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ABSTRACT 
 

Butter is traditionally used in bakery formulations, as it guarantees good performances in terms 

of volume, softness and sensory outcomes; on the other hand, it contains saturated fats and 

cholesterol, the two dietary ingredients that increase low density lipoprotein (LDL) cholesterol. 

Saturated fats are also present in palm oil which is widely used as a cheaper alternative to 

butter. Therefore, finding alternatives to animal fats and saturated fats for bakery products is an 

attractive challenge. 

The aim of this PhD thesis is to study the technological role of traditional and innovative fats in 

baked goods, using experimental designs to model their effects on final products and to 

optimize the formulation. The model system chosen is a plum cake formulation, produced 

following the creaming process, in which the characteristics of fats play an important role on 

the structure of the batter. 

In a first phase, a central composite design (CCD) was applied in order to model and optimize 

fat quantity and composition in plum cake production. Fat used were blends of palm oil and 

palm olein with different slip melting points (SMP) ranging from 36.3°C to 11.3°C, in 

dependence of olein content. Plum cakes were produced varying both fat content in the batter 

(from 5.3% to 30.7% on batter) and percentage of olein in the fat blend (from 42.7% to 92.2%); 

plum cakes containing 18% butter or anhydrous butter were considered as references. 

Models obtained demonstrated that cake texture was significantly affected (p<0.01) both by fat 

content and percentage of olein in the fat blend, while volume was influenced (p<0.01) only by 

the fat content. An optimized cake, corresponding to a formulation containing 19.7% fat in the 

batter and 92% olein in the fat blend, resulted similar to the butter reference for texture and 

volume characteristics, which are important quality indexes of a baked product. Furthermore, 

the comparison of the optimized formulation with reference cakes highlighted the role of fat 

SMP on cake volume, suggesting that a well aerated structure can be achieved even with a 

minimal solid fat content. 

Fats and batters rheology was also studied, as well as cake characteristics during storage, 

comparing the formulations made with the optimized fat blend, butter and anhydrous butter. A 

clear influence of the fat type on batter structural characteristics was demonstrated, even if the 

rheological behaviour of batters did not always reflect differences observed among cakes. In 

particular, fat properties had an impact on batter viscoelastic behaviour, also affecting creaming 

performances. A higher content of unsaturated fatty acids, such as in the optimized formulation, 

resulted to be positive for baking performances, if adequately balanced in the formulation. In 

fact, the optimized cake attained good structural properties, revealing in the meantime the best 

oxidation stability, probably due to the antioxidant action of tocopherols and tocotrienols, 

naturally present in palm-derived oils. 

In a second phase, the effects of the use of fats structured as organogels (OG) in the cake 

formulation were studied. An OG can be defined as an organic liquid entrapped within a 

thermo-reversible, three-dimensional gel network, formed by the self-assembly of gelator 

molecules. In this research, the gelators used were !-sitosterol and "-oryzanol (2:3, w/w), 

phytosterols known for having antioxidant properties and lowering blood cholesterol. The 

gelators were dissolved in warm sunflower oil and OG at different concentrations were 

produced. A CCD was applied, with gelators concentration in OG (from 3.09% to 5.91%) and 

the quantity of OG in the batter (from 5.10% to 24.90%) as the two factors. Analysing the 

effects, models for moisture and some colour parameters resulted significant for OG quantity, 

while gelator concentration did not influence cake properties. Even though rheological 

evaluations of OG showed that all the gels considered in the CCD were solid-like materials, in 

which structuring is enhanced by increasing gelators content, the difficult standardization and 

time-dependent modifications of the material at low gelators concentrations may have interfered 
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with the evaluation of the final baked products. However, the comparison among CCD centre 

point (CC), a reference formulation (SC) produced with liquid sunflower oil, and a cake 

produced with liquid sunflower oil and gelators dispersed as powders (SPC), showed that CC 

cakes were significantly different (p<0.05) from the others for texture, thus highlighting an 

influence of structured fat. Moreover, during SC and CC cake storage at 25°C, CC cakes 

appeared softer and moister than SC, at least in the first two weeks of storage. Instead, 

rheological evaluation of SC, SPC and CC batters showed no significant difference. 
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RIASSUNTO 
 
Il burro è il grasso tradizionalmente utilizzato nei prodotti da forno, in quanto garantisce elevata 

sofficità, buon sviluppo di volume e apprezzate caratteristiche sensoriali al prodotto finito. 

Purtroppo contiene acidi grassi saturi e colesterolo, entrambi fattori che contribuiscono 

all’aumento dei livelli plasmatici di colesterolo LDL. Anche l’olio di palma, grasso vegetale 

ampiamente utilizzato in pasticceria per le sue caratteristiche tecnologiche, contiene grassi 

saturi. Perciò, la ricerca di efficaci alternative ai grassi animali e ai grassi saturi da utilizzare nei 

prodotti da forno rappresenta una concreta possibilità per il miglioramento del profilo 

nutrizionale di tali alimenti.  

Lo scopo di questa tesi di dottorato è quello di studiare il ruolo tecnologico di grassi tradizionali 

ed innovativi nei prodotti da forno, applicando disegni sperimentali per modellare i loro effetti 

sui prodotti finali ed ottimizzare la formulazione. Il sistema modello scelto è una formulazione 

tipo plum cake, prodotta seguendo il processo di creaming, nel quale le caratteristiche dei grassi 

svolgono un importante ruolo sulla struttura dell’impasto. 

In una prima fase, è stato applicato un Central Composite Design (CCD) per modellare ed 

ottimizzare la quantità di grasso e la sua composizione nella produzione dei cake. I grassi 

utilizzati sono stati miscele di olio di palma e oleina di palma con differenti punti di scorrimento 

(SMP), diversi in base al contenuto di oleina, che rappresenta la frazione più insatura. I fattori 

del CCD sono stati il contenuto di grasso (da 5.3% a 30.7% nell’impasto) e la percentuale di 

oleina nella miscela di grassi (da 42.7% a 92.2%); due formulazioni contenenti 18% di burro 

(BC) o 18% di burro anidro (ABC) sono state considerate come riferimenti. I modelli ottenuti 

hanno dimostrato che la quantità di grasso ha avuto un effetto significativo (p<0.01) su 

consistenza e volume dei cake, mentre il contenuto di oleina (e quindi le caratteristiche di 

fusione) ha influenzato (p<0.01) solo la texture dei prodotti. Applicando alle risposte la 

funzione di desiderabilità, è stata identificata una formulazione ottimizzata (OF) contenente il 

19.7% di grasso di cui il 92% oleina. Tale formulazione ha permesso di ottenere un cake 

soffice, caratterizzato dallo stesso volume del riferimento burro e da buone proprietà strutturali, 

oltre che da una migliore stabilità all'ossidazione. Inoltre, il confronto tra OF, BC e ABC ha 

evidenziato il ruolo dello SMP sul volume del cake, suggerendo che una struttura ben aerata 

può essere raggiunta anche con un minimo contenuto di grasso solido. Dallo studio delle 

caratteristiche reologiche del grasso, e dei corrispondenti impasti, di BC, ABC e OF, è stata 

evidenziata l’influenza del tipo di grasso sul comportamento viscoelastico degli impasti, nonché 

sulle caratteristiche di creaming.  

In una seconda fase, sono stati studiati gli effetti dell'uso di grassi strutturati come organogel 

(OG), nella formulazione del cake. Un OG può essere definito come un liquido organico (olio) 

intrappolato all'interno di una struttura tridimensionale, in cui specifiche molecole (gelators) si 

auto-assemblano formando un gel termo-reversibile. In questa ricerca, gli OG sono stati 

preparati in olio di girasole, utilizzando come gelators !-sitosterolo e "-orizanolo (2:3, p/p), noti 

per avere proprietà antiossidanti e abbassare il colesterolo nel sangue. L'effetto degli OG nella 

formulazione del cake è stato studiato applicando un CCD a due fattori, rappresentati dalla 

concentrazione di gelators nell'olio (da 3.09% a 5.91%) e dalla quantità di OG nell’impasto (da 

5.10% a 24.90%). Dall’analisi degli effetti, i modelli di umidità e alcuni parametri di colore 

sono risultati significativi per la quantità di OG, mentre la concentrazione di gelators non ha 

influenzato le caratteristiche dei prodotti. Sebbene le valutazioni reologiche degli OG abbiano 

mostrato che tutti i gel considerati nel CCD corrispondono a materiali solid-like, in cui la 

strutturazione aumenta al crescere del contenuto di gelators, la difficile standardizzazione e 

l’evoluzione nel tempo degli OG a basse concentrazioni di gelators ha probabilmente interferito 

con la valutazione delle caratteristiche del prodotto finito. Tuttavia, confrontando il punto 

centrale (CC) del CCD, una formulazione di riferimento (SC) prodotta con olio di girasole non 
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strutturato, e un cake con olio di girasole non strutturato e gelators aggiunti in polvere 

all’impasto (SPC), il plum cake CC è risultato significativamente differente (p<0.05) dagli altri 

in termini di texture, evidenziando così un influsso del grasso strutturato. Inoltre, nelle prime 

due settimane di conservazione, il cake CC ha mostrato una maggiore umidità e morbidezza 

rispetto a SC. Al contrario, le valutazioni reologiche degli impasti non hanno mostrato alcuna 

differenza significativa tra i campioni. 
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PREFACE 
 
Bakery products, as other cereal-based foods, contribute to satisfy the nutritional needs of 

human beings. Fats are one of the key ingredients of this type of foods, as they perform major 

functions to entrap air during creaming process, to interfere with the continuity of starch and 

protein particles, and to emulsify the liquid components of the formulation (Sowmya et al., 

2009). Thus, fats contribute to volume, texture and overall palatability of the baked products. 

Vegetable fats are commonly used in bakery industry as cheaper and zero-cholesterol 

alternatives to butter; their crystallization and melting properties can influence not only quality 

and structure of the baked product but also its behaviour throughout storage. In addition to their 

technological role, lipids also have an impact on the nutritional profile of a food product. The 

current presence of saturated fatty acids (SFA) and trans fatty acids (TFA) in bakery fats, in 

fact, tends to raise the level of blood cholesterol and increases the risk of cardiovascular disease 

(Cercaci et al., 2006). On the other hand, the elimination or replacement of a portion of the 

high-melting fat with the more healthy unsaturated or polyunsaturated oils can lead to adverse 

consequences on the quality of the baked goods. In fact, the positive performances of fats in 

bakery are mainly a consequence of their melting characteristics that provide the desired solid 

fat content at processing temperature. Smith and Johansson (2004) observed in fact that fat 

melting characteristics affect texture and volume of bread, as an increase in solid fat leads to a 

softening of bread and a decrease in the rate of staling, suggesting an interaction between 

saturated triglycerides (TG) and amylopectin. Thus, raising the concentration of solid fat could 

improve bread quality, although increasing saturated fat content. Nowadays, unsaturated fats are 

preferred for their nutritional properties, even though they are more susceptible to oxidation 

thus impairing product quality during storage. Indeed, lipid oxidation reactions occurring during 

the storage of bakery products are the main deteriorative event affecting their quality (Calligaris 

et al., 2007). Römer et al. (2008) reported that oxidised lipids could even react with protein by 

hydroperoxides or secondary lipid peroxidation products, bringing to a nutritional loss in the 

product. In order to evaluate the degree of oxidation, peroxide value (PV) is commonly used; 

Calligaris et al. (2007) considered it as a representative index of the quality depletion of biscuits 

during their shelf life, linearly related to consumer acceptability. 

In order to face these issues, many technological attempts have been made to find a suitable 

alternative to traditional shortenings. Recent findings describe edible organogels, a 

differentiated class of materials in which a network of self-assembled molecules (called 

gelators) immobilizes an organic liquid, i.e. an unsaturated oil, forming thermally reversible 

gels upon cooling (Wright & Marangoni, 2007). A system offering potential food application is 

the organogel based on a combination of phytosterols and "-oryzanol as gelators. 
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1. State of the Art 
Cereal based foods are very ancient products that have been employed by humans since 

prehistoric times. In fact, the first traces of bread can be tracked back to 30000 years ago but 

only with the beginning of agriculture, in the Neolithic age, bread was produced widely. The 

introduction in the diet of a “cake” was a following step. At first, cakes were sweetened with 

honey and produced adding nuts and dried fruits. When cane sugar made its way from India to 

Arab countries, it became one of the main ingredients of this product. Furthermore, a key 

ingredient that differentiates a cake from bread is the high content of fat, making a cake a 

calorie rich food product. 

Nowadays, in the developed and richer countries such as Europe, the act of eating has become 

not only essential for living but also, and in some cases mostly, a moment of indulgence. For 

this reason, many people suffer from pathologies related to the excess of food and calories 

intake deriving from sweet, fatty products and the so-called “junk food”. The understanding of 

how food products impact on people’s lives and the improvement of their quality and nutritional 

characteristics is a topic worth to be studied. 

1.1. Lipid chemistry: an overview 
Fats are constituted by triglycerides, esters derived by glycerol and three carbon chains, called 

fatty acids; the hydroxyl groups of the glycerol join the carboxyl groups of the fatty acid to 

form ester bonds (Fig. 1.1). 

 

Figure 1.1. General representation of a triglyceride structure; R represents the alkyl chain. 

Fatty acids (FA) are almost entirely straight chain aliphatic carboxylic acids; they can be 

unsaturated or saturated, depending on the presence -or absence- of double bonds between the 

carbons of the chain. An unsaturated fatty acid might present one (MUFA, Mono Unsaturated 

Fatty Acids) or several (PUFA, Poly Unsaturated Fatty Acids) double bonds, which confer to 

the triglyceride a less compact structure. Naturally formed double bonds are generally in the cis 

configuration, meaning that adjacent hydrogen atoms are on the same side of the double bond; 

this causes the chain to bend and restricts the conformational freedom of the fatty acid. On the 

contrary, if the double bond is trans, the two hydrogen atoms lay at opposites sides of the bond 

and the chain conformation results similar to the corresponding saturated fatty acid. Trans 

configuration often derives from hydrogenation process (see § 1.5.2). Unsaturated FA can be 

discriminated also by the position of the first carbon involved in a double bond, counting from 

the terminal methyl carbon, named the # group. Thus the families of #-9, #-6 and #-3 FA are 

identified, each bringing a different biological significance.  

The different length (from 4 to 22 carbons) and saturation (from none up to 6 double bonds) of 

fatty acids determine their physical and chemical properties, e.g. melting point, susceptibility to 

oxidation, enzyme reactivity. These FA characteristics, as well as their position on the glycerol 

backbone, influence the corresponding properties of TG. In plant oils, unsaturated FA 

predominate in the sn-2 position, with more saturated acids in the sn-1 and sn-3 position; in 

animal fats, the type of fatty acid predominating in the sn-2 position is more variable 

(Scrimgeour, 2005).  
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1.2. Vegetable fats and oils 
In the last decades, food industry showed a growing interest in using fat materials different from 

traditional animal fats (such as butter, lard, tallow), for nutritional and economic issues. 

Moreover, the availability of relatively inexpensive palm-oil fractions and concerns about 

overfishing in some of the world’s seas has meant there has been a major shift in European 

countries to the use exclusively of vegetable oil products in bakery fats (Podmore, 2002).  

Vegetable oils and fats include a wide variety of materials, obtained from seeds, pulp or kernels 

of plants. Fats can be obtained either by mechanical extraction, using presses or expellers, or by 

chemical extraction, employing organic solvents. Regardless of the extraction method used, the 

majority of vegetable oils is refined in order to remove undesired components (waxes, 

phospholipids), prolong shelf life and improve sensorial characteristics; as a major drawback, 

this process has the depletion of the active compounds of raw materials, such as tocopherols and 

polyphenols. 

Vegetable fats are commonly used in the bakery industry, such as in doughs and biscuit fillings, 

as cheaper and zero-cholesterol alternatives to butter. They contribute to incorporation of air 

into the dough, enhance heat transfer during cooking and give finished products characterized 

by a moist mouthfeel and a softer texture (Conforti, 2006a). They are used as such or emulsified 

(margarines) and in some applications they present better performances than butter (e.g. in puff 

pastry) (Stauffer, 1996). The capability of vegetable fat blends to be used as shortenings in 

bakery products depends on their crystallization and melting properties (Bell et al., 2007). 

These ingredients are in fact mainly constituted of different families of triglycerides, which 

crystallize at different temperatures depending on their chemical composition. Frequently, the 

choice of fats and oils to be used in a blend for a shortening is a function of empirical 

experience more than scientific choice, as not much is known about the cumulative effect of 

chemical and physical properties of lipids of different sources (Dogan et al., 2007). For this 

reason, the control of fat physical properties has been of importance in research efforts: 

monitoring solid fat content (SFC), melting profile and polymorphism can clarify molecular and 

physical structure of TG and their crystals, which strongly influence rheological and texture 

properties (Koyano & Sato, 2002). 

1.2.1. Crystallization behaviour 

Polymorphism is defined as the ability of a chemical compound to form different crystalline or 

liquid crystalline structures (Koyano & Sato, 2002). In lipids, differences in hydrocarbon chain 

packing and variations in the angle of tilt of the hydrocarbon chain packing differentiate 

polymorphic forms (Metin & Hartel, 2005). The crystallization behaviour of TG, including 

crystallization rate, crystal size, morphology, and total crystallinity, is affected by 

polymorphism. The molecular structure of the TG and several external factors like temperature, 

pressure, rate of crystallization, impurities, and shear rate, also influence polymorphism (Sato, 

2001). 

The general scenario for fat crystallization is first nucleation and growth of crystals, followed 

by aggregation due to van der Waals attractions, ending up with the formation of a crystalline 

three dimensional network (Walstra et al., 2001). Depending on crystallization conditions, 

triglycerides crystallize either in $, !’ or ! form, as shown in Fig. 1.2. In fact, when a fat is 

quickly cooled, with a chilling speed over 0.25°C/min (Van Malssen et al., 1996), it will 

crystallize in the rather unstable $ form, characterised by hexagonal subcells (Koyano & Sato, 

2002). This is a waxy solid that quickly changes into long needle-like clusters of !’ crystals 

which immobilize several times their own weight in liquid oil. This is the preferred crystal form 

for plastic shortenings, as clusters are readily broken when squeezed, giving an overall feeling 

of a very smooth and creamy solid. If this crystal phase is not stabilized by proper tempering at 
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the time of manufacture, the solid phase reorganizes into the most stable ! form (Stauffer, 

1996); these larger and coarser crystals bring to lower plasticity, making the fat feel sandy or 

grainy, and also oily (Podmore, 2002). 

The type of crystals in a shortening is also influenced by the composition of the fat: solid 

triglycerides with a relatively homogeneous fatty acid composition tend to align more readily 

and to pack more closely together, because the similarity of their molecular configuration 

favours free interaction of their attractive forces. On the other side, a more heterogeneous fatty 

acid composition will form a more loosely arranged crystal lattice, impeding the transformation 

to their higher melting polymorphic forms (Pyler, 1988).  

 

Figure 1.2. Schematic representation of crystal formation in a liquid fat upon cooling or heating 

(Van Malssen et al., 1996). 

Other factors that have to be taken into consideration are the manner of texturation or 

plasticization, the temperature and duration of tempering, the presence of additives (i.e. 

emulsifiers, crystal modifiers), the time and temperature of storage (Pyler, 1988). All these 

aspects have an impact even when the fat is included in food formulations. Fat bloom in 

chocolate, for instance, is a well known example of how the change of polymorph (in this case, 

from IV-V form to the more stable VI) damages the quality of the end product. More generally 

speaking, Koyano and Sato (2002) say that transformation of polymorph !’ to polymorph ! in 

food fats often causes physical deterioration of the product, mostly because of changes in the 

crystal morphology and network. Thus, transport and storage conditions, especially temperature 

fluctuations, should be accurately monitored for high fat food. 
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1.2.2. Palm oil 

Palm oil is one of the most common fats used in the food industry, especially in confectionery 

and bakery products, because it is a low cost material, stable towards oxidation and versatile. 

Trans free uses of palm oil are shortenings, margarine, puff pastry margarine, frying oil, and 

vanaspati (http://www.americanpalmoil.com). 

It is obtained from the mesocarp (pulp) of the fruit of the oil palm whose inner nut additionally 

yields palm kernel oil. Each palm tree produces approximately one fruit bunch of 4-20 kg, 

containing 200-2000 individual fruits that furnish palm oil (20-24%) and palm-kernel oil (2-

4%) (Gunstone, 2005). In addition, each palm tree continues producing fruit economically for 

up to 25 years. This ensures a constant stable supply, as compared with other annual crops 

(http://www.andrew.cmu.edu/user/jitkangl/Index.htm). Palm oil production is still increasing 

rapidly and is likely to become the world’s most produced oil within 10 years (Timms, 2005). 

Palm oil contains almost equal proportions of saturated (48% palmitic and 4% stearic) and 

unsaturated (37% oleic and 10% linoleic) fatty acids (Gunstone, 2005). It is essentially 

composed of three types of triglycerides: trisaturated (mainly tripalmitin), disaturated (mainly 

2-oleodipalmitin, 30-40%) and monosaturated (mainly 1-palmito-2-3-diolein, 20-30%). At 

room temperature, palm oil is a semi-solid material in which texture, hardness and spreadability 

depend on the amount, size and tri-dimensional organization of the fat crystal network; it melts 

typically in a range of 33-41°C (Tarabukina et al., 2009). Unrefined palm oil presents a bright 

orange colour and a strong taste, mainly due to the presence of carotene, tocopherols and 

tocotrienols (vitamin E), valuable by-products of the refining process (Gunstone, 2005). In fact, 

palm oil is usually refined, bleached, deodorized and eventually fractioned, obtaining different 

blends with different melting points, on the basis of the triglyceride composition (Fig. 1.3). 

Fractionation is undoubtedly the oldest fat modification process and was the foundation of the 

modern edible-oil and fat-processing industry. It is a purely physical process, carried out in two 

stages. At first, a crystallisation stage allows the formation of crystals by cooling the oil; their 

separation from the liquid phase is easier in the presence of a solvent, which dilutes the oil and 

lowers the viscosity (Timms, 2005).  

 



 15 

 

Figure 1.3. Solid fat content of palm oil fractions with different iodine values. PO: palm oil; 

POf: palm oil fractionated; PMF: palm oil mid-fractions; POs: palm oil stearin; IV: iodine 

values (http://lipidlibrary.aocs.org, courtesy of IOI Edible Oils). 

The second stage consists in the separation of the solid crystals, after which two components are 

obtained: palm olein, a liquid oil composed by monosaturated triglycerides, and palm stearin, a 

solid fat composed by the trisaturated ones (http://www.americanpalmoil.com) (Fig. 1.4). Olein, 

a high-quality and highly stable frying oil, has a cloud point of 7–10°C and can be fractionated 

further to give even more unsaturated oleins and palm mid fractions (Gunstone, 2005).  

 

 

Figure 1.4. Typical fatty acid composition of palm oil fractions (www.vettefeiten.nl). 

On the nutritional side, some studies have compared palm oil with other oils or fats, in order to 

understand the effect of its consumption on blood cholesterol level. Choudhury et al. (1995) 

compared the effects of palm olein and olive oil on plasma lipids on a group of normo-

cholesterolemic young adults (both men and women). The total cholesterol and low-density 

lipoprotein (LDL) cholesterol had comparable levels, both in palm olein and olive oil. These 

results confirmed what had already been found by Ng et al. (1992), who provided either a palm 

olein-rich diet or an olive oil-rich diet to 33 normo-cholesterolemic subjects, previously fed 

with a coconut oil-rich diet for 4 weeks. Also in this study, results showed identical cholesterol 

(LDL, high-density lipoprotein - HDL and total) and triglyceride levels, confirming the 

beneficial effects of palm olein fatty acid profile. Substitution of the usual saturated fat (animal 

fats and hydrogenated oils) consumption of Dutch males with palm oil resulted in a 11% 

increase in HDL cholesterol compared to the control group, still showing the same levels of 



 16 

total cholesterol (Sundram et al., 1992). In conclusion, there is evidence that palm olein has 

similar effects to olive oil on total cholesterol, LDL cholesterol and HDL cholesterol, and that 

palm oil can be considered a valid substitute for saturated fats. 

1.2.3. Sunflower oil 

Sunflower oil is a vegetable oil expressed from the seeds of Sunflower (Helianthus annuus).  

A typical fatty acid composition is reported below (British Pharmacopoeia, 2005), having in 

mind that variation in fatty acids profile is strongly influenced by both genetics and climate. 

 

Palmitic acid: 4 - 9%  

Stearic acid: 1 - 7%  

Oleic acid: 14 - 10%  

Linoleic acid: 48 - 74%  

 

Major triglycerides in the oil are typically tri-linolein (14%), 3-oleo-dilinolein (39%), 3-stearo-

dilinolein (14%), 1-linoleo-diolein (19%), linoleo-oleo-stearin (11%), and others (3%) 

(Gunstone, 2005).  

In addition to traditional sunflower oil, other kinds are available on the market, as reported by 

the National Sunflower Association (www.sunflowernsa.com): 

- high oleic sunflower oil, which has at least 82% oleic acid  

- NuSun® oil, the ‘new' mid-oleic sunflower oil, lower in saturated fat (less than 10%) 

than linoleic sunflower oil and with higher oleic levels (55-75%) with the remainder 

being linoleic (15-35%) 

- high stearic sunflower oil, developed in Spain in the last decades to avoid the use of 

partially hydrogenated vegetable oils in the food industry. 

All types mentioned have a very low level of trans fatty acids. Due to the high content of 

unsaturated FA (Fig. 1.5), sunflower oil is liquid at room temperature. It is widespread in food 

industry for multiple purposes, in particular for frying processes, thanks to its high smoke point 

(around 230°C). It is characterised by a clean taste and a light colour, which allowed its 

diffusion also in the domestic environment. 
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Figure 1.5. Average fatty acid content for various vegetable and animal oils/fats 

(www.sunflowernsa.com). 

Besides its technological applications, the oil composition itself has an important nutritional 

value, containing high quantities of linoleic acid, an essential fatty acid (see § 1.5). Sunflower 

oil also contains lecithin, tocopherols (vitamin E, an essential vitamin and anti-oxidant 

compound), carotenoids and waxes. Chandrashekar et al. (2010) reported that sunflower oil 

showed good hypocholesterolemic effect thanks to its unsaturated fatty acid content. In an 

American study (Binkoski et al., 2005), the NuSun sunflower oil diet decreased both total and 

low-density lipoprotein cholesterol levels compared with the average American diet and the 

olive oil diet. Total cholesterol decreased of 4.7% and LDL cholesterol decreased of 5.8%. The 

higher PUFA content appeared to account for the greater total and LDL cholesterol lowering 

and reduction in lag time of the NuSun sunflower oil diet. Sunflower oil appeared to have a 

positive effect also on insulin responses. Pedersen et al. (1999) found that glucose and insulin 

responses after 30 minutes were significantly lower after meals containing PUFA than after 

meals containing MUFA; in particular, differences in insulin responses to rapeseed and 

sunflower oil were detected for meals containing only 15 g oil. 

1.3. Fat oxidation 
Lipid oxidation is one of the most fundamental reactions in lipid chemistry. Lipids are 

susceptible to oxidative processes in the presence of catalytic systems such as light, heat, 

enzymes, metals, metalloproteins, and micro-organisms, giving rise to the development of off-

flavours and loss of essential amino acids, fat-soluble vitamins, and other bioactive compounds. 

This process involves the continuous formation of hydroperoxides as primary oxidation 

products that may break down to a variety of non-volatile and volatile secondary products 

(Shahidi & Zhong, 2005).  

Autoxidation is the most common process leading to oxidative deterioration and is defined as 

the spontaneous reaction of atmospheric oxygen with lipids. The process can be accelerated if 

the oil undergoes high temperatures, such as during deep-fat frying, causing thermal oxidation 
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with an increase in free fatty acid and polar matter contents (Shahidi & Zhong, 2005). 

The reaction mechanism consists in three steps: 

 

- initiation: the chain reaction is initiated by abstraction of an 

allylic hydrogen from the fatty acid chain, to give an allylic 

radical. At this stage, oxidation proceeds very slowly and the 

concentration of free radicals increases until the autocatalytic 

propagation steps become dominant. This stage is also called 

the induction phase. 

- propagation: the first step of the propagation sequence is the 

reaction of the allylic radical with molecular oxygen, 

producing a peroxy radical (Scrimgeour, 2005). Oxidation 

products increase suddenly; the propagation rate is regulated 

by the velocity of the subsequent abstraction of another allylic 

hydrogen by the peroxy radical, producing both an allylic 

hydroperoxide and a new allylic radical, that continues the 

chain reaction (Scrimgeour, 2005). 

- termination: the combination of two radicals (either alkyl or 

hydroperoxy) leads to non-radical products and molecular 

oxygen, or the reaction of a free radical with an anti-oxydant 

(free-radical scavenger) generates a more stable radical. 

 

Fatty acid composition (and thus the degree of unsaturation) affects the rate of auto-oxidation, 

which accelerates when more unsaturated bonds are present in a single fatty acid (Pareyt et al., 

2011). 

Lipid hydroperoxides have been identified as primary products of autoxidation; decomposition 

of hydroperoxides yields aldehydes, ketones, alcohols, hydrocarbons, volatile organic acids and 

epoxy compounds, known as secondary oxidation products. These compounds, together with 

free radicals, constitute the basis for measurement of oxidative deterioration of food lipids 

(Shahidi & Zhong, 2005) and are responsible of rancidity and decreased quality of edible oils 

and fat-containing food (Gómez-Alonso et al., 2004). 

Lipid oxidation can occur both in the raw material, during storage of the oil, or in the finished 

product. A food process involving heat and light (such as frying, baking, roasting) triggers the 

reaction, especially if the product does not contain anti-oxidants compounds (naturally present 

in the food or added during production), such as tocopherols, ascorbic acid, carotenoids, 

phenols. Moreover, Da Pieve et al. (2011) highlighted the lack of information on the effect of 

food structure on oxidation rate. In fact, in complex systems such as food products, unexpected 

behaviours of oxidation kinetics are frequently observed; this situation could be possibly 

explained by the different viscosity and/or the compartmentalisation of the food, that modulate 

diffusion limiting constraints, as others have reported (Calligaris et al., 2006; Manzocco et al., 

2006; Relkin et al., 2009).  

1.3.1. Methods for measuring lipid oxidation 

Considering its particular kinetic and the different products it generates, lipid oxidation can be 

monitored by several analytical approaches. Dobarganes and Velasco (2002) report that 

methods can be classified in four groups, on the basis of what they measure: the absorption of 

oxygen, the loss of initial substrate, the formation of hydroperoxides (as primary oxidation 

products) or the formation of secondary oxidation products (originated from hydroperoxide 

decomposition). Only the last two methods will be here described, since they were employed in 

the experimental part.  

R• + O2 % ROO• 

 

ROO• + RH% ROOH + R• 

RH % R• 

R•, ROO• % stable  

          products 



 19 

Peroxide value (PV) is one of the most common quality indicators of fats and oils during 

production and storage, as it is a marker of the initial stages of oxidative change. In fact, the 

formation rate of hydroperoxides outweighs their rate of decomposition during the initial stage 

of oxidation, and this becomes reversed at later stages. By studying the kinetic of hydroperoxide 

concentration, it is possible to assess whether a lipid is in the growth or decay portion of the 

reaction process (Shahidi & Zhong, 2005). Analytical methods for measuring hydroperoxides in 

fats and oils can be classified as those determining the total amount of hydroperoxides and 

those based on chromatographic techniques, giving detailed information on the structure and the 

amount of specific hydroperoxides present in a certain oil sample. Calligaris et al. (2008) 

reported that PV could be considered a good chemical index to monitor the loss of sensory 

quality of the product during storage, as it was well correlated to sensory consumer acceptance. 

Carbonyl compounds are the secondary oxidation products generated from degradation of 

hydroperoxides; they include aldehydes and ketones, which are believed to be the major 

contributors to off-flavours associated with the rancidity of many food products. Due to the 

enormous variety of molecules that can be generated during the secondary oxidation, standard 

compounds are chosen as indicators of reaction entity, depending on the type of fat studied. The 

choice of the marker is essential to assess the oxidative deterioration of different food systems 

(Shahidi & Zhong, 2005). Hexanal serves as a reliable indicator of lipid oxidation in foods rich 

in #-6 fatty acids, such as linoleic acid, or more generally in seed oils (Gómez-Alonso et al., 

2004); it can be quantified by chromatography or as the intensity of the carbonyl band by NIR 

spectroscopy. Other carbonyl compounds, including propanal, pentanal, decadienal, are also 

used for evaluating lipid oxidation in foods. For instance, propanal is a recommended indicator 

for lipid oxidation in foods that are high in #-3 fatty acids, such as marine oils, while 2,4-

decadienal was found to be the major degradation compound for sunflower oil (Guillén & 

Uriarte, 2012) and thus used as indicator. These compounds can be monitored by head space 

HPLC (Da Pieve et al., 2011) or by spectrophotometry, on the basis of the reaction between 

carbonyl compound and 2,4-dinitrophenyilhydrazine, forming the corresponding 2,4-

dinitrophenyilhydrazone derivatives, which are turned into quinoidals, coloured wine-red in 

alkaline environment (Endo et al., 2003). 

1.4. Cakes 
The term ‘cake’ includes a broad range of food products, differing for ingredients and process 

conditions. Generally speaking, cake is formed by an internal structure consisting of gas cells 

surrounded by an external gel-like material, resulting from the heat setting of cake ingredients 

(Mizukoshi, 1985). It is obtained from a batter, containing higher levels of water, sugar and, for 

some formulations, fat, compared to bread dough; moreover, soft flour is used, characterized by 

weak proteins that allow a higher batter viscosity (Rogers, 2004) and a broader expansion in the 

later stages of baking, allowing cell walls to rupture, thus resulting in a labyrinthine structure 

(Street, 1991). 

Formulation, process conditions and ingredient quality influence the final outcomes in terms of 

quality characteristics; in particular, the role of fat is a key aspect in cakes production. 

1.4.1. Cake formulation  

Cake ingredients can be grouped considering their function: tougheners, tenderizers, 

moisturizers, driers (Lai & Lin, 2006). In the first category can be ascribed flour and eggs, 

which contain the proteins that contribute to structure the cake; they are counterbalanced by 

fats, sugar and leaveners, that confer a crumbly, soft and aerated texture to the product. In 

particular, sugar raises gelatinization temperature for starch, during baking: this allows a longer 

time for gluten to stretch, resulting in a higher volume on the final product (Conforti, 2006b). 
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Regarding fats, Pyler (1988) stated that tenderness of cake crumb increases progressively with 

the fat content up to an optimum level, after which additional fat inclusions causes lesser 

improvements in cake tenderness, until the practical limit of fat addition is reached. Liquid 

ingredients like eggs, milk, liquid sugars and obviously water, provide moisture and have the 

opposite effect of driers, such as flours and starches. Finally, it is important to mention that 

flour, containing protein and carbohydrates, and sugar, being a carbohydrate itself, are 

responsible for the Maillard's reaction, which produces the desired brown colour on cake crust. 

In order to obtain an adequate cake formulation, ingredient groups should be balanced: 

tougheners should compensate tenderizers, moisturizers should compensate driers (Lai & Lin, 

2006). 

On the basis of their formulation and mixing method, cakes are frequently classified in three 

groups: foam type, chiffon type and batter type (Lai & Lin, 2006). 

Foam type cakes depend on eggs for their structure and volume; they include angel food and 

sponge cakes (Conforti, 2006b). For their preparation, the general rules to apply are to equal 

egg whites and sugar in weight and to have the weight of flour to be 1/3 of that of sugar. Angel 

food cake differs from sponge cake just in the use of egg whites instead of whole eggs (Pyler, 

1988). Foam cakes results from a light, airy batter that produces a baked cake with a coarse 

texture and moderately large cells (Lai & Lin, 2006). 

Chiffon cakes are a cross between a foam-style cake and a shortened cake, as they are prepared 

using beaten egg whites that help with the leavening -along with chemical leavening- but also 

liquid oil (Conforti, 2006b).  

Both chiffon and foam cakes contain no or little shortening, thus resulting with a springy texture 

and a tougher structure, allowing the preparation of desserts that require more handling. 

Finally, batter type cakes contain a high quantity of fat or shortening and their structure depends 

on flour, eggs and milk; volume of the cake depends mainly on baking powder. The proportions 

among ingredients follow the general rule that fat should not exceed eggs and sugar, and that 

sugar should not exceed liquid; so, flour, sugar, fat and eggs should be almost in the same 

quantity (Conforti, 2006b). 

1.4.2. Processing conditions 

Cake quality is largely affected by processing conditions, as they can -for instance- enhance the 

cohesiveness of the dough or weaken the gluten network, thus changing the baked product 

characteristics. The mixing procedure will differ in the order of ingredient incorporation, the 

duration and rate of mixing action during the different stages (in multi-stage methods), the 

temperature of the ingredients and other factors (Pyler, 1988). 

The simplest method for cake preparation is the single-stage method, which consists in blending 

all the ingredients at once and mixing afterwards. The air is entrapped in the water phase rather 

than in the shortening, thus an emulsifier is needed to retain the air-in-water emulsion 

throughout the baking time (Conforti, 2006b). This method is commonly used at household 

level because it is easy and quick. 

The creaming method, also called the conventional method, is characterized by a first thorough 

blending of shortening (fat or oil) and granulated sugar, at slow or medium speed, until the 

mixture becomes aerated (8-10 minutes). This stage is followed by the incorporation of eggs, 

while the creaming action is continued (5 minutes). Finally, milk and dry ingredients, such as 

flour, baking powder, salt, are added in alternate small portions, reaching a total mixing time of 

15-20 minutes (Pyler, 1988). The batter thus obtained is largely aerated, with the air bubbles 

ideally uniform, small, and surrounded by fat (Lai & Lin, 2006); furthermore, it shows the near 

absence of gluten development. As highlighted by Conforti (2006a), mixing time is important: 

overmixing will cause loss of air and a heavy cake; on the other hand, a quick blending will 

bring to a curdled and not homogeneous batter. 
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If the preparation follows the flour batter method, shortening and flour are creamed to a fluffy 

mass, while simultaneously sugar and eggs are whipped; the two mixtures are then combined 

(Conforti, 2006b). This type of blending achieves a thorough dispersion of flour and allows 

higher levels of sugar than the creaming method; however, aeration is less pronounced, 

resulting in lower cake volume and higher gluten development (Conforti, 2006b). 

1.4.3. Bakery Fats 

In every baked product, from bread to crackers or cakes, fats play an important role during the 

process and influence various properties of the final product. 

Considering sweet baked products such as cakes, biscuits, pastries and croissants, fats impart 

the desired tenderness and shortness, due to their ability to lubricate the structure of the product 

by being dispersed in films and globules in the dough/batter during mixing, thus physically 

preventing the strengthening of the gluten network and the interaction of starchy components 

(Pyler, 1988). 

Physical and chemical characteristics of fats used in baking are essential to determine the 

quality of the end product. Pareyt et al. (2011) report that there are three parameters on which 

the suitability and application of a shortening in bakery products depend. First is the solid/liquid 

phase ratio at a given temperature, which determines the plasticity of the fat. The second 

parameter is the crystal structure of the solid lipid. Lastly, oxidative stability of the shortening, 

which is affected inter-alia by FA composition and degree of unsaturation. 

Plasticity of fat is of major importance for fat performances in baking. Pyler (1988) reports the 

conditions necessary to have a fat apt to baking applications. In the material, both a solid and 

liquid phase must be present; the solid phase has to be in a fine dispersion, in order that the 

particles are held together by internal cohesive forces. The two phases must be in adequate 

proportions to each other: solid particles should be enough to prevent the flow of the mass, 

without forming a rigidly-interlocked structure. This particular equilibrium between the two 

phases is essential as it ensures one of the major functions of fats in baked products, which is 

aeration. It has been shown that cakes are highly dependent on fat proper aeration (Podmore, 

2002): the shortening must be solid so that air bubbles do not escape from the batter, but also 

plastic so that it can fold around each air pocket. This is due to the plastic character of the 

shortening, as it assures its dispersion in the form of films or clumps rather than in globules, and 

this creates a much larger fat surface than is possible with liquid oils. 

From a physical point of view, this can be explained by the fact that the crystalline structure of 

the fat is the characteristic able to influence its properties during baking and thus final outcomes 

in the product. NorAini et al. (1996) stated that !’ crystalline form is necessary for good baking 

performances. In fact, any given mass of solid shortening, when present as a larger number of 

smaller crystals, results in a larger interface at the surface of the expanding bubbles. Thus, 

shortenings containing small crystals (!’) are more effective in producing high quality bread 

than those containing larger (!) crystals (Smith & Johansson, 2004), even though the latter are 

more stable due to their higher melting points. Pareyt et al. (2011) explains this further, saying 

that given the same amount of small crystals (!’ polymorph), those with higher melting 

temperatures (with a corresponding fatty acid composition and substitution pattern) may have a 

more pronounced positive impact on bread making than the same amount of small crystals with 

lower melting temperatures (with a different fatty acid composition and substitution pattern). 

Monitoring the crystalline structure can be done by NMR or electronic microscopy. Thus, the 

analysis is not always possible, especially considering an industrial environment. 

The polymorphic phase of the solid portion of a shortening and its structural characteristics 

determine the melting behaviour of the lipid (Bell et al., 2007; Ghotra et al., 2002). Short FA 

chains, the presence of unsaturated FA and the cis configuration, all decrease the melting point 
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(Manley, 2000), as the packing of the molecules becomes more difficult due to steric hindrance. 

Instead, FA chain length increase raises the melting point, as well as the presence of trans FA, 

as they show melting points closer to those of the corresponding saturates (Scrimgeour, 2005). 

Crystalline state is strictly related to the physical state of the fat and thus to its solid fat content 

(SFC). During batter mixing, fat enrobes the air included with the mixing; in this stage, the air 

is actually in the liquid oil so if SFC is too high there is not enough oil for adequate aeration; on 

the other hand, if SFC is too low the air is not trapped and escapes before the mixing of dough 

is complete (Stauffer, 1996). Podmore (2002) reported that, for cake production, the proportion 

of crystalline triglycerides at the working temperature must be above 5%. A typical European 

standard for cake and pastry shortening is represented by blends that have slip melting point 

(SMP) between 35 and 38°C and SFC of 20-35% at 20°C (Klimes, 1989). For example, palm 

oil has a SFC of 22-25% at 20°C, and is a valuable ingredients for shortening formulation 

(NorAini et al., 1996). 

1.4.4. Batter characteristics 

Besides fat properties, the characteristics of a baked cake, such as volume and texture, can be 

correlated with the properties of batter (Sakiyan et al., 2004). Many foodstuffs are examples of 

soft solids whose microstructure (and therefore properties and behaviour) are dictated by their 

ingredients, formulation, and processing conditions; cake batter is a prime example of a 

structured, soft solid (Chesterton et al., 2011). 

Batter is a wet foam generated by the aeration of a water-based mixture, typically containing 

wheat flour, sugar, egg, fat, leavening agents, salt, water and milk powder in varying 

proportions (Mizukoshi et al., 1979). The three main goals of mixing ingredients to obtain a 

cake batter are: to combine all ingredients into a smooth, uniform batter; to incorporate and 

form air cells into the fat phase of the batter; to develop the proper texture in the finished 

product (Lai & Lin, 2006). 

The air bubble volume fraction in batter is typically 0.25-0.45 (Lai & Lin, 2006), so the foam 

behaves as a bubbly liquid, rather than a rigid foam. On heating, the foam sets to form a stable 

structured food product, the microstructure of which is directly determined by the batter from 

which it is baked (Chesterton et al., 2011). In fact, changes in batter viscosity can be correlated 

with variations in cake volume, as an increase in batter viscosity can aid air incorporation and 

enhance air bubbles retention during the first stages of baking (Gómez et al., 2008). Fats play an 

important role in this, as they contribute to the incorporation of air into the batter and enhance 

heat transfer during cooking, bringing to finished products a moist mouthfeel and a softer 

texture (Conforti, 2006a). 

Studies on the role of fat in stabilisation of gas cells in cake batters and in bread doughs have 

emphasised the importance of the adsorption of a number of fat crystals at the surface of gas 

bubbles in dough. Chevallier et al. (2000) proposed a mechanism in which, due to crystals 

melting during baking, the fat–liquid interface of the adsorbed crystals provides a source of 

extra interfacial material for the bubble surface, which allows expansion without rupture of the 

bubble, as also shown in Fig. 1.6. The rate at which bubbles rise due to buoyancy is inversely 

proportional to viscosity. Thus rapidly rising bubbles in a low viscosity batter may result in a 

final volume loss; on the contrary, higher cake batter viscosities help to incorporate more air 

bubbles into the batter and keep them from escaping from the mass, giving the system more 

stability (Sanz et al., 2008). 
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Figure 1.6. Graphical representation of oil-air interaction during different stages of bread 

production (Brooker, 1996). 

The role that fats have in batter also depends on the process conditions used: fat may be added 

prior to, or following, the aeration process yielding a three-phase fluid, composed by air 

bubbles, suspended insoluble matter and a fat–water emulsion as the continuous phase 

(Chesterton et al., 2011). 

1.4.5. Quality characteristics of cakes 

Evaluation of a baked product includes many different aspects. Appearance has an important 

impact, as this is what the consumer perceives at first sight, judging the product; thus, colour, 

volume, and sensory evaluation are often performed. In addiction to those, texture is another 
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fundamental attribute to evaluate cake quality, as it is easily perceived by consumers, mirroring 

processing conditions and ingredients choice. Texture can be determined by instrumental or 

sensory methods; instrumental methods offer some advantage over sensory analysis because 

they are rapid and objective (Baixauli et al., 2008). 

Furthermore, it is fundamental to evaluate not only performances of fresh product but also its 

behaviour during storage. Shelf life of baked products can be defined as maintenance of sensory 

and physical characteristics associated with freshness such as crumb tenderness, compressibility 

and moistness, by preventing alteration associated with staling during storage (Baixauli et al., 

2008). Staling is a general term used to describe the loss of attractive properties upon storage 

and is mainly due to moisture loss and starch retrogradation. Typical changes in sensory 

perceptions include crumb firming, crust toughening, and loss of flavour (Pyler et al., 2011); 

microbiological deterioration is often not an issue, as the product becomes not acceptable 

(mostly in terms of texture and/or fat oxidation) earlier than any biological contamination. 

Generally speaking, shelf life of cakes depends on the formulation, the packaging and the 

storage conditions and it is normally between 1 and 4 weeks long (Gelinas et al., 1999). 

As previously said (§ 1.4.1), in the fresh baked product the tenderness of cake crumb increases 

progressively with the fat content. However, some authors (Rogers et al., 1988; Smith & 

Johansson, 2004) noted that not only initial crumb firmness, but also the firming rate of the 

crumb is affected by addition of shortening to a bread dough formula. In fact, fat delays water 

migration inside the product, forming a thin layer around the gluten matrix, thus postponing 

starch retrogradation which is responsible of the negative changes in product texture (along 

with moisture migration and loss). In particular, Smith and Johansson (2004) observed that the 

linear hydrocarbons of saturated fats form a complex with helical starch, slowing crystallization 

and subsequent staling and development of firmness; thus, a part of the fat employed in a baked 

product should be solid fat. This finding is confirmed in a study of sensory preferences 

performed by Heenan et al. (2010), in which cakes produced with butter or margarine -thus 

mostly saturated TG- were considered as the freshest (on the day of baking and after 15 days) 

from a trained panel. Concerning the role of fats, it is also worth considering that the oxidative 

stability of the shortening, depending on FA composition and the degree of unsaturation, 

influences the rate of auto-oxidation (Ghotra et al., 2002). 

1.5. Fats and nutrition: a technological challenge 
Lipids are essential for every living organism, as they support multiple biological functions in 

the body. First of all, fats yield a higher caloric power (9 kcal/g) compared with carbohydrates 

and proteins (4 kcal/g each). They serve as the structural building material of all membranes of 

cells and organelles, besides playing a fundamental role in neuronal transmission and brain 

formation in infants. They ease the intestinal absorption and transport of fat-soluble vitamins A, 

D, E, and K, and act as signalling molecules, facilitating a variety of physiological functions. 

Furthermore, they guarantee skin and hair health, and insulate body organs against thermal 

shock, maintaining body temperature. Recent literature also demonstrates a specific role of fatty 

acids in gene modulation and protein expression to influence risk of chronic disease (Watkins et 

al., 2005). In particular, among the broad range of fatty acids that can be found in nature, two 

are essential for humans: linoleic acid (#-6 FA, 18:2, 9, 12) and $-linolenic acid (#-3 FA, 18:3, 

9, 12, 15). The human body lacks the ability to introduce double bonds in fatty acids beyond 

carbon 9 and 10, so it cannot synthesize these FA, which have to be introduced with the diet 

(from fish and shell fish, vegetable oils -canola, hemp, soya-, walnuts). 

The biological effects of dietary lipids on human health remain a primary focus of nutrition 

research as consumption recommendations are continually updated in response to new 
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information obtained through epidemiological, clinical, and animal investigations (Watkins et 

al., 2005). 

1.5.1. Health related issues 

Health risks related to high fat consumption have been widely reported in literature in the last 

twenty years. The increase of blood lipids and LDL cholesterol concentrations has been 

correlated with an enhanced cardiovascular risk (Aro et al., 1997; Sundram et al., 1997); this 

condition is a consequence of the intake of saturated fatty acids (SFA) and trans fatty acid (TFA). 

Moreover, fat-rich foods are frequently part of a high calorie diet that can often lead to 

overweight and obesity, two other conditions that increase the chance to suffer from the 

previously cited pathologies. 

The American Heart Association (2008) suggested that no more than 10% of daily energy 

should be consumed from trans and saturated fats (Rogers, 2009). As part of a strategy to 

decrease risk factors for coronary heart diseases in the population, Marangoni et al. (2007) 

suggest to achieve energy balance and a healthy weight and to limit energy intake from fats 

while also shifting fat consumption from saturated fats to unsaturated oils, and eliminating TFA 

from the diet. In fact, it has been demonstrated that consumption of polyunsaturated fatty acids 

lowers the total to high-density lipoprotein cholesterol ratio, perhaps the best single lipid 

predictor of coronary hearth disease risk (Lewington et al., 2007). As additional benefits, 

Salmeron et al. (2001) and Summers et al. (2002) found that PUFA consumption may also 

improve insulin resistance, while Mozaffarian et al. (2010) hypotesized a reduction in systemic 

inflammation. 

In this framework, the aim of food industry is to gradually substitute SFA with unsaturated oil, 

also considering the growing consumers demand for healthy products and, at the same time, the 

more strict regulations imposed by national governments and international boards (such as 

EFSA – European Food Safety Authority or American FDA – Food and Drug Administration). 

1.5.2. Fat replacement and structurization 

Many consumers expect particular properties from a given food product. The aroma, texture 

and mouth sensation experienced when consuming these foods are strongly dependent on their 

fat content and can eventually shape dietary choices in the long term (Drewnowski et al., 1989). 

Moreover, consumers may tend to conclude their decisions on the basis of their memory of a 

food, and not on the basis of their actual perceptions (Mojet & Koster, 2005). In this 

framework, knowing that fats largely contribute to mouthfeel and sensory perceptions, 

modifying traditional recipes to obtain a healthier and more nutritionally valuable food product 

is challenging, especially for some product categories. 

 

Fat replacement 
Due to high fat and sugar content, cakes are high-calories food. Reducing or replacing fats is 

therefore highly desirable to lower both fat and calorie content. It has been reported that the 

replacement of trans fatty acids with unsaturated fatty acids from unhydrogenated oils is the 

single most effective measure for improving blood lipid profiles; even small amounts of 

unsaturated fatty acids have a major effect on the ratio of total to HDL cholesterol (Mensink et 

al., 2003). In addition, fats contribute to the appearance and aroma of the cake, other than 

providing a soft texture; their reduction could then worsen the quality of the final product. 

Several fat replacers have been used in bakery industry and can be classified as carbohydrate-

based (mimicking fats, forming gels which have a flow pattern similar to lipids), lipid-based 

(emulsifiers, modified TG), protein-based (micro-particulated whey proteins, protein 

concentrates) and their combinations (Kalinga & Mishra, 2009). Although the wide variety of 
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compounds available, none of them has been defined as ideal; the lack of flexibility in the 

applications and the possible introduction of allergens as carriers of the molecules (for example 

lactose, egg proteins or gluten) are two of the possible drawbacks for these compounds.  

 

Fat structurization 
Since a long time, structurization of fat has been a big challenge, as the physical state of fats has 

an impact on the properties of food products. 

The most common way to provide texture to the liquid fatty phase of food products is by 

including crystalline triglycerides (TG), mainly saturated (Flöter & Bot, 2006); they have a 

limited solubility in the oil and, upon cooling, small crystals grow and form a network across 

the liquid. The actual size, shape and number of the crystals determine to a large extent the 

mechanical properties of the textured oil (Pernetti et al., 2007).  

Hydrogenation of vegetable fat has been one of the first attempts to give a solid structure to a 

liquid fat. Margarines, vegetable fats in which double bonds of unsaturated FA are saturated by 

hydrogen molecules, have been produced since the beginning of the 20
th

 century and are now 

widespread. A major issue related to this process is that hardened fats produced by partial 

hydrogenation contain trans-isomers, which are nowadays regarded as undesirable by 

nutritionists, and will be increasingly subject to product labelling regulations. The technologies 

of production and raw materials choice have thus improved over the years, aiming to merge 

health aspects and technological requirements. Considering marketplace surveys, however, 

there is an inverse relationship between the price of margarines and their content of saturated 

and trans fats (Albers et al., 2008). Thus, currently available products that are lower in saturated 

and trans fats tend to cost more, and this may be a significant barrier to their use by price-

conscious, and lower income consumers (Rush et al., 2009). Consequently, there is interest in 

developing novel semi-solid plastic structures that are capable of encapsulating edible oil for 

food preparation applications without the use of saturated or trans fats, and that can be cost-

effectively produced (Upritchard et al., 2005; Marangoni et al., 2007).  

To accomplish this aim, another possibility of reorganizing fat structure, without altering its FA 

profile, is interesterification. This process consists in the rearrangement of the distribution of 

the fatty acids on the glycerol backbone, either chemically (by acidolysis and other ester 

exchange reactions) or enzimatically (using lipase), within and between the triglycerides 

(Wassel et al., 2010). It is applied to either an individual oil or a blend of oils, to produce 

triglycerides with different properties. The molecular species of natural triglycerides, in fact, 

show greater or lesser selectivity in the distribution of fatty acids between the three glycerol 

positions, as previously written (§ 1.1). This, as well as the overall fatty acid mixture, 

determines many of the technically important properties of the oil or fat, i.e. solid fat content 

and melting point (Scrimgeour, 2005). Liquid fats can also be hardened by interesterification 

with fully saturated fats (either stearin fractions or fully hydrogenated oils), raising the solid fat 

content without isomerizing any of the fatty acids. 

In the past few years, several publications reported the use of different compounds to be added 

to a liquid oil in order to structure it. Generally speaking, two routes can be found in order to 

structure an organic liquid: dispersion of a foreign phase, such as in an emulsion, or the 

employment of specific molecular mechanisms, relying on particular compounds (Pernetti et al., 

2007). These molecules are normally hydrophobic, easily dissolve in the oil matrix and are able 

to organize a structure conferring a somehow stiff texture to the oil. Bot et al. (2009b) pointed 

out that a successful structuring agent forms small and preferably non-spherical building blocks, 

so that network connections can be established on a higher specific surface area. Having in 

mind the gel definition by Weiss and Terech (2006), who says that a gel must be characterised 

by a continuous microscopic structure with macroscopic dimensions, permanent on the time 

scale of an analytical experiment, and by a solid-like behaviour, these structured oils have been 
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called organogels by several authors (Abdallah & Weiss, 2000; Wright & Marangoni, 2007; 

Hughes et al., 2009). 

An organogel can be defined as an organic liquid entrapped within a thermo-reversible, three-

dimensional gel network. This gel network is formed by the self-assembly of a relatively low 

concentration of organogelator molecules, which are most often low molecular weight 

compounds capable of gelling organic solvents upon cooling (Wright & Marangoni, 2007). The 

gelators tend to self-assemble through specific interactions, allowing preferential one-

dimensional growth, such as fibres, strands or tapes, which are frequently crystalline (Abdallah 

& Weiss, 2000). The generality of thermo-reversibility of low molecular mass organic gelators 

is also one of the features that separate them from many polymeric gels (Abdallah & Weiss, 

2000). Organogels can be formed from liquid organic solvents (like benzene, hexane, etc) or 

liquid oils, at organogelator concentrations as low as 0.5% wt, depending upon its chemical 

properties (Hughes et al., 2009). 

In the literature, several types of organogels are reported and can be differentiated on the basis 

of the chemical characteristics of the organogelator used or the type of structure they form when 

assembled; here just a few examples will be reported. 

Monoglycerides (MG) have been widely studied because, due to their amphiphilic nature, they 

can stabilize fat emulsions. Hughes et al. (2009) reported the ability of 12-hydrostearic acid (12-

HSA) to stabilize water-in-oil emulsions. The mechanism of action consisted in preventing 

water droplets coalescence (impeding their displacement) rather than reducing their size, as 

surfactants do. Moreover, the interaction between 12-HSA and surfactants had a negative 

outcome on the structure, turning the emulsion to a lotion rather than a gel (Rush et al., 2009). 

Da Pieve et al. (2010) studied the effect of shear on the crystallization behaviour of MG 

organogels, prepared by mixing cod liver oil and saturated MG at 80°C and then crystallizing 

them at 20°C under shear rate. Results obtained showed that the introduction of shear during 

organogel formation greatly affects structure, obtaining a stronger gel network with a high oil 

binding capacity under static conditions. It is worth noting that the MG used in these studies are 

saturated MG, thus not adding nutritional value to the oil matrix. 

It is known that combination of organogelators with different chemical characteristics can 

outperform pure hardstocks (Pernetti et al., 2007). For instance, long chain fatty acids and fatty 

alcohols were used by Schaink et al. (2007), who studied the textural and structural properties 

of organogels with stearic acid and stearyl alcohol as gelators. In their research, it has been 

highlighted that only particular combinations of the two gelators resulted in a gelled system.  

Regarding potential food applications of organogels, Hughes et al. (2009) wrote an interesting 

review reporting different examples on this topic. One issue in confectionery and lipid 

technology is the control of oil migration in foods, as this phenomenon can adversely affect 

texture and sensory properties of the product. Organogelation could be a novel way to prevent 

and/or limit oil migration, as in theory the movement of TG out of -or through- the material 

could be reduced by the structured fat (Hughes et al., 2009). Experiments performed by Marty 

et al. (2005) using 12-HSA in a filling fatty material were not effective in reducing oil 

migration, although these studies are not sufficient to conclude a general behaviour. With the 

same organogelator, capability of modulation for carotenoids release was studied by Wright et 

al. (2008), showing that bioavailability of those compounds could show a gradual trend if 

included in an organogelled system. Rush et al. (2009) characterized a structure which 

encapsulates high volume fractions of liquid oil (canola oil) in a water matrix stabilized by 

multilamellar monostearin multilayers, called MG GEL. They set up an experimental design in 

which 10 volunteers consumed sandwiches of whole wheat bread with MG, unstructured MG, 

butter or margarine spreads. Consumption of MG GEL resulted in tempered postprandial 

metabolic responses (measured as serum TG, FFA and insulin) compared to those resulting 
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from consumption of a compositionally equivalent but unstructured oil suspension, suggesting a 

structure-dependent metabolic response.  

1.5.3. Sitosterol and oryzanol organogel 

Amongst the different organogels presented and studied until now, a system offering 

tremendous potential in food application is the organogel based on a combination of 

phytosterols and "-oryzanol as gelators, the only organogel at the moment recognized to be 

suitable for food systems (Hughes et al., 2009). 

 
Phytosterols 
Plant sterols are cholesterol-like substances (they have the same precursor, squalene, as 

illustrated in Fig. 1.7) belonging to the group of isoprenoids and derived from plants; around 

300 plant sterols have been identified so far. 

These molecules are important structural components of plant membranes, regulating their 

fluidity and permeability: free phytosterols serve to stabilize phospholipid bi-layers in plant cell 

membranes just as cholesterol does in animal cell membranes (Moreau et al., 2002). Moreover, 

they act as biogenetic precursors of compounds involved in plant growth and are substrates for 

the synthesis of numerous secondary plant metabolites, such as glycoalcaloids and saponins 

(EFSA, 2008a). Sitosterol, together with stigmasterol, is the most diffused phytosterol in plants. 

Although stigmasterol differs from sitosterol only by the 22-double bond in the alkyl side chain, 

it has been demonstrated that these two sterols have markedly different effects on the 

permeability, ordering, and fluidity of plant phospholipid vesicles; furthermore, sitosterol-!-

glucoside serves as a primer for cellulose synthase in plants (Moreau et al., 2002). 

 

 
 

Figure 1.7. Biochemical path leading to the formation of triterpenes, which originate 

phytosterols and derived compounds (Moreau et al., 2002). 

Sterols can be divided into phytosterols and phytostanols, the latter being the saturated form of 

phytosterols and serving as storage product of the cell. 

Sterols are naturally supplied in an average diet as they are contained in common foods; major 

sources are seeds, vegetable fats and oil, nuts and cereals, especially rye. There seems to be 
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general agreement that the normal western diet would contribute to a daily supply of plant 

sterols in the range of 150-400 mg per person, vegetarian diets being closer to the upper range 

(EFSA, 2008a). Absorption efficiency for plant sterols in humans is considerably less than that 

of cholesterol, being of 2–5% for the former versus 60% for the latter (Berger et al., 2004). 

Due to their structural similarity to cholesterol, plant sterols were first and foremost studied for 

their capacity to inhibit cholesterol absorption in the small intestine (Acuff et al., 2007). Since 

the mid 1990s, there has been considerable interest and commercial marketing of phytosterol 

products for this purpose, even if the first attempts to use these compounds for healthy purposes 

were done in the 1950s. At that time, sitosterol was used as a supplement and as a drug to lower 

serum cholesterol levels in hypercholesterolemic individuals. Due to poor solubility and 

bioavailability of the free phytosterols, the effects were not always consistent, and very high 

doses (up to 25-50 g/day) were sometimes required for efficacy (Moreau et al., 2002). 

Therefore, the physical forms, carriers and solubilisation of the phytosterols are important 

characteristics to determine the efficacy of phytosterols on cholesterol lowering. Also, the food 

matrix may affect their cholesterol-lowering efficacy significantly; for example, Clifton et al. 

(2004) concluded, from a randomised incomplete cross-over single-blind study, that plant sterol 

esters (1.6 g/day) in low-fat milk were almost three times more effective than in white bread 

and cereals (muesli style). 

Bioavailability and efficacy of phytosterols in food products to be introduced in a balanced diet 

has been widely investigated in the past. In the review by Berger et al. (2004), several studies 

were mentioned, in which is reported that intakes of 0.8-1 g of plant sterols per day have shown 

a minimum of 5% reduction in LDL cholesterol levels, relative to control, or at least that those 

quantities can decrease the absorption of cholesterol, which is indicative, but not necessarily 

predictive, of actual LDL lowering. This reduction in LDL cholesterol will correlate with an 

approximate 6–10% reduction in coronary heart disease risk at age 70 (Berger et al., 2004). The 

review by Katan et al. (2003) shows that the daily intake of 2 to 2.4 g of plants sterols or stanols 

added to margarine (or to mayonnaise, olive oil or butter) reduced on average low-density 

lipoprotein (LDL) blood cholesterol levels by 8.9%. The dose-response relationship seems to 

level off at doses higher than 2.5 g/day and the average maximum effect was estimated to be 

11.3%. The effect on cholesterol level appeared to be present either by consuming phytosterol 

enriched food once per day at lunch, or dividing it over three portions during the day (Plat et al., 

2000); this was later confirmed by Quìlez et al. (2003), who stated that ingestion of 

phytosterols, in order to be effective on lowering cholesterol blood levels, can happen in a 

different time to that of cholesterol rich foods. Moreover, both Berger et al. (2004) and EFSA 

(2008b) showed that the beneficial effects, identified within 2-3 weeks from the beginning of 

supplementation, were able to remain stable for at least one year (still consuming phytosterols). 

The only side effect reported in stanol supplementation in food could be a reduction in levels of 

the !-carotene/LDL cholesterol ratio and in absorption of other fat soluble micronutrients, such 

as vitamin A, K, D and lycopene (Berger et al., 2004). Katan et al. (2003) reported a significant 

reduction only for !-carotene. However, this can be counterbalanced by increasing the intake of 

fruits and vegetables, especially those rich in carotenoids; also, it is worth mentioning that many 

food product are nowadays supplemented with those nutrients. 

In a scientific report of 2008 (EFSA, 2008a), the EFSA concluded that plant stanols are 

clinically safe, in the range of use that causes desirable reduction in blood levels of total 

cholesterol and LDL-cholesterol. In fact, if a person consumes 1.5 to 2.4 grams of plant sterols 

and stanols every day, this can result in cholesterol reduction by 7 to 10.5%. In order to avoid 

any possible depletion in carotenoids levels, the authority advices that the daily consumption of 

phytosterols should not exceed 3 grams; moreover, the labelling should advise individuals who 

are likely to be more susceptible to reduced vitamin status (pregnant or nursing women, 

children) to avoid consuming these products. 
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Concerning food applications, it is important to consider that stability of phytosterols (and their 

esters) during processing strongly depends on the molecule structure and the oil matrix present 

in the food product (Rudzinska et al., 2010). Those compounds, having a chemical structure 

similar to cholesterol, are in fact prone to oxidation, particularly at elevated temperatures as 

those used during frying; their oxidative degradation leads to the formation of oxidized sterol 

derivatives, volatile flavour components and oligomers. Cantrill (2008) stated that phytosterol 

are quite stable and undergo only limited degradation during oil processing, thanks to the steric 

hindrance by the ring structure. Only under harsh conditions, such as temperatures over 100°C, 

in the presence of oxygen, a slow oxidation of the phytosterol moiety may occur, in the same 

way as for cholesterol. Hypothesizing that consumers could fry a product using temperatures 

below 200°C for 5-10 minutes, the level of oxidation of sitosterol esters remains below 1.3% 

when the matrix consists of liquid oil of liquid margarine. Using free sterols, these levels are 

somewhat higher; also the composition of the lipid matrix affects the susceptibility to oxidation. 

 

Oryzanol 
Gamma oryzanol (Fig. 1.8), a group of ferulic acid esters of phytosterols, is a major 

phytochemical in rice bran oil (Khuwijitjaru et al., 2009). This compound has been recognized 

as a major antioxidant and scavenger, as it guarantees stabilizing properties to rice bran oil, 

besides reducing total plasma cholesterol and triglyceride concentrations, and increasing the 

HDL cholesterol level (Cicero & Gaddi, 2001). Moreover, no losses of gamma-oryzanol during 

deep frying were observed (Lerma-García et al., 2009), prospecting potential application of this 

compound in processed foods. 

 

 
 

Figure 1.8. Chemical structures of the four main components of "-oryzanol (Lerma-Garcìa et 

al., 2009). 

Wilson et al. (2007) studied the effect of oryzanol, ferulic acid and rice bran oil in 

hypercholesterolemic hampsters and they found that at equal dietary levels, "-oryzanol has a 

greater effect on lowering plasma non-HDL-cholesterol levels and raising plasma HDL-

cholesterol compared to ferulic acid, possibly through a greater extent to increase excretion of 

cholesterol and its metabolites. Oryzanol and ferulic acid may have similar antiatherogenic 
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properties, as shown by reductions in aortic cholesterol accumulation, although their anti-

atherosclerotic potentials are through different mechanisms of action. 

 

Oryzanol and sitosterol organogel 
Developed as a healthier alternative to conventional spreads that are structured with saturated 

and trans-fats, a product employing a mixture of sitosterol and oryzanol (2%, or preferably 4%, 

w/w in oil) to solidify edible oil was patented in 1997 (Ritter et al., 1997). This new product is 

considered to be an appetite suppressant due to its extended survival in the human digestive 

tract; reaching the ileum unabsorbed, it triggers the ileal break and leads to feelings of satiety 

(Hughes et al., 2009). Furthermore, the inclusion of this system in a food product could improve 

the antioxidant (due to "-oryzanol) and anti-cholesterol (due to phytosterols and unsaturated oil) 

potentials of food, while performing the desired technological properties (Bot et al., 2009b). It 

is worth highlighting that this is the only example of oil structuring, based on food grade 

ingredients, that is not based on the ordering of fatty acid chains (Bot et al., 2009b). 

Recently, this system has been widely studied by several authors that investigated its 

characteristics from different points of view. 

The organogel forms after cooling a warm solution of oil (in most of the studies, sunflower oil) 

containing the two gelators. The gel formed appears transparent, implying that the building 

blocks of the gel are considerably smaller than the wavelength of visible light (Bot et al., 

2009b). The transparency of the gel, however, depends also on the proportion between oryzanol 

and sitosterol, being the gels with higher percentage of the latter compound more turbid and 

hazy (Bot et al., 2008). On a molecular scale, Pernetti et al. (2007) supposed that !-sitosterol 

units dock on top of each other, having the ferulic acid moiety of the "-oryzanol sticking out 

(Fig. 1.9).  

 

Figure 1.9. Proposed stacking of sitosterol (a) and oryzanol (b) molecules, based on a crude 

energy minimisation calculation (Hermant RM, Unilever R&D, unpublished data). An H-bridge 

can be formed near to the arrow, resulting in slightly wedge shaped stack (Pernetti et al., 2007). 

Bot et al. (2008) proposed that these units self assemble forming a helical ribbon; these tubules 

can aggregate and structure a network in which sunflower oil phase is present both outside and 

inside the tubule (Fig. 1.10). From small-angle X-ray scattering observations, Bot et al. (2009a) 

confirmed this hypothesis and measured tubules diameter and wall thickness, being 7.0 nm and 

0.8 nm respectively. The wall thickness is comparable in size to the length of the long axis of 

the rigid ring system characteristic for sterol molecules. It seems likely, therefore, that the 

tubule wall is defined by the stacked rigid four-ring systems of the sterol (ester) molecule, 

whereas the more flexible alkyl chain and ferulic acid moiety branch outside, blending in with 

the surrounding TG oil (Bot et al., 2009a). Moreover, the phytosterols molecules are thought to 

be tilted relative to the axis and radial plane of the tubule, in such a way that their wedged 

stacking leads to the formation of a helical ribbon (Bot et al., 2009a). 
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Figure 1.10. Schematic representation of the sitosterol + oryzanol tubule (left) and helical 

ribbon (right). The upward hatched and downward hatched area in the ring have the same size; 

rin: inner radius, rc: centre radius and rout: outer radius (Bot et al., 2009a). 

The proposed structure is not influenced neither by total gelators concentration in the oil nor by 

their reciprocal ratio (Bot et al., 2009a); this finding is also supported by the evidence of higher 

turbidity in sitosterol-richer gels, as the ferulic acid moieties of oryzanol could work as spacers 

and keep the nanotubes apart (Bot et al., 2008), enhancing the transparency of the gel. 

Moreover, the most likely dynamic of organogel formation would be via a helical ribbon, in 

which the wall spirals along the central axis (Bot et al., 2008). In fact, the loss of structuring 

potential of the organogel at a typical melting temperature (Bot et al., 2006) and the concurrent 

X-ray scattering curves of the organogel measured at the same melting temperature (Bot et al., 

2009a), indicate that the nanotube does not persist above the melting point of the organogel. 

These results show that the formation of the tubules does not require an intermediate stage 

involving a tubular micelle (as previously proposed by Pernetti et al., 2007), but they rather 

'crystallize' directly from the solution (Bot et al., 2009a). 

The proportion between the two gelators, even if not affecting the microstructure of the 

organogel, has an impact on gel properties. Sawalha et al. (2011), by measuring scattered light 

intensity as a function of decreasing temperature, detected that aggregation peaks took place at 

different temperatures depending on total gelator concentration and their ratio. Structurization 

of the tubules was observed by the same authors by rheological tests, in which storage modulus 

values (during cooling) showed a dramatic increase in correspondence to aggregation 

temperatures previously measured, confirming that higher concentrations of gelators correspond 

to higher aggregation temperatures. Bot et al. (2008) noted that the gap between the temperature 

of complete melting obtained during heating and the onset temperature of crystallisation 

obtained during cooling, measured by DSC, increases with increasing "-oryzanol content. For 

all the concentrations and ratios used in the study, however, absolute transition temperature 

during cooling and heating were not exactly the same. 
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The optimal oryzanol:sitosterol molar ratio, with higher aggregation temperature, higher 

consistency and transparency, was found to be 2:1, corresponding to 3:2 w/w ratio; with this 

proportion, the gel resulted stable and thermo-reversible from concentrations as low as 2% 

(Ritter et al., 1997), appearing transparent and stiff at concentrations higher than 8% (Bot et al., 

2008). 

Studying the rheological behaviour of a 3:2 oryzanol:sitosterol ratio (named gel from here 

onwards), Bot et al. (2009a) noticed an increase in consistency of the gels as long as gelators 

concentrations increased. This behaviour can be linked to what was found by Sawalha et al. 

(2011), who studied cooling profiles of the gels by light scattering: sudden high peaks of 

intensity, reasonably due to the aggregation of tubules, were observed, corresponding to higher 

temperatures, as concentrations increased (from 15°C at 8% gelators concentration, to 45°C at 

16%). For a 8% gelators concentration gel, 70°C is the temperature at which there is a full 

melting of the gel and no tubules are found above this temperature (Bot et al., 2009a). 

Regarding rheological properties, Bot et al. (2006) observed that controlled low shear 

conditions promotes gel formation, while the effect of oscillatory shear parameters (amplitude, 

frequency) is small. The mechanical characteristics of gels formed by rheological testing was in 

accordance with those of gels formed in quiescent conditions (bulk gels), the latter needing a 

longer time and lower temperatures to be structured (Bot et al., 2006). Large-deformation 

properties of the gels highlighted that these system are much firmer under compression that 

under shear; also, their strength is proportional to the amount of structuring material, suggesting 

that the gels break at the building blocks and not at the cross links of the tubules (Bot et al., 

2006). 

As a further step, some researchers (Bot et al., 2009b; Duffy et al., 2009; Bot et al., 2011) have 

investigated the possibility to include the 3:2 oryzanol:sitosterol organogel into an emulsion, as 

many food products are based on emulsion technology. Bot et al. (2009b) proved that the two 

compounds are able to structure a water-in-oil emulsion, being oil-continuous up to 0.8 water 

fraction. However, the structured emulsion resulted in a lower firmness compared to the 

corresponding pure oil organogel; this is probably due to the formation of large crystalline 

fibers instead of nanotubules, which make the structure weaker but, at the same time, adsorbed 

at the water droplet interface, playing a role in stabilizing the emulsion (Bot et al., 2011). 

Moreover, it was found that the emulsions, besides being firmer as gelator concentration 

increases, are more sensitive to sitosterol:oryzanol ratio compared to pure organogels (Bot et 

al., 2009b). Duffy et al. (2009) investigated the possibility to create oil-in-water emulsion, using 

pre-formed organogel and also adding surfactants; these organogel-based emulsion systems 

formed fibrils visible by light microscopy and showed retarded TG hydrolysis by pancreatic 

lipase compared to standard emulsions. 
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2. Aim of the study 
This research project aims to study the effect of the substitution of saturated animal fats with 

healthier vegetable fats/oils using a response surface methodology. The model system chosen is 

a plum cake formulation, in which lipids play an important role on final product characteristics. 

As reference cake, a formulation containing butter is considered, since this fat is traditionally 

employed for its outstanding technological performances.  

In a first phase, the effects of fat melting properties and fat content are modelled. Different 

blends of palm oil – palm olein are crystallized. The two components used come from the same 

raw material but have different physical characteristics, depending on their fatty acid profile. 

The final scope of the modelling process is to obtain an optimized formulation, resembling as 

much as possible to the butter cake reference. In order to better understand the relationships 

among fat and batter properties and the characteristics of the final baked products, rheological 

properties of fats and batters are as well investigated, also simulating baking conditions. 

In a second phase, the use of innovative ingredients is considered, for enhancing the nutritional 

profile of the plum cake without compromising final quality. Considering recent studies on 

structured fats, an organogel formed by a blend of "-oryzanol and !-sitosterol, dispersed in 

sunflower oil, is chosen. This material shows a solid like structure, thus potentially influencing 

cake structure; moreover, it is characterized by a fatty acid profile typical of unsaturated 

vegetable oils, with the additional benefit of antioxidant and anti-cholesterol properties of the 

two phytosterols used as gelators. Cake formulation is studied by the Design of Experiment 

technique, in order to understand the effect of organogel quantity and gelators concentration on 

the characteristics of cakes. Properties of organogels are evaluated through rheology and by 

monitoring the oxidative status of cakes during storage. 
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3. Modelling and optimization of fat quantity and composition 
in a plum cake 

In the literature, few studies have been addressed to investigate how the interaction of fat 

quantity and composition affects the characteristics of a sweet, chemically leavened baked 

product. Kalinga and Mishra (2009) studied physical properties of low fat cakes, in which the 

traditional recipe with 100% margarine was compared to experimental formulations where fat 

was partially replaced by !-glucan concentrates: volume and consistency were evaluated, 

finding out that a lower fat content brought to a less developed and harder cake. Dogan et al. 

(2007) produced layer cakes with interesterified and non interesterified blends of palm oil and 

cottonseed oil: the incorporation of palm oil brought to good aeration and excellent creaming 

properties, while an increase of cottonseed oil led to a higher batter density. The same effect 

was found by Sowmya et al. (2009), who studied cakes produced with the creaming process, in 

which shortening was replaced by different percentages of sesame oil: increasing oil content, 

batter viscosity and cake volume decreased, while cake hardness and chewiness increased. 

Sudha et al. (2007), studying the possibility to reduce fat content in soft dough biscuits, found 

an increase in hardness and cohesiveness of the dough and the finished product. 

The aim of this work was to model the effect of fat quantity and composition on the 

characteristics of a plum cake and to optimize the formulation on the basis of texture and 

volume performances. In order to study simultaneously the effects of the two considered factors 

and of their interactions, a Design of Experiment (DoE) technique was applied, combined with 

response surface methodology. A plum cake formulation was chosen because the high fat 

percentage of the recipe could help in highlighting the effects of fat on the final product. Fats 

used were Refined Bleached and Deodorized (RBD) palm oil and bi-fractionated palm olein, 

blended in different proportions in order to modulate the melting characteristics of fat blends 

without altering palm oil triglyceride and fatty acid composition by the addition of liquid oil 

from a different vegetable source. Butter was considered as the reference fat, as it is the raw 

material traditionally used in cakes, because of its performances in terms of volume, softness 

and sensory quality.  

3.1. Materials and methods 

3.1.1. Materials 

The reference butter cake (named BC) was produced using soft wheat flour type ‘00’ (Molino 

Quaglia SpA, Vighizzolo d’Este, Italy), pasteurized liquid whole egg (Cascina Italia, Spirano, 

Italy), white sugar (Südzucker AG, Mannheim, Germany), butter (F.lli Galbusera, Casatenovo, 

Italy), baking powder (PaneAngeli, Desenzano del Garda, Italy). 

In experimental formulations, butter was replaced by blends of RBD palm oil (PO) and bi-

fractionated palm olein (superolein, SO) (IGOR SpA, Orzinuovi, Italy). 

A formulation with anhydrous butter (named ABC) was also prepared to estimate the cake 

performances in the absence of the water fraction contained in butter (about 18%). Anhydrous 

butter was prepared melting butter up to 60°C and centrifuging it at 5000 rpm for 5 min at 

30°C. The oily phase was immediately separated from the aqueous phase and then filtered 

through a rough filter paper (60 g/m
3
, 0.14 mm thickness and capillary rise > 79 mm; ALBET-

Hahnemuehle, Barcelona, Spain) and crystallized as described below for fat blends preparation 

(§ 3.1.2). Crystallized anhydrous butter was stored at 20 °C in a closed container until use. 
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3.1.2. Fat blend preparation 

For the preparation of fat blends, PO and SO were weighted to obtain a batch (700 g) with the 

desired fat composition and heated up to 48°C. The melted blend was then poured into a 

scraped surface chilling unit (Simac 5000, Treviso, Italy) for crystallization. The chilling unit 

provided a cooling speed of 2.5°C/min, favouring the nucleation of fat crystals in the unstable $ 

form (Van Malssen et al., 1996). The product was extracted from the chilling unit when the 

actual temperature of the mass was 15°C below the previously measured SMP of the blend. The 

crystallized fat was then gently stirred (low speed, flat beater) in a N-50G Hobart mixer 

(Hobart, Troy, USA) for 5 min at 20°C, in order to allow the conversion of $ form crystals in 

the more stable !' form (Van Malssen et al., 1996). Crystallized fats were stored at 20°C in a 

closed container until use. 

3.1.3. Experimental design 

A two-factor, five-level Central Composite Design (CCD) was used to plan the experiments. 

The two factors considered were the quantity of fat blend in the cake batter and the percentage 

of SO in the fat blend. The factor levels in the coded form were: -&2, -1, 0, +1, +&2. The design 

consists of thirteen experimental points (runs): four square points, that combine the -1 and +1 

levels of the two factors; four star points (specific of this type of experimental design) which 

cross the 0 level of one factor with the ±&2 levels of the other; five central points that are 

replications of the experiment which crosses the 0 levels of both factors. The star points are 

calculated so that their distance from the centre is the same as the distance of the square points; 

as a result, all square and star points are located on the same circle, thus carrying information of 

equal weight (Fig. 3.1).  

 

 

Figure 3.1. Graphical representation of CCD runs; ' : star points; ' : cube points; ': centre 

points. 

The 0 levels of the two considered factors were chosen on the basis of traditional butter cake 

recipes: 18% fat content in the batter and a fat blend containing 67.5% olein having melting 

characteristics similar to those of butter. The ±1 fat content levels (9 and 27%) were selected on 
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the basis of different cake recipes reported in the literature (Khalil et al., 1998; Dogan et al., 

2007; Kocer et al., 2007; Kalinga et al., 2009; Sowmya et al., 2009). The ±1 levels of SO 

content (50-85%) were chosen in the steepest region of the SMP curve built with various PO-

SO blends containing 0–100% SO (Fig. 3.2). 

The order of experiments was fully randomized to avoid systematic biases and to minimize the 

effects of uncontrollable nuisance factors. Run order, coded and uncoded factor levels are 

reported in Table 3.1. 

3.1.4. Statistical analyses 

Response variables were analyzed by response surface regression for a second-order 

polynomial model, which contained linear, quadratic and interaction terms for the two factors. 

The response surfaces were generated from Eq. (1) (Montgomery, 2001): 
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where Y is the predicted value of the considered response variable; x1 and x2 are the fat content 

(%) in the batter and the SO level in the fat blend (%), respectively; !0 is a constant value; !1 

and !2 are the linear coefficients; !12 is the interaction coefficient; !11 and !22 are the quadratic 

coefficients; ( is the random error. In order to determine the significance of each coefficient, the 

one way analysis of variance (ANOVA) was carried out.  

An overall desirability function was constructed as multi-objective optimization (Montgomery, 

2001), as already reported by Alamprese et al. (2007).  

CCD generation, data analysis and optimization were performed using Design Expert 8 (Stat 

Ease Inc., Minneapolis, USA). 
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Table 3.1. Run order of the Central Composite Design, corresponding coded and uncoded factor levels, batter formulations and moisture. 

 

FACTORS INGREDIENTS (% in batter) 

Run 
Fat 

(coded) 

Olein 

(coded)
a
 

Fat Flour Sugar 
Egg 

product 

Baking 

Powder 

Batter 

Moisture (%)
b
 

1 +!2 0 30.7 31.2 18.6 18.6 0.9 19.0 

2 -!2 0 5.3 42.7 25.4 25.4 1.2 25.9 

3 0 0 18.0 37.0 22.0 22.0 1.0 22.5 

4 0 -!2 18.0 37.0 22.0 22.0 1.0 22.5 

5 0 +!2 18.0 37.0 22.0 22.0 1.0 22.5 

6 -1 +1 9.0 41.1 24.4 24.4 1.1 24.9 

7 0 0 18.0 37.0 22.0 22.0 1.0 22.5 

8 0 0 18.0 37.0 22.0 22.0 1.0 22.5 

9 0 0 18.0 37.0 22.0 22.0 1.0 22.5 

10 +1 -1 27.0 33.0 19.5 19.5 1.0 19.9 

11 0 0 18.0 37.0 22.0 22.0 1.0 22.5 

12 +1 +1 27.0 33.0 19.5 19.5 1.0 19.9 

13 -1 -1 9.0 41.1 24.4 24.4 1.1 24.9 

 
a
 referred to the fat blend 

b
 calculated on the basis of water content of each ingredient 
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3.1.5. Cake preparation 

The reference cake BC was prepared with 37% soft wheat flour, 22% pasteurized liquid whole 

egg, 22% sugar, 18% butter, and 1% baking powder. The ABC cake was produced with the 

same formulation of BC, substituting butter with the same weight of anhydrous butter. Both BC 

and ABC samples were produced in duplicate. In the experimental formulations, butter was 

replaced by different quantities of PO and SO blends according to the experimental design 

described in § 2.4, keeping constant the ratios among the other ingredients. Complete cake 

formulations and batter moisture are shown in Table 3.1. 

Cakes were prepared following the creaming method, with a total mixing time of 18 minutes, as 

suggested by Pyler (1988). 

Batters (1500 g each) were prepared by whipping fat and sugar in a N-50G mixer (Hobart, 

USA) for 8 min (creaming phase, 4 min low speed + 4 min medium speed); then whole egg 

product was added and mixed for 5 min (3 min low speed + 2 min medium speed). After 

replacing the mixer whip with a flat beater, premixed flour and baking powder were added and 

mixed for 5 min (3 min low speed + 2 min medium speed). Equal portions of batter (250 g) 

were poured in five plum-cake moulds (5.8 x 15.3 cm bottom, 7.8 x 17.3 cm top, 6 cm height) 

and baked in a forced air convection oven (Moretti, Mondolfo, Italy) for 30 min at 180°C After 

baking, samples were cooled down for two hours at room temperature before performing 

analytical determinations.  

3.1.6. Analytical methods 

Official method Cc 3-25 (AOCS, 2009a) was used to measure the slip melting point (SMP, °C) 

of fats. SMP was measured on blends containing 0, 20, 40, 42.7, 50, 52.5, 55, 67.5, 70, 75, 85, 

90, 92.2, and 100% SO. A SMP curve was built as a function of the olein content in the fat 

blends, fitting the experimental data using a curve-fitting software (TableCurve 2D, v. 4.00, 

AISN Software Inc., USA). Solid fat contents (SFC, %) of butter and fat blends were measured 

following the Cd 16b-93 official method (AOCS, 2009b), by using a Minispec NMS 120 

(Bruker BioSpin MRI GmbH, Ettlingen, Germany). Before SFC analysis, butter was melted and 

filtered on a filter paper containing anhydrous sodium sulphate to remove water. Both SMP and 

SFC measurements were done at least in duplicate. 

Apparent specific gravity of selected batters was measured (n=10) by weighing a standard cup 

filled with batter or with water and dividing the weights (Dogan et al., 2007).  

Cakes were analyzed for specific volume (n=5) by sesame seed displacement. 

Moisture content was measured (in triple) as reported by Mariotti et al. (2006). 

Colour was evaluated on three plum cakes for each run, using a reflectance colorimeter 

(Chroma Meter CR210, Minolta Camera Co., Osaka, Japan), with standard illuminant C. On 

each cake three measurements on the crumb were taken. 

Texture analyses were performed using an Instron Universal Testing Machine 3365 (Instron 

Division of ITW Test and Measurement Italia S.r.l., Trezzano sul Naviglio, Italy) equipped with 

a 100 N load cell and supported by BlueHill software (BlueHill2, v2.9, 2005, Instron Corp., 

High Wycombe, UK). Two cakes were evenly sliced obtaining from the central part of each 

cake four 25±1 mm thick slices. Each slice was compressed in the center using a 27 mm 

diameter plate. Analyses were carried out at room temperature, with the following conditions: 

pre-test cross-head speed, 0.2 mm/s; trigger force, 0.05 N; test cross-head speed, 2 mm/s; final 

strain, 50% of the original sample height. Results are expressed in terms of Young modulus 

(Pa), representing the slope of the stress-strain curve of compression tests, and load at 25% 

strain (N). 
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3.2. Results and Discussion 

3.2.1. Slip melting point of fat blends 

The slip melting point of the fat blends as a function of SO percentage was studied. In Fig. 3.2 

the relation between SMP and SO content is shown. A third degree model (y=a+bx
3
) was used 

to fit the experimental data. 

 

 

Figure 3.2. Slip melting point curve as a function of olein content in the fat blend; ! : DoE fat 

blends; ! : regression curve; - - - : confidence interval (95%). 

As it can be noticed, SMP was barely affected up to 40% SO, while at higher olein contents, 

even small SO additions definitely lowered SMP values. This means that relatively low olein 

contents could not destabilize the structure of the high melting triglycerides contained in palm 

oil. As already mentioned in § 3.1.3, this result was taken into consideration for choosing the 

factor levels of fat blend composition: only SO contents higher than 40% were included in the 

experimental design, because they are really effective in SMP variation, enabling the study of a 

wide range of fat melting characteristics.. 

3.2.2. Cake characteristics 

Table 3.2 shows the results of the response variables considered in the thirteen runs of the 

Central Composite Design. Before carrying out the CCD analysis, the normal distribution plots 

of the response variables were checked. All the response variables followed a normal 

distribution, except for the load at 25% strain, which required a power transformation. 

The results of ANOVA and lack-of-fit test with R
2
, Adjusted R

2
 and Predicted R

2
 are presented 

in Table 3.3: R
2
 is a measure of the amount of variation around the mean explained by the 
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model, Adj-R
2
 is the same index adjusted for the number of terms in the model, while Pred-R

2
 

is a measure of the amount of variation explained by the model in new predicted data.  

Significant models were calculated for all the response variables, except for colour parameters 

a* and b*. In particular, significant (p<0.01) linear models were calculated for specific volume 

and Young modulus, while complete quadratic models were found for slice and crumb 

moisture, load at 25% strain and L* of crumb. No variables showed significant interaction 

models (linear and interaction terms), as indicated by 2FI p-values in Table 3.3. Among the 

variables with significant models, crumb moisture, specific volume, load at 25% strain and 

crumb L* had a non-significant lack-of-fit (p>0.05), thus indicating an adequate description of 

the true shape of the response surfaces. On the other side, slice moisture and Young modulus 

showed a significant lack-of-fit (p<0.05), which means that the models did not correctly fit the 

experimental data.  
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Table 3.2. Mean values of the response variables considered in the Central Composite Design. 

 

RESPONSES 

RUN Slice Moisture 

(%) 

Crumb Moisture 

(%)
 

Specific Volume 

(cm
3
/g)

 
Young Modulus 

(kPa) 

Load at 25% Strain 

(N) 

L* 

Crumb 

a* 

Crumb 

b* 

Crumb 

1 15.13 19.05 2.16 64.31 6.82 68.62 -7.52 68.62 

2 20.66 24.16 2.39 133.95 13.37 75.60 -7.60 75.60 

3 17.60 20.65 2.24 94.58 8.27 75.08 -7.96 75.08 

4 18.45 20.86 2.11 118.32 9.98 75.70 -7.88 75.70 

5 17.81 20.78 2.30 94.90 7.92 75.68 -8.03 75.68 

6 20.15 23.17 2.42 130.05 11.22 76.13 -7.83 76.13 

7 17.43 20.57 2.17 93.42 7.92 75.07 -7.46 75.07 

8 17.65 20.92 2.17 86.84 7.55 75.77 -7.71 75,77 

9 17.54 20.84 2.18 91.27 7.44 75.12 -7.68 75.12 

10 16.12 19.41 2.06 70.20 6.47 70.30 -7.58 70.30 

11 17.74 20.78 2.13 94.35 8.15 75.74 -7.86 75.74 

12 16.60 19.61 1.98 49.14 5.10 70.58 -7.33 70.58 

13 20.32 23.16 2.30 135.82 12.19 75.56 -7.74 75.56 
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Table 3.3. ANOVA and model fitting for the response variables of CCD; selected models are reported in bold. 2FI: two factors interaction. 

 

Test 

Degrees 

of 

Freedom 

Slice 

Moisture 

(%) 

Crumb 

Moisture 

(%) 

Specific 

Volume 

(cm
3
/g) 

Young 

Modulus 

(kPa) 

Load at 

25% 

Strain (N) 

L* 

Crumb 

a* 

Crumb 

b* 

Crumb 

Sequential Model Sum of Squares (p-values) 

Linear 2 <0.0001 <0.0001 0.0019
 
 0.0001 0.0003 0.0033 0.4412 0.1754 

2FI 1 0.4380 0.8272 0.1757 0.3917 0.7537 0.9303 0.4491 0.6803 

Quadratic 2 0.0117 0.0001 0.4615 0.2189 <0.0001 0.0001 0.1648 0.5615 

Lack-of-fit Tests (p-values) of significant models 

Linear 6 0.0068 0.0139 0.0823 0.0189 0.0020 0.0026 - - 

2FI 5 0.0058 0.0104 0.9232 0.0166 0.0015 0.0019 - - 

Quadratic 3 0.0312 0.5729 0.0684 0.0175 0.1567 0.1343  - - 

Predictive parameters of significant models 

R
2  

 0.9875 0.9956 0.7159 0.9182 0.9877 0.9759 - - 

Adjusted R
2
  0.9785 0.9924 0.6590 0.9019 0.9790 0.9587 - - 

Predicted R
2
  0.9202 0.9841 0.4244 0.8371 0.9337 0.8664 - - 

 

Table 3.5. Values of selected responses for BC, ABC and CCD central point formulations. 

 

RESPONSES 

SAMPLES 
SMP 

(°C) 
Slice 

Moisture 

(%) 

Crumb 

Moisture 

(%)
 

Specific 

Volume 

(cm
3
/g)

 

Young 

Modulus 

(kPa) 

Load at 

25% Strain 

(N) 

L* Crumb a* Crumb b* Crumb 

BC
1
 32.8 20.33±0.07

 a
 23.97±0.04

 a
 2.23±0.03

 a
 54.08±0.70

 a
 5.63±0.03

 a
 77.39±0.09

 a
 -7.18±0.02

 a
 29.63±0.94

 a
 

ABC
1
 33.0 17.54±0.03

 b
 20.79±0.14

 b
 2.01±0.04

 b
 80.51±4.37

 b
 7.86±0.91

 b
 76.26±1.03

 b
 -7.22±0.18

 a
 31.08±0.79

 a
 

CCD central point
2
 30.4 17.59±0.11

 b
 20.75±0.14

 b
 2.18±0.04

 a
 92.09±3.21

 c
 7.87±0.36

 b
 75.36±0.36

 b
 -7.73±0.19

 b
 35.73±0.22

 b
 

 
1
 average and SD calculated on two technological replicates; 

2
 average and SD calculated on five technological replicates 

a,b 
Numbers with different letters within the same column are statistically different (p<0.05)  
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Table 3.4 reports the regression coefficients of the coded factors for the significant and 

adequate models found, which allow comparing directly the relative magnitude of different 

factors effects. Thus the fat content (x1), having the highest absolute values among coefficients 

(b1), showed the greatest influence on all responses considered. 

 

Table 3.4. Regression coefficients of polynomial models, according to Eq. (1), for selected 

experimental response variables. 

 

RESPONSE VARIABLE 
COEFFICIENTS 

(coded) Crumb 

Moisture (%) 

Specific Volume 

(cm
3
/g) 

Load at 25% 

Strain (N)
a
 

L* Crumb 

!0 20.75 2.2 280.09 75.36 

!1 -1.82*** -0.12** -352.42*** -2.58*** 

!2 0.01 0.038 -77.15** 0.1 

!12 0.047 0 27.45 -0.075 

!11 0.46*** 0 185.63*** -1.81*** 

!22 0.066 0 46.65* -0.023 
 

a
 Coefficients referring to the transformed variable 

* p<0.05, ** p<0.01, *** p<0.001 

 

The influence of fat content on crumb moisture is a direct consequence of the different water 

content in batter formulations (Table 3.1); in fact, a highly significant correlation between batter 

moisture and crumb moisture (r=0.96, p<0.05) was found. On the contrary, olein percentage 

(x2) did not affect this variable, as confirmed by the non significant value of b2 and as also 

shown in Fig. 3.3a.  

The flat response surface of cake specific volume illustrates the significant linear negative 

influence of fat content on this parameter (Fig. 3.3b). Probably, as fat content in the formulation 

increased, a higher amount of gasses escaped from the batter during chemical leavening, due to 

a progressive weakening of the gluten network and a lower viscosity of the batter. On the 

contrary, the olein content in the fat blend had no significant influence on cake volume, to 

indicate that fat melting point did not influence the amount of gas retained in the baked product, 

at least in the range of olein content/SMP considered. The percentage of fat in batter was a 

significant factor for cake texture parameter (load at 25% strain), both for linear and quadratic 

coefficients. This variable was also the only one significantly affected by olein content; 

however, observing coefficient values, it can be noticed that fat still had the highest importance: 

load decreased as fat and olein content increased. The significant quadratic coefficients resulted 

in a curvature of the response surface (Fig. 3.3c) with an area of minimum in which cake 

hardness reached the lowest values, yielding softer cakes.  
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Figure 3.3. Response surfaces for crumb moisture (a), specific volume (b), load at 25% strain 

(c) and crumb L* (d). 

Observing the response surfaces of the three variables discussed so far, it appears that high fat 

contents generally lead to products with low values of moisture, specific volume and hardness. 

This could seem in contrast with the tenderizing action of water on cake texture, described by 

Mizukoshi (1985) who studied the effect of cake formulation on shear modulus of batter and 

cake. Actually, analysing our results, we can assume that fat content had a larger tenderizing 

effect on cake texture than water, but in high fat cakes with very low moisture contents, load 

slightly increased following a quadratic curvature (Fig. 3.3c). 

As regards the colour parameters, crumb lightness (L*) decreased as fat content increased (Fig. 

3.3d); this is probably due to the lower specific volume, i.e. a lower air content in the product. 

The two variables, in fact, were positively correlated (r=0.58, p<0.05): a higher specific volume 

corresponded to a brighter crumb in the cake. Olein content instead did not significantly affect 

L* values (p>0.05) as well as a* and b*, which showed no significant models due to the similar 

colours of the two blended oils. 

Selected samples among the runs of the experimental design are shown in Fig. 3.4. 
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Figure 3.4. Selected samples of CCD runs: five baked cakes (left) and central slice of the cake 

(right). 

 

 

Fat 27%, olein 85% 

 

Fat 9%, olein 85% 

 

Optimized formulation 

 

Anhydrous butter 

 

Butter 
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In Table 3.5 values of some selected responses for butter (BC), anhydrous butter (ABC) and the 

average of the five central points are reported, all produced with 18% fat content. A different 

behaviour among the three samples is shown, especially for moisture and texture: butter cake 

was significantly (p<0.05) softer and moister than the other two samples, which showed similar 

load and water content both in slice and crumb. This is related to differences in batter moisture 

(Table 3.1), since butter, containing 18% water, adds around 3% moisture to batter. Cakes 

produced using anhydrous butter had the lowest specific volume and a high load, in accordance 

with findings of NorAini et al. (1996), who showed that butterfat had the worse performance in 

terms of cake softness, when comparing cakes produced with 100% palm oil or butterfat or 

blends of the two fats. 

3.2.3. Optimization of cake formulation 

One of the main purposes of response surface methodology is to find the optimum conditions 

for a process to obtain the desired responses (Kahyaoglu & Kaya, 2006). In order to identify a 

cake formulation optimized for texture and volume characteristics, a desirability function was 

constructed. This function reaches a maximum value of 1 when the aims set for the chosen 

variables are fully achieved. Cake optimization was based on both minimization of load at 25% 

strain and achievement of a specific volume similar to that obtained with butter reference 

recipe. To the two variables, both significant for cake performances, was given the same 

importance because they were both representative of a baked product quality, two of the major 

quality indexes of a baked product. A linear desirability function (weight=1) was chosen.  

The highest desirability corresponded to an optimized formulation (OF) containing 19.7% fat in 

the batter and 92% olein in the fat blend (SMP = 11°C), with a predicted value of specific 

volume and load at 25% strain of 2.23 cm3/g and 7.09 N, respectively. The desirability function 

reached a value of 0.87 (Fig. 3.5), which is quite good considering that the constraints for the 

two variables headed for opposite directions, while the trends of the two surfaces as a function 

of fat quantity were similar (Fig. 3.3).  

 

 
 

Figure 3.5. Desirability function contour plot (left) and 3D representation (right). 
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The OF was experimentally tested twice, obtaining specific volume and load at 25% strain 

values of 2.25±0.03 cm3/g and 7.68±0.27 N, respectively. The validation values were fairly 

consistent with those predicted, showing a full correspondence for specific volume and a minor 

discrepancy for load at 25% strain. Comparing the values of OF with those of BC reported in 

Table 3.5, cakes showed the same volume, as desired, but OF cake had a higher consistency 

(p<0.05), due to the lower batter moisture content (21.7% vs 25.7% of butter) as calculated on 

the basis of water content of ingredients. Comparing OF with ABC, optimized cakes were more 

developed in volume (p<0.05) although with a similar consistency, in spite of the slightly 

higher fat content of OF cake that could have negatively affected cake volume. The different 

SMP could have played a role in the specific volume difference, being SMP of OF blend 11°C 

and that of anhydrous butter 33°C. However, this finding is not consistent with previous reports 

(Podmore, 2002; Stauffer, 1996) indicating that a minimum content of crystalline fat at the 

working temperature is required to develop a well aerated structure (at least 5%, according to 

Podmore, 2002).  

To further investigate this point, Fig. 3.6 presents SFC values of the different fats used; butter 

(B) and anhydrous butter (AB) have the same profile because B is dehydrated before the 

analysis. Considering a working temperature of 20°C, it is possible to observe SFC values of 

about 25% for PO, 19% for B-AB and 1% for OF, while olein is liquid at temperatures higher 

than 10°C. Consequently, our findings suggest that in a plum cake formulation a well aerated 

structure can be achieved also with a SFC lower than 5%. 

 

 

Figure 3.6. Solid fat content (SFC) of palm olein (PO, !), palm superolein (SO, "), optimized 

formulation blend (OF, #) and butter – anhydrous butter (B-AB, $). 

OF was compared with BC and ABC recipes also in terms of apparent specific gravity of 

batters. This parameter is strictly related to the creaming performance of fat: the lower the 

specific gravity, the higher the air content in the batter (Dogan et al., 2007). BC formulation 
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showed the lowest specific gravity (0.97±0.02) compared to those of OF (1.19±0.02) and ABC 

(1.19±0.03). The better creaming performance of BC is probably related with its physical state, 

i.e. a water in oil emulsion, which helped air incorporation and air bubble stabilisation, thanks 

to the naturally present emulsifiers, represented by the residue of the milk fat globule 

membranes. Furthermore, creaming performances seemed not to be affected by SMP, as shown 

by the similar values found for ABC and OF. However, the different specific volumes of the 

final cakes observed for these two formulations could be ascribed to differences in SMP as well 

as in batter rheology and fat content.   

3.3. Conclusions 

Response surfaces, obtained from the experimental design and representing quadratic and linear 

models, adequately describe the effects of fat quantity and composition on texture and specific 

volume of plum cakes. Fat quantity had a more significant effect on cake characteristics than 

olein content in the fat blend. The increase of fat content enhances plum cake softness while 

lowering the volume; higher olein contents, corresponding to lower slip melting points, also 

improve plum cake texture. No interactions between the two factors have been observed. 

The optimized plum cake formulation showed good structural properties, comparable to those 

of the reference butter cake. These results demonstrate the possibility to replace butter or 

shortening with a vegetable fat blend, thus increasing unsaturated fat content and reducing total 

cholesterol in the final cake. 
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4. Batter properties and cake behaviour during storage of three 

plum cake formulations 

Most bakery products are stored under ambient conditions and marketed as fresh; consequently, 

considerable research has focused on studying their shelf-life and the influence of ingredients 

on quality characteristics (Heenan et al., 2010). The stability of cakes during storage can be 

defined as the maintenance of the physical and sensorial characteristics associated with 

freshness, such as softness, compressibility and humidity, with minimal alterations associated 

with staling (Gòmez et al., 2010). In fact, two products that result similar few hours from 

production, may have very different behaviour during shelf-life. This may be due to storing 

conditions but also to ingredients and/or process used, which at the same time influence 

dough/batter characteristics. In particular, rheological properties of the batter can be correlated 

with the characteristics of the baked cake, such as volume and texture (Sakiyan et al., 2004). 

Cake batter is a complex fat-in-water emulsion, composed of air bubbles as the discontinuous 

phase and of an egg-sugar-water-fat mixture as the continuous phase, in which flour particles 

are dispersed (Kocer et al., 2007). Fats contribute to the soft and tender eating properties 

required for cakes; this benefit comes, on one side, from the effect on batter aeration and, on the 

other side, from the lubricating effect that fat has in the mouth (Dogan et al., 2007). In general, 

bakery products contain plastic fats, which vary in consistency according to their temperature, 

melting point and proportion of liquid oil within the network of solid fat crystals; these factors 

greatly influence properties like structure, consistency, mouthfeel and shelf life of the products 

(Daglioglu et al., 2004). Moreover, fats may eventually decompose, rising unpleasant (rancid) 

flavours through the process of oxidation. Long storage times may be involved between 

preparation and consumption of the foodstuff (Daglioglu et al., 2004); consequently, properties 

and functions of the selected bakery fat are of major importance for the total quality of the 

finished product (Manley, 1991). 

In this part of the research, rheological characteristics of three fats -and their corresponding 

batters- were studied, searching for a possible relationship with the performances of baked 

products. Furthermore, cakes underwent a storage study in order to monitor changes in 

moisture, primary oxidation products (hydroperoxides) and texture characteristics, as these are 

markers for baked products quality. 

4.1. Materials and Methods 

4.1.1. Materials and cake preparation 

Raw materials used for cakes production were the same used for the DoE runs and previously 

described in § 3.1.1. The three formulations produced were BC, ABC and OF, prepared as 

reported in § 3.1.1, using respectively butter, anhydrous butter and the optimized fat blend. 

Anhydrous butter and the optimized fat blend were crystallized as reported in § 3.1.2. 

Chemicals used for Peroxide Value analysis (chloroform, glacial acetic acid, potassium iodide, 

starch) were purchased from Sigma-Aldrich (Sigma-Aldrich Co., Saint Louis, MO, USA).  

4.1.2. Rheological determinations 

Viscosity measurements are commonly used to monitor changes in fat rheology due to 

crystallisation, but the application of shear can destroy some of the delicate interactions present 

in fat systems; consequently a controlled stress rheometer was used for the present studies, as 

suggested by Bell et al. (2007). The choice of a plate-plate geometry was made also referring to 

Lupi et al. (2011).  
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Fat and batter rheological behaviour was evaluated using a Physica MCR 300 rheometer (Anton 

Paar, Graz, Austria), supported by Rheoplus/32 software (v3.00, Physica Messtechnik GmbH, 

Ostfildern, Germany), and equipped with a plate-plate geometry (d=25 mm, rough surface for 

batter analyses; d=50 mm, plain surface for fat analyses), gapped to 1 mm. All tests were run at 

least in duplicate. 

For fats, temperature sweep (TS) tests, simulating the temperature profile of crystallization 

(70°C to 0°C for O, 70°C to 15°C for AB; cooling rate, 2.5°C/min) were performed, applying a 

strain (!) of 0.1% and an oscillation frequency (f) of 1 Hz. Frequency sweep (FS) tests were 

performed at 25°C, with !=0.1% and f=0.01-100 Hz. These tests conditions were within the 

linear viscoelastic range, previously determined by strain sweep (SS) tests carried out at 25°C, 

with !=0.01-100% and f=1 Hz. 

For batters, TS tests (25°C to 70°C; heating rate, 2.5°C/min) were performed with !=0.01% and 

f=1 Hz. FS tests were performed at 25°C and 60°C, with !=0.01% and f=0.01-100 Hz. The test 

conditions were within the linear viscoelastic range, previously determined by SS tests 

performed at both 25°C and 60°C, with !=0.001-100% and f=1 Hz. The exposed edges of the 

sample were covered with a thin layer of paraffin oil to prevent dehydration during 

measurements.  

In both fats and batters characterization, the following parameters were registered: storage 

modulus (G', Pa), representing the elastic component of the sample; loss modulus (G'', Pa), 

representing the viscous component of the sample; complex modulus (G*, Pa), defined as the 

ratio of the shear stress to the applied deformation, measuring the overall resistance to 

deformation of the material; complex viscosity (!*, Pa·s), the frequency-dependent viscosity 

obtained from the ratio between G* and angular frequency. 

4.1.3. Cake storage 

The three cake formulations were monitored during storage. After baking, samples were cooled 

down for two hours at room temperature; cakes were then packed and sealed in oriented poly-

propylene (OPP) bags, previously sprayed inside with ethanol, in order to prevent microbial 

growth. Packaging material was chosen for its good moisture barrier properties and for 

screening out light, due to the white-pearly appearance. Packed cakes were stored at 25°C for 

35 days; PV and texture analysis were performed on 0 - 2 - 5 - 7 -10 -14 - 21 - 28 - 35 days 

from production. 

PV was measured following the EU method for olive oil (Reg. CE 2568/91, 1991). Fat was 

extracted by milling two slices of cake using a rotating blade mixer; 12 g of the milled cake (in 

duplicate) were weighed, 100 mL chloroform was added and the suspension was stirred for 45 

min. The chloroformic extract was then filtered with Whatman filter paper n.4 (Whatman Int. 

Ltd, UK). Fat content was measured by evaporating 20 mL of extract; another 20 mL of extract 

were sampled and subjected to PV analysis. 

Texture measurements were performed as reported in § 3.1.6. 

4.1.4. Statistical analyses 

In order to determine the significant difference among samples, the one way analysis of 

variance (ANOVA) was carried out, followed by Fisher's Least Significant Different (LSD) test 

in order to discriminate samples. Data was elaborated using the Statgraphics Plus 5.1 (Statistical 

Graphics Corp., 1994-2001, Princeton, NJ, USA). 
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4.2. Results and Discussion 

4.2.1. Rheological determinations 

Fats 

In the FS tests, carried out at 25°C, the three fat samples showed storage modulus values higher 

than those of loss modulus; only for O a clear dependence of G' and G'' from frequency was 

observed, with both moduli increasing with the increasing of frequency (Fig. 4.1). G' and G'' 

values for O blend were substantially lower than the values of B and AB, due to its lowest SMP. 

 

 

Figure 4.1. G’ and G’’ values in Frequency Sweep test for B, AB and O fats at 25°C.  

Observing the TS curves of AB and O fats (Fig. 4.2), an expected and similar slow increase of 

moduli with the decrease of temperature could be noticed. At temperatures around 45°C, a first 

crossover could be observed for both samples, with G'' exceeding G'. A clear crossover of G' 

and G'', indicating the initial solidification of the fat, was also observed around 21°C for AB 

only.  
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Figure 4.2. G’ and G’’ values in Temperature Sweep test for AB and O fats. 

A steep increase of both storage and loss modulus corresponds to the solidification of the fat. 

As De Graef et al. (2006) observed, the primary crystallization process can also be followed by 

means of viscosity changes as a function of time (or temperature), as shown in Fig. 4.3. With 

the formation and growth of crystals, in fact, the viscosity increases almost linearly with the 

amount of crystals in the suspension until it reaches a thermodynamic equilibrium (De Graef et 

al., 2006). Furthermore, the crystallization phenomenon was observed at higher temperatures 

than the SMP previously measured (§ 3.2.1). This is in accordance with the data reported by 

Pyler (1988), indicating that the solidification point of a fat does not coincide with its melting 

point, but is normally considerably lower; in our case, the gap between the two temperatures 

was about 10°C for AB sample. 
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Figure 4.3. Complex viscosity values in Temperature Sweep test for AB and O fats. 

Batters 

Chesterton et al. (2011) highlighted that inclusion of air - a key aspect of batter preparation - not 

only determines the structure of the baked product but also affects batter rheology, which 

governs the expansion of the material before the continuous phase sets during baking. Sanz et 

al. (2008) reported that a muffin with a higher number of air bubbles in the batter corresponded 

to better baking performances. A clear influence of the fat type on batter structural 

characteristics has been in fact demonstrated in the studied formulations, even if rheological 

behaviour of batters did not always reflect differences evidenced among baked cakes (Sanz et 

al., 2008). 

The mechanical spectra of the three samples, measured at 25°C (Fig. 4.4) and at 60°C (data not 

shown), presented a similar trend, but with definitely lower values for OF. All the batters 

showed a solid-like behaviour, with the elastic modulus higher than the viscous modulus. In 

order to simulate structural changes in cakes during the first stages of baking, TS tests from 25 

to 70°C were done. Unfortunately, it was not possible to study temperature values higher than 

70°C, thus the real structure modifications due to cooking were not observed. A steep decrease 

of the complex viscosity (Fig. 4.5) with the increase in temperature was observed for BC and 

ABC batters, mainly due to the fat melting. The viscosity decrease was, in fact, definitely less 

evident for OF batter, in which the fat is already liquid at room temperature. Moreover, 

observing FS curves, the highest G' and complex viscosity values were found for BC, which 

also resulted in a more aerated batter (BC had the lowest specific gravity, as reported in § 3.2.3) 

and cakes with the lowest hardness and a high specific volume (§ 3.2.2). Thus, it seemed that 

the more structured batter helped in the retention of air in cakes, confirming previous findings 

reported by Kalinga and Mishra (2009). Moreover, Sanz et al. (2008) showed that the increase 

in batter viscosity and elasticity contributed to higher bubble stability before and during baking, 

since lower batter viscosity during heating has been associated with a decrease in the end 

product volume. On the contrary, a highly viscous batter would then give a greater capacity to 

retain the expanding air nuclei during heating and to prevent coalescence before the batter sets 
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(Sanz et al., 2008). Nevertheless, for the other two samples (ABC and OF) no clear relation 

between viscoelastic properties of batter and baked product characteristics could be found. 

Regarding viscosity changes in FS tests, Sakiyan et al. (2004) found a shear thinning behaviour 

in cake batters, confirming the behaviour of BC, ABC and OF samples, shown in Fig. 4.6: 

complex viscosity, in fact, decreases with increasing frequency. 

 

 

Figure 4.4. G’ and G’’ values in Frequency Sweep test for BC, ABC and OF batters at 25°C.  
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Figure 4.5. Complex viscosity values in Temperature Sweep test for BC, ABC and OF batters. 

 

Figure 4.6. Complex viscosity values in Frequency Sweep test for BC, ABC and OF batters at 

25°C. 
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4.2.2. Cake storage  

The increasing trend of cake hardness during the 50 days of storage was similar for the three 

formulations; in particular, after 8 days of storage, load values almost tripled (Fig. 4.7). The 

increasing in hardness can be only partially explained by the variations in moisture, which 

decreased both in crumb and in the whole slice (Fig. 4.8). In fact, hardness increase was much 

faster than water loss to indicate that starch retrogradation phenomena were certainly involved, 

especially in the first 10 days of storage. 

 

 

Figure 4.7. Load at 25% strain values in compression test of cakes during storage at 25°C. 

Moisture decrease (Fig. 4.8) showed a similar trend for OF, BC and ABC, indicating that water 

loss is not influenced by the type of fat used. The different moisture values of the three 

formulations at the beginning of storage were due to a different moisture content in cake 

formulations. Observing moisture loss for crumb and slice, for every sample there was an initial 

discrepancy (around 4%) between the two values, being the internal part of the cake moister and 

indicating the uneven distribution of water across the slice, typical for baked products. As long 

as storage went further, the slice and crumb moisture tended to merge to the same value, due to 

water migration from crumb to the external region of the cake; the equilibrium was reached 

after 20 days of storage. After this time, another 15 days were required to gain a stable moisture 

content in the samples. 
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Figure 4.8. Slice and crumb moisture values of cakes during storage at 25°C. 

 

Figure 4.9. Peroxide value of cakes during storage at 25°C. 

Observing the oxidation index (PV), OF resulted more stable to oxidation (although starting 

from a higher PV); BC and ABC showed similar trends, with a steady increase in the first 2 

days of storage (Fig. 4.9). ABC sample was characterized by the lowest Peroxide Values. 
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4.3. Conclusions 

Batter viscoelastic behaviour was influenced by the fat type used, with more structured batters 

corresponding to fats with a higher elastic component. Moreover, creaming performances were 

related to batter characteristics, even if rheological behaviour of batters did not always reflect 

differences evidenced among baked cakes.  

A higher content of unsaturated fatty acids, such as in the optimized formulation, resulted to be 

positive for baking performances, if adequately balanced in the formulation. In fact, structural 

properties of optimized cake were not significantly different from butter reference, revealing in 

the meantime the best oxidation stability and a healthier nutritional profile. In general, 

regarding texture and moisture changes, the type of fat did not influence staling and drying 

phenomena. 
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