

I benchmarked the system using single-table dossiers of about 200 bytes, in

two batteries of tests; the first with 20%, and the second with 40% of shared

dossiers, which numbered from 1,000 to 500,000. The results are represented

by the graphs from Figure 56 to Figure 58. It is worth noting that the overhead

percentage of the modified solution rapidly decreases (with 100,000 dossiers

it is around 10%), either in the first battery of tests (Figure 56), and either in

the second (Figure 57). In the tests, the total delay (load + create + populate +

receive) is linear in the number of dossiers and is limited, even with a huge

number of dossiers (Figure 58). Local results can be slightly altered by

external events not preventable (e.g., garbage collector).

11.3.4 Results

The delay of the system is tightly bound to communications effort with the

central Synchronizer. Computing overhead is limited to just one encryption

per record at write time and no more than one decryption per record at read

time. Since I use symmetric encryption, these operations are very fast. The

benchmark demonstrates that the delay is substantially concentrated in

database opening, while the subsequent use does not involve additional

delays, compared to the unmodified version.

 138

Figure 56 Overhead when 20% of dossiers are shared

Figure 57 Overhead when 40% of dossiers are shared

0 100,000 200,000 300,000 400,000 500,000

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

Benchmark (20% shared)

diff create + receive (perc)

diff load

Num. Dossiers

O
ve

rh
e

a
d

0 100,000 200,000 300,000 400,000 500,000

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

Benchmark (40% shared)

diff create + receive (perc)

diff load

Num. Dossiers

O
ve

rh
e

a
d

 139

Figure 58 Total delay

11.4 References

[3 0] D. Bon eh and M. Hamburg, “Generalized Identity Based and Broadcast Encryption Schemes,” ASIACRYPT,

2 008 , pp. 4 5 5 -4 7 0

[3 1] V . Goyal, A. Jain, O. Pandey and A. Sahai, “Bounded Ciphertext Policy Attribute Based Encryption,” ICALP,

2 008 , pp. 5 7 9 -5 9 1

[3 2] A . Fia t a n d M. Na or , “ Br oa dca st En cr y pt ion ,” CRYPTO, 1 9 9 3 , pp. 4 8 0 -4 9 1

 140

 141

12 SCALABILITY

The previous test implementation used a custom synchronizer that is almost inadequate to

stress test. For this purpose, I adapted my protocols to use a general email service like Gmail

as synchronizer, and evaluated the system in a large community.

The scalability tests need a large users’ network, so I resolved to use an

email service on the Cloud as Synchronizer. For testing purpose I am using

Gmail by Google5 1 . For enhancing performance, I want to use a synchroClient

thread that connects to Gmail to exchange the modified dossiers. Some

relevant modifications occur for adequate to the existing email architecture:

1. I have adopted the Internet Message Access Protocol (IMAP) to interact

with the server;

2. IMAP lacks the ability for a sender to delete a previously sent message,

so the revoke is not on charge of Server, but it is given to client;

3. In the same way, the client is responsible to delete the emails

accordingly to my algorithm.

12.1 The new architecture

The resulting architecture can be represented by the class diagram in

Figure 59, where are represented the following classes:

1. Client, which represents the client application. Important attributes are

the structures:

5 1 www.gmail.com

 142

a. pkHashMap to store the public keys of collaborators

b. dkHashMap to store the decrypting keys of dossiers

c. prList to store the pending rows (the received dossiers)

2. Gmail, which represents the email server

3. PK, which represents the public key

4. DK, which represents the decoding key

5. PR, which represents the pending row.

Figure 59 Class diagram

Referencing to Figure 49, the synchroClient runs almost once, at start of

client, but can run every time the client is online. While in my original

 143

approach the client queries the Synchronizer every time it needs to decrypt a

row, now the synchroClient connects to the email server and receives all the

messages in a single session.

The client C sends to Gmail three types of messages:

1. C’s public key: the message has subject “PK” and the body message

contains the public key of C. The message is sent to all the clients

collaborating with C.

2. Decrypting keys: for each dossier D, a decrypting keys is created at

every change. The key is then sent to all the clients collaborating with C

for D, after it has been encrypted using the receiver’s public key. The

message has subject “DK”+<dossierId> and the body message contains

the encrypted key.

3. Modified dossiers: for each dossier D, the message has subject “PR”

(Pending Row)+<dossierId> and the body message contains the

dossiers, encrypted using a Decoding Key. The message is sent to all the

clients collaborating with C for D.

12.2 The synchronization phase

To synchronize, a client follows the steps in Figure 60:

 144

Figure 60 The synchro sequence diagram

 145

More in detail:

1. sendUpdates:

a. The client sends the PK to all the collaborators (only the very

first time the collaboration starts);

b. For each modified dossier D, the client finds the corresponding

decrypting key DKD and the list of collaborators. For each

receiver R, the client encrypts DKD using PKR and sends it to R;

c. For each modified dossier D, the client encrypts it using DKD

and sends the result to all the collaborators.

2. receiveUpdate: during this phase, the client receives the emails from

Gmail and manage them accordingly to the subject.

a. Subject “PK”: manage the corresponding public key;

b. Subject starts by “DK”: manage the corresponding decrypting

key;

c. Subject starts by “PR”: manage the corresponding pending row.

12.2.1 managePK

The activity for managing the PK, as shown in Figure 61, consists of:

1. Extracting the public key from the body of the email

2. Adding the couple <sender‘s email address, pk> to the structure

pkHashMap

3. Deleting the message

Figure 61 managePK’s activity diagram

12.2.2 manageDK

The activity for managing the DK, as shown in Figure 62, consists in:

1. Extracting the encrypted DK from the body of the email

2. Decrypting it using the private key of the receiver

 146

3. Extracting the dossierId from the body of the email

4. Adding the couple <dossierId, dk> to the structure dkHashMap

Figure 62 manageDK’s activity diagram

12.2.3 managePR

The activity for managing the PR, as shown in Figure 63, consists in:

1. Extracting the encrypted PR from the body of the email

2. Extracting the dossierId from the body of the email

3. Adding the string $dossierId@encryptedPR to the structure prList

4. Deleting the message

Figure 63 managePR’s activity diagram

Please, note that, at the end, the row is not decrypted yet.

 147

The prList is then usually processed, using the dkHashMap to decrypt it and

to insert in the memory database the corresponding row.

12.3 Considerations

At start time, the client applies the algorithms exposed above to all the

messages in the email server. At subsequent synchronization, instead, it can

read only the new messages, which contain the changes occurred in the

meantime.

Only the DKs are maintained in the email server, the other messages are

erased after being read. At a generic moment T the emails’ queue in the email

server is of the form shown in Table 10.

Table 10 Emails’ queue
Dk1

Decrypting keys of previously

read pending rows
A large number

Dk2

…

Dkn

Pki Public key for new

collaborations
Some, frequently none

Pkj

Dkd1
Decrypting key of dossier D,

encrypted by the public keys

of the m collaborators

Some
Dkd2

…

Dkdm

Prd Pending row for document D Some

The first band is read only at startup, while the others are read only during the

subsequent synchronizations.

Now, let be:

 NR the number of the (read) messages in the first band

 NC the number of new collaborators

 NPR the number of just received dossiers

 NG the average of collaborators for a given dossier

 Spk the size of a public decrypting key (this is a constant quantity,

depending on number of bits used for asymmetric encryption)

 148

 Sdk the size of a decrypting key (this is a constant quantity, that depends

on the number of bits used for symmetric encryption), and

 Sd the size of a dossier

Ses, the size of email queue (minus the header of the messages) is

approximated by the formula:

Ses = NR * Sdk + NC * Spk + NPR *(Spk * NG + Sd)

In a static environment, where the workgroup is stable and changes are rare,

the order of Ses is:

Ses = NR * Sdk

so it is linear in the number of the shared dossiers.

If ND is the number of the recorded dossiers and Ps is the percentage of shared

dossiers, the formula above can be written as:

Ses = ND * Ps * Sdk

Figure 64 Values of Ses for changing values of Ps

In Figure 64, Ses is plotted for typical percentage values of Ps. These results can

be easily related with the times one would obtain when downloading emails of

the same size through Gmail.

The results of this analysis are particularly interesting in the light of the

Business Collaborative Environment scenarios described in Section 8. In such

environment, the value of ND is usually less than 10,000 (e.g., in Italy, the law

imposes to the family doctors are bound to have less than 2,000 patients;

similarly, the average number of active legal proceedings a law firm handle is

 149

1,5005 2), while the typical value of Ps is less than 20%. As the graph reveals,

under these conditions, the value of Ses is very small, about some hundred of

Kb; hence, the time for downloading the updates from the central server is

expected to be only a few seconds.

5 2 source: P&P Informatics, ICT manager for legal offices in Italy – www.pep.it

 150

13 COMPARISON WITH OTHER

APPROACHES

At this time, I don’t know similar architectures to compare with, but I want to analyze my

data propagation to BE alternatives, to quantify the possible overhead of my approach. I

compare not only with pure BE schemes, but also with the OSN adapted schemes.

My system, after all the evolvements, still uses a Multiple AES (M-AES)

propagation of information to all collaborating nodes which sends a different

message with the same decrypting key to each receiver. As presented in

chapter 4, a better solution consists in using broadcast encryption to minimize

communication overhead. In the following I analyze the application of

previously seen broadcast methods with my distributed architecture, with a

particular attention to the aspects of secret keys generation and revocation

capability.

13.1 Threshold systems

These systems assume the presence of one trusted Key Generator that

assigns (and then knows) the secret key. Moreover, it is intended for spot

transmission (as TV broadcasting), where the information is protected only

during communication but not afterwards. It lacks the revocation’s capability,

e.g. a protected TV transmission may be recorded and reused later. These two

characteristic make this approach unfeasible for my architecture.

 151

13.2 IBE

It is not a BE system, but it allows users to choose their own key, so it

doesn’t require a trusted service for private key generation. Using IBE we

could send encrypted information to each user using her public key. This

doesn’t diminish the number of messages sent and, since usually information

size is greater than key size, the messages are heavier. Instead, it permits time-

bounded key, so it would be useful to distribute temporary decrypting keys for

offline work.

As a case study, if I use AES 256 bits encryption and a dossier size of 2000Kb,

I obtain the following graph:

Figure 65 Comparison between using IBE and M-AES

13.3 ABE

These systems assume the presence of one (or a group) trusted Key

Generator that assigns (and then knows) the secret key s. In my architecture,

the Generator cannot be the central Synchronizer, because otherwise the

dossiers’ protection disappears. The use of DABE can mitigate this problem,

since we can use a pool of Key Generators, distributing the responsibility on a

larger number of actors to diminish the fault risk, but this is not an absolute

assurance. The generator can be the owner, but this leads to the proliferation

of keys as every node has to store a different secret key for each possible

source of dossier.

Moreover, it lacks the revocation’s capability , which was one of the initial

requirements.

Messages' total size

0

50000

100000

150000

5 10 15 20 25 30 35 40 45 50

users

b
y
te

s IBE

M-AES

 152

13.4 Persona

Persona was introduced for OSN, but can be a model to evaluate in my

system. As this, it encrypts data using symmetric key that is then distributed

encrypted by a group key (ABE). This would reduce the number of messages

sent to the other users, which would be limited to only one dossier and only

one decrypting key. Unfortunately, the use of ABE to manage the group

encryption brings back to the previous objections.

13.5 GCC

This system, introduced for OSN, can be adapted to my scenario. It seems

a perfect solution because:

 As IBE, each user autonomously choose her secret key without

requiring a central key generator;

 As ABE, it allows the BE, but the group key is generated from the public

keys of the group’s component and it does not require a trusted server;

 It allows delegation and revocation of access rights;

 Each user has only a single private key and, although for each user is

generated as many public keys as communities, they are used only

when creating the group key (that is the key which is really used in

encrypted communications) and then they are not locally stored.

Although I was able to verify the formal correctness of the algorithm exposed

in [57], during implementation of my test system some problems emerged.

1. I was not able to implement the Converge method since:

a. it is not clear what is the content of },{ iy

i gx (I supposed it is

the couples <uid, pk> of interested nodes);

b. to generate the group key, it needs the computing of

m

j

vya jiii gg
1

,1)(where:

 v i+1 ,j is obtained from inversion of a Vandermonde

matrix

 153

 iy
g is usually implemented using an immutable

arbitrary-precision integers (as Java’s BigInteger).

i. in a first time, I inverted the Vandermonde matrix in R,

but so the v i+1 ,j were real and it was impossible to

calculate ia
g .Then, I realize that I have to invert the

Vandermonde matrix in Zq. ;

ii. after this step, the product to compute ia
g uses

BigInteger^BigInteger, that is not implemented in the

usual languages (as Java or C++).

2. if I solve the previous difficulty, I obtain a community key

)g ,(l , ...),g ,(l , {g g
)f(l

1-m

)f(l

1k
1-m1 where each of the (2*m-1) terms is an

integer of k bits. If I consider the usual values for AES’s key length=256

bits and k=300 bits, I obtain the graph shown in Figure 66.

Figure 66 Comparison between AES 256 bits and GCC 300 bits

Even setting k=256 bit in GCC, its performances remains worse than M-AES,

as shown in Figure 67.

Total key size

0

10000

20000

30000

40000

5 10 15 20 25 30 35 40 45 50

users

b
it

s GCC

M-AES

 154

Figure 67 Comparison between AES 256 bits and GCC 256 bits

To make the results comparable, I need to set AES’s key length=128 bits and

k=64 bits (see Figure 68).

Figure 68 Comparison between AES 128 bits and GCC 64 bits

13.6 Conclusions

By tuning BE, one could in theory decrease the amount of data exchanged

between the local Clients and the central Synchronizer. In practice, however,

the examined solutions are either inadequate to the initial requirements (i.e.

Threshold systems, ABE and Persona), or they introduce new complexities

that cancel out the benefits of broadcasting (IBE and GCC). This result does

not imply that BE is wholly inappropriate, but it stresses that further

investigation would be needed before BE is deployed in this scenario.

Total key size

0

10000

20000

30000

5 10 15 20 25 30 35 40 45 50

users

b
it

s GCC

M-AES

Total key size

0

2000

4000

6000

8000

5 10 15 20 25 30 35 40 45 50

users

b
it

s GCC

M-AES

 155

13.7 References

[2 6] Ra ju Halder, Shantanu Pal and Agostino Cortesi: “Watermarking Techniques for Rela t ion a l Da ta ba ses:

Survey, Classification and Comparison”, in Journal of Universal Computer Science, vol. 1 6 (2 1), pp. 3 1 6 4 -3 1 9 0

[5 7] Yan Zhu, Zexing Hu, Huaixi Wang, Hongxin Hu and Gail-Joon Ahn, “A Colla bor a t iv e Fr a m ew or k for

Pr ivacy Protection in Online Social Networks,” In Proceedings of the 6th International Conference on Collabor a t iv e

Com pu tin g (Colla bor a teCom 2 01 0), Ch ica g o, Illin ois, USA , October

 156

14 VULNERABILITY ASSESSMENT

My architecture was designed to assure data priv acy, but are there possible vulnerabilities?

In this Chapter, using UML state diagrams, I present an analytic study of possible system

failures.

Having shown in the previous chapters that my architecture meets the

initial requirements (data protection and revocation of permits), in this

Chapter, I want to analyze possible vulnerability of my system. I will examine

every component involved in the algorithms:

 Client, distinct by role in:

o Sender;

o Receiver;

 Synchronizer, and

 Network.

14.1 Client

The use of IMDBs can lead to data loss if the client is interrupted (e.g. a

hardware or application failure) before it writes data into the permanent

storage. If data is owned by the client, there is nothing to do. If data was

shared with another user, the client can ask to all collaborators to send again

the shared dossiers.

Another problem may be the identity theft: if someone succeeds to discovery

the credential of a client, she can communicate with the synchronizer. If she

sends her PK to all collaborators, she would have full access to all dossiers,

since she can:

 157

 Send fake dossiers

 Can receive the dossiers which other clients sent to her. They were

encrypted by her PK, and then she can decrypt them using her own SK.

The problems above analyzed are related to client in general. In the following,

instead, I will discuss the peculiar vulnerability of a client acting as sender or

receiver.

14.1.1 Sender

The sender is autonomous in its work. It manages local data through Data

Manipulation Language, even in offline state; sometimes, on demand, it sends

the changes to the receivers through the Synchronizer. It has the control of

local dossiers and their decrypting key. It receives and stores the public keys

(PKs) of the collaborators.

The possible point of failure can be a data crash, which can be resolved

using the usual methods (backup and restore), or the change of data that are

not under its control: PKs. It cannot send change if it has not the correct PK of

each receiver. Let be S the sender and R the receiver. If R changes its PK

before S sends the updates, but communicates this change to Synchronizer

only after S has already used the old key to encrypt the data, the latter remains

not accessible (see the sequence diagram in Figure 69).

 158

Figure 69 Fault sequence for sender

There are at least two ways to prevent this situation,:

 The receiver doesn’t delete the old SK until it receives the explicit

confirmation from all the collaborator

 The receiver can request to an owner to send again a dossier (the

dossierID is clear text, it is ever accessible).

14.1.2 Receiver

Receiver is the most delicate component of the system, because it handles

data that does not belong to it. My system relies on the assumption that

shared data is never stored in clear form except that in main memory (volatile)

and then can be accessed only during a session when the receiver obtains the

related decrypting key. There is no way to prevent malicious external software

to scan memory to steal the data or to substitute itself to the genuine client

program. The other actor in communication, the Synchronizer, has no direct

 159

access to client, so it receives only information (as authentication) the client

itself evaluates.

The same problem exists if information is remotely stored or if it is on paper:

when it arrives at the final user, it has uncensored access to it (e.g., she can

photocopy the document or can do a hard copy of the screen).

To discourage thefts and detect tampering, I plan to use database

watermarking [26].

Another discouragement is the change of decrypting key at every update of a

dossier. If a user is deleted from the receivers’ list but she did a fraudulent

copy of it, she cannot access the new version which will use a new decrypting

key.

14.2 Synchronizer

A faulty synchronizer can hide a dossier and the related decrypting key or

can generate fakes. The Synchronizer must always simultaneously manipulate

a dossier and its decrypting key to not getting caught. To solve this problem, a

solution can be the use of two non-communicating synchronizers, one for the

dossiers and the other for the decrypting keys. Neither can add/delete a

dossier or a decrypting key without the connivance of the other. A

synchronizer can refute to send a message, but it is immediately unmasked.

As any other service in the internet, also the Synchronizer can be attacked

(e.g., with a Denial Of Service attack), but the prevention of these attacks is

not inherent to this thesis.

14.3 Network

14.3.1 Fault

The network can temporarily go down at distinct moments (see Figure

70):

a. Before client’s initial synchronization: the client cannot receive the

decrypting keys and it cannot access the shared dossiers until network

returns up. It can still access the owned dossiers, which are stored in

clear form.

 160

b. After the client’s is synchronized, it has the decrypting keys and the

complete database in memory. Although it may not send/receive

updates until the network is back up again, it is otherwise fully

operational.

c. During synchronization: the client does not receive all the updates,

therefore it can have an incomplete DB until network returns up.

However, the client can still use the shared dossiers for which it has

already received the key. If the network fault happens after the client

receives a PK or a PR, but before the Synchronizer deletes it, when

network returns up, the PK will be treated as a new one, without

consequences nor disruptions.

Figure 70 Possible network faults

 161

14.3.2 Redirection

Let us now consider the well-known “redirection attack”: it happens when

the network redirects a client to a fake synchronizer. In this case, the client

sends and receives messages to and from an unknown (malicious?) server Su .

This type of attack is easily dealt by my architecture, since one of the key

assumptions is that server Su is never trusted. Thus the fake Su cannot access

data at any time albeit it may damage the system acting as a faulty server as

described in 14.2.

14.4 Conclusions

The detailed analysis in this Section has shown that the proposed

architecture is effective in blocking all attacks but one, i.e., the Receiver attack

(Section 14.1.2). The final data destination, at some point, has the data in the

clear so at that moment there are no protections. Yet, not all is lost. As I

discussed before, the use of database watermarking is a good deterrent. Even

more importantly, the best defence against those attacks is the reduced

interest of the attacker has in a very small portion of the whole database. Since

each node contains only the dossiers of its interest, they are a small percentage

of the total dossiers in the distributed system. T he effort needed to crack open

a local node, probably would not be worth the bother.

14.5 References

[2 6] Ra ju Halder, Shantanu Pal and Agostino Cortesi: “Watermarking Techniques for Rela t ion a l Da ta ba ses:

Survey, Classification and Comparison”, in Journal of Universal Computer Science, 2010, vol. 16 (21), pp. 3164-3190

 162

15 EXTENDED SCENARIOS

My architecture is characterized by data privacy protection, distributed database,

revocation capability, offline work. These peculiarities make it suitable for other scenarios;

In this Chapter, I show two of them.

As exposed in Chapter 8-Scenarios, my architecture perfectly fits in a

Business Collaborative Environment scenario, but it can be easily extended to

very different situations that have some common characteristics:

 The collaborating users are geographically scattered;

 In the network can be present an untrusted element;

 The percentage of data shared among users in the group is limited;

 A simultaneous access to the same record is uncommon;

 The actors are not always online.

In the following, I will analyze some of these scenarios.

15.1 Forced cooperation

I want to enforce the collaboration between a central authority and the

branch offices. E.g., I want to manage a tender of an untrusted local public

administration (LPA), where the bids received by the LPA can be read only

after an expiration date (see Figure 71).

 163

Figure 71 A forced cooperation scenario

The bids can be encrypted and then digitally signed and sent to LPA, while the

deciphering keys have to be stored in a different place, e.g., a repository owned

by the Central Public Administration (CPA). Neither LPA nor CPA can access

the bids without exchanging data, so they control each other. LPA cannot alter

a bid because it is digitally signed, nor can delete a bid because CPA knows its

existence (it has the related key) and, for the same reason, it cannot add a fake

bid.

15.2 Vehicle to Vehicle Communication

Even in automotive environment there are private data. E.g., in a car

crash, information on location, number or identity of transported people can

be used for ulterior motives and then it needs protection (see Figure 72).

Local Public
Administration 1

Local Public
Administration 2

Local Public
Administration 3Tenders

Tenders

Tenders Opening
Keys

 164

Figure 72 An automotive scenario

When the accident happens, the cars can transmit information on location,

damage, garage agreement, etc. to a collector, for example a bus. When the

bus meets the right breakdown truck, it can communicate these data. This

situation is characterized by limited time rendezvous between actors. My

architecture, that allows sporadic access to the network, can be adapted to this

scenario.

 165

16 CONCLUSIONS AND OUTLOOK

In this paper, I discussed the applicability of outsourced DBMS

approaches to the Cloud and provided the outline of a simple yet complete

approach for managing confidential data in public Clouds.

I am fully aware that a number of problems remain to be solved. A major

weakness of any data outsourcing scheme is the creation of local copies of data

after it has been decrypted. If a malicious client decrypts data and then it

stores the resulting plain-text data in a private location, the protection is

broken, as the client will be available to access its local copy after being

revoked. In [22], obfuscated web presentation logic is introduced to prevent

client from harvesting data. This technique, however, exposes plaintext data to

Cloud provider. The plain-text data manager is always the weak link in the

chain and any solution must choose whether to trust the client-side or the

server-side. A better solution [26] is to watermark the local database to

provide tamper detection.

Another issue concerns the degree of trustworthiness of the participants.

Indeed, untrusted Synchronizer never holds plain-text data; therefore it does

not introduce an additional Trusted Third Party (TTP) with respect to the

approaches described at the beginning of the paper. However, I need to trust

the Synchronizer to execute correctly the protocols explained in this paper.

This is a determining factor that my technique shares with competing

approaches and, although an interesting topic, it lies beyond the scope of this

paper.

In experiment phase, I introduced a simple solution to row-level encryption of

databases using IMDBs. It can be used in the Cloud to manage very granular

 166

access rights in a highly distributed database. This allows for stronger

confidence in the privacy of shared sensitive data.

An interesting field of application is the use in (business) cooperative

environments, e.g. professional networks. In these environments, privacy is a

priority, but low computing resources don't allow the use of slow and complex

algorithms. IMDBs and my smart encryption, instead, achieve the goal in a

more effective way.

 167

References

[1] E. Damiani and F. Pagano, “Handling confidential data on the untrusted Cloud: an agent-based approach,” Cloud
Computing 2010, pp. 61-67

[2] D. Pagano and F. Pagano, “Using in-memory encrypted databases on the Cloud,” IWSSC 2011, pp. 30-37

[3] M. Armbrust, A. Fox, R. Griffith, Anthony D. Joseph, Randy H. Katz, Andy Konwinski, Gunho Lee, David A. Patterson,
Ariel Rabkin, Ion Stoica, and Matei Zaharia: “A view of Cloud computing”, Commun. ACM 53(4), pp. 50 -58 (2010)

[4] C. Jackson, D. Boneh, and J.C. Mitchell: “Protecting Browser State from Web Privacy Attacks”, 15th International World
Wide Web Conference (WWW 2006), Edinburgh, May, 2006.

[5] Philip A. Bernstein, Fausto Giunchiglia, Anastasios Kementsietsidis, John Mylopoulos, Luciano Serafini, and Ilya
Zaihrayeu: “Data Management for Peer-to-Peer Computing : A Vision”, WebDB 2002, pp. 89 -94

[6] Pierangela Samarati and Sabrina De Capitani di Vimercati: “Data prot ection in outsourcing scenarios: issues and
directions”, ASIACCS 2010, pp. 1-14

[7] Nadia Bennani, Ernesto Damiani, and Stelvio Cimato: “Toward Cloud-based key management for outsourced databases”,
Computer Software and Applications Conference Workshops (COMPSACW), 2010 IEEE 34th Annual, pp. 232-236

[8] Mikhail J. Atallah, Marina Blanton, and Keith B. Frikken: “Incorporating Temporal Capabilities in Existing Key
Management Schemes”, ESORICS 2007, pp. 515 -530

[9] Alfredo De Santis, Anna Lisa Ferrara, and Barbara Masucci: “New constructions for provably-secure time-bound
hierarchical key assignment schemes”, Theor. Comput. Sci. 407, pp.213 -230 (2008)

[10] Antonio Albano, Giorgio Ghelli, M. Eugenia Occhiuto, and Renzo Orsini: “Object-Oriented Galileo”, On Object -Oriented
Database System 1991, pp. 87-104

[11] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Michael Burrows, Tushar Chandra,
Andrew Fikes, and Robert Gruber: “Bigtable: A Distributed Storage System for Structured Data”, OSDI 2006, pp. 205 -218

[12] Victor R. Lesser: “Encyclopedia of Computer Science”, 4th edition. John Wiley and Sons Ltd. 2003, pp.1194 –1196

[13] Ernesto Damiani, Sabrina De Capitani di Vimercati, Sushil Jajodia, Stefano Paraboschi, and Pierangela
Samarati:“Balancing confidentiality and efficiency in untrusted relational DBMSs”,ACM Conference on Computer and
Comm. Security 2003, pp.93-102

[14] Ernesto Damiani, Sabrina De Capitani di Vimercati, Mario Finetti, Stefano Paraboschi, Pierangela Samarati, and Sushil
Jajodia: “Implementation of a Storage Mechanism for Untrusted DBMSs”, IEEE Security in Storage Workshop 2003, pp.
38-46

[15] Sabrina De Capitani di Vimercati, Sara Foresti, Stefano Paraboschi, and Pierangela Samarati: “Privacy of outsourced data”,
In Alessandro Acquisti, Stefanos Gritzalis, Costos Lambrinoudakis, and Sabrina De Capitani di Vimercati: Digital Privacy:
Theory, Technologies and Practices. Auerbach Publications (Taylor and Francis Group) 2007

[16] Valentina Ciriani, Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Stefano Paraboschi, and Pierangela
Samarati: “Fragmentation and Encryption to Enforce Privacy in Data Storage”, ESORICS 2007, pp. 171 -186

[17] Richard Brinkman, Jeroen Doumen, and Willem Jonker: “Using Secret Sharing for Searching”, in Encrypted Data. Secure
Data Management 2004, pp. 18-27

[18] Ping Lin and K. Selçuk Candan: “Secure and Privacy Preserving Outsourcing of Tree Structured Data”, Secure Data
Management 2004, pp. 1-17

[19] Valentina Ciriani, Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Stefano Paraboschi, and Pierangela
Samarati: “Combining fragmentation and encryption to protect privacy in data storage”, ACM Trans. Inf. Syst. Secur.
13(3): (2010)

[20] Valentina Ciriani, Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Stefano Paraboschi, and Pierangela
Samarati: “Keep a Few: Outsourcing Data While Maintaining Confidentiality”, ESORICS 2009, pp. 440 -455

[21] Miseon Choi, Wonik Park, and Young-Kuk Kim: “A split synchronizing mobile transaction model”, ICUIMC 2008,
pp.196-201

[22] Henk C. A. van T ilborg: “Encyclopedia of Cryptography and Security”, Springer 2005

[23] Ian T . Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu: “Cloud Computing and Grid Computing 360 -Degree Compared
CoRR”, abs/0901.0131: (2009)

[24] Hakan Hacigümüs, Balakrishna R. Iyer, and Chen Li, Sharad Mehrotra: “Executing SQL over encrypted data in the
database-service-provider model”, SIGMOD Conference 2002, pp. 216 -227

[25] Dirk Düllmann, Wolfgang Hoschek, Francisco Javier Jaén-Martínez, Ben Segal, Heinz Stockinger, Kurt Stockinger, and
Asad Samar: “Models for Replica Synchronisation and Consistency in a Data Grid”, HPDC 2001, pp. 67 -75

[26] Raju Halder, Shantanu Pal and Agostino Cortesi: “Watermarking Techniques for Relational Databases: Survey,
Classification and Comparison”, in Journal of Universal Computer Science, 2010, vol. 16 (21), pp. 3164-3190

[27] H. Garcia-Molina, K. Salem, “Main Memory Database Systems: An Overview,” IEEE Trans. Knowl. Data Eng. 4(6), 1992,
pp. 509-516

 168

[28] L. Bouganim and Y. Guo, “Database encryption,” in Encyclopedia of Cryptography and Security, Springer, 2010, 2nd
Edition

[29] E. Damiani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati, “Key management for
multi-user encrypted databases,” StorageSS, 2005, pp. 74-83

[30] D. Boneh and M. Hamburg, “Generalized Identity Based and Broadcast Encryption Schemes,” ASIACRYPT, 2008, pp.
455-470

[31] V. Goyal, A. Jain, O. Pandey and A. Sahai, “Bounded Ciphertext Policy Attribute Based Encryption,” ICALP, 2008, pp.
579-591

[32] A. Fiat and M. Naor, “Broadcast Encryption,” CRYPTO, 1993, pp. 480-491

[33] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi and P. Samarati, “Computing range queries on obfuscated data,”
IPMU, 2004

[34] C. Pu and A. Leff, “Replica Control in Distributed Systems: An Asynchronous Approach,” SIGMOD, 1991, pp. 377 -386

[35] M. Luby and J. Staddon, “Combinatorial Bounds for Broadcast Encryption,” EUROCRYPT ,1998, pp. 512-526

[36] J. Horwitz, “A Survey of Broadcast Encryption,” unpublished, 2003

[37] A. Obied, “Broadcas t Encryption”, unpublished, 2005

[38] S. Berkovits, “How to Broadcast a Secret, Advances in Cryptology,”- EuroCrypt ’91 (Berlin), Springer-Verlag, 1991,
Lecture Notes in Computer Science Volume 547, pp. 535–541

[39] A. Shamir, “How To Share a Secret, “Communications of the ACM, 1979, no. 22, pp. 612 –613.

[40] C. K Wong, M. Gouda, and S. Lam, “Secure group communications using key graphs,” SIGCOMM,1998, ACM Press, pp.
68–79.

[41] D. Naor, M. Naor, and J. Lotspiech, “Revokation and tracing schemes for stateless receivers,” Advances in Cryptology:
CRYPTO ’01, vol. 2139 of Lecture Notes in Computer Science, 2001, pp. 41–62

[42] D. Halevy and A. Shamir, “The LSD Broadcast Encryption Scheme," Advances in Cryptology: CRYPTO 2002 (LNCS
2442), 2002 , pp. 47-60

[43] V.Goyal, O.Pandey, A.Sahai, B.Waters,”Attribute-based encryption for fine-grained access control of encrypted data,” In:
Juels, A., Wright, R.N., di Vimercati, S.D.C. (eds.) ACM Conference on Computer and Communications Security, pp.89–
98. ACM, New York (2006)

[44] A. Sahai and B. Waters, “Fuzzy Identity Based Encryption. In Advances in Cryptology,” Eurocrypt , volume 3494 of
LNCS , pp. 457-473. Springer, 2005

[45] Z. Zou, “Survey of Attribute Based Encryption”, 2008, unpublished

[46] J. Bethencourt, A. Sahai, and B. Waters “Ciphertext-Policy Attribute-Based Encryption,” 28th IEEE Symposium on
Security and Privacy (Oakland), 2007.

[47] M. Chase, “Multi-authority Attribute Based Encryption,” Lecture notes in computer science, pp. 515 -518, 2007.

[48] L. Cheung and C. Newport, “Provably secure ciphertext policy ABE,” ACM conference on Computer and communications
security, pages pp.456-465 ACM New York,NY, USA, 2007.

[49] J. Katz, A. Sahai, and B. Waters, “Predicate Encryption Supp orting Disjunctions, Polynomial Equations, and Inner
Products,” Lecture notes in computer science, 4965:146, 2008.

[50] J. Li and K. Kim. Attribute-Based Ring Signatures.8

[51] R. Ostrovsky and B. Waters, “Attribute-based encryption with non-monotonic access structures,” 14th ACM conference on
Computer and communications security, pp. 195-203. ACM New York, NY, USA, 2007.

[52] M. Pirretti, P. Traynor, P. McDaniel, and B. Waters, “Secure attribute-based systems,” In Proceedings of the 13th ACM
conference on Computer and communications security, pp. 99 -112. ACM Press New York, NY, USA, 2006.

[53] S. Müller, S. Katzenbeisser, C. Eckert, “Distributed Attribute-Based Encryption,” ICISC, 2008, pp. 20-36

[54] D. Boneh, M. K. Franklin, “Identity-Based Encryption from the Weil Pairing,” SIAM J. Comput. 32(3), pp. 586-615, 2003

[55] A. Shamir, “Identity-Based Cryptosystems and Signature Schemes,” Advances in Cryptology: Proceedings of CRYPTO 84,
Lecture Notes in Computer Science, 7, pp.47-53, 1984

[56] C. Cocks, “An Identity Based Encryption Scheme Based on Quadratic Residues,” Proceedings of the 8th IMA International
Conference on Cryptography and Coding, 2001

[57] Yan Zhu, Zexing Hu, Huaixi Wang, Hongxin Hu and Gail-Joon Ahn, “A Collaborative Framework for Privacy Protection
in Online Social Networks,” In Proceedings of the 6th International Conference on Collaborative Computing
(CollaborateCom 2010), Chicago, Illinois, USA, October 9-12, 2010.

[58] E. Bertino, “Securing Data in the Cloud Challenges and Research Directions,” ICWS 2010 Keynotes

[59] M. Nabeel, N. Shang, J. Zage, E. Bertino, “Mask: a system for privacy-preserving policy-based access to published
content,” SIGMOD Conference 2010, pp. 1239-1242

[60] J. Y. Hwang, D. H. Lee, and J. Lim, “Generic Transformation for Scalable Broadcast Encryption Schemes,” in Proc. of
Advances in Cryptology - Crypto 2005, Lecture Notes in Computer Science, 3621, pp. 276 -292.

[61] R. Baden, A. Bender, N. Spr ing, B. Bhattacharjee, Persona: An Online Social Network with User-Defined Privacy,”
SIGCOMM’09, 2009

[62] M. Shand and J. Vuillemin, “Fast Implementation of RSA Cryptography,” Proc. 11th Symp. on Computer Arithmetic,
1993.

[63] John K. Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis, Jaco b Leverich, David Mazières, Subhasish
Mitra, Aravind Narayanan, Guru M. Parulkar, Mendel Rosenblum, Stephen M. Rumble, Eric Stratmann, Ryan Stutsman:
The case for RAMClouds: scalable high-performance storage entirely in DRAM. Operating Systems Review 43(4): 92-105
(2009)

[64] Evan P. C. Jones, Daniel J. Abadi, Samuel Madden: Low overhead concurrency control for partitioned main memory
databases. SIGMOD Conference 2010: 603-614

 169

[65] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica. Disk-locality in datacenter computing considered irrelevant. In
HOTOS’11: Proceedings of the 13th USENIX workshop on Hot topics in operating systems, 2011.

[66] J. M. Harker et al., "A Quarter Century of Disk File Innovation," ibm J Res. Dev., 1981, pp. 677 -689

[67] --, "IBM Archives: IBM 350 disk storage unit". 03.ibm.com. Retrieved 2011-07-20.

[68] Arthur C. Ammann, Maria Hanrahan, Ravi Krishnamurthy: Design of a Memory Resident DBMS. COMPCON 1985: 54 -
58

[69] Gordon E. Moore (1965-04-19). "Cramming more components onto integrated circuits". Electronics. Retrieved 2011-08-22.

[70] Lehman T., Carey M., “A Study of Index Structures for Main Memory Database Management Systems”, Int. Conf. on
VLDB, Kyoto, Japan, August 1986

[71] Ammann A., Hanrahan M., and Krishnamurthy R., “Design of a Memory Resident DBMS”, IEEE COMPCON, San
Francisco, California, February 1985.

[72] Douglas Comer: The Ubiquitous B-Tree. ACM Comput. Surv. 11(2): 121-137(1979)

[73] David J. DeWitt, Randy H. Katz, Frank Olken, Leonard D. Shapiro, Michael Stonebraker, David A. Wood: Implementation
Techniques for Main Memory Database Systems. SIGMOD 1984:1-8

[74] A. Aho, J. Hopcroft and J. D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley Publishing
Company, 1974.

[75] D. Comer, The Ubiquitous B-Tree, Computing Surveys II,2 (June 1979)

[76] D. J. Abel: A B-tree structure for large quadtrees. Computer Vision, Graphics, and Image Processing (CVGIP) 27(1):19 -31
(1984)

[77] D. Knutb, The Art of Computer Programming, Addison-Wesley, Reading, Mass., 1973.

[78] R. Fagin, J. Nievergelt, N. Pippenger and H. R. Strong, Extendible Hashing : A fast access method for dynamic liles, ACM
Trans. on Database Systems 4,3 (Sept. 1979), 315-344.

[79] W. Litwin, Linear Hashing : A New Tool For File and Table Addressing, Proc. 6th Conf. Very Large Data Bases, Montreal,
Canada, October 1980.

[80] Daniel A. Menascé, Tatuo Nakanishi: Optimistic versus pessimistic concurrency control mechanisms in database
management systems. Inf. Syst. (IS) 7(1):13-27 (1982)

[81] Michael J. Carey: Granularity Hierarchies in Concurrency Control. PODS 1983:156 -165

[82] Tobin J. Lehman and Michael J. Carey, ‘‘A Recovery Algorithm of A High -Performance Memory-Resident Database
System,’’ SIGMOD 1987

[83] ---, ACID (Atomicity, Consistency, Isolation, and Durability) in Dictionary of Multimedia and Internet Applications: A
Guide for Developers and Users (in inglese), Hoboken, Wiley, 1999.

[84] Jim Gray, Andreas Reuter, Transaction Processing - Concepts and Techniques, 1993, Morgan Kaufmann, ISBN 1-55860-
190-2

[85] Rajendran M. Sivasankaran, Krithi Ramamritham, John A. Stankovic: System Failure and Recovery. Real-T ime Database
Systems 2001:109-124

[86] E. Levy and A. Silb erschatz, “Incremental Recovery in Main Memory Database Systems," IEEE Trans. on Knowledge and
Data Eng. 4(6) (Dec. 1992) 529-540.

[87] George P. Copeland, Tom W. Keller, Ravi Krishnamurthy, Marc G. Smith: The Case For Safe RAM. VLDB 1989:327-335

[88] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alex Rasin, Stanley B. Zdonik, Evan P. C. Jones,
Samuel Madden, Michael Stonebraker, Yang Zhang, John Hugg, Daniel J. Abadi: H-store: a high-performance, distributed
main memory transaction processing system. PVLDB 1(2):1496-1499 (2008)

[89] Guo, Chao | Li, Kun | Wang, Yong-Yan | Liu, Sheng-Hang | Wang, Hong-An, “The performance analysis of main memory
database indices on multi-core processors”, Jisuanji Xuebao (Chinese Journal of Computers) [Jisuanji Xuebao (Chin. J.
Comput.)]. Vol. 33, no. 8, pp. 1512-1522. Aug 2010.

[90] Ping Liang, Yunsheng Liu, "A Checkpointing Strategy and Redo Point Strategy for Embedded Real-T ime Main Memory
Databases Crash Recovery," Computer Science and Information Engineering, World Congress on, pp. 696-700, 2009 WRI
World Congress on Computer Science and Information Engineering, 2009

[91] Qin, Xiong-Pai | Xiao, Yan-Qin | Cao, Wei | Wang, Shan “An efficient checkpointing scheme for update intensive
applications in main memory database systems”, Jisuanji Xuebao (Chinese Journal of Computers). Vol. 32, no. 11, pp.
2200-2210. Nov. 2009

[92] Aleksandr Rayshubskiy, B. Fitch, M. Pitman, R. Germain , “Parallel In-Memory Database”, IBM Research Report, 2010

[93] Smith, A.J., “Disk Cache — Miss Ratio Analysis and Design Considerations,” ACM Trans. on Computer Systems,V 3 (3),
Aug. 1985, pp. 161-203.

[94] Wolfgang Effelsberg, Theo Härder: Principles of Database Buffer Management. ACM Trans. Database Syst. (TODS)
9(4):560-595 (1984)

[95] Hakan Hacigümüs, Bala Iyer, Sharad Mehrotra, “Providing Database as a Service”, Proceedings of the 18th International
Conference on Data Engineering (ICDEí02), 2002, pp. 1 -10

[96] Alexander Lenk,Markus Klems, Jens Nimis, Stefan Tai, Thomas Sandholm, “What's inside the Cloud? An architectural
map of the Cloud landscape”, Proceeding of CLOUD 2009, 2009, pp. 23-31

[97] Seny Kamara, Kristin Lauter: Cryptographic Cloud Storage. Financial Cryptography Workshops 2010:136 -149

[98] K. Lai, L. Rasmusson, E. Adar, S. Sorkin, L. Zhang, and B. A. Huberman. Tycoon: an Implemention of a Distributed
Market-Based Resource Allocation System. Multiagent and Grid Systems, 1(3):169–182, Aug. 2005.

[99] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad, T . Stack, K. Webb, and J. Lepreau. Large-scale Virtualization in
the Emulab Network Testbed. In Proceedings of the 2008 USENIX Annual Technical Conference, 2008.

[100] Hewlett-Packard. HP Integrated Lights-Out 2 User Guide. Technical report, HP, 2009.

[101] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. So man, L. Youseff, and D. Zagorodnov. Eucalyptus open-source
Cloud-computing system. In CCA08: Cloud Computing and Its Applications , 2008.

 170

[102] Giuseppa DeCandia and Deniz Hastorun and Madan Jampani and Gunavardhan Kakulapati and Avinash Lakshman and
Alex Pilchin and Swaminathan Sivasubramanian and Peter Vosshall and Werner Vogels. Dynamo: Amazon’s Highly
Available Key-Value Store. In ACM Symposium on Operating Systems Principles, 2007.

[103] K. Keahey and T . Freeman. Contextualization: Providing one-click virtual clusters. In eScience 2008, 2008.

[104] B. Sotomayor, R. Montero, I. M. Llorente, and I. Foster. Capacity Leasing in Cloud Systems using the OpenNebula Engine.
In CCA08: Cloud Computing and its Applications, 2008.

[105] David Recordon, Drummond Reed: OpenID 2.0: a platform for user-centric identity management. Digital Identity
Management 2006:11-16

[106] Alberto Ceselli, Ernesto Damiani, Sabrina De Capitani di Vimercati, Sushil Jajodia, Stefano Paraboschi, Pierangela
Samarati: Modeling and assessing inference exposure in encrypted databases. ACM Trans. Inf. Syst. Secur. (TISSEC)
8(1):119-152 (2005)

[107] Ernesto Damiani, Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Stefano Paraboschi, Pierangela Samarati:
Metadata Management in Outsourced Encrypted Databases. Secure Data Management 2005:16-32

[108] Ward, J, O’Sulllivan, M., Shahoumian, T., and Wilkes, J. 2002. “Appia: Automatic storage area network fabric design. In
Proceedings of the Conference on File and Storage Technologies” (FAST 2002) . The USENIX Association, Monterey,
CA.

[109] Hakan Hacigümüs, Bijit Hore, Balakrishna R. Iyer, Sharad Mehrotra: Search on Encrypted Data. Secure Data Management
in Decentralized Systems 2007:383-425

[110] G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. Kenthapadi, R. Motwani, U. Srivastava, D. Thomas, and Y. Xu.
Two can keep a secret: a distributed architecture for secure database services. In Proc. of the Second Biennial Conference
on Innovative Data Systems Research (CIDR 2005), Asilomar, CA, USA, January 2005.

[111] Valentina Ciriani, Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Stefano Paraboschi, Pierangela Samarati:
Keep a Few: Outsourcing Data While Maintaining Confidentiality. ESORICS 2009:440-455

[112] Valentina Ciriani, Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Stefano Paraboschi, Pierangela Samarati:
Combining fragmentation and encryption to protect privacy in data storage. ACM Trans. Inf. Syst. Secur. (TISSEC) 13(3)
(2010)

[113] Chris Buckley, Ellen M. Voorhees, Evaluating evaluation measure stability, In SIGIR '00: Proceedings of the 23rd annual
international ACM SIGIR conference on Research and development in information retrieval (2000), pp. 33 -40.
doi:10.1145/345508.345543 Key: citeulike:1296575

[114] Agrawal, R. et al., Order preserving encryption for numeric data. In Weikum, G., Konig, A., and Deßloch, S., Eds., Proc. of
the ACM SIGMOD 2004, Paris, France. ACM, 2004, 563.

[115] Alberto Ceselli, Ernesto Damiani, Sabrina De Capitani di Vimercati, Sushil Jajodia, Stefano Paraboschi, Pierangela
Samarati: Modeling and assessing inference exposure in encrypted databases. ACM Trans. Inf. Syst. Secur. (TISSEC)
8(1):119-152 (2005)

[116] Jan Camenisch, Markulf Kohlweiss, Alfredo Rial, Caroline Sheedy: Blind and Anonymous Identity -Based Encryption and
Authorised Private Searches on Public Key Encrypted Data. Public Key Cryptography 2009:196 -214

[117] M. Xie, H. Wang, J. Yin, and X. Meng. Integrity auditing of outsourced data. In Proc. of the 33rd International Conference
on Very Large Data Bases (VLDB 2007), Vienna, Austria, September 2007.

[118] E. Mykletun, M. Narasimha, and G. Tsudik. Authentication and integrity in outsourced databases. ACM Transactions on
Storage, 2(2):107–138, May 2006.

[119] G. Di Battista and B. Palazzi. Authenticated relational tables and authenticated skip lists. In Proc. of the 21th IFIP WG11.3
Working Conference on Data and Application Security, Redondo Beach, CA, USA , A u g u st 2 007 .

[120] Ernesto Damiani, Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Stefano Paraboschi, Pierangela Sam arati:
Selective Data Encryption in Outsourced Dynamic Environments. Electr. Notes Theor. Comput. Sci. (ENTCS) 168:127-
142 (2007)

[121] Miklau, G. and D. Suciu, Control ling access to published data using cryptography , in: Proc. of the 29
th

 International
Conference on Very Large Data Bases , Berlin, Germany, 2003

[122] Vibhor Rastogi, Dan Suciu, Sungho Hong, “ The boundary between privacy and utility in data publishing”, In VLDB '07:
Proceedings of the 33rd international conference on Very large data bases (2007), pp. 531-542.

[123] Florian Kerschbaum, Axel Schröpfer, Antonio Zilli, Richard Pibernik, Octavian Catrina, Sebastiaan de Hoogh, Berry
Schoenmakers, Stelvio Cimato, Ernesto Damiani: Secure Collaborative Supply -Chain Management. IEEE Computer
(COMPUTER) 44(9):38-43 (2011)

[124] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati. Controlled information sharing in
collaborative distributed query processing. In Proc. of the 28th International Conference on Distributed Computing Systems
(ICDCS 2008), Beijing, China, June 2008.

[125] Balakrishna R. Iyer, Sharad Mehrotra, Einar Mykletun, Gene Tsudik, Yonghua Wu: A Framework for Efficient Storage
Security in RDBMS. EDBT 2004:147-164

[126] Hore , B., Me hrotra, S., and Tsudik, G., A privacy-preserving index for range queries. In Nascimento, M. et al., Eds., Proc.
of t he 30th International Conference on Very Large Data Bases , Toronto, Canada. Morgan Kaufmann, 2004, 720.

[127] Ramakrishnan Raghu, Gehrke Johannes - Database Management Systems, McGraw-Hill Higher Education (2000), 2nd
edition (en) page 267

[128] M. Bezzi, S. De Capitani di Vimercati, S. Foresti, G. Livraga, S. Paraboschi, P. Samarati, “Data privacy” in Camenisch,
Jan; Fischer-Hübner, Simone; Rannenberg, Kai, “Privacy and Identity Management for Life”, Springer 1st Edition., 2011,
XXIV, 512 p. 122 illus.

[129] C. Blundo, S. Cimato, S. D. C. di Vimercati, A. D. Santis, S. Foresti, S. Paraboschi, and P. Samarati. Efficient key
management for enforcing access control in outsourced scenarios. In SEC, pages 364 –375, 2009

[130] V. El-khoury, N. Bennani, and A. M. Ouksel. Distributed key man-agement in dynamic outsourced databases: A trie-based
approach. In DBKDA ’09: Proceedings of the 2009 First International Conference on Advances in Databases, Knowledge,
and Data Applications, pages 56–61, Washington, DC, USA, 2009. IEEE Computer Society.

 171

[131] W. Wang, Z. Li, R. Owens, and B. Bhargava. Secure and efficient access to outsourced data. In CCSW ’09: Proceedings of
the 2009 ACM workshop on Cloud computing security, pages 55–66, New York, NY, USA, 2009. ACM.

[132] S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati. Over-encryption: management of access control
evolution on outsourced data. In VLDB ’07: Proceedings of the 33rd international conference on Very large data bases,
pages 123–134. VLDB Endow-ment, 2007

[133] Mikhail J. Atallah, Marina Blanton, Nelly Fazio, Keith B. Frikken: Dynamic and Efficient Key Management for Access
Hierarchies. ACM Trans. Inf. Syst. Secur. (TISSEC) 12(3) (2009)

[134] XiuXia T ian, XiaoLing Wang, AoYing Zhou, "DSP RE-Encryption: A Flexible Mechanism for Access Control
Enforcement Management in DaaS," Cloud Computing, IEEE International Conference on, pp. 25 -32, 2009 IEEE
International Conference on Cloud Computing, 2009

[135] Deborah Russell, G. T . Gangemi: Computer security basics (3. ed.). O'Reilly 1992

[136] E. Shmueli, R. Vaisenberg, Y. Elovici, C. Glezer, “Database encryption: an overview of contemporary challenges and
design considerations,” SIGMOD Record 38(3), 2009, pp. 29 -34

[137] Microsoft, "Improving data security by using SQL Server 2005: Using SQL Server 2005 to help protectdata," Technical
White Paper, October 2005.

[138] W. Stallings, "Cryptography and network security principles and practices", Fourth Edition, Prentice Hall, 2005.

[139] Application Security, Inc., "Encryption of data at rest," White Paper, Accessed November 2006 at
http://www.appsecinc.com/presentations/Encryption_of_Data_at_Rest.pdf.

[140] Ernest F. Brickell,” Some ideal secret sharing schemes,” in Proceeding EUROCRYPT '89 Proceedings of the workshop on
the theory and application of cryptographic techniques on Advances in cryptology Springer-Verlag New York, Inc. New
York

[141] ElGamal, Taher (1985). "A public key cryptosystem and a signature scheme based on discrete logarithms". Advances in
cryptology: Proceedings of CRYPTO 84. Lecture Notes in Computer Science. 196. Santa Barbara, California, United
States: Springer-Verlag. pp. 10–18

[142] B. Carminati, E. Ferrari, and A. Perego, “Private relationships in social networks,” in ICDE Workshops. IEEE Computer
Society, 2007, pp.163–171.

[143] Eric C. Turner, Subhasish Dasgupta: Privacy on the Web: an Examination of User Concerns, Technology, and Implications
for Business Organizations and Individuals. IS Management (ISM) 20(1):8 -18 (2003)

[144] Davis, J., Protecting Privacy in the Cyber Era, IEEE Technology and Society Magazine, Summer 2000, pp. 10–22

[145] Y.-Y. Ahn, S. Han, H. Kwak, S. Moon, and H. Jeong. Analysis of Topological Characteristics of Huge Online Social
Networking Services. In Proceedings of the 16

th
 international conference on World Wide Web (WWW’07), Banff, Canada,

May 2007.

[146] Davida GI, Wells DL, Kam JB (1981) A Database Encryption System with subkeys. ACM Trans. Database Syst. 6, 312 -
328.

[147] Buehrer D, Chang C (1991) A cryptographic mechanism for sharing databases. The International Conference on
Information & Systems. Hangzhou, China, pp. 1039-1045.

[148] [Chang C, Chan CW (2003) A Database Record Encryption Scheme Using RSA Public Key Cryptosystem and Its Master
Keys. The international conference on Computer networks and mobile computing.

[149] Shmueli E, Waisenberg R, Elovici Y, Gudes E (2005) Designing secure indexes for encrypted databases. Proceedings of
Data and Applications Security, 19th Annual IFIP WG 11.3 Working Conference, USA.

[150] Kühn U (2006) Analysis of a Database and Index Encryption Scheme – Problems and Fixes. Secure Data Management.

[151] Min-Shiang H, Wei-Pang Y (1997) Multilevel Secure Database Encryption with Subkeys. Data and Knowledge
Engineering 22, 117-131.

[152] U. Mattsson. Database Encryption-How to Balance Security with Performance. IT toolbox Database:
http://database.ittoolbox. com/documents/peer publishing/databaseencryption-how-to-balance-security-with-performance-
4503, July, 2005.

[153] Merhotra S, Gore B (2009) A Middleware approach for managing and of outsourced personal data, NSF Workshop on Data
and Application Security, Arlignton, Virginia, February 2009.

[154] Elisa Bertino, Stavros Christodoulakis, Dimitris Plexousakis, Vassilis Christophides, Manolis Koubarakis, Klemens Böhm,
Elena Ferrari: Advances in Database Technology - EDBT 2004, 9th International Conference on Extending Database
Technology, Heraklion, Crete, Greece, March 14-18, 2004, Proceedings EDBT 2004

[155] “Understanding and Selecting a Database Encryption or Tokenization Solution”, Securosis:
http://securosis.com/reports/Securosis_Understanding_DBEncryption.V_.1_.pdf, 05/10/2010

[156] Bouganim L, Pucheral P (2002) Chip-secured data access: confidential data on untrusted servers. The 28th Int. Conference
on Very Large Data Bases, Hong Kong, China, pp. 131-142

[157] Vingralek R (2002) Gnatdb: A small-footprint, secure database system. The 28th Int'l Conference on Very Large Databases,
Hong Kong, China, August, pp. 884-893.

[158] France, R.B., Ghosh, S., Trong, T.D., Solberg, A.: Model driven development using uml 2.0: Promises and pitfalls. IEEE
Computer 39 (February 2006) 59–66

[159] Smith, S.; Beaulieu, A.; Phillips, W.G.; Dept. of Electr. & Comput. Eng., R. Mil. Coll. of Canada, Kingston, ON,
Canada, “Modeling and verifying security protocols using UML 2,” Systems Conference (SysCon), 2011 IEEE
International 2011, pp. 72 – 79

[160] D. Kevin. “Facebook is off-the-wall”. Facebook. http://blog.facebook.com/blog.php?post=3532972130. Retrieved 2007-07-
30

[161] NIST Draft Definition of Cloud Computing http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145_Cloud-
definition.pdf

[162] Hill, T . & R. Westbrook - SWOT Analysis: It’s T ime for a Product Recall. Long Range Planning, 1997

http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145_cloud-definition.pdf
http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145_cloud-definition.pdf

 172

APPENDIX A PUBLICATIONS

1. E. Damiani and F. Pagano, “Handling confidential data on the

untrusted Cloud: an agent-based approach,” Cloud

Computing 2010, pp. 61-67

Abstract

Cloud computing allows shared computer and storage facilities to

be used by a multitude of clients. While Cloud management is

centralized, the information resides in the Cloud and information

sharing can be implemented via off-the-shelf techniques for multiuser

databases. Users, however, are very diffident for not having full control

over their sensitive data. Untrusted database-as-a-server techniques

are neither readily extendable to the Cloud environment nor easily

understandable by non-technical users. To solve this problem, I present

an approach where agents share reserved data in a secure manner by

the use of simple grant-and-revoke permissions on shared data.

2. D. Pagano and F. Pagano, “Using in-memory encrypted

databases on the Cloud,” IWSSC 2011, pp. 30-37

Abstract

Storing data in the Cloud poses a number of privacy issues. A way to

handle them is supporting data replication and distribution on the

Cloud via a local, centrally synchronized storage. In this paper I

propose to use an in-memory RDBMS with row-level data encryption

 173

for granting and revoking access rights to distributed data. T his type of

solution is rarely adopted in conventional RDBMSs because it requires

several complex steps. In this paper I focus on implementation and

benchmarking of a test system, which shows that my simple yet

effective solution overcomes most of the problems.

3. E. Damiani, F. Pagano and D. Pagano, “iPrivacy: a

Distributed Approach to Privacy on the Cloud”, in press,

International Journal On Advances in Security

Abstract

The increasing adoption of Cloud storage poses a number of privacy

issues. Users wish to preserve full control over their sensitive data and

cannot accept that it to be accessible by the remote storage provider.

Previous research was made on techniques to protect data stored on

untrusted servers; however I argue that the Cloud architecture presents

a number of open issues. To handle them, I present an approach where

confidential data is stored in a highly distributed database, partly

located on the Cloud and partly on the clients. Data is shared in a

secure manner using a simple grant-and-revoke permission of shared

data and I have developed a system test implementation, using an in

memory RDBMS with row-level data encryption for fine-grained data

access control.

	Abstract
	Acknowledgements
	Table of contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Structure of this dissertation

	Part I - Background and state of the art
	2 Background on data protection
	2.1 Outsourced storage on untrusted servers
	2.2 Data protection techniques
	2.2.1 Data encryption
	2.2.1.1 Data Model
	2.2.1.2 Query execution
	2.2.1.3 Indexing techniques
	1.1.1.1.1 Index by encryption
	1.1.1.1.2 Bucket-Based Index
	1.1.1.1.3 Index by hashing
	1.1.1.1.1. Auxiliary B+-tree
	1.1.1.1.1 Other Approaches

	2.2.2 Data fragmentation
	2.2.2.1 Non-communicating servers
	1.1.1.1.4 Query execution

	2.2.2.2 Unlinkable fragments
	1.1.1.1.5 Choice of fragments
	1.1.1.1.6 Query execution

	2.2.3 Data fragmentation with owner involvement
	1.1.1.1.7 Query execution

	2.3 Selective access
	2.4 Dynamic rights management
	2.5 References

	3 Cryptography in databases
	3.1 Storage-level encryption
	3.2 Database-level encryption
	3.3 Application-level encryption
	3.4 Granularity in database-level encryption
	3.4.1 Database
	3.4.2 Tables
	3.4.3 Columns
	3.4.4 Rows

	3.5 Attacks to database security
	3.6 References

	4 In-memory databases
	4.1 The impact of in-memory structure
	4.1.1 Data representation
	4.1.2 Access methods
	4.1.3 Query processing
	4.1.4 Concurrency control
	4.1.4.1 Granularity of locks in a database with pessimistic approach

	4.1.5 Logging and Recovery
	4.1.5.1 Transaction logging and commit processing

	4.1.6 Performance

	4.2 Cache vs. IMDB
	4.3 References

	5 Broadcast ENCRYPTION
	5.1 Broadcast Encryption schemas
	5.2 Threshold cryptosystem
	5.3 Distributed key generation
	5.3.1 El Gamal
	5.3.2 Identity Based Encryption (IBE)

	5.4 Attribute Based Encryption (ABE)
	5.5 Encryption in Online Social Network
	5.5.1 Persona
	5.5.2 Group-oriented Convergence Cryptosystem (GCC)

	5.6 Similarities between Distributed Databases and Online Social Network
	5.7 References

	6 Privacy within the Cloud
	6.1.1 Cryptographic Storage Service
	6.1.1.1 A Consumer Architecture
	6.1.1.2 An Enterprise Architecture

	6.2 Privacy issues in Cloud computing
	6.3 Semantic datastore
	6.4

	Part II - Research questions and results
	7 Design of a distributed system for Information sharing
	7.1 Description Language
	7.2 The architecture
	7.3 The model

	8 Scenarios
	8.1 Medical
	8.2 Collaboration and sharing between independent professionals
	8.3 Nomadic users

	9 My approach: the iPrivacy system
	9.1 Structure
	9.2 Grant
	9.3 Send
	9.4 Receive
	9.5 Use
	9.6 Revoke

	10 Congruence between planned and achieved goals
	10.1 The Sender component (client side)
	10.2 Receiver
	10.3 Synchronizer
	10.4 Network
	10.5 References

	Part III - Validation
	11 Experimentation
	11.1 HyperSql
	11.1.1 Loader
	11.1.2 Insert
	11.1.3 Serializer

	11.2 Prototype System
	11.2.1 Client side
	11.2.1.1 Load time
	11.2.1.2 Save time

	11.2.2 Server side

	11.3 Performances
	11.3.1 Read operations
	11.3.2 Write operations
	11.3.3 Benchmark
	11.3.4 Results

	11.4 References

	12 Scalability
	12.1 The new architecture
	12.2 The synchronization phase
	12.2.1 managePK
	12.2.2 manageDK
	12.2.3 managePR

	12.3 Considerations

	13 Comparison with other approaches
	13.1 Threshold systems
	13.2 IBE
	13.3 ABE
	13.4 Persona
	13.5 GCC
	13.6 Conclusions
	13.7 References

	14 Vulnerability assessment
	14.1 Client
	14.1.1 Sender
	14.1.2 Receiver

	14.2 Synchronizer
	14.3 Network
	14.3.1 Fault
	14.3.2 Redirection

	14.4 Conclusions
	14.5 References

	15 Extended scenarios
	15.1 Forced cooperation
	15.2 Vehicle to Vehicle Communication

	16 Conclusions and Outlook
	References
	Appendix A Publications

