
SCUOLA DI DOTTORATO IN INFORMATICA

DIPARTIMENTO DI INFORMATICA E COMUNICAZIONE

DOTTORATO IN INFORMATICA XXIV CICLO

ON BINAURAL SPATIALIZATION AND THE USE
OF GPGPU FOR AUDIO PROCESSING

INFORMATICA (INF/01)

Candidato:

Davide Andrea MAURO

R08168

Supervisore: Prof. Goffredo HAUS

Coordinatore del Dottorato: Prof. Ernesto DAMIANI

A.A. 2010/2011

i

“A Ph.D. thesis is never finished; it’s abandoned”

Modified quote from Gene Fowler

Contents

Abstract x

0.1 Abstract . x

0.2 Structure of this text . xi

1 An Introduction to Sound Perception and 3D Audio 1

1.1 Glossary and Spatial Coordinates . 1

1.2 Anatomy of the Auditory System . 5

1.3 Sound Localization: Localization Cues 8

1.4 Minimum Audible Angle (MAA) . 14

1.5 Distance Perception . 14

1.6 Listening through headphones and the Inside the Head Localization

(IHL) . 17

1.7 3D Audio and Binaural Spatialization Techniques 18

1.8 Binaural Spatialization . 18

2 General Purpose computing on Graphic Processing Units (GPGPU): An

Overview 20

2.1 Available Architectures . 21

ii

CONTENTS iii

2.1.1 CUDA . 21

2.1.2 OpenCL . 22

2.2 The choice of an architecture . 22

2.3 The state of the art in GPGPU for Audio 23

3 A Model for a Binaural Spatialization System 28

3.1 Convolution Engines . 28

3.1.1 State of the Art . 30

3.1.2 Convolution in the Time Domain 31

3.1.3 Convolution in the Frequency Domain 32

3.2 Reference CPU implementations . 35

3.2.1 A CUDA convolution engine 36

3.2.2 An OpenCL convolution engine 36

3.3 The CGPUconv prototype . 36

3.3.1 Performance Comparisons 37

3.4 Summary and Discussion of the results 42

4 A Head-Tracking based Binaural Spatialization Tool 43

4.1 Related Works . 44

4.2 An overview of MAX/MSP . 46

4.3 Integrating a Head-tracking System into MAX 49

4.4 The “Head In Space” Application 50

4.4.1 Coordinates Extraction . 52

4.4.2 The Convolution Process . 59

4.4.3 Interpolation and Crossfade Among Samples 61

4.4.4 Simulation of Distance . 63

4.4.5 The Graphical User Interface 63

4.5 Multiple Webcams Head-tracking 64

CONTENTS iv

4.6 Summary and Discussion of the results 66

5 Psychoacoustics and Perceptual Evaluation of Binaural Sounds 68

5.1 Experimental Design . 70

5.1.1 Room Acoustics . 70

5.1.2 Spatial Coordinates . 71

5.1.3 Classification of the Stimuli 72

5.1.4 Binaural Recordings . 76

5.1.5 Classification of subjects . 76

5.1.6 Task and Questionnaire . 77

5.2 Results . 78

5.3 Summary and Discussion of the results 84

6 Conclusions and Future Works 85

6.1 Future Works . 86

6.1.1 Improvements in the GPU implementation of a convolution

engine . 86

6.1.2 Use of different transforms beside FFT 86

6.1.3 OpenCL implementation for radix n 86

6.1.4 Partitioned Convolution Algorithm 87

6.1.5 BRIRs (Binaural Reverb Impulse Responses) 87

6.1.6 Further perceptual tests on binaurally spatialized signals . . . 87

6.1.7 Binaural spatialization in VR applications for the blind 88

A Convolution Implementations 89

B Source Code for Head-tracking external module 93

C Questionnaire for Perceptual Test and Results 100

CONTENTS v

Acknowledgement 110

Bibliography 111

List of Figures

1.1 Coordinates system used to determine the position of a sound source

with respect to head of the listener (adapted from [10]). 4

1.2 External ear adapted from [29]. 6

1.3 This graph show ILD for varying azimuths and for varying frequen-

cies. (Graph from [45]) . 9

1.4 This graph show ITD variations. (Graph from [45]) 10

1.5 An analytical model for the effects of pinnae. (Adapted from [7]) . . . 12

1.6 Distribution of the sound pressure, for different resonance typologies,

inside an external ear model with a high impedance end. The dotted

lines indicate the nodal points. (Adapted from [10]) 13

1.7 Minimum Audible Angle for sine waves at varying frequencies and

azimuths. (Adapted from [45]) . 15

1.8 Influence of humidity on attenuation. (ISO 9613-1 [1]) 16

2.1 Throughput, with memory overhead. 25

2.2 Throughput, no overhead. 26

2.3 Throughput vs. Segment size. 27

vi

LIST OF FIGURES vii

3.1 The workflow diagram of the system. 29

3.2 A scheme of convolution in frequency domain. 33

3.3 Schematic view of the overlap-add convolution method. 34

3.4 Execution time for Direct mode depending on input size. 40

3.5 Execution time for Overlap-add depending on input size. 41

4.1 The evolution of the MAX family. 48

4.2 The workflow diagram of the system. 51

4.3 An overview of the patch. 53

4.4 The translation system. 54

4.5 The detail of the MAX subpatch for the convolution process via CPU. 60

4.6 The detail of the MAX subpatch for the crossfade system. 61

4.7 The graphical user interface of the program. 65

5.1 Coordinates of sound objects. 73

5.2 Two different types of envelope. 75

5.3 The portion of the questionnaire where subjects report about the posi-

tion of sound objects. 77

5.4 Mean values grouped by sound type and by subject class. 79

5.5 Overall values for artificial and natural sound classes. 80

5.6 Mean values for different angles and distances. 82

C.1 First page of the questionnaire. 101

C.2 Second page of the questionnaire. 102

C.3 Third page of the questionnaire. 103

C.4 Fourth page of the questionnaire. 104

C.5 Fifth page of the questionnaire. 105

C.6 Results, Page 1/3. 106

LIST OF FIGURES viii

C.7 Results, Page 2/3. 107

C.8 Results, Page 3/3. 108

List of Tables

3.1 Performance comparisons. Time in ms. 39

3.2 Performance comparisons. Time in ms. 42

5.1 The sound stimuli grouped by types used in the experiment. 75

5.2 Clusters for voice sound (so5). 83

ix

Abstract

This thesis has been submitted in partial fulfillment of the requirements for the degree

of Doctor of Philosophy in Computer Science at the Università degli Studi di Milano.

The supervisor of this thesis is Prof. Goffredo Haus, Head of the Laboratorio di Infor-

matica Musicale (LIM), Università degli Studi di Milano, University Board member

and Chair of the IEEE Computer Society Technical Committee on Computer Gener-

ated Music (TCCGM).

0.1 Abstract

3D recordings and audio, namely techniques that aim to create the perception of sound

sources placed anywhere in 3 dimensional space, are becoming an interesting resource

for composers, live performances and augmented reality. This thesis focuses on bin-

aural spatialization techniques.

We will tackle the problem from three different perspectives. The first one is related

to the implementation of an engine for audio convolution, this is a real implementation

problem where we will confront with a number of already available systems trying

to achieve better results in terms of performances. General Purpose computing on

Graphic Processing Units (GPGPU) is a promising approach to problems where a high

parallelization of tasks is desirable. In this thesis the GPGPU approach is applied to

both offline and real-time convolution having in mind the spatialization of multiple

x

Chapter 0. Abstract xi

sound sources which is one of the critical problems in the field. Comparisons between

this approach and typical CPU implementations are presented as well as between FFT

and time domain approaches.

The second aspect is related to the implementation of an augmented reality system

having in mind an “off the shelf” system available to most home computers without

the need of specialized hardware. A system capable of detecting the position of the

listener through a head-tracking system and rendering a 3D audio environment by

binaural spatialization is presented. Head tracking is performed through face tracking

algorithms that use a standard webcam, and the result is presented over headphones,

like in other typical binaural applications. With this system users can choose audio files

to play, provide virtual positions for sources in an Euclidean space, and then listen as

if they are coming from that position. If users move their head, the signals provided

by the system change accordingly in real-time, thus providing the realistic effect of a

coherent scene.

The last aspect covered by this work is within the field of psychoacoustic, long term

research where we are interested in understanding how binaural audio and recordings

are perceived and how then auralization systems can be efficiently designed. Consider-

ations with regard to the quality and the realism of such sounds in the context of ASA

(Auditory Scene Analysis) are proposed.

0.2 Structure of this text

This work is organized as follows.

• Chapter 1 — An Introduction to Sound Perception and 3D Audio. The goal of

the first part (Chapters 1,2) is to provide a solid background and context for

the remainder of the work. In this Chapter the fundamental concepts of hearing

and sound perception are defined. These serve as a basis for the development

Chapter 0. Abstract xii

of 3D audio techniques and in particular to binaural spatialization. Besides the

general introduction to hearing provided we focus on the spatial hearing and the

development of techniques for 3D audio rendering, giving emphasis to Binaural

Spatialization and detailing the available implementations and what we choose

for our work.

• Chapter 2 — General Purpose computing on Graphic Processing Units (GPGPU):

An Overview. This Chapter briefly sketches the opportunities granted by the ap-

plication of GPUs (traditionally devoted to graphics) to other kind of computa-

tions. This field is experiencing an always increasing interest due the nature of

GPUs; they have a highly parallelized architecture that can suit problems that

can not be efficiently solved by traditional CPUs or require complex, dedicated

and expensive architectures.

• Chapter 3 — A Model for a Binaural Spatialization System. This is the “core”

chapter of the work and presents results that aim at the creation of a suitable

convolution engine. Both the CPU and the novel GPU implementations are de-

scribed, emphasizing differences in performance, complexity and memory use.

• Chapter 4 — A Head-Tracking based Binaural Spatialization Tool. In this chap-

ter we present the results of a number of prototypes that aim at the creation of a

suitable tool for real time spatialization of sounds that accounts for the position

of the listener. A description of such a system as well as an overview of the

employed techniques is given.

• Chapter 5 — Psychoacoustics and Perceptual Evaluation of Binaural Sounds.

The perception of acoustical phenomena is still a not-completely-known field so

the evaluation of procedures, methodologies and results needs to be carried out

with psychoacoustics tests. We present the results of a subjective evaluation of

Chapter 0. Abstract xiii

binaural sounds that can serve as a basis for optimized version of spatialization

algorithms where some sounds are regarded (perceived) as more important with

respect to others.

• Chapter 6 — Conclusions and Future Works. Finally, this chapter provides a

summary of all the concepts discussed. Relevant results and further works are

presented as well.

Chapter 1
An Introduction to Sound Perception and

3D Audio

In this Chapter, an introduction will be given in terms of concepts of acoustics and

psychoacoustics, focusing on localization. The discussion will start with a prelimi-

nary consideration that led us to analyze the expressions “Localization” and “Binaural

Localization.” We indicate the capability of our perceptive system, thus including not

only the hearing system,1 to locate a sound source, that could lead to the perception of

an auditory event, in an Euclidean space.

1.1 Glossary and Spatial Coordinates

• Auditory Event: Everything perceived by the hearing system.

• Sound Event: A physical phenomenon. Please note that there is not a bijective

relationship between auditory events and sound events. The former could exist

without the latter. For example in some diseases such as tinnitus (ringing or

1Interaction between audio-visual systems is well known and studied. See for example [44].

1

Chapter 1. An Introduction to Sound Perception and 3D Audio 2

buzzing in the ears), sound events may not be perceived if under the audibility

threshold or masked by louder sounds.

• Localization: For Moore ([45]), this is the judgement on the location and dis-

tance of an auditory event produced by a sound source. Blauert ([10]) uses

instead a definition related to laws and rules that lead an auditory event to be in

relationship with one or more specific attributes of the sound event or any other

event related to the auditory one.

• Localization Cues: Specific attributes of the sound event that are used by the

hearing system in order to locate the position of a sound source in a Euclidean

space. See next Sections for details.

• Localization Blur: According to Blauert ([10]), this is the smallest variation of

one specific attribute of a sound event, or any event related to an auditory event,

that is sufficient to induce a variation on the judgement of the position of auditory

event.

• Lateralization: Auditory events perceived inside the head normally on an imagi-

nary line that goes from one ear to the other. This is quite common while listen-

ing through headphones.

• Monaural: of or involving a sound stimulus presented to one ear only.

• Binaural: of or involving a sound stimulus presented to both ears simultaneously.

The word is commonly used also for sounds recorded using two microphones

and usually transmitted separately to the two ears of the listener.

• Diotic: involving or relating to the simultaneous stimulation of both ears with

the same sound.

Chapter 1. An Introduction to Sound Perception and 3D Audio 3

• Dichotic: involving or relating to the simultaneous stimulation of the right and

left ear by different sounds.

• HRIR (head related impulse response): It is the impulse response of the “head

system” (head, pinna and torso), measured at the beginning of the ear canal for

a given angle of azimuth and elevation, and for a given distance.

• BRIR (binaural room impulse response or binaural reverb impulse response):

According to Picinali ([53]), this is the impulse response of the “head system”

measured inside a room, or any other environment. It is basically the combina-

tion of a HRIR with a room impulse response.

• HRTF (head related transfer function): The terms HRTF and HRIR are often

used as pseudo-synonyms, where HRTF stands for the transfer function repre-

sented in the frequency domain while HRIR stands for the same representation in

the time domain. As any Linear Time-Invariant (LTI) system it can be described

by impulse responses. Body Related Transfer Functions (BRTF) is an extension

of the aforementioned concept that takes into account the whole human body

[4].

In order to localize a sound source in a 3-dimensional space it is necessary to es-

tablish a coordinate system. We can distinguish between three different planes having

a common origin in the center of the head (more precisely laying on the segment that

goes from one ear to the other), see Figure 1.1).

• Horizontal plane: placed at the superior margins of the two ear canals and at the

inferior part of the ocular cavity.

• Vertical plane (or Frontal): placed at an angle of 90◦ to the horizontal plane, it

intersects with this at the upper margins of the two ear canals.

Chapter 1. An Introduction to Sound Perception and 3D Audio 4

Figure 1.1: Coordinates system used to determine the position of a sound source with respect
to head of the listener (adapted from [10]).

Chapter 1. An Introduction to Sound Perception and 3D Audio 5

• Median plane: placed at an angle of 90◦ to both the horizontal and the frontal

planes, it is the plane of symmetry of the head.

The position can now be defined in terms of azimuth ϕ (angle on the horizontal plane),

elevation δ (angle on vertical plane) and distance r (in meters, from the sound source

to the center of the listeners head). As an example a sound with 0◦ of azimuth and

0◦ of elevation is in front of the listener, while one having 180◦ of azimuth and 0◦ of

elevation is behind the listener.

1.2 Anatomy of the Auditory System

The auditory system is the sensory system for the sense of hearing. The external ear,

depicted in Figure 1.2 can be conventionally subdivided into three sections: outer ear,

middle ear, and inner ear. The most interesting part for sound localization is the outer

ear but it is useful to give an overview of the entire system.

Outer Ear

The outer ear is the external portion of the ear, which consists of the pinna, concha

(cavum conchae), and external auditory meatus. It gathers sound energy and focuses

it on the eardrum (tympanic membrane).

The visible part is called the pinna. It is composed of a thin plate of cartilage, cov-

ered with skin, and connected to the surrounding parts by ligaments and muscles; and

to the commencement of the external acoustic meatus by fibrous tissue. It is attached

with an angle varying from 25◦ to 45◦. It exhibits great variabilities among subjects

(this will lead to the problem of individualization of HRTFs). The pinna acts as a

sound gatherer and sound waves are reflected and attenuated when they hit the pinna.

These interactions provide additional information that will help the brain determine the

Chapter 1. An Introduction to Sound Perception and 3D Audio 6

Figure 1.2: External ear adapted from [29].

direction that the sounds arrive from (See section on Direction Dependent Filtering).

The auditory canal is a slightly curved tube fully covered by skin. At the entrance

it has a diameter of 5–7 mm, which then rises to 9–11 mm and diminishes again to

7–9 mm; its length is approximately 25 mm.

Chapter 1. An Introduction to Sound Perception and 3D Audio 7

Middle Ear

The middle ear is the portion of the ear internal to the eardrum, and external to the oval

window of the cochlea. The middle ear contains three ossicles, which couple vibration

of the eardrum into waves in the fluid and membranes of the inner ear. The hollow

space of the middle ear has also been called the tympanic cavity, or cavum tympani.

The eustachian tube joins the tympanic cavity with the nasal cavity (nasopharynx),

allowing pressure to equalize between the middle ear and throat. The primary function

of the middle ear is to efficiently transfer acoustic energy from compression waves in

air to fluidmembrane waves within the cochlea.

The eardrum is an elliptical membrane (10–11 mm measured at the long angle,

and 8.5–9 mm on the shorter), approximately 0.1 mm thick, positioned at the end of

the auditory canal with an angle of 40–50◦. It can be considered a pressure sensitive

receiver. The middle ear contains three tiny bones known as the ossicles: malleus

(hammer), incus (anvil), and stapes (stirrup).The ossicles mechanically convert the

vibrations of the eardrum into amplified pressure waves in the fluid of the cochlea

(or inner ear) with a lever arm factor of 1.3. Since the area of the eardrum is about

17 fold larger than that of the oval window, the sound pressure is concentrated and

amplified, leading to a pressure gain of at least 22. The eardrum is attached to the

malleus, which connects to the incus, which in turn connects to the stapes. Vibrations

of the stapes footplate introduce pressure waves in the inner ear. There is a steadily

increasing body of evidence that shows that the lever arm ratio is actually variable,

depending on frequency. Between 0.1 and 1 kHz it is approximately 2, it then rises to

around 5 at 2 kHz and then falls off steadily above this frequency (see [38] for details).

The impedance of the eardrum varies with frequencies, and may increase up to 100%,

thanks to the “Acoustic Reflex” phenomenon (see pp. 55-63, [10]), i.e., the contraction

of two small muscles, located within the ossicles chain, activated when the sound

Chapter 1. An Introduction to Sound Perception and 3D Audio 8

pressure level reaches 90–100 dB. The middle ear efficiency peaks at a frequency of

around 1 kHz. The combined transfer function of the outer ear and middle ear gives

humans a peak sensitivity to frequencies between 1 kHz and 3 kHz.

Inner Ear

The inner ear consists of the cochlea and a non-auditory structure, the vestibular sys-

tem, that is dedicated to balance. The cochlea has three fluid-filled sections, and sup-

ports a fluid wave driven by pressure across the basilar membrane separating two of the

sections. Strikingly, one section, called the cochlear duct or scala media, contains en-

dolymph, a fluid similar in composition to the intracellular fluid found inside cells. The

organ of Corti is located in this duct on the basilar membrane, and transforms mechan-

ical waves to electric signals in neurons. The other two sections are known as the scala

tympani and the scala vestibuli; these are located within the bony labyrinth, which is

filled with fluid called perilymph, similar in composition to cerebrospinal fluid. The

chemical difference between the two fluids (endolymph & perilymph) is important for

the function of the inner ear due to electrical potential differences between potassium

and calcium ions.

1.3 Sound Localization: Localization Cues

It is now time to ask how our auditory system can locate a sound in space; the position

of the human ears on the horizontal plane supports the perception of interaural differ-

ences from sound events that occurs around us more than events above or under the

head of the listener.

There exist mainly three different so called “localization cues”; ILD (Interaural

level difference), ITD (Interaural time difference), and DDF (Direction dependent fil-

tering) that is a filtering effect with respect to the position of the sound source. While

Chapter 1. An Introduction to Sound Perception and 3D Audio 9

the first two are regarded as interaural differences the latter is essentially a monaural

attribute that still works using only one ear.

Interaural Level Difference (ILD) and Interaural Time Difference

(ITD)

• ILD (Interaural Level Difference) [10] represents the difference in intensity be-

tween the ears and it is usually expressed in dB. It is most effective for high

frequency (above 1 kHz) where the head act as an obstacle generating an acous-

tic shadow and diffraction on its surface. It is depicted in Figure 1.3 as a function

of frequency and azimuth.

Figure 1.3: This graph show ILD for varying azimuths and for varying frequencies. (Graph
from [45])

• ITD (Interaural Time Difference) [10] represents the delay of arrival of the sound

Chapter 1. An Introduction to Sound Perception and 3D Audio 10

between the two ears (usually expressed in ms). In a real context both the cues

cooperate in order to get a correct localization (even if these two parameters

alone generate the so called cone of confusion [33]) of sound but they tend to

work on different parts of the spectrum (according to the Duplex Theory origi-

nally proposed by Lord Rayleigh in 1907 [40].) It is depicted in Figure 1.4 as a

function of azimuth.

Figure 1.4: This graph show ITD variations. (Graph from [45])

For low frequencies, whose wavelength is bigger than the radius of the head, the head

itself does not act as an obstacle giving no significative intensity variations as the wave

diffracts around the head. For this reason our hearing system exploits the use of ITD.

While the frequency increases the period of the signal becomes comparable with the

Chapter 1. An Introduction to Sound Perception and 3D Audio 11

ITD itself giving no opportunity to distinguish i.e. between a sound in phase because

arrived at the same timing or shifted by one period. So ITD becomes less useful for

frequencies greater than 800 Hz, while some evidence suggests that is still possible to

analyze changes in the spectral envelope up to 1.6 kHz [45].

Direction-Dependent Filtering (DDF)

The previous two interaural differences alone cannot account to explain how it is pos-

sible to distinguish between: e.g. a sound located at an azimuth of 30◦ and a sound

with an azimuth of 150◦, because they will yield to identical interaural differences.

In this case a new effect arise caused by a selective filter due to the different po-

sition of sounds. This effect known as direction-dependent filtering is caused by the

shape and the position of the pinna.

The dimensions of the pinna are too small compared with wavelengths of many au-

dible frequencies for it to function as a sound reflector. The dimensions of its cavities,

instead, are comparable to λ/4 (where λ is the wavelength of a given frequency) for a

large number of frequencies, and these can become sound resonators for sound waves

coming from specific directions. Therefore, inside the pinna the sound is modified by

reflections, refractions, interferences, and resonances activated for specific frequen-

cies and, for the incident angles of specific sound waves, hence the name direction-

dependent filtering. Here, several experiments that examined DDF and the effects of

the pinna on sound localization are described.

Batteau in [7] made an extensive study on pinna reflections and on the ratio be-

tween direct sound and reflections at the entrance of ear canal. He developed an ana-

lytical model depicted in Figure 1.5 that take into account azimuth and elevation per-

ception. He also suggested that two distinct delay lines exists (plus the direct signal).

Chapter 1. An Introduction to Sound Perception and 3D Audio 12

Figure 1.5: An analytical model for the effects of pinnae. (Adapted from [7])

Shaw and Teranishi [63] used a silicone model of the ear plus studies on six subject

placing a probe microphone and a moving sound source at 8 cm from the entrance of

the ear canal to measure resonance frequencies for a wide variety of incidence angles.

They developed a model with 5 main resonance frequencies (see Figure 1.6).

• F1 around 3 kHz: it is a λ/4 resonance of a tube closed at one end, with a length

of 30 mm, therefore approximately 33% more than the real length of the ear

canal (in this case, the pinna seems to act as an extension of the ear canal).

• F2 around 5 kHz: the maximum pressure of this oscillation entirely fills the

ear canal; the distribution of the pressure is therefore the same as that with the

eardrum occluded. The ear canal and the cavum conchae are involved in this

resonance, which can be modified in frequency through inserting material inside

the concha (see [10]), and does not depend on the incidence angle of the signal.

• F3 around 9 kHz, F4 around 11 kHz and F5 around 13 kHz: they are stationary

Chapter 1. An Introduction to Sound Perception and 3D Audio 13

Figure 1.6: Distribution of the sound pressure, for different resonance typologies, inside an
external ear model with a high impedance end. The dotted lines indicate the nodal points.

(Adapted from [10])

longitudinal waves of λ/2 and λ.

All these resonances may vary between subjects especially with the incidence angle of

the sound stimulus (except for F2). This can be explained as the result of interferences

between parts of the pinna, refraction and diffraction phenomena. Blauert performed

new experiments on the basis of the one from Shaw and Teranishi adding an artificial

extension to the ear canal. He observed that different magnitude. As an example

F2 (5 kHz) remains constant up to 90◦ then drops 15–20 dB between 90◦ ed i 110◦.

Through these experiments, Blauert was also able to demonstrate that the resonance

F2 is not activated for sound sources coming from behind, and the resonances inside

the ear canal are independent of the azimuth and elevation variations. We can now

conclude that pinna, along with the ear canal, act as a complex system of acoustic

resonators. The energy depends on the direction and the distance of the sound source.

Chapter 1. An Introduction to Sound Perception and 3D Audio 14

Please note that we now limited ourselves to analyze just part of the auditory system

but other parts of the body contribute to this process: for example the entire head ,

shoulder and torso. While some of the HRTF parameters may be considered constant

for everyone, certain others need to be considered individually, thus leading to the

individualization of HRTFs (see [27] for further details).

1.4 Minimum Audible Angle (MAA)

The minimum audible angle Is the minimum angular variation distinguishable [45].

In Figure 1.7, the MAA is depicted as a function of ϕ and frequency. At 0◦ it is

possible to discriminate angles of 1◦ while the performances drastically reduce for

sound sources tending towards lateral positions. MAA also varies with the frequency

of the stimulus: for lower frequencies small angles are detectable while above 1500 Hz

it is not measurable. This is consistent with the mechanisms of the duplex theory

previously cited.

This data are usually taken into account when sampling HRIRs to choose the angles

to be sampled.

1.5 Distance Perception

The distance estimation of an auditory event is presumed from the center of the head.

When a sound is perceived “within” the head (IHL — Inside the head localization) it

means that the distance itself is less than the radius of the head. This occurs happens

usually while listening through headphones. It is worth to noting that our auditory

system is far less capable at estimating the distance of a sound event than the direction.

Therefore, studies on distance perception and IHL usually focus on sounds coming

from the median plane (diotic stimuli) or monaural attributes of the signals. All the

Chapter 1. An Introduction to Sound Perception and 3D Audio 15

Figure 1.7: Minimum Audible Angle for sine waves at varying frequencies and azimuths.
(Adapted from [45])

attributes, such as the overall level of the signal, are useful to determine the distance

even if normally we do not have an absolute perception but discrimination by com-

parisons, with both other stimuli that arrives at our ear, with a known distance (maybe

related to a visual cue) or with something stored in memory. As presented by Blauert

in [10] we can make the following classification scheme of the acoustic environment:

1. At intermediate distances from the sound source, approximately from 3 to 15 m,

the sound pressure level at the eardrum depends on distance following the inverse

square law (1/r). This law states that in a free sound field the pressure halves (-

6dB SPL) when the distance doubles.

2. At greater distances from the sound source, more than approximately 15 m, the

air path between the sound source and the subject can no longer be regarded as

Chapter 1. An Introduction to Sound Perception and 3D Audio 16

distortion-free. The inverse square law, that is frequency independent, is still

valid but a new effect of high frequencies attenuation appears. This effect is

analytically described in ISO 9613-1 (see Figure 1.8). It depends on the humidity

and temperature of air and is evaluated through the absorption coefficient of air.

It represents the sound attenuation produced by viscosity and heat during a single

period of pressure variation.

Figure 1.8: Influence of humidity on attenuation. (ISO 9613-1 [1])

3. Close to the sound source, within 3 meters from the listener, the effects of cur-

vature of the wave fronts arriving at the head can no longer be neglected. The

linear distortions of the signals due to the head and the external ears vary with

the distance from the sound source. Close to the sound source the sound pressure

level changes with distance, and the shape of the spectrum changes too [7].

We have to take into account that all these cues refer to a free sound field, where

our discrimination of distances is dramatically lower than in real environment with

reverberations.

Chapter 1. An Introduction to Sound Perception and 3D Audio 17

These reasons lead to consider works where HRIRs are sampled at different dis-

tances in order to evaluate the differences (see [41], [53]) that lead to different distance

perceptions.

1.6 Listening through headphones and the Inside the

Head Localization (IHL)

Listening through headphones is a common situation, and it is also common to perceive

the sound as coming from a source located within the head even if the sounds are

actually coming from outside the head (the headphones are placed around the head

or inside the ear canal). With headphones, the effect of the head and the pinna (with

earplugs) is bypassed and normally lead to the perception of a sound localized within

the segment that link the two ears. For this situation we use the term “lateralization”.

Normally presenting a diotic stimulus with headphones, the elicited sensation is

the aforementioned; and even if a phase inversion is applied to one of the signal, the

“virtual” sound source is perceived on the back of the head. This phenomenon can

create issues in the context of binaural spatialization, for which the signals need to be

reproduced over headphones. For works related to the perception of the IHL see [37],

[24], [62], [64], [57], [39], [75], [32], [13]. As a result, IHL is not present when signals

are exactly as they are likely to be in a real scenario; reverb plays a central role in this

situation giving significantly better results in “externalization” if applied to the sounds.

Also recordings made with dummy heads with an accurate reconstruction of both pin-

nae normally do not lead to IHL. IHL is present also with some other configurations:

with a loudspeakers array on the median plane. Plenge [55] hypothesized that a certain

“acquaintance” level can plays a central role in terms of IHL; when a subject has been

previously exposed to a source located outside the head (e.g. with loudspeakers) then

Chapter 1. An Introduction to Sound Perception and 3D Audio 18

the same signals presented over headphones seemed not to be affected. This informa-

tion are stored in short-time memory that can be reorganized during experiments.

1.7 3D Audio and Binaural Spatialization Techniques

3D sound is becoming a prominent part of entertainment applications. The degree of

involvement reached by movies and video-games is also due to realistic sound effects,

which can be considered a virtual simulation of a real sound environment.

Unlike surround sound refers to the use of multiple audio tracks and multiple loud-

speakers to envelop the audiences watching a film or listening to music, causing the

perception they are in the middle of a complex sound field that may, in the case of

the movie or the music, represent the action or the concert. The surround sound for-

mats rely on dedicated loudspeaker systems that physically surround the audience. The

position of the different speakers and the format of the audio tracks vary among the

commercial companies specializing in this specific surround format.

For further details into the vast field of 3d audio see [28] [11] [31] [34] [58] [68]

[70].

1.8 Binaural Spatialization

Binaural spatialization is a technique that aims at reproducing a real sound environ-

ment using only two channels (for example a stereo recording). It is based on the

assumption that our auditory system has only two receivers, namely the ears. If it is

possible to deliver a signal equal (or nearly equal) to the one which a subject would re-

ceive in a real environment, this will lead to the same perception. Our auditory system

performs various tasks to obtain a representation of the acoustic environment; most

of them are based on the physical parameters of the signal of interest and are called

Chapter 1. An Introduction to Sound Perception and 3D Audio 19

“cues” [79][10]. It is well suited by headphones where each channel can reach only the

required ear but also a pair of loudspeakers can be used taking into account crosstalk

and facing it with cancelation mechanisms (e.g. TRADIS [22], BACCH [17]).

Binaural spatialization can be achieved through various processes, such as: equal-

izations and delays, or convolution with the impulse response of the head (HRIR). The

latter approach is the one we have followed in our work. In order to obtain these im-

pulses, many experiments involving the use of a dummy head2 have been made (see

i.e. [3]), thus creating databases of impulse responses. Most of them use a fixed dis-

tance (usually 1 m) from the source (S) to the listener (L), which constitutes a potential

limitation.

2A dummy head is a mannequin that reproduces the human head.

Chapter 2
General Purpose computing on Graphic

Processing Units (GPGPU): An

Overview

The idea of exploiting the capabilities of Graphic Processing Units (GPU) is not new,

as well as the use of GPUs for audio processing (see [76] for details). But now it is

becoming easier and easier to work with GPUs since the development of architectures

that use GPUs but are not “graphic-oriented”. This means that programmer can benefit

from the highly parallelized structures of such architectures without having knowledge

of the video pipeline and without the need to use pixel and vertex shaders to encap-

sulate datas not originally meant to be graphic. GPU manufacturers are exploiting the

peculiarity of graphic computations, that are highly data-parallel by nature, by creating

an affordable processor model capable of a great computational power. However GPUs

are not superseding CPUs in every kind of computation; there are some tasks that still

fits best in CPUs. GPUs have smaller caches and ALUs (Arithmetic Logic Unit) (al-

though in a higher number), than the CPUs. The smaller cache can be explained since

highly arithmetic independent operations, running in parallel on different data trunks

20

Chapter 2. General Purpose computing on Graphic Processing Units (GPGPU): An
Overview 21

(different threads), can easily hide memory latency, while simpler ALUs can be ex-

plained by the fact that they have a restricted set of functions and basically have to be

fast floating-point arithmetic units [14]. For a survey on the use of GPU for computing

see [50].

2.1 Available Architectures

In the past some software projects have tried to use standard graphics libraries like

OpenGL (Open Graphics Library) to use the graphics functions provided to execute

non graphics computations on GPUs. Anyway, such an approach did not spread,

since not all computational problems that may benefit from running on GPUs can be

translated into “graphical problems” solvable by the use of graphical functions. The

main available architectures are essentially two. One is associated with hardware from

NVIDIA inc. The other project is an open standard developed by a consortium of

producers.

2.1.1 CUDA

CUDA or Compute Unified Device Architecture [48] is a parallel computing archi-

tecture developed by NVIDIA. CUDA is the computing engine with NVIDIA graph-

ics processing units (GPUs) that is accessible to software developers through vari-

ants of industry standard programming languages. Programmers use “C for CUDA”

(C with NVIDIA extensions and certain restrictions), compiled through a PathScale

Open64 C compiler, to code algorithms for execution on the GPU. The CUDA archi-

tecture shares a range of computational interfaces with two competitors - The Khronos

Group’s OpenCL - and Microsoft’s DirectCompute. Third party wrappers are also

available for Python, Perl, Fortran, Java, Ruby, Lua, MATLAB and IDL, and native

support exists in Mathematica. One of the drawbacks of this architecture is the use of

Chapter 2. General Purpose computing on Graphic Processing Units (GPGPU): An
Overview 22

a different compiler called nvcc so programs that need to use CUDA APIs can not be

compiled with gcc or llvm/clang.

2.1.2 OpenCL

OpenCL (Open Computing Language) [46] is a framework for writing programs that

execute across heterogeneous platforms consisting of CPUs, GPUs, and other proces-

sors. OpenCL includes a language (based on C99) for writing kernels (functions that

execute on OpenCL devices), plus APIs that are used to define and then control the

platforms. OpenCL provides parallel computing using task-based and data-based par-

allelism. It has been adopted into graphics card drivers by both AMD/ATI (which

made it its sole GPGPU offering, branded as Stream SDK) and NVIDIA, which of-

fers OpenCL as alternative to its Compute Unified Device Architecture (CUDA) in its

drivers. OpenCL’s architecture shares a range of computational interfaces with both

CUDA and Microsoft’s competing DirectCompute. OpenCL is analogous to the open

industry standards OpenGL and OpenAL, for 3D graphics and computer audio, respec-

tively. OpenCL is managed by the non-profit technology consortium Khronos Group.

2.2 The choice of an architecture

Coming to the conclusion we need to say that we choose to develop using both archi-

tectures while focusing the optimization on the CUDA architecture. This can mainly

be explained by the lack of support of the competitor, AMD (formerly known as ATI

graphic card manufacturer), in drivers for any platform. The AMD architecture went

through a continuous set of changes leading them from CTM (Close to Metal) to the

new production version of AMD’s GPGPU technology that is now called Stream SDK

to AMD Accelerated Parallel Processing (APP) SDK. APP SDK lacks, at the moment,

Apple OS X support while CUDA is well supported by Linux distributions.

Chapter 2. General Purpose computing on Graphic Processing Units (GPGPU): An
Overview 23

For this reason, since we are interested in exploiting the capabilities of GPUs, even

if the OpenCL initiative suggests a future of interoperability with both manufacturers

now it lacks, an efficient FFT implementation for radix n.

2.3 The state of the art in GPGPU for Audio

As previously stated, the idea of using GPGPU for audio processing is not completely

new even if it is not largely widespread. A number of works can be highlighted point-

ing out their novelty.

• Gallo and Tsingos in [26] give an introduction to the use of GPUs for 3D audio.

This was one of the first articles in the field. They conducted a first feasibility

study investigating the use of GPUs for efficient audio processing.

• Cowan and Kapralos in [20] and [21] show the effectiveness of this approach for

the convolution task. In particular, in [20], a GPU-based convolution method

was developed that allowed for real-time convolution between an arbitrarily

sized auditory signal and a filter. Despite the large computational savings, that

GPU based method introduced noise/artifacts to the lower-order bytes of the

resulting output signal which may have resulted in a number of perceptual con-

sequences. This was caused by the need of translating the audio samples into

a RGB pixel map and then exploiting OpenGL capabilities that are mainly in-

tended for graphics. In more recent work, they employed a superior GPU that

eliminated the noise/artifacts of the previous method and provides further com-

putational saving [21].

• Sosnick [65] used GPUs to solve problems for physics-based music instrument

models. They describe an implementation of an FD-based (Finite Difference)

simulation of a two-dimensional membrane that runs efficiently on mid-range

Chapter 2. General Purpose computing on Graphic Processing Units (GPGPU): An
Overview 24

GPUs; this will form a framework for constructing a variety of realistic software

percussion instruments. For selected problem sizes, realtime sound generation

was demonstrated on a mid-range test system, with speedups of up to 2.9 over

pure CPU execution.

• Fabritius in his master thesis [23] presented an overview of Audio processing

algorithms using GPUs. He faces the problem from a wide perspective giv-

ing implementations for some common processes. He analyzes and implements

four basic audio processing algorithms used in music production for the Cen-

tral Processing Unit (CPU) and the Graphics Processing Unit (GPU) comparing

in which situations it is better to perform the computations on the GPU instead

of the CPU. By comparing the performance of the audio processing algorithm

implementations, the running times are analyzed for typically used parameter

values in a music production setting.

• Rush in [59] provides an implementation of a convolution engine with the NVIDIA

G80 architecture. This is an implementation that makes use of CUDA capabil-

ities. It exploit partitioned convolution in the frequency domain for long filters

and make use of the CUFFT library (FFT library for CUDA) for efficient GPU

fast Fourier transform (FFT) implementation. It provides comparisons in terms

of execution time with respect to a CPU implementation depicted in Figures 2.1,

2.2, 2.3.

Chapter 2. General Purpose computing on Graphic Processing Units (GPGPU): An
Overview 25

Figure 2.1: Throughput, with memory overhead.

Chapter 2. General Purpose computing on Graphic Processing Units (GPGPU): An
Overview 26

Figure 2.2: Throughput, no overhead.

Chapter 2. General Purpose computing on Graphic Processing Units (GPGPU): An
Overview 27

Figure 2.3: Throughput vs. Segment size.

Chapter 3
A Model for a Binaural Spatialization

System

In this Chapter we first introduce the core of the work in terms of conceptualization

and development of a model. Even if the process is well known and understood in

terms of mathematics, the realization of implementations that work in real-life sce-

narios is not trivial. One of the greatest obstacle is the computational complexity that

convolution requires both in the time and frequency domain approaches. This means

that the problem could be theoretically solved but the computer architecture does not

allow it to be solved in a reasonable time for some practical cases of interest.

3.1 Convolution Engines

As shown in Figure 3.1 the system requires as input an anechoic signal (monophonic)

and a impulse response (stereo) and the overall output will be two channel spatial-

ized sound that can feed both headphones or loudspeakers (with crosstalk cancelation

algorithms [17]).

We will focus on implementations of this system thanks to modern GPGPU tech-

28

Chapter 3. A Model for a Binaural Spatialization System 29

Figure 3.1: The workflow diagram of the system.

Chapter 3. A Model for a Binaural Spatialization System 30

niques.

3.1.1 State of the Art

In the literature there are other systems that aim at realizing systems that achieve real-

time auralization, or augmented reality. We present a brief sketch of the opportunities

and the techniques employed.

• TConvolutionUB∼: A Max/MSP external patch from Thomas Resch that ex-

tends the possibilities given by the buffir∼ object allowing convolution with a

filter that has more than 255 points.

• SIR2: An easy to use native audio-plugin to use for high quality reverberation.

It’s available for the plugin formats VST and AudioUnit. Its use can be stretched

from a convolution reverb to a convolution engine for auralization given the

flexibility of the program itself.

• djbfft: A library for floating-point convolution. The current version provides

power-of-2 complex FFTs, real FFTs at twice the speed, and fast multiplication

of complex arrays. Single precision and double precision are equally supported.

• BruteFIR: An open-source convolution engine, a program for applying long FIR

filters to multi-channel digital audio, either offline or in realtime, by Anders

Torger [71]. Its basic operation is specified through a configuration file, and fil-

ters, attenuation and delay can be changed at runtime through a simple command

line interface. The author states that the FIR filter algorithm used is an optimized

frequency domain algorithm, partly implemented in hand-coded assembler, thus

throughput is extremely high. In real-time, a standard computer can typically

run more than 10 channels with more than 60000 filter taps each. It makes use

Chapter 3. A Model for a Binaural Spatialization System 31

of the partitioned convolution and overlap-save methods that are introduced in

the following subsection.

• AlmusVCU: From the author of BruteFIR this is a complete system that aims

at an integrated environment for sound spatialization. It has been designed pri-

marily with Ambiophonics in mind and contains all processing needed for a

complete Ambiophonics system.

• Aurora Plugin: From Angelo Farina, is a suite of plug-ins for Adobe Audition:

room acoustical impulse responses can be measured and manipulated, for the

recreation of audible, three-dimensional simulations of the acoustical space.

3.1.2 Convolution in the Time Domain

This approach can be mathematically described by the formula:

y(k) = ∑
j=1

x1(j)x2(k− j+1) (3.1)

Where x1 and x2 are the input sequences of length m and n and y is the output sequence

of length k = m+n−1.

Chapter 3. A Model for a Binaural Spatialization System 32

When m = n, which is the normal case for other implementations, this gives:

w(1) = u(1)v(1)

w(2) = u(1)v(2)+u(2)v(1)

w(3) = u(1)v(3)+u(2)v(2)+u(3)v(1)

· · ·

w(n) = u(1)v(n)+u(2)v(n−1)+ · · ·+u(n)v(1)

· · ·

w(2n−1) = u(n)v(n)

(3.2)

The computational complexity for the time domain approach is O(n2).

This is the underlying approach to every other method. Implementing a FIR (Finite

Impulse Response) filter is obviously the easiest idea but as can be seen from the

complexity as the input size increase it could become impossible to process data in

real-time.

3.1.3 Convolution in the Frequency Domain

Thanks to the convolution theorem we can express the convolution of two sequences as

the multiplication of their Fourier transforms. Here the general layout for the frequency

domain approach is introduced. The approach that can be schematized as follows (see

Figure 3.2:

• Zero-Pad input vectors x1 and x2 of length m and n so the length of the sequences

becomes m+n−1

• Perform FFT of the input vectors;

Chapter 3. A Model for a Binaural Spatialization System 33

Figure 3.2: A scheme of convolution in frequency domain.

• Perform the pointwise multiplication of the two sequences;

• Perform the IFFT of the obtained sequence.

The computational complexity for the frequency domain approach is O(n log(n)).

3.1.3.1 Overlap-add algorithm

Since the size of the filter kernel can become very high, it is not convenient to use a

single window to transform the entire signal so a number of methods can be imple-

mented to overcome this. We choose to use a method called Overlap-add (OA, OLA).

It is an efficient way to evaluate the discrete convolution of a very long signal x[n] with

a finite impulse response (FIR) filter h[n]. The concept is to divide the problem into

multiple convolutions of h[n] with short segments of x[n]:

y[n] = x[n]∗h[n] :=
∞

∑
m=−∞

h[m]x[n−m] =
M

∑
m=1

h[m]x[n−m] (3.3)

where h[m] = 0 for m outside the region [1,M].

Chapter 3. A Model for a Binaural Spatialization System 34

Figure 3.3: Schematic view of the overlap-add convolution method.

xk[n] :=

x[n+ kL] n = 1, 2, ···, L

0 otherwise
(3.4)

where L is an arbitrary segment length.

x[n] = ∑
k

xk[n− kL] (3.5)

So y[n] can be written as a sum of convolutions:

y[n] =

(
∑
k

xk[n− kL]

)
∗h[n] = ∑

k
(xk[n− kL]∗h[n]) (3.6)

The method is depicted in Figure 3.3

It is particularly useful for our tasks since it works on independent pieces of input

and thus is well suited for a parallelized approach such as one that employs a GPU.

Chapter 3. A Model for a Binaural Spatialization System 35

3.2 Reference CPU implementations

In order to make comparisons with the GPU implementations that we will present we

need a reference implementation that can serve as a basis in terms of execution time

and bitwise precision. For this reason three different prototypes have been developed

that use different algorithms.

The first two prototypes are Matlab scripts that use both a Time Domain and a

Frequency Domain approach. Since the computational complexity for the Time Do-

main approach is O(n2) this can not be used when the filter kernels are big. In our

experiments, according to a Max/MSP implementation that will be introduced in the

following section, we choose to limit the size to 256 samples.

The frequency domain implementation (presented in [43]) will be used to validate

the results in terms of bitwise precision. Since Matlab is mainly intended as a proto-

typing environment there is no focus on performance and every other implementation

can outperform our Matlab testbase by orders of magnitude. Moreover, this imple-

mentation works only in “direct mode”; this implies that a single FFT is performed for

the entire signal and therefore the algorithm may not be applicable for long sequences

due to memory constraints or implementation limits. Source code for both the Matlab

implementations are presented in Appendix A.

The last CPU implementation is written in C++ and is based on the FFTW3 library

(see [25]). It is based on the architecture presented in Figure 3.2 and implements both

modalities (Direct and OLA) previously discussed.

The FFTW library itself is based on Cooley-Tukey algorithm [19]. As presented

by the authors, the interaction of the user with FFTW occurs in two stages: planning,

in which FFTW adapts to the hardware, and execution, in which FFTW performs

useful work for the user. To compute a DFT, the user first invokes the FFTW planner,

specifying the problem to be solved. The problem is a data structure that describes

Chapter 3. A Model for a Binaural Spatialization System 36

the “shape” of the input data - array sizes and memory layouts - but does not contain

the data itself. In return, the planner yields a plan, an executable data structure that

accepts the input data and computes the desired DFT. Afterwards, the user can execute

the plan as many times as desired.

3.2.1 A CUDA convolution engine

For the CPU implementation with CUDA we were able to implement both Direct and

OLA algorithm. We consider the benefits of both approaches in the following section

while presenting performance comparisons. For FFT we use a library called CUFFT

which is actually based on FFTW3 library with some other optimizations specifically

designed for GPUs. One of the current issue is the CUFFT limit of 64 millions of

points.

3.2.2 An OpenCL convolution engine

One of the current limitations is that the factorization algorithms works only for powers

of 2 (radix-2). So the payload should be adapted to make the sum with the length of

the filter kernel to be the closest greater power of 2.

3.3 The CGPUconv prototype

From a number of the previously cited prototypes we derived a single application that

allows the user to choose between a CPU- or a GPU-based algorithm and between a

direct mode (a single window for the entire signal) and an Overlap-add mode. It is

structured as a “wrapper” around the single module that has the capability of opening

audio files and writing them back to disk thanks to libsndfile (see [15]). It is a com-

mand line tool that compiles and executes both on Microsoft Windows, Apple OSX,

Chapter 3. A Model for a Binaural Spatialization System 37

and Linux applications as long as they have, or there exists a version of:

• Libsndfile for I/O;

• FFTW3 library for CPU implementation;

• CUDA Framework;

• OpenCL driver.

The program can be adapted by removing functionalities provided by any subset of the

previous requirements by removing the components that make use of that prerequisite.

The source code is available from the author at

http://www.lim.dico.unimi.it/CGPUconv.

3.3.1 Performance Comparisons

Performances of these algorithms depends on the size of input. Therefore, to charac-

terize the “trade-off”, we tested them with different input sizes. To make a reliable

comparison we choose to use as input signals a logarithmic sine sweep and its TRM

(time reversal mirror) so the output should be the δ function (Dirac delta function) or,

to be more precise, the limited bandwidth approximation of the sinc (sinus cardinalis)

function.

δ(x) =

+∞, x = 0

0, x 6= 0
(3.7)

∫
∞

−∞

δ(x)dx = 1 (3.8)

sinc(x) =
sin(x)

x
(3.9)

We then compute the time spent on the convolution procedure, excluding the load

procedure that reads from audio files and the write to disk procedure for the results,

Chapter 3. A Model for a Binaural Spatialization System 38

which are collateral to our primary goal. A special case is represented by the first

execution for both the CUDA and OpenCL implementation where for the former there

exists some extra time devoted to the load of the environment while for the latter, apart

from the aforementioned setup, we have to take into account the time that the driver

allocate to compile kernel functions.

The algorithms were executed on an OS X 10.6.8 equipped Apple Macbook Pro

13.3” (MacBookPro5,5), Intel Core 2 Duo processor @2,53 GHz, 8 GB Ram, NVIDIA

GeForce 9400GM VRAM 256 MB shared memory. OpenCL drivers are provided by

the operating system (1.1 compatible), and the CUDA framework is version 4.0.

All the audio files are high quality PCM uncompressed files and have a sample

rate of 96 kHz and a quantization word of 24 bit. With this bit depth the theoretical

dynamic range is ∼ 144 dB.

For each algorithm we measured the difference computed between the signal under

test and the reference (coming from the Matlab implementation) with a phase inver-

sion. So the difference on a sample by sample basis gives us a new signal that can be

used as a degree of similarity between the two original signals. For each and every

proposed approach this signal is below -122 dB FS (dB on the full scale) meaning

there is no practical difference, and the result is in the order of magnitude of the noise

floor.

Coming to the execution time of the algorithms we propose a summary of the

results presented in Figures 3.4, 3.5 and Table 3.1. Results are depicted as a function

of the number of input samples, averaged over 100 runs.

We also present in Table 3.2 results for a “real-case scenario”. We have a vio-

lin sound that is three minutes long and a reverberant impulse response of 1 second

(sample rate 96kHz)

• Input: 17703123 samples (∼3’10”)

Chapter 3. A Model for a Binaural Spatialization System 39

Direct Mode Overlap-add
CPU CUDA OpenCL CPU CUDA OpenCL

128 7 - 160 15 88 160
256 3 95 180 16 95 180
512 5 95 263 17 93 265
1024 11 97 363 2 93 361
2048 3 94 300 3 97 290
4096 11 98 293 4 100 290
8192 32 100 248 9 95 340

16384 47 115 388 17 97 393
32768 80 145 392 36 107 395
65536 44 194 407 90 140 439

131072 315 320 435 186 167 430
262144 2450 562 511 398 240 504
524288 1215 970 572 915 385 599

1048576 2676 1728 845 1871 680 948
2097152 8066 - 1303 3901 1197 1534
4194304 24146 - 2409 8487 - 2967
8388608 22976 - 2926 - - 2608

16777216 - - 5836 - - -

Table 3.1: Performance comparisons. Time in ms.

Chapter 3. A Model for a Binaural Spatialization System 40

 0

 5000

 10000

 15000

 20000

 25000

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

2
19

2
20

2
21

2
22

2
23

2
24

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

N. of samples

Comparation of execution time for Direct Mode

CPU
CUDA

OpenCL

Figure 3.4: Execution time for Direct mode depending on input size.

Chapter 3. A Model for a Binaural Spatialization System 41

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

2
19

2
20

2
21

2
22

2
23

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

N. of samples

Comparation of execution time for Overlap-add

CPU
CUDA

OpenCL

Figure 3.5: Execution time for Overlap-add depending on input size.

Chapter 3. A Model for a Binaural Spatialization System 42

Direct OLA
CPU - 9699

CUDA - 6181
OpenCL 7486 6699

Table 3.2: Performance comparisons. Time in ms.

• Kernel: 96000 (∼1”)

Please note that “-” occurs when there is not enough free video RAM to handle the

data. The idea here is to have a system that can run on most home computer so the

relatively old and low powerful graphic card is a good example of what can be achieved

with standard equipment. There are difference between implementations and this can

be explained by the different way of encoding real and complex numbers. Also note

that there does not exist a concept of “paging” for video RAM so if a structure is too

big to fit in memory there is no automatic way to handle the situation.

3.4 Summary and Discussion of the results

In this Chapter we presented a number of prototypes that are suitable for real time

spatialization of sounds. Some issues are still present but we want to point out that the

basic concepts here expressed are valid and mark a profitable direction.

Performance results suggest that for a number of real case applications there are

benefits that can be at least of 1/3 of the execution time (compared to the reference

CPU implementation) and can be further improved with other GPU-specific, but not

hardware specific, optimizations. Benefits are increasingly evident as the size of the

filter kernel grows and this is particularly useful for convolution with long reverberant

impulse responses (e.g. BRIRs) that can be employed in order to render real environ-

ments.

Chapter 4
A Head-Tracking based Binaural

Spatialization Tool

In one of the definitions of Virtual Reality, simulation does not involve only a virtual

environment but also an immersive experience (see [66]); according to another author,

instead of perception based on reality, Virtual Reality is an alternate reality based on

perception (see [49]). An immersive experience takes advantage of environments that

realistically reproduce the worlds to be simulated.

In our work, we are mainly interested in audio aspects. Even limiting our goals

to a realistic reproduction of a single (or multiple) sound source for a single listener,

the problem of recreating an immersive experience is not trivial. With a standard

headphones system, sound seems to have its origin inside the listener’s head. This

problem is solved by binaural spatialization, described in Chapter 1, which gives a

realistic 3D perception of a sound source S located somewhere around a listener L.

Currently, most projects using binaural spatialization aim at animating S while keeping

the position of L fixed. Thanks to well known techniques, such a result is quite easy to

achieve. However, for an immersive experience this is not sufficient: it is necessary to

know the position and the orientation of the listener within the virtual space in order

43

Chapter 4. A Head-Tracking based Binaural Spatialization Tool 44

to provide a consistent signal [51], so that sound sources can remain fixed in virtual

space independently of head movement, as they are in natural hearing [9].

As a consequence, we introduce a head-tracking system to detect the position of

L within the space and modify the signal delivered through headphones accordingly.

The system can now compare the position of S with respect to L and respond to his/her

movements.

At the moment, audio systems typically employ magnetic head trackers thanks

both to their capability of handling a complete 360◦ rotation and to their good per-

formances. Unfortunately, due to the necessity of complex dedicated hardware, those

systems are suitable only for experimental or research applications. But the increas-

ing power of home computers is supporting a new generation of optical head trackers,

based primarily on webcams.

This work proposes a low cost, “off the shelf”, spatialization system which only

relies on resources available to most personal computers. Our solution, developed with

MAX/MSP, is based on a webcam head-tracking system and binaural spatialization

implemented via convolution.

This chapter is structured as follows. First we provide a short review of related lit-

erature and similar systems. Then we will describe the integration of a head-tracking

system via MAX/MSP externals - namely the multi platform, realtime programming

environment for graphical, audio, and video processing used to implement our ap-

proach - and the realtime algorithms involved in the processing of audio and video

streams.

4.1 Related Works

We present here other similar approaches and projects which served as a basis in the

development process.

Chapter 4. A Head-Tracking based Binaural Spatialization Tool 45

• Binaural Tools: A MAX/MSP patch from the author of the CIPIC database that

performs binaural panning using head related transfer function (HRTF) measure-

ments. The panner takes an input sound file and convolves it with a measured

sound response recorded from a selectable angle and elevation. The output can

optionally be recorded to a sound file. The program was created based on some

parts of Vincent Choqueuse’s binaural spatializer for Max/MSP [16]. We started

from these works to develop our approach. They are inspiring as they do not

use external libraries and rely solely on MAX capabilities. This approach also

has some drawbacks. For example, in order to perform spatialization efficiently,

other techniques could be used but they must be separately implemented.

• Spat∼: A spatial processor for musicians and sound engineers [35]. Spat∼ is a

real-time spatial processing software which runs on the Ircam Music Worksta-

tion in the MAX graphical signal processing environment. It provides a library

of elementary modules (pan-pots, equalizers, reverberators, etc.) linkable into

a compact processor that integrates the localization of sound events together

with the manipulation of room acoustical quality. This processor can be con-

figured for various reproduction formats over loudspeakers or headphones, and

controlled through a higher-level user interface including perceptual attributes

derived from psychoacoustical research. Applications include studio recording

and computer music, virtual reality, and auralization. The stability and quality

of this library could be useful to redesign some structures of our spatializer and

achieve better quality and performances.

• bin ambi: A real-time rendering engine for virtual (binaural) sound reproduc-

tion [47]. This library is intended for the use with Miller Puckette’s open source

computer music software Pure Data (Pd). The library is freely downloadable

and can be used under the terms of GNU General Public License. It provides

Chapter 4. A Head-Tracking based Binaural Spatialization Tool 46

a simple API, easy to use for scientific as well as artistic projects. In this im-

plementation there is a room simulation with 2 sound objects and a listener.

One direct signal and 24 early reflections are calculated and rendered per sound

object. Sound rendering, based on mirror image sources, is used for the early

reflections. Each reflection is encoded into the Ambisonics domain (4th order

3-D) and added to the Ambisonics bus. The listener rotates the whole Ambison-

ics field, the Ambisonics decoder renders the field into 32 discrete signals of 32

virtual loudspeakers. All 32 speaker signals are be filtered by its HRTF in rela-

tion to the left and to the right ear (binaural decoding). Interpolation is one of

the critical points of such applications. We can choose an approach like the one

proposed here that could give a theoretical better interpolation and sound quality

but increases the computational complexity of the system.

• 3D-Panner [69]: A SuperCollider-based spatialization tool for creative musical

applications. The program spatializes monaural sounds through HRTF convo-

lution, allowing the user to create 3D paths in which a sound source travels. In

3D-Panner the user can easily create unique paths that can range from very sim-

ple to very complex. These paths can be saved independently of the sound file

and applied to any other monaural source. During playback, the sound source

is convolved with the interpolated HRTFs in real-time to follow the user-defined

spatial trajectory. This project is inspiring for our work because we plan to intro-

duce new features, such as moving sound sources, and we need a way to describe

and handle trajectories.

4.2 An overview of MAX/MSP

In this section we briefly introduce MAX/MSP, a software system originally designed

and implemented by Miller Puckette [56] and then developed by David Zicarelli.

Chapter 4. A Head-Tracking based Binaural Spatialization Tool 47

MAX/MSP is an integrated platform designed for multimedia, and specifically for

musical applications [18]. This graphical real-time data-flow environment can be used

by programmers, live performers, “traditional” musicians, and composers. As shown

in Figure 4.1, the environment has evolved in a significant manner since its authors

started the development process in the 1980s. Some of the key concepts have not

changed over time, such as the overall flexibility and modularity of the system.

MAX/MSP basic functions can be extendend by the use of:

• patchers, i.e. sub-patches recalled by the user under other patches,

• externals, i.e. newly created objects implemented usually in C/C++ via the

MAX/MSP framework and its API.

MAX/MSP can run on Microsoft Windows and Apple OS X.

The program interface consists primarily of two window types: MAX and patcher

window. The former gives access to the program settings and visualization of system

messages, allowing control of the workflow. The latter is the place where the user

creates and interacts with the application by placing objects and linking them together.

Patches present two different states: edit mode and performance mode. In edit

mode, the user can add objects, modify and link them. In performance mode the patch

follows its workflow and the user can interact with it in real-time.

Objects are represented like “black boxes” which accept input through their inlets

and return output data through their outlets. Programs are built by arranging these

entities on a canvas (the patch) and creating a data flow by linking them together

through patchcords. Data are typed; as a consequence, not every arbitrary combination

of links is valid.

Choosing the linking order influences the scheduler priority. The rule is right-to-

left execution of links. MAX/MSP implements two ways to control the priority of both

messages and events: a standard parallel execution, and overdrive. When overdrive is

Chapter 4. A Head-Tracking based Binaural Spatialization Tool 48

Figure 4.1: The evolution of the MAX family.

Chapter 4. A Head-Tracking based Binaural Spatialization Tool 49

enabled, high priority events are actually given priority over low priority events. In

this case, the software engine uses two threads for the execution of events so that high

priority events can raise an interrupt and be executed before a low priority event has

finished.

4.3 Integrating a Head-tracking System into MAX

In our work, we choose to adopt faceAPI, namely an optical face tracking system devel-

oped by Seeing Machines [2] that provides a suite of functions for image processing

and face detection encapsulated in a tracking engine. It is a commercial product —

freely usable only for research purposes — that implements a head tracker with six

degrees of freedom. It can be seen as a “black box” which grants access to tracking

data through a simple interface oriented to programming tasks. Basically the engine

receives frames from a webcam, processes them and then returns information about

the position of the head with respect to the camera.

MAX provides developers with a collection of APIs to create external objects and

extend its own standard library [80]. The integration of the head tracker requires to

create a base project for MAX (we used the so called “minimum project”) and then

add references to faceAPI to start developing the external.

When MAX loads an external module, it calls its main() function which provides

initialization features. Once loaded, the object needs to be instantiated by placing it

inside a patch. Then the external module allocates memory, defines inlets and outlets

and configures the webcam. Finally, thefaceAPI engine starts sending data capturing

the position of the head. In our implementation, the external module reacts only to

bang messages:1 as soon as a message is generated, a function of faceAPI is invoked

to return the position of the head through float variables.

1A bang is a MAX special message that causes other objects to trigger their output.

Chapter 4. A Head-Tracking based Binaural Spatialization Tool 50

Each MAX object must be defined in terms of a C structure, i.e. a structured type

which aggregates a fixed set of labelled objects, possibly of different types, into a

single object. Our implementation presents only pointers to the object outlets in order

to directly pass variables to the tracking engine.

typedef struct _head {

t_object c_box;

void *tx_outlet, *ty_outlet, *tz_outlet;

void *rx_outlet, *ry_outlet, *rz_outlet;

void *c_outlet;

} t_head;

Such values represent translation along three axes (tx, ty, tz), orientation of the head

in radians (rx,ry,rz), and a confidence value. After their detection, values are sent to

their corresponding outlets and they are available to the MAX environment. In brief,

the headtracker external presents only one inlet that receives bang messages and seven

outlets that represent the values computed by the tracking engine.

4.4 The “Head In Space” Application

This section aims at introducing the Head in Space (HiS) application for MAX. As

discussed in Section 4.3, we assume that our head-tracking external acts as a black

box that returns a set of parameters regarding the position of the head.

In Figure 4.2 a workflow diagram of the system is shown. This is a “specialized”

version of the one proposed in Figure 3.1. It adds a module for tracking the user po-

sition and for the interpolation of impulse responses. The “Convolution” box will be

presented in the following sections using a traditional CPU approach and also exploit-

ing GPUs capabilities.

Chapter 4. A Head-Tracking based Binaural Spatialization Tool 51

Figure 4.2: The workflow diagram of the system.

Chapter 4. A Head-Tracking based Binaural Spatialization Tool 52

In input, two sets of parameters are available to the system, in order to define: 1. the

position of the listener, and 2. the position of the audio source. Given this information,

and taking into account also the position of the camera, it is possible to calculate the

relative position of the listener with respect to the source in terms of azimuth, elevation

and distance. This is what the system needs to choose which impulse response to use

for spatialization. Once the correct HRIR is obtained from the database, it is possible

to perform convolution between a mono audio signal in input and the stereo impulse

response. Since the position both of the listener and of the source can change over

time, an interpolation mechanism to switch between two different HRIRs has been

implemented.

4.4.1 Coordinates Extraction

The spatializer uses a spherical-coordinates system that has its origin in the center

of the listener’s head. The sound source is identified by a distance measure and two

angles, namely azimuth on the horizontal plane and elevation on the median plane.

Angular distances are expressed in degrees and stored in the patch through integer

variables, whereas the distance is expressed in meters and is stored as a floating point

number.

Please note that the head tracker presents coordinates in a cartesian form that has

its origin in projection cone of the camera. Thus the representation of coordinates of

the spatializer and the one of the head tracker are different and a conversion procedure

is needed. The conversion process first performs a roto-translation of the system in

order to provide the new coordinates of translation both of the source and of the head

inside a rectangular reference system (the patch realizing these functions is depicted

in Figure 4.3.

Referring to Figure 4.4, given the coordinates for a generic point P, representing

Chapter 4. A Head-Tracking based Binaural Spatialization Tool 53

Figure 4.3: An overview of the patch.

Chapter 4. A Head-Tracking based Binaural Spatialization Tool 54

Figure 4.4: The translation system.

Chapter 4. A Head-Tracking based Binaural Spatialization Tool 55

the source in a system (O1;X1,Y1,Z1), we can determine a set of coordinates in a

new cartesian plane (O2;X2,Y2,Z2) that refers to the position of the head through the

relation:

V2 =V0 +(1+ k) ·R ·V1 (4.1)

where:

V0 =

∥∥∥∥∥∥∥∥∥
x0

y0

z0

∥∥∥∥∥∥∥∥∥ translation components

V1 =

∥∥∥∥∥∥∥∥∥
x1

y1

z1

∥∥∥∥∥∥∥∥∥ known coordinates of P in O1

V2 =

∥∥∥∥∥∥∥∥∥
x2

y2

z2

∥∥∥∥∥∥∥∥∥ unknown coordinates of P in O2

k = 0 scale factor

R = Rx ·Ry ·Rz rotation matrix (4.2)

R is the matrix obtained by rotating each cartesian triplet with subscript 1 along its

axes X1,Y1,Z1 with rotation of Rx,Ry,Rz to displace it parallel to X2,Y2,Z2. Rotation

Chapter 4. A Head-Tracking based Binaural Spatialization Tool 56

matrixes are:

Rx =

∥∥∥∥∥∥∥∥∥
1 0 0

0 cos(Rx) sin(Rx)

0 −sin(Rx) cos(Rx)

∥∥∥∥∥∥∥∥∥ (4.3a)

Ry =

∥∥∥∥∥∥∥∥∥
cos(Ry) 0 −sin(Ry)

0 1 0

sin(Ry) 0 cos(Ry)

∥∥∥∥∥∥∥∥∥ (4.3b)

Rz =

∥∥∥∥∥∥∥∥∥
cos(Rz) sin(Rz) 0

−sin(Rz) cos(Rz) 0

0 0 1

∥∥∥∥∥∥∥∥∥ (4.3c)

the product Rx ·Ry ·Rz is calculated with (4).

Chapter 4. A Head-Tracking based Binaural Spatialization Tool 57

R
=

∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥co
s(

R
y)

co
s(

R
z)

co
s(

R
x)

si
n(

R
z)
+

si
n(

R
x)

si
n(

R
y)

co
s(

R
z)

si
n(

R
x)

si
n(

R
z)
−

co
s(

R
x)

si
n(

R
y)

si
n(

R
z)

−
co

s(
R

y)
si

n(
R

z)
co

s(
R

x)
co

s(
R

z)
−

si
n(

R
x)

si
n(

R
y)

si
n(

R
z)

si
n(

R
x)

co
s(

R
z)
+

co
s(

R
x)

si
n(

R
y)

si
n(

R
z)

si
n(

R
y)

−
si

n(
R

x)
co

s(
R

y)
co

s(
R

x)
co

s(
R

y)

∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥ ∥
(4

.4
)

Chapter 4. A Head-Tracking based Binaural Spatialization Tool 58

We can now derive formulas to calculate the position in the new system:

x2 =(x0 + x1)[cos(Ry)cos(Rz)]

+(y0 + y1)[cos(Rx)sin(Rz)

+ sin(Rx)sin(Rz)cos(Rz)]

+(z0 + z1)[sin(Rx)sin(Rz)

− cos(Rx)sin(Rz)sin(Rz)]

(4.5)

y2 =(x0 + x1)[cos(Ry)sin(Rz)]

+ y0 + y1)[cos(Rx)cos(Rz)

− sin(Rx)sin(Rz)sin(Rz)]

+(z0 + z1)[sin(Rx)cos(Rz)

+ cos(Rx)sin(Rz)sin(Rz)]

(4.6)

z2 =(x0 + x1)sin(Ry)

+(y0 + y1)[sin(Rx)cos(Ry)]

+(z0 + z1)[cos(Rx)cos(Ry)]

(4.7)

Now we can calculate spherical coordinates using the following formulas:

distance ρ =
√

x2 + y2 + z2 (4.8)

azimuth ϕ = arctan
(z

x

)
2 (4.9)

elevation θ =

(
y√

x2 + y2 + z2

)
(4.10)

The new set of coordinates can be employed to retrieve the right HRIR from the

database. Since our database includes only HRIRs measured at a given distance, we

2arg function is used instead of arctan to cover the entire range.

Chapter 4. A Head-Tracking based Binaural Spatialization Tool 59

only use azimuth and elevation. How to use the distance value to simulate the percep-

tion of distance will be explained in Section 4.4.4. Since not all the possible pairs of

azimuth and elevation have a corresponding measured HRIR within the database, we

choose the database candidate that minimizes the euclidean distance.

4.4.2 The Convolution Process

This section describes the convolution process between an anechoic signal and a bin-

aural HRIR. We use the CIPIC database [3], consisting of a set of responses measured

for 45 subjects at 25 different values for azimuth and 50 different values for elevation.

Each impulse consists of 200 samples.

For the sake of simplicity we present here a system that, since the relatively small

length of impulses, exploit a time-domain approach. This approach can be extended

with the results of the convolution engines provided in previous chapters with little

effort. It is worth to cite that some limitation, such as a maximum number of 255

channels, may still be present but they are intrinsic to the MAX/MSP environment.

Figure 4.5 illustrates the detail of the subpatch for one channel. From its first

inlet it receives the anechoic signal, while from the second it gets the index for HRIR

within a buffer∼ object. HRIRs are stored in a single file that concatenates all the

impulses. The process is performed one time for left channel and another one for right

channel. Inside the database, azimuth and elevation values are numbered through an

ad hoc mapping. Given an azimuth position naz and an elevation position nel we can

calculate the starting point within the buffer with the formula:

[((naz−1) ·50)+(nel−1)] · irlength (4.11)

A buffir∼ object is a finite impulse response (FIR) filter that loads both coefficients

from the buffer and an audio signal, and then performs the convolution in the time do-

Chapter 4. A Head-Tracking based Binaural Spatialization Tool 60

Figure 4.5: The detail of the MAX subpatch for the convolution process via CPU.

Chapter 4. A Head-Tracking based Binaural Spatialization Tool 61

Figure 4.6: The detail of the MAX subpatch for the crossfade system.

main. Convolution is implemented through a FIR filter since the small number of sam-

ples of HRIRs makes it computationally convenient to perform it in the time domain

instead of frequency domain. buffir∼ object allows to store up to 256 coefficients.

4.4.3 Interpolation and Crossfade Among Samples

One of the known problems related to the use of the HRIR for spatialization is the

interpolation between two signals convolved with two different impulses. This is a very

common case for such real-time applications because when moving from one azimuth

value to another impulses are very dissimilar. As a consequence, output signals can

change abruptly, thus affecting negatively the perceived quality of the system. We

Chapter 4. A Head-Tracking based Binaural Spatialization Tool 62

have designed a simple yet performing interpolation procedure based on crossfade to

limit the artifacts produced by the switch between impulses. For further information,

regarding the simulation of moving sound sources see [42], [74].

The approach replicates the audio stream for each channel that leads to changes

to the convolution subpatch (Figure 4.6). For the CPU approach we add a second

buffir∼ object so now the first filter will produce signals convolved with the current

impulse and the second filter will be loaded with the new HRIR provided by the new

position. Then new signal will gradually overcome the signal from the other filter with

a crossfade function. Once done, the role of the two filters is switched. This behaviour

is achieved trough a ggate∼ object.

As a performance issue it should be noted that in a real time environment every

redundant operation should be avoided. In our implementation this means that a cross-

fade between impulse responses is needed only if a switch has been detected by a

change object that gives a value in output only if it is not equal to its previous value.

This avoids unnecessary computations by the CPU that is useless if applied to the

same impulse response and could lead to a degradation in terms of quality. Another

improvement is given by the use of speedlim∼ object that establishes the frequency of

messages in terms of the minimum number of milliseconds between each consecutive

message. It could happen that changing azimuth and elevation at the same time will

result in two different new messages being generated in a rapid sequence. This could

lead to a premature refresh in the filter coefficients leading to a loss of quality. With

this component, they are spaced by at least 40 ms. This value is chosen according to

the typical refresh rate of a video stream (25 fps). This value is also used to define

the crossfade duration between samples, and in our implementation the crossfade is

linear. The user can define a value between 5 ms and 20 ms. Through experimentation,

depending on the CPU power, it is possible to achieve a good quality even at 5 ms. So

Chapter 4. A Head-Tracking based Binaural Spatialization Tool 63

the overall delay between changes is:

20 ms+
200samples

44100 samples
sec

(4.12)

4.4.4 Simulation of Distance

One of the limitations of the CIPIC database is presenting measures only at one given

distance. In order to simulate the distance effect, our patch contains a simple procedure

based on the inverse square law. The function is implemented by an expr∼ object3 with

the expression:

20 log10

(
1

distance

)
dB (4.13)

We limit the range of the distance value, which is a relative value, produced by the

head-tracking system between 0.1 and 2. Conventionally a value of 1 identifies the

reference distance of the impulse response, and in this case no gain is applied. The

mentioned distance value is employed to feed the gain of each channel. The process

could be enhanced by adding a filter which simulates air absorption or using a database

where HRIRs are measured at various distances or adding BRIRs (Binaural Room

Impulse Responses).

4.4.5 The Graphical User Interface

The software application that implements the algorithms previously described is a stan-

dard patch for MAX/MSP. The patch uses an ad hoc external to implement the head-

tracking function.

After launching it, the software presents a main window comprised of a number

of panels and a floating window containing the image coming from the webcam after

3An expr∼ object evaluates C-like expressions.

Chapter 4. A Head-Tracking based Binaural Spatialization Tool 64

faceAPI processing. In the latter window, when a face is recognized, a wireframe

contour is superimposed over the face image.

In Figure 4.7 we present the user interface of the application. Regarding the main

window, it is organized in several panels. First, it allows one to switch on and off the

processing engine. In addition, a number of text boxes and buttons are used to set

the position of the camera and of the source. Other controls provide feedback about

the derived position of the listener and the corresponding translation into azimuth,

elevation, and distance. A 3D representation (with the use of the OpenGL support of

Jitter) of the system made of the listener (dark cube) and the source (white sphere) is

also provided and updated in real time.

The bottom right panel contains the controls to choose an audio file to be played

and to start the playback.

4.5 Multiple Webcams Head-tracking

The system described in the previous section can be enhanced to support multiple web-

cams for extending the range covered by the engine and/or for improving the precision

of the system. In order to achieve this goal the external object needs to be modified.

We decide to implement the head-tracking engine as an external software that sends

OSC (Open Sound Control [77] [78]) messages over network to MAX/MSP.

We define a protocol for communication structured as follows:

• WEBCAM MSG: /webcam, ifffffff webcam id tx ty tz rx ry rz confidence

The first parameter is an integer value used for identifying each webcam. Then seven

floating point number are used to represent translation along three axes (tx, ty, tz), ori-

entation of the head in radians (rx,ry,rz), and a confidence value. The application

allows the user to decide the identifier associated with the webcam and specify an IP

address and a port.

Chapter 4. A Head-Tracking based Binaural Spatialization Tool 65

Figure 4.7: The graphical user interface of the program.

Chapter 4. A Head-Tracking based Binaural Spatialization Tool 66

The workflow of the system is the same but now, if more than a webcam is used,

a procedure to merge the results coming from each webcam is needed. A simple

weighted mean using the confidence value as weight can solve the problem taking into

account also the possibility that one or more webcams are not sending any useful data

(con f idence = 0).

A calibration procedure is performed at the startup of the system. Even if the

position of the webcams is unknown, as long as all of them are tracking the user, the

user can decide the reference position.

The source code of the application is presented in Appendix B.

4.6 Summary and Discussion of the results

This Chapter has described a working application that performs real-time spatialization

of an audio signal based on the position of the listener.

The system can be improved in several manners. The use of a single webcam

corresponds to a limited resolution of azimuths and elevations (± 90 azimuth, -30/+60

elevation, data coming from faceAPI specifications). It could be possible to combine

more cameras in order to fully represent the space and choose the camera with the

highest confidence value.

Another possible improvement is adding support for more than one source in order

to render a richer environment. It could also be interesting to take into account moving

sound sources; this implies that a way to describe trajectories needs to be implemented.

The use of CIPIC database limits the number of possible measured distances and

led us to implement a distance simulation mechanism, whereas it would be desirable

to switch among HRIRs measured at various distances. Also the 200-samples HRIRs

do not account for reverberation, so a reverberation tool is needed.

Since the application is structured in modules, it can be easily extended in order to

Chapter 4. A Head-Tracking based Binaural Spatialization Tool 67

support the future changes we have mentioned.

The source code and application are freely available at:

http://www.lim.dico.unimi.it/HiS.

Chapter 5
Psychoacoustics and Perceptual

Evaluation of Binaural Sounds

The use of binaural recordings as well as the increasing availability of auralization

tools (see previous chapter for further details) is pushing the need of research on the

perception of such materials. What we search is a possible influence of “schizopho-

nia,” literally the fracture between a soundscape and its reproduction (as defined by

R.M. Schafer in [61]), on the performance of this peculiar type of recordings. Binaural

recordings and binaural spatialized sounds are in general more effective, in terms of

spatial rendering, when listened to through headphones, so they are well suited for mo-

bile platforms, which are by definition context-independent. If a binaurally spatialized

sound was proven to be particularly schizophonic with respect to the surrounding con-

text, it could somehow lose its perceptive effectiveness and be recorded by a listener’s

auditory system as “unlikely,” making all the computational effort required to perform

binaural spatialization nearly useless. On the other hand, knowing which parameters

are less dependent on context could lead to better engineered binaural spatialization

systems.

As stated by Tsingos in [73] “With increasingly complex environments, the cost of

68

Chapter 5. Psychoacoustics and Perceptual Evaluation of Binaural Sounds 69

auralization can quickly become a significant bottleneck for interactive applications,

such as video games or simulators. While limitations of the human auditory percep-

tion system have been successfully leveraged for lossy audio compression, real-time

auralization pipelines still implement brute-force processing, independent of the con-

tent to process and perceptive capabilities of a human listener” and we then want to

investigate if differences exists between various types of sound so it could be possible

to differentiate the spatialization quality with respect to their criticality.

The research area of sound spatial perception ([9]) received a lot of attention and

there are important sets of experimental results (e.g. [10]). Most experiments deal

with source localization and very few with movement recognition ([52]). Most of the

experiments use only artificial sound stimuli and fixed listening conditions in order to

obtain measurable results. The adoption of such a small set of stimuli (e.g. pure sines,

narrow-band noises, and trains of pulses) is not representative of the richness and com-

plexity of the typical sounds used for composition of musical pieces, installations, or

audiovisual productions. The application of results only from this type of experiment

to real world conditions could lead to misinterpretations of some phenomena and could

lead to poor performances. Regarding the set of stimuli we then choose to add natural

sounds.

We obviously need to introduce some limitations, so as we are working on binaural

recordings, we chose to fix the listening conditions to headphones only. These experi-

ments are primarily a consequence of the experience gathered from a set of “binaural

concerts” proposed in Italy by the Crackerjack collective (http://www.crackerjack.it),

and produced by AGON in collaboration with LIM, where the musicians play around

a dummy-head placed on stage, and the audience listens to the performance through

headphones.

Chapter 5. Psychoacoustics and Perceptual Evaluation of Binaural Sounds 70

5.1 Experimental Design

This section is intended to describes the underlying process that led us to choose a

combination of sound objects, spatial coordinates, and rooms that were presented dur-

ing the test to the subjects. The formulation of a questionnaire was also one of the

critical parts as it could influence the way the subjects perceive the proposed test.

In this experiment, the perception of realism of a binaural recording is assumed to

be related to the difference between the listening context and the context in which the

recording has been performed. By “context” we basically mean the acoustic features

of the room in which the recording is performed or listened to.

The stimuli that subjects are asked to compare are pairs of binaural recordings of

the same sound, which differ only by the room in which they have been recorded. The

former version of the sound was recorded in the same room where the subjects are

located during the test while the latter was recorded in another room (room B) with

different acoustic features.

Each couple is presented to the subject in random order (A, B or B, A), and the

subject is asked to state which version of the sound is perceived as more realistic. The

subject is also asked to record how much difference is perceived between the two ver-

sions of each sound, on a scale ranging between 1 (very subtle) and 5 (very different).

Subjects are also allowed to express no preference if no difference is perceived.

5.1.1 Room Acoustics

Binaural recordings are performed in two different rooms with different acoustic fea-

tures and the test must be set in one of the two rooms (reference room, or room A) and

the subject must sit in the same position where the dummy head was placed when the

recording was performed.

We have chosen to maximize the difference between the two rooms because prelim-

Chapter 5. Psychoacoustics and Perceptual Evaluation of Binaural Sounds 71

inary tests with a small number of subjects showed that subtle differences are unlikely

to influence the perception of realism.

Objective measures are not considered as critical for our aim: we principally focus

on context discrimination, so rooms have been chosen first of all according to the

difference between them, regardless their peculiar acoustic features. Thus we do not

deeply focus on materials and acoustics, and to define each room here we substantially

use size and reverberation time. The reference room (room A) is an editing studio

with acoustically treated walls, plasterboard ceiling and tiled floor, namely a “dry”

room with a very short reverberation time. It measures 7.4 x 5.9 m in width and 3.1 m

in height, with a T30 of 260 ms. The stairwell of a two-storey building with concrete

walls and ceiling and tiled floor serves as room B. Although it is less wide than room A,

being 7.3 x 4.3 m wide, it is considerably higher (10.31 m), This gives it a remarkably

long reverberation time, with a T30 of 3320 ms.

5.1.2 Spatial Coordinates

The influence of context on perceived realism could be related to the position of the

sound source in space. In our experiment only static sound sources are considered:

trajectories and movement are not regarded as relevant for our scope.

Each sound source can be thus located in a tridimensional space using a set of three

spatial coordinates (see Chapter 1). The origin of the coordinate system is placed in

the center of the head, at the intersection between an imaginary plane placed between

the top of the ear canals (horizontal plane), and the vertical symmetry axis of the head

(median plane) [10]:

pn = {ϕn, δn, rn} (5.1)

where:

• ϕ is the angle on the horizontal plane (clockwise);

Chapter 5. Psychoacoustics and Perceptual Evaluation of Binaural Sounds 72

• δ is the angle on the median plane;

• r is the distance.

In order to reduce the size of the test, the value of δ was always set to 0◦, so only

sound sources located on the horizontal plane are considered in the test. Values of ϕ

are a subset of multiples of 45◦. To further reduce the size of the experiment, some of

the values are also omitted. Values of ϕ are:

ϕ = {45◦,90◦,225◦,270◦} (5.2)

Values ϕ = 0◦ and ϕ = 180◦ (front and rear) were discarded as we are focusing on

cases where interaural differences play a significant role in localization, since localiza-

tion of frontal and rear sound sources is mainly influenced by pinna-related filtering

[7]. Values ϕ = 135◦ and ϕ = 315◦ are regarded as redundant to, respectively, ϕ =

225◦ and ϕ = 90◦, being symmetrical to these values. For each value of ϕ, two differ-

ent values of r are considered, one for a “close” sound source, one for a “far” sound

source:

r = {50 cm,150 cm} (5.3)

The set of chosen angles and distances is depicted in Figure 5.1.

We would have set the second value of r to at least r = 200cm, but due to space

constraints caused by the small size of the rooms this was not possible.

5.1.3 Classification of the Stimuli

The distinction between natural and artificial sounds, and the consequent role their pe-

culiar features play in the perception of realism of spatialization, has been considered

as one of the main topics in our experimental work. The stimuli we used in the test

have were divided into two major classes, depending on wether they are artificial or

Chapter 5. Psychoacoustics and Perceptual Evaluation of Binaural Sounds 73

0°

180°

45°

90°

225°

270°

150 cm

50 cm

Figure 5.1: Coordinates of sound objects.

Chapter 5. Psychoacoustics and Perceptual Evaluation of Binaural Sounds 74

natural sounds. To better clarify this intuitive distinction, we consider a sound object

(son) as defined by the tuple

son = {t, i,b,ei,eb}, (5.4)

where:

• t is time extension (duration) of the sound object;

• i is intensity;

• b is spectral richness;

• ei is the amplitude envelope, considered as a function of i over t;

• eb is the spectral envelope, considered as a function of b over t.

According to this definition, which is based upon the work of Pierre Schaeffer on

theory of sound and musical objects [60], we classify a sound object as natural if its

spectral richness is relevant and its amplitude and spectral envelopes both evolve in

a complex way. On the other hand, a sound object is considered artificial if spectral

richness is very low, or if its envelopes don’t show a particular level of complexity.

This distinction has been used to define the “semantic relevance” of a stimulus. We

assume natural sounds to be perceived as more significant than artificial ones, conse-

quently drawing more attention of our perceptual system in the process of auditory

scene analysis [12]. Six types of stimuli were used in the experiment, four of which

(stimuli s1, s2, s3 and s4) are classified as artificial (less semantically relevant sounds),

while two (s5 and s6) are classified as natural (more semantically relevant)1. Stimuli

s1 to s4 were synthesized with CSound, using a noise generator for s1 and s2 and a sine

wave generator set to a frequency of 1000 Hz for s3 and s4. A percussive amplitude

1Values were chosen also according to opinions reported by subjects during test.

Chapter 5. Psychoacoustics and Perceptual Evaluation of Binaural Sounds 75

envelope has been applied to s1 and s3, while a slowly evolving attack-sustain-release

was applied to s2 and s4 (both envelopes are presented in Figure 5.2).

t

i

500 msec.

1

0

t

i

500 2000 3500 msec.

1

0

Figure 5.2: Two different types of envelope.

For stimuli s5 and s6 an anechoic recording of a male voice and a musical phrase

played by sampled flute were used. We present a compact visualization of sounds in

Table 5.1.

Artificial Natural
so1 so2 so3 so4 so5 so6

b Rich Rich Poor Poor Rich Rich
ei Percussive Slow Percussive Slow Articulated Articulated
eb Static Static Static Static Articulated Articulated

Table 5.1: The sound stimuli grouped by types used in the experiment.

Chapter 5. Psychoacoustics and Perceptual Evaluation of Binaural Sounds 76

5.1.4 Binaural Recordings

All the available sounds were recorded trough a self made dummy-head [41]. We

used the plastic head of a mannequin filled with polyurethane spray, varnished with a

rubber-based paint, that roughly imitates the absorption of skin. We use reproductions

of the pinnae made of rubber (produced by GNResound) and two lavalier condenser

microphone from Sennheiser (MKE 2P) placed at the end of the cavum-conchae.

The dummy head was placed on a fixed stand at the height of 120 cm measured

from the center of the pinna, to reproduce the height of a sitting listener.

The loudspeaker was a Fostex 6301B with coaxial woofer and tweeter.

As soundcard we used a MOTU Traveler firewire interface with integrated pream-

plifiers controlled by an Apple laptop and a custom Max/MSP patch for playback and

recording.

5.1.5 Classification of subjects

Overall, N = 26 listeners were involved in the experiment. The subjects were divided

into two classes, in order to determine wether the influence of the listening context

on perception depends someway on the musical training of the subject. Before taking

the test, the subjects were asked to complete a short questionnaire, in which they were

asked to report their musical training, their familiarity with sound and music technol-

ogy, signal processing and music production, their profession (if related to music or

audio) and their listening habits. These data have been then used to categorize the lis-

teners as “naive,” if they had no musical training nor familiarity with audio technology,

or as “expert” if they had some musical training or familiarity with audio technology.

Collected data would have allowed more detailed classification, but the limited number

of subjects prevented us from performing further subdivisions. As a result, we had a

perfect split into two groups of N1 = 13 naive listeners and N2 = 13 expert listeners.

Chapter 5. Psychoacoustics and Perceptual Evaluation of Binaural Sounds 77

5.1.6 Task and Questionnaire

Figure 5.3: The portion of the questionnaire where subjects report about the position of sound
objects.

A two-part questionnaire was prepared to collect and then process the results. Part

1 is described in Section 5.1.5, and is intented to collect informations about the sub-

ject’s musical training, in order to perform the classification. Part 2 is a multiple choice

form, where subjects are asked to state for each pair of binaural recordings:

1. which one, between the two sounds, is perceived as more realistic;

2. how much difference is perceived between the two sounds, on a scale ranging

from 1 (very subtle) to 5 (very different);

3. where the sound source is located, on a 9-quadrant graphic form depicting a head

in the central square, as shown in Figure 5.3. This field serves as a quality check:

results where this answer is incorrect are discarded (set to 0) before performing

the analysis.

Chapter 5. Psychoacoustics and Perceptual Evaluation of Binaural Sounds 78

Each subject is asked to evaluate an overall number of Nc = 48 pairs of sounds

(one for each couple of {ϕn,rn} space coordinates). Listening condition was fixed

with headphones, which have been calibrated to the same level of acoustic pressure

measured during the recording. Subjects are not allowed to adjust the volume of the

headphones.

The test is run by a supervisor, who plays the pairs of binaural recordings on a

Max/MSP patch that generates random couples of recordings, keeping track of their

order to then correctly pair each stimulus with its corresponding answer in the form.

In order to get each listener’s ears acquainted with the acoustic features of the ref-

erence room, subjects are brought in the room in which the test is performed, where

they are instructed by a supervisor, and then asked to fill the part of the questionnaire

about their musical training right before taking the test. Subjects are placed in the

same position where the dummy head was placed during the recordings. This opera-

tion usually takes a few minutes. The subject can ask questions about the task to the

supervisor. The subject is not aware of the real aim of the test, to avoid the answers to

be affected by the listener’s expectations.

The test is not strictly timed, but subjects are asked to answer as quickly as possi-

ble: too reasoned answers are indeed unlikely to be useful for our goal, as conscious

analysis of the perceived stimulus could be very misleading. For the same reason, sub-

jects could only listen to each pair of recordings once. We take note of the time spent

on task and this is used during the analysis.

5.2 Results

For each subject an Excel DataSheet that encompasses both the answers given in the

preliminary questionnaire and the proper test was obtained.

The responses of the listeners were processed to create matrices of values ranging

Chapter 5. Psychoacoustics and Perceptual Evaluation of Binaural Sounds 79

-1,5

-1

-0,5

0

0,5

1

1,5

2

overall

naive
expert

1 2 3 4 5 6

1 white noise, percussive envelope
2 white noise, s low envelope
3 sine wave, percussive envelope
4 sine wave, s low envelope
5 voice
6 music

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6

Figure 5.4: Mean values grouped by sound type and by subject class.

Chapter 5. Psychoacoustics and Perceptual Evaluation of Binaural Sounds 80

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

Overall Naive Expert

A
r

ti
fi

c
ia

l

N
a

tu
r

a
l

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
r

ti
fi

c
ia

l

N
a

tu
r

a
l

Figure 5.5: Overall values for artificial and natural sound classes.

between −5 and +5. These values are computed assigning 1 is to correct answers,

−1 to incorrect answers, and 0 if no answer is given at all, and then multiplying by

the values given in the ordinal scale. The answers could then be analyzed to compare

the results of each listener, grouped by listener “type” or they could be processed

according to one or more sound characteristics described previously.

We then used the well-known SPSS software for statistical analysis in order to

process our data. We ran a number of analysis specially focusing on clustering. We

performed also TwoStep Clustering ([6]).

In Figure 5.4 values of arithmetic mean for all subjects are depicted according

to sound object, then in Figure 5.5 the same values are grouped into just two sound

classes: Artificial (Mean:0,441 StDev:0,496 CI:0,033) and Natural (Mean:0,625 StDev:0,484

CI:0,046). Values are also presented for Naive and Expert subjects (Mean:0,485/0,519

StDev:0,500 CI:0,039). As conjectured, better results are obtained for natural sounds.

Chapter 5. Psychoacoustics and Perceptual Evaluation of Binaural Sounds 81

The perception of realism for voice seems specially sensitive to schizophonia, while

music seems less influenced by the different contexts. Both graphs are structured as

follows: on the upper (or left) parts mean values calculated from the original matrix

are presented while in the lower (or right) we used the matrix with only correct/wrong

answer (1 or 0).

For sound position and distance (Figure 5.6) overall results are extremely low, and

for distance no significative difference exists. For the position even if the values are

low could be the case that localization and context discrimination are more effective

for “off-axis” sounds.

With regard to clustering we use expert/naive as the categorical variable and we

chose to perform each analysis with different values for the maximum number of clus-

ters options. We let the program automatically choose this value, we fixed it to two,

to four, and to the maximum number of clusters allowed by the software. In no case

were more than four clusters produced except for the case of maximum the number

where one cluster for each subject is produced. For artificial sounds SPSS automati-

cally generated one cluster while for natural sounds two clusters were generated. This

result shows that, while in the answers for artificial sounds no trend seems to exist, for

natural sounds discrimination actually exists.

As an example we provide an in-depth analysis for the clusters obtained with so5.

This situation, depicted in Table 5.2, can be summarized as follows: the automatic

option returned the same two clusters as the fixed option. Cluster number 2 has most

of the elements.2 This subdivision reflects the mean value of answer given by subjects.

This coincides with the hypothesis that natural sounds are easier to discriminate and

this is especially true for voice.

Both the raw and the processed data are available.

2The condition of a single cluster grouping a vast majority of observations is sometimes called

“elephant cluster.”

Chapter 5. Psychoacoustics and Perceptual Evaluation of Binaural Sounds 82

-0,1

-0,05

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

45° 90° 225° 270° 50 cm 150 cm

Angle Distance

Figure 5.6: Mean values for different angles and distances.

Chapter 5. Psychoacoustics and Perceptual Evaluation of Binaural Sounds 83

Distribution
Cluster N Combined % Total %

1 5 19,2% 19,2%
2 21 80,8% 80,8%

Combined 26 100% 100%

Frequency for groups of subject

Naive Expert
Cluster Freq. % Freq. %

1 3 23,1 2 15,4
2 10 76,9 11 84,6

Combined 13 100 13 100
Centroids

so545N so545F
Cluster Mean Std. dev. Mean Std. dev.

1 -2,40 1,517 -1,40 3,507
2 2,86 2,351 2,00 3,114

Combined 1,85 3,042 1,35 3,405
so590N so590F

Cluster Mean Std. dev. Mean Std. dev.
1 -3,40 1,140 -3,60 1,342
2 2,10 2,791 2,00 2,915

Combined 1,04 3,364 0,92 3,486
so5225N so5225F

Cluster Mean Std. dev. Mean Std. dev.
1 -3,60 1,140 -3,60 0,894
2 2,62 2,819 2,90 2,606

Combined 1,42 3,580 1,65 3,521
so5270N so5270F

Cluster Mean Std. dev. Mean Std. dev.
1 -3,20 1,095 -2,80 2,775
2 1,81 3,124 3,67 2,915

Combined 0,85 3,472 2,42 2,942

Table 5.2: Clusters for voice sound (so5).

Chapter 5. Psychoacoustics and Perceptual Evaluation of Binaural Sounds 84

5.3 Summary and Discussion of the results

The results of our experiment can be summarized in various ways. Some evidence

seems more convincing than others especially considering the relative small number

of subjects that attended our experiment. We want to point out that our work can serve

as a basis for future work intended to enlarge the number of subject or to investigate

some other aspects related to perception of binaural sounds.

One of the salient results of our experiments is that the position and localization of

sound objects is not a relevant factor in determining the overall quality, even if some

evidence indicate that further experiments with larger groups of subjects could confirm

off-axis sounds to be more influenced by context.

As expected and confirmed by other studies (see e.g. [52]), artificial sounds, as

well as the other classified with low semantic relevance, give significantly lower results

compared to music and voice.

We have focused only on single sound objects, so the task is highly simplified

with respect to real conditions with competing sounds. Even with this condition, the

discrimination rate is generally low.

Another result is that an being expert does not improve discrimination, probably

because this is not an usual musical task. In our case, the naive subject even had better

results in some scenarios. This could be explained by the small number of subjects but

also with the lack of knowledge of specific phenomena related to sound propagation.

As noted by the time spent on the task, expert subjects tried to apply their specific

knowledge to find a possible mechanism of solution.

Chapter 6
Conclusions and Future Works

This concluding chapter summarizes the whole work; the outcomes of the develop-

mental and evaluation stages of this research are recapitulated. Finally we present

possible future improvements and additions to this research, from the development of

new functions and/or applications to the setup and performing of further perceptual

tests.

In this work we have developed tools and systems for both offline and real-time

binaural spatialization. We have shown that GPUs are suitable also for this kind of au-

dio computation and can solve some of the computational problems that arise when an

interactive environment needs to be rendered in real-time with multiple sound sources.

We have provided a system that takes into account the position of the listener via head-

tracking to render a scenario compatible with augmented reality requirements. Finally

we have started research in the field of psychoacoustics that can lead to a better un-

derstanding of the underlying processes of sound perception for binaural spatialized

sounds.

85

Chapter 6. Conclusions and Future Works 86

6.1 Future Works

We want to detail here some of the possibilities opened by this research that could be

addressed.

6.1.1 Improvements in the GPU implementation of a convolution

engine

In this work we did not exploit all the possible benefits of a GPU implementation.

Improvements such as the extensive use of coalescing memory or other architecture-

specific optimizations can lead to further benefits in terms of execution time and mem-

ory use.

6.1.2 Use of different transforms beside FFT

Even if it is proved that FFT is the only transform that have a “convolution theorem”

(see [67] for further details), it is worth citing one of the possibilities detailed in that

paper. The authors state that a potential benefit could emerge if the data are already

stored in a transformed representation. As an example, in [30] the authors show that

under certain conditions the use of UDWT (Undecimated Discrete Wavelet Transform)

is much more efficient than traditional convolution algorithms.

6.1.3 OpenCL implementation for radix n

One of the problem reported in Chapter 3 is the lack of support for radix-n signals.

This can be achieved by extending the original procedure with the results used in the

CUDA implementation.

Chapter 6. Conclusions and Future Works 87

6.1.4 Partitioned Convolution Algorithm

Partitioned convolution is not a widely known algorithm. Description of its imple-

mentation came from a paper by Armelloni, Giottoli, and Farina [5]. An earlier paper

by Torger and Farina [72] also gives some insight. The first paper describes in de-

tail the implementation of uniformly partitioned convolution on a DSP board. It is also

possible to partition in a non-uniform manner (different sized partitions) for latency re-

duction purposes. Since this was an algorithm that aimed at splitting very long filters

for real time time domain implementations it could be interesting to make a compari-

son with our frequency based approach. [59] also used this algorithm for an efficient

FFT implementation on GPU.

6.1.5 BRIRs (Binaural Reverb Impulse Responses)

Our model can be extended to support the use of BRIRs. Adding a reverb model to

an “anechoic-like” HRIR contributes to increase the perceived realism of the system.

Models of BRIRs can be found in literature (see [53]). Adding a BRIR in real time

can be a challenging task since they are normally longer than commonly used HRIRs

(∼100000 vs. ∼500 samples). This problem can be solved with our implementation

which helps to reduce the computational time for auralization.

6.1.6 Further perceptual tests on binaurally spatialized signals

In Chapter 5 we presented some preliminary results of a perceptual test. The experi-

ment could be rearranged in various ways: an interesting opportunity involves fixing

all other variables, to have a second group of subjects that will have the test in the other

room used for binaural recordings. There could exist as a threshold of “difference” be-

tween rooms. We have purposely chosen rooms with very noticeable differences while

someone could be concerned by very subtle ones even if these preliminary results

Chapter 6. Conclusions and Future Works 88

suggest that such differences will not be perceived. This consideration could induce

researchers to take into account further investigation in determining threshold for per-

ceptual discrimination between different rooms. This research goes into the direction

of “Auditory Scene Analysis” ([12]). Also a salience map [36] for audio can be the

output of this process as it is possible for the video cue.

Such investigations can find important counterparts in the design and planning

phase of music pieces as well as in determining important steps in development of

related hardware/software techniques by giving priority to some critical aspects as

proposed in [8] and [27].

6.1.7 Binaural spatialization in VR applications for the blind

This idea comes from the work of Picinali & Katz (e.g. [54]) to create a wide research

project linked with binaural spatialization applied to Virtual Reality applications for

the blind. We show that our system can be used in augmented reality and virtual

reality environments and so it will be possible to adopt it as a whole or in parts (e.g. the

head-tracking system or the convolution engine) in order to determine if non-sighted

individuals could show different performances in terms of spatial hearing as compared

with sighted persons.

Appendix A
Convolution Implementations

We present here different code snippets for the different implementations of the con-

volution engine.

The first implementation is the reference frequency-domain implementation devel-

oped in Matlab and presented for the first time in [43].

function fastconvo(primofile, secondofile, nomefile)

siz1=wavread(primofile,’size’);

siz2=wavread(secondofile, ’size’);

chan1=siz1(2);

chan2=siz2(2);

if ((chan1>=2) & (chan2>=2))

disp(’Errore, unable to perform convolution with two stereo

files or with multidimensional ones’);

else

[c,Sr1,bit1]=wavread(primofile);

[d,Sr2,bit2]=wavread(secondofile);

89

Chapter A. Convolution Implementations 90

if ((Sr1==Sr2) && (bit1==bit2))

if ((chan1==1) & (chan2==1))

disp(’Performing convolution with two mono files’);

C=fft([c’ zeros(1,length(d)-1)]);

D=fft([d’ zeros(1,length(c)-1)]);

Y=ifft(C.*D);

mxx=max(Y);

YY=Y/mxx;

wavwrite(YY,Sr1,bit1,nomefile);

else

if ((chan1==1) & (chan2==2))

disp(’Flipping channels’);

e=c;

c=d;

d=e;

end;

disp(’Performing convolution with one mono file

and one stereo impulse’);

cs=c’;

//Convolution

C1=fft([cs(1,:) zeros(1,length(d)-1)]);

C2=fft([cs(2,:) zeros(1,length(d)-1)]);

D=fft([d’ zeros(1,length(c)-1)]);

Y1=ifft(C1.*D);

Y2=ifft(C2.*D);

//End

mxx1=max(Y1);

YY1=Y1/mxx1;

mxx2=max(Y2);

Chapter A. Convolution Implementations 91

YY2=Y2/mxx2;

YYt=[YY1;YY2];

YYYt=YYt’;

wavwrite(YYYt,Sr1,bit1,nomefile);

end;

else

disp(’Error, type mismatch’);

end;

end;

This implementation can be modified into a time-domain one modifying the high-

lighted lines between comments with these ones:

Y1=conv(C1,D)

Y2=conv(C2,D)

As a comparison we present the CUDA and OpenCL kernel functions for complex

pointwise multiplication of two vectors. CUDA:

///

// Complex operations

///

// Complex multiplication

static __device__ __host__ inline cufftComplex

ComplexMul(cufftComplex a, cufftComplex b)

{

cufftComplex c;

c.x = a.x * b.x - a.y * b.y;

c.y = a.x * b.y + a.y * b.x;

return c;

Chapter A. Convolution Implementations 92

}

// Complex pointwise multiplication

static __global__ void ComplexPointwiseMul

(cufftComplex* a, const cufftComplex* b, int size)

{

const int numThreads = blockDim.x * gridDim.x;

const int threadID = blockIdx.x * blockDim.x + threadIdx.x;

for (int i = threadID; i < size; i += numThreads)

a[i] = ComplexMul(a[i], b[i]);

}

OpenCL:

// OpenCL Kernel Function for element by element vector

// Complex Pointwise Multiplication

__kernel void ComplexPointwiseMul

(__global float* a, __global float* b,

__global const float* c, __global const float* d, int size)

{

const int numThreads = get_local_size(0)

* get_num_groups(0);

for (int i = get_global_id(0); i < size;

i += numThreads){

float k = a[i];

a[i] = (a[i] * c[i]) - (b[i] * d[i]);

b[i] = (k * d[i]) + (b[i] * c[i]);

}

}

Appendix B
Source Code for Head-tracking external

module

We provide here the source code for an OSC-capable headtracking software.

// OSCHT.cpp : A console application.

// This creates a head-tracker using the first WDM driver supported camera found on the system,

// and sends the tracking data with OSC to a network interface.

// Copyright: Davide Andrea ’Murivan’ Mauro developed at LIMSI

// Precompiled header file

#include "stdafx.h"

// Some utilities for error handling, printing and console key-press interpreting etc.

#include "utils.h"

//liblo: Lightweight OSC implementation

#include "lo/lo.h"

// For CTRL-C handling

#include <csignal>

// Here you can toggle behaviour to use either the synchronous head-pose callback

// (called when head-pose is changed)

// or an asynchronous direct-call mechanism that reads the latest head-pose value.

// Comment out this define to use the direct-call mechanism.

#define USE_HEADPOSE_CALLBACK

using namespace std;

using namespace sm::faceapi::samplecode;

lo_address t;

int webcamid=0;

// --------------------------

// Notes on Callback Routines

// --------------------------

//

// The following callbacks are called by internal engine worker threads.

//

93

Chapter B. Source Code for Head-tracking external module 94

// These example routines lock a mutex to protect any data structures against read-write race-conditions,

// or in the case of the receiveLogMessage() function, to serialize the calling threads to avoid

// garbled messages from being printed.

//

// In these examples the mutex is just protecting a boolean which is a POD type and atomically

// read / written by the CPU, so it is there for example purposes only. In your real application code

// you will want to copy the contents of the head-tracking data structures into your own data structures.

// These will not copy in one instruction so you will need to use a mutex to avoid weird noise from appearing

// in the data (and then you will blame it on the tracker!)

//

// The code below also illustrates that those faceAPI functions marked as "reentrant" can be called from

// within the callback routines. All other faceAPI non-rentrant functions will incur deadlocks, BEWARE!

// Callback function for messages generated by API routines

void STDCALL receiveLogMessage(void *, const char *buf, int /*buf_len*/)

{

Lock lock(g_mutex); // serialize logging calls from different threads to avoid garbled output.

cout << string(buf);

}

// Callback function for face-data

void STDCALL receiveFaceData(void *, smEngineFaceData face_data, smCameraVideoFrame video_frame)

{

Lock lock(g_mutex);

// Get info including data pointer to original image from camera

smImageInfo video_frame_image_info;

THROW_ON_ERROR(smImageGetInfo(video_frame.image_handle, &video_frame_image_info)); // reentrant, so ok

// video_frame_image_info.plane_addr[*] now point to the image memory planes.

// The memory is only valid until the end of this routine unless you call

// smImageAddRef(video_frame.image_handle).

// So you can deep copy the image data here, or use smImageAddRef() and just copy the pointer.

// If you use smImageAddRef() you are responsible for calling smImageDestroy() to avoid a memory leak later.

// In this callback you will typically want to copy the smEngineFaceData data into your own data-structure.

// Since the smEngineFaceData contains multiple pod types copying it is not atomic and

// a mutex is required to avoid the race-condition with any thread simultaneously

// reading from your data-structure.

// Such a race condition will not crash your code but will create weird noise in the tracking data.

if (g_do_face_data_printing)

{

cout << video_frame << " " << face_data;

// Save any face texture to a PNG file

if (face_data.texture)

{

// Create a unique filename

std::stringstream filename;

filename << "face_" << video_frame.frame_num << ".png";

// Try saving to a file

if (saveToPNGFile(filename.str(), face_data.texture->image_info) == SM_API_OK)

{

cout << "Saved face-texture to " << filename.str() << std::endl;

}

Chapter B. Source Code for Head-tracking external module 95

else

{

cout << "Error saving face-texture to " << filename.str() << std::endl;

}

}

}

}

// Callback function for head-pose

void STDCALL receiveHeadPose(void *,smEngineHeadPoseData head_pose, smCameraVideoFrame video_frame)

{

Lock lock(g_mutex);

// Get info including data pointer to original image from camera

smImageInfo video_frame_image_info;

THROW_ON_ERROR(smImageGetInfo(video_frame.image_handle, &video_frame_image_info)); // reentrant, so ok

// video_frame_image_info.plane_addr[*] now point to the image memory planes.

// The memory is only valid until the end of this routine unless you call

// smImageAddRef(video_frame.image_handle).

// So you can deep copy the image data here, or use smImageAddRef() and just copy the pointer.

// If you use smImageAddRef() you are responsible for calling smImageDestroy() to avoid a memory leak later.

// In this callback you will typically want to copy the smEngineFaceData data into your own data-structure.

// Since the smEngineFaceData contains multiple pod types copying it is not atomic and

// a mutex is required to avoid the race-condition with any thread simultaneously

// reading from your data-structure.

// Such a race condition will not crash your code but will create weird noise in the tracking data.

/*

if (g_do_head_pose_printing)

{

cout << video_frame << " " << head_pose << std::endl;

}

*/

/* send a OSC Message */

//if (head_pose.confidence>=0.20) to send messages only if the webcam is actually receiving some datas

lo_send(t, "/webcam", "ifffffff", webcamid, (head_pose.head_rot.x_rads),

(head_pose.head_rot.y_rads), (head_pose.head_rot.z_rads),

head_pose.head_pos.x, head_pose.head_pos.y ,head_pose.head_pos.z, head_pose.confidence);

}

// Create the first available camera detected on the system, and return its handle

smCameraHandle createFirstCamera()

{

// Detect cameras

smCameraInfoList info_list;

THROW_ON_ERROR(smCameraCreateInfoList(&info_list));

if (info_list.num_cameras == 0)

{

throw runtime_error("No cameras were detected");

}

else

{

cout << "The followings cameras were detected: " << endl;

for (int i=0; i<info_list.num_cameras; ++i)

Chapter B. Source Code for Head-tracking external module 96

{

char buf[1024];

cout << " " << i << ". Type: " << info_list.info[i].type;

THROW_ON_ERROR(smStringWriteBuffer(info_list.info[i].model,buf,1024));

cout << " Model: " << string(buf);

cout << " Instance: " << info_list.info[i].instance_index << endl;

// Print all the possible formats for the camera

for (int j=0; j<info_list.info[i].num_formats; j++)

{

smCameraVideoFormat video_format = info_list.info[i].formats[j];

cout << " - Format: ";

cout << " res (" << video_format.res.w << "," << video_format.res.h << ")";

cout << " image code " << video_format.format;

cout << " framerate " << video_format.framerate << "(hz)";

cout << " upside-down? " << (video_format.is_upside_down ? "y":"n") << endl;

}

}

}

// Create the first camera detected on the system

smCameraHandle camera_handle = 0;

THROW_ON_ERROR(smCameraCreate(&info_list.info[0], // Use first camera

0, // Use default settings for lens

&camera_handle));

// Destroy the info list

smCameraDestroyInfoList(&info_list);

return camera_handle;

}

// The main function: setup a tracking engine and show a video window, then loop on the keyboard.

void run()

{

// Capture control-C

signal(SIGINT, CtrlCHandler);

// Make the console window a bit bigger (see utils.h)

initConsole();

ifdef _DEBUG

// Log API debugging information to a file

THROW_ON_ERROR(smLoggingSetFileOutputEnable(SM_API_TRUE));

// Hook up log message callback

THROW_ON_ERROR(smLoggingRegisterCallback(0,receiveLogMessage));

endif

// Get the version

int major, minor, maint;

THROW_ON_ERROR(smAPIVersion(&major, &minor, &maint));

cout << endl << "API VERSION: " << major << "." << minor << "." << maint << "." << endl << endl;

// Print detailed license info

char *buff;

int size;

Chapter B. Source Code for Head-tracking external module 97

THROW_ON_ERROR(smAPILicenseInfoString(0,&size,SM_API_TRUE));

buff = new char[size];

THROW_ON_ERROR(smAPILicenseInfoString(buff,&size,SM_API_TRUE));

cout << "LICENSE: " << buff << endl << endl;

// Determine if non-commercial restrictions apply

const bool non_commercial_license = smAPINonCommercialLicense() == SM_API_TRUE;

// Initialize the API

THROW_ON_ERROR(smAPIInit());

ifdef _DEBUG

// Get the path to the logfile

smStringHandle logfile_path_handle = 0;

THROW_ON_ERROR(smStringCreate(&logfile_path_handle));

THROW_ON_ERROR(smLoggingGetPath(logfile_path_handle));

int buf_len = 0;

unsigned short *buf = 0;

THROW_ON_ERROR(smStringGetBufferW(logfile_path_handle,(wchar_t **)&buf,&buf_len));

wcout << "Writing log to file: " << wstring((wchar_t *)buf) << endl;

THROW_ON_ERROR(smStringDestroy(&logfile_path_handle));

endif

// Register the WDM category of cameras

THROW_ON_ERROR(smCameraRegisterType(SM_API_CAMERA_TYPE_WDM));

smEngineHandle engine_handle = 0;

smCameraHandle camera_handle = 0;

if (non_commercial_license)

{

// Create a new Head-Tracker engine that uses the camera

THROW_ON_ERROR(smEngineCreate(SM_API_ENGINE_LATEST_HEAD_TRACKER,&engine_handle));

}

else

{

// Print out a list of connected cameras, and choose the first camera on the system

camera_handle = createFirstCamera();

// Create a new Head-Tracker engine that uses the camera

THROW_ON_ERROR(smEngineCreateWithCamera(SM_API_ENGINE_LATEST_HEAD_TRACKER,camera_handle,&engine_handle));

}

// Check license for particular engine version (always ok for non-commercial license)

const bool engine_licensed = smEngineIsLicensed(engine_handle) == SM_API_OK;

cout << "---" << endl;

cout << "Press ’r’ to restart tracking" << endl;

cout << "Press ’a’ to toggle auto-restart mode" << endl;

if (!non_commercial_license)

{

cout << "Press ’l’ to toggle lip-tracking" << endl;

cout << "Press ’e’ to toggle eyebrow-tracking" << endl;

}

if (engine_licensed)

{

cout << "Press ’h’ to toggle printing of head-pose data" << endl;

cout << "Press ’f’ to toggle printing of face-landmark data" << endl;

Chapter B. Source Code for Head-tracking external module 98

}

cout << "Press ’1’ to toggle face coordinate frame axes" << endl;

cout << "Press ’2’ to toggle performance info" << endl;

cout << "Press ’3’ to toggle face mask" << endl;

cout << "Press ’4’ to toggle face landmarks" << endl;

cout << "Press CTRL-C or ’q’ to quit" << endl;

cout << "---" << endl;

// Hook up callbacks to receive output data from engine.

// These functions will return errors if the engine is not licensed.

if (engine_licensed)

{

ifdef USE_HEADPOSE_CALLBACK

THROW_ON_ERROR(smHTRegisterHeadPoseCallback(engine_handle,0,receiveHeadPose));

endif

if (!non_commercial_license)

{

THROW_ON_ERROR(smHTRegisterFaceDataCallback(engine_handle,0,receiveFaceData));

}

}

else

{

cout << "Engine is not licensed, cannot obtain any output data." << endl;

}

if (!non_commercial_license)

{

// Enable lip and eyebrow tracking

THROW_ON_ERROR(smHTSetLipTrackingEnabled(engine_handle,SM_API_TRUE));

THROW_ON_ERROR(smHTSetEyebrowTrackingEnabled(engine_handle,SM_API_TRUE));

}

// Create and show a video-display window

smVideoDisplayHandle video_display_handle = 0;

THROW_ON_ERROR(smVideoDisplayCreate(engine_handle,&video_display_handle,0,TRUE));

// Setup the VideoDisplay

THROW_ON_ERROR(smVideoDisplaySetFlags(video_display_handle,g_overlay_flags));

// Get the handle to the window and change the title to "Hello World"

smWindowHandle win_handle = 0;

THROW_ON_ERROR(smVideoDisplayGetWindowHandle(video_display_handle,&win_handle));

SetWindowText(win_handle, _T("OSC Head Tracker"));

// Start tracking

THROW_ON_ERROR(smEngineStart(engine_handle));

// Loop on the keyboard

while (processKeyPress(engine_handle, video_display_handle))

{

// Read and print the current head-pose (if not using the callback mechanism)

ifndef USE_HEADPOSE_CALLBACK

if (engine_licensed)

{

smEngineHeadPoseData head_pose;

Chapter B. Source Code for Head-tracking external module 99

THROW_ON_ERROR(smHTCurrentHeadPose(engine_handle,&head_pose));

Lock lock(g_mutex);

if (g_do_head_pose_printing)

{

std::cout << head_pose << std::endl;

}

}

endif

// NOTE: If you have a windows event loop in your program you

// will not need to call smAPIProcessEvents(). This manually redraws the video window.

THROW_ON_ERROR(smAPIProcessEvents());

// Prevent CPU overload in our simple loop.

const int frame_period_ms = 33;

Sleep(frame_period_ms);

}

// Destroy engine

THROW_ON_ERROR(smEngineDestroy(&engine_handle));

// Destroy video display

THROW_ON_ERROR(smVideoDisplayDestroy(&video_display_handle));

} // run()

// Application entry point

int main(int argc, char** argv)

{

if (argc==1){

printf("Starting with default settings id 0 localhost:7770.\n");

t = lo_address_new(NULL, "7770");

}

else if (argc!=4)

{

printf("Wrong number of arguments. Must be 3, a WebcamID, a host and a port number.\n");

return smAPIQuit();

}

if (argc!=1){

char *address= new char[1024];

char *port= new char[1024];

address=argv[2];

port=argv[3];

t = lo_address_new(address, port);

webcamid=strtol(argv[1], NULL, 10);

printf("Starting with settings id %d %s:%s.\n",webcamid,address,port);

}

try

{

run();

}

catch (exception &e)

{

cerr << e.what() << endl;

}

return smAPIQuit();

}

Appendix C
Questionnaire for Perceptual Test and

Results

Please note that since the test had been submitted to Italian speaking persons it is not

translated in english.

Results are showed in Figure C.6, C.7, C.8.

Legend for rows: e.g. RP90V

• Sound type: R for Noise, T for Tone, V for Voice, M for Music.

• Envelope: P for Percussive L for Slow

• Angle: 45◦, 90◦, 225◦, 270◦.

• Distance: V for Near L for Far.

For each subject the second column also states if they are “Expert” or “Naive”. Results

are computed as follows: 0 for no answer, +1 for correct answer and -1 for wrong

answer then multiplied for the value expressed in ordinal scale (1. . . 5).

100

Chapter C. Questionnaire for Perceptual Test and Results 101

ISTRUZIONI:
Ai suoni che ascolterai sono stati applicati degli effetti di spazializzazione binaurale, una tecnica
che consente all'ascoltatore di cogliere la direzione di provenienza di un suono.

Quando si ascolta la musica in cuffia, infatti, l’ascoltatore la percepisce come se i suoni si
trovassero all’interno della testa. Con la spazializzazione binaurale, invece, i suoni vengono
percepiti come se si trovassero all’esterno della testa, a distanze e angoli differenti.

Ascolterai ogni suono due volte, trattato ogni volta con un effetto di spazializzazione binaurale
leggermente diverso. Ti chiediamo di indicare:

1) quale dei due suoni è secondo te più realistico, ovvero quale dei due suoni ti dà
maggiormente l’impressione che la sorgente sonora si trovi nello spazio intorno a te;

2) quanta differenza avverti, su una scala da 1 (pochissima/nessuna differenza) a 5 (molta
differenza) tra i due suoni;

3) da dove senti provenire il suono rispetto alla tua testa, segnando una crocetta in uno dei
quadranti come nella figura sottostante e scrivendo se senti il suono provenire da vicino o
da lontano.

Es.1: suono proveniente Es. 2: suono percepito
da davanti a destra dentro la testa

Il test non è cronometrato, ma ti preghiamo di non impiegare troppo tempo a ragionare sulle
risposte: quello che ci interessa è la tua impressione immediata.

Se noti qualcosa di particolare, sull'ultimo foglio del questionario è presente uno spazio per
annotare le tue osservazioni.

Grazie della tua disponibilità!

Figure C.1: First page of the questionnaire.

Chapter C. Questionnaire for Perceptual Test and Results 102

QUESTIONARIO NUMERO ……………………

Età …… Sesso M F

Il tuo lavoro ha a che fare con la musica, le tecnologie audio o altri argomenti relativi al suono?

Sì No

Se sì, qual'è il tuo lavoro?? ………………………………………………………………………………….

Sei musicista, suoni qualche strumento o canti?

Sì No

Se sì, che strumenti suoni? ………………………………………………………………………………….

Per quanto tempo al giorno ascolti musica?

Meno di mezz’ora Circa un’ora Circa due ore

Più di due ore

Come ascolti normalmente la musica? (è possibile selezionare più di una casella)

Impianto stereo Lettore portatile Autoradio

Computer (casse) Computer (cuffie)

Sei a conoscenza e/o hai mai utilizzato strumenti di registrazione o spazializzazione
binaurale del suono?

Sì No

Figure C.2: Second page of the questionnaire.

Chapter C. Questionnaire for Perceptual Test and Results 103

 Quale suono è Avverti molta differenza
 più realistico? tra i due suoni?

Coppia 1 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 2 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 3 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 4 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 5 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 6 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 7 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 8 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 9 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 10 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 11 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 12 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 13 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 14 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 15 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 16 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 17 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 18 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 19 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 20 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 21 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 22 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 23 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 24 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 25 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 26 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 27 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 28 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 29 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 30 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 31 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 32 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 33 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 34 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 35 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 36 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 37 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 38 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 39 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 40 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 41 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 42 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 43 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 44 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 45 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 46 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 47 A B Poco/per niente 1 2 3 4 5 Molto
Coppia 48 A B Poco/per niente 1 2 3 4 5 Molto

Figure C.3: Third page of the questionnaire.

Chapter C. Questionnaire for Perceptual Test and Results 104

Coppia 1 Vicino Lontano Coppia 2 Vicino Lontano Coppia 3 Vicino Lontano

Coppia 4 Vicino Lontano Coppia 5 Vicino Lontano Coppia 6 Vicino Lontano

Coppia 7 Vicino Lontano Coppia 8 Vicino Lontano Coppia 9 Vicino Lontano

Coppia 10 Vicino Lontano Coppia 11 Vicino Lontano Coppia 12 Vicino Lontano

Figure C.4: Fourth page of the questionnaire.

Chapter C. Questionnaire for Perceptual Test and Results 105

NOTE: …….

………..

………..

………..

………..

………..

………..

………..

………..

………..

………..

………..

………..

………..

………..

………..

………..

………..

………..

………..

………..

………..

………..

………..

………..

………..

………..

………..

………..

………..

………..

………..

Figure C.5: Fifth page of the questionnaire.

Chapter C. Questionnaire for Perceptual Test and Results 106

ID ESPERTO RP45V RP45L RP90V RP90L RP225V RP225L RP270V RP270L RL45V RL45L RL90V RL90L RL225V RL225L
1 TRUE -4 -4 -4 -4 -4 -4 -3 -4 -4 -4 -4 -4 -4 4
2 TRUE -4 0 4 4 -4 4 4 4 -3 -3 -3 -3 -1 3
3 TRUE -4 0 -4 -4 0 -4 -4 -4 -3 -4 -4 4 -4 -4
4 TRUE 3 -2 -3 -3 -3 -3 -3 -4 -3 -4 -2 -3 -4 -4
5 FALSE -4 1 -4 -4 -2 -5 -4 3 4 2 4 3 2 -2
6 FALSE -3 4 -4 -4 -4 -1 -4 -4 -3 4 -4 -4 -4 4
7 TRUE 5 -3 -3 2 5 -3 -4 -3 -3 -1 -1 2 -1 -3
8 FALSE -5 -4 5 4 5 4 -3 4 4 -4 5 5 4 4
9 TRUE -3 -4 -4 -3 -3 -3 -3 -3 -2 -2 -2 -3 -1 2
10 TRUE 4 3 5 4 4 4 4 4 -4 -5 -4 -5 -4 -5
11 TRUE 4 2 4 3 4 4 4 0 -3 -3 2 5 4 4
12 FALSE -3 -3 -2 -2 -3 -3 -2 -3 -3 -3 -3 -3 -3 2
13 FALSE 3 -3 4 -4 4 3 2 4 -4 -5 2 4 3 -3
14 TRUE 4 3 4 3 2 -3 3 3 3 2 4 3 -3 3
15 TRUE 4 4 0 5 4 4 5 4 -3 -3 1 -3 -3 -3
16 FALSE -4 -3 -4 -7 4 -4 -2 -4 2 -1 -1 -2 2 -3
17 FALSE 3 2 -5 -4 3 3 5 4 4 3 5 3 -4 4
18 TRUE 5 -1 -3 -1 4 3 2 -1 -2 3 -1 -3 3 2
19 FALSE 3 3 -4 2 -3 2 4 2 -1 3 -3 -3 1 -3
20 FALSE 4 4 2 3 5 4 4 -3 5 5 -5 5 2 -3
21 FALSE -5 -3 -4 -4 -4 -3 -5 -4 -3 -3 3 -4 -3 -3
22 FALSE -4 -4 -4 -4 -3 -3 4 -4 4 3 -3 3 2 -4
23 TRUE 1 -3 -3 -2 2 3 2 -2 1 3 -1 -3 1 -3
24 TRUE -5 2 5 5 -5 5 5 5 4 -5 4 -4 5 5
25 FALSE 3 3 0 3 -3 3 3 3 3 3 2 3 -2 3
26 FALSE -2 3 3 3 -3 3 4 -4 -3 2 2 -4 -3 2

Figure C.6: Results, Page 1/3.

Chapter C. Questionnaire for Perceptual Test and Results 107

RL270V RL270L TP45V TP45L TP90V TP90L TP225V TP225L TP270V TP270L TL45V TL45L TL90V TL90L TL225V TL225L
5 -4 3 -4 -3 3 -4 4 4 4 -1 -1 1 -2 1 1
-2 -3 -4 3 4 -4 4 -3 -4 -4 -2 2 -3 -3 -3 -3
-4 -4 -4 -4 -4 -4 -4 -4 -4 -4 0 -3 -3 -4 -4 -5
-2 -2 -3 -3 -3 -3 -3 -3 -3 -3 3 -3 -3 -3 1 -3
4 3 3 2 -2 -2 3 2 2 0 -4 -4 -3 -5 3 -3
-2 -4 -5 -2 -3 -4 -5 0 -4 -5 -3 -3 -4 -3 -3 -3
-2 -3 -3 2 0 4 5 5 3 3 -3 -1 -2 -4 -1 -1
-5 4 5 5 4 4 3 4 4 5 0 3 4 3 4 4
-2 -2 -3 -4 -3 -3 -2 -3 -2 -3 1 -2 -2 -2 -1 2
-4 -5 4 4 3 -4 4 4 4 -4 -3 4 3 -4 4 -3
2 -4 4 0 -4 3 3 3 2 0 -3 2 -1 1 1 3
2 -3 -2 -2 -2 2 -3 -2 -2 -3 -3 -3 -3 -3 -3 2
-4 -3 3 -4 4 -3 4 4 3 -2 1 -2 5 -1 -3 -3
3 -4 3 2 -4 3 3 -3 3 3 -2 -3 1 -3 1 -2
-3 -3 4 4 4 4 4 4 4 4 3 -1 1 1 2 3
-2 -5 -4 -2 -3 -3 0 -4 -4 -4 -1 -1 -2 0 1 3
-5 -3 3 3 2 4 -3 3 -3 3 4 3 3 4 3 3
-3 5 -1 4 -5 -4 -3 -4 -4 5 2 3 -3 -2 2 -1
0 -2 4 4 3 3 -3 2 2 2 3 1 2 1 -1 -3
-3 -2 5 4 5 5 0 5 5 -4 1 -2 -1 1 3 4
-5 0 -5 -5 -4 -4 -5 -5 -4 -4 -2 -2 3 -2 4 -3
-4 -3 2 3 3 -3 -3 3 3 -2 3 -4 -4 -4 -4 -3
1 1 -2 2 -2 -3 -2 -2 -3 -2 2 2 -1 1 1 -1
-5 -5 5 4 5 4 5 5 5 5 1 3 3 -4 -4 -1
-4 3 3 3 3 4 3 3 3 -3 1 1 -3 3 -2 3
-2 2 2 -3 2 4 -3 -2 2 3 1 -1 -2 -1 1 -2

Figure C.7: Results, Page 2/3.

Chapter C. Questionnaire for Perceptual Test and Results 108

TL270V TL270L V45V V45L V90V V90L V225V V225L V270V V270L M45V M45L M90V M90L M225V M225L M270V M270L
-1 -1 3 4 3 3 4 4 3 3 4 -4 -4 -4 -4 -4 4 3
3 -4 4 4 3 4 3 4 -3 5 -3 4 -4 3 3 3 3 4
-4 -2 4 -4 0 -4 4 4 4 3 -4 3 0 -4 -4 5 -4 3
-2 -3 -3 -3 -3 -3 -3 -3 -2 -4 -3 -3 -3 -3 -3 -3 -3 -3
-5 -4 -3 4 -3 -3 -4 -4 -4 -3 5 -2 2 3 5 3 1 3
2 -3 -4 -3 4 -3 4 -5 3 3 -2 -4 -3 -4 -4 -3 4 -3
-1 -2 5 5 -5 1 5 -4 -4 5 4 -5 2 5 3 5 4 3
4 4 5 4 5 4 5 5 5 3 5 4 5 4 5 5 5 5
-1 -3 3 3 3 3 3 3 3 3 -3 -2 -3 -3 -3 -3 -4 -3
4 -2 -4 0 -4 -5 -5 -3 -4 -5 -5 -4 -5 -5 -4 -5 -5 -5
5 2 2 3 3 3 3 3 4 5 3 -4 4 4 4 4 1 4
-2 -4 0 -3 -2 -2 -2 -3 -2 2 -3 -2 -3 -3 -3 -3 -3 3
-3 2 3 -3 5 3 3 5 3 3 4 4 2 3 -3 4 4 3
-2 -3 4 2 3 4 3 3 4 3 3 3 3 4 3 3 3 3
-2 2 5 4 4 4 5 4 4 5 4 4 4 4 4 4 4 4
-4 -3 3 4 2 4 -4 3 -3 4 3 -4 2 -3 2 -4 -1 -4
4 4 3 2 3 4 3 3 2 2 4 -3 -2 3 -3 2 3 -3
2 2 3 4 -4 3 5 3 -2 3 -1 -5 3 3 -4 -4 -4 -3
-3 2 3 2 2 2 2 4 3 3 3 3 -3 4 5 3 3 3
0 -1 5 5 4 -5 5 5 -5 4 -4 5 3 5 3 5 4 5
3 -4 -2 -5 -5 -5 -4 -5 -4 -4 -4 -5 -4 -5 -4 -4 -5 -5
-4 -4 -3 3 -3 2 3 3 3 4 -3 -3 3 3 -4 4 -3 3
1 -1 2 -3 2 -2 -2 2 2 3 3 -2 -2 -2 -1 -2 -2 2
4 -2 2 5 4 5 -5 5 5 5 4 5 5 5 5 5 5 5
3 0 3 4 3 3 3 4 3 4 3 3 3 3 0 3 3 3
3 -2 5 -3 3 4 3 3 4 4 2 -3 -2 2 1 1 2 -2

Figure C.8: Results, Page 3/3.

Acknowledgement

This section is more than the sum of the counterparts in my B.A. and M.Sc. the-

ses. This section represents the result of an ongoing work begun in 2006. Baron Jean

Baptiste Joseph Fourier; Prof. Goffredo Haus; Dr. Lorenzo Picinali and the Fused-

Media Laboratory, De Montfort University (Leicester, UK); Dr. Brian F.G. Katz and

the LIMSI Laboratory, Universités UPMC et Paris-Sud 11 (Orsay, France); Dr. Ing.

Luca A. Ludovico; Dr. Adriano Baratè; Dr. Antonello D’Aguanno; Other members

of LIM: Dr. Maurizio Longari, Dr. Alberto Pinto, Dr. Elisa Russo, Dr. Giancarlo

Vercellesi and many others. Prof. Ottavio D’Antona, above all for the quote from

Edison “Genius is 1% inspiration and 99% ... perspiration” (and I want to thank him

again and again for this quote; helpful in every thesis!); Prof. Alberto Bertoni; Prof.

Sergio Cingolani; Ferrara University; Prof. Nicola Prodi and all the researchers from

the Acoustics Laboratory; Dr. Andrea Capra and Prof. Angelo Farina from Parma

University; LIM for more than six years spent at the same desk; The first floor of via

Comelico 39 building that patiently put up with me and my experiments; GN Resound

(especially Gianluca Vivarelli); Lorenzo Valerio and Alessio Orlandi for this amazing

LATEX template; Michele Voltini-Napolitano as the materials science expert; Ing. Pao-

letti and “consider this horse as a sphere”; Federica Mirabelli for codename OLGA;

the first dummy head; Filotico’s; Vezzola/Zanini’s house; Dr. Ieri; Saló; Paolo Agnelli

109

Chapter C. Questionnaire for Perceptual Test and Results 110

a.k.a. “Paul Lambs” for pasta with tuna; “Virgola”; The Magnificent Seven of SILab;

Who makes my sob go away (specially Teo); Kebabs; XCode, really... I mean version

4; The undergrads I supervised during these years...; The Sound and Music Comput-

ing Community; Random rooms in Leicester; VERY random rooms in Paris; Quarto

Oggiaro!; Random friends from all over the world; Colleagues from LIMSI; Escape

through arts and music; Whoever may care; “L’interrogativo ha la forma di una chiave

che entra nelle porte dei dubbi piú sinceri.”

Bibliography

[1] Acoustics — Attenuation of sound during propagation outdoors — Part 1: Cal-

culation of the absorption of sound by the atmosphere. ISO 9613-1, 1993.

[2] Seeing Machines Face Tracking API Documentation.

http://www.seeingmachines.com/product/faceapi/, 2009.

[3] V. R. Algazi, R. O. Duda, D. M. Thompson, and C. Avedano. The CIPIC HRTF

Database. IEEE Workshop on Applications of Signal Processing to Audio and

Acoustics, pages W2001–1/W2001–4, October 2001.

[4] M. Altinsoy and S. Merchel. BRTF-Body related transfer functions for whole-

body vibration reproduction systems. DAGA, Rotterdam, Netherlands, 2009.

[5] E. Armelloni, C. Giottoli, and A. Farina. Implementation of real-time partitioned

convolution on a DSP board. In Applications of Signal Processing to Audio and

Acoustics, 2003 IEEE Workshop on., pages 71–74. IEEE, 2003.

[6] J. Bacher, K. Wenzig, and M. Vogler. SPSS TwoStep Clustering—A First Eval-

uation. In Recent Developments and Applications in Social Research Methodol-

ogy. Proceedings of the RC33 Sixth International Conference on Social Science

Methodology, Amsterdam, 2004.

111

BIBLIOGRAPHY 112

[7] D. Batteau. The role of the pinna in human localization. Proceedings of the Royal

Society of London. Series B. Biological Sciences, 168(1011):158, 1967.

[8] D. C. Begault, E. M. Wenzel, and M. R. Anderson. Direct comparison of the

impact of head tracking, reverberation, and individualized head-related transfer

function on the spatial perception of a virtual speech source. Journal of Audio

Engineering Society, 49(10), October 2001.

[9] D. R. Begault. 3-D sound for virtual reality and multimedia. Academic Press

Professional, Cambridge, MA, 1994.

[10] J. Blauert. Spatial Hearing: The Psychophysics of Human Sound Localization.

MIT Press, Cambridge, MA, revised edition, 1996.

[11] J. Breebaart and C. Faller. Spatial audio processing: Mpeg surround and other

applications, 2008.

[12] A. Bregman. Auditory scene analysis: The perceptual organization of sound.

The MIT Press, 1994.

[13] T. Brookes and C. Treble. The effect of non-symmetrical left/right recording

pinnae on the perceived externalisation of binaural recordings. In Proceedings of

the 118th Audio Engineering Society Convention.

[14] E. Calore. Optimization of the AGATA pulse shape analysis algorithm using

graphics processing units. Master’s thesis, Università degli Studi di Padova,

2010.

[15] E. Castro Lopo. Libsndfile [computer software]. Retrieved December, 28:2005,

2005.

BIBLIOGRAPHY 113

[16] V. Choqueuse. Binaural Spatializer (For Max/MSP).

http://vincent.choqueuse.free.fr/, 2007.

[17] E. Y. Choueiri. Optimal crosstalk cancellation for binaural audio with two loud-

speakers. 2011.

[18] A. Cipriani and M. Giri. Musica Elettronica e Sound Design, volume 1. Con-

TempoNet, 2009.

[19] J. Cooley and J. Tukey. An algorithm for the machine calculation of complex

Fourier series. Math. Comput, 19(90):297–301, 1965.

[20] B. Cowan and B. Kapralos. Spatial sound for video games and virtual environ-

ments utilizing real-time GPU-based convolution. In Proceedings of the ACM

FuturePlay 2008 International Conference on the Future of Game Design and

Technology, pages 166–172, Toronto, Ontario, Canada, November 3-5 2008.

[21] B. Cowan and B. Kapralos. Real-time GPU-based convolution: a follow-up. In

Proceedings of the ACM FuturePlay @ GDC Canada 2009 International Con-

ference on the Future of Game Design and Technology, pages 25–26, Vancouver,

British Columbia, Canada, May 12–13 2009.

[22] P. Damaske. Head related two-channel stereophony with loudspeaker reproduc-

tion. Journal of the Acoustical Society of America, 50, 1971.

[23] F. Fabritius. Audio processing algorithms on the GPU. Master’s thesis, Technical

University of Denmark, 2009.

[24] N. V. Franssen. Some considerations of the mechanism of directional hearing.

Institute of Technology, Delft, 1960. Dissertation.

BIBLIOGRAPHY 114

[25] M. Frigo and S. Johnson. The design and implementation of FFTW3. Proc. IEEE

(Special Issue on Program Generation, Optimization, and Platform Adaptation),

93:216–231, 2005.

[26] E. Gallo and N. Tsingos. Efficient 3D audio processing with the GPU. In GP2,

ACM Workshop on General Purpose Computing on Graphics Processors, 2004.

[27] M. Geronazzo, S. Spagnol, and F. Avanzini. Estimation and modeling of pinna-

related transfer functions. In Proceedings of the 13th International Conference

on Digital Audio Effects (DAFx-10), Graz, Austria, September 6–10 2010.

[28] R. H. Gilkey and T. R. Anderson. Binaural and spatial hearing in real and virtual

environments, 1997.

[29] H. Gray. Anatomy of the human body. Lea & Febiger, 1918.

[30] H. Guo and C. Burrus. Convolution using the undecimated discrete wavelet trans-

form. In Acoustics, Speech, and Signal Processing, 1996. ICASSP-96. Confer-

ence Proceedings., 1996 IEEE International Conference on, volume 3, pages

1291–1294. IEEE, 1996.

[31] S. Handel. Listening: An introduction to the perception of auditory events, 1989.

[32] W. Hartmann and A. Wittenberg. On the externalization of sound images. Journal

of the Acoustical Society of America, 99(6):3678–3688, 1996.

[33] E. Hornbostel and M. Wertheimer. Über die wahrnehmung der schallrichtung.

Sitzungsberichte der Preusslichen Akademie der Wissenschaften, 20:388–396,

1920.

[34] D. M. Howard and J. A. S. Angus. Acoustics and psychoacoustics, 2009.

BIBLIOGRAPHY 115

[35] J. Jot and O. Warusfel. Spat∼: A spatial processor for musicians and sound engi-

neers. In CIARM: International Conference on Acoustics and Musical Research,

1995.

[36] C. Kayser, C. Petkov, M. Lippert, and N. Logothetis. Mechanisms for allocating

auditory attention: An auditory saliency map. Current Biology, 15(21):1943–

1947, 2005.

[37] H. Kietz. Spatial hearing. Acustica, 3:73–86, 1953.

[38] T. Koike, H. Wada, and T. Kobayashi. Modeling of the human middle ear using

the finite-element method. The Journal of the Acoustical Society of America,

111(3):1306–1317, 2002.

[39] P. Laws. On the problem of distance hearing and the localitazion of auditory

event inside the head. Dissertation, Technische Hochschule, Aachen, 1972.

[40] O. Lord Rayleigh. XII. On our perception of sound direction. The London, Edin-

burgh, and Dublin Philosophical Magazine and Journal of Science, 13(74):214–

232, 1907.

[41] A. Mancuso, D. A. Mauro, and G. Vercellesi. Distance effects of the auditory

event in binaural spatialization. In DSP Application Day, Milan, Italy, September

17 2007.

[42] M. Matsumoto, M. Tohyama, and H. Yanagawa. A method of interpolating bin-

aural impulse responses for moving sound images. Acoustical Science and Tech-

nology, 24(5):284–292, 2003.

[43] D. A. Mauro. Effetti della distanza nella spazializzazione e localizzazione bin-

aurale. Master’s thesis, Università degli Studi di Milano, July 2006.

BIBLIOGRAPHY 116

[44] H. McGurk and J. MacDonald. Hearing lips and seeing voices. Nature,

264(5588):746–748, 1976.

[45] B. C. J. Moore. An introduction to the Psychology of Hearing. Elsevier academic

press, fifth edition, 2004.

[46] A. Munshi et al. The OpenCL Specification. Khronos OpenCL Working Group,

pages 11–15, 2009.

[47] M. Noisternig, T. Musil, A. Sontacchi, and R. Hoeldrich. 3D binaural sound

reproduction using a virtual Ambisonics approach. In VECIMS - International

Symposion on Virtual Environments, Human-Computer Interfaces and Measure-

ment Systems, Lugano, Switzerland, 2003.

[48] NVIDIA. Compute unified device architecture programming guide. NVIDIA:

Santa Clara, CA, 83:129, 2007.

[49] K. Osberg. But what’s behind door number 4? Ethics and virtual reality: A

discussion. Human Interface Technology Lab Technical Report R-97-16, 1997.

[50] J. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. Lefohn, and

T. Purcell. A survey of general-purpose computation on graphics hardware.

In Computer graphics forum, volume 26, pages 80–113. Wiley Online Library,

2007.

[51] S. P. Parker, G. Eberle, R. L. Martin, and K. I. McAnally. Construction of 3-D

audio systems: background, research and general requirements. Technical report,

Victoria: Defence Science and Technology Organisation, 2000.

[52] B. Payri. Limitations in the recognition of sound trajectories as musical patterns.

In 7th Sound and Music Computing Conference Proceedings, pages 67–73, July

2010.

BIBLIOGRAPHY 117

[53] L. Picinali. The creation of a binaural spatialization tool. PhD thesis, De Mont-

fort University, 2011.

[54] L. Picinali, B. Menelas, B. Katz, and P. Bourdot. Evaluation of a Haptic/Audio

System for 3-D Targeting Tasks. Audio Engineering Society Convention 128,

2010.

[55] G. Plenge. On the problem of inside-the-head-locatedness. Acustica, 26:241–

252, 1972.

[56] M. Puckette. The Theory and Tecnique of Electronic Music. World Scientific

Publishing Co. Pte. Ltd., 2007.

[57] W. Reichardt and B. G. Haustein. On the case of the inside-the-head-locatedness

effect. Hochfrequenz-tech. U. Electroakustik, 77:183–189, 1968.

[58] F. Rumsey. Spatial audio (music technology) (music technology), 2001.

[59] M. Rush. Modeling a GPU-based Convolution Engine EEC 289Q.

[60] P. Schaeffer. Traité des objets musicaux: essai interdisciplines. Editions du Seuil,

1977.

[61] R. M. Schafer. The New Soundscape: a handbook for the modern music teacher.

BMI Canada, 1969.

[62] W. Schirmer. On the explanation of errors in head-related stereophonic and

monophonic reproduction. Acustica, 17:228–233, 1966.

[63] E. A. G. Shaw and R. Teranishi. Sound pressure generated in an external-ear

replica and real human ears by a nearby sound source. Journal of Audio Engi-

neering Society, 44, 1968.

BIBLIOGRAPHY 118

[64] T. Sone, E. M, and N. Tadamoto. On the difference between localization and

lateralization. In 6th International Congress on Acoustics, pages A–3–6, Tokyo,

1968.

[65] M. Sosnick and W. Hsu. Efficient finite difference-based sound synthesis using

GPUs. In Proceedings of the Sound and Music Computing Conference (SMC

2010), Barcelona, Spain, July 2010.

[66] J. Steuer. Defining virtual reality: Dimensions determining telepresence. Journal

of Communication, 42(4):73–93, 1992.

[67] H. Stone and L. Williams. On the uniqueness of the convolution theo-

rem for the Fourier transform. NEC Labs. Amer. Princeton, NJ. Online:

http://citeseer.ist.psu.edu/176038.html, 19, 2008.

[68] R. Streicher and F. A. Everest. New stereo soundbook, 1998.

[69] T. Tatli. 3D Panner: A Compositional Tool for Binaural Sound Synthesis. In

International Computer Music Conference (ICMC 2009), Montreal, Quebec,

Canada, August 16–21 2009.

[70] M. Tohyama, H. Suzuki, and Y. Ando. The nature and technology of acoustic

space, 1995.

[71] A. Torger. BruteFIR - an open-source general-purpose audio convolver.

http://www.ludd.luth.se/torger/brutefir.html.

[72] A. Torger and A. Farina. Real-time partitioned convolution for Ambiophonics

surround sound. In IEEE Workshop on the Applications of Signal Processing to

Audio and Acoustics, pages 195–198. IEEE, 2001.

BIBLIOGRAPHY 119

[73] N. Tsingos. Perceptually-based auralization. In 19th International Congress on

Acoustics, Madrid, Spain, September 2–7 2007.

[74] K. Watanabe, S. Takane, and Y. Suzuki. A novel interpolation method of HRTFs

based on the common-acoustical-pole and zero model. Acta acustica united with

acustica, 91(6):958–966, 2005.

[75] S. Weinrich. Improved externalization and frontal perception of headphone sig-

nals. In Proceedings of 92nd AES Convention, Preprint, volume 3291, 1992.

[76] S. Whalen. Audio and the graphics processing unit. In IEEE Vis, 2004.

[77] M. Wright. Open sound control: an enabling technology for musical networking.

Organised Sound, 10(3):193–200, 2005.

[78] M. Wright and A. Freed. Open sound control: A new protocol for communicating

with sound synthesizers. In Proceedings of the 1997 International Computer

Music Conference, pages 101–104. International Computer Music Association

San Francisco, 1997.

[79] W. A. Yost. Foundamentals of hearing: An introduction. Academic press Lon-

don, third edition, 1994.

[80] D. Zicarelli, J. Clayton, and R. Sussman. Writing External Objects for Max and

MSP 4.3, 2001.

