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Abstract

This thesis is about location and routing problems. We propose a unified algorithmic

approach, based on the branch-and-cut-and-price paradigm, for the exact solution of general

location and routing problems involving both costs and profits. In particular three different

types of NP -hard problems are taken into account: the first is an extension, arising in the

context of waste collection management, of the well studied Vehicle Routing Problem. The

second is based on the Multi-Depot Vehicle Routing Problem with profits and has applica-

tions in the exploration of planetary surfaces. The last problem is about the distribution of

drugs in emergency situations. For every problem a detailed description and a mathematical

formulation are given.

The largest part of the thesis is dedicated to the careful explanation of how our method

can be efficiently implemented in every of the problems taken into account. In particular we

propose new algorithmic ideas and several modifications and extensions to many procedures

already presented in the literature. However, all components of our algorithms are fully

presented and analyzed pointing out every methodological and practical issue.

Extensive computational experiments and comparisons are carried out to evaluate the

performance of our approach and the tractability of the problems addressed.
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Chapter 1

Introduction

1.1 Location and Routing Problems

Location and routing are two of the most common words in operations research. In fact,

they represent, from the early 50’s, two of the main and most successful fields of application

of mathematical modeling and combinatorial optimization techniques.

Location problems have a long tradition, their formal origin and the starting point of

what has been later called the location analysis dates back to 1909 when Alfred Weber

published a book titled “Theory of the Location of Industries” [1]. Generally speaking,

location problems usually concern the optimal placement of points within a limited space,

in order to optimize a quantity that is a function of the relationship, e.g. distance, among

points in the same area. A classical application of this concept is the facility location

problem in which a set of potential facility sites, where a facility can be opened, and a

set of demand points that must be serviced are given. The problem requires to find the

optimal placement for the facilities to minimize the sum of the distance from each demand

point to its closest facility (see Love et al. [2] or more recently Farahani and Hekmatfar [3]

and Church and Murray [4]). Several additional requirements and constraints along with

different, more complex, and multiple criteria objective functions (see Farahani et al. [5])

may be taken into account giving birth to a multitude of variations and extensions that arose

during the last 50 years spanning countless contexts and fields of application from classical

supply chain management (see Melo et al. [6]), to health-care (see Gough and McCarthy [7]),

to telecommunication (see Yaman [8]) passing by the optimization of maritime hub locations

(see Takano [9]). Other notable location problems are the p-median problem (see Reese [10]),

4



CHAPTER 1. INTRODUCTION 5

the p-center problem (see Drezner [11]) and the quadratic assignment problem (see Loiola et

al. [12]), they, together with the facility location problem, represent the core problems in the

location area and have been addressed using both heuristics (see Mladenović et al. [13] and

Arya et al. [14]) and exact (see for instance the branch-and-price algorithms proposed by

Klose and Görtz [15] or Ceselli and Righini [16]) methods available in operations research.

Routing problems are instead related to the design of paths, usually referred to as routes,

in a network, often represented by a graph, in order to optimize the circulation among the

network points, frequently called clients. These problems, as well as the location ones, have

a long history, in fact they were already studied, as part of the developing graph theory,

during the 19th century by mathematicians as Sir William Rowan Hamilton and Thomas

Penyngton Kirkman (see the book by Biggs et al. [17]). However, the routing area grew

at a much faster pace after the formalization, in the early 30’s, of what become its most

representative problem that is the Traveling Salesman Problem (TSP, see Schrijver [18] for

the history of the TSP before 1960). Given a collection of cities and the cost of traveling

between each pair of them, the traveling salesman problem requires to find the shortest

possible tour that visits each city exactly once and returns to the starting point. From this

simple definition originated one of the most famous, important and well studied problem

in the whole operations research, we refer the interested reader to the book by Applegate

et al. [19] for a detailed analysis of the TSP and to the book by Gutin and Punnen [20] for

its variations. The routing problems reached a new level after the formalization, proposed

by Dantzig and Ramser in 1959 (see [21]), of the Vehicle Routing Problem (VRP). This is

a generalization of the TSP in which, on the same network, multiple actors are taken into

account and a tour for each of them has to be designed. A book by Toth and Vigo [22] and

more recently another book by Golden et al. [23] offer a detailed description of the problem

including several variations and the most common and successful solving approaches. A pe-

culiar and interesting extension of both the TSP and the VRP are the routing problem with

profits (see Feillet [24] and Vansteenwegen [25]). In this case the problems do not require

all clients in the network to be reached, instead profits are associated with every client and

they are collected when clients are visited. The objective function is consequently switched

from the minimization of the traveling costs to the maximization of the collected profits. All

these routing problems and their extensions have many applications from the most obvious

in the transportation field (see for instance Serna and Bonrostro [26], Cordeau [27]) and

supply chain management (see Rajmohan and Shahabudeen [28]) to waste management (see
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Santos et al. [29]) and health-care (see Savelsbergh et al. [30]). Solution approaches, as for

the location problems, are the most different and goes from the heuristic ones, we refer to

a paper by Pisinger and Ropke [31] for a general heuristic algorithm and to a survey by

Bräysy and Gendreau [32] for metaheuristic approaches, to the exact ones (see Liong [33])

among which the column generation based algorithms seem to be the most effective (see for

instance Baldacci et al. [34] and Ceselli et al. [35]).

Although location and routing represent two distinct and well defined fields in operations

research, in real life the problems involve, most of the time, both aspects simultaneously.

In fact, when designing, for instance, a distribution system, the selection of the optimal

location for the warehouses influence the design of the routes traveled by the vehicles to

deliver the goods, a the same time the optimization of the routes can influence the place-

ment of the warehouses as it may be convenient to place them in particular locations due

to the availability of especially cheap routes starting from that places. Problems like this,

in which both location and routing aspects are involved, are usually referred to as Location

and Routing Problems (LRP). Although the need for taking into account the routes when

selecting the location for the facilities was already considered starting from the early 60’s

(see Maranzana [36]) and has been frequently remarked during the years (see for instance

Salhi and Rand [37]), LRP are often addressed in a hierarchical way. We refer the inter-

esting reader to the survey by Nagy and Salhi [38] for a discussion about the motivation

behind this hierarchical approach. In particular, locations decisions are usually perceived

as strategic ones, taken once for all and not modifiable while routing choices are considered

as tactical decisions that are subject to changes and can be daily re-arranged. This tradi-

tional viewpoint had been suited to deal with very classical location-routing problem as the

Round-Trip Location Problem (see Chan and Hearn [39] for the rectilinear distance version

or Laporte and Norbert [40] for its general version) when no exact algorithmic approaches

were available for the exact solution of more general LRP. However, the progress in the

optimization science makes today possible to tackle such problems in their wholeness. Fur-

thermore, the traditional hierarchical view does not fit in many problems where no clear

priority exists between the location and the routing aspects. This may be the case when

setting up one-time distribution/collection systems in which routes and depots share the

same lifespan. In fact, in these scenarios clients are visited only once and depots become

useless after all clients in their area are served. In addition, speaking in general terms,

since a LRP involves two distinct components whose behavior is mutually dependent an
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exact optimal solution of the complete problem cannot be obtained without considering

both aspects at the same time, indeed if location decisions are taken independently from

the routes the best solution of the combined problem may be dropped.

Moreover, as already pointed out in the survey by Nagy and Salhi [38], the vast majority

of the LRP in literature are only concerned about the minimization of the costs, while real-

life objective functions involve both costs and profits.

For all these reasons in this thesis we present exact methods that are able to deal with

general LRP taking into account both location and routing with both costs and profits at

the same time, allowing the possibility for the clients to be skipped. In the reminder of this

Chapter we delve into the nature of the LRP, give a general description of our approach

and point out the innovative aspects.

1.2 The relationship between Location and Routing

The optimization problems taken into account in this thesis combine routing and location

features with both costs and profits in order to model complex logistic system. Different

levels of interaction and combination between these two aspects may lead to various kinds

of problems; in particular in this thesis we focus on three types of problems with increasing

relative importance of the location decisions over the routing ones. In the remainder of

this Section we give a brief description of these three typologies by means of very general

mathematical models.

1.2.1 No Location Decisions

The first type of problem we addressed is characterized by the lack of location decisions.

In this case the focus is totally on the routing part since the problem involves only a single

depot located in a fixed position (see Figure 1.1). Typical examples are the VRP and several

of its variations. The following model (1.1-1.4) describes a standard routing problem with

profits in which, given a set of clients N and a fixed location for the depot, we aim at the

maximization of the profits (pr) collected along the K routes that can be used to reach the

clients. Only two types of variables are used: si with i ∈ N and zr with r ∈ Ω, where Ω

is the set of all possible routes in the problem. The former variables are used to model the

possibility to avoid clients when they are not perceived as useful while the latter represent

the routes. Thus, on the one hand each si assumes value 1 when the client i is skipped
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and 0 if it is visited, on the other hand each zr takes value 1 if the route r ∈ Ω is used

in the solution and 0 otherwise. Two families of constraints are needed to describe the

requirements of the problem: partitioning constraints (1.2), in which air is equal to 1 if the

client i is visited by the route r and 0 otherwise, imposing that no client is visited more

than once and inequalities (1.3) putting an upper bound on the total number of routes that

can be used.

This simple general formulation allows for the inclusion of many additional constraints

modeling more complex situations arising in real problems and represents the starting point

of our analysis.

max
∑

r∈Ω

przr (1.1)

s.t. si +
∑

r∈Ω

airzr = 1 ∀i ∈ N (1.2)

∑

r∈Ω

zr ≤ K (1.3)

si ∈ {0, 1} ∀i ∈ N

zr ∈ {0, 1} ∀r ∈ Ω (1.4)

In Chapter 2 we consider an optimization problem of this type arising in the context of

waste collection management and called Vehicle Routing Problems with Different Service

Constraints (VRPDSC). It is an extension of the VRP and takes into account several ad-

ditional constraints. This problem, first presented by Macedo et al. [41], does not involve

any location choice and is not a problem with profits since its objective function calls for

the minimization of the total service costs, nonetheless, due to its peculiar requirements, it

allows for the skipping of the clients.

1.2.2 Passive Location Decisions

The second type of problems we considered brings in the first real location components

and indeed it involves a set of potential locations L among which facilities, that represent

the starting points of the routes, can be placed (see Figure 1.2). The introduction of

multiple candidate locations for the facilities triggers a modification in the model. In fact,
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Figure 1.1: No locations

new variables are needed to model location choices, in particular we use variables yl with

l ∈ L that take value 1 if a facility is opened in location l ∈ L and zero if the location

is unused. Since the design of the routes depends on their starting point the set Ω has

to be split in subsets Ωl, one for every potential facility location l ∈ L, identifying sets of

routes starting from the same location. This separation is also reflected in the constraints

that limit the number of routes. Indeed, since different locations can be characterized by

different limitations, an inequality (1.3) has to be considered for every used location as

modeled by the following constraints:

∑

r∈Ωl

zr ≤ Klyl ∀l ∈ L (1.5)

where Kl represents an upper bound on the total number of routes departing from location

l.

Moreover, additional constraints are needed in order to model situation in which the

availability of resources needed to build the facilities is restricted. Indicating with M the

total number of facilities that can be opened, this limitation can be formally stated with
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the introduction of the following inequality:

∑

l∈L

yl ≤M (1.6)

Taking into consideration all changes and additions required when multiple candidate

locations for the facilities are considered, the model of this second type of problems is the

following.

max
∑

l∈L

∑

r∈Ωl

przr (1.7)

s.t. si +
∑

l∈L

∑

r∈Ωl

airzr = 1 ∀i ∈ N

∑

r∈Ωl

zr ≤ Klyl ∀l ∈ L

∑

l∈L

yl ≤M

si ∈ {0, 1} ∀i ∈ N

yl ∈ {0, 1} ∀l ∈ L

zr ∈ {0, 1} ∀l ∈ L,∀r ∈ Ωl

We have described the influence of the location decisions in this problem as passive

because they do not give a direct contribution to the value of the objective function, indeed

there is no yl variable in (1.7) as they do not have any control over the nature of the

distribution system.

An example of this type of problem is the multi-depot VRP with profits in which, left

out possible fixed costs for opening the depots, the value of the objective function depends

only on the routes employed. At the same time, the design of the routes may depend on

the placement of the depots.

This type of problems represent the classical mix of location and routing features that

can be found in several academic and practical problems.

In Chapter 3 we tackle a location and routing problem called Generalized Location

Routing Problem with Profits (GLRPP) introduced by Ahn et al. [42] and applied to the
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Figure 1.2: Passive locations

exploration of planetary surfaces. It fits into the description of the typical “Passive Lo-

cations Decisions” problem and in fact it represents an extension of the multi-depot VRP

with profits. In particular, in this problem a new level of choice, due to the need of taking

into account different strategies and limitations in building the routes, is considered.

1.2.3 Active Location

The last kind of problem taken into account (see Figure 1.3) brings in an additional degree

of freedom. In this case location decisions have a more active impact on the structure of

the problem and indeed they consist not only in choosing which places have to be opened

but also, for every place used, in selecting which distribution strategy to employ. In fact,

in this problem multiple distribution methods (two in the model (1.8-1.13)) are available

and can be mixed together in order to maximize, as stated in the objective function (1.8),

the total value of the collected profits. Every distribution strategy may be characterized

by different limitations and employs a different method for reaching a subset of customers:

routes, self-service points, direct delivery etc.

Each distribution method is modeled with a different variable. In particular, in the

formulation (1.8-1.13), the variables zr, with r ∈ Ω, and yw, with w ∈ Θ, identify clusters
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of clients served by the two different distribution strategies. The sets Ω and Θ, containing

all the possible clusters of clients served with respectively the first and the second strategy,

can be split in subsets Ωl and Θl one for every location l ∈ L to identify only clusters

originating from location l.

Several modifications are needed in the model in order to handle the inclusion of multiple

distribution strategies. Variables yw with binary coefficients biw, taking value 1 if the client

i belongs to cluster w and 0 otherwise, have to be added to the partitioning constraints (1.9)

to model a situation where a client can be either reached with only a distribution method

or is not served. Limitations on the total number of facilities that can be opened at the

same time are now separated for every kind of distribution system as stated in inequalities

(1.11) and (1.12) the former dealing with variables zr while the latter consider only variables

yw . Finally, constraints (1.10) are used to link together the two delivery strategies and

to prevent a location from being used by both distribution methods at the same time. In

particular, these constraints impose that, on the one hand if delivery strategy associated

with variables zr is employed at location l then at most T clusters of clients can be served

starting from that location, on the other hand if, in l, the strategy associated with variables

yw is used then only a single cluster of client can be served.

This formulation describes a Generalized Location and Distribution Problem (GLDP)

which, to the best of our knowledge, is a new optimization problem. It pushes the complexity

of the classical LRP one step forward allowing the design of more elaborated and realistic

distribution networks.
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Figure 1.3: Active locations

max
∑

l∈L

∑

r∈Ωl

przr +
∑

l∈L

∑

w∈Θl

pwyw (1.8)

s.t. si +
∑

l∈L

∑

r∈Ωl

airzr +
∑

l∈L

∑

w∈Θl

biwyw = 1 ∀i ∈ N (1.9)

∑

r∈Ωl

zr +
∑

w∈Θl

Tyw ≤ T ∀l ∈ L (1.10)

∑

l∈L

∑

r∈Ωl

zr ≤ K (1.11)

∑

l∈L

∑

w∈Θl

yw ≤M (1.12)

si ∈ {0, 1} ∀i ∈ N

yw ∈ {0, 1} ∀l ∈ L,∀w ∈ Θl

zp ∈ {0, 1} ∀l ∈ L,∀p ∈ Ωl (1.13)

In Chapter 4 we propose a problem, belonging to the “Active Location Decisions” type,

arising in the context of drugs distribution in case of emergency. We took the basic idea

behind this problem from a paper by Shen et al. [43]. However we elaborated the problem



CHAPTER 1. INTRODUCTION 14

adding several requirements and the possibility to employ a new distribution system that

can be combined with the classical VRP-like delivery method to describe a more diverse

logistic system.

1.3 Our Unified Approach

For the solution of the three types of problems previously identified we propose a unified

approach based on the branch-and-cut-and-price paradigm (see Ladányi et al. [44]). The

branch-and-cut-and-price is an algorithmic framework that represents the most advanced

technique available today to solve Mixed Integer Programs (MIP) like the ones coming

from the mathematical formulations for the three proposed families of problems. The idea

behind branch-and-cut-and-price algorithms is to consider only a small subset of variables

describing the problem and to iteratively enlarge this set introducing step by step only

useful variables. This method is then embedded in a classical branch and bound scheme

(see Balas and Toth [45]) in order to ensure that the optimal integer solution is found.

Moreover, to improve the bounds additional valid inequalities are dynamically generated

during the process (see Mitchell [46] and Balas et al. [47]). An overview of a general branch-

and-cut-and-price algorithm is reported in Figure 1.4.

Such a complex algorithm is composed by several different components that in the case

of our unified approach are the following:

Pricing algorithms: they are procedures used to dynamically introduce the variables

into the problem. In our approach we implemented a multiple pricing technique

consisting in using several different pricers at the same time. They may be either

heuristic or exact algorithms, however since our approach aims at finding the optimal

solution for the problem it always includes at least one exact pricing procedure.

Cuts generators: they represent algorithmic routines to find violated inequalities that

can be added to the problem in order to accelerate the convergence of the algorithm

and to possibly limit the size of the branching tree.

Primal heuristic algorithms: they are sub-optimal methods employed in order to early

find good feasible integer solutions during the execution of the branch-and-cut-and-

price algorithm.
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Stabilization method: it is an algorithmic procedure employed in order to mitigate the

possible convergence issues of the branch-and-cut-and-price algorithm.

Branching Strategies: they represent the policies followed to build and visit the search

tree used in order to ensure the integrality of the optimal solution.

To demonstrate the effectiveness of our approach we have selected three real problems,

one for each type of problem identified in the previous section, that are solved within our

framework in an uniform way.

1.4 Original Contribution

In this thesis we present a general framework for solving problems involving location and

routing aspects and considering costs and profits through the possibility to leave customers

uncovered. Our contributions can be divided into modeling, methodological and practical

ones.

From the modeling point of view our contribution lies in the analysis of the relationship

between the two aspects of the location and routing problems. We started from problems

that do not involve location features and we gradually introduced location components

showing, by means of mathematical formulations, how they impact on the structure of the

problems. Three main types of problems have been identified, each one represents a general

scheme from which many different problems can be derived adding new requirements and

limitations.

Moving to the methodological contributions we have defined a unified approach to ad-

dress LRP with costs and profits. Our approach is based on the branch-and-cut-and-price

framework, it is able to take both location and routing aspects into account at the same time

and presents an original way, especially suited for being used in conjunction with algorithms

based on column generation, to deal with the possibility to avoid clients. The approach we

present is made up of several algorithmic components some of them are new versions of

the ones already presented in the literature that we modified, extended and improved to

efficiently work in new contexts. Other components represent entirely new algorithms and

define new procedures that can be adapted to other, completely different, problems. In

particular, on the one hand the greedy and the dynamic programming pricing procedures
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Figure 1.4: The outline of a branch-and-cut-and-price algorithm
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required very extensive and non-trivial modifications to properly handle all additional con-

straints and peculiar requirements of every problem. The tabu search pricer on the other

hand is characterized by a completely new initialization phase which is complemented with

a primal heuristic procedure looking for feasible solutions during the pricing stage. Cut

generation procedures are mainly new since we borrowed valid inequalities presented in lit-

erature for classical routing problems and we translated in the context of LRP with profits.

Subset-row inequalities and 2-path cuts were adapted in order to work when multiple de-

pots and multiple distribution strategies are available; in particular, separation procedures

have to be totally redesigned. In addition, we presented the consistency cuts: they are new

inequalities, whose structure is general enough to fit into the description of many LRP, that

have never been used in conjunction with column generation algorithms and that required

the design of a custom data-structure to keep a high level of efficiency in the computation.

The introduction of the consistency cuts triggers a modification in the very nature of the

branch-and-cut-and-price paradigm mixing together the pricing and the cutting phase and

leading to the definition of simultaneous column and row generation algorithms.

The idea behind the stabilization method employed in our approach comes from the

literature, however this thesis represents the first attempt to use this stabilization strategy

in complex problems and provides extensive details of its implementations.

Going into the analysis of our contribution problem by problem a few things are worth

mentioning: for the Vehicle Routing Problems with Different Service Constraints we provide

the first algorithmic approach able to take properly into account all the requirements of the

problem. In fact, despite the problem was already presented in literature the algorithms

proposed for its exact solution do not consider all its constraints. About the Generalized

Location Routing Problem with Profits, our approach is the first exact procedure for this

problem and introduces the use of a new type of cuts. Finally the Generalized Location and

Distribution Problem is a completely new location and routing, or more properly location

and distribution, problem that generalized the classical concepts behind the LRP and mixes

different delivery strategies on the same level. In this case our approach represents the first

and only exact algorithm for this new problem.

From a more practical point of view this thesis demonstrates the possibility to handle

general LRP using a unified framework. Such problems describe more realistic scenarios

compared to the ones in which only a single aspect is considered and consequently meth-

ods able to solve them properly are more suited to be implemented in real life application.
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In particular in the case of the GLRPP arising in the context of planetary surface explo-

ration we took into account a lot of additional constraints and we had to deal with very

large instances that may be well representative of the real underlying problem. However

an extensive campaign of tests has been performed for all problems and, if possible, our

results were compared with the state of the art showing that our general approach remains

competitive even against algorithms especially designed for a single specific problem.

1.5 Outline

In the following three chapters of this thesis we carefully present the three problems taken

into account, Chapter 2 is dedicated to the VRPDSC, the GLRPP is addressed in Chapter

3 while in Chapter 4 we presented the GLDP and its application in the context of drug

distribution in case of emergency. In details, in each chapter we give a description and

a complete mathematical formulation for every problem then we explain how our branch-

and-cut-and-price approach can be applied to the specific problem, what components are

used and which modifications they may require pointing out possible implementation issues.

Then we report the results obtained during the experimental campaigns and our conclusions.

Finally in Chapter 5 we draw a few final remarks and general conclusions.



Chapter 2

Waste Collection

2.1 Introduction

The world population has increased in the last 10 years by almost one billion people growing

at steady pace of about 1.1% every year. In particular the total number of living humans

on Earth went form six billions in 1999 [48] to almost seven billions at the end of 2011 [49].

The last century has seen an extremely fast increase in the population (see Figure 2.1)

mainly due to the advancements achieved in medicine and agricultural productivity. If the

world is able to sustain this growing rate the world population is going to reach about nine

billions by the end of 2040 [50].

Figure 2.1: World Population Growth

19
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Together with the unprecedented population growth after World War II the world as-

sisted to the migration of people from rural areas to the cities and nowadays it is estimated

than almost half of the total world population lives in urban areas as, for instance, in Japan

where the metropolitan area of Tokyo counts about 35 millions people and represents more

than one third of the entire country population.

Figure 2.2: Percentage of Population Living in Urban Areas

These two factors make clear the reason why one of the wold main concern in the last

couple of decades is the wast management. Urban areas are the zones where the largest

amount of waste is generated and require an efficient system for the garbage collection and

disposal. Maintaining a good waste management system is a difficult and very expensive

task (e.g. the solid waste management services budget for the city of Toronto in 2011

totals 342.631 million dollars [51]) that, especially today, goes badly along with the lower

and lower budgets available in highly interconnected, rapidly and irregularly growing urban

areas that characterized many of the metropolis in the world. In fact, this problem is

particularly significant in the western European countries where, despite a lot of successful

education and awareness campaigns, the annual production of solid waste exceeds 550kg

per capita [52]. In this case a careful and effective waste management is essential in order

to ensure the necessary service level that may guarantee the population health, that does

not compromise the roads condition and that allows for the reuse and recycle of as much

garbage as possible. Unfortunately, the need of an efficient waste management system

conflicts with the limited resources available to the local administrations that are usually

charged with the garbage removal and disposal. However, when the service quality, due to
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a multiplicity of motives, drops beyond the minimum satisfactory level we may assist to

regrettable situations as what as been called “Naples waste management crisis” that has

afflicted, and partially is still plaguing, one of the most beautiful Italian cities.

In this chapter we focus on the optimization of the routes performed by the vehicles

used for the collection of the garbage in order to both minimize the costs and guarantee an

acceptable level of service.

In Section 2.2 we give a general description of the problem, that is mathematically

formalized, starting from the model introduced by Macedo et al. [41], in Section 2.3. Our

algorithmic approach is presented in Section 2.4. In Section 2.5 we report the computational

results achieved while our conclusions are finally drawn in Section 2.6.

2.2 Problem Description

The problem analyzed in this chapter can be described as follows. There is a company that

has been charged with collecting the waste in a metropolitan area. The company has at his

disposal a depot and a fleet of identical vehicles. Every day the vehicles go out to collect

the contents of the garbage bins spread in the area managed by the company and at the end

of the day they come back, full of waste, to the depot. The public administration, knowing

the average garbage production of that urban area, in order to ensure a constant level of

service, negotiate with the company a minimum amount of garbage to be collected every

day. Moreover, to avoid the concentration of waste in the same place, it sets a minimum

filling level beyond which a bin must be imperatively emptied. At the same time, the

company tries to optimize the cost of the service minimizing the distance traveled by every

vehicle and, in order to manage at best its fleet of vehicles, it imposes that a vehicle cannot

go back to the depot before having collected a minimum quantity of waste.

Therefore, given the described scenario, we would like to design daily plans for the waste

collection such that the following conditions hold:

I The number of vehicles used does not exceed a given limit.

II Every vehicle can only perform a single route collecting waste starting from the depot

and cannot go back to the depot before having collected at least a predefined quantity

of garbage.

III The contents of a garbage bin is collected in a single visit by a single vehicle.
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IV The total amount of waste collected in a day must not be lower than a fixed quantity.

V All garbage bins whose filling level exceeds the value set by the public administration

have to be compulsory emptied.

VI The other bins can be collected if they are needed to fulfill conditions II and IV.

Among all the feasible distribution plans, one that minimizes the total traveling cost is

perceived as an optimal one.

This problem represents a variation of the classical VRP (see [23]) and indeed has been

first described as VRP with Different Service Constraints (VRPDSC) by Macedo et al. [41].

It belongs to the first type of problem we have identified in the introduction (see Chapter

1) in fact it does not involve any location choice since only a single depot is available.

2.3 Mathematical Formulation

Borrowing the notations from Macedo et al. [41], in this section we present an extended

formulation for the VRPDSC that makes use of an exponential number of variables repre-

senting routes performed by vehicles starting and ending at the depot and collecting all the

garbage bins met along the way.

Formally, a complete graph G = (V,A) symbolizing the metropolitan area is given.

Together with a special vertex o representing the starting depot a set of vertexes V indicating

locations where the garbage bins are placed is given; with each of them a value li, indicating

the amount of waste that is contained in it, is associated. A bin is forced to be emptied only

if li ≥Wmax whereWmax is a predefined value. This allows for the splitting of the vertex set

in two subsets N1 = {i ∈ V : li ≥ Wmax} and N2 = {i ∈ V : li < Wmax} being respectively

the set of the mandatory and the optional bins. The set A = {(i, j) : i, j ∈ V} is the arc

set representing the distance to be traveled to go from node i ∈ V to node j ∈ V. With

every arc (i, j) ∈ A a cost cij, function of the traveling time to go from i to j, is associated.

Given a fleet of K identical vehicles with capacity W and a value Lmin representing the

minimum amount of waste that is requested to be collected by each vehicle before coming
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back to the depot, the VRPDSC reads as follows:

min
∑

p∈Ω

cpzp (2.1)

s.t.
∑

p∈Ω

aipzp = 1 ∀i ∈ N1 (2.2)

si+
∑

p∈Ω

aipzp = 1 ∀i ∈ N2 (2.3)

∑

p∈Ω

zp ≤ K (2.4)

∑

p∈Ω

lpzp ≥ L
T
min (2.5)

zp ∈ {0, 1} ∀p ∈ Ω (2.6)

si ∈ {0, 1} ∀i ∈ V (2.7)

In this formulation Ω is the set of all feasible routes that can be done using one vehicle of

the fleet. A route p ∈ Ω is considered feasible if it starts and ends at the depot and the

total amount of waste collected along the route lp does not exceed the capacity W but, at

the same time, is greater than Lmin.

The model makes use of two types of binary variables s and z. The former are called

skip variables and are used to model the possibility for a bin location to be skipped. Indeed

there is one si for every optional bin i ∈ N2 that takes value one if that bin is not collected

and zero otherwise. The latter zp represent the routes, in particular a zp is equal to one if

the route p ∈ Ω belongs to the solution. Moreover, three coefficients are employed in this

model: aip that assumes value 1 if the bin i ∈ V is picked up by the vehicle performing the

route p ∈ Ω, lp indicating the total amount of waste collected during route p ∈ Ω that is

lp =
∑

i∈R(p) li where R(p) is the set of all the bins picked up during route p ∈ Ω. The

last coefficient is cp that represents the traveling cost paid for visiting all nodes belonging

to the route p ∈ Ω, more formally cp is equal to the value of the TSP solution on the graph

derived from node R(p) ∪ o.

The objective function (2.1) of the problem involves only zp variables and aims at the

minimization of the total traveling costs. The first two constraints (2.2) and (2.3) represents

the covering requirements respectively over mandatory and optional bins, in the former no

skip variable is employed and in fact none of the bins i ∈ N1 is avoidable. These two



CHAPTER 2. WASTE COLLECTION 24

constraints formalize the conditions V and VI. Constraints (2.4) model the conditions I

saying that the number of vehicles available is equal to K. Finally the last constraints (2.5)

impose that the total amount of waste collected by all vehicles used must be greater than

a predefined quantity LT
min as stated in condition IV. In Figure 2.3 a visualization of an

instance and a solution for this problem is reported.

Depot

Mandatory Bins, l=2

Optional Bins, l=1

Lmin = 10, LT
min

 = 42

K = 4, W = 12

Figure 2.3: Waste Collection Problem

Additional Inequality. As shown by Macedo et al. [41] dual feasible functions (see

Carvalho et al. [53]) can be exploited to derive valid additional constraints for the problem

that can be useful for improving the dual bound and accelerating the convergence. In

particular for the VRPDSC the following inequality is valid:

∑

p∈Ω

fpzp ≤ (K ·W )− LT
min (2.8)

where fp represents the free space in a vehicle going through route p ∈ Ω.



CHAPTER 2. WASTE COLLECTION 25

2.4 Branch-and-cut-and-price

The algorithm we propose for exactly solving the VRPDSC is based on the branch-and-

price-and-cut paradigm (see Desrosiers and Lübbecke [54]). This methodology starts from

the linear relaxation of the problem, usually called Master Problem (MP), that is obtained

by substituting constraints (2.6) and (2.7) with

0 ≤ zp ≤ 1 ∀p ∈ Ω

0 ≤ si ≤ 1 ∀i ∈ V.

The MP is solved using a technique called Column Generation (CG, see Desaulniers et

al. [55]). Moreover to improve the bounds when the optimal value of the MP is achieved

we look for valid inequalities that can cut out the optimal LP solution and improve the

lower bound. Finally, when neither useful columns nor rows can be added, if the optimal

solution of the MP is fractional branching is performed in order to recover the integrality

and the derived search tree is explored recomputing the lower bound at every node. In this

section we present the main components of our branch-and-cut-and-price algorithm namely:

column generation, pricing, cut generation, branching and stabilization.

2.4.1 Column Generation

The column generation technique proved to be extremely useful in solving huge Linear

Programming (LP) problems (see Barnhart et al. [56]) that is the case for the VRPDSC

which involves an exponential number of variables. The idea behind this method is that

when a LP problem is too large, only a subset of variables can be considered in order to

optimally solve it and in particular only those assuming a value different from zero in the

optimal solution. This result can be achieved starting with a Restricted Master Problem

(RMP) initialized with a suitable subset of variables and adding, in subsequent iterations,

useful columns. When no more variables can be added, the value of the RMP is optimal

also for the MP and the process is stopped. The usefulness of a variable not already in the

RMP is estimated considering its reduced cost, in particular in a minimization problem the

more negative the reduced cost of a variable is the more profitable is its insertion in the

MP. The process of finding the most convenient variable to be added to the RMP is called

pricing and consists in exploiting the dual representation of the problem in order to find
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the variable with the minimum reduced cost without the need of explicitly considering all

of them.

In particular in our problem the RMP is initialized with:

(a) One dummy column representing a feasible solution with an infinite cost. This column

in inserted with the only purpose to ensure that a feasible solution exists when the

RMP is solved for the first time allowing the column generation process to start.

(b) All |N2| skip columns one for every skip variable si ∈ N2.

(c) All one-node routes, corresponding to path starting from the depot, picking up only

one bin i ∈ V having Lmin ≤ li ≤W and immediately coming back to the depot.

(d) A set of routes obtained in a single iteration by the greedy pricing algorithm described

in Section 2.4.5.

The pricing finds the most useful variables evaluating their reduced costs. This is done

by means of the dual variables associated with the dual representation of the MP whose

formulation reads as follows:

max
∑

i∈V

λi −Kµ+ LT
minσ + (LT

min −KW )ρ

st λisi ≤ 0 ∀i ∈ N2
∑

i∈V

aipλi − µ+ lpσ − fpρ ≤ cp ∀p ∈ Ω (2.9)

λi unrestricted ∀i ∈ N

µ, σ, ρ ≥ 0

where λ, σ, µ and ρ represent vectors of non-negative dual variables related respectively to

constraints (2.2, 2.3), (2.5) and to constraints (2.4), (2.8) rewritten as ≥ inequalities. From

this formulation is clearly visible that looking for the zp variables with minimum reduced

costs in the MP is equivalent to seeking the most violated constraints (2.9) in the dual

problem.

The expression of the reduced costs ξp associated with the zp variables reads as follows:

ξp = cp −
∑

i∈V

aipλi + µ− lpσ + fpρ ∀p ∈ Ω. (2.10)
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The problem to be solved in order to identify the variables with the minimum reduced

cost (pricing problem) consists in finding a feasible route satisfying conditions II and III

whose associated reduced cost is as low as possible. Moreover, since it is never convenient

to visit a bin location more than once, we improve the bound imposing that the route must

be elementary. More formally we have to solve the following problem:

min
p∈Ω

ξp = cp −
∑

i∈R(p)

λi + µ−
∑

i∈R(p)

liσ + fpρ

st Lmin ≤ lp ≤W

fp =W − lp.

Where the set R(p) has to be determined. This pricing problem turns out to be the well

studied NP-hard Resource Constraint Elementary Shortest Path Problem (RCESPP, see

Dror [57]) that we solve using two heuristic and one exact algorithms.

2.4.2 Pricing Algorithms

In our branch-and-price-and-cut procedure we follow the approach detailed by Salani et

al. [58], it makes use of three different algorithms to price out the columns and find the

ones with the minimum reduced cost: a greedy one, a heuristic dynamic programming one

and an exact dynamic programming one. Starting from the greedy algorithm, they are

called in order only if the previous algorithm is not able to find any column with a negative

reduced cost. For the purpose of better illustrating these algorithms, we give their detailed

description following the reverse order with respect to their execution.

2.4.3 Exact Dynamic Programming Algorithm

Let us first consider the case in which no requirements are imposed on the minimum amount

of garbage collected along a single route and let s and t be two distinct copies of the depot

representing, respectively, the starting and the ending point of the route. In order to obtain

the exact solution to the RCESPP we use a dynamic programming algorithm which consists

of a bi-directional extension of node labels. It associates labels, which encode partial paths,

with every node i ∈ V of the graph G. Every label is iteratively considered and the

corresponding path is extended to sites not already visited.
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Label Structure. Each label is defined by the tuple (S, q, C, i), that encodes a path of

cost C starting from the depot, visiting all sites in S and arriving to the node i picking up

a total amount of garbage equal to q. In this problem the optimal solution is represented

by the minimum cost path going from s to t collecting at most a quantity q ≤W of waste.

Extension. The algorithm starts creating a label (∅, 0,W · ρ, s), the cost of the initial

empty label is not zero due to the price we have to pay, according to the constraint (2.5),

for the empty space in the vehicle. Then, at every iteration of the algorithm, a label

l′ = (S ′, q′, C ′, i′) is iteratively selected and extended from site i′ to each site i′′ ∈ (V∪{t})\S ′

generating another label l′′ = (S ′′, q′′, C ′′, i′′). The following rules are used to carry out the

labels extension:

S ′′ =S ′ ∪ {i′′} (2.11)

q′′ =q′ + li′′ (2.12)

C ′′ =C ′ + ci′i′′ −
λi′

2
−
λi′′

2
− li′′σ − li′′ρ (2.13)

with λs = λt = 0 and ls = lt = 0. At every iteration the cost of the path is updated

taking into account the distance between the two nodes and their associated dual variables,

moreover the same quantity li′′ is subtracted twice, with two different coefficient, from the

reduced cost. The first time, with coefficient σ, representing a bonus for using the vehicle

capacity, the second time with coefficient ρ, in order to reduce the penalty payed for the

empty space left in the vehicle. The new label l′′ represents a feasible state if q′′ ≤ W , in

other words a label can be extended from i to i′′ if there is enough free space on the vehicle

to contain all the garbage in the bin located in i′′. It is worth noting that, as requested by

the conditions detailed in Section 2.2, this extension rule does not allow for split delivery

and enforce the elementary of the path as no sites already visited are taken into account

for the extension.

Dominance Test. The extension can, in principle, generate an exponential number of

labels. Thus, in order to reduce the total amount of labels generated, a dominance test is

performed to fathom labels that cannot lead to an optimal solution. Let l′ = (S ′, q′, C ′, i)

and l′′ = (S ′′, q′′, C ′′, i) be two generic labels associated with the same pickup site i. Then
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the former dominates the latter if the following conditions hold:

S ′ ⊆ S ′′ (2.14)

q′ ≤ q′′ (2.15)

C ′ ≤ C ′′ (2.16)

None of the inequalities (2.14), (2.15) and (2.16) can be left out, in fact they represent a

set of necessary dominance conditions and dropping any of them can lead to the discarding

of an optimal label. Furthermore, as shown in Feillet et al. [59], it is sometimes possible

to identify a node u ∈ V that cannot be reached by any feasible extension of a given label,

because of resource limitations. In this case it is useful to insert u in the set S of that label:

it is easy to check that enlarging set S ′′ helps satisfying condition (2.14); at the same time,

if a node cannot be reached by extending label l′ due to resource limitations, it cannot be

reached by extending label l′′ either since resource consumption in l′′ is not lower. Therefore,

enlarging each set S allows the dynamic programming algorithm to fathom a larger number

of labels consequently reducing the computation time.

Decremental state space relaxation. A technique we use to speed up the solution

process in the dynamic programming algorithm is the decremental state space relaxation

as described by Salani and Righini [60]. The idea behind such a relaxation is simple: the

state space of the problem is reduced projecting it to a smaller one by discarding the

elementary constraints, and then iteratively reintroducing them until a feasible solution for

the RCESPP is found. More formally, given a set of bins locations Ṽ ⊆ V called critical

set, the extension rule (2.11) can be replaced with

S ′′ = S ′ ∪ {i′′} ∩ Ṽ (2.17)

This relaxed problem can be solved more efficiently, since more labels can be compared in

the dominance test. In order to identify a good critical node set, Ṽ is initialized to ∅ then

the state space relaxation of the pricing problem is solved and all the nodes visited more

than once in the optimal path are added to the set Ṽ . In our algorithm, this procedure is

iterated until either an elementary path with a negative reduced cost is found or the optimal

value of the pricing subproblem is nonnegative.
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Bidirectional dynamic programming. Another method that was already used by Di-

jkstra (see for instance Goldberg et al. [61]) to speed up the computation of shortest path

is the bidirectional extension of labels. In this algorithm, as described by Righini and

Salani [58], two kind of labels are associated with every delivery site: forward labels and

backward labels. They, respectively, represent paths going from s to its successors and

from t to its predecessors. The forward set is initialized with label (∅, 0,W · ρ, s) while the

backward set with label (∅, 0,W ·ρ, t). Extension and dominance are then composed by two

steps, in which forward and backward labels are treated independently. The updating rules

and feasibility tests for backward extension are symmetrical to those for the forward labels.

Since the consumption of capacity, is monotone along the path a bounding technique can

be employed together with the bidirectional dynamic programming in order to reduce the

generation of backwards and forwards labels encoding the same paths. In particular, the

extension of forward and backward labels can be limited and useless duplication of paths

can be reduced, imposing that a state l, either forward or backward, can be extended only

if its associated consumption of capacity q is ≤ W
2 . The use of this bounding technique

requires to change the label initialization and in particular the initial forward label will be

(∅, 0, W2 · ρ, s) while the backward (∅, 0, W2 · ρ, t).

Join. A complete route going from s to t can then be obtained joining together a forward

and a backward partial path. Each forward path (Sfw, qfw, Cfw, ifw) can be joined with a

backward path (Sbw, qbw, Cbw, ibw), where ifw 6= ibw, if the complete path is elementary and

the total amount of garbage picked up does not exceed the capacity of the vehicle. More

formally:

Sfw ∩ Sbw = ∅

qfw + qbw ≤W (2.18)
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If both conditions are satisfied the path from s to t is feasible and its associated values S, q

and C can be computed as follows:

S = Sfw ∪ Sbw

q = qfw + qbw

C = Cfw + cifwibw −
λi

fw

2
−
λi

bw

2
+ Cbw

This label l∗ = (S, q, C, t) represents a feasible route that corresponds to a variable in the

MP having a reduced cost ξl∗ = C + µ.

The join operation is run when no more feasible extensions can be performed; the

minimum cost path after join is the optimal solution of the pricing problem.

Handling the minimum filling constraints. The algorithm described in the previous

paragraphs does not take into account condition II, which imposes that every vehicle must

pick up at least an amount of garbage equal to Lmin before going back to the depot. In

order to satisfy the minimum filling constraints the dominance and joining rules have to

be modified. In particular on the one hand the dominance condition (2.15) is substituted

by a more restrictive one q′ = q′′ limiting the possibility for domination only among labels

using exactly the same capacity. On the other hand the join condition on the resource

consumption (2.18) is replaced by Lmin ≤ q
fw + qbw ≤ W ensuring that no route violating

the minimum filling constraints are generated. The new dominance rules are weaker: only

a few labels can dominate one another slowing down the solution process. However, the

objective function of the MP and the structure of the reduced costs associated with the

generated variables naturally leads to routes that, in general, use as much capacity as

possible. Therefore we devise the following procedure. At first, we generate routes, using

the dynamic programming algorithm described in the previous paragraphs, discarding the

minimum filling constraints. If the resource consumption in the optimal route is already

≥ Lmin no further computation is needed. Otherwise we introduce the new dominance and

joining rules described in this paragraph and the algorithm is re-executed to either find a

new feasible and useful route or to prove that no variable with negative reduced cost exists.

It is worth noting that by removing the minimum filling constraints we are relaxing the

pricing problem. Therefore, if no variable with negative reduced cost is found in this way

the column generation process can be stopped.
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2.4.4 Heuristic Dynamic Programming Algorithm

A heuristic dynamic programming algorithm can be easily obtained relaxing the dominance

rules by removing the condition (2.14). This modified dominance test allows for the fath-

oming of much more labels, consequently reducing the computational time required to find

a solution for the RCESPP. At the same time, since all conditions (2.14), (2.15) and (2.16)

are necessary, with the relaxed dominance test an optimal partial path could be discarded

leading to sub-optimal solutions. In the heuristic pricing we do not take into account explic-

itly the minimum filling constraints, however variables generated with this algorithm are

added to the MP only if they encode routes whose capacity consumption is at least Lmin.

2.4.5 Greedy Algorithm

In this pricing algorithm a route going from s to t is generated by repeated extensions of

a single label. In details, a label l = (S, q, C, i), whose cost and resource consumption are

initialized to 0 and Wρ respectively, is considered and iteratively extended to a single node

with a nearest neighbor policy. In order to find the neighborhood of a node and to select

the best extension the set of reachable nodes R is computed. A bin location j ∈ V belongs

to R if all the following conditions hold:

j 6∈ S (2.19)

q + lj ≤W (2.20)

where ls = lt = 0. If R = ∅ the path is closed going back to the depot and the search is

stopped. If the value q associated with this path is greater or equal to Lmin a corresponding

variable is generated and added to the MP, otherwise the path is discarded and no variable

is generated. If instead R 6= ∅, among the sites in R, we select the one that minimizes the

path cost, that is

j̄ = argminj∈R{cij −
λi
2
−
λj
2
− ljσ − ljρ}

with λq = λv = 0. The label is extended to node j̄ using the same update rules described

for the exact pricing algorithm, and we iterate.

In order to find, in one iteration of the column generation algorithm, several variables to

add to the RMP the greedy pricing procedure is repeated many times until no other feasible
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path with negative reduced cost is found. In particular, every time the greedy algorithm

terminates finding a new useful variables it is executed again on a restricted graph that

does not includes all nodes visited in all the feasible paths already generated, with this

algorithm, in the same iteration of the column generation process.

This same algorithm is used also to produce a portion of the starting pool of variables

used as initialization for the column generation algorithm. The algorithm runs as described

but with a different objective function: in this case we aim at the maximization of the

amount of waste collected and so among all bin locations in R we select the one with the

greatest li.

2.4.6 Additional Inequalities

The VRPDSC extends the VRP, for which several additional inequalities have been pre-

sented in the literature. They can be employed to improve the value of the lower bound and

to consequently speeding up the convergence of the algorithm (see for instance Lysgaard et

al. [62] and Battarra et al. [63]). In particular we have taken into account and adapted two

families of inequalities: a special case of the subset-row inequalities introduced by Jepsen

et al. [64] and the 2-path inequalities that were originally introduced by Kohl et al. [65].

Subset-row inequalities.

Subset-row inequalities are a special case of Chvatal-Gomory rank-1 cuts, suited for use in

column generation based algorithms (see for instance Petersen et al. [66]). In particular,

we implemented a specific case of subset-row inequalities in which only subsets made up

of three rows are considered. The basic idea behind these cuts is the following: for every

set of three nodes there must be at most a single route visiting at least two of them. More

formally, let G = {G ⊆ V : |G| = 3} be the set made of all possible clusters of three nodes.

For G ∈ G let J(G) ⊆ J be the set of all feasible routes that visit at least two of the three

sites belonging to G. Then the following inequalities are valid:

∑

j∈J(G)

xj ≤ 1 ∀G ∈ G (2.21)

The separation of these inequalities could be done by complete enumeration since their

number is polynomial (|V |3). However to speed up the separation process only a subset
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of the nodes set Vs ⊆ V is taken into account for the generation of the clusters set G, in

particular a node i ∈ V belongs to Vs if the value of its associated skip variable si is strictly

lower than 1 in the last LP iteration. In the worst case |Vs| = |V| but experimentally we

saw a significant reduction in the cardinality of G. Moreover, the cardinality of G can

be further reduced considering all triplets of nodes and discarding the ones that, due to

capacity constraints, do not include at least two nodes that can be visited in the same

route. This shrink in the cardinality of G can be performed in a preliminary preprocessing

phase as it does not depend on variable values.

The introduction of these additional inequalities causes an alteration of the pricing sub-

problem and therefore it requires the modification of the pricing algorithms. In particular,

identified with P the index set of the valid subset row inequalities added to the MP, the

state label used in the exact dynamic programming procedure has to be extended with the

introduction of a new variable bp for every additional cut p ∈ P to handle its associated

negative dual value ψp and, consequently the extension, dominance and join rules have to

be modified.

In details, given label l′ = (S ′, q′, b′p, C
′, i′), label l′′ = (S ′′, q′′, b′′p, C

′′, i′′) and defining

S̄ ′′ ⊂ S ′′ as the set containing all the sites visited along the path encoded by label l′′ without

the inclusion of unreachable sites coming from the application of the technique by Feillet et

al. [59], the extension of label l′ to l′′ is done in the following way:

S ′′ =S ′ ∪ {i′′}

b′′p =|Gp ∩ S̄
′′|mod 2 ∀p ∈ P

q′′ =q′ + li′′ (2.22)

C ′′ =C ′ + ci′i′′ −
λi′

2
−
λi′′

2
− li′′σ − li′′ρ−

∑

p∈P

ψp⌊
|Gp ∩ S̄

′′|

2
⌋

where i′ 6= i′′ and Gp is the subset of N representing the triplet of sites associated with

subset-row inequality p ∈ P. Dominance rules have to be relaxed since the cost of a path
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is no longer monotonic and so label l′ dominates l′′ if:

S ′ ⊆ S ′′

q′ ≤ q′′

C ′ −
∑

p∈W

ψp ≤ C
′′

with i′ = i′′ andW = {w ∈ P : ψw < 0, b′w > b′′w}. Finally the value of bp, ∀p ∈ P , have to be

taken into account when two partial path are joined together to compose a single complete

route and in particular we check if b′p = 1 ∧ b′p = 1 ∀p ∈ P the value ψp is subtracted from

the cost of the route.

2-path Inequalities

In addition to the subset-row inequalities we propose a modified version of the classical

2-path inequalities that works well with VRPDSC. In their traditional version the 2-path

inequalities impose that for every set S ⊆ V of nodes that cannot be served by a single

route at least two routes must be used.

In order for these cuts to be adapted to the VRPDSC we have to take into account that

the problem allows for some node to be skipped and that the only resource available is the

vehicle capacity. Thus, for every set S ⊆ V of sites whose amount of waste requires at least

two vehicles to be collected, the following inequalities hold:

∑

i∈S

si +
∑

k∈K(S)

zk ≥ 2 (2.23)

where K(S) is the set of routes serving at least a site belonging to S. It is worth noting that,

regardless the inclusion of the skip variables, inequalities 2.23 differ from the original version

presented Kohl et al. in [65]. In fact, like for instance in Archetti et al. [67], the coefficient

of the variables zk is always equal to one while in the original version the coefficients of the

variables representing routes depend on the number of times a route enters the set S.

The separation procedure is based on a revision of the heuristic algorithm proposed by

Kohl et al. [65]. In particular, let m(S) be the minimum number of vehicles necessary to

serve all clients in S and let q(S) =
∑

k∈K(S) zk be the actual, possibly fractional, number

of routes serving nodes in S then the separation problem requires to find sets S ⊆ N
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with
∑

i∈S si + q(S) < 2 and m(S) ≥ 2, that is: sets of bins locations that cannot be

cleaned up using a single route but that are visited, in the current fractional LP solution,

by less than two routes. In our problem, this can be done quite easily: given a set S with
∑

i∈S si + q(S) < 2 we check if the sum of the amount of waste contained in the bins

belonging to S exceed the capacity of the vehicles, in other worlds if
∑

i∈S li > W a cut is

generated and added to the MP. Sets S are heuristically individuated computing the flow

over the graph G = (V,A) exactly as described in the paper by Kohl et al. [65].

The addition of these inequalities introduce a new vector χ of variables in the dual

problem that requires the modification of the pricing algorithm.

In details, identified with P the index set of all 2-path cuts added to the MP and p(S) the

index of the cut corresponding to the set S, we modified the exact dynamic programming

algorithm for the RCESPP adding a new resource in the labels. Such resource is initialized

at 0; after the first visit to a customer in S, the resource is set to 1, and the reduced

cost of the label is decreased by the value of the corresponding dual variable χp(S). In the

joining phase if the resource is equal to 1 for either the forward or the backward paths the

dual variable associated with the corresponding cuts is subtracted from the reduced cost

of the complete path. Finally dominance rules are modified with an additional condition

saying that no label having one of these resources at 1 can dominate a label having the

corresponding resource at 0.

It is worth noting that, unlike subset-row inequalities, in order to not modify the struc-

ture of the problem a 2-path inequality added to the MP must be carefully updated every

time a new column is inserted in the problem. Indeed the optimal solution may be dropped

if newly generated variables are not taken into account in the existing 2-path inequalities.

2.4.7 Branching

At the end of the column generation process the solution found may be fractional, in this

case branching policies are applied in order to recover the integrality. In particular, we use

four different strategies that are considered and executed in the order presented thereafter.

In the following we indicate as z̄ and s̄ the values assumed by the variables in the optimal

solution of the MP.

Branching on the Number of Vehicles. The first rule taken into account is the branch-

ing on the number of vehicles. Indicate with m the number of routes used in the fractional



CHAPTER 2. WASTE COLLECTION 37

LP solution computed as m =
∑

p∈Ω z̄p that is the sum of the values of all variables encod-

ing routes. If m is not integer the branching is executed and two nodes are generated, in

the first it is imposed to use at least ⌈m⌉ vehicles while in the other the maximum number

of routes is limited to ⌊m⌋. This result is obtained modifying the left and right hand side

of the constraints (2.4), in particular in the first case the modified constraint becomes as

follows

m ≤
∑

p∈Ω

zp ≤ K

in the other node instead the constraint is

∑

p∈Ω

zp ≤ m.

This branching technique leaves the pricing subproblem unchanged: dual variable µ still ap-

pears as constant in the objective function of the pricing problem, but it is now unrestricted

in sign. No modifications in the pricing algorithms are required to handle this branching

technique.

Branching on Skip Sites. When the number of vehicles employed in the optimal LP

solution of the MP is integer a second branching rule is taken into account. Let sī be

the variable whose value is fractional and closest to 1. The branching is performed in the

following way: two children nodes are generated and in the first the visit of the site ī is

forbidden imposing sī = 1 on the contrary in the other node sī = 0 and therefore the site ī

must be visited.

Branching on Arcs. If all skip variables are integer branching on arcs is considered.

We choose the site i ∈ V that is split among the largest number of routes in the optimal

fractional solution of MP and that has at least two open outgoing arcs. Then we forbid half

of its outgoing arcs to be used in the first child node, and the other half to be used in the

second child node. To handle these branching decisions in the pricing problem it is enough

to set travel distance of forbidden arcs to +∞.

Branching on Routes Finally when none of the previous rules can be applied branching

on variables encoding routes is performed. Among all z variables in the RMP let zī be the
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one whose value, in the optimal LP solution of the MP, is fractional and closest to 0, 5.

The branching is performed in the following way: two children nodes are generated. In the

former the usage of the route zī is forced setting zī = 1, while in the latter the route zī is

forbidden imposing zī = 0.

2.4.8 Stabilization

We have implemented a stabilization technique based on the methods presented by Uchoa

et al. [68] in order to improve the rate of convergence of the column generation algorithm.

A detailed description of the stabilization method itself is given in the Appendix A.

The computation of the optimal solution to the Lagrangian relaxation of the MP is a

crucial point in this stabilization technique. This is not a difficult task. In fact, given dual

vectors λ, µ, σ and ρ the Lagrangian relaxation of our problem reads:

min
∑

p∈Ω

(cp −
∑

i∈V

aipλi + µ− lpσ + fpρ)−
∑

i∈N2

λisi+

+
∑

i∈V

λi −Kµ+ LT
min(σ + ρ)−WKρ

s.t. 0 ≤ si ≤ 1 ∀i ∈ N2

0 ≤ zp ≤ 1 ∀p ∈ Ω

The objective function comes from the relaxation of all constraints in the MP but the

bounds on the variables values. This problem has the integrality property and its optimal

solution is easily found by inspection analyzing the coefficients of the variables si, zp. In

particular, every variable whose coefficient is negative is set to 1, any other is set to 0. It is

worth noting that the coefficients of the zp in the Lagrangian relaxation are their reduced

costs exactly as computed in (2.10).

2.4.9 Primal Heuristic Algorithm

We have implemented a primal heuristic algorithm in order to quickly find feasible solutions

during the execution of the algorithm. In particular the solutions found by our algorithm

come from the combination of variables that are already in the RMP. The algorithm is made

up of three phases: initial solution, improvement and feasibility and is executed once for

every node of the branching tree.
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In details defined I as the set of the variables composing the heuristic solution, the

algorithm runs as follows.

Initial solution. In the first phase variables that visit the mandatory nodes are selected.

In particular the mandatory nodes i ∈ N1 are considered in lexicographic order and if i

is not covered by any of the variables in the partial solution I the most useful variable

visiting i is introduced in I. In order to evaluate the usefulness of the variables they are

sorted in ascending order by the ratio between the traveling cost and the total amount of

waste collected in the route encoded. The lower is this ratio the more useful is a variable.

The variables are considered following this order and the first variable visiting i and not

visiting any of the node in the routes encoded by the variables already in the partial solution

is selected and added to I. This phase terminates when either all mandatory nodes are

covered or |I| = K. It produces a, possibly unfeasible, solution whose cost C is given by

the sum of the routing costs of all the variables in I.

Improvement. In the second phase every variable in I is tentatively removed from the

solution and replaced, in a greedy way, by one or more variables whose combination is

cheaper. In particular removing i from I gives a solution with cost C − ci then, among

all variables involving only nodes not visited by the variables in I/{i}, the first compatible

variables whose total cost is less than ci are added to I. This phase terminates when there

are no more useful substitutions.

Feasibility. The last phase of the algorithm tries to ensure the feasibility of the solution.

The algorithm considers all variables in I and computes the set of the sites served S(I) =

i ∈ Rj : j ∈ I; then it adds to I all skip variables si associated with optional sites not in

S(I). It is worth noting that sometimes this procedure may not generate a feasible solution

due to constraints (2.2) and (2.8). In these cases the algorithm fails.

2.5 Experimental Analysis

Implementation. The algorithms described in this chapter have been implemented in

C++, using SCIP 2.1 [69] as branch-and-cut-and-price framework, linked to CPLEX 12.2

as pure LP solver. SCIP takes care of the management of the column and row pool and it

is able to remove and re-insert them as needed. All presolving algorithms, propagators and
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the automatic cut generator embedded in SCIP along with the following general purpose

heuristic algorithms: shift-and-propagate, DINS, fix-and-infer, int-diving and shifting have

been disabled as they were considered either incompatible or useless for our problem. All

remaining SCIP parameters were kept at their default values including the branching tree

exploration strategies.

The experimental campaign has been performed on a single core of a PC Intel R©

Core 2 DuoTM CPU T7300 (2.00 GHz) with 4 GB RAM and running Ubuntu 10.04 operating

system. A time limit of 1 hour was imposed to each run.

Benchmark Instances. Our approach has been tested on a set of 75 instances. This

test set is the same used in [41] and includes instances with a number of nodes ranging

from 15 to 100 characterized by a very high variability in all the input parameters such

as the number of mandatory and optional nodes, the vehicle capacity W , the values LT
min,

li and Wmax. Moreover the instances do not state any value for the fleet size K and for

the minimum filling requirement Lmin. Since results published by Macedo et al. [41] are

achieved with Lmin = 0, we first tested our procedure with the same settings in order to

compare our results with the state of the art and then in Subsection 2.5.4 we analyzed the

behavior of our algorithm with Lmin > 0.

Fleet Size. Since no information on the fleet size is given in the instance we adopted an

iterative procedure to find out the optimal number of vehicles to be employed to minimize

the routing costs. We started setting K = ⌈
(
∑

i∈V
li)

W
⌉ then we solved the problem. If the

optimal solution used a number of vehicles equal toK we incremented K by one and iterated

until the optimal solution found used at most K− 1 vehicles, this means that no more than

K − 1 vehicles are needed to reach the optimal solution. However if we were not able to

reach the optimal solution within the time limit we set K = |V | to ensure that proper lower

bounds were found.

2.5.1 Evaluation of the Stabilization Methods

In order to evaluate the impact of the stabilization method on the performance of the

column generation algorithm we solved all the instances with six different values of the

parameter α: 0.0, 0.02, 0.05, 0.1, 0.2 and 0.5. The computation is stopped at the route node

and is carried out in the cleanest way possible using only the exact pricer and no cuts in
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order to not distort the impact of the stabilization introducing heuristic components.

An overview of the results achieved is shown in Table 2.1 and Table 2.2. In Table 2.1

computational times obtained using different values of α are compared. In details, the

table is made up of six columns, one for every possible value of α, fifteen rows reporting

aggregated average, maximum, and minimum values computed on instances with the same

number of nodes and three additional rows showing average, maximum, and minimum values

considering all instances. Table 2.2 reports the difference in the number of pricing iterations

from the execution without stabilization, in this case only five columns are employed one

for every value of α > 0. It is not easy to draw a general picture by analyzing the results

achieved varying α from 0, that is equivalent to the algorithm without stabilization, to

0.5. In fact, although for every instance it is almost always possible to find a value for α

that improves the performance of the column generation compared to the execution with

α = 0, we were not able to identify a single value of α bringing a constant improvement in

the majority of the instances. Moreover, it seems that the larger is the instance, the less

effective is the stabilization methods. Indeed on instances with 100 nodes it turned out to

be very often harmful in terms of computational time. However for instance with less than

50 nodes setting α to 0.02 gives on the majority of the instances a reduction in the number

of the pricing iterations even if this does not always come together with a reduction in

the computational time. In fact when the stabilization method is applied, at every pricing

iteration may correspond several calls to the pricing algorithm in order to handle possible

mispriced columns, in particular in this problem we assisted to an increment in the number

of calls to the exact dynamic programming by, on average, 10%. This value is lower (about

5%) when α is below 0.1 and raises up to 35% when α = 0.5. Considering these results and

the difficulty in extracting from these data a proper value for α we decided to disable the

stabilization method in the other tests.

2.5.2 Lower Bounds

To evaluate the quality of the linear relaxation of our model and to investigate the impact

of the cuts on the quality of the lower bound we tested every possible combination of cuts

stopping the computation at the route node. All pricing algorithms were activated. In

detail the four configurations tested are: No Cuts (NC) in which none of the additional

inequalities presented in Section 2.4.6 is taken into account, Subset-row Cuts (SC) in which

only the subset-row inequalities are considered, 2-Path Cuts (2C) in which only 2-path
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Inst. α

0.00 0.02 0.05 0.10 0.20 0.50
Avg 15 0.03 0.04 0.04 0.04 0.04 0.05
Max 15 0.11 0.14 0.15 0.15 0.13 0.16
Min 15 0.01 0.02 0.01 0.01 0.02 0.02
Avg 25 98.94 238.96 147.27 147.27 124.93 53.04
Max 25 1220.01 3286.03 1981.41 1981.41 1672.93 635.66
Min 25 0.02 0.02 0.03 0.03 0.03 0.05
Avg 50 3.59 3.38 3.51 3.51 3.94 3.75
Max 50 24.06 20.23 21.94 21.94 29.43 27.85
Min 50 0.07 0.08 0.08 0.08 0.08 0.08
Avg 75 431.59 419.01 412.13 412.13 396.13 357.72
Max 75 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00
Min 75 0.05 0.10 0.11 0.11 0.16 0.15
Avg 100 58.33 63.03 64.54 64.54 63.00 59.74
Max 100 469.15 505.48 529.35 529.35 426.23 279.85
Min 100 0.26 0.30 0.30 0.30 0.32 0.33
Avg TOT 123.70 172.23 139.78 139.78 128.07 93.97
Max TOT 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00
Min TOT 0.01 0.02 0.01 0.01 0.02 0.02

Table 2.1: Stabilization Methods: Time [s] comparison with different values of α

Inst. α

0.02 0.05 0.10 0.20 0.50
Avg 15 -0.48 0.84 1.14 5.00 9.82
Max 15 12.50 12.50 12.50 28.57 64.29
Min 15 -12.50 -7.14 -12.12 -12.12 -18.18
Avg 25 -0.84 -0.61 -0.16 1.90 4.07
Max 25 5.41 11.32 7.55 20.00 40.00
Min 25 -17.50 -15.00 -10.68 -20.25 -23.93
Avg 50 -0.28 -0.47 2.69 2.68 5.24
Max 50 9.02 7.96 17.21 10.13 21.21
Min 50 -15.38 -13.19 -9.89 -13.64 -8.45
Avg 75 4.80 10.16 12.34 9.79 74.31
Max 75 13.70 66.67 83.33 33.33 1083.33
Min 75 -1.93 -0.50 -1.67 0.00 -6.25
Avg 100 2.09 1.80 1.88 5.12 4.65
Max 100 16.54 13.54 14.15 27.78 16.67
Min 100 -3.49 -8.22 -5.00 -10.00 -9.03
Avg TOT 0.86 2.06 3.31 4.74 18.13
Max TOT 16.54 66.67 83.33 33.33 1083.33
Min TOT -17.50 -15.00 -12.12 -20.25 -23.93

Table 2.2: Stabilization Methods: variation in the number of pricing iterations with different
values of α
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inequalities are generated and finally the last configuration including both cuts (BC). The

results obtained are shown in Table 2.3 in which, for every configuration of cuts, the average

and maximum number of cuts found (N.C.), the percentage improvement (Imp%) in the

value of the lower bound compared with the bound achieved with the NC configuration and

the computational time in seconds (T[s]) computed aggregating all instances with the same

number of nodes are reported.

Analyzing the results the subset row inequalities turn out to be the most effective cuts

able to increment the bound in almost every instance. The contribution of the two path

inequalities is usually lower but not negligible and more importantly the two contributions

can be often usefully combined together as shown by the results obtained with the BC

configuration. From the efficiency point of view the analysis is more complex and in fact

although the impact of the additional inequalities is always evident in the computational

time it is not uniform on all instances. Delving into the causes of such increment in the

computational time several aspects must be taken into account; every time a cut is found

the pricing algorithms are called again to look for new variables with negative reduced costs,

every cut induces a modification in the exact dynamic programming procedure that weakens

the dominance rules and finally every time a new column is found if additional inequalities

are employed they need to be updated with the newly generated variables. In particular,

looking at the detailed results for every instance we found out that on the one hand the

separation procedures are quiet fast taking only a few seconds to generate the cuts. On

the other hand the exact pricing algorithm is clearly slowed down by the introduction of

the cuts and on top of that when additional inequalities are introduced the exact dynamic

programming procedure is often called several more times than without the cuts. This is

exemplified in instance “Inst 25 03′′ in which without cuts the exact pricer is called 53

times and use a total of 29.43 seconds; when the SC configuration is used 18 subset-row

inequalities are introduced, the separator runs for a total of 2.06 seconds while the exact

dynamic pricer is called 123 times consuming more than 1200 seconds. In this case a single

iteration of the exact pricer costs almost twenty times the computational time required

when no cuts are considered.

Although the introduction of additional inequalities can have a huge impact on the

computational time spent during the pricing procedures they are a viable way to improve

the lower bound and can also be useful to narrow down the size of the branching tree. For

these reasons we use the BC configuration in the evaluation of the global performance of
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Cuts Configurations
NC SC 2C BC
T[s] N.C. Imp% T[s] N.C. Imp% T[s] N.C. Imp% T[s]

Avg 15 0.02 1.80 0.42 0.06 0.67 0.17 0.05 1.87 0.43 0.06
Max 15 0.04 10.00 2.32 0.11 3.00 0.83 0.12 10.00 2.48 0.13
Avg 25 3.26 4.73 0.59 106.50 1.47 0.42 7.56 4.60 0.59 106.31
Max 25 29.63 18.00 1.76 1215.77 5.00 1.76 67.84 18.00 1.76 1215.99
Avg 50 0.57 5.00 0.22 2.80 3.67 0.17 1.74 7.27 0.25 3.47
Max 50 5.20 14.00 0.57 25.03 10.00 0.46 15.07 18.00 0.57 28.86
Avg 75 3.48 4.00 0.07 12.90 7.40 0.11 7.91 9.93 0.13 16.67
Max 75 17.16 11.00 0.29 44.60 21.00 0.29 29.84 29.00 0.29 100.41
Avg 100 3.24 7.07 0.23 26.89 5.87 0.18 9.71 8.40 0.24 17.32
Max 100 10.67 20.00 1.35 199.02 18.00 0.76 28.77 21.00 1.35 62.10
Avg TOT 7.33 9.56 0.32 163.37 7.61 0.21 16.86 12.81 0.34 155.13
Max TOT 29.63 20.00 2.32 1215.77 21.00 1.76 67.84 29.00 2.48 1215.99

Table 2.3: Lower Bounds Comparison

our algorithm. In particular we look for violated inequalities at the root node and in every

other node that improves the global lower bound.

2.5.3 Global Performances

We have tested our algorithm on all instances, with α = 0.0 and the BC configuration,

imposing a time limit of 1 hour to the computation. The results obtained by this test are

reported in Tables 2.4 and 2.5 in which the following convention for columns headers is

employed:

Inst. is the instance name, the number following the “W” indicates the number of nodes

in the instance.

B.B.N. is the number of nodes explored in the branch and bound tree.

L.B.R. is the lower bound achieved at the end of the root node.

L.B.F. is the final lower bound obtained at the end of the computation.

Best is the best feasible solution found during the computation.

Gap% is the residual dual gap at the end of the computation.

N.Cuts is the total number of cuts added to the MP.

Time[s ] is the computational time in seconds.
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Our approach achieves an optimal solution in 56 instances out of 75 and in particular all

the instances in Table 2.4 but one, that turned out to be one of the most difficult instances

of the whole set. Among the instances not solved to optimality the residual gap goes from

0.01% to 6.83% with an average value around 1.1%. Twenty of the instances are solved at

the root node in a few seconds showing that the pricing procedures are, in general, pretty

efficient. On the other hand the instances not optimally solved require to branch a lot

and very often explore a few thousands of nodes. During the branching the lower bound

increase very slowly and indeed the average improvement in the lower bound on instance

not closed is only about 0.48%, we observed that the branching on number of vehicles and

branching on skipping clients strategies (see Section 2.4.7) are the main responsible for this

improvement while the branching on arcs rule gives a very little contribution and indeed

when only this rule can be used hundreds of nodes can be explored without an appreciable

increment in the value of the lower bound. On top of that such, already poor, improvement

comes often not directly by the decision taken through branching but by the introduction

of a cut. Branching on Routes has never been applied.

The computational time spent by our algorithm is on average about 1000 seconds con-

sidering all instances and goes down to 124 second if only completely solved instances are

considered. Most of the time is spent in the exploration of the branching tree and in fact the

time employed at the root node is, on average, shorter than 6 seconds with a few exceptions

among with the most noticeable is the instance W25 03 that requires 95 seconds in order

to compute the exact solution of the MP. Analyzing the distribution of the computational

times among all procedures we found out that the exact and heuristic pricers together use

on average 70% of the computational time equally shared between them, the greedy pricing

algorithm instead is responsible for only 2% of the computational effort. As already noted

in the previous section the time spent by the separation procedures is not negligible and in

fact the subset-row separation routine consumes as much as 12% of the computational time

while the 2-path cuts on average 5%.

The VRPDSC is not an easy problem from the primal point of view. Indeed, also finding

a feasible solution is often computationally very expensive. This is entirely reflected in the

performance of both our custom primal heuristic algorithm and in all the SCIP heuristics

(see Berthold [70]). Our procedure is able to find a feasible solution at the end of the

root node in about 90% of the instances while with the SCIP heuristics the percentage

goes down to about 70%. This situation changes drastically during the exploration of the
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branching tree, in fact in this case our primal procedure performs poorly generating very

often solutions that do not match the branching decisions on the contrary SCIP heuristics

keep producing feasible integer solution with the same rate throughout all the branching

tree. For this reason we stop the execution of our primal algorithm at the root node.

Inst. N.B&B LB R. LB F. Best Gap % Cuts Time

W15 01 1 2688.00 2688.00 2688.00 0.00 0 0.03
W15 02 1 4887.00 4887.00 4887.00 0.00 0 0.01
W15 03 45 3331.88 3516.00 3516.00 0.00 5 0.93
W15 04 25 6643.00 6727.00 6727.00 0.00 2 0.10
W15 05 1 5395.00 5395.00 5395.00 0.00 0 0.02
W15 06 91 2535.33 2673.00 2673.00 0.00 5 0.51
W15 07 28 1568.05 1796.00 1796.00 0.00 0 0.12
W15 08 3 3762.67 3993.00 3993.00 0.00 11 0.11
W15 09 68 2216.00 2307.00 2307.00 0.00 4 0.32
W15 10 1 5961.00 5961.00 5961.00 0.00 0 0.03
W15 11 1 5747.00 5747.00 5747.00 0.00 0 0.02
W15 12 3 3086.00 3096.00 3096.00 0.00 19 0.14
W15 13 1 2276.00 2276.00 2276.00 0.00 0 0.02
W15 14 1 4169.00 4169.00 4169.00 0.00 1 0.03
W15 15 170 5189.00 5284.00 5284.00 0.00 13 0.96

W25 01 98 7008.28 7065.00 7065.00 0.00 23 3.35
W25 02 1 741.00 741.00 741.00 0.00 0 0.01
W25 03 4474 3170.80 3246.57 3427.00 5.66 12 3600.00
W25 04 15 840.33 873.00 873.00 0.00 5 0.09
W25 05 9 2097.12 2136.00 2136.00 0.00 0 0.08
W25 06 359 5794.17 5817.00 5817.00 0.00 37 4.63
W25 07 1 5626.00 5626.00 5626.00 0.00 0 0.13
W25 08 3 6395.00 6474.00 6474.00 0.00 2 0.03
W25 09 3 8788.00 8807.00 8807.00 0.00 8 0.17
W25 10 201 8001.00 8142.00 8142.00 0.00 33 1.21
W25 11 2883 4322.28 4367.00 4367.00 0.00 19 1353.29
W25 12 1 4063.00 4063.00 4063.00 0.00 2 0.07
W25 13 3 7906.67 7958.00 7958.00 0.00 6 0.16
W25 14 1 6167.00 6167.00 6167.00 0.00 0 0.03
W25 15 3 2829.57 2943.00 2943.00 0.00 5 97.18

Table 2.4: Waste Collection Results: 15 - 25 nodes

In [41] the authors claim to reach an optimal solution for 27 instances up to 50 nodes

imposing a time limit of 1000 seconds and using a configuration similar to our test machine.

Our algorithm is able to find within the same time limit an optimal solution for 40 of the
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45 instances with 15, 25 and 50 nodes. Moreover comparing the computational time on the

27 instances solved to optimality by both approaches we observed that their solving time is

on average about 140 seconds while ours is less than 1 second marking an improvement of

2 orders of magnitude.

2.5.4 The minimum filling constraints

All results presented so far, in order to be compatible with the solutions reported by Maced

et al. [41], are obtained imposing Lmin = 0. In this section we analyze how the performance

of our algorithm varies modifying the minimum filling requirements and in particular we

tested our approach with three different values of Lmin: 0.6 · W , 0.8 · W and 0.99 · W .

Detailed results for every instance and every value of Lmin can be found in the Appendix

C.

Before going further in the analysis of the impact of the minimum filling constraints on

the performance of our algorithm we would like to point out that such constraints can make

an instance infeasible, in particular 4 instances became infeasible in case Lmin = 0.8 ·W and

16 when Lmin = 0.99 ·W ; e.g. instance W15 04: all 15 bins are mandatory, 7 of them have

an amount of waste equal 3 while in the others is 2. W is equal to 5 and so if Lmin = 0.8 ·W

then Lmin = 4. In this case there is no possible solution because there is always a bin with

li equal to 2 that is not collected.

An overview of the computational results is contained in Table 2.6 where the average

number of nodes explored in the branch and bound tree (B.B.N.), the average residual gap

for instances not solved to optimality (Gap %), the average number of variables added to

the MP (N.Vars), the number (N. Solved) and the percentage (Solved %) of the instances

optimally solved and the average computational time in seconds (Time[s]) are reported.

The overall problem becomes as expected easier with the introduction of the minimum

filling constraints indeed the stronger are the constraints the higher is the percentage of

problems solved to optimality. However this does not come for free and require a clear

additional effort in solving, in an exact way, the associated pricing subproblem, indeed when

Lmin = 0.99 ·W although the size of the branching tree is about half of the one reached

when Lmin = 0 the average computational time is one and half time the computational

effort required when the minimum filling constraint is not considered. Such a behavior is

partially due to the fact that only a fraction of the variables generated with Lmin = 0 is

used in the other cases and this leads to smaller search trees to be explored. Despite the
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Inst. B.B.N L.B.R. L.B.F. Best Gap % N.Cuts Time[s]

W50 01 1 12335.00 12335.00 12335.00 0.00 0 0.13
W50 02 1 13233.00 13233.00 13233.00 0.00 2 0.19
W50 03 117 13372.83 13410.00 13410.00 0.00 35 18.62
W50 04 239 17584.04 17627.00 17627.00 0.00 60 122.73
W50 05 3 23862.50 23927.00 23927.00 0.00 5 0.27
W50 06 1 12839.00 12839.00 12839.00 0.00 0 0.10
W50 07 51 13983.50 14047.00 14047.00 0.00 37 15.84
W50 08 161 2508.18 2554.00 2554.00 0.00 15 16.30
W50 09 17679 13592.50 13838.12 14145.00 2.22 404 3600.00
W50 10 69 5973.76 6018.00 6018.00 0.00 4 3.04
W50 11 3 15639.33 15658.00 15658.00 0.00 6 0.28
W50 12 3 12158.00 12205.00 12205.00 0.00 1 0.07
W50 13 3273 10406.83 10548.12 10741.00 1.83 69 3600.00
W50 14 9742 17260.25 17315.25 17325.00 0.06 530 3600.00
W50 15 367 14733.43 14789.00 14789.00 0.00 47 97.55

W75 01 1178 23105.15 23146.14 24728.00 6.83 232 3600.00
W75 02 1 17219.00 17219.00 17219.00 0.00 3 1.06
W75 03 1 38713.00 38713.00 38713.00 0.00 9 0.29
W75 04 1133 20969.80 21044.20 21124.00 0.38 204 3600.00
W75 05 1072 6236.75 6353.00 6353.00 0.00 64 585.17
W75 06 1 14255.00 14255.00 14255.00 0.00 0 0.22
W75 07 3498 24600.00 24628.95 24672.00 0.17 295 3600.00
W75 08 1148 21248.22 21335.40 21415.00 0.37 128 3600.00
W75 09 2934 21242.96 21306.82 21363.00 0.26 367 3600.00
W75 10 1 9004.00 9004.00 9004.00 0.00 0 0.05
W75 11 686 23656.84 23707.00 23709.00 0.01 260 3600.00
W75 12 1253 21101.13 21151.80 21204.00 0.25 256 3600.00
W75 13 1 18226.00 18226.00 18226.00 0.00 0 0.37
W75 14 3 27803.50 27807.00 27807.00 0.00 7 4.34
W75 15 1905 25575.55 25603.11 25628.00 0.10 262 3600.00

W100 01 3461 18656.15 18704.83 18742.00 0.20 235 3600.00
W100 02 75 29008.00 29020.00 29020.00 0.00 11 37.27
W100 03 3 24737.00 24741.00 24741.00 0.00 0 1.63
W100 04 7 118.15 143.00 143.00 0.00 0 1.98
W100 05 1938 37523.67 37549.00 37689.00 0.37 161 3600.00
W100 06 1204 24449.08 24528.64 24674.00 0.59 187 3600.00
W100 07 910 23009.03 23099.70 23485.00 1.67 179 3600.00
W100 08 1 29278.00 29278.00 29278.00 0.00 6 1.48
W100 09 43 5857.26 5910.00 5910.00 0.00 8 16.50
W100 10 1473 2103.16 2216.00 2216.00 0.00 53 1538.30
W100 11 11145 50281.50 50344.50 50410.00 0.13 357 3600.00
W100 12 902 32015.24 32074.89 32342.00 0.83 134 3600.00
W100 13 2325 6666.42 6719.00 6719.00 0.00 339 2777.04
W100 14 103 20424.59 20504.00 20504.00 0.00 17 205.00
W100 15 495 32008.75 32033.54 32164.00 0.41 119 3600.00

Table 2.5: Waste Collection Results: 50 - 100 nodes
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fact that the percentage of optimally solved problems grows with the increase of Lmin we

would like to point out that the problems result more difficult from the primal point of view.

In fact, unlike the case when Lmin = 0 where a feasible primal solution is always found at

the end of the root node, when the minimum filling constraints are taken into account is

often difficult to find (as shown in the tables in Appendix C) a feasible solution. Indeed, in

several instances the first primal solution is found after more than one hundred nodes and

in one instance we are not able to provide any feasible integer solution within one hour of

computational time.

Lmin B.B.N. Gap % N.Vars N. Solved Solved % Time[s]

0.00 1054.73 1.24 1203.95 56 74.67 1004.13
0.60 2866.32 1.03 871.87 58 77.33 930.24
0.80 841.32 0.47 854.76 55 77.46 1038.77
0.99 570.87 1.55 693.35 48 81.36 1429.70

Table 2.6: Waste Collection - Minimum Filling Constraints

Table 2.7 brings the focus of the analysis on the impact of the minimum filling con-

straints on the exact algorithm for the RCESPP (see Section 2.4.3). In particular in the

table are reported: the average number of iterations (N.I.), the number of iterations when

the minimum filling constraints are explicitly taken into account (N.M.I.) and the average

computational time, in seconds, for every iteration (Time per I.).

Lmin N.I. N.M.I. Time per I.

0.00 2722.22 0.00 0.04
0.60 1181.03 473.47 2.48
0.80 1013.63 472.63 2.89
0.99 698.58 600.56 6.49

Table 2.7: Waste Collection - Exact DP Pricer with Minimum Filling Constraints

The situation showed in Table 2.7 is quite clear; the higher is the value of Lmin the more

difficult is to find the exact solution of the pricing subproblem. In fact when Lmin = 0.99·W

the exact dynamic programming algorithm for the RCESPP may require up to 200 times

the computational effort needed when Lmin = 0. Such a big difference is due to the use

of a weaker dominance rule in the iterations when the minimum filling constraints have to

be explicitly considered. The ratio between iterations with stronger and weaker dominance
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rule is about 60% when Lmin is either equal to 0.60 ·W or 0.80 ·W and increases to more

than 80% when Lmin = 0.99 ·W meaning that very few feasible variables may be generated

without forcing the minimum filling constraint in the pricing subproblems.

2.6 Conclusions

In this chapter we have proposed a new solving approach for the VRPDSC, an extension

of the VRP concerning the optimization of the waste collection system in a metropolitan

area.

We have applied our unified framework for LRP to the VRPDSC in order to show that

our approach is general enough to be competitive even on a problem when the location part

is missing. In details, we have devised a mathematical formulation for the problem that

is compatible with our branch-and-cut-and-price algorithm and we have designed pricing

algorithms, cuts, branching rules and a stabilization method to provide exact solutions for

the VRPDSC. On top of that, we proposed a method to explicitly take into account min-

imum filling constraints that require the modification of the pricing procedures: although

these constraints are part of the problem no solution attempt is given in the literature.

We have tested our approach against instances taken from the literature showing that

our algorithm performs better than the previous approaches from both the efficacy and the

efficiency point of view.



Chapter 3

Planetary Surface Exploration

3.1 Introduction

In the last couple of decades the exhaustive surface exploration of planetary bodies has

become one of the main concerns of any space agency on Earth. In particular, starting from

the late 90’s the surface of Mars has attracted renewed attention after almost fifteen years

from the conclusion of the NASA’s highly successful Viking program [71] that brought two

lander on the Martian ground and that was, from 1975 and for the following 20 years, the

main source of facts and information about the red planet. Next step in the exploration

of the planetary surface was made again by the US’ space agency on the summer of 1997

when, as part of the Discovery program [72], the Pathfinder spacecraft [73] succeeded in

landing and deploying a base station with roving probe, called “Sojourner”, on Mars. After

that day there have been several other attempts to bring on the Martian soil robotized

vehicles and in particular the famous rovers “Spirit”, “Opportunity” [74] represent a very

successful story and a giant advancement in the exploration of the red planet. Nowadays,

after a few other missions, among which the ESA’s “Mars Express” is one of the most

representative [75], the interest is not over. In fact, two other rovers are scheduled to be

deployed on Mars, “Curiosity” at the end of 2011 and later, in 2018, a vehicle designed by

ESA and called “ExoMars” [76]. All the data gathered by rovers and landers along with

the informations collected by the several spacecrafts orbiting around Mars allowed NASA

to identify more than one hundred and fifty sites of interest on the Martian surface that

would be worth being carefully explored [77]. Every site represents a, potentially enormous,

source of scientific knowledge and so various stakeholders are competing in order to head

51
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the exploration toward the zones of the red planet that they perceive as more appealing

for their scientific interests. Unfortunately, due to technological and budget limitations, it

would be impossible to visit all the sites and for this reason decisions have to be made about

which sites to examine and how carrying on the exploration. Moreover, it is worth noting

that Mars is only the first major planetary body whose soil has received lot of attention,

in fact, the exploration of the surface of other planets has already been taken into account,

E.G. ESA’s mission “BepiColombo” was supposed to bring a rover on Mercury in 2014 [78],

and will become one of the main space activities involving collaborations among different

space agencies.

Such a strong interest in very complex tasks as campaigns of planetary surface explo-

rations, along with the increasing concern about economics constraints, most certainly calls

for the use of operations research methodologies and techniques. These methods can be

very useful in optimizing the exploration plans in order to maximize the scientific profits

collected without exceeding scheduled budgets. In particular, Ahn et al. [79] and [42] first

approached, from the operations research point of view, the surface exploration problem and

formalized it as a Generalized Location Routing Problem with Profits (GLRPP). The au-

thors introduce an extended Integer Linear Programming formulation for this GLRPP and

propose single-phase and three-phase decomposition heuristics, which are able to provide

feasible solutions for instances involving up to 100 potential base locations and 1000 explo-

ration sites. The quality of these solutions is assessed a posteriori, through the computation

of suitable metrics. In this chapter we propose an approach based on the revision of the

GLRPP model presented by Ahn et al. [42], and we design exact optimization algorithms;

our algorithms are able to tackle real size instances, providing also a priori guarantees on

the optimality of the solutions produced.

In Section 3.2 the key problem features are revised; in Section 3.3 a mathematical

formulation of the GLRPP is provided and in Section 3.4 we present our algorithms. Finally,

in Section 3.5 we discuss computational results on realistic instances, and in Section 3.6 we

briefly draw some conclusions.

3.2 Problem Description

Before diving into the description of our surface exploration problem, we review the termi-

nology used by Ahn et al. [42], as these terms will be extensively used in this chapter.
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Sites. A site is a place of interest that has been identified on the surface of the planet.

Visiting a site is not mandatory but with every site is associated a profit, that represents

a numerical quantification of the scientific value collected by exploring the site itself; since

additional visits add no scientific value, it is useless to visit each site more than once.

Agents. An agent is usually a robotic vehicle designed to operate on the Martian ground.

It performs the visit of the sites and collects the associated profits.

Bases. A base is the starting and ending point for the exploration of agents. Possible

base locations are previously designated on the soil of the planet, but in general only a few

of them are actually used.

Resources. Agents have both limited local resources, like fuel, and collective resources,

like overall activity time, which are consumed during explorations. Local resources can be

restored when the agent is at the base station, while collective ones cannot. E.G. On the

one hand the fuel can be easily and quickly re-supplied when agents stand in a base, on

the other hand more complex operations such as mechanical repairs needed after extended

exposure to hostile environment may either require longer time or may not even be possible

on the surface of the planet.

Routes and Routing tactics. A route is defined as a sequence of sites visited by an

agent. Every route starts from a base and ends with the agent coming back to the same

base. A routing tactic characterizes a route by imposing a single route constraint that limits

the consumption of local resource and a maximum number of routes that can be performed

with the selected routing tactic. A route is defined as feasible if it does not violate the

constraint imposed by the routing tactic.

Mission and Mission Strategies. A mission is the set of all routes with a common

base. Routes belonging to the same mission are usually performed in sequence by the same

agent. There may be different technologies for carrying out the exploration of the planet

ground: fixing a mission strategy consists in selecting a particular technology, and therefore

in imposing limits on the collective resource consumption, defining costs and listing all the

available routing tactics. All routes belonging to a mission must use one of the routing

tactics available for the mission.
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Campaign. A campaign is defined as the collection of all missions with the same objective

and sharing the same budget. The total cost of a campaign is given by the sum of all the

costs of missions belonging to it.

The GLRPP requires to find a campaign exploration plan described by a pool of routes

starting from a subset of the potential base locations and feasible with respect to the selected

routing tactic of the employed mission strategy. Such a plan must be optimized in order

to gather as many scientific information as possible respecting all the technological and

economics limitations. In particular, a campaign is feasible if it does not violate any of the

following conditions:

I a mission strategy and a corresponding routing tactic is selected for each open base;

II the total cost of a campaign, that is the sum of mission costs, does not exceed the

available budget;

III the collective resource consumption for routes in the same mission does not exceed a

given limit, which depends on the mission strategy chosen;

IV the number of routes in the same base employing the same routing tactic do not exceed

a given limit, which depends on the tactic chosen;

V the local resource consumption of each route does not exceed a given limit, which

depends on the tactic chosen;

VI each route begins and ends at the same base;

VII no site is visited more than once.

Condition (VII) follows from the observation that it is never convenient to visit each site

more than once: such a condition helps in formulating the mathematical models presented

in Section 3.3. Among the feasible campaigns, we consider optimal those maximizing the

total profit collected by the agents.

This problem fits in the general description of the second type of problem that we have

identified in the introduction (see Chapter 1) indeed, in the GLRPP although location

decisions have to be taken and represent an important component in the optimization

they do not directly contribute to the value of the objective function but act in a more

indirect way modifying the extent of the routing choices. In fact the GLRPP can be seen
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as an extension and a generalization of the Multi-Depot Heterogeneous-fleet VRP with

Profits [23].

3.3 Mathematical Formulation

Formally, our GLRPP for planetary surface exploration can be modeled as follows.

A complete graph G = (N ,A) is given where N = B ∪ E is the set of nodes and

A = {(i, j) : i ∈ N , j ∈ N} is the set of arcs. Set N is made up of two distinct subsets:

B, representing the set of potential base locations, and E , representing the set of sites. For

every potential site i ∈ E two values are given: pi and ti. The former represents the profit

obtained visiting the site i while the latter is the time required to gather the data. Moreover

a cost fij is associated with every arc (i, j) ∈ A, it is an expression of the distance to be

traveled, starting from node i ∈ N , to reach node j ∈ N .

The set S made up of all possible mission strategies is also given. Every strategy s ∈ S

is defined by a cost Cs and a set of available routing tactics T s, and for each k ∈ T s a

maximum number of routes ns,k that can be performed using tactic k.

Mission strategies limit collective resource consumption: when strategy s ∈ S is selected,

coefficients ds0, d
s
d, d

s
τ and lsc represent respectively the fixed collective resource consumption

of a route, the collective resource consumption per unit of distance traveled by an agent, the

collective resource consumption per unit of time spent in acquiring data, and the amount

of collective resource available for the whole mission. Every route j associated with a base

b and a strategy s is therefore characterized by a consumption of collective resource hb,sj

defined as follows:

hb,sj = ds0
︸︷︷︸

per−route

+TSP b · dsd
︸ ︷︷ ︸

per−arc

+(
∑

i∈Rj

ti · d
s
τ )

︸ ︷︷ ︸

per−site

(3.1)

where Rj ⊆ E is the set of sites visited in j, and TSP b is the travel distance of the TSP

solution on the graph derived from nodes {b} ∪ Rj .

Routing tactics, instead, limit the local resource consumption: for every tactic k ∈ T s

coefficients cs,k0 , cs,kd , cs,kτ and ls,kr respectively represent the fixed local resource consumption

of every route, the local resource consumption per unit of distance traveled by the agent,

the local resource consumption per unit of time spent in acquiring data and the amount of
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local resource available for each route. Therefore, the local resource consumption of a route

j using tactic k of strategy s and starting from a base b can be computed as follows:

cs,k0
︸︷︷︸

per−route

+TSP b · cs,kd
︸ ︷︷ ︸

per−arc

+(
∑

i∈Rj

ti · c
s,k
τ )

︸ ︷︷ ︸

per−site

(3.2)

where Rj and TSP
b keep the same meaning as in (3.1). Defined J as the set of all possible

routes over the graph G then set Jb,s,k ⊂ J is the set of feasible routes related to base

b ∈ B, mission strategy s ∈ S and routing tactics t ∈ T s. We say that a route is feasible if

its local resource consumption does not exceed ls,kr (condition V), and it starts and ends at

the same base vertex b ∈ B (condition VI); therefore the set Jb,s,k can be formally defined

as follows:

Jb,s,k = {j ∈ J : cs,k0
︸︷︷︸

per−route

+TSP b · cs,kd
︸ ︷︷ ︸

per−arc

+(
∑

i∈Rj

ti · c
s,k
τ )

︸ ︷︷ ︸

per−site

≤ ls,kr }. (3.3)

A campaign is the collection of all missions with the same goal defined over the same

graph G and sharing the same limited budget M that is used for the allocation of resources

to the selected bases in order to set up a mission strategy. A global overview of the decision

hierarchy involving all constraints and requirements associated with a campaign is depicted

in Fig. 3.1 (taken from [42]).

The GRLPP can be described using a mathematical formulation as follows:
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Figure 3.1: Overview of constraints, requirements and decision hierarchy

min
∑

i∈E

pisi (3.4)

s.t. si +
∑

b∈B

∑

s∈S

∑

k∈T s

∑

j∈J b,s,k

aijx
b,s,k
j = 1 ∀i ∈ E (3.5)

∑

k∈T s

∑

j∈J b,s,k

hb,sj xb,s,kj ≤ lscy
b,s ∀b ∈ B,∀s ∈ S (3.6)

∑

j∈J b,s,k

xb,s,kj ≤ ns,kyb,s ∀b ∈ B,∀s ∈ S,∀k ∈ T s (3.7)

∑

s∈S

yb,s ≤ 1 ∀b ∈ B (3.8)

∑

b∈B

∑

s∈S

Csyb,s ≤M (3.9)

si ∈ {0, 1} ∀i ∈ E (3.10)

xb,s,kj ∈ {0, 1} ∀b ∈ B,∀s ∈ S,∀k ∈ T s,∀j ∈ J b,s,k (3.11)

yb,s ∈ {0, 1} ∀b ∈ B,∀s ∈ S (3.12)
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where si are binary variables one for every site i ∈ E . They represent the skipping of

a sites and in fact si = 1 if site i ∈ E is not visited by any route. Binary variables xb,s,kj

symbolize routes and are equal to 1 if the route j ∈ J b,s,k is used. Binary variables yb,s

describe the association of a strategy with a base and are equal to 1 if strategy s ∈ S is

assigned to base b ∈ B. Binary coefficients aij take value 1 if and only if site i ∈ E is visited

by route j ∈ J b,s,k.

For convenience, in our formulation the objective function (3.4) is written as minimiza-

tion of the profit not collected during the campaign: every time a site is not visited a fee

is paid in the objective function. In particular, for our purpose this function is totally

equivalent to the maximization of the total profit and in fact a set of sites maximizing the

collected profit can then simply be found by complementing each si variable. Equations

(3.5) represent partitioning constraints, they state that none of the site is mandatory and

in fact every site i ∈ E can be either visited by a route or avoided assigning to its associated

skipping variable si the value 1. Constraints (3.5) correspond to condition VII. Collective

constraints associated with the strategy employed at every selected base are described by

inequalities (3.6), they simply indicate that the sum of the collective resource consumed

by all the routes starting from the same base (expressed by the value hb,sj ) is limited by

the resource available to the associated strategy lsc , these constraints are the translation in

mathematical language of the condition III. For every tactic k ∈ T s of the strategy s ∈ S

employed by a selected base b ∈ B only a limited number of routes can be selected as stated

by constraints (3.7) that model condition IV. Constraints (3.8) formalize that only a strat-

egy can be associated with a selected base as required by condition I. Finally inequalities

(3.9) make the budget limitations clear as requested by II. In fact the sum of all costs

associated with every strategy s ∈ S employed by every selected base b ∈ B cannot exceed

the global budget M available for the campaign. Conditions VI and V are not explicitly

stated in the model because they are implicit in the definition of the set J b,s,k.

In the remainder we discuss the approach we used to solve this problem.

3.4 Branch-and-cut-and-price

The algorithm proposed to solve the GRLPP follows the branch-and-cut-and-price approach

(see Ladányi et al. [44]) that is a generalization of the well known LP based branch-and-

bound paradigm (see Balas and Toth [45]) in which the linear relaxation of the problem,
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usually referred to as the Master Problem (MP), obtained substituting constraints (3.10),

(3.11) and (3.12) with

0 ≤ si ≤ 1 ∀i ∈ E (3.13)

0 ≤ xb,s,kj ≤ 1 ∀j ∈ J b,s,k,∀b ∈ B,∀s ∈ S,∀k ∈ T s (3.14)

0 ≤ yb,s ≤ 1 ∀b ∈ B,∀s ∈ S (3.15)

is solved via column generation (see Desaulniers et al. [55]) to obtain a valid lower bound;

additional inequalities are dynamically generated and the column-and-row generation loop

is iterated until neither useful columns nor violated cuts are found. If the solution obtained

in this way is fractional, a tree search is performed though branching, repeating the bound

computation at each node. In this section a description of the main components of the

resulting branch-and-cut-and-price algorithm, namely preprocessing, column generation,

pricing, cut generation and branching is given.

3.4.1 Preprocessing

In order to strengthen constraints (3.7) we observed that the coefficient nb,s may be reduced

computing, for every combination of bases and strategies, the maximum number of routes

that can be performed. LetMb,s be the set of all sites reachable by a route starting from

base b and employing strategy s. A site i ∈ E belongs to Mb,s if there is a feasible route

visiting i starting from base b and using the most resourceful of the routing tactics kmax ∈ T
s

available for mission strategy s. Computing tb,smin and f b,smin as the minimum service time

and minimal distance from b among all sites i ∈ Mb,s, the minimum route cost jb,smin can be

defined as

jb,smin = cs,k0 + cs,kτ · t
b,s
min + 2 · cs,kd · f

b,s
min

where all c coefficients are the smallest among all available tactics of strategy s. Then

the maximum number of route rb,smax starting from b ∈ B and employing strategy s ∈ S is

rb,smax = ⌊ ls

j
b,s
min

⌋. At this point inequalities (3.7) can be re-written as follows:

∑

j∈J b,s,k

xb,s,kj ≤ n̄s,kyb,s, (∀b ∈ B, s ∈ S, k ∈ T s) , (3.16)
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where n̄s,k = min{nb,s, rb,smax, |Mb,s|}.

3.4.2 Column Generation

Since the number of variables in the MP is exponential in the cardinality of the site set E ,

thus a column generation approach is used to find the optimal solution of the MP linear

relaxation. In fact it would be impossible to solve the problem taking into account all the

variables thus, initially, only a small subset of the variables is considered in the MP. In our

case such initial Restricted Master Problem (RMP) includes

(a) All columns corresponding to skip variables si, in fact there is only a polynomial number

of them that is |E|.

(b) All columns associated with yb,s. The number of y variables is polynomial and equal to

|B| · |S|.

(c) A subset of Jb,s,k made up of |B| · |S| · |T | · |E| columns, one for each base, strategy,

tactic and site, representing the optimal paths serving one customer at a time from

every base using every routing tactic available for every strategy.

The RMP is solved once and then the search for columns corresponding to variables xb,s,kj ∈

Jb,s,k which are not in the RMP but have a negative reduced cost begins. If no such column

exists, the solution of the RMP is optimal for the MP linear relaxation as well, and thus

yields a valid lower bound to the problem. On the contrary, if any negative reduced cost

column is found, it is added to the RMP, and the process is iterated.

In order to find variables with a negative reduced cost the column generation method

exploits the dual representation of the problem making use of the values of the dual variables

to evaluate the reduced costs of the primal variables. Rewriting constraints (3.6), (3.7), (3.8)

and (3.9) as ≥ inequalities and denoting by µ, σ, ρ and ν their respective dual vectors, the

dual GLRPP problem reads as follows:
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max
∑

i∈E

λi −
∑

b∈B

ρb −Mν (3.17)

s.t. λi ≤ pi ∀i ∈ E (3.18)
∑

i∈Rj

λi − h
b,s
j µb,sj − σ

b,s,k ≤ 0 ∀b ∈ B,∀s ∈ S,

∀k ∈ T s,∀j ∈ J b,s,k (3.19)

lscµ
b,s +

∑

k∈T s

ns,kσb,s,k − ρb − Csν ≤ 0 ∀b ∈ B,∀s ∈ S (3.20)

λi unrestricted ∀i ∈ N (3.21)

µb,s ≥ 0 ∀b ∈ B,∀s ∈ S (3.22)

σb,s,k ≥ 0 ∀b ∈ B,∀s ∈ S,∀k ∈ T s (3.23)

ρb ≥ 0 ∀b ∈ B (3.24)

ν ≥ 0 (3.25)

where λ is the dual vector corresponding to constraints (3.5) in the primal problem. It is

worth noting that although λ variables are unrestricted in sign they never take negative

values, indeed taking into account the dual objective function (3.17) and the only two

constraints (3.18) and (3.19) involving λ variables, it is never convenient for them to assume

values lower than zero.

Since to every primal xb,s,kj corresponds a constraint (3.19) in the dual problem, the

pricing problem is equivalent, from a dual point of view, to find the most violated (3.19)

constraint. Considering the dual representation of the problem, the reduced cost of the

variable xb,s,kj are as follows:

ξb,s,kj = −
∑

i∈Rj

λi + hb,sj µb,s + σb,s,k.

The coefficient hb,sj can be expanded taking into account the equation (3.1) and thus

the expression of the reduced costs can be rewritten in the following equivalent way:



CHAPTER 3. PLANETARY SURFACE EXPLORATION 62

ξb,s,kj =
∑

i∈Rj

(−λi + µb,s · dsτ · ti) + TSP b
j · µ

b,s · dsd + µb,s · ds0 + σb,s,k.

The problem to be solved in order to generate a new variable to be added to the master

problem requires to find a variable xb,s,kj ∈ Jb,s,k such that its reduced cost ξb,s,kj is minimum.

It is worth noting that since every variable xb,s,kj ∈ Jb,s,k represents a feasible route starting

from base b and using routing tactic k of mission strategy s it must satisfy conditions V

and VI. Constraints (3.5) have repercussion in the generation of the variables in fact, since

the selection of a non elementary route would immediately violate the constraint (3.5) of

the MP and since no profit is collected by visiting a site more than once, we ensure the

feasibility of every generated variable improving, at the same time, the bounds by enforcing

each route to be elementary.

Given a base b ∈ B, a strategy s ∈ S and a routing tactic k ∈ T s then the pricing

problem can be summarized as follows:

min ξb,s,kj =
∑

i∈Rj

(−λi + µb,s · dsτ · ti) + TSP b
j · µ

b,s · dsd + µb,s · ds0 + σb,s,k (3.26)

s.t. cs,k0 + TSP b · cs,kd + (
∑

i∈Rj

ti · c
s,k
τ ) ≤ ls,kr (3.27)

where the set of site Rj is to be determined.

Since dual variables µb,s and σb,s,k depend on the employed tactic of the selected strategy

at a specific base, at each column generation iteration |B| · |S| · |T s| pricing subproblems

must be solved to ensure the optimality of the solution found. Hence, given a particular

base b ∈ B, a mission strategy s ∈ S and a routing tactic k ∈ T s, the problem of finding the

minimum reduced cost column encoding a feasible route that starts and ends at base b and

employs routing tactic k of the strategy s turns out to be a well known NP-hard problem

(see Dror [57]) called Resource Constrained Elementary Shortest Path Problem (RCESPP,

see [59]). Following and extending the approach detailed by Righini and Salani [58] we

propose four pricing algorithms to solve the RCESPP: a greedy one, a tabu search one, a

heuristic dynamic programming one and an exact dynamic programming one. They are

called in sequence, only if the previous pricing algorithm cannot find any column with
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negative reduced cost. In the remainder we give a description of the pricing problem and

of the four algorithms. For the purpose of better illustrating them, we follow the reverse

order with respect to their execution.

3.4.3 Exact Dynamic Programming Algorithm

Let us consider first the case of a single base b ∈ B, a single mission strategy s ∈ S with a

single routing tactic k ∈ T s, let r and v be the two distinct copies of the base b that is the

starting and ending point of the route and let L = lskr be the amount of per-route resource

provided by the only tactic available. For the exact solution of the RCESPP we use the

technique proposed by Righini and Salani [60], which consists of a bi-directional extension

of node labels. It associates labels, encoding partial paths, with each site i ∈ E of the graph

G. Each label is iteratively considered and the corresponding path is extended to adjacent

nodes.

Label Structure. A label is defined by the tuple (W, q, C, i), where C is the cost of

the path, i is the last site visited, W is a set indicating which nodes have been already

visited and q represents the amount of resource consumed. Each label identifies a state that

represents a path of cost C from a base b to the site i using an amount of resource equal

to q and visiting all sites in W. The optimal solution of the problem is the minimum cost

path going from r to v consuming an amount of resource q ≤ L.

Extension. A label (∅, cs,k0 , 0, r) is initially created, it encodes a path associated with

the starting base, visiting no site, collecting no profit and consuming the amount of local

resource needed to set up the agent. Then, a label l′ = (W ′, q′, C ′, i′) is iteratively selected

and extended from site i′ to each, not already visited, site i′′ ∈ (E ∪ {v}) \ W ′), creating

another label l′′ = (W ′′, q′′, C ′′, i′′) as follows:

W ′′ =W ′ ∪ {i′′} (3.28)

q′′ =q′ + cs,kd · fi′i′′ + cs,kτ · ti′′

C ′′ =C ′ − λi
′′

+ µb,s · dsτ · ti′′ + µb,s · dsd · fi′i′′

where λr = λv = 0. The new state l′′ is feasible if q′′ + fi′′v ≤ L, with frv = fvr = fvv = 0,

in other words a label can be extended from i′ to i′′ if there is enough resource available to
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reach and explore j and going back to the base.

Dominance Test. During the extension of labels, a dominance test is performed to

fathom labels that cannot lead to an optimal solution. Let l′ = (W ′, q′, C ′, i) and l′′ =

(W ′′, q′′, C ′′, i) be two generic labels associated with the same site i. Then the former

dominates the latter if the following conditions hold:

W ′ ⊆ W ′′ (3.29)

q′ ≤ q′′ (3.30)

C ′ ≤ C ′′ (3.31)

Relations (3.29), (3.30) and (3.31) represent a set of necessary dominance conditions, in

fact dropping any of them introduces the possibility for an optimal label to be discarded.

Furthermore, as shown in Feillet et al. [59], it is sometimes possible to identify a site u ∈ E

that cannot be reached by any feasible extension of a given label, because of resource

limitations. In this case it is useful to insert u in the set W of that label: it is easy to

check that enlarging set W ′′ helps satisfying condition (3.29); at the same time, if a site

cannot be reached by extending label l′ due to resource limitations, it cannot be reached

by extending label l′′ since resource consumption in l′′ is not lower. Therefore, enlarging

each set W allows dynamic programming fathoming a larger number of labels and hence it

reduces the computation time.

Decremental state space relaxation. In order to speed up the solution process the

dynamic programming algorithm is executed iteratively applying decremental state space

relaxation as described in Salani et al. [80]. The idea behind such a relaxation is simple:

the state space of the problem is reduced projecting it to a smaller one by discarding the

elementary constraints, and then iteratively reintroducing them until a feasible solution for

the RCESPP is found. More formally, given a set of sites Ẽ ⊆ E called critical set the

extension rule (3.28) can be replaced with

W ′ = (W ′′ ∪ j) ∩ Ẽ (3.32)

This relaxed problem can be solved more efficiently, since more labels can be compared in

the dominance test. In order to identify a good critical node set, Ẽ is initialized to ∅ then
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the state space relaxation of the pricing problem is solved and all the nodes visited more

than once in the optimal path are added to the set Ẽ . In our algorithm, this procedure is

iterated until either an elementary path with a negative reduced cost is found or the optimal

value of the pricing subproblem is nonnegative.

Bidirectional dynamic programming. Our algorithm makes use of a bidirectional ex-

tension of labels as described in Righini et al [58]. Two kind of labels are associated with

every site: forward labels and backward labels. The forward set is initialized with label

(∅, cs,k0 , 0, r) while the backward set with label (∅, 0, 0, v). Extension and dominance phases

are then composed by two steps, in which forward and backward labels are treaten inde-

pendently. The updating rules and feasibility tests for backward extension are symmetrical.

Since the consumption of the local resource is monotone along the path, the extension of

forward and backward labels can be limited and useless duplication of paths can be reduced,

imposing that each partial path can use at most half of the available local resource, therefore

with bidirectional extension a state s, associated with either a forward or a backward label,

is feasible if q ≤ L/2.

Join. In order to obtain a complete route from r to v a forward and a backward partial

path must be joined together. Each forward path (Wfw, qfw, Cfw, i) can be joined with a

backward path (Wbw, qbw, Cbw, j) if the complete path is elementary and the total consump-

tion of resource does not exceed the amount of available resource. These two conditions

can be formally stated as:

Wfw ∩Wbw = ∅

qfw + fij · c
s,k
d + qbw ≤ L

If both conditions are satisfied the path from r to v is feasible and the values W, q, C of the

corresponding label can be computed as follows:

W =Wfw ∪Wbw

q = qfw + fij · c
s,k
d + qbw

C = Cfw + fij · µ
b,s · dsd + µb,s · ds0 + σb,s,k + Cbw
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The join operation is run when no more feasible extensions can be performed, it generates

a complete path (W, q, C, v) representing a feasible solution for the RCESPP. Among all

the paths the minimum cost path after join is an optimal solution of the pricing problem.

Aggregated pricing algorithm. Since in our problem the reduced costs associated with

the routes to be generated depend on the chosen base and the employed tactic of the

selected strategy, in principle it would be necessary to execute the pricing algorithm for

each combination of b ∈ B, s ∈ S and k ∈ T s. Instead, applying a technique called

aggregated pricing described by Bettinelli et al. [81], our algorithm is able to perform a

single passage for all the bases reducing the total number of iterations needed to |S| × |T s|.

In order to optimize all the bases at the same time the site state space described by a label

needs to be enlarged adding different reduced costs Cb and resource consumption qb for

every base b ∈ B. When a forward label is extended from a site i to a site j and qfwb > L/2

for a certain b ∈ B, the path is not feasible for base b: thus qfwb is set equal to +∞ . For

what concerns domination rules, whenever two labels l′ and l′′ satisfy conditions (3.29),

(3.30) and (3.31) for a particular base b, resources q′′h and C ′′
h are set to +∞, as label l′′ can

never yield an optimal path for base b. A forward label is fathomed when, due either to

extensions, feasibility checks or dominance, it has qfwb > L for every b ∈ B. This technique

is then coupled with bidirectional dynamic programming as described above.

3.4.4 Heuristic Dynamic Programming

A heuristic algorithm for solving the RCESPP is obtained with a small modification from

the exact dynamic programming algorithm presented in the previous section. The label

structure, extension and join rules are the same as in the exact algorithm but dominance

conditions are different. In fact in the heuristic algorithm condition (3.29) is discarded and

so given two generic label l′ = (W ′, q′, C ′, i) and l′′ = (W ′′, q′′, C ′′, i) the first dominates the

second if:

q′ ≤ q′′

C ′ ≤ C ′′

This simplified dominance test allows for the fathoming of several labels and reduces the

computational time of the algorithm but at the same time it cannot guarantee optimality.
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3.4.5 Tabu Search

Being able to generate a good set of different solutions, that is applying the so-called

multiple pricing technique, turned out to be useful in column generation methods as shown

by Archetti et al. [67]. We therefore implemented the following algorithm based on the

combination of constructive heuristics and tabu search for the RCESPP. It starts from an

optimal RMP fractional solution, heuristically identifies good RCESPP solutions and tries

to improve them.

Route construction. The route construction phase identifies a subset P of routes whose

columns are in the RMP and tries to build a feasible MP solution from them.

Column filtering. The RMP columns are sorted by reduced cost using a priority

queue mechanism. Only the initCols columns with the minimum reduced costs are kept.

Mission Strategy Selection. Since the number and the type of routes that can

be selected depends on both the bases opened and the strategies employed at first the

algorithm evaluates all the yb,s variables. They are sorted in descending order with respect

to the value they assumed in the last RMP fractional solution. Then yb,s variables are set

to 1 in a greedy way following this order; whenever setting to 1 a particular yb,s variable

violates constraints (3.8) or (3.9), such a variable is set to 0. Let Y be the subset of pairs

(b, s) with b ∈ B and s ∈ S having yb,s = 1 found in this way. In an intuitive way the set Y

can be perceived as the set of y variables with maximum LP value that could assume value

1 at the same time in the RMP.

Initial Columns Pool. All the xb,s,kj with (b, s) 6∈ Y are discarded. The remaining

ones are sorted in descending order with respect to their value in the last RMP fractional

solution, and set to 1 in a greedy way following this order. Whenever setting to 1 one of

them violates constraints (3.6) or (3.16), such a variable is set to 0. Let P be the set of

routes having the corresponding xb,s,kj variables to 1 after this step. It is worth noting that

all variables added to P have reduced cost equal to zero since they were associated with

basic columns in the solution of the computed LP relaxation of the RMP.

Solution feasibility. The pool P of columns found in the previous step does not

necessary fulfill constraints (3.5) in fact a sites i ∈ E may be covered by more than one
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column in P . For this reason the algorithm removes sites from routes encoded by variables

in the pool until no site is visited more than once. This deletion is done, without route

reoptimization, by removing the site from the route in which such a removal would be the

cheapest in term of reduced cost increase.

Solution improvement. At the same time, the routes in P may not cover all the

sites; therefore the algorithm tries to insert every node not covered in any of the routes in P

following the lexicographic order and using a best insertion strategy. Among all possibilities,

if any, for visiting a site extending a route in the pool, the combination of route and position

inside the route that maximize the decrement in the reduced cost of the selected variable is

chosen. Finally before moving to the tabu serach algorithm the relocation of every single site

from a route to any position in any of the other routes of the pool P is taken into account.

Once again the best relocation strategy is employed. In this case the goal is similar to the

best insertion strategy but the value to minimize is given by the difference between the new

reduced cost of the column losing a site and the reduced cost of the variable after adding

the sites to its encoded route. At the end of this procedure the set P represents the starting

solution for Tabu Search. Moreover, we have implemented a small heuristic algorithm that

tries to build out of P a complete feasible solution for the GLRPP. The algorithm makes

use of an enlarged set Pex made up of the columns in P together with the skip variables

associated with sites that are not visited in any of the routes encoded by variables in P .

Then it checks if it is possible to set all variables in Pex to 1 without violating any of the

constraints in the MP and any of the decisions imposed by the branching rules (see Section

3.4.8). If this is the case, then Pex is a complete feasible solution for the GLRPP and if its

value is better than the current upper bound it becomes the new best solution. Otherwise

the solution is discarded.

Tabu Search. Our algorithm is inspired by the approach proposed by Archetti et al. [67].

It works by considering in turn every route in P and trying to improve them through local

search by iteratively adding and removing sites to the corresponding route. Given a route

jb,s,k ∈ P its neighborhood is defined by two moves: Insertion and Removal.

Insertion This move takes into account all the sites i 6∈ Rb,s,k
j and tries to add a

site into the route jb,s,k using a best insertion policy. In this case the best insertion is

represented by the selection of the best site i and feasible position p between two sites in
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the route where adding i causes the maximum decrement in the reduced cost of the route

jb,s,k. The new route jb,s,k + i is obtained by joining the sites v in position p− 1 with site i

and joining i with site z in position p+ 1. The reduced cost of the new route is computed

as follows:

ξjb,s,k+i = ξjb,s,k − λi + (fv,i + fi,z − fv,z)µ
b,sdsd + tiµ

b,sdsτ .

Remove In this move all sites served by jb,s,k are taken into account and among them

the site i ∈ Rjb,s,k that minimizes the increment in the reduced cost of jb,s,k is removed from

the route. The new route jb,s,k − i is obtained joining the predecessor v of i with successor

z of i. Thus the reduced cost of the new route becomes:

ξjb,s,k−i = ξjb,s,k + λi + (fv,z − fv,i − fi,z)µ
b,sdsd − tiµ

b,sdsτ .

For every column in P a number of iterations equal to maxIter are performed. A single

iteration starts with an Insertion move. A Removal operation is then performed only if no

feasible insertion was made. Any column with negative reduced cost which is found during

an iteration is directly stored into the RMP. The tabu search algorithm makes use of two

tabu lists: TLinsert and TLremove. When an insertion move adds the site i to a column j, i

is inserted in the TLremove making i not removable from route j for a number of iterations

equal to minTabu. In a similar way when a site i is removed from a route j it is inserted

into the TLinsert and so it is not re-addable to the column j for minTabu iterations of the

algorithm.

During preliminary experiments we found that the following parameters setting gives

good results: initCols = 500, maxIter = 12 and maxTabu = 4.

3.4.6 Greedy

In the greedy pricing algorithm a single label (W, q, C, i) is considered and iteratively ex-

tended to a single node with a nearest neighbor policy. Given a base b, a mission strategy s

and a routing tactic k the set V ⊆ E of the sites reachable from i is computed. A site j ∈ E

belongs to V if both the following conditions hold:

j 6∈ W

q + bjv · c
s,k
d + fjv · c

s,k
d < L
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If V = ∅ the path is closed going back to the depot and the search is stopped. Otherwise,

among the sites in V, we select the one that minimizes the path cost, that is

j̄ = argminj∈V{−λj + µb,s · dsτ · tj + bij · µ
b,s · dsd}

the label is extended to node j̄ using the same update rules described for the exact pricing

algorithm, and we iterate. This greedy algorithm is repeated for every possible combination

of base b ∈ B, mission strategy s ∈ S and routing tactic k ∈ T s.

3.4.7 Additional Inequalities

In order to improve the lower bound given by the optimal solution of the MP additional

cuts are dynamically generated and inserted into the Master Problem. In particular we have

taken into account two families of inequalities: a special case of the subset-row inequalities

introduced by Jepsen et al. [64] in which only subsets made up of three rows are considered

and consistency cuts (see [82]) customized for the specific problem.

Subset-row inequalities

The idea behind these cuts is the following: for every set of three sites there must be at

most a single route visiting at least two of them. More formally, let G = {G ⊆ E : |G| = 3}

be the set made of all possible clusters of three sites. For G ∈ G let J(G) ⊆ J the set of

all routes, regardless of their starting base, mission strategy and routing tactic, that visit

at least two of the three sites belonging to G. Then the following are valid inequalities:

∑

j∈J(G)

xj ≤ 1 ∀G ∈ G (3.33)

Although the number of these inequalities is polynomial (|E|3), in very large instances,

involving hundreds of sites, the computational time required for their separation is not

negligible. To speed up the separation process only a subset of the site set Es ⊆ E is

taken into account for the generation of the cluster set C, in particular a site i ∈ E belongs

to Es if the value of its associated skip variable si is strictly lower than 1 in the last

LP iteration. In the worst case |Es| = |E| but when only a subset of sites in E can be

reached from a base, that is usually the case in planetary space exploration, this method

can greatly reduce the number of triplets to be taken into account without weakening the
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completeness of the separation procedure. Moreover, a further reduction in the size of C

can be achieved by taking into account every possible triplet of nodes in E . Let us consider

a triplet β = (a, b, c) : a, b, c ∈ Es, if none of the sites in β is reachable, due to local resource

limitations, from any other of the sites in β starting from any base and using any strategy

and tactic then this triplet is useless and is not inserted in the set G. It is worth noting

that, since the outcome of this second method does not depend on the value of any variable,

it can be executed in a preprocessing phase leading to a permanent reduction in the |G|.

The introduction of these additional inequalities causes the alteration of the pricing

subproblem and therefore it requires the modification of the pricing algorithms to take into

account the values of the corresponding dual variables. In particular, called P the index

set of the valid subset row inequalities added to the MP, the state label used in the exact

dynamic programming procedure has to be extended with the introduction of a new variable

zp for every additional cut p ∈ P to handle its associated negative dual value ψp and the

extension, dominance and join rules have to be modified.

In details, given label l′ = (W ′, q′, z′p, C
′, i′), label l′′ = (W ′′, q′′, z′′p , C

′′, i′′) and defining

W̄ ′′ ⊂ W ′′ as the set of all sites visited along the path encoded by label l′′ without the

inclusion of unreachable sites coming from the application of the technique by Feillet et

al. [59], the extension of label l′ to l′′ is done in the following way:

W ′′ =W ′ ∪ {i′′}

z′′p =|Gp ∩ W̄
′′|mod 2 ∀p ∈ P

q′′ =q′ + cs,kd · fi′i′′ + cs,kτ · ti′′

C ′′ =C ′ − λi
′′

+ µb,s · dsτ · ti′′ + µb,s · dsd · fi′i′′ −
∑

p∈P

ψp⌊
|Gp ∩ W̄

′′|

2
⌋

where i′ 6= i′′ and Gp is the subset of E representing the triplet of sites associated with

subset-row inequality p ∈ P. Dominance rules have to be relaxed since the cost of a path

is no longer monotonic and so label l′ dominates l′′ if:

W ′ ⊆ W ′′

q′ ≤ q′′

C ′ −
∑

p∈V

ψp ≤ C
′′
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with i′ = i′′ and V = {v ∈ P : ψv ≤ 0, z′v > z′′v}. Finally the values of zp ∀p ∈ P have to be

taken into account when two partial paths are joined together to compose a single complete

route and in particular we check if z′p = 1 ∧ z′p = 1 ∀p ∈ P the value ψp is subtracted from

the cost of the route.

Consistency Cuts

Unlike the subset-row inequalities, which focus only on the routing part of the problem,

these inequalities deal with the very location-routing nature of the problem enforcing the

consistency between every route and its associated base. They come from the observation

that ∀b ∈ B, ∀s ∈ S, ∀k ∈ T s the value of every variable xb,s,kj with j ∈ J b,s,k can never

exceed the value of its associated location variable that is yb,s. This observation leads to

the formalization of following constraints:

xb,s,kj ≤ yb,s ∀b ∈ B, ∀s ∈ S, ∀k ∈ T s, ∀j ∈ J b,s,k (3.34)

These additional inequalities are not in the original formulation of the GLRPP in fact they

are not necessary to describe a feasible integer solution. On the other hand they are able to

cut out a lot of fractional solutions that are feasible with respect to the constraints in the

MP. In particular, focusing on constraints (3.7) and their improved version (3.16) it is easy

to see that there are solutions, as the one described in Figure 3.2, which are feasible for

these constraints but become infeasible if the constraints (3.34) are introduced. It is worth

noting that the consistency cuts cannot be used as replacement for the constraints (3.16)

since they do not carry any information on the maximum number of routes that can be

performed using a particular tactic k of a mission strategy s. Since there is one consistency

cut for every variable these inequalities are dynamically generated and added to the problem

every time a new column enters into the RMP. The introduction of these constraints has

an impact on the pricer subproblem, in fact the values of dual variables associated with

constraints (3.34) have to be taken into account during the route generation. The approach

followed in order to deal with these additional dual variables requires the modification of

the pricing algorithms and in particular of the dominance and join rules described in the

Section 3.4.3.

Let ηj ∀b ∈ B, ∀s ∈ S, ∀k ∈ T s, ∀j ∈ J b,s,k be the dual variables associated with the

consistency cuts. When checking if a label l′′ is dominated by a label l′, we must take into
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y1,1= 0,5
x1

b,1,1 = 1

x2
b,1,1 = 1

n1,1= 4 

Figure 3.2: Consistency cuts: a solution, feasible for the MP, that would be discarded using
the custom consistency cuts

account the maximum value ηmax among the dual variables associated with consistency

cuts involving xb,s,kj variables that encode a route which is either equal to the partial path

described by the label l′ or can be built by repeated extension of this partial path. In

particular l′ = (W ′, q′, C ′, i) dominates l′′ = (W ′′, q′′, C ′′, i) if the following conditions hold:

W ′ ⊆ W ′′ (3.35)

q′ ≤ q′′ (3.36)

C ′ + ηmax ≤ C
′′ (3.37)

The computation of ηmax may be very time expensive and so, in order to minimize the

impact of the consistency cuts on the global performance of our algorithm, we have im-

plemented a custom data-structure (whose detailed description is reported in Appendix B)

similar, in principle, to a search tree. In the join phase we have to check if the complete

path described by the union of l′ and l′′ represents a route encoded by a variable xb,s,kj that

belongs to a consistency cut, in that case the associated dual variable has to be added to

the cost of the complete path. In this case the path generated by l′ ∪ l′′ can be discarded,

in fact, since every variable xb,s,kj involved in a consistency cut is in the RMP, it repre-

sents a route encoded by a variable already in the problem. Despite the fact that the idea

behind these cuts is not entirely new their implementation in a branch-and-cut-and-price

algorithm, to the best of our knowledge, has never been attempted before. The introduction
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of consistency cuts brings in a structural modification of the general branch-and-cut-and-

price framework as presented in Section 1.3. In fact, when consistency cuts are employed,

in the pricing stage both variables and inequalities are generated contradicting the original

branch-and-cut-and-price scheme in which additional inequalities are only found in the cut-

ting stage. In particular, in our implementation, a consistency cut is generated and inserted

in the RMP every time a new variable with negative reduced cost is found. Moreover, it

is worth noting that, although in this section we only discussed the application of consis-

tency cuts to the GLRPP, this same method can be followed to introduce such constraints

in any column-generation-based algorithm for location and routing problem with a similar

structure.

3.4.8 Branching

In oder to recover the integrality when a fractional solution arises at the end of the root

node five different branching strategies have been designed. They are considered in the order

presented below: branching is executed using the first applicable rule. In the following we

indicate as ȳ, x̄ and s̄ the values taken by the variables in the optimal solution of MP.

Branching on Strategies. Among all yb,s variables the fractional variable yb
′,s′ whose

value ȳb
′,s′ is closest to 0.5 is selected. Then a binary branching is performed creating two

nodes: in the former it is imposed that yb
′,s′ = 1 and all yb,s = 0 ∀(b, s) 6= (b′, s′) in the

latter child node yb
′,s′ takes value 0. This branching rule does not require to modify the

branching subproblem and the associated algorithms, in fact all y variables are already in

the RMP and are not dynamically found via column generation.

Branching on Skip Sites. If all ȳb,s values are integer ∀b ∈ B, s ∈ S a second branching

rule is taken into account. Let si be the variable whose value is fractional and closest to 1.

The branching is performed in the following way: two child nodes are generated and in the

first the visit of the site i is forbidden imposing si = 1 on the contrary in the other node

si = 0 and therefore the site i must be visited.

Branching on Number of Routes. When all si are integer ∀i ∈ E a third branching

policy is used. Let mb,s,k the number of routes starting from base b ∈ B, using routing tactic

k ∈ T s of mission strategy s ∈ S. The value mb,s,k is computing as the sum of the values
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taken by all the j ∈ J b,s,k in the optimal MP fractional solution that is
∑

j∈J b,s,k x̄
b,s,k
j .

Then computed all mb,s,k for every combination of b ∈ B, s ∈ S, k ∈ T s a binary branching

is executed on themb,s,k closest to 0.5. Two nodes are generated, in the first it is imposed to

use at least mb,s,k+1 variables belonging to J b,s,k while in the other the maximum number

of routes starting from base b ∈ B, using routing tactics k ∈ T s of mission strategy s ∈ S

is limited to nb,s,k. This result is obtained modifying the left and right hand side of the

constraint (3.7) corresponding to the selected b, s and k, in particular in the first case the

modified constraint becomes as follows:

mb,s,k ≤
∑

j∈J b,s,k

xb,s,kj ≤ ns,kyb,s

in the other node instead the constraint is

∑

j∈J b,s,k

xb,s,kj ≤ mb,s,kyb,s.

This branching technique leaves the pricing subproblem unchanged: dual variables σb,s,k

still appear as constants in the objective function of the pricing problem, but they are now

unrestricted in sign. No modification in the pricing algorithms is required to handle this

branching technique.

Branching on Arcs. When the number of routes used in the solution is not fractional

branching on an arc value is considered. We choose the site i ∈ E that is split among the

largest number of routes in the optimal fractional solution of MP and that has at least two

open outgoing arcs. Then we forbid half of its outgoing arcs to be used in the first child

node, and the other half to be used in the second child node. To handle these branching

decisions in the pricing problem it is enough to set travel time of forbidden arcs to +∞.

Branching on Routes Finally when none of the previous rules can be applied branching

on variables encoding routes is performed. Among all x variables in the RMP let xī be the

one whose value, in the optimal LP solution of the MP, is fractional and closest to 0, 5.

The branching is performed in the following way: two children nodes are generated. In the

former the usage of the route xī is forced setting xī = 1, while in the latter the route xī is

forbidden imposing xī = 0.
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Branching Tree Exploration Strategy. The iterative application of the four previously

described branching rules produces a branching tree that needs to be visited in order to

find an optimal integer solution. The exploration of the search tree is performed using a

strategy mixing depth first and best bound first search. In particular the first two branching

rules assign a higher priority at the first child that, consequently, is always visited before

the second one; the remaining two rules assign equal priority to the children, and therefore

they are visited in best bound order.

3.4.9 Primal Heuristic Algorithm

Although the variables in the restricted master problem does not describe the complete

solution space, an appropriate subset of them may represent a feasible integer solution

for the original problem. In order to quickly find good primal solutions a simple greedy

algorithm is executed once for every node of the search tree. This procedure consists of

three phases, in the first phase to every base the most promising strategy is assigned then

for every opened base a set of routes complying with the employed strategy is selected and

finally the last phase tries to ensue the feasibility of the solution. In details:

Mission Strategy Selection. In the first phase we build the set Y of pairs (b, s) rep-

resenting open bases and their corresponding mission strategies, exactly as described in

Subsection 3.4.5. At the end of this phase all the xb,s,kj with (b, s) 6∈ Y are discarded.

Route Selection. In the second phase we iteratively compute a potential profit p̄b,s,kj =
∑

i∈Rj
pi for all remaining xb,s,kj variables, and, in a greedy way according to their potential

profit, we set to 1 the variable having maximum p̄b,s,kj which does not yield a violation of

constraints (3.5), (3.6) and (3.16), until no more variables can be set to 1 without making

the solution infeasible.

Solution feasibility. In the last phase, in order to achieve a feasible solution with respect

to constraint (3.5), all skip variables si corresponding to sites not covered by any of the

routes selected in second phase are set to 1. It is worth noting that this procedure could

produce solutions that, in some node of the search tree, do not match branching decisions.

In this case the algorithm fails.
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3.5 Experimental Analysis

Implementation. The algorithms have been implemented in C++, using SCIP 2.1 [69] as

branch-and-cut-and-price framework linked to CPLEX 12.2 as a pure LP solver. SCIP takes

care of the management of the column and row pools and it is able to remove and re-insert

them as needed. All presolving algorithms and the automatic cut generator embedded in

SCIP along with the following general purpose heuristic algorithms: shift-and-propagate,

fix-and-infer, int-diving and shifting have been disabled as they were considered either

incompatible or useless for our problem. All remaining SCIP parameters were kept at their

default values including the branching tree exploration strategies.

The experimental campaign has been performed on a single core of a PC Intel R©

Core 2 DuoTM CPU T7300 (2.00 GHz) with 4 GB RAM and running Ubuntu 10.04 operating

system. A time limit of 1 hour was imposed to each run.

Benchmark Instances. For testing purpose we have generated 216 GLRPP instances

taking the case study presented by Ahn et al. [42]. The planetary surface considered in our

instances is always included in a 3400[Km] radius that is roughly the equatorial radius of

Mars, and in this surface are located, randomly using an uniform distribution, a number of

potential bases |B| between 10 and 100 and a number of sites |E| from 100 to 1000. Our

instances take into account two mission strategies (S = {1, 2}): a standard strategy (Std.,

s = 1) and an orbiting depot strategy (Orb.Dpt., s = 2). Only one routing tactic, called

standard tactic (Std.R.T., k = 1), is associated with the standard strategy, while two tactics,

namely standard (k = 1) and depot-assisted (Dpt.Ass.R.T., k = 2) are associated with the

orbiting depot strategy. All the parameters associated with these mission strategies and

routing tactics are reported in Table 3.5. For each combination of |B| and |E|, six instances

are created, in which the budget is fixed to maxs∈S{C
s} · |B| · g/5 for g ∈ {0.5, 1, 2, 3, 4, 5}.

3.5.1 Lower Bound

In order to evaluate the quality, in term of both efficiency and efficacy, of the additional

inequalities (see section 3.4.7) we have tested four different configurations of our algorithm:

• No Cuts (NC): no additional inequalities are taken into account in this configuration.

• Subset-row Inequalities (SI): only the subset-row inequalities are used in this config-

uration.
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Strategy
Standard Orbiting Depot

Collective Constraint
Resource Exploration Time Exploration Time
Coefficients d10 = 0 [hr] d20 = 0 [hr]

d1d = 0.2 [hr/km] d2d = 0.2 [hr/km]
d1τ = 3 [hr/hr] d2τ = 3 [hr/hr]

Limit l1c = 2100 [hr] l1c = 2100 [hr]

Local Constraint
Routing Tactics I

Standard Standard
Single Route Constraint
Resource Fuel Fuel

Coefficients c1,10 = 0 [kg] c2,10 = 0 [kg]

c1,1d = 1.1 [kg/km] c2,1d = 1.1 [kg/km]

c1,1τ = 5.7 [kg/hr] c2,1τ = 5.7 [kg/hr]

Limit l1,1r = 677 [kg] l2,1r = 677 [kg]
Max. Number of Routes n1,1 =∞ n2,1 =∞
Routing Tactics II

Depot-Assisted
Single Route Constraint
Resource Fuel

Coefficients c2,20 = 0 [kg]

c2,2d = 1.1 [kg/km]

c2,2τ = 5.7 [kg/hr]

Limit l2,2r = 1286 [kg]
Max. Number of Routes n2,2 = 4

Strategy Cost C1 = 54 [MT] C2 = 64 [MT]

Table 3.1: Characteristics of Instances.
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• Consistency Cuts (CC): in this configuration only the consistency cuts are taken into

account.

• All Cuts (AC): both subset-row inequalities and consistency cuts are considered in

this configuration.

The algorithm has been executed on all the instance in the test set stopping the computation

at the root node, in this way we are able to easily compare the values of the lower bounds

and the computational effort required to handle the additional inequalities. In Tables 3.2,

3.3 and 3.4 we present a summary of the comparison between the quality of the dual bound

computed with all the four different settings of the cut generator. In particular, the Table

3.2 shows the average, maximum and minimum percentage improvement in the value of the

lower bound, going from any configuration to any other. Table 3.3 contains the average,

maximum and minimum number of additional inequalities added to the RMP using SI,

CC and AC, it is worth noting that every time a new inequality is found the problem is

re-optimized. Finally, the computational times, average, maximum and minimum used by

every configuration of the cut generator, are reported in Table 3.4.

Our algorithm, thanks to the quickness of the pricing procedures, was able to compute

valid lower bounds for every instance in less than 200 seconds. From these results it is

clearly visible that the consistency cuts shows the best ratio between improvement and

computational effort while the subset row inequalities are only marginally useful providing

a maximum of 1.84% increase in the value of the lower bound. It is worth noting that,

as reported in Table 3.4, the CC configuration is often faster than the NC, in fact with

the addition of the consistency cuts the route node can be solved with less LP iterations

and, consequently, it requires to solve less pricing subproblems. Combining both additional

inequalities together produces a configuration (AC) that on the one hand is able to find the

best lower bound in all instances but one. On the other hand this setting is the most time

expensive raising the computational time by more than one and an half time in respect to

the NC configuration and requiring almost twice the time spent by the SI setting. Analyzing

the efficacy of the cuts, with respect to the structure of the instance, we found out that the

consistency cuts are more useful when the problem has a limited budget (g ∈ {0.5, 1, 2})

while the subset-row inequalities can give a noticeable contribution in the instance with

g ≥ 4. This behavior does not come unexpected. In fact, when only a limited budget

is available the location nature of the problem prevails on the routing part accentuating
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the importance of the consistency cuts. In such instances, indeed, to maximize the profit

collected it can be useful to partially use several bases assigning, in a fractional way, a

strategy to a base (yb,s ∈ (0, 1)) in order to reach the majority of the most profitable

clients. The consistency cuts explicitly forbid such a behavior and, consequently, give a

fundamental contribution in raising the value of the lower bound. On the contrary with a

big budget a lot of the potential bases (all if g = 5) can be opened (yb,s = 1) shifting the

focus of the problem from the location to the routing part, in this case the contribution

coming form the subset row inequalities can be hard to compensate using only consistency

cuts. Moreover, analyzing the structure of the routes used in the feasible solutions we have

seen that they are usually very short: almost half of the routes represents one-site route

and the others, on average, visit from two to five sites before coming back to the starting

base. This observation helps in explaining the weakness of the subset row inequalities, in

fact all the single-site routes are not taken into account by these cuts.

Imp. % Configurations (From-To)
NC-SI NC-CC NC-AC SI-CC SI-AC CC-AC

Avg 0.07 6.45 6.51 6.38 6.44 0.06
Max 1.84 150.49 150.49 150.49 150.49 1.08
Min 0.00 0.00 0.00 -0.46 -0.20 0.00

Table 3.2: Quality of the Lower Bound - Root Node

Time [s] Configurations
SI CC AC

Avg 1.50 736.69 738.57
Max 14.00 4818.00 4821.00
Min 0.00 37.00 37.00

Table 3.3: Number of Additional Inequalities - Root Node

Among the four configurations proposed two, NC and SI, seem to be pretty useless,

in fact there is no point in not using the consistency cuts if they provide better results

without raising the computational time. On the other hand the contribution of the subset

row inequalities is, with very few exceptions, so small to hardly justify the computational

effort paid. Although the best lower bounds are, obviously, found using the AC setting, a

hard price is paid in term of computational time: this configuration requires almost three
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Time [s] Configurations
NC SI CC AC

Avg 1.40 2.80 1.37 5.44
Max 33.22 83.50 27.18 188.53
Min 0.01 0.01 0.01 0.01

Table 3.4: Computational Time - Root Node

times the computational times employed by the CC configuration. We have then observed

that the best results for this problem can be found using a mixed configuration in which

AC is employed only at the route node and then, if the solution is fractional, we switch to

CC for solving the other nodes in the branching tree. Taking into consideration the results

presented in this section in the next one we analyze the quality of the primal solutions.

3.5.2 Primal Heuristic Algorithm Evaluation

To evaluate the performances of our primal procedure we have followed a similar way as

in the analysis of the lower bound quality. For every configuration of the cut generator

taken into consideration in the previous section, all instances were solved using three dif-

ferent primal politics: only with SCIP heuristics (SH) see Achterberg [69] and the online

documentation [83], only with our greedy algorithm (GH), see section 3.4.9, and with both

(BH). The computation was stopped at the end of the route node, that is after the first run

of the procedure presented in Section 3.4.9. This allows for a fair comparison between the

result achieved by the SCIP heuristics with the solutions found by our primal heuristic algo-

rithm. Moreover, since all primal heuristics taken into account work only within the space

described by the variables in the RMP, we can evaluate if the introduction of additional

cuts has any impact on the primal solutions found.

In Table 3.5 a comparison between any couple of primal politics is reported, in particular

the table reports the average, maximum and minimum improvement in the quality of the

primal bound found at the route node for every configuration of the cut generator. The

comparison between SH and GH shows that GH is able to find the best feasible solution on

more than 90% of the instances and that, on average, the value of these solutions is better

by 3% than the ones found by SCIP. Combining our procedures with the SCIP heuristics

does not raise too much the quality of the solutions and in fact the improvement is, on

average by less than 1%.
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Imp. % Configurations
(From-To) NC SI CC AC

Avg 3.99 3.04 2.67 2.58
SH-GH Max 228.43 230.57 208.43 208.43

Min -0.29 -0.29 -7.06 -7.06

Avg 3.99 3.05 2.76 2.69
SH-BH Max 228.43 232.19 208.43 208.43

Min 0.00 0.00 0.00 0.00

Avg 0.00 0.01 0.09 0.11
GH-BH Max 0.29 0.54 7.59 7.59

Min 0.00 0.00 0.00 0.00

Table 3.5: Primal Heuristics Comparison

It is worth noting that different configurations of the cut generator can lead to different

primal solutions at the end of the root node as reported in Table 3.6. This table displays

for every primal politic the variation in the quality of the solution found going from any

configuration of the cut generator to any other. On average, it can be said that using

configurations with stronger cuts leads to better primal solutions but it must also be noted

that there are exceptions, in fact a few instances shows a different behavior in which the

introduction of additional cuts has a negative impact on the performance of any of the

primal heuristics employed.

Primal Imp. % (From Config. - To Config.)
Politics NC-SI NC-CC NC-AC SI-CC SI-AC CC-AC

Avg 0.90 2.92 3.04 2.10 2.22 0.12
SH Max 61.65 211.33 211.33 211.33 211.33 6.19

Min 0.00 -61.59 -61.59 -61.59 -61.59 0.00

Avg -0.01 1.07 1.10 1.09 1.12 0.03
GH Max 4.65 34.72 34.72 34.72 34.72 5.68

Min -4.09 -9.38 -12.39 -9.38 -12.39 -7.34

Avg -0.01 1.16 1.21 1.17 1.22 0.05
BH Max 4.65 34.72 34.72 34.72 34.72 5.68

Min -4.09 -9.38 -12.39 -9.38 -12.39 -7.34

Table 3.6: Primal solution quality with different cut generation politics

It it evident from this analysis that our custom algorithm is fairly better than any of the

SCIP heuristics. This claim is even more true if we consider that the computational time
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spent by a single iteration of our greedy algorithm is, on average, lower than a tenth of a

second and it is never higher than half a second and that is, roughly, the same amount of

time spent in a single iteration of one of the most time consuming heuristics embedded in

SCIP. Anyway, considering the quickness of these algorithms the BH politic assures to find

always the better primal solution with only a small additional effort. This can be useful

when a fractional solution arises at the end of the root node, in fact improving the primal

bound allows for the fathoming of more nodes of the branching tree.

Given the results of this and the previous section we identified the combination of AC

cut generator and BH primal politic as the most promising setting in term of quality of the

solution achieved at the end of the route node and CC + BH as the most useful setting

during the exploration of the possible branching tree. For this reason, in the reminder, we

focus our attention on the efficiency of the pricing algorithm and on the analysis of the

overall performance of our branch-and-price-and-cut algorithm using only these settings.

3.5.3 Pricing Algorithms

Tables 3.7 and 3.8 reports, respectively, a measure of the efficiency and efficacy of our four

pricer algorithms (see Sections 3.4.3, 3.4.4, 3.4.5, and 3.4.6). As is clearly visible in Table

3.7 all pricing algorithms are pretty fast, the average computational time is in the order of

magnitude of tenths of seconds while the maximum time for a single iteration is little above

half a second. Among those algorithms the tabu search is the most time expensive requiring

always at least as much time as the exact dynamic programming procedure. However, the

extraordinary quickness of the dynamic programming algorithms is mainly to be credited,

as already noted in Section 3.5.1, to the very strong limitations that the problem imposes on

the length of the routes; this, combined with the sophistication of our dynamic programming

approach, leads to procedures that can be executed very quickly.

Pricers
Greedy Tabu Heur. DP Exact DP

Avg 0.01 0.05 0.02 0.03
Sec./Iter. Max 0.21 0.73 0.29 0.46

Min 0.00 0.00 0.00 0.00

Table 3.7: Pricer Performances: Time Single Iterations

From the efficacy point of view Table 3.8 reports, for a single iteration of every pricing
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algorithm, the average and maximum number of variables added to the RMP. The tabu

search procedure turns out to be responsible for the introduction in the RMP of the majority

of the columns and in particular, analyzing the structure of the solutions, it must be said

that the variables found by the tabu serach algorithm compose a large portion of the best

solutions the branch-and-cut-and-price algorithm is able to achieve within the time limit.

As to the other pricers, the greedy algorithm is mainly used in the first iterations when the

dual values show a very high variability and is able to add a lot of good variables that help

in stabilizing the value of the dual variables. Finally the dynamic programming procedures

are employed in the last iterations and introduce in the MP only few columns which are

needed to close the residual dual gap and to prove the optimality of the current primal

solution.

Pricers
Greedy Tabu Heur. DP Exact DP

N Sol./Iter. Avg 0.41 1.28 0.10 0.01
Max 4.36 19.00 1.00 0.12

Table 3.8: Pricer Performances: Number of Solutions per Iteration

3.5.4 Overall Performance

An overview of the general computational results is presented in two tables. On the former

Table 3.9 we reported results aggregated by sites; each row contains average results over

instances having same |E| and same g. In the latter, Table 3.10, the results are aggregated by

bases leading to rows showing average results over instances with the same |B| and g. In both

tables the columns have the same meaning: in the first column (Inst.) we indicate instance

type in the format S|E|.g for Table 3.9 or B|B|.g for Table 3.10; then five columns report the

duality gap at the root node (Gap R.), the duality gap at the end of the computation (Gap

F.), the number of instances solved to proven optimality (Opt.), the number of branch-and-

bound nodes explored (B.B.N.) and the CPU time spent. Moreover, in both table the rows

marked with “AVG” contain the total number of instances solved and the average results for

instances with respectively the same number of sites and bases. Detailed results for every

single instance are reported in Appendix D. As expected the higher is the number of bases

and sites involved in an instance the more difficult is its solution. However, bases and sites

have a different impact on the performances of our algorithm. In particular the number
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of bases seems to have a greater influence on the Master Problem, while increasing the

number of sites leads to more difficult pricing subproblems. This is clearly visible looking

at the B.B.N. and GapR % columns, they show that on the one hand raising the number of

sites does not impact too much the quality of the solution at the end of the root node, but

decrease the number of nodes visited in the search three since every node requires to solve

harder pricing subproblems. On the other hand, the more the number of bases is increased

the larger becomes the gap at the root node, but this seems not to impact the performance

of the pricing algorithms, in fact we are able to explore larger and larger branching trees.

Moreover, as reported in Table 3.11 that shows average results aggregated by budget,

besides instance size, the budget has a huge and distinct influence on the difficulty of the

instances. The trend obtaining varying the budget looks like a parabola where the lowest

and the higher budgets leads to easier instances while the hardest ones are associated with

budget g equal to either 2 or 3. In particular when g = 5 the problems become much

easier. This behavior is easily explainable, in fact with the maximum budget all bases can

be opened and can employ the most resourceful strategy making the location part of the

problem extremely simple. Similar behavior is shown when the budget is so small that only

a few bases can be actually opened using the most limited tactics, in this case the routing

subproblems become easier requiring a little computational effort to be optimally solved.

On the contrary when the budget allows for using almost half of the possible bases, the

problems becomes much more difficult. In this case both the location and the routing parts

of the problem assume the same importance leading to almost always fractional dual bound

and requiring to branch several times before the optimal integer solution is found.

3.6 Conclusions

In this chapter we have discussed a very general logistics problem called the Generalized

Logistic and Routing Problem with Profit and its application in the context of planetary

surface explorations. We presented a mathematical model, compatible with our general

location-routing framework, that introduces the use of skip variables and we devised an

exact algorithm, based on the branch-and-price-and-cut paradigm that represents the first

attempt to solve the GLRPP to proven optimality.

Within our framework, we have implemented four different pricing procedures that are

based on the revision and extension of established techniques, furthermore two additional
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Inst. GapR.% GapF.% Opt. B.B.N. Time [s]

S100-0.5 17.23 0 6 41572 502.23
S100-1 29.72 2.16 5 45239.83 607.26
S100-2 15.98 0 6 1008.83 6.13
S100-3 9.01 0 6 164.5 1.20
S100-4 0.49 0 6 3.5 0.06
S100-5 0 0 6 1 0.06
AVG 12.07 0.36 35 14664.94 186.16

S200-0.5 12.21 1.84 5 16867.5 650.14
S200-1 26.81 7.97 4 38238.5 1292.89
S200-2 32.37 9.54 3 65065.5 2001.83
S200-3 12.69 0.38 5 28804.33 770.80
S200-4 1.26 0 6 30.5 0.62
S200-5 0 0 6 1 0.11
AVG 14.22 3.29 29 24834.56 786.06

S300-0.5 11.03 2.97 5 19873.33 1009.54
S300-1 19.17 7.33 4 37091 1833.01
S300-2 32.91 9.23 2 39632.67 2402.18
S300-3 10 0.67 5 17102 1114.04
S300-4 2.52 0 6 126.83 7.06
S300-5 0 0 6 1 0.25
AVG 12.61 3.37 28 18971.14 1061.01

S400-0.5 9.67 2.32 5 6075.17 760.39
S400-1 15.66 6.1 3 27795.17 2336.31
S400-2 30.48 13.98 2 19912 2447.49
S400-3 13.4 2.28 2 18188.33 2404.07
S400-4 4.19 0.08 5 5690.83 822.31
S400-5 0.08 0 6 32.67 4.48
AVG 12.25 4.13 23 12949.03 1462.51

S500-0.5 8.51 2.52 4 10087 1244.85
S500-1 13.68 6.39 3 15539.33 1905.51
S500-2 25.65 11.86 3 15146.17 2415.11
S500-3 13.89 1.97 3 13145 2462.40
S500-4 5.23 0 6 2882 694.05
S500-5 0.04 0 6 5.67 1.75
AVG 11.17 3.79 25 9467.53 1453.94

S1000-0.5 4.99 2.03 3 5112.83 1989.35
S1000-1 8.72 5.33 2 4565.83 2468.92
S1000-2 15.47 11.42 0 8787.5 3600.24
S1000-3 18.61 13.44 1 6242.17 3598.76
S1000-4 13.1 3.87 0 5353.5 3600.55
S1000-5 2.77 0.31 0 4638.33 3602.23
AVG 10.61 6.07 6 5783.36 3143.34

Table 3.9: Computational Results - Aggregation over Sites
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Inst. GapR.% GapF.% Opt. B.B.N. Time [s]

B10-0.5 2.30 0.00 6 28.00 1.65
B10-1 2.99 0.00 6 50.67 3.47
B10-2 3.14 0.01 5 4339.50 600.96
B10-3 2.87 0.01 5 2711.67 600.90
B10-4 0.79 0.01 5 2281.00 600.52
B10-5 0.02 0.01 5 1957.83 600.08
AVG 2.02 0.01 32 1894.78 401.26

B20-0.5 4.29 0.00 6 120.33 7.12
B20-1 5.40 -0.03 6 704.17 80.46
B20-2 6.67 0.05 5 4685.00 767.47
B20-3 5.71 0.00 6 2954.83 727.64
B20-4 2.67 0.00 5 1123.17 609.65
B20-5 0.02 0.02 5 916.00 600.17
AVG 4.13 0.01 33 1750.58 465.42

B30-0.5 7.00 0.00 6 1634.33 202.35
B30-1 10.62 0.21 5 21042.17 1375.53
B30-2 14.03 1.45 3 39971.50 2502.45
B30-3 12.39 0.62 4 17945.83 2057.86
B30-4 4.58 0.23 5 1084.00 644.54
B30-5 0.29 0.05 5 724.83 600.27
AVG 8.15 0.43 28 13733.78 1230.50

B40-0.5 8.78 0.01 5 5242.00 699.72
B40-0.1 11.38 0.75 3 37107.83 2378.63
B40-2 15.34 3.34 1 43429.00 3000.37
B40-3 12.81 2.15 3 17597.50 2160.87
B40-4 4.39 0.40 5 2669.33 890.80
B40-5 0.32 0.13 5 702.83 600.96
AVG 8.84 1.13 22 17791.42 1621.89

B50-0.5 11.72 0.49 4 24910.50 1746.58
B50-1 18.74 5.10 1 44206.00 3005.75
B50-2 26.95 9.20 1 33217.83 3001.55
B50-3 21.12 3.81 1 36761.33 3000.40
B50-4 5.25 0.68 5 2790.50 1177.03
B50-5 0.68 0.01 5 210.83 600.92
AVG 14.08 3.22 17 23682.83 2088.70

B100-0.5 29.55 11.19 1 67652.67 3499.10
B100-1 64.63 29.27 0 65358.83 3600.06
B100-2 86.73 41.97 1 23909.83 3000.20
B100-3 22.70 12.14 3 5675.17 1803.60
B100-4 9.11 2.62 4 4139.17 1202.10
B100-5 1.56 0.10 5 167.33 606.48
AVG 35.71 16.22 14 27817.17 2285.26

Table 3.10: Computational Results - Aggregation over Bases
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Inst. GapR.% GapF.% Opt. B.B.N. Time [s]

U0.5 10.61 1.95 28 16597.97 1026.08
U1 18.96 5.88 21 28078.28 1740.65
U2 25.48 9.34 16 24925.44 2145.50
U3 12.93 3.12 22 13941.06 1725.21
U4 4.47 0.66 29 2347.86 845.10
U5 0.48 0.05 30 779.94 601.48

Table 3.11: Computational Results - Aggregation over Budget

inequalities are used to improve the lower bound. One of them has been especially designed

to address the complex location-routing nature of the problem and is new in the context of

column generation based algorithms.

Our algorithm has been tested on a set of 216 containing from 10 to 100 bases and a

number of sites ranging from 100 to 1000. Our approach turned out to be successful in tack-

ling GLRPP instances of real size, finding proven lower and upper bounds for any of them,

and represents a solid starting point for further researches. Indeed the framework revealed

itself flexible enough to easily incorporate new requirements and constraints. Moreover we

demonstrate the usefulness and the tractability of the consistency cuts concluding that they

are a viable way for improving the dual bound in LRP.



Chapter 4

Drug Distribution in Case of

Emergency

4.1 Introduction

Mathematical programming models and algorithms have been successfully used for decades

to optimize operations in distribution logistics: typical examples concern freight carriers,

mail services and on-demand pick-up and delivery services.

A more recent field of investigation concerns the application of similar techniques to

the optimization of logistics operations in health care systems and emergency management.

These sectors are characterized by a larger dependency on “human factors”, such as the

behavior of the customers (which is often unpredictable), fairness in service provision (which

is not an issue in industrial logistics) and lack of reliable historical data (because of the

uniqueness of the events considered, especially in case of emergency management). In

particular in this chapter we discuss the application of operations research to the distribution

of drugs in case of emergency. Such situations are always hardly foreseeable and usually

almost impossible to avoid. In these situations only a posteriori actions are possible and

indeed the best way to handle an health emergency event, such as the release of anthrax

spores, is to set up a very efficient response system that, if something happens, is able to

provide all the required services in the most effective way. The optimization in this case is

such an essential component of a good response system that the U.S Centers for Diseases

Control and Prevention in 2007 evaluated “the timeliness of distributing antibiotics to the

general public as an effective measure against a release of anthrax” [84].

89
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The starting point for our study is a paper by Shen et al. [43], who presented a stochastic

VRP model for large-scale bioterrorism emergency which is then reformulated and solved as

a deterministic VRP with a tabu search algorithm. The original problem requires to reach

the maximum number of citizens within a specified time limit using an heterogeneous fleet

of vehicles. We expanded the problem adding a location component and then including an

additional distribution strategy in order to model more realistic situations in which multiple

distribution methodologies can be taken into account at the same time and mixed together

to maximize the fraction of the population served. In particular, we explore the option of

reaching citizens in two ways: by establishing depots, and delivering the drugs at home

using a heterogeneous fleet of vehicles, or by establishing distribution centers where the

citizens go by their own means to receive treatments or drugs.

In this way a particular combined location-routing problem arises. Even if location-

routing is a lively research area [38], to the best of our knowledge such kind of problem

has never been addressed before. We present an exact algorithm for such a problem, which

is based on column and cut generation and branch-and-bound, and where the pricing sub-

problems are solved through advanced dynamic programming techniques.

This chapter is organized as follows: in the next Section 4.2 we describe the problem

pointing out all features and requirements. The mathematical model of the problem is given

in Section 4.3 and then the solution approach is carefully reported in Section 4.4. In the last

two sections 4.5 and 4.6 the results of our test campaign and our conclusions are reported.

4.2 Problem Description

The problem we address in this chapter fits into the following scenario: in a geographical

region there has been an epidemic outbreak of a severe human disease like anthrax, human

version of swine or avian flu, etc. The region involved is partitioned in zones and for every

zone a delivery site is identified. These places represent the locations where the drugs have

to be brought, we assumed that once a delivery sites is visited all people in that zone will

get the drugs within a very short time. Among all the delivery sites a few, that will be

called potential facility locations, are selected, they are potential warehouses where the

drugs are stored and represent the potential starting points of the distribution. When a

facility location is used it can employ two different strategies to deliver the drugs to the

sites:
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Distribution Center Strategy (Figure 4.1) Facility locations using this strategy are

called distribution centers (DC). They are characterized by a capacity and a distri-

bution range. The former is an estimate of the service potential based on both the

drugs supply at that location and its ability in satisfying the requests. The latter

instead defines the maximal distance within which a distribution center can provide

its services. Locations used as DCs can be basically perceived as self-arranging fa-

cilities that are able to provide the drugs needed to a subset of delivery sites within

their range and up to their capacity. Several distribution methods can lie behind this

strategy. For instance: the use of many small vehicles one for every site; self-service

points; this overturns the usual distribution hierarchy making the clients move to get

the drugs; the use of non-conventional delivery systems as the existing postal service

to distribute drugs door to door.

Figure 4.1: Distribution Center Strategy: the dotted circle represents the range of the DC,
p is the capacity of the DC, d is the demand of the sites and the black sites are the sites
served.

Routing Strategy (Figure 4.2) This strategy comes from the classical VRP; in fact

when a facility location makes use of this strategy it is called depot. With every

depot is associated a fleet of heterogeneous vehicles with different capacities. Vehicles

are used to distribute the drugs; every vehicle can perform a single route starting from
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the depot, visiting a few delivery sites and coming back to the same depot.

Figure 4.2: Routing Strategy: three vehicles, f is the capacity of the vehicle, d is the
demand of the sites and the black sites are the sites served.

The big picture describing our problem represents a logistic system, employing a mixed

distribution strategy, that is able to choose which facility locations are useful and to select

for every chosen location the most appropriate distribution strategy (Figure 4.3).

Given the described scenario, we want to design and optimize such a logistic system

exploiting the potential of the mixed delivery strategy to bring the necessary drugs to the

population respecting all the following conditions:

I No delivery site can be visited more than once by a single route or served multiple

times by a single distribution center. Multiple visits by different routes or distribution

centers are allowed even if they do not directly improve the number of citizens served.

II No split delivery: when a delivery site is reached its demand is entirely served in a

single visit.

III If a facility location is used it can be either a depot or a distribution center, not both

at the same time.

IV The number of vehicles available, for every type of vehicles, is limited.



CHAPTER 4. DRUG DISTRIBUTION IN CASE OF EMERGENCY 93

V The total number of distribution centers that can be open is limited due to budget

restrictions.

VI Each route begins and ends at the same depot.

VII The sum of the demands of the clients belonging to the same route must not exceed

the capacity of the vehicle employed in that route.

VIII Every delivery site in a route must be visited before the deadline. The deadline repre-

sents a time limit within which the pharmacological treatments are more effective. It

is worth noting that it is not necessary for a vehicle to be back at the depot within the

same time limit.

IX The total demands of the delivery sites covered by a single distribution center must

not exceed its capacity.

X All delivery sites covered by a distribution center must be within its range.

Among all feasible distribution plans, the one that maximizes the number of citizens reached

is considered optimal. The resulting problem does not fit into the description of any classical

LRP and corresponds to the third type of problem we identified in the introduction (see

Chapter 1) that is the “Active Location Decisions” types. Indeed it requires to select not

only which locations have to be used but also, for every location opened, which distribution

strategy has to be employed and thus the location decisions may directly influence the value

of the objective function of the problem. Since this problem combines location features

with different distribution methods we decided to call it, regardless of the specific context,

Generalized Location and Distribution Problem (GLDP).

4.3 Mathematical Formulation

The GLDP for drug distribution in case of emergency can be formally described as follows.

A complete graph G = (N ,A) is given where N is the set of nodes representing the

delivery sites and A = {(i, j) : i ∈ N, j ∈ N} is the set of the arcs. With every delivery

site i ∈ N two values di and ti are associated; the former, di, represents an estimate of the

number of people served when the site is visited; the latter, ti, is the time needed to visit

the site. For every arc (i, j) ∈ A a value cij is given; it represents the time needed by a

vehicle to go from node i ∈ N to node j ∈ N .
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Figure 4.3: Mixed Strategy: combination of distribution centers and depot strategies.
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Let a subset of the delivery sites L ⊆ N be the set of the potential facility locations;

It is worth noting that this definition allows a node to be at the same time a delivery site

and a potential facility location. For every location l ∈ L two values pl and rl, respectively

the service capacity and the delivery range of the possible distribution center located in l,

are given. The value pl represents the maximum total demand that DC l can satisfy while

rl is the maximum traveling time, within which the distribution center l is able to provide

an effective service. In other words a site i ∈ N is reachable by a distribution center l ∈ L

if cli ≤ rl. Moreover, we define, for every l ∈ L, Wl as the set of all feasible clusters of

delivery sites associated with DC l. A cluster w ∈ Wl is feasible if it represents a subset of

sites Rw ∈ N that can be served together by the same distribution center, that is all sites

in Rw are within the range of l, as requested by Condition X, and the sum of the demands

of the sites in Rw must not exceed the capacity of the DC l (Condition IX). More formally

∀l ∈ L a cluster w is feasible if the following conditions hold:

Rw ⊆ N

cli + ti ≤ rl ∀i ∈ Rw
∑

i∈Rw

di ≤ pl

In our problem, due to budget limitations, among all possible locations l ∈ L at most B

distribution centers can be activated at the same time.

Moreover, since our problem involves a heterogeneous fleet of vehicles let H be the set

of vehicle types and fh and Vh be respectively the capacity and the maximum number

of vehicles available for every type h ∈ H; consequently the total number of vehicles T

composing the fleet is equal to T =
∑

h∈H Vh. A vehicle can be allocated to any possible

depot location l ∈ L and starting from there it can perform a single route. Define K as the

set of all feasible routes starting from any possible depot and using any possible vehicle, we

identify Klh ⊆ K as the set of feasible routes using a vehicle of type h ∈ H and associated

with depot l ∈ L. A route is feasible if it starts and ends at the same depot l ∈ L, as

requested by Condition VI, if the sum of the demands of the sites visited does not exceed

the capacity of the vehicle h ∈ H used, following condition VII, and if all the sites are

visited before the deadline M as stated in condition VIII. With more formality, named

Rk ⊆ N the set of sites visited along route k ∈ Klh and SP−
k the minimum traveling time
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required to visit all sites in Rk starting from the depot l, a route k ∈ Klh is feasible if:

SP−
k +

∑

i∈Rk

ti ≤M (4.1)

∑

i∈Rk

di ≤ fh (4.2)

Taken into account the goal of our GLDP that is the maximization of the population re-

ceiving the necessary drugs, the problem can be described using the following mathematical

formulation:

min
∑

i∈N

disi (4.3)

s.t. si +
∑

l∈L

∑

h∈H

∑

k∈Klh

aikzk +
∑

l∈L

∑

w∈Wl

biwyw ≥ 1 ∀i ∈ N (4.4)

∑

l∈L

∑

k∈Klh

zk ≤ Vh ∀h ∈ H (4.5)

∑

k∈Klh

zk +
∑

w∈Wl

Vhyw ≤ Vh ∀l ∈ L,∀h ∈ H (4.6)

∑

l∈L

∑

w∈Wl

yw ≤ B (4.7)

si ∈ {0, 1} ∀i ∈ N (4.8)

yw ∈ {0, 1} ∀l ∈ L,∀w ∈ Wl (4.9)

zk ∈ {0, 1} ∀l ∈ L,∀h ∈ H,∀k ∈ Klh (4.10)

Our model makes use of three different sets of binary variables. For every i ∈ N there

is a variable si representing the skipping of a delivery site: it takes value one if site i is not

visited and zero otherwise. With each cluster w ∈ Wl is associated a binary variable yw:

it assumes value one if the facility location l ∈ L is used as a distribution center serving

the sites belonging to the cluster w ∈ Wl, zero otherwise. Finally a variable zk for each

k ∈ Klh represents a route using vehicle type h ∈ H and starting from a depot located at

the facility location l ∈ L. It takes value one if this route is employed and zero otherwise.

In addition two binary coefficients aik and biw are considered. The former, aik, takes value
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one if site i ∈ N belongs to route k ∈ Klh and zero otherwise; in a similar way the latter,

biw, assumes value one if site i ∈ N belongs to cluster w ∈ Wl and zero otherwise.

In our problem the objective function (4.3) is written in the reverse form as the mini-

mization of the demands not satisfied; no site has to be compulsorily visited and there are

no prizes in serving the sites but we pay a fee proportional to the demand every time we

are not able to deliver the drugs where requested. Constraints (4.4) are covering constraint

stating that either a site is served by at least a route or distribution center or its associated

skip variable must take value one. It is worth noting that although these constraints allow

for multiple visits of the same site, visiting a site more than once does not improve the

value of the objective function. In addition, by definition a site cannot be visited more

than once in a single route or cluster making the multiple visits of a site possible only by

means of at least two routes or clusters. However constraints (4.4) are kept in this way in

order to allow for the selection, among all solutions of the same value, of the most flexible

ones identified as the solutions involving the maximum number of multiple visits. These

constraints together with the definitions of sets Wl and Klh formalize Condition I. With

constraints (4.5) Condition IV is satisfied: indeed these constraints impose ∀h ∈ H an upper

bound equal to Vh on the number of vehicles of type h that can be used. Constraints (4.6)

say that if a facility location is used as a depot it cannot be used as a distribution center

and vice-versa. These constraints come from the disaggregation of a more straightforward

version:
∑

h∈H

∑

k∈Klh
zk+

∑

w∈Wl
Tyw ≤ T ∀l ∈ L, that is more intuitive but dominated

by constraints (4.6). It is worth noting that these constraints do no force any location to be

used. With these constraints, Condition III is formalized. The last constraints (4.7), formal-

izing what is requested by Condition IX, put an upper limit on the number of distribution

centers that can be opened at the same time.

4.4 Branch-and-cut-and-price

We propose an algorithm for the exact solution of the GLDP that is based on the branch-

and-cut-and-price paradigm (see Ladányi et al. [44]). This method starts from the linear
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relaxation of the problem, usually referred to as Master Problem (MP), obtained substitut-

ing constrains (4.8), (4.9) and(4.10) with

0 ≤ si ≤ 1 ∀i ∈ N

0 ≤ zk ≤ 1 ∀l ∈ L,∀h ∈ H,∀k ∈ Klh

0 ≤ yw ≤ 1 ∀l ∈ L,∀w ∈Wl.

The derived model has an exponential number of columns and so, in order to obtain valid

lower bounds, it is solved via column generation (see Desaulniers et al. [55]). When the MP

is solved to optimality we look for additional inequalities that are violated by the current

LP solution. This process of column and row generation is iterated until no further useful

variable or violated cut is found. If the solution achieved is either not integer or higher than

the lower bound then a branching is performed and we start exploring the branching tree

obtained recomputing the lower bound at every node. In this section we present the main

components of our branch-and-cut-and-price algorithm namely: pricing, cut generation,

branching and stabilization.

4.4.1 Column Generation

The MP contains a number of variables (z and y) whose number is exponential in the

cardinality of the site set N and so it is not possible to solve it taking explicitly into

account all variables. For this reason a column generation method is applied to find an

optimal solution. Such approach starts from a Restricted MP (RMP) made up of only a

small subset of variables and then it iteratively evaluates, exploiting the dual representation

of the problem, which variables have to be added to the RMP in order to improve the value

of the objective function. This process is stopped when there are no other useful variables

to introduce into the MP.

In particular, in our case, the initial RMP is composed by:

(a) all columns corresponding to skip variables si; in fact there is only a polynomial number

of them, that is |N |;

(b) a subset of K variables made up of all |L| · |H| · |N | columns representing, for every

possible depot location and every type of vehicle, routes serving only one site;
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(c) a subset of W with |L| · |N | columns that represents, for every possible distribution

center location, a cluster with only one site.

The RMP is solved and then the process of seeking for useful columns not already in

the RMP, called pricing, begins. To evaluate if a variable can lead to an improvement in

the objective function the value of its associated reduced cost has to be analyzed, the more

negative it is the more useful is the variable. If no variables with negative reduced cost are

found, the solution of the RMP is optimal for the MP as well, and thus it yields a valid

lower bound to the problem.

In order to compute the reduced cost of a variable, we have to exploit the dual form of

our problem. The formulation of the dual MP of the GLDP reads as follows:

max
∑

i∈N

λi −
∑

h∈H

Vhµh −
∑

l∈L

∑

h∈H

vhσlh −Bρ (4.11)

s.t. λi ≤ di ∀i ∈ N (4.12)
∑

i∈N

aikλi − µh − σlh ≤ 0 ∀l ∈ L,∀h ∈ H,∀k ∈ Klh (4.13)

∑

i∈N

biwλi −
∑

h∈H

Vhσlh − ρ ≤ 0 ∀l ∈ L,∀w ∈Wl (4.14)

λi ≥ 0 ∀i ∈ N (4.15)

µh ≥ 0 ∀h ∈ H (4.16)

σlh ≥ 0 ∀l ∈ L,∀h ∈ H (4.17)

ρ ≥ 0 (4.18)

where dual not-negative vectors λ, µ, σ and ρ correspond to primal constraints (4.4) and

to constraints (4.5), (4.6), (4.7) rewritten as ≥ inequalities. Dual constraints (4.12), (4.13)

and (4.14) correspond to primal variable vectors s, z and y respectively.

The reduced costs, ζw, and ξk, associated with primal variables yw and zk respectively

can then be computed, by means of the vectors of dual variables, in the following way:

ζw = −
∑

i∈Rw

λi +
∑

h∈H

Vhσlh + ρ (4.19)

ξk = −
∑

i∈Rk

λi + µh + σlh. (4.20)
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Since in our problem there are two different kinds of variables, then two different pricing

subproblems, associated respectively with yw and zk variables have to be solved in order

to find the column with the minimum reduced cost to be added to the RMP. It is worth

noting that since variables yw and zk represent respectively clusters and routes solutions to

their associated pricing subproblems have to satisfy Conditions X, IX and Conditions VIII,

VII.

Distribution center pricing subproblem. Formally, for a given l ∈ L, the pricing

subproblem associated with variables yw is:

min ζw = −
∑

i∈Rw

λi +
∑

h∈H

Vhσlh + ρ (4.21)

s.t. cli + ti ≤ rl ∀i ∈ Rw
∑

i∈Rw

di ≤ pl (4.22)

where the set Rw including all sites belonging to the cluster w ∈ Wl served by the DC

located in located in l has to be determined.

This problem together with Condition I, that is implicit in the definition of the set Wl,

turns out to be the well studied 0-1 knapsack problem (see Martello and Toth [85]) in which

given a set of items, each characterized by a value and a weight and a backpack with a finite

capacity, it is required to find the most convenient combination of items whose total weight

does not exceed the capacity of the backpack and that maximizes the total value carried. In

our problem, for a given location l ∈ L, the items are the sites N (rl) = {i ∈ N : cli+ti ≤ rl},

while −λi are the values and di represent the weights. Thus a feasible cluster of minimum

reduced cost can be computed as the subset of elements belonging to N (rl), giving the

maximum value and having a total weight that does not exceed pl. Since, parameters rl, pl

and dual variables σlh depend on the facility location where the DC is located, |L| different

knapsack pricing problems have to be solved to find the cluster with the minimum reduced

cost. In order to optimally solve this pricing subproblem we propose an algorithm based on

dynamic programming that runs in pseudo-polynomial time.
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Route pricing subproblem. Given a vehicle h ∈ H and a potential location l ∈ L for

a depot, the pricing subproblem associated with variables zk reads:

min ξk = −
∑

i∈Rk

λi + µh + σlh (4.23)

s.t. SP−
k +

∑

i∈Rk

ti ≤M

∑

i∈Rk

di ≤ Vh (4.24)

where the set Rk of sites visited by the route k ∈ Klh has to be determined.

Taking into account that the Condition I is implicitly satisfied by the definition of K and

that Condition II is never violated if constraints (4.24) are respected, the problem described

by this formulation is the Resource Constrained Elementary Shortest Path Problem (RCE-

SPP, see Feillet et al. [59]). Our approach for solving this problem proposes three different

algorithms, in particular: two heuristic procedures namely a greedy one and a dynamic pro-

gramming one and an exact method based on an aggregated bounded bi-directional dynamic

programming algorithm with decremental state space relaxation. The value of variables µh

and σlh that are used as parameters in this problem depends on h ∈ H and l ∈ L; for this

reason to find the route with the minimum reduced cost we have to, theoretically, solve

a total of |H| · |L| problem instances one for every combination of types of vehicles and

potential locations.

Pricing algorithms are called in sequence starting from the dynamic programming pro-

cedure for the knapsack problem, if it fails then the pricing procedures for the RCESPP are

called. An outline of the invoking sequence of the pricing algorithms is shown in Figure 4.4.

In the reminder of this section we give a detailed description of our pricing procedures.

4.4.2 Knapsack Pricing Algorithm

The columns with negative reduced cost that represent clusters can be found solving in-

stances of the NP-hard 0-1 knapsack problem. This problem is one of the most studied in

the operations research area and is somehow considered as “the beginning of Integer Linear

Programming” (Caprara [86]). A description of the problem and the most common solution

approaches can be found in any book about integer linear programming, in particular an

extensive discussion of the problem and its variations along with a detailed explanation of
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Figure 4.4: The sequence of the pricing algorithms
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many exact and heuristic algorithms for their solution can be found in a book by Pisinger

et al. [87].

Our approach is based on the classical pseudo-polynomial time dynamic programming

algorithm that was already extensively described in the late 50’s by Dantzig [88]. This

technique achieves an optimal solution to the 0-1 knapsack problem iteratively solving

knapsack subproblem of size u ≤ pl, l ∈ L considering only the first i ≤ |N (rl)| items. First,

for each l ∈ L, we define an order on the elements of the set N (rl) = {i ∈ N : cli + ti ≤ rl}.

Then, a set of labels (i, u,S, v) is computed, representing the minimum reduced cost v that

can be obtained using at most u units of capacity and considering only the first i elements

in the set N (rl), and the set of elements S yielding this reduced cost. The computation of

all these labels is done by a dynamic programming algorithm. We create an initial label

(0, 0, ∅, 0). Then, we iteratively extend labels by increasing values of i, and for each i by

increasing values of u. When extending a label (i, u,S, v), two labels may be created:

• a label (i + 1, u,S ′, v′), corresponding to the choice of skipping element i + 1, with

S ′ = S, v′ = v is generated if u+ di+1 > pl.

• a label (i+1, u+ di+1,S
′′, v′′), corresponding to the choice of including element i+1,

with S ′′ = S ∪ {i+ 1}, and v′′ = v − λi+1 is created if u+ di+1 ≤ pl.

An optimal solution to the DC pricing problem can then be found in the set {(|N (rl)|, u,S, v)}.

It is worth noting that this algorithm allows to find several solutions in a single run and

then it is useful for multiple pricing. Moreover, it allows us to take into account additional

features arising after the introduction of strengthening cuts, as explained in the subsequent

sections.

4.4.3 RCESPP Pricing Algorithms

In our branch-and-price-and-cut procedure three different algorithms are used to price out

columns that represent routes. For the purpose of better illustrating them, we give their

detailed description following the reverse order with respect to their execution.

Exact Dynamic Programming Algorithm

Let us consider first the case of a single depot l ∈ L, a single kind of vehicle h ∈ H, let q

and v be two distinct copies of the base b representing, respectively, the starting and ending
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point of the route and let f = fh be the capacity of the vehicle h. In order to achieve the

exact solution of the RCESPP we use the methods presented by Righini and Salani [60],

which consists of a bi-directional extension of node labels. It associates labels, which encode

partial paths, with every site i ∈ N of the graph G. Each label is iteratively considered and

the corresponding path is extended to sites not already visited.

Label Structure. Each label is defined by a tuple (S, δ, τ, C, i), where C is the cost of

the path, i identifies the last delivery site visited, S is a set indicating which nodes have

been already visited and δ and τ represent resource consumptions. In particular δ indicates

the amount of drugs delivered while τ represents the elapsed time from the beginning of

the route to the end of the visit of node i. Each label identifies a state that represents a

path, visiting all sites in S, of cost C starting from a depot located at l and arriving to the

site i delivering, along the way, in τ time, a total amount of drugs equal to δ. The optimal

solution of the problem is the minimum cost path going from q to v delivering at most a

quantity δ ≤ f of drugs and spending a time τ ≤ M for reaching and serving all nodes in

S.

Extension. A label (∅, 0, 0, 0, q) is initially created. Then, at every iteration of the algo-

rithm, a label l′ = (S ′, δ′, τ ′, C ′, i′) is iteratively selected and extended from site i′ to each

site i′′ ∈ (N ∪ {v}) \ S ′, creating another label l′′ = (S ′′, δ′′, τ ′′, C ′′, i′′); this enforces the

elementary of the path as no sites already visited are taken into account for the extension.

The following rules are used to carry out the resulting label:

S ′′ =S ′ ∪ {i′′} (4.25)

δ′′ =δ′ + di′′ (4.26)

τ ′′ =τ ′′ + ci′i′′ + ti′′ (4.27)

C ′′ =C ′ −
λi

′

2
−
λi

′′

2

with λq = λv = 0, tq = tv = 0, dq = dv = 0 and civ = 0 ∀i ∈ N . The new label l′′ represents

a feasible state if δ′′ ≤ f and τ ′′ ≤M , in other words a label can be extended from i to i′′ if

there are both enough drugs on the vehicle and enough time before the deadline to totally

serve the delivery site i′′. It is worth noting that, as requested by the conditions detailed in

Section 4.2, this extension rule does not allow for split delivery and that the arc identifying



CHAPTER 4. DRUG DISTRIBUTION IN CASE OF EMERGENCY 105

the path returning to the depot after visiting the last served node is not taken into account.

Dominance Test. The exponential number of labels that have to be potentially con-

sidered to find the optimal q − v path is a primary source of potential inefficiency. For

this reason to reduce the number of labels to analyze, during the extension of labels, a

dominance test is performed to fathom labels that cannot lead to an optimal solution. Let

l′ = (S ′, δ′, τ ′, C ′, i) and l′′ = (S ′′, δ′′, τ ′′, C ′′, i) be two generic labels associated with the

same delivery site i. Then the former dominates the latter if the following conditions hold:

S ′ ⊆ S ′′ (4.28)

τ ′ ≤ τ ′′ (4.29)

C ′ ≤ C ′′ (4.30)

None of the inequalities (4.28), (4.29) and (4.30) can be left out, in fact they represent a

set of necessary dominance conditions and dropping any of them can lead to disregarding

an optimal label. It is worth noting that, since the total amount of drugs delivered along

a path depends only on the set S of sites served, to determine if l′ dominates l′′ we do not

have to compare δ′ and δ′′; in fact, if condition (4.28) is satisfied, the inequality δ′ ≤ δ′′ is

always true. Furthermore, as shown in Feillet et al. [59], it is sometimes possible to identify

a site u ∈ N that cannot be reached by any feasible extension of a given label, because of

resource limitations. In this case it is useful to insert u in the set S ′′ of that label: it is

easy to check that enlarging S ′′ helps satisfying condition (4.28); at the same time, if a site

cannot be reached by extending label l′ due to resource limitations, it cannot be reached by

extending label l′′ either, since resource consumption in l′′ is not lower. Therefore, enlarging

each set S allows the dynamic programming algorithm to fathom a larger number of labels

consequently reducing the computation time. When the technique by Feillet et al. [59] is

employed the value of δ′ and δ′′ must be explicitly taken into account in the dominance

test. In fact, since S ′ and S ′′ may contain unreachable nodes, in order for the label l′ to

dominate label l′′ the following additional conditions must hold:

δ′ ≤ δ′′. (4.31)

Decremental state space relaxation. In order to speed up the solution process the

dynamic programming algorithm is executed iteratively applying decremental state space
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relaxation as described by Righini and Salani [60]. The idea behind such a relaxation is

simple: the state space of the problem is reduced projecting it to a smaller one by discarding

the elementary constraints, and then iteratively reintroducing them until a feasible solution

for the RCESPP is found. More formally, given a set of delivery sites Ñ ⊆ N called critical

set, the extension rule (4.25) can be replaced with

S ′ = (S ∪ j) ∩ Ñ (4.32)

This relaxed problem can be solved more efficiently, since more labels can be compared in

the dominance test. In order to identify a good critical node set, Ñ is initially empty then

the state space relaxation of the pricing problem is solved and all the nodes visited more

than once in the optimal path are added to the set Ñ . In our algorithm, this procedure

is iterated until either an elementary path with a negative reduced cost is found or the

optimal value of the pricing subproblem is nonnegative.

Bidirectional dynamic programming. Another method that has been proved to be

useful by Righini and Salani [58] in speeding up the computation of the optimal q− v path

is bidirectional dynamic programming. In this algorithm two kind of labels are associated

with every delivery site: forward labels and backward labels. They, respectively, represent

paths going from q to its successors and from v to its predecessors. The forward set is

initialized with label (∅, 0, 0, 0, q) while the backward set with label (∅, 0, 0, 0, v). Extension

and dominance rules are then composed by two steps, in which forward and backward labels

are treated independently. The updating rules and feasibility tests for backward extension

are almost symmetrical to those for the forward labels with a single noticeable exception. In

fact in the backward extension the time spent to go backward from v to i is not taken into

account while, in the forward extension, the traveling time from q to i is considered. Since

the consumption of both resources, amount of delivered drugs and time, is monotone along

the path a bounding technique can be employed together with the bidirectional dynamic

programming in order to reduce the generation of backward and forward labels encoding the

same paths. In particular, identifying the time as the most scarce and critical resource, the

extension of forward and backward labels can be limited and useless duplication of paths

can be reduced, imposing that each partial path can use at most half of the available time,

that is τ ≤M/2 for both forward and backward labels.
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Join. A complete route going from q to v can then be obtained joining together a forward

and a backward partial path. Each forward path (Sfw, δfw, τ fw, Cfw, ifw) can be joined

with a backward path (Sbw, δbw, τ bw, Cbw, ibw) if the complete path is elementary and the

total consumption of both resources, amount of drugs delivered and elapsed time, does not

exceed their availability. These conditions can be formalized as follows:

Sfw ∩ Sbw = ∅

δfw + δbw ≤ f

τ fw + cifwibw + τ bw ≤M

If all conditions are satisfied the path from q to v is feasible and the values S, δ, τ and C of

the corresponding label can be computed as follows:

S = Sfw ∪ Sbw

δ = δfw + δbw

τ = τ fw + cifwibw + τ bw

C = Cfw −
λi

fw

2
−
λi

bw

2
+Cbw

This label l∗ = (S, δ, τ, C, v) represents a feasible route that corresponds to a variable in

the MP having a reduced cost ξl∗ = C + µh + σlh. The join operation is run when no more

feasible extensions can be performed and among all the paths the minimum cost path after

join is the optimal solution of the pricing problem.

Aggregated pricing algorithm. Since in our problem both the reduced costs and the

resource consumption associated with the routes to be generated depend on the location

l ∈ L of the depot and on the kind h ∈ H of the vehicle employed, in principle it would

be necessary to execute the pricing algorithm |L| · |H| times. Instead, applying a technique

called aggregated pricing described by Bettinelli et al. [81], our algorithm is able to perform

a single passage for all the potential depots reducing the total number of iterations needed

to |H| that is the number of type of vehicles. In order to optimize all the depots at the

same time the state space described by a label needs to be enlarged adding different reduced

costs Cl and time consumption τl for every depot l ∈ L, δ does not need to be computed

for every possible depot as it only depends on the sites visited. When a forward label is
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extended from a site i to a site j and τ fwl > M/2 for a certain l ∈ B, the path is not feasible

for depot l: thus τ fwl is set equal to +∞ . For what concerns domination rules, whenever

two labels e′ and e′′ satisfy conditions (4.28), (4.29) and (4.30) for a particular depot l,

resources τ ′′e and C ′′
e are set to +∞, as label e′′ can never yield an optimal path for depot l.

A forward label is fathomed when, due either to extensions, feasibility checks or dominance,

it has τ fwl > M/2 for every l ∈ L. This technique can be easily coupled with bidirectional

dynamic programming as described above.

Heuristic Dynamic Programming Algorithm

Solving the RCESPP by means of the exact dynamic programming algorithm described in

Subsection 4.4.3 can be very time consuming and thus we developed a heuristic dynamic

programming algorithm for the same problem that runs in a shorter time. The basic struc-

ture of the heuristic algorithm is borrowed from the exact one but we relax dominance

rules removing condition (4.28). This modified dominance test allows for fathoming many

more labels reducing consequently the computational time required to find a solution for the

RCESPP. At the same time, since all conditions (4.28), (4.29) and (4.30) are necessary, with

the relaxed dominance test an optimal partial path could be discarded leading to solutions

without any optimality guarantee.

Greedy Algorithm

Another non-optimal algorithm used to quickly find columns with negative reduced costs is

the greedy one. In this pricing algorithm a route q − v is generated by repeated extensions

of a single label. In details, a label l = (S, δ, τ, C, i) is considered and iteratively extended

to a single node with a nearest neighbor policy. Given a depot l ∈ L and a vehicle h ∈ H

the set R ⊆ N ∪ {v} of the reachable sites is computed. A delivery site j ∈ N belongs to

R if all the following conditions hold:

j 6∈ S (4.33)

δ + dj ≤ fh (4.34)

τ + cij + tj ≤M (4.35)

where cij = 0 if j = v. If R = ∅ the path is closed going back to the depot and the search is

stopped. Otherwise, among the sites in R, we select the one that minimizes the path cost,
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that is

j̄ = argminj∈R{−λj}

with λq = λv = 0. The label is extended to node j̄ using the same update rules described

for the exact pricing algorithm, and we iterate. This greedy algorithm is repeated for each

combination of possible depot locations l ∈ L and kinds of vehicles h ∈ H.

4.4.4 Additional Inequalities

When none of the pricing algorithms is able to find a column with negative reduced cost the

solution of the RMP is optimal even for the MP and thus represents a valid lower bound

for our problem. The higher is this bound the faster the algorithm converges to an optimal

solution. A method to improve the lower bound is to find violated inequalities and so, when

no other useful variables can be found by the pricing algorithms, we look for additional

cuts to be added to the MP. In particular we modified and extended two classical cut types

in order to work properly in our problem: subset-row and 2-path inequalities and then we

propose a new family of inequalities for the problem.

Subset Row Inequalities

These cuts represent an adaptation of a special case of subset-row inequalities for the VRP

proposed by Jepsen et al. [64], limited to triplets of sites. The idea behind the original cuts

is fairly simple: in every integer feasible solution, for every set of three sites, there must be

at most a single route visiting at least two of them. Since, in our problem, the sites can

be served either by routes or by distribution centers this idea needs a little modification

to be applied. For the GLDP we can say that: in every integer feasible solution, for every

set of three sites, there must be at most either a single route or a single distribution center

serving at least two of them.

Subset-row inequalities can then be formalized as follows. Let C = {C ⊆ N : |C| = 3}

be the set made of all possible subsets of three sites. For C ∈ C let W(C) ⊆ W be the

subset of all clusters, regardless of the location of their associated DC, containing at least

two of the three sites in C; let K(C) ⊆ K be the set of all routes, regardless of their starting

depot and kind of vehicle used, that visit at least two of the three sites in C. Then the
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following inequalities are valid for the GLDP:

∑

w∈W(C)

yw +
∑

k∈K(C)

zk ≤ 1 ∀C ∈ C (4.36)

The separation of these inequalities can be done by complete enumeration since their number

is polynomial in the cardinality of the set of sites (O(|N |3)). However to speed up the

separation process we take into account only a subset N̄ ⊆ N of the sites for the generation

of the clusters set C. In our algorithm a site i ∈ N belongs to N̄ if the value of its associated

skip variable si is strictly lower than 1 in the current LP iteration.

The introduction of these inequalities changes the pricing subproblems and therefore it

requires to modify the pricing algorithms to take into account the values of the corresponding

dual variables. Let ψC be the (non-positive) dual variable associated with the inequality

corresponding to the triplet C. The definition of the labels used in both the knapsack pricer

and the dynamic programming procedures for the RCESPP needs to be modified, adding

a new resource for the cut associated with every additional triplet C.

The labels used in the knapsack pricing algorithm for each l ∈ L are (i, u,S, ~q, v),

where ~q is a vector with one component qC for each triplet C whose subset-row inequality

is in the RMP. Each qC represents the number of elements of C included in S, and so

0 ≤ qC ≤ 3. Our label pushing algorithm is modified as follows. First, we create an initial

label (0, 0, ∅, (0 . . . 0), 0). Then, we iteratively extend labels as described in Section 4.4.2.

When extending a label (i, u,S, ~q, v), two labels are created:

• a label (i+ 1, u,S ′, ~q′, v′), corresponding to the choice of skipping element i+ 1, with

S ′ = S, ~q′ = ~q, v′ = v

• a label (i + 1, u + di+1,S
′′, ~q′′, v′′), corresponding to the choice of including element

i+1, with S ′′ = S∪{i+1}, q′′C = |C∩S ′′|, for each C ∈ C, and v′′ = v−λi+1−
∑

C∈C̄ ψC

where

C̄ = {C ∈ C : q′′C = 2 and q′C = 1}.

This second label is created only if u+ di+1 ≤ pl.

Since this method can, in principle, generate for each i and u a different label for each ~q,

when each pair of values i and u is considered we perform the following dominance checks:
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a label ℓ′ = (i, u,S ′, ~q′, v′) dominates a label ℓ′′ = (i, u,S ′′, ~q′′, v′′) if

v′ −
∑

C∈C̃

ψC ≤ v
′′, (4.37)

where

C̃ = {C ∈ C : C \ {1 . . . i} 6= ∅ and q′C = 1 and q′′C ∈ {0, 2}}.

The rationale behind rule (4.37) is the following. When C \ {1..i} = ∅, the contribution

of ψC cannot be triggered in ℓ′ anymore. When |C ∩ S ′| ≥ 2, then v′ already includes

the contribution of ψC ; at the same time when |C ∩ S ′| ≤ |C ∩ S ′′| ≤ 1 any extension of

ℓ′ triggering the contribution of ψC would trigger the same contribution in ℓ′′. Finally, if

q′′C = 2 then at most one element of C follows i in the given order, and therefore if q′C = 0,

the contribution of ψC will never be triggered in ℓ′; the same applies if q′′C = 3 (that is,

no element of C follows i in the given order), and q′C ≤ 1. Only two cases are left open:

(q′C = 1, q′′C = 0) and (q′C = 1, q′′C = 2).

We remark that only labels having same i and u values need to be compared during

the dominance checks, and that when a particular (i, u) pair is considered, all labels for

that pair have already been generated; therefore it is still possible to store labels in a table

having one row for each value of i and one column for each value of u, and keep the dynamic

programming algorithm very efficient also after the introduction of subset-row cuts.

In the same way, the state label used in the exact dynamic programming procedure for

the RCESPP has to be extended with a new vector of variables ~q with one component qC

for each triplet C whose subset-row inequality is in the RMP. Extension, dominance and

join rules have to be modified in the following way. Given label l′ = (S ′, δ′, τ ′, ~q′, C ′, i′),

label l′ = (S ′, δ′, τ ′, ~q′′, C ′′, i′′) and defining S̄ ′′ ⊂ S ′′ as the set of all sites visited along the

path encoded by label l′′ without the inclusion of unreachable sites taken into account when

the technique by Feillet et al. [59] is employed, the extension of label l′ to l′′ is done in the
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following way:

S ′′ =S ′ ∪ {i′′}

q′′C =|C ∩ S̄ ′′|mod2 ∀C ∈ G

δ′′ =δ′ + di′′ (4.38)

τ ′′ =τ ′′ + ci′i′′ + ti′′ (4.39)

C ′′ =C ′ −
λi

′

2
−
λi

′′

2
−

∑

C∈G

ψC⌊
|C ∩ S̄ ′′|

2
⌋

where i′ 6= i′′ and G ⊂ C is the set of all triplets whose corresponding subset-row inequality

is in the RMP. Dominance rules have to be relaxed since the cost of a path is no longer

monotonic and so label l′ dominates l′′ if:

S ′ ⊆ S ′′

δ′ ≤ δ′′

τ ′ ≤ τ ′′

C ′ −
∑

C∈V

ψC ≤ C
′′

with i′ = i′′ and V = {C ∈ G : ψC ≤ 0, q′C > q′′C}. Finally the values of qC ∀C ∈ G have

to be taken into account when two partial paths are joined together to compose a complete

route and in particular we check if q′C = 1∧ q′′C = 1 ∀C ∈ G the value ψC is subtracted from

the cost of the route.

2-path Inequalities

The classical 2-path inequalities, originally introduced by Kohl et al. [65], were developed

for the capacitated VRP with time windows and impose that at least two routes must be

used to visit every set Q ⊆ N of nodes that cannot be served by a single route either due

to capacity or time limitations.

in a similar way as done by Desaulniers et al. in [89], we have translated this idea in

our problem. Given such a set Q and taking into account that our sites can be skipped and

that there are two different distribution systems, namely routes and distribution centers,
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we have devised the following valid inequalities for the GLDP:

∑

i∈Q

si +
∑

w∈W(Q)

eQwyw +
∑

k∈K(Q)

gQk zk ≥ 2 ∀Q ⊆ N (4.40)

where K(Q) and W(Q) denote respectively the set of routes and the set of clusters serving

at least one site belonging to Q. Coefficients eQw and gQk are equal to:

• two if the variables yw or zk encode respectively a cluster or a route containing all

sites in Q,

• one if a cluster or route serves Q only partially,

• zero otherwise.

In this way we obtained a cut that, if conveniently updated with the newly generated

columns, is always valid for our problem. In fact if any of the three variables s, z, and y as

well as the two coefficients are not considered in the generation of the cuts this may lead

to inequalities that can cause the discarded of the optimal solution. Let consider the case

where in the optimal solution a variable zk representing a route that visits all the nodes

in S takes value 1, if, during the solving process, we introduce into the MP a cut like the

inequality of type (4.40) with the coefficient gQk always equal to 1, the optimal solution will

be dropped as it will never be feasible with respect to this additional inequality.

We observe that, in the traditional VRP, given a set Q that cannot be served by a single

route but which is visited by less than two vehicles in a fractional solution it is always

possible to find a violated 2-path inequality. This is not always true for the GLDP, as all

coefficients eQw and gQk for the columns in the RMP can be equal to two. In order to avoid

useless checks we perform three steps: we identify sets Q potentially leading to a violated

cut (identification step), we check necessary conditions for a violated cut based on Q to

exist (filtering step) and only for the unfiltered Q sets we proceed to actual separation

(coefficients setting).

The generation step is carried out as in [65], considering sets Q having

∑

i∈Q

si +
∑

l∈L

∑

w∈Wl

aiwyw +
∑

l∈L

∑

h∈H

∑

k∈Klh

bikzk < 2.

Then we filter each such a set Q by checking the following necessary conditions. Let L̄ ⊆ L

be the set of locations hosting DCs serving some customer in Q in the current fractional
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solution, let L̃ ⊆ L be the set of locations hosting depots, where routes serving customers

in Q start and let H̃ ⊆ H be the set of vehicle types used to serve customers in Q. In order

for a violated cut to exist, at least one of the following conditions must hold:

• a DC l ∈ L̄ exists, having not enough capacity to fully serve Q (
∑

i∈Q di > pl);

• a DC l ∈ L̄ exists, having sites in Q outside of its range (maxi∈Q{cli} > rl);

• a vehicle type h ∈ H̃ exists, having not enough capacity to fully serve Q (
∑

i∈Q di >

fh);

• a depot l ∈ L̃ exists, from which no route can visit all sites in Q within the deadline

M , i.e. such that HP (Q∪{l}) > T , where HP (Q∪ {l}) is the time taken to perform

an Hamiltonian Path on Q ∪ {l}.

We check these conditions in this order. As soon as one of them is found to be true, we

move to the coefficients setting step; if all of them are false, no violated cut based on Q can

be found, and therefore we skip the coefficient setting step and we consider another set Q.

Finally, in the coefficient setting step, all columns are checked to fix the values of co-

efficients eQw and gQk according to the definitions given above. As outlined before, when all

e and g coefficients take value two, the generated inequality does not help in cutting the

current fractional solution; however, since it might become useful when further columns are

added to the RMP, it is added to the problem in any case.

These additional inequalities introduce a new vector χ of variables in the dual problem

that requires the modification of the pricing algorithm in order to take them into account

properly.

In details, let Q be the collection of all the subsets Q whose corresponding 2-path

inequality is in the RMP. A new set of dual variables γQ ≥ 0 is introduced, one for each

Q ∈ Q, that requires the modification of the pricing algorithm.

We modified the exact dynamic programming algorithm for the RCESPP adding a new

resource, one for each Q ∈ Q, in the labels. Such resource is initialized at 0; after the

first visit to a customer in Q, the resource is set to 1, and the reduced cost of the label

is decreased by the value of the corresponding dual variable γQ. If it occurs that a label

encodes a route visiting all sites in Q then the value of the resource is set equal to 2 and

the value of dual variable γQ is subtracted again from the reduced cost of the label. In the

joining phase if the resource is equal to 1 for both forward and backward paths we evaluate
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the complete path in order to find out whether it serves all sites in Q, if this is the case then

the dual variable associated with the corresponding cuts is subtracted from the reduced cost

of the complete path. Finally dominance rules are modified with an additional condition

saying that no label having one of these resources at 1 or 2 can dominate a label having the

corresponding resource at 0.

The knapsack algorithm instead was modified as follows: the labels become (i, u,S, ~q, ~o, v),

where ~o is a vector having one component oQ for each set Q ∈ Q whose 2-path inequality

is in the RMP, represented the number of elements of Q included in S. Our label pushing

algorithm is modified as follows. First, we create an initial label (0, 0, ∅, (0 . . . 0), (0 . . . 0), 0).

Then, we iteratively extend labels in order of increasing values of i and u, and when ex-

tending a label (i, u,S, ~q, ~o, v), two labels are created:

• a label (i+1, u,S ′, ~q′, ~o′, v′) corresponding to the choice of skipping element i+1, with

~o′ = ~o and v′ = v,

• a label (i+1, u+di+1,S
′′, ~q′′, ~o′′, v′′), corresponding to the choice of including element

i+ 1, with o′′Q = |Q ∩ S ′′|, for each set Q,

v′′ = v − λi+1 −
∑

C∈C̄

ψC −
∑

Q∈Q̄′

γQ −
∑

Q∈Q̄′′

γQ

where

Q̄′ = {Q ∈ Q : o′′Q > 1 and oQ = 0}

and

Q̄′′ = {Q ∈ Q : o′′Q = |Q| and oQ < |Q|}.

We remark that now the contribution of each γQ can be added to the reduced cost of

a label up to two times: when the first element of Q is visited (since the eQw coefficient

in the corresponding column changes from 0 to 1), and when all elements of Q are

visited (since eQw changes from 1 to 2).

Resources S and ~q are updated as before. After this modification to the pricing algorithm,
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a label ℓ′ = (i, u,S ′, ~q′, ~o′, v′) can dominate a label ℓ′′ = (i, u,S ′′, ~q′′, ~o′′, v′′) if

v′ −
∑

C∈C̃

ψC ≤ v
′′ −

∑

Q∈Q̃′

γQ −
∑

Q∈Q̃′′

γQ, . (4.41)

where

Q̃′ = {Q ∈ Q : Q \ {1 . . . i} 6= ∅ and o′′Q = 0 and o′Q > 0}

and

Q̃′′ = {Q ∈ Q : |Q ∩ {1 . . . i}| = o′′Q and o′′Q > o′Q}.

In this case, a contribution γQ may be gained by ℓ′′, but not by ℓ′ in two cases, modeled by

the last two terms of expression (4.41). First, ℓ′′ may include for the first time an element

of Q, while ℓ′ cannot; this can happen only if (a) elements of Q can still be included in S ′′

(b) no element of Q was already included in S ′′ (c) at least an element of Q was already

included in S ′. Second, ℓ′′ may include all the elements of Q, while ℓ′ cannot; this can

happen only if (a) all those elements 1 . . . i belonging to Q were selected in S ′′, while some

of them were not selected in S ′. Even if the dominance criterion is slightly loosened, we

experimentally observed that the DC pricing algorithm remains very efficient, also after the

introduction of 2-path inequalities.

Consistency Cuts

We identified constraints (4.6) as the most likely cause of a possible poor linear relaxation

of the MP since they may promote the use, in a fractional solution, of a facility location

as both depot and distribution center. In fact, for every location l ∈ L and every kind of

vehicle h ∈ H, may be convenient to either set several zk to 1 assigning only a fractional

value to the corresponding yw or to assign a fractional value to many yw and zk related to

the same location in order to partially cover as many sites as possible (see Figure 4.5). For

this reason we devise new constraints that deal with this issue, that is:

zk +
∑

w∈Wl

yw ≤ 1 ∀h ∈ H,∀l ∈ L,∀k ∈ Klh. (4.42)
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Figure 4.5: A partial solution using a location as both distribution center and depot without
violating constraints (4.6)

They impose that if a route starting from a location l is used then all yw, ∀w ∈ Wl must

be equal to zero. It is easy to see that although these constraints are able to cut solutions

feasible for the constraints in the MP and seem just an improvement of the constraints (4.6)

they actually cannot substitute them as there are solutions, as shown in Figure 4.6, which

are feasible with respect to (4.42) that at the same time are infeasible for constraints (4.6).

Since there is an exponential number, equal to the number of the variables zk, of con-

straints (4.6) it is not possible to add them all to the MP, instead in our algorithm a dynamic

generation of these constraints is adopted. In particular every time a variable zk encoding

a route starting from the depot l is introduced in the MP its corresponding constraints

involving all yw∀w ∈Wl is generated and added to the MP. Moreover every time a variable

yw encoding a cluster of the DC l is generated, it is added to every constraint of type (4.42)

whose corresponding zk variable encode a route starting from l. The introduction of these

constraints trigger a modification of the pricing subproblems and consequently an alteration

of the pricing algorithms. Let P and ν be respectively the set of all inequalities of type

(4.42) that are in the MP and their associated non-negative dual vector of variables as the

constraints (4.42) were rewritten as ≥ inequalities. Let P(l) be the subset of P made up

of all the constraints which involve variables zk and yw encoding a route and clusters using
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Figure 4.6: A solution feasible with respect to (4.42) but infeasible for constraints (4.6)

facility location l. Then, on the one hand in the knapsack pricer no algorithmic modifica-

tion is required, indeed the new dual variables appear as a constant, whose value is equal

to
∑

p∈P(l) νp, in the objective function of the pricing subproblem (4.21). On the other

hand adjustments of the dominance and joining rules of the exact dynamic programming

algorithm for the RCESPP are required to tackle the dual value ν. In particular, since

the introduction of these new constraints break the monotonicity of the costs along the

path, when comparing two label l′ = (S ′, δ′, τ ′, C ′, i) and l′ = (S ′′, δ′′, τ ′′, C ′′, i) the former

dominates the latter if:

S ′ ⊆ S ′′ (4.43)

δ′ ≤ δ′′ (4.44)

τ ′ ≤ τ ′′ (4.45)

C ′ + νmax ≤ C
′′ (4.46)

where the value νmax is computed as the maximum ν among all the dual variables corre-

sponding to constraints whose associated zk variable encodes a route that is either equal

to the path identified by l′ or can be obtained extending the partial path represented by

l′. During the joining phase we have to check if the complete q − v path produced linking

together a forward and a backward path represents a route that is already encoded by a

variable zk in the MP, in this case the complete path is discarded as useless since already in
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the MP. In order to minimize the computational effort require to find νmax we use a custom

data structure whose organization is detailed in Appendix B.

These new cuts cause a modification in the standard structure of the branch-and-cut-

and-price algorithm. Usually the generation of columns and rows is performed in two

different stages: columns are generated by pricing algorithms while additional rows are

found by cutting procedures. Instead, with the introduction of the consistency cuts our

algorithm generates, every time a pricing procedure finds a new variable encoding a route,

a column and a row and adds them to the MP at the same time.

4.4.5 Branching

When a fractional solution arises at the end of the root node we use six different branching

policies to recover integrality. In particular, they are considered in the order presented

thereafter and branching is executed using the first applicable rule. In the following we

indicate as ȳ, z̄ and s̄ the values taken by the variables in the optimal LP relaxation of MP.

Branching on Locations. At first we try to force the exclusive use of every open location

l ∈ L either as depot or a distribution center. In details, let K(l) andW(l) be the sets of the

variables encoding respectively routes or clusters whose associated depot and distribution

center is located in l and let K(l) =
∑

k∈K(l) z̄k and W (l) =
∑

w∈W(l) ȳw. If K(l) >

0 ∧W (l) > 0 then we branch as follows: two children nodes are generated; in the first we

force l to be used as distribution center imposing K(l) = 0; in the other l will be used as

depot since we impose W (l) = 0.

Branching on Skip Sites. When none of the conditions K(l) > 0 ∧W (l) > 0 ∀l ∈ L

are satisfied then a second branching rule is taken into account. Let sī be the variable

whose value is fractional and closest to 1. Branching is performed in the following way: two

children nodes are generated and in the first the visit of the site ī is forbidden imposing

sī = 1 on the contrary in the other node sī = 0 and therefore the site ī must be visited.

Branching on Clusters. If all skip variables are integer then a third branching rule is

considered. We evaluate the sum of the variables representing clusters serving site i as

Di =
∑

l∈L

∑

w∈Wl:i∈Rw

ȳw.
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If this value is not integer then we identify the set of distribution centers giving a fractional

contribution to Di that is

L(Di) = {l ∈ L : 0 <
∑

w∈Wl:i∈Rw

ȳw < 1}.

Then branching is performed: two children for every l ∈ L(Di) are generated imposing to

serve site i only from the DC l in the first node and forcing not to serve the site from the DC

in l in the other node. To tackle this branching rule in the knapsack pricing algorithm we

proceeded in the following way, let F ⊆ N be the set of sites that are forced to be served by

a distribution center in l, then, all sites either forbidden or forced are removed from N (rl)

that is the set of available sites for distribution centers located in l. After that, if there

are sites whose visit is forced the label B[0, 0] used in the exact dynamic programming as

starting origin is initialized with W(0, 0) = F and v(0, 0) = −
∑

i∈F λi while the maximal

size of the knapsack is reduced and becomes pl = pl−
∑

i∈F di and the algorithm is executed

as previously described.

Branching on the Number of Vehicles. When all Di are integer ∀i ∈ N a fourth

branching policy is used. Let mh be the number of routes using a vehicle of type h ∈ H.

The value mh is computed as
∑

l∈L

∑

k∈Klh
z̄k ∈ that is the sum of the values of all variables

encoding routes using a vehicle h regardless of the originating depot. After computing all

mh for every type of vehicle a binary branching is executed on the mh whose fractional

value is closest to 0.5. Two nodes are generated, in the first it is imposed to use at least

mh + 1 variables belonging to ∪l∈LKlh while in the other the maximum number of routes

using vehicle h ∈ H is limited to mh. This result is obtained modifying the left and right

hand side of the constraint (4.5) corresponding to the selected h, in particular in the first

case the modified constraint becomes as follows

mh ≤
∑

l∈L

∑

k∈Klh

zk ≤ Vh

in the other node instead the constraint is

∑

l∈L

∑

k∈Klh

zk ≤ mh.
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This branching technique leaves the pricing subproblem unchanged: dual variables µh still

appear as constants in the objective function of the pricing problem, but they are now

unrestricted in sign. No modifications in the pricing algorithms are required to handle this

branching technique.

Branching on Arcs. When the number of vehicles used is not fractional branching on

arcs is considered. We choose the site i ∈ N that is split among the largest number of

routes in the optimal fractional solution of MP and that has at least two open outgoing

arcs. Then we forbid half of its outgoing arcs to be used in the first child node, and the

other half to be used in the second child node. To handle these branching decisions in the

pricing problem it is enough to set travel time of forbidden arcs to +∞.

Branching on Variables Finally when none of the previous rules can be applied branch-

ing on variables encoding either routes or clusters is performed. Among all y and z variables

in the RMP let Υī be the one whose value, in the optimal LP solution of the MP, is frac-

tional and closest to 0, 5. The branching is performed in the following way: two children

nodes are generated. In the former the usage of the variable Υī is forced setting Υī = 1,

while in the latter the variable Υī is forbidden imposing Υī = 0.

4.4.6 Stabilization

In order to mitigate the possible convergence problems of the column generation algorithm,

we implemented a stabilization technique whose general description is reported in Appendix

A. This stabilization method heavily relies on the computation of an optimal solution to

the Lagrangian relaxation of the RMP, however this is not a difficult task. In fact, given
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dual vectors λ, µ, σ and ρ a Lagrangean relaxation of our problem reads:

min
∑

i∈N

(di − λi)si +
∑

i∈N

λi −
∑

l∈L

∑

h∈H

Vhσlh+

+
∑

l∈L

∑

h∈H

∑

k∈Klh

(
∑

i∈N

aikλi + σlh)zk+

+
∑

l∈L

∑

w∈Wl

(
∑

i∈N

biwλi +
∑

h∈H

Vhσlh)yw

s.t.
∑

l∈L

∑

k∈Klh

zk ≤ Vh ∀h ∈ H

∑

l∈L

∑

w∈Wl

yw ≤ B

0 ≤ si ≤ 1 ∀i ∈ N

0 ≤ zk ≤ 1 ∀l ∈ L,∀h ∈ H,∀k ∈ Klh

0 ≤ yw ≤ 1 ∀l ∈ L,∀w ∈ Wl

The objective function comes from the relaxation of constraints (4.4) and (4.6) of the MP

while original constraints (4.5) and (4.7) appear unchanged in the Lagrangean problem. This

problems has the integrality property and its optimal solution is easily found by inspection

analyzing the coefficients of the variables si, zk and yw. In particular, on the one hand there

are no limits on the skip variables so every si whose coefficient is negative is set to 1, on

the other hand the maximum number of both xk and yk is bounded and so for every kind

of vehicle h ∈ H the Vh variables zk with the most negative coefficients in the objective

function are set to 1, in the same way among all yw only the B with the most negative

coefficients in the objective function are set to 1 all the other variables take value equal to

zero.

4.4.7 Primal Heuristic Algorithm

In order to find feasible solutions during the computation we have developed a primal

heuristic that looks for feasible solution among the solution space described by the variables

that are in the RMP.

The algorithm goes through five different phases: location selection, distribution center

allocation, allocation of vehicles, improvement and feasibility and it is executed once for

every node of the branching tree.
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In details indicating as ȳ, z̄ and s̄ the values taken by the variables in the optimal

LP relaxation of RMP and defining I as the set of the variables composing the heuristic

solution, the algorithm runs as follows.

Location Selection. In the first phase every location l ∈ L is marked as either po-

tential distribution center or depot. The algorithm computes the use of every potential

distribution center location udcl and every potential depot udepl as udcl =
∑

w∈Wl
ȳw and

udcl =
∑

h∈H

∑

k∈Klh
z̄k then every location is marked as potential distribution center if

udcl ≥ u
dep
l and as potential depot otherwise.

Distribution Center Allocation. In this phase only variables in the RMP that encode

clusters are taken into account. Let L(dc) be the set of location marked as potential

distribution centers that is L(dc) = {l ∈ L : udcl ≥ udepl }. All locations in L(dc) are sorted

in descending order by their usage value udcl then, following this order, for every variable yw

with w ∈Wl, associated to the location l taken currently into account, its covering potential

cpdcw is computed as the sum of the demands of the sites covered by the cluster described

by yw that are not already served by any variable in I, more formally

cpdcw =
∑

i∈Rw :i 6∈{∪j∈IRj}

di.

The variable yw whose corresponding cpdcw is maximum is selected and added to the solution

set I, then the algorithm moves to the next location in L(dc) and this process is iterated

until either there are no more locations in L(dc) or B variables are added to the set I. If

no cluster w ∈Wl associate with a potential location l are selected the location is removed

from L(dc) and marked as potential depot location.

Vehicle Allocation. In this phase the variables encoding routes are taken into account

and allocated to the potential depot location. Vehicle by vehicle going in descending order

by capacity, the algorithm computes the covering potential cprok of every route zk ∈ Klh∀l 6∈

L(dc) using a vehicle h ∈ H and that does not start from a distribution center as follows:

cpdck =
∑

i 6∈Rk :i 6∈{∪j∈IRj}

di.
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The variable zk whose cprok is the maximum among all variables using vehicle h is selected

and added to I. This process is repeated until either there are no more variables associated

with vehicle h or Vh variables are selected. Then the algorithm moves to the next vehicle.

This phase terminates when all the types of vehicles are taken into account. It is worth

noting that at this point the value of the solution can be computed as the sum of the

demand of the sites not visited by any variable in I.

Improvement. A simple local search procedure is applied during this phase aiming at

improving the quality of the solution found. In details, the algorithm evaluates, for every

variable yw or zk in I, if it is replaceable by another variable, not in the solution set, that

improves the value of the solution. This is done removing the variable yw or zk from I and

recomputing the covering potential for all the variables not in I that are compatible with

the removed one and selecting the y′w or z′k that is associated with the maximum potential.

Needless to say, the variable y′w or z′k can be the exactly same variable previously removed.

This procedure is iterated, following different politics for selecting the variables in I, until

the solution value cannot be further improved exchanging any variables in I with any other

ones.

Feasibility. The last phase of the algorithm tries to ensure the feasibility of the solution.

The algorithm considers all variables in I and computes the set of the sites served S(I) =

{i ∈ Rj : j ∈ I} then adds to I all skip variables si associated with sites not in S(I). At this

point the set of variables I represents a complete solution for the GLDP. This procedure

always generates feasible solutions when executed at the root node but it may produce, due

to branching decisions, infeasible solutions in some node of the search three.

4.5 Experimental Analysis

Implementation. The algorithms have been implemented in C++, using SCIP 2.1 [69]

as branch-and-cut-and-price framework linked to CPLEX 12.2 as pure LP solver. SCIP

is used as a branch-cut-and-price framework and it takes care of the management of the

column and row pools and it is able to remove and re-insert them as needed. All presolving

algorithms and the automatic cut generator embedded in SCIP along with the following

general purpose heuristic algorithms: shift-and-propagate, fix-and-infer, int-diving, DINS,

RENS, RINS, undercover, mutation, crossover and shifting have been disabled as they were
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considered either incompatible or useless for our problem. All remaining SCIP parameters

were kept at their default values including the branching tree exploration strategies.

The experimental campaign has been performed on a single core of a PC Intel R©

Core 2 DuoTM CPU T7300 (2.00 GHz) with 4 GB RAM and running Ubuntu 10.04 operating

system. A time limit of 1 hour was imposed to each run.

Benchmark Instances. In order to properly test our approach we generated 440 in-

stances starting from the approach detailed by Shen et al. [43]. We took into account three

different problem size: 10, 20 and 50 delivery sites and we set the number of potential

facility locations to 2, 3 and 5 respectively. For each problem size we randomly generated,

following a uniform distribution, five different coordinate settings for every delivery site and

every potential facility location. Moreover for every delivery site the demands were gen-

erated using the same uniform distribution. We built different scenarios for every setting

modifying the availability of the resources in the following way: on the one hand we com-

puted the total supply D as the sum of all site demands and for every setting we generated

scenarios with 70, 80, 90 and 100% of the total supply. On the other hand the deadline M

for every instance was set to 40, 50, 60, 80, 100% of the base route length that is computed

as the average length of all the edges in the graph times the average number of served nodes

per vehicle, that is |N |
T
. Additional values for D (120, 160 and 200%) and for M (120%)

are taken into account in small instances. For every combination of D and M , every prob-

lem size and every setting one instance was generated. In every instance three different

types (V1, V2 and V3) of vehicles were considered whose capacity was set, respectively, to

60, 80, and 120% of the average delivery capacity computed as D
T
. In instances with 10 sites

T = 4, V1 = 2, V2 = 1, V3 = 1, in the instances with 20 sites T = 5, V1 = 2, V2 = 2, V3 = 1

and in instances with 50 sites T = 11, V1 = 5, V4 = 1, V3 = 1.

4.5.1 Stabilization Impact

The evaluation of the usefulness of the stabilization method has been done executing all

instances in our test set with six different values of parameter α: 0.00 (value that disables the

stabilization technique), 0.02, 0.05, 0.01, 0.2, 0.5. The computation was carried out using

only exact pricers, none of the cuts and was stopped at the root node. The results of the

stabilized algorithm compared with the non stabilized one are reported in tables 4.1 and 4.2.

They show, for every class of instances (10, 20 and 50 nodes) the maximum, average and
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minimum percentage variation in the number of pricing iterations and in computational

time. As it is clearly visible in the tables the results are characterized by a very high

variability, despite that some trend may be identified. On small instances, with 10 nodes,

the stabilization method is able to reduce, on average, the number of pricing iterations by

30%. However, this achievement fades away with the increase of the instance size and in

fact only about 7% of pricing iterations are saved in instances with 20 nodes and going up

to the largest instances the stabilization method starts requiring on average more pricing

iterations than the non-stabilized one. Nevertheless, it is often possible to find a value of α

which reduces the number of iterations needed. The issue is that this value is not constant

but varies for every instance.

Pricing Iterations % variation
Inst. α = 0.02 α = 0.05 α = 0.1 α = 0.2 α = 0.5

Avg -30.61 -30.97 -29.90 -31.11 -33.19
10 Max 57.89 57.89 57.89 57.89 57.89

Min -166.67 -166.67 -166.67 -166.67 -166.67

Avg -5.84 -7.70 -6.90 -9.50 -9.94
20 Max 47.83 48.44 46.67 48.23 47.76

Min -208.33 -208.33 -208.33 -208.33 -171.43

Avg 23.70 21.94 24.21 25.96 28.82
50 Max 61.07 61.07 63.57 65.54 70.52

Min -26.46 -28.77 -16.05 -11.84 -5.95

Tot Avg -10.94 -12.06 -10.80 -11.75 -12.22

Table 4.1: Impact of the stabilization method on number of pricing iterations

From the computational time point of view the introduction of a stabilization method

slows down the solution process by, on average, about 19%. In fact even when the number of

pricing iterations is reduced the computational time required to optimally solve the relaxed

MP is very often greater than without stabilization. Two aspects are responsible for this

increment, on the one hand every pricing iteration of the stabilized algorithm may require,

when mispriced columns are generated, more than one call to the pricing algorithm on

the other hand stabilized dual variables may lead to more difficult pricing subproblems

requiring more time to be solved. Numerically, the stabilized version of the algorithm

makes about 2% more calls to the pricing algorithm than the non-stabilized one. As to

the pricing subproblems we have analyzed the number of labels extended during the exact

dynamic programming procedure (whose average variation is reported in table 4.3) for the
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RCESPP and we found out the stabilization method can either lead to easier or harder

pricing subproblems. In particular on instances with 20 nodes it always requires much

more labels to solve the dynamic programming procedure while on the other instances

the stabilization makes the pricing subproblems easier, anyway this variation does not

compensate for the increment in the number of pricing iteration on instances with 50 nodes

and makes the overall algorithm slower than without the stabilization method.

Computational Time % variation
Inst. α = 0.02 α = 0.05 α = 0.1 α = 0.2 α = 0.5

Avg 23.81 23.57 24.29 25.00 25.83
10 Max 100.00 100.00 100.00 100.00 100.00

Min -100.00 -100.00 -100.00 -100.00 -100.00

Avg 29.87 -4.80 6.14 11.35 23.33
20 Max 78.85 41.59 43.79 61.71 81.59

Min -153.85 -76.47 -53.85 -66.67 -66.67

Avg 21.44 -5.07 -4.45 30.69 43.09
50 Max 90.76 71.26 69.98 88.48 93.23

Min -163.65 -135.95 -187.78 -156.98 -144.67

Tot Avg 25.07 8.65 12.38 22.23 29.00

Table 4.2: Impact of the stabilization method on the computational time

Observing the high variability of the impact of the stabilization technique and the diffi-

culty in finding a good value for α, we decided to undertake the subsequent tests disabling

the stabilization method.

Labels DP % variation
Inst. α = 0.02 α = 0.05 α = 0.1 α = 0.2 α = 0.5

10 Avg -16.72 -15.88 -14.21 -12.74 -9.00
20 Avg 15.28 17.07 19.34 22.17 29.53
50 Avg -38.66 -38.68 -37.44 -5.88 13.39

Table 4.3: Impact of the stabilization method on the RCESPP pricer

4.5.2 Cut Comparison

We have tested our approach on all instances using different combinations of the cuts

presented in Section 4.4.4 in particular five different configurations have been tested:
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NC : no cuts are used in this configuration.

CC : only consistency cuts are taken into account.

SC : only subset-row inequalities are considered.

2C : 2-path inequalities are the only cuts in this configuration.

AC : all cuts (consistency, subset-row and 2-path) are used.

The percentage variations, aggregated over every instance size, in the number of the

branch and bound nodes explored (B.B.N.), in the value of the lower bound at the root

node (L.B.) and in the computational time (Time) are reported in Tables 4.4 and 4.5. The

first thing that attracts the attention looking at the figures is the very little increment given

by any of the cuts to the lower bound. In fact, the lower bound is influenced by the cuts only

on instances with 10 nodes and by at most 1.42% using the AC configuration. However,

the introduction of cuts marks a more solid difference in the number of nodes explored

and in the computational time, in particular on the largest instances. In this case all cuts

but the subset-row inequalities are able to reduce both the number of the nodes explored

and the computational time. Configurations CC and AC turned out to bring the greatest

improvement reaching a reduction by more than 30% in both values. It must be said that

on the one hand, since a consistency cut is added every time a variable zk is generated, there

are a lot of them in the MP: the average number of consistency cuts added in instances

with 50 nodes is about 500. On the other hand only a handful, less than 10, of 2-path and

subset-row inequalities are introduced in the MP in instances of the same size. Subset-row

inequalities are the less efficient cuts in this problem and indeed introduce almost as much

delay as the consistency cuts but are not able to reduce the number of nodes explored on

any instance with more than 10 nodes. The 2-path inequalities instead does not introduce

too much additional computational effort and can reduce the number of nodes explored in

instances with 10 and 50 nodes. Anyway, all separation procedures are pretty fast, 2-path

inequalities are separated in less than one tenth of a second while the exact subset-row

separator runs, on average, in less than a second. No additional computational effort is

required to introduce consistency cuts since they are instantaneously created and added

when columns are generated.

In Table 4.6 the number of instances optimally solved with every configuration of cuts is

reported. The maximum number of instances is solved used the CC configuration, AC and
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AC CC
Inst. B.B.N. L.B. Time B.B.N. L.B. Time

D10 -7.59 1.42 34.88 -1.90 1.20 16.28
D20 5.33 0.00 33.15 16.77 0.00 21.00
D50 -46.86 0.00 -36.56 -21.58 0.00 -33.38

Table 4.4: Configuration AC and CC - Variation % compared with NC

2C SC
Inst. B.B.N. L.B. Time B.B.N. L.B.s Time

D10 -1.58 0.07 7.75 -7.28 0.19 31.01
D20 4.08 0.00 8.94 1.34 0.00 17.67
D50 -7.73 0.00 -11.29 12.97 0.00 19.99

Table 4.5: Configuration 2C and SC - Variation % compared with NC

2C follows with respectively a total of 434 and 433. Using only the subset-row inequalities

does not increment the number of instances solved compared with the NC configuration. In

the next section we give a detailed analysis of the results achieved with CC configuration.

Insts. NC AC CC 2C SC

D10 210 210 210 210 210
D20 130 130 130 130 130
D50 90 94 95 93 90
Total 430 434 435 433 430

Table 4.6: Number of instances solved for every configuration of cuts

4.5.3 General Performance

An overview of the computational results that our approach is able to achieve with the best

combination of stabilization and cuts found in the previous sections is reported in tables 4.7

and 4.8 while detailed results for every singe instance can be found in Appendix E. Table

4.7 shows, aggregating the values for every class of instances, the average and maximum

number of nodes explored in the branch and bound tree (B.B.N), the gap at the root node

and at the end of the computation (Gap R%, Gap F%) and the computational time in

seconds (Time[s]). In table 4.8 the percentage of instances solved (Solved), solved at root

node (S. Root) and in which the lower bound at rood node is equal to the value of the
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optimal solution (Opt LB) are reported.

Our algorithm is able to optimally solve 435 instances of the 440 available, in particular

all instances with 10 and 20 nodes are closed in less than 20 seconds. The residual gap

considering only the five instances with 50 nodes not solved to optimality ranges from

2.22% to a maximum of 6.38%.

Inst. B.B.N Gap R% Gap F% Time[s]

D10 Avg 1.48 1.27 0.00 0.01
Max 19.00 63.17 0.00 0.05

D20 Avg 28.81 1.43 0.00 0.98
Max 305.00 28.57 0.00 17.27

D50 Avg 80.27 0.21 0.21 387.62
Max 1046.00 6.38 6.38 3600.19

Table 4.7: General Performance Evaluation - Search Tree and Residual Gaps

More than half of the instances are solved at the root node, when branching is required

the size of the tree explored before an optimal solution is reached does not exceed 100 nodes

on average.

The last column of the Table 4.8 shows an interesting result, it contains the percentage

of instances in which the value of lower bound at the root does not further increase during

branching since it is equal to the value of the optimal solution. This value is about 95%

and is a certification of the strength of our mathematical formulation. Moreover it may also

help in explaining the poor contribution given by the additional cuts, indeed if the possibly

fractional value of the RMP is very close (or even equal) to the value of the optimal integer

solution very few useful cuts can be added at the root node. Taking that into account this

problem seems to be harder from the primal point of view than from the dual. Indeed

although the dual bound is almost always optimal the optimal integer solution of the same

value is not as easy to find and may require to branch several times before a feasible integer

solution whose value is equal to the lower bound is found.

4.6 Conclusions

In this chapter we have presented a new problem, with a possible application in the distri-

bution of drugs in case of emergency, that goes beyond the definition of location and routing

and indeed we have called it Generalized Location and Distribution Problem (GLDP). It
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Inst. Solved % S. Root % Opt LB

D10 100.00 83.81 92.38
D20 100.00 36.15 93.42
D50 95.00 48.00 100.00

AVG 98.33 55.99 94.92

Table 4.8: General Performance Evaluation - Number of Instances Solved and LB Improve-
ment

not only represents an extension and a generalization of the classical multi-depot hetero-

geneous fleet VRP with profits but also introduces a new degree of freedom identified by

the availability of multiple distribution models that can be combined together on the same

level in order to build a more complex distribution system.

We have devised a mathematical formulation that is compatible with our general frame-

work and we presented a branch-and-price-and-cut procedure to optimally solve it. This

algorithm includes multiple pricers, three different families of cuts, a primal heuristic pro-

cedure and several branching strategies. Two of the cuts presented are a generalization of

cuts that can be found in the literature for which new separation procedures have been

devised while the third cut is a new introduction in the context of column generation based

algorithm. Moreover, in this chapter we described one of the first attempts to include the

stabilization method by Pessoa et al. [90] in a problem whose complexity level is definitely

higher than in the toy problems originally considered by the authors.

The approach has been tested on a set of 440 instances showing good results and reaching

the optimal solution in almost all the instances. When the optimality is not proven we are

however able to provide a valid lower bound and a feasible primal solution. Moreover the

structure of the solutions suggests that our algorithm is able to quickly find the best lower

bound while the most part of the computational time is spent for finding a feasible integer

solution of the same value.



Chapter 5

Conclusions

In this thesis we have analyzed the nature of the location and routing problems, we iden-

tified three different families of problems based on the relevance of the location decisions

on the structure of the problem and we proposed an algorithmic approach to solve them in

a uniform way. Our investigation started from routing problems and gradually introduced

location features involving multiple depots and combining different distribution strategies.

From a modeling point of view the scenario is clear: the higher is the degree of freedom

in the problem the more complex is its mathematical formulation. Variables are required

to handle location decisions and additional constraints are introduced to model new lim-

itations and to link together the two aspects of a location and routing problem. Despite

that, from a practical point of view the additional complexity, introduced when location

and routing features are combined together, can be handled by modern operations research

techniques with an affordable additional computational effort. In particular with regard

to the three families of problems analyzed, the introduction of multiple locations can be

efficiently tackled in both the MP and the pricing subproblem employing, respectively, the

consistency cuts, which strengthen the relationship between routing and location decisions

in the MP, and the aggregated pricing method that allows for considering all depots at

the same time. When multiple distribution strategies are combined together on the same

network, as in the “Active Location Decisions” type of problems, the increased complexity

of the problem is mainly reflected in the MP; in fact, to each distribution strategy corre-

sponds a different pricing subproblem that can be solved independently and that generates

variables whose interaction, with other variables coming from other pricing subproblems,

is only visible in the MP. Moreover we observed that when multiple pricing subproblems
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are involved the pricing phase can be quicker than in the case with only a single pricing

subproblem. In fact, a careful managing of the execution order of the pricing algorithms

in which easier subproblems are solved first and then, only when no other columns can be

found, the more complex subproblems are considered, can substantially reduce the number

of calls to the most time expensive pricing procedures. Overall, efficient multiple-pricing

techniques, combined with the introduction of the consistency cuts, represent a viable way

for solving reasonable size instances of problems with profits involving heterogeneous fleets

of vehicles, multiple-locations and multiple distribution strategies.

Still, our approach is able to deal with all three families of problems regardless of their

specific requirements and limitations. The branch-and-cut-and-price algorithm we presented

is based on the revision, extension and improvement of several state of the art methods and

brings in a few innovative aspects. In particular, pricing algorithms have to be extensively

adapted in order to handle the nature of the problems addressed, new cut generation pro-

cedures needed to be devised and their reflection on the pricing subproblems had to be

carefully taken into account to ensure the optimality of the approach. Primal heuristic al-

gorithms, branching strategies and support data-structures were developed to give efficiency

and completeness to the framework. During the experimental phase all these components

were carefully tested and analyzed. One of the cuts proposed turned out to be particularly

interesting. Indeed, it gives a robust contribution on speeding up the computation and it is

characterized by a structure that is general enough to be easily adapted to many other LRP.

The implementation of these cut generates a shift in the general branch-and-cut-and-price

framework turning the nature of the pricing procedure from the usual generation of columns

to the simultaneous generation of rows and columns.

On the whole, the experimental analysis demonstrates that our approach can be use-

fully applied to all problems and represents a viable way for handling elaborate problems

involving both location and routing aspects and characterized by a multiplicity of non-

trivial additional requirements. This achievement is further enhanced when considering

the uniform implementation we proposed. In fact, all ideas and concepts presented in this

thesis needed to be translated into computer codes in order to be properly executed and

tested. In doing that we took advantage of the non-commercial framework for Mixed Integer

Programming (MIP) SCIP [69]. Exploiting the great flexibility of the SCIP framework we

were able to implement our approach on all the three different problems with only a few

modifications from its general outline.
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Within our framework we implemented a stabilization method proposed in 2008 by Pes-

soa et al. [90]. It is characterized by interesting properties and showed promising results

when applied on simple problems by the authors. We gave a complete and detailed de-

scription of this method proving its properties. However, when we applied this stabilization

strategy to complex location and routing problems its behavior turned out to be very vari-

able showing a substantial reduction in computational time in some instances but a tangible

increment in other ones making difficult to draw general conclusions.

Finally, new research streams are promoted by this thesis such as the study of how

supplementary column variables, which do not represent combinatorial entities, can be

used to formulate additional features and requirements that cannot be easily modeled in

the pricing subproblems and what is their impact in the master problem. The introduction

of a general location and routing problem involving two distinct distribution strategies mixed

on the same network calls for further researches in this direction to address more complex

and realistic logistic problems involving multiple delivery methods. Moreover, it appears

clear from the experimental campaign that researches aimed at finding optimized and fast

algorithms for the resource constrained elementary shortest path problem are essential,

since in many practical cases they are the foundation of the exact pricing procedures used

in several branch-and-cut-and-price algorithms for LRP.

As a concluding remark we would like to stress the fact that, considering recent advances

in LRP and the results of this thesis, while hierarchical methods remain appealing to deal

with large scale instances, they are likely to be outperformed by integrated ones when

instances of reasonable size are considered.



Appendix A

A Stabilization Technique for

Column Generation

The column generation is one of the most used technique for solving very large linear pro-

gramming problems that would be intractable if all their variables were taken into account

at the same time (see Barnhart et al. [56]). Although this method is very useful it may

require, as described by Desrosiers et al. [91], a very long computational time to converge.

In fact, column generation algorithms often show an instable behavior that is clearly repre-

sented by two critical issues: on the one hand, in the first iterations the algorithm is usually

affected by dual degeneracy that can provoke a very high variability in the values of the dual

variables leading to the generation of many useless columns; on the other hand, when the

majority of the useful columns have been added to the RMP, the algorithms, due to primal

degeneracy, may require several iterations to generate the last useful columns and to prove

the optimality of the LP solution found; such a behavior is often called tailing-off effect (see

Gilmore and Gomory [92]). To put a limit to this instability since the early seventies several

stabilization methods have been devised, see Desrosiers and Lübbecke [93] for an overview

of the most common stabilization strategies and Clautiaux et al. [94] as a recent successful

implementation of effective stabilization method in a complex problem such as the cutting

stock problem.

When huge problems, solved via column generation, show high levels of symmetry in

the columns or are not tightly bounded they are likely to be affected by degeneracy and

in this case the performance of the column generation algorithm may drop since several,

apparently useless, iterations in which the value of the optimal solution does not change
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are performed in order to leave the degenerate basis. For this reason we try to mitigate

possible convergence problems using a stabilization technique that is based on the methods

presented by Uchoa et al. [68].

The idea behind this stabilization technique is to keep during the column generation

process a set of “good” dual variables to be used as stabilization center, when new dual

variables that are perceived as better than the old ones are found, the stabilization center is

repositioned. In details, let πbe, πrm and πst be, respectively, the best set of dual variables

found (representing the stabilization center), the set of dual variables coming from the

optimal solution of the RMP and the actual vector of dual variables used in the solution

of the stabilized pricing subproblems; also let Lag(π) be the optimal solution value of the

Lagrangian relaxation of the MP computed using π as Lagrangian multiplier vector.

The algorithm starts initializing the πbe at a suitable value, then the RMP is solved

obtaining an optimal LP solution of value ZRM and, exploiting the dual representation of

this solution, the vector of dual variables πrm. Instead of considering directly πrm, in similar

way as proposed by Wentges [95], we compute a new vector of dual variable πst as the linear

combination of πbe and πrm and we use it to solve the pricing subproblems. In particular

the value of this vector is

πst = α · πbe + (1− α) · πrm (A.1)

where α ∈ [0, 1) is a user defined coefficient balancing the contributions of the best and

the current dual variables. The pricing algorithms are executed using πst and the optimal

solution of the pricing subproblems gives as outcome a column j. Considering the solution

of the pricing procedures, the stabilization algorithm evaluates if πst makes a better stability

center than πbe. This is done comparing the value of the Lagrangian relaxation of the RMP

using πst with the value achieved using πbe, if Lag(πst) > Lag(πbe) then the stabilization

center is relocated in πst, that is πbe = πst. Then, the reduced cost of j with respect to the

current duals πrm (ξj(πrm)) is assessed, two different cases may arise:

If ξj(πrm) < 0 the column found is added to the RMP.

If ξj(πrm) ≥ 0 the column j is mispriced meaning that although its reduced cost computed

using πst may be negative, its real reduced cost is non-negative and thus adding j to

the RMP is useless. However, finding a mispriced column is not a waste of time as

proved by Theorem A.0.1, Lag(πst) ≥ Lag(πbe)+α(ZRM−Lag(πbe)) and consequently
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the dual gap is reduced at least by a factor of 1
1−α

. Therefore a mispriced column

causes the relocation of the stabilization center on πst and leads to a reduction of the

gap between ZRM and Lag(πbe), possibly improving the convergence. In this case,

since no column was added, in the next iteration the re-computation of ZRM can be

skipped.

This process is iterated until ZRM−Lag(πbe) < ǫ. A pseudo-code outlining this stabilization

method is reported in Figure A.1.

input : a parameter 0 ≤ α < 1 and a small enough value ǫ
initialization: πbest ← 0 ;
while ZRM − Lag(πbe) < ǫ do

solve RMP obtaining ZRM and πrm;
πst ← α · πbe + (1− α) · πrm;
solve pricing subproblems using πst obtaining column j;
if Lag(πst) > Lag(πbe) then

πbe ← πst;
end
if ξj(πrm) < 0 then

Add column j to the RMP;
end

end

Figure A.1: Stabilization Column Generation Method

Theorem A.0.1. If the solution of the pricing problem with dual vector πst does not give

a column with negative reduced cost with respect to πrm, then ∃ǫ > 0 such that

Lag(πst) ≥ Lag(πbe) + ǫ(ZRM − Lag(πbe))

Proof. We prove this theorem by contradiction. Suppose that Lag(πst) < Lag(πbe) +

ǫ(ZRM − Lag(πbe)) then

Lag(πst)− ǫZRM < (1− ǫ)Lag(πbe).

Since Lag(πst) = Lag(απbe+(1−α)πrm) ≥ αLag(πbe)+(1−α)Lag(πrm) from the concavity

of the Lagrangian dual function (see Figure A.2) and considering that Lag(πrm) = ZRM
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then

αLag(πbe) + ZRM − αZRM − ǫZRM < (1− ǫ)Lag(πbe)

and so

(1− α− ǫ)ZRM < (1− α− ǫ)Lag(πbe) (A.2)

that if 0 < ǫ ≤ 1− α is false, since ZRM ≥ Lag(π),∀π, by Lagrangian duality.

Corollary 1. If 1− 2α > 0 then

Lag(πst) ≥ Lag(πbe) + α(ZRM − Lag(πbe))

This can be easily proved substituting ǫ with α in the previous proof.

Figure A.2: Lagrangian function



Appendix B

A Route Search Tree

The data-structure presented in this appendix is used to efficiently handle the dual variables

coming from the consistency cuts as described in sections 3.4.7 and 4.4.4. Since there are

as many consistency cuts as route variables in the MP, checking their dual values by pure

enumeration is not a viable option. However we can exploit three observations. First,

consistency cuts whose corresponding route variable is not in the RMP are never active,

and therefore the corresponding dual variable is 0. Second, given a partial path p only

consistency cuts corresponding to route variables in the RMP which are compatible with

p need to be checked. By compatible we mean that such a route either equals p or can be

obtained by extending p. Third, among all routes compatible with path p, only the one

corresponding to the cut having maximum dual value πmax is important in the computation

of the reduced costs. Hence we devise a tree-like data-structure that allows us, once properly

initialized, to find πmax in O(lp) time, where lp is the length of partial path p.

Each leaf of this data structure T represents a route whose variable is in the RMP, and

branches represent partial paths; routes sharing initial partial paths share also the same

branches of the tree. Moreover, in each node t of the tree a value is stored, representing

the value of the maximum dual variable corresponding to a route whose corresponding leaf

in T belongs to the subtree rooted in t. An example of this data-structure is reported in

Figure B.1, this tree is obtained with the six variables z listed in the picture.

Four operations need to be performed on T: initialization, route insertion, dual update

and find. They are described hereafter.
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Figure B.1: An example of the route search tree

Initialization. At first the tree T is initialized with only one dummy node R that repre-

sents the starting point of every route. This operation can be done in O(1).

Route Insertion. Every time a variable is added in the RMP its corresponding route

r is inserted in T in the following way: T and r are traversed simultaneously starting

respectively from R and from the depot. The first node of the route is visited and then

the corresponding node in T , if it is available among the children of R, is visited and the

process is iterated, considering only the subtree rooted in the last visited node of T , until

either the end of the route is reached or there is no node in the first level of the current

subtree corresponding to the last node visited in the route r. When the route diverges from

T , that is when there is no branch in T that is equivalent to the partial route traversed,

a new branch is created and all remaining nodes in r are added along that branch. The

computational complexity of this operation is O(N logN) where N is the number of clients

in the problem. An example of insertion of a new route in the tree is reported in figure B.2.

Dual update. Every time the RMP is solved new dual values are generated and the

search tree needs to be updated as follows. The value of the dual variable of each consistency

constraint is stored in the leaf of T corresponding to its route; a value 0 is stored in the

inner nodes. Then the update proceeds level by level. The value stored in each node is

compared with that of its father: if the value stored in the father is lower, then the father
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Figure B.2: The route search tree after the insertion of the route corresponding to variable
z7

is updated with the value of the child. The update process has a computational complexity

O(M ×N) where M is the number of variables in the RMP and N is the number of clients

in the problem.

Find. If the tree is properly updated the value of πmax can be found in O(lp) visiting the

branch of the tree corresponding to the partial path encoded by p, when such a branch does

not exist πmax = 0.



Appendix C

Detailed Results: Waste Collection

The detailed results for the Waste Collection problem (see Chapter 2) are reported in this

Appendix. In particular the tables contains the results on all instances taking into account

three different values for Lmin. The column headers used have the following mining:

Inst. is the instance name in the format number of bins instance number.

B.B.N. is the number of nodes explored in the branch and bound tree.

L.B.R. is the lower bound achieved at the end of the root node.

U.B.R. is the upper bound achieved at the end of the root node.

L.B.F. is the final lower bound obtained at the end of the computation.

Best is the best feasible solution found during the computation.

Gap% is the residual dual gap at the end of the computation.

N.Cuts is the total number of cuts added to the MP.

Time[s ] is the computational time in seconds.
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Inst. B.B.N. L.B.R. U.B.R. F.B.R. Best Gap% N.Cuts Time[s]

15 01 1 2688 2688 2688 2688 0 0 0.01
15 02 1 4887 4887 4887 4887 0 0 0.01
15 03 31 3331.88 inf 3721 3721 0 0 5.49
15 04 3 6643 6846 6756 6756 0 2 0.01
15 05 1 5395 5395 5395 5395 0 0 0.01
15 06 39 2535.33 2673 2673 2673 0 5 0.1
15 07 5 1568.05 2094 1796 1796 0 0 0.02
15 08 21 3762.67 inf 4134 4134 0 13 0.09
15 09 111 2477.4 2700 2633 2633 0 9 0.31
15 10 1 5961 5961 5961 5961 0 0 0.01
15 11 1 5747 5747 5747 5747 0 0 0.01
15 12 3 3071.33 3935 3347 3347 0 10 0.04
15 13 1 2276 2276 2276 2276 0 0 0.01
15 14 1 4241 4241 4241 4241 0 0 0.01
15 15 3 5187 5272 5272 5272 0 3 0.02
25 01 79 7008.36 inf 7065 7065 0 16 2.67
25 02 1 741 741 741 741 0 0 0.01
25 03 69 3164.17 inf 3365 3365 0 10 520.18
25 04 3 844.8 923 923 923 0 1 0.02
25 05 3 2097.12 2208 2136 2136 0 0 0.03
25 06 3 5794.4 inf 5817 5817 0 10 2.1
25 07 1 5614 5614 5614 5614 0 7 0.73
25 08 3 6395 6534 6534 6534 0 2 0.01
25 09 3 8788 inf 8851 8851 0 10 0.2
25 10 135 8001 8247 8142 8142 0 28 0.56
25 11 330 4360.13 inf 4689 4689 0 15 147.34
25 12 1 4063 4063 4063 4063 0 2 0.02
25 13 3 7906.67 8248 7958 7958 0 6 0.08
25 14 1 6167 6167 6167 6167 0 0 0.01
25 15 3 2834.34 inf 3201 3201 0 11 318.87
50 01 1 12367 12367 12367 12367 0 0 15.09
50 02 3 13287.5 13294 13294 13294 0 3 1.11
50 03 97 13372.86 inf 13410 13410 0 44 62.45
50 04 1500 17680.29 inf 17816.17 17823 0.04 128 3600
50 05 3 23862.5 24020 23927 23927 0 5 0.4
50 06 1 12882 12882 12882 12882 0 0 0.24
50 07 91 13983.53 14528 14047 14047 0 32 155.33
50 08 88 2514.86 2642 2626 2626 0 5 342.3
50 09 5930 14415.69 inf 14395 14395 0 1145 1836.51
50 10 51 5973.76 6044 6018 6018 0 6 22.57
50 11 3 15639.33 15758 15658 15658 0 6 1.13
50 12 3 12242 12633 12297 12297 0 1 28.31
50 13 3898 10402 inf 10650.55 10771 1.13 55 3600
50 14 9503 17273.44 inf 17316.64 17325 0.05 374 3600
50 15 47 14755.3 16142 14789 14789 0 23 17.93

Table C.1: Solution for instances with Lmin = 0.60 ·W (15-50 nodes)
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Inst. B.B.N. L.B.R. U.B.R. F.B.R. Best Gap% N.Cuts Time[s]

75 01 7351 23104.55 inf 23157.24 23193 0.15 671 3600
75 02 1 17219 17219 17219 17219 0 3 13.46
75 03 1 38713 38713 38713 38713 0 9 0.08
75 04 7606 20973.42 inf 21048.84 21240 0.91 408 3600
75 05 604 6239.12 7948 6449 6449 0 29 688.19
75 06 1 14293 14293 14293 14293 0 0 2
75 07 9633 24613.9 inf 24654 24654 0 824 2333.99
75 08 1815 21250.84 inf 21345 21523 0.83 234 3600
75 09 395 21254.71 inf 21367 21411 0.21 95 3600
75 10 1 9039 9039 9039 9039 0 0 16.07
75 11 1798 23654.57 inf 23709 23709 0 527 426.06
75 12 5566 21087.45 inf 21158.33 21215 0.27 562 3600
75 13 1 18269 18269 18269 18269 0 0 1.57
75 14 3 27803.5 27807 27807 27807 0 6 0.72
75 15 3099 25582.17 inf 25613.59 25628 0.06 288 3600
100 01 59 18640.42 19547 18703 18721 0.1 23 3600
100 02 81 29016.5 29068 29020 29020 0 7 35.39
100 03 3 24737 24741 24741 24741 0 1 4.46
100 04 3 118.15 143 143 143 0 0 61.41
100 05 6682 37526.33 inf 37626 37663 0.1 410 3600
100 06 182 24450 inf 24545.61 24864 1.3 82 3600
100 07 10 26010.94 inf 24631 24631 0 21 464.42
100 08 1 29278 29278 29278 29278 0 6 5.56
100 09 54 5857.26 inf 5940 5940 0 4 440.95
100 10 109 2103.16 2381 2179.49 2381 9.25 23 3600
100 11 146776 50281.5 50784 50346.5 50390 0.09 1232 3600
100 12 566 32013.96 inf 32095.08 32469 1.17 137 3600
100 13 80 6669.91 inf 6696.69 6727 0.45 38 3600
100 14 124 20424.59 inf 20504 20504 0 22 591.57
100 15 289 32008.8 inf 32031.09 32462 1.35 86 3600

Table C.2: Solution for instances with Lmin = 0.60 ·W (75-100 nodes)
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Inst. B.B.N. L.B.R. U.B.R. F.B.R. Best Gap% N.Cuts Time[s]

15 01 1 2688 2688 2688 2688 0 0 0
15 02 1 4887 4887 4887 4887 0 0 0.01
15 03 3 3340.59 inf 3820 3820 0 1 0.95
15 05 1 5926 5926 5926 5926 0 1 0
15 06 27 2535.33 2673 2673 2673 0 6 0.08
15 07 17 1815.38 inf 2537 2537 0 10 0.2
15 08 3 3748.67 inf 4314 4314 0 10 0.05
15 09 29 2625.76 2751 2700 2700 0 9 0.1
15 10 1 5961 5961 5961 5961 0 0 0.01
15 11 1 5747 5747 5747 5747 0 0 0.01
15 12 3 3071.33 3935 3378 3378 0 10 0.06
15 13 1 2276 2276 2276 2276 0 0 0.02
15 14 1 4331 4331 4331 4331 0 0 0.01
15 15 3 5189 5480 5284 5284 0 4 0.08
25 01 61 7162.67 7260 7219 7219 0 8 3.63
25 02 3 787.08 1016 952 952 0 0 0.04
25 03 1017 3176.06 inf 3401 3401 0 21 3600
25 04 3 844.8 inf 1146 1146 0 0 0.02
25 05 3 2212.4 2582 2393 2393 0 2 0.19
25 06 3 5976 inf 6225 6225 0 15 3.19
25 07 1 5614 5614 5614 5614 0 7 0.72
25 08 3 6508 6869 6797 6797 0 2 0.04
25 09 3 8788 inf 8967 8967 0 12 0.24
25 10 9 8001 8413 8159 8159 0 10 0.49
25 11 1320 4355.15 inf 4961 4961 0 6 513.36
25 12 1 4082 4082 4082 4082 0 2 0.04
25 13 3 7906.67 7958 7958 7958 0 6 0.06
25 14 1 6169 6169 6169 6169 0 0 0.02
50 01 1 12367 12367 12367 12367 0 0 14.64
50 02 3 13291 13391 13365 13365 0 3 1.36
50 03 3 13381 13483 13410 13410 0 18 18.6
50 04 882 17745.44 inf 17806.5 17825 0.1 115 3600
50 06 3 13631 14112 13657 13657 0 0 0.61
50 07 195 13989.67 inf 14047 14047 0 48 234.73
50 08 73 2650.74 3168 2879 2879 0 10 133.76
50 09 4368 13932.33 inf 14329 14329 0 509 432.42
50 10 35 5973.76 6044 6018 6018 0 4 15.9
50 11 3 15639.33 16254 15658 15658 0 6 14.08
50 12 3 12610 inf 12769 12769 0 2 231.36
50 13 952 10404.14 inf 10646.04 10762 1.09 43 3600
50 14 5756 17275.86 inf 17325 17325 0 360 2333.63
50 15 673 14771.14 inf 14879 14879 0 89 2274.44

Table C.3: Solution for instances with Lmin = 0.80 ·W (15-50 nodes)
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Inst. B.B.N. L.B.R. U.B.R. F.B.R. Best Gap% N.Cuts Time[s]

75 01 6358 23115.24 inf 23156.26 23219 0.27 516 3600
75 02 1 17219 17219 17219 17219 0 3 3.74
75 03 1 38713 38713 38713 38713 0 9 0.14
75 04 4566 20989.25 inf 21046.35 21237 0.91 266 3600
75 05 214 6239.12 7782 6453 6453 0 21 85.24
75 06 1 14294 14294 14294 14294 0 0 2.2
75 07 16325 24592 inf 24643.21 24654 0.04 1357 3600
75 08 1597 21248.25 inf 21392.91 21403 0.05 163 3600
75 09 197 21252.86 inf 21377.5 21408 0.14 101 3600
75 10 1 9048 9048 9048 9048 0 0 32.54
75 11 809 23648.85 inf 23709 23709 0 228 237.43
75 12 987 21096.88 inf 21152.28 21250 0.46 130 3600
75 13 1 18404 18404 18404 18404 0 0 5.48
75 14 3 27803.5 27807 27807 27807 0 6 0.7
75 15 3193 25570.54 inf 25609.69 25628 0.07 268 3600
100 01 33 18646.7 inf 18701.5 18756 0.29 26 3600
100 02 81 29016.5 30041 29020 29020 0 9 41.21
100 03 3 24737 24741 24741 24741 0 0 2.88
100 04 3 118.15 143 143 143 0 0 143.22
100 05 7391 37530 38454 37689.7 37743 0.14 404 3600
100 06 186 24447.85 inf 24542.67 24752 0.85 78 3600
100 07 154 26047.89 inf 26047.89 inf inf 84 3600
100 08 877 29309 31544 29480 29480 0 90 928.03
100 09 3 5857.26 6258 5939 5939 0 1 28.58
100 10 42 2101.36 2353 2229 2229 0 20 2800
100 12 459 32024.02 inf 32153.6 32599 1.39 151 3600
100 13 88 6673.12 6946 6697.84 6732 0.51 56 3600
100 14 273 20424.59 23380 20548 20548 0 78 2011.78
100 15 414 32008.75 33979 32045.93 32270 0.7 136 3600

Table C.4: Solution for instances with Lmin = 0.80 ·W (75-100 nodes)
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Inst. B.B.N. L.B.R. U.B.R. F.B.R. Best Gap% N.Cuts Time[s]

15 01 1 2961 2961 2961 2961 0 0 0.01
15 02 1 5335 5335 5335 5335 0 0 0.02
15 05 1 6300 6300 6300 6300 0 1 0.01
15 06 3 2919.45 inf 3618 3618 0 0 0.02
15 07 3 1999.84 3212 2966 2966 0 3 0.10
15 08 3 3748 4887 4344 4344 0 6 0.04
15 09 3 2625.76 2795 2756 2756 0 2 0.03
15 12 3 3086 3935 3378 3378 0 14 0.06
15 13 1 2276 2276 2276 2276 0 0 0.00
15 14 1 4699 4699 4699 4699 0 0 0.03
25 01 19 7192.04 7957 7578 7578 0 10 2.61
25 02 3 894.05 1192 1192 1192 0 0 0.07
25 04 3 844.8 inf 1191 1191 0 0 0.02
25 05 3 2212.4 2582 2565 2565 0 1 0.14
25 07 1 5614 5614 5614 5614 0 7 0.72
25 08 3 6597 7068 7011 7011 0 3 0.07
25 10 121 8339 inf 8863 8863 0 37 3.15
25 12 3 4123.36 4597 4242 4242 0 9 0.18
25 13 3 8087.25 8127 8112 8112 0 5 0.27
25 14 1 6293 6293 6293 6293 0 0 0.07
50 01 1 13065 13065 13065 13065 0 0 163.56
50 02 3 13329 13429 13404 13404 0 2 0.62
50 03 7 13467.72 inf 13604 13604 0 19 52.73
50 04 63 17849.06 18975 17901 17901 0 33 826.28
50 06 3 14280 15096 14329 14329 0 0 0.67
50 07 1 14173 14173 14173 14173 0 0 12.47
50 08 3 2774.36 inf 3140 3140 0 1 18.38
50 10 3 6028.29 6365 6161 6161 0 3 3.68
50 11 2605 15800.67 inf 15936 16013 0.48 310 3600.00
50 12 8 13166.5 inf 13575 13575 0 6 1755.69
50 13 621 10404.82 inf 10857.35 11301 4.09 46 6702.70
50 14 1380 17303.6 inf 17594 17594 0 184 1239.10
50 15 47 14940.13 inf 15421 15421 0 39 1642.62
75 01 63 23482.82 inf 23495 23495 0 30 308.20
75 02 3 17376.67 17472 17447 17447 0 5 106.21
75 03 1 38713 38713 38713 38713 0 9 0.13
75 04 4722 20996.93 inf 21054.43 21223 0.8 281 3601.47
75 05 13 6360.14 inf 6453 6453 0 9 68.05
75 06 1 14945 14945 14945 14945 0 0 6.89
75 07 11554 24671.09 inf 24796.87 24827 0.12 1019 3603.59
75 10 1 9277 9277 9277 9277 0 1 126.31
75 11 904 23668.81 25626 23709 23709 0 275 369.33
75 12 324 21183.28 inf 21227.36 21364 0.64 185 3603.94
75 13 1 19690 19690 19690 19690 0 0 28.01
75 14 343 27803.5 inf 27819 27819 0 47 23.22
75 15 308 25603.55 inf 25718 25718 0 82 356.45
100 01 8 19266.47 inf 19298.34 19432 0.69 27 3600.00
100 02 3308 29086.5 29509 29119.5 29162 0.15 224 3600.00
100 03 149 24887 24958 24896 24896 0 4 3583.70
100 04 3 131.72 177 177 177 0 0 347.76
100 05 6928 37607.67 inf 37840.33 37907 0.18 301 3600.00
100 06 251 24498.77 inf 24701.43 24824 0.5 114 3600.00
100 07 2 23136.38 inf 23136.38 23889 3.25 14 3600.00
100 08 45 29309 33644 29488 29488 0 30 44.99
100 09 3 5857.26 6247 6011 6011 0 1 39.24
100 10 3 2334.29 inf 2722 2722 0 7 755.57
100 12 331 32086.74 inf 32229.78 33265 3.21 134 3600.00
100 13 3 6729.73 inf 6989 6989 0 8 886.49
100 14 43 23781.76 24843 23781.76 24843 4.46 69 3600.00

Table C.5: Solution for instances with Lmin = 0.99 ·W



Appendix D

Detailed Results: Planetary Space

Exploration

In this Appendix are reported the tables containing detailed results for every single instances

used as test set for the algorithm presented in the Chapter 3 using the AC configuration of

the cut generator. The column used have the following mining:

Inst. is the instance name in the format bases sites budget.

B.B.N. is the number of nodes explored in the branch and bound tree.

L.B.R. is the lower bound achieved at the end of the root node.

U.B.R. is the upper bound achieved at the end of the root node.

L.B.F. is the final lower bound obtained at the end of the computation.

Best is the best feasible solution found during the computation.

Gap% is the residual dual gap at the end of the computation.

N.Cuts is the total number of cuts added to the MP.

Time[s ] is the computational time in seconds.
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Inst. B.B.N. L.B.R. U.B.R. L.B.R. Best Gap% N.Cuts Time[s]

10 100 0.5 11 190.00 195.00 195.00 195.00 0.00 39 0.05
10 100 1 21 182.83 188.00 188.00 188.00 0.00 39 0.07
10 100 2 29 169.50 179.00 175.00 175.00 0.00 39 0.09
10 100 3 23 162.00 174.00 165.00 165.00 0.00 39 0.08
10 100 4 3 157.50 158.00 158.00 158.00 0.00 39 0.05
10 100 5 1 157.00 157.00 157.00 157.00 0.00 37 0.01
10 200 0.5 11 364.85 377.00 374.00 374.00 0.00 105 0.15
10 200 1 19 348.00 361.00 360.00 360.00 0.00 110 0.18
10 200 2 23 329.50 338.00 338.00 338.00 0.00 107 0.23
10 200 3 35 321.20 328.00 326.00 326.00 0.00 97 0.33
10 200 4 13 318.10 319.00 319.00 319.00 0.00 96 0.17
10 200 5 1 318.00 318.00 318.00 318.00 0.00 89 0.03
10 300 0.5 13 554.74 572.00 570.00 570.00 0.00 163 0.24
10 300 1 47 531.56 556.00 553.00 553.00 0.00 171 0.68
10 300 2 59 503.32 524.00 519.00 519.00 0.00 154 0.98
10 300 3 9 484.03 490.00 487.00 487.00 0.00 148 0.32
10 300 4 5 473.40 475.00 475.00 475.00 0.00 125 0.12
10 300 5 1 469.00 469.00 469.00 469.00 0.00 125 0.06
10 400 0.5 11 757.47 772.00 770.00 770.00 0.00 174 0.34
10 400 1 25 737.05 754.00 751.00 751.00 0.00 172 0.69
10 400 2 19 704.96 717.00 714.00 714.00 0.00 170 0.78
10 400 3 29 679.08 689.00 688.00 688.00 0.00 168 1.16
10 400 4 21 662.33 671.00 668.00 668.00 0.00 155 0.99
10 400 5 1 655.00 655.00 655.00 655.00 0.00 136 0.07
10 500 0.5 17 970.71 987.00 986.00 986.00 0.00 272 0.66
10 500 1 43 943.23 968.00 963.00 963.00 0.00 299 1.96
10 500 2 65 902.31 923.00 920.00 920.00 0.00 280 3.58
10 500 3 51 871.26 893.00 884.00 884.00 0.00 270 3.51
10 500 4 19 849.25 858.00 857.00 857.00 0.00 248 1.77
10 500 5 1 844.00 844.00 844.00 844.00 0.00 196 0.11
10 1000 0.5 105 1975.70 1998.00 1994.00 1994.00 0.00 690 8.45
10 1000 1 149 1929.89 1966.00 1956.00 1956.00 0.00 738 17.24
10 1000 2 25842 1852.78 1900.00 1886.00 1887.00 0.05 869 3600.08
10 1000 3 16123 1798.35 1843.00 1828.00 1829.00 0.05 855 3600.00
10 1000 4 13625 1759.83 1786.00 1775.00 1776.00 0.06 776 3600.05
10 1000 5 11742 1733.32 1735.00 1734.00 1735.00 0.06 565 3600.17

Table D.1: Solution of GRLPP using AC Configuration (10 bases)
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Inst. B.B.N. L.B.R. U.B.R. L.B.R. Best Gap% N.Cuts Time[s]

20 100 0.5 67 161.90 178.00 173.00 173.00 0.00 64 0.26
20 100 1 28 149.13 165.00 155.38 155.00 0.00 64 0.17
20 100 2 51 134.25 149.00 141.00 141.00 0.00 63 0.21
20 100 3 45 126.00 138.00 130.00 130.00 0.00 62 0.22
20 100 4 1 126.00 126.00 126.00 126.00 0.00 57 0.02
20 100 5 1 126.00 126.00 126.00 126.00 0.00 57 0.02
20 200 0.5 45 375.48 386.00 386.00 386.00 0.00 187 0.53
20 200 1 137 347.88 363.00 359.00 359.00 0.00 186 1.37
20 200 2 547 302.86 322.00 317.00 317.00 0.00 189 6.54
20 200 3 420 268.92 288.00 285.00 285.00 0.00 186 5.74
20 200 4 155 258.77 276.00 264.00 264.00 0.00 180 2.39
20 200 5 1 258.00 258.00 258.00 258.00 0.00 153 0.09
20 300 0.5 43 532.07 552.00 549.00 549.00 0.00 294 0.95
20 300 1 69 498.21 520.00 512.00 512.00 0.00 282 2.06
20 300 2 366 445.22 466.00 456.00 456.00 0.00 289 12.04
20 300 3 292 403.77 418.00 413.00 413.00 0.00 290 11.97
20 300 4 71 380.33 385.00 385.00 385.00 0.00 265 3.48
20 300 5 1 378.00 378.00 378.00 378.00 0.00 238 0.13
20 400 0.5 129 716.52 741.00 739.00 739.00 0.00 417 3.20
20 400 1 123 674.52 709.00 690.72 691.00 0.00 424 5.84
20 400 2 5861 614.20 659.00 642.00 642.00 0.00 540 283.84
20 400 3 324 573.10 596.00 585.00 585.00 0.00 445 23.15
20 400 4 39 552.00 559.00 556.00 556.00 0.00 379 4.15
20 400 5 1 552.00 552.00 552.00 552.00 0.00 303 0.14
20 500 0.5 217 912.39 947.00 938.00 938.00 0.00 488 6.03
20 500 1 1953 867.71 907.00 896.00 896.00 0.00 541 77.85
20 500 2 10659 784.43 834.00 820.00 820.00 0.00 570 702.07
20 500 3 8532 725.72 766.00 754.00 754.00 0.00 550 733.66
20 500 4 436 676.13 702.00 693.00 693.00 0.00 465 47.54
20 500 5 1 647.00 647.00 647.00 647.00 0.00 364 0.43
20 1000 0.5 221 1927.63 1967.00 1956.00 1956.00 0.00 1501 31.71
20 1000 1 1915 1848.39 1911.00 1888.00 1888.00 0.00 2122 395.45
20 1000 2 10626 1718.70 1795.00 1760.51 1766.00 0.31 2422 3600.14
20 1000 3 8116 1612.13 1686.00 1658.00 1658.00 0.00 2230 3588.15
20 1000 4 6037 1529.14 1576.00 1556.65 1557.00 0.02 1653 3600.31
20 1000 5 5491 1475.87 1478.00 1476.12 1478.00 0.13 1110 3600.18

Table D.2: Solution of GRLPP using AC Configuration (20 bases)
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Inst. B.B.N. L.B.R. U.B.R. L.B.R. Best Gap% N.Cuts Time[s]

30 100 0.5 423 146.20 165.00 161.00 161.00 0.00 129 1.84
30 100 1 893 116.50 142.00 135.00 135.00 0.00 129 4.76
30 100 2 4795 87.96 112.00 103.00 103.00 0.00 128 25.54
30 100 3 283 77.00 96.00 83.00 83.00 0.00 127 1.89
30 100 4 14 77.00 79.00 77.00 77.00 0.00 127 0.15
30 100 5 1 77.00 77.00 77.00 77.00 0.00 123 0.02
30 200 0.5 135 328.47 348.00 343.00 343.00 0.00 208 1.64
30 200 1 4835 295.33 318.00 314.00 314.00 0.00 210 48.25
30 200 2 62625 247.32 277.00 269.00 269.00 0.00 212 1204.17
30 200 3 3900 225.00 244.00 235.00 235.00 0.00 209 58.07
30 200 4 1 218.00 218.00 218.00 218.00 0.00 188 0.08
30 200 5 1 218.00 218.00 218.00 218.00 0.00 184 0.05
30 300 0.5 1219 518.46 553.00 547.00 547.00 0.00 441 18.86
30 300 1 33842 468.72 514.00 502.00 502.00 0.00 459 835.96
30 300 2 92873 392.96 440.00 421.78 427.00 1.24 472 3600.03
30 300 3 39220 344.91 386.00 368.00 368.00 0.00 447 1849.78
30 300 4 673 326.29 350.00 333.00 333.00 0.00 401 37.03
30 300 5 1 326.00 326.00 326.00 326.00 0.00 337 0.17
30 400 0.5 2158 689.94 746.00 738.00 738.00 0.00 924 74.57
30 400 1 68747 625.06 690.00 683.00 683.00 0.00 1056 3211.07
30 400 2 43163 523.64 607.00 561.89 582.00 3.58 953 3600.02
30 400 3 35782 456.70 515.00 487.75 496.00 1.69 974 3600.03
30 400 4 903 421.00 456.00 435.00 435.00 0.00 759 110.71
30 400 5 1 413.00 413.00 413.00 413.00 0.00 504 0.35
30 500 0.5 473 856.12 899.00 893.00 893.00 0.00 836 22.54
30 500 1 8535 778.06 845.00 831.00 831.00 0.00 972 553.05
30 500 2 30306 678.09 747.00 719.00 719.00 0.00 988 2984.84
30 500 3 23799 607.15 667.00 639.00 639.00 0.00 960 3236.98
30 500 4 771 565.25 590.00 580.00 580.00 0.00 723 119.18
30 500 5 1 563.00 563.00 563.00 563.00 0.00 522 0.41
30 1000 0.5 5398 1816.09 1878.00 1860.00 1860.00 0.00 4096 1094.69
30 1000 1 9401 1698.33 1792.00 1742.40 1764.00 1.24 4186 3600.12
30 1000 2 6067 1513.70 1617.00 1541.21 1601.00 3.88 2869 3600.08
30 1000 3 4691 1373.95 1466.00 1397.95 1426.00 2.01 2641 3600.38
30 1000 4 4142 1268.71 1331.00 1291.81 1310.00 1.41 2490 3600.10
30 1000 5 4344 1215.51 1237.00 1216.60 1220.00 0.28 1576 3600.62

Table D.3: Solution of GRLPP using AC Configuration (30 bases)
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Inst. B.B.N. L.B.R. U.B.R. L.B.R. Best Gap% N.Cuts Time[s]

40 100 0.5 277 143.23 161.00 158.00 158.00 0.00 159 1.76
40 100 1 629 117.17 131.00 127.00 127.00 0.00 160 4.67
40 100 2 267 87.43 97.00 93.00 93.00 0.00 155 1.98
40 100 3 497 74.93 79.00 78.00 78.00 0.00 153 3.44
40 100 4 1 74.00 74.00 74.00 74.00 0.00 145 0.02
40 100 5 1 74.00 74.00 74.00 74.00 0.00 145 0.05
40 200 0.5 4075 302.57 337.00 330.00 330.00 0.00 423 53.54
40 200 1 31379 251.05 288.00 279.00 279.00 0.00 440 507.50
40 200 2 132167 182.31 230.00 208.75 213.00 2.04 453 3600.01
40 200 3 32332 157.33 193.00 171.00 171.00 0.00 429 948.38
40 200 4 12 155.00 156.00 155.00 155.00 0.00 336 0.72
40 200 5 1 155.00 155.00 155.00 155.00 0.00 310 0.14
40 300 0.5 3329 476.94 519.00 515.00 515.00 0.00 578 89.20
40 300 1 86847 413.26 472.00 456.00 456.00 0.00 592 2959.28
40 300 2 66573 333.67 381.00 358.46 364.00 1.54 562 3600.00
40 300 3 19463 291.23 312.00 309.00 309.00 0.00 558 1213.27
40 300 4 7 285.00 294.00 285.00 285.00 0.00 437 0.95
40 300 5 1 285.00 285.00 285.00 285.00 0.00 418 0.35
40 400 0.5 5147 650.87 718.00 700.00 700.00 0.00 1165 213.98
40 400 1 47799 565.14 637.00 613.12 622.00 1.45 1234 3600.05
40 400 2 32516 441.91 521.00 475.49 495.00 4.10 1042 3600.05
40 400 3 28447 364.74 430.00 390.18 403.00 3.29 1046 3600.02
40 400 4 8553 336.00 361.00 347.00 347.00 0.00 864 1073.42
40 400 5 1 336.00 336.00 336.00 336.00 0.00 623 0.31
40 500 0.5 4565 843.10 894.00 878.00 878.00 0.00 1162 239.69
40 500 1 47555 753.46 818.00 791.69 803.00 1.43 1194 3600.02
40 500 2 23839 621.75 698.00 645.83 683.00 5.76 1158 3600.05
40 500 3 20486 538.90 609.00 561.50 581.00 3.47 1101 3600.03
40 500 4 3545 492.33 529.00 507.00 507.00 0.00 970 669.01
40 500 5 23 485.50 486.00 486.00 486.00 0.00 686 4.19
40 1000 0.5 14059 1785.37 1852.00 1836.04 1837.00 0.05 4679 3600.12
40 1000 1 8438 1639.73 1742.00 1684.30 1712.00 1.64 3740 3600.26
40 1000 2 5212 1397.90 1546.00 1425.59 1520.00 6.62 3272 3600.14
40 1000 3 4360 1233.08 1365.00 1256.48 1334.00 6.17 2705 3600.12
40 1000 4 3898 1124.70 1211.00 1144.59 1172.00 2.40 2390 3600.65
40 1000 5 4190 1088.50 1108.00 1088.81 1097.00 0.75 1707 3600.71

Table D.4: Solution of GRLPP using AC Configuration (40 bases)
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Inst. B.B.N. L.B.R. U.B.R. L.B.R. Best Gap% N.Cuts Time[s]

50 100 0.5 1893 121.85 142.00 141.00 141.00 0.00 240 15.86
50 100 1 3193 93.52 117.00 107.00 107.00 0.00 242 33.92
50 100 2 903 61.58 75.00 68.00 68.00 0.00 227 8.75
50 100 3 138 57.00 61.00 57.00 57.00 0.00 223 1.51
50 100 4 1 57.00 57.00 57.00 57.00 0.00 202 0.03
50 100 5 1 57.00 57.00 57.00 57.00 0.00 198 0.04
50 200 0.5 14673 303.00 347.00 335.00 335.00 0.00 475 244.96
50 200 1 128893 234.65 291.00 260.66 275.00 5.50 483 3600.02
50 200 2 103427 141.34 208.00 170.79 191.00 11.83 478 3600.02
50 200 3 136043 109.00 145.00 126.12 129.00 2.29 466 3600.02
50 200 4 1 109.00 109.00 109.00 109.00 0.00 387 0.15
50 200 5 1 109.00 109.00 109.00 109.00 0.00 385 0.10
50 300 0.5 73932 477.67 530.00 523.00 523.00 0.00 797 2347.97
50 300 1 68155 383.30 456.00 417.03 449.00 7.67 785 3600.00
50 300 2 48526 256.47 331.00 283.63 317.00 11.76 759 3600.05
50 300 3 43586 192.75 248.00 212.40 221.00 4.05 727 3600.01
50 300 4 4 190.00 196.00 190.00 190.00 0.00 558 0.50
50 300 5 1 190.00 190.00 190.00 190.00 0.00 558 0.21
50 400 0.5 9787 604.09 668.00 650.00 650.00 0.00 1425 670.25
50 400 1 34656 496.10 585.00 532.62 554.00 4.01 1347 3600.08
50 400 2 24904 355.53 447.00 377.50 420.00 11.26 1277 3600.10
50 400 3 22376 277.83 333.00 295.62 309.00 4.53 1237 3600.01
50 400 4 1249 253.00 269.00 257.00 257.00 0.00 1017 144.58
50 400 5 1 253.00 253.00 253.00 253.00 0.00 746 0.51
50 500 0.5 40902 833.55 930.00 893.01 905.00 1.34 2047 3600.06
50 500 1 24621 702.27 820.00 744.72 797.00 7.02 1709 3600.03
50 500 2 17727 525.28 648.00 549.29 611.00 11.24 1520 3600.13
50 500 3 15253 409.65 504.00 431.14 448.00 3.91 1407 3600.03
50 500 4 12515 350.35 389.00 364.00 364.00 0.00 1521 3315.95
50 500 5 7 347.50 348.00 348.00 348.00 0.00 974 2.38
50 1000 0.5 8276 1778.05 1887.00 1828.79 1858.00 1.60 5614 3600.35
50 1000 1 5718 1585.52 1739.00 1624.13 1728.00 6.40 4227 3600.44
50 1000 2 3820 1298.53 1488.00 1323.12 1444.00 9.14 3719 3600.25
50 1000 3 3172 1087.32 1252.00 1107.20 1197.00 8.11 3253 3600.83
50 1000 4 2973 943.32 1047.00 954.14 993.00 4.07 3074 3600.95
50 1000 5 1254 886.17 921.00 886.67 887.00 0.04 2104 3602.30

Table D.5: Solution of GRLPP using AC Configuration (50 bases)
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Inst. B.B.N. L.B.R. U.B.R. L.B.R. Best Gap% N.Cuts Time[s]

100 100 0.5 246761 82.56 123.00 101.00 101.00 0.00 386 2993.63
100 100 1 266675 37.85 78.00 50.34 57.00 13.23 368 3600.00
100 100 2 8 26.00 31.00 26.00 26.00 0.00 347 0.24
100 100 3 1 26.00 26.00 26.00 26.00 0.00 330 0.09
100 100 4 1 26.00 26.00 26.00 26.00 0.00 328 0.11
100 100 5 1 26.00 26.00 26.00 26.00 0.00 327 0.20
100 200 0.5 82266 211.37 286.00 242.27 269.00 11.03 971 3600.02
100 200 1 64168 95.47 197.00 115.22 164.00 42.33 942 3600.01
100 200 2 91604 36.00 72.00 36.97 53.00 43.34 910 3600.01
100 200 3 96 36.00 37.00 36.00 36.00 0.00 817 12.26
100 200 4 1 36.00 36.00 36.00 36.00 0.00 736 0.21
100 200 5 1 36.00 36.00 36.00 36.00 0.00 722 0.23
100 300 0.5 40704 335.61 446.00 362.35 427.00 17.84 1540 3600.05
100 300 1 33586 199.74 326.00 217.14 296.00 36.32 1467 3600.07
100 300 2 29399 93.38 218.00 99.41 140.00 40.83 1539 3600.01
100 300 3 42 93.00 100.00 93.00 93.00 0.00 1168 8.93
100 300 4 1 93.00 93.00 93.00 93.00 0.00 1066 0.26
100 300 5 1 93.00 93.00 93.00 93.00 0.00 1077 0.55
100 400 0.5 19219 471.46 583.00 495.11 564.00 13.92 2818 3600.00
100 400 1 15421 303.70 442.00 314.23 412.00 31.11 2486 3600.16
100 400 2 13009 116.16 249.00 125.49 207.00 64.95 2454 3600.14
100 400 3 22172 108.50 135.00 108.50 113.00 4.15 2692 3600.04
100 400 4 23380 108.50 109.00 108.50 109.00 0.46 2503 3600.02
100 400 5 191 108.50 109.00 109.00 109.00 0.00 1508 25.51
100 500 0.5 14348 626.90 771.00 658.20 749.00 13.80 3028 3600.11
100 500 1 10529 426.34 601.00 437.19 568.00 29.92 2948 3600.14
100 500 2 8281 186.45 372.00 197.21 304.00 54.15 2803 3600.00
100 500 3 10749 136.00 176.00 136.00 142.00 4.41 2983 3600.22
100 500 4 6 136.00 141.00 136.00 136.00 0.00 1791 10.82
100 500 5 1 136.00 136.00 136.00 136.00 0.00 1811 2.97
100 1000 0.5 2618 1526.38 1732.00 1550.40 1714.00 10.55 7488 3600.77
100 1000 1 1774 1165.24 1464.00 1171.93 1438.00 22.70 7002 3600.01
100 1000 2 1158 649.51 999.00 658.51 978.00 48.52 6319 3600.78
100 1000 3 991 362.06 623.00 371.27 610.00 64.30 5764 3600.09
100 1000 4 1446 252.50 380.00 253.30 292.00 15.28 5682 3601.21
100 1000 5 809 252.50 275.00 252.50 254.00 0.59 3868 3609.41

Table D.6: Solution of GRLPP using AC Configuration (100 bases)



Appendix E

Detailed Results: Drugs

Distribution

The detailed results for the Drug Distribution in Case of Emergency (see Chapter 4) are

reported in this Appendix. In particular the tables are derived form the tests on all instances

using CC cuts configuration and setting α = 0. The column used have the following mining:

Inst. is the instance name in the format delivery sites M D settings.

B.B.N. is the number of nodes explored in the branch and bound tree.

L.B.R. is the lower bound achieved at the end of the root node.

U.B.R. is the upper bound achieved at the end of the root node.

L.B.F. is the final lower bound obtained at the end of the computation.

Best is the best feasible solution found during the computation.

Gap% is the residual dual gap at the end of the computation.

N.Cuts is the total number of cuts added to the MP.

Time[s ] is the computational time in seconds.
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Inst. B.B.N. L.B.R. U.B.R. L.B.R. Best Gap% N.Cuts Time[s]

10 04 07 1 9 14.00 16.00 16.00 16.00 0.00 29 0.02
10 04 07 2 3 23.00 43.00 23.00 23.00 0.00 290 0.01
10 04 07 3 7 16.50 19.00 19.00 19.00 0.00 72 0.02
10 04 07 4 1 11.00 11.00 11.00 11.00 0.00 49 0.01
10 04 07 5 1 30.00 30.00 30.00 30.00 0.00 2798 0
10 04 08 1 1 7.00 7.00 7.00 7.00 0.00 279 0.02
10 04 08 2 3 23.00 34.00 23.00 23.00 0.00 86 0.01
10 04 08 3 1 5.00 5.00 5.00 5.00 0.00 164 0
10 04 08 4 1 11.00 11.00 11.00 11.00 0.00 91 0.01
10 04 08 5 1 30.00 30.00 30.00 30.00 0.00 85 0
10 04 09 1 1 7.00 7.00 7.00 7.00 0.00 79 0.01
10 04 09 2 1 23.00 23.00 23.00 23.00 0.00 64 0
10 04 09 3 1 5.00 5.00 5.00 5.00 0.00 54 0
10 04 09 4 1 11.00 11.00 11.00 11.00 0.00 32 0.01
10 04 09 5 1 30.00 30.00 30.00 30.00 0.00 215 0.01
10 04 10 1 3 6.00 7.00 7.00 7.00 0.00 2719 0.01
10 04 10 2 1 23.00 23.00 23.00 23.00 0.00 440 0
10 04 10 3 1 5.00 5.00 5.00 5.00 0.00 62 0
10 04 10 4 1 11.00 11.00 11.00 11.00 0.00 296 0.01
10 04 10 5 1 30.00 30.00 30.00 30.00 0.00 77 0
10 05 07 1 1 12.00 12.00 12.00 12.00 0.00 65 0
10 05 07 2 2 23.00 43.00 23.00 23.00 0.00 227 0.01
10 05 07 3 5 14.29 16.00 16.00 16.00 0.00 341 0.02
10 05 07 4 5 9.90 11.00 11.00 11.00 0.00 86 0.02
10 05 07 5 5 10.50 11.00 11.00 11.00 0.00 2702 0.02
10 05 08 1 3 4.29 7.00 7.00 7.00 0.00 94 0.01
10 05 08 2 1 14.00 14.00 14.00 14.00 0.00 63 0
10 05 08 3 1 5.00 5.00 5.00 5.00 0.00 2712 0.01
10 05 08 4 1 0.00 0.00 0.00 0.00 0.00 211 0
10 05 08 5 1 5.00 5.00 5.00 5.00 0.00 62 0.01
10 05 09 1 1 0.00 0.00 0.00 0.00 0.00 82 0
10 05 09 2 1 14.00 14.00 14.00 14.00 0.00 43 0
10 05 09 3 1 5.00 5.00 5.00 5.00 0.00 215 0.01
10 05 09 4 1 0.00 0.00 0.00 0.00 0.00 198 0.01
10 05 09 5 1 5.00 5.00 5.00 5.00 0.00 279 0
10 05 10 1 1 0.00 0.00 0.00 0.00 0.00 183 0
10 05 10 2 1 14.00 14.00 14.00 14.00 0.00 8594 0
10 05 10 3 1 5.00 5.00 5.00 5.00 0.00 379 0
10 05 10 4 2 0.00 6.00 0.00 0.00 0.00 267 0.01
10 05 10 5 1 5.00 5.00 5.00 5.00 0.00 81 0.01
10 06 07 1 1 12.00 12.00 12.00 12.00 0.00 43 0
10 06 07 2 1 14.00 14.00 14.00 14.00 0.00 181 0.01
10 06 07 3 3 10.50 11.00 11.00 11.00 0.00 65 0.02
10 06 07 4 19 9.17 11.00 11.00 11.00 0.00 59 0.05
10 06 07 5 7 6.29 8.00 8.00 8.00 0.00 88 0.03
10 06 08 1 1 0.00 0.00 0.00 0.00 0.00 450 0.02
10 06 08 2 1 0.00 0.00 0.00 0.00 0.00 101 0.01
10 06 08 3 1 0.00 0.00 0.00 0.00 0.00 56 0.02
10 06 08 4 1 0.00 0.00 0.00 0.00 0.00 319 0
10 06 08 5 1 0.00 0.00 0.00 0.00 0.00 61 0.01
10 06 09 1 1 0.00 0.00 0.00 0.00 0.00 280 0
10 06 09 2 1 0.00 0.00 0.00 0.00 0.00 2563 0.01
10 06 09 3 4 0.00 5.00 0.00 0.00 0.00 2704 0.02
10 06 09 4 1 0.00 0.00 0.00 0.00 0.00 58 0
10 06 09 5 1 0.00 0.00 0.00 0.00 0.00 2178 0.02

Table E.1: Solution for instances with 10 nodes (1 of 3)
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Inst. B.B.N. L.B.R. U.B.R. L.B.R. Best Gap% N.Cuts Time[s]

10 06 10 1 2 0.00 7.00 0.00 0.00 0.00 271 0.02
10 06 10 2 1 0.00 0.00 0.00 0.00 0.00 211 0
10 06 10 3 1 0.00 0.00 0.00 0.00 0.00 86 0.01
10 06 10 4 1 0.00 0.00 0.00 0.00 0.00 2318 0
10 06 10 5 1 0.00 0.00 0.00 0.00 0.00 89 0
10 08 07 1 1 12.00 12.00 12.00 12.00 0.00 4895 0.01
10 08 07 2 3 13.00 18.00 13.00 13.00 0.00 355 0.02
10 08 07 3 1 6.00 6.00 6.00 6.00 0.00 70 0
10 08 07 4 1 8.00 8.00 8.00 8.00 0.00 343 0.01
10 08 07 5 3 5.50 6.00 6.00 6.00 0.00 2769 0
10 08 08 1 1 0.00 0.00 0.00 0.00 0.00 53 0
10 08 08 2 1 0.00 0.00 0.00 0.00 0.00 164 0.01
10 08 08 3 1 0.00 0.00 0.00 0.00 0.00 66 0
10 08 08 4 1 0.00 0.00 0.00 0.00 0.00 2784 0
10 08 08 5 1 0.00 0.00 0.00 0.00 0.00 85 0.01
10 08 09 1 1 0.00 0.00 0.00 0.00 0.00 53 0.01
10 08 09 2 1 0.00 0.00 0.00 0.00 0.00 264 0.02
10 08 09 3 1 0.00 0.00 0.00 0.00 0.00 96 0.01
10 08 09 4 1 0.00 0.00 0.00 0.00 0.00 2977 0
10 08 09 5 1 0.00 0.00 0.00 0.00 0.00 69 0.01
10 08 10 1 1 0.00 0.00 0.00 0.00 0.00 313 0.02
10 08 10 2 1 0.00 0.00 0.00 0.00 0.00 84 0.01
10 08 10 3 4 0.00 5.00 0.00 0.00 0.00 245 0.02
10 08 10 4 1 0.00 0.00 0.00 0.00 0.00 278 0.01
10 08 10 5 1 0.00 0.00 0.00 0.00 0.00 61 0
10 08 12 1 1 0.00 0.00 0.00 0.00 0.00 66 0
10 08 12 2 2 0.00 9.00 0.00 0.00 0.00 2729 0
10 08 12 3 1 0.00 0.00 0.00 0.00 0.00 184 0.01
10 08 12 4 1 0.00 0.00 0.00 0.00 0.00 21 0.01
10 08 12 5 1 0.00 0.00 0.00 0.00 0.00 57 0
10 08 16 1 1 0.00 0.00 0.00 0.00 0.00 88 0.02
10 08 16 2 1 0.00 0.00 0.00 0.00 0.00 301 0.01
10 08 16 3 1 0.00 0.00 0.00 0.00 0.00 270 0
10 08 16 4 1 0.00 0.00 0.00 0.00 0.00 56 0.01
10 08 16 5 1 0.00 0.00 0.00 0.00 0.00 76 0.01
10 08 20 1 1 0.00 0.00 0.00 0.00 0.00 204 0.01
10 08 20 2 1 0.00 0.00 0.00 0.00 0.00 57 0.01
10 08 20 3 1 0.00 0.00 0.00 0.00 0.00 391 0
10 08 20 4 1 0.00 0.00 0.00 0.00 0.00 327 0
10 08 20 5 1 0.00 0.00 0.00 0.00 0.00 56 0.01
10 10 07 1 1 12.00 12.00 12.00 12.00 0.00 82 0
10 10 07 2 1 13.00 13.00 13.00 13.00 0.00 2670 0.01
10 10 07 3 1 6.00 6.00 6.00 6.00 0.00 50 0.01
10 10 07 4 1 8.00 8.00 8.00 8.00 0.00 55 0
10 10 07 5 3 5.50 8.00 6.00 6.00 0.00 185 0.01
10 10 08 1 1 0.00 0.00 0.00 0.00 0.00 2746 0.01
10 10 08 2 1 0.00 0.00 0.00 0.00 0.00 2860 0.01
10 10 08 3 1 0.00 0.00 0.00 0.00 0.00 86 0
10 10 08 4 1 0.00 0.00 0.00 0.00 0.00 226 0.01
10 10 08 5 1 0.00 0.00 0.00 0.00 0.00 63 0.01
10 10 09 1 1 0.00 0.00 0.00 0.00 0.00 2382 0
10 10 09 2 1 0.00 0.00 0.00 0.00 0.00 63 0.01
10 10 09 3 1 0.00 0.00 0.00 0.00 0.00 71 0
10 10 09 4 1 0.00 0.00 0.00 0.00 0.00 314 0
10 10 09 5 1 0.00 0.00 0.00 0.00 0.00 317 0.01

Table E.2: Solution for instances with 10 nodes (2 of 3)
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Inst. B.B.N. L.B.R. U.B.R. L.B.R. Best Gap% N.Cuts Time[s]

10 10 10 1 1 0.00 0.00 0.00 0.00 0.00 2210 0.01
10 10 10 2 1 0.00 0.00 0.00 0.00 0.00 2446 0.01
10 10 10 3 1 0.00 0.00 0.00 0.00 0.00 62 0.01
10 10 10 4 1 0.00 0.00 0.00 0.00 0.00 1473 0
10 10 10 5 1 0.00 0.00 0.00 0.00 0.00 388 0.02
10 10 12 1 1 0.00 0.00 0.00 0.00 0.00 221 0.01
10 10 12 2 1 0.00 0.00 0.00 0.00 0.00 142 0.01
10 10 12 3 1 0.00 0.00 0.00 0.00 0.00 69 0.01
10 10 12 4 1 0.00 0.00 0.00 0.00 0.00 60 0.01
10 10 12 5 1 0.00 0.00 0.00 0.00 0.00 195 0.01
10 10 16 1 1 0.00 0.00 0.00 0.00 0.00 265 0.01
10 10 16 2 1 0.00 0.00 0.00 0.00 0.00 1944 0
10 10 16 3 1 0.00 0.00 0.00 0.00 0.00 61 0.01
10 10 16 4 1 0.00 0.00 0.00 0.00 0.00 72 0.01
10 10 16 5 1 0.00 0.00 0.00 0.00 0.00 238 0
10 10 20 1 1 0.00 0.00 0.00 0.00 0.00 257 0.01
10 10 20 2 1 0.00 0.00 0.00 0.00 0.00 67 0.01
10 10 20 3 1 0.00 0.00 0.00 0.00 0.00 421 0
10 10 20 4 1 0.00 0.00 0.00 0.00 0.00 2384 0
10 10 20 5 1 0.00 0.00 0.00 0.00 0.00 2859 0
10 12 07 1 1 12.00 12.00 12.00 12.00 0.00 188 0
10 12 07 2 1 13.00 13.00 13.00 13.00 0.00 2216 0
10 12 07 3 1 6.00 6.00 6.00 6.00 0.00 2214 0.01
10 12 07 4 1 8.00 8.00 8.00 8.00 0.00 5248 0.01
10 12 07 5 3 5.50 6.00 6.00 6.00 0.00 66 0.02
10 12 08 1 1 0.00 0.00 0.00 0.00 0.00 69 0.01
10 12 08 2 1 0.00 0.00 0.00 0.00 0.00 45 0
10 12 08 3 1 0.00 0.00 0.00 0.00 0.00 251 0.01
10 12 08 4 1 0.00 0.00 0.00 0.00 0.00 63 0
10 12 08 5 1 0.00 0.00 0.00 0.00 0.00 57 0.01
10 12 09 1 1 0.00 0.00 0.00 0.00 0.00 53 0.01
10 12 09 2 1 0.00 0.00 0.00 0.00 0.00 2929 0.01
10 12 09 3 2 0.00 6.00 0.00 0.00 0.00 90 0.01
10 12 09 4 1 0.00 0.00 0.00 0.00 0.00 89 0
10 12 09 5 1 0.00 0.00 0.00 0.00 0.00 41 0.01
10 12 10 1 1 0.00 0.00 0.00 0.00 0.00 210 0.01
10 12 10 2 1 0.00 0.00 0.00 0.00 0.00 76 0.01
10 12 10 3 2 0.00 5.00 0.00 0.00 0.00 57 0.01
10 12 10 4 1 0.00 0.00 0.00 0.00 0.00 1669 0
10 12 10 5 1 0.00 0.00 0.00 0.00 0.00 319 0.01
10 12 12 1 1 0.00 0.00 0.00 0.00 0.00 2859 0
10 12 12 2 1 0.00 0.00 0.00 0.00 0.00 2643 0
10 12 12 3 1 0.00 0.00 0.00 0.00 0.00 82 0
10 12 12 4 1 0.00 0.00 0.00 0.00 0.00 55 0
10 12 12 5 1 0.00 0.00 0.00 0.00 0.00 2691 0
10 12 16 1 1 0.00 0.00 0.00 0.00 0.00 59 0
10 12 16 2 1 0.00 0.00 0.00 0.00 0.00 335 0.01
10 12 16 3 1 0.00 0.00 0.00 0.00 0.00 2868 0
10 12 16 4 1 0.00 0.00 0.00 0.00 0.00 2616 0.01
10 12 16 5 1 0.00 0.00 0.00 0.00 0.00 76 0.01
10 12 20 1 1 0.00 0.00 0.00 0.00 0.00 2485 0
10 12 20 2 1 0.00 0.00 0.00 0.00 0.00 63 0.01
10 12 20 3 1 0.00 0.00 0.00 0.00 0.00 4465 0
10 12 20 4 1 0.00 0.00 0.00 0.00 0.00 88 0.02
10 12 20 5 1 0.00 0.00 0.00 0.00 0.00 60 0.01

Table E.3: Solution for instances with 10 nodes (3 of 3)
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Inst. B.B.N. L.B.R. U.B.R. L.B.R. Best Gap% N.Cuts Time[s]

20 04 07 1 12 38.00 40.00 38.00 38.00 0.00 242 0.24
20 04 07 2 1 31.00 31.00 31.00 31.00 0.00 96 0.04
20 04 07 3 1 32.00 32.00 32.00 32.00 0.00 90 0.1
20 04 07 4 145 31.50 41.00 32.00 32.00 0.00 88 2.62
20 04 07 5 2 35.00 36.00 35.00 35.00 0.00 468 0.07
20 04 08 1 10 8.00 14.00 8.00 8.00 0.00 52 0.31
20 04 08 2 46 8.20 17.00 9.00 9.00 0.00 63 1.67
20 04 08 3 198 8.00 24.00 10.00 10.00 0.00 332 5.76
20 04 08 4 294 7.00 14.00 9.00 9.00 0.00 303 4.81
20 04 08 5 52 11.00 14.00 11.00 11.00 0.00 338 1.12
20 04 09 1 10 0.00 10.00 0.00 0.00 0.00 1855 0.09
20 04 09 2 5 0.00 31.00 0.00 0.00 0.00 66 0.16
20 04 09 3 2 0.00 30.00 0.00 0.00 0.00 73 0.09
20 04 09 4 2 0.00 10.00 0.00 0.00 0.00 294 0.09
20 04 09 5 2 0.00 12.00 0.00 0.00 0.00 2478 0.07
20 04 10 1 2 0.00 10.00 0.00 0.00 0.00 4418 0.04
20 04 10 2 7 0.00 25.00 0.00 0.00 0.00 21 0.06
20 04 10 3 10 0.00 13.00 0.00 0.00 0.00 1718 0.12
20 04 10 4 7 0.00 17.00 0.00 0.00 0.00 72 0.1
20 04 10 5 12 0.00 12.00 0.00 0.00 0.00 75 0.17
20 04 12 1 1 0.00 0.00 0.00 0.00 0.00 154 0.02
20 04 12 2 7 0.00 12.00 0.00 0.00 0.00 98 0.08
20 04 12 3 10 0.00 7.00 0.00 0.00 0.00 65 0.17
20 04 12 4 1 0.00 0.00 0.00 0.00 0.00 73 0.03
20 04 12 5 1 0.00 0.00 0.00 0.00 0.00 336 0.02
20 04 16 1 1 0.00 0.00 0.00 0.00 0.00 94 0.01
20 04 16 2 2 0.00 10.00 0.00 0.00 0.00 68 0.05
20 04 16 3 1 0.00 0.00 0.00 0.00 0.00 54 0.02
20 04 16 4 1 0.00 0.00 0.00 0.00 0.00 58 0.05
20 04 16 5 8 0.00 17.00 0.00 0.00 0.00 162 0.05
20 04 20 1 1 0.00 0.00 0.00 0.00 0.00 338 0.01
20 04 20 2 1 0.00 0.00 0.00 0.00 0.00 341 0.01
20 04 20 3 1 0.00 0.00 0.00 0.00 0.00 57 0.02
20 04 20 4 2 0.00 6.00 0.00 0.00 0.00 2052 0.03
20 04 20 5 1 0.00 0.00 0.00 0.00 0.00 53 0.01
20 05 07 1 1 38.00 38.00 38.00 38.00 0.00 317 0.06
20 05 07 2 2 31.00 47.00 31.00 31.00 0.00 76 0.1
20 05 07 3 39 32.00 34.00 32.00 32.00 0.00 2456 0.78
20 05 07 4 299 31.50 33.00 32.00 32.00 0.00 80 6.98
20 05 07 5 1 35.00 35.00 35.00 35.00 0.00 223 0.04
20 05 08 1 3 8.00 19.00 8.00 8.00 0.00 2627 0.21
20 05 08 2 89 7.00 16.00 7.00 7.00 0.00 2570 2.8
20 05 08 3 93 8.00 13.00 8.00 8.00 0.00 56 1.93
20 05 08 4 63 7.00 9.00 9.00 9.00 0.00 120 1.79
20 05 08 5 182 11.00 14.00 11.00 11.00 0.00 2520 4.1
20 05 09 1 4 0.00 14.00 0.00 0.00 0.00 62 0.07
20 05 09 2 10 0.00 15.00 0.00 0.00 0.00 74 0.17
20 05 09 3 10 0.00 31.00 0.00 0.00 0.00 180 0.13
20 05 09 4 5 0.00 18.00 0.00 0.00 0.00 75 0.1
20 05 09 5 4 0.00 12.00 0.00 0.00 0.00 276 0.05

Table E.4: Solution for instances with 20 nodes (1 of 3)
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Inst. B.B.N. L.B.R. U.B.R. L.B.R. Best Gap% N.Cuts Time[s]

20 05 10 1 1 0.00 0.00 0.00 0.00 0.00 57 0.02
20 05 10 2 1 0.00 0.00 0.00 0.00 0.00 2982 0.02
20 05 10 3 8 0.00 12.00 0.00 0.00 0.00 3523 0.09
20 05 10 4 5 0.00 5.00 0.00 0.00 0.00 205 0.09
20 05 10 5 1 0.00 0.00 0.00 0.00 0.00 165 0.01
20 05 12 1 7 0.00 11.00 0.00 0.00 0.00 97 0.09
20 05 12 2 1 0.00 0.00 0.00 0.00 0.00 46 0.02
20 05 12 3 2 0.00 13.00 0.00 0.00 0.00 70 0.03
20 05 12 4 1 0.00 0.00 0.00 0.00 0.00 296 0.02
20 05 12 5 3 0.00 11.00 0.00 0.00 0.00 2430 0.06
20 05 16 1 1 0.00 0.00 0.00 0.00 0.00 2665 0.02
20 05 16 2 1 0.00 0.00 0.00 0.00 0.00 57 0.01
20 05 16 3 3 0.00 8.00 0.00 0.00 0.00 67 0.04
20 05 16 4 4 0.00 5.00 0.00 0.00 0.00 2312 0.06
20 05 16 5 2 0.00 9.00 0.00 0.00 0.00 1708 0.03
20 05 20 1 1 0.00 0.00 0.00 0.00 0.00 50 0.04
20 05 20 2 1 0.00 0.00 0.00 0.00 0.00 279 0.02
20 05 20 3 1 0.00 0.00 0.00 0.00 0.00 386 0.01
20 05 20 4 1 0.00 0.00 0.00 0.00 0.00 2741 0.02
20 05 20 5 2 0.00 9.00 0.00 0.00 0.00 55 0.02
20 06 07 1 4 38.00 42.00 38.00 38.00 0.00 1434 0.2
20 06 07 2 2 31.00 35.00 31.00 31.00 0.00 2264 0.1
20 06 07 3 1 32.00 32.00 32.00 32.00 0.00 185 0.04
20 06 07 4 299 31.50 32.00 32.00 32.00 0.00 282 6.69
20 06 07 5 1 35.00 35.00 35.00 35.00 0.00 99 0.05
20 06 08 1 140 8.00 22.00 8.00 8.00 0.00 66 4.55
20 06 08 2 1 7.00 7.00 7.00 7.00 0.00 2951 0.08
20 06 08 3 4 8.00 17.00 8.00 8.00 0.00 42 0.17
20 06 08 4 111 7.00 14.00 9.00 9.00 0.00 51 3.63
20 06 08 5 84 11.00 21.00 11.00 11.00 0.00 40 2.93
20 06 09 1 1 0.00 0.00 0.00 0.00 0.00 190 0.02
20 06 09 2 4 0.00 20.00 0.00 0.00 0.00 56 0.08
20 06 09 3 7 0.00 12.00 0.00 0.00 0.00 2138 0.09
20 06 09 4 9 0.00 28.00 0.00 0.00 0.00 45 0.14
20 06 09 5 2 0.00 12.00 0.00 0.00 0.00 55 0.04
20 06 10 1 1 0.00 0.00 0.00 0.00 0.00 62 0.03
20 06 10 2 5 0.00 19.00 0.00 0.00 0.00 2720 0.07
20 06 10 3 1 0.00 0.00 0.00 0.00 0.00 81 0.02
20 06 10 4 1 0.00 0.00 0.00 0.00 0.00 98 0.02
20 06 10 5 1 0.00 0.00 0.00 0.00 0.00 54 0.01

Table E.5: Solution for instances with 20 nodes (2 of 3)
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Inst. B.B.N. L.B.R. U.B.R. L.B.R. Best Gap% N.Cuts Time[s]

20 08 07 1 1 38.00 38.00 38.00 38.00 0.00 162 0.1
20 08 07 2 1 31.00 31.00 31.00 31.00 0.00 54 0.05
20 08 07 3 3 32.00 33.00 32.00 32.00 0.00 264 0.19
20 08 07 4 305 31.50 37.00 32.00 32.00 0.00 259 8.46
20 08 07 5 3 35.00 36.00 35.00 35.00 0.00 99 0.14
20 08 08 1 1 8.00 8.00 8.00 8.00 0.00 220 0.26
20 08 08 2 1 7.00 7.00 7.00 7.00 0.00 76 0.23
20 08 08 3 2 8.00 13.00 8.00 8.00 0.00 60 0.32
20 08 08 4 85 7.00 14.00 9.00 9.00 0.00 2147 3.59
20 08 08 5 139 11.00 12.00 11.00 11.00 0.00 192 8.79
20 08 09 1 1 0.00 0.00 0.00 0.00 0.00 274 0.03
20 08 09 2 5 0.00 12.00 0.00 0.00 0.00 70 0.07
20 08 09 3 12 0.00 12.00 0.00 0.00 0.00 59 0.14
20 08 09 4 2 0.00 5.00 0.00 0.00 0.00 2694 0.05
20 08 09 5 7 0.00 5.00 0.00 0.00 0.00 162 0.1
20 08 10 1 6 0.00 21.00 0.00 0.00 0.00 63 0.08
20 08 10 2 1 0.00 0.00 0.00 0.00 0.00 156 0.02
20 08 10 3 5 0.00 16.00 0.00 0.00 0.00 59 0.07
20 08 10 4 1 0.00 0.00 0.00 0.00 0.00 219 0.02
20 08 10 5 7 0.00 7.00 0.00 0.00 0.00 42 0.08
20 10 07 1 1 38.00 38.00 38.00 38.00 0.00 289 0.24
20 10 07 2 1 31.00 31.00 31.00 31.00 0.00 80 0.12
20 10 07 3 1 32.00 32.00 32.00 32.00 0.00 3579 0.08
20 10 07 4 305 31.50 36.00 32.00 32.00 0.00 90 10
20 10 07 5 1 35.00 35.00 35.00 35.00 0.00 80 0.06
20 10 08 1 2 8.00 24.00 8.00 8.00 0.00 92 1.11
20 10 08 2 1 7.00 7.00 7.00 7.00 0.00 63 0.34
20 10 08 3 2 8.00 12.00 8.00 8.00 0.00 69 1.04
20 10 08 4 217 7.00 10.00 9.00 9.00 0.00 269 16.83
20 10 08 5 168 11.00 12.00 11.00 11.00 0.00 2890 17.27
20 10 09 1 1 0.00 0.00 0.00 0.00 0.00 119 0.02
20 10 09 2 11 0.00 6.00 0.00 0.00 0.00 2721 0.15
20 10 09 3 1 0.00 0.00 0.00 0.00 0.00 341 0.02
20 10 09 4 6 0.00 21.00 0.00 0.00 0.00 21 0.1
20 10 09 5 7 0.00 13.00 0.00 0.00 0.00 72 0.1
20 10 10 1 5 0.00 5.00 0.00 0.00 0.00 311 0.07
20 10 10 2 11 0.00 5.00 0.00 0.00 0.00 186 0.12
20 10 10 3 6 0.00 10.00 0.00 0.00 0.00 68 0.07
20 10 10 4 9 0.00 12.00 0.00 0.00 0.00 6220 0.09
20 10 10 5 11 0.00 14.00 0.00 0.00 0.00 90 0.08

Table E.6: Solution for instances with 20 nodes (3 of 3)
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Inst. B.B.N. L.B.R. U.B.R. L.B.R. Best Gap% N.Cuts Time[s]

50 04 07 1 1 147.00 147.00 147.00 147.00 0.00 67 0.42
50 04 07 2 10 159.00 160.00 159.00 159.00 0.00 183 7.83
50 04 07 3 1 149.00 149.00 149.00 149.00 0.00 55 0.64
50 04 07 4 1 155.00 155.00 155.00 155.00 0.00 27 0.96
50 04 07 5 1 155.00 155.00 155.00 155.00 0.00 207 2.12
50 04 08 1 1 94.00 94.00 94.00 94.00 0.00 180 0.94
50 04 08 2 1 100.00 100.00 100.00 100.00 0.00 71 5.88
50 04 08 3 1 98.00 98.00 98.00 98.00 0.00 2786 5.46
50 04 08 4 2 104.00 114.00 104.00 104.00 0.00 3287 10.13
50 04 08 5 3 104.00 116.00 104.00 104.00 0.00 2588 17.09
50 04 09 1 104 45.00 64.00 45.00 45.00 0.00 205 255.22
50 04 09 2 602 51.00 90.00 51.00 51.00 0.00 58 1947.73
50 04 09 3 246 47.00 86.00 47.00 47.00 0.00 180 721.75
50 04 09 4 134 53.00 83.00 53.00 53.00 0.00 46 481.12
50 04 09 5 27 53.00 78.00 53.00 53.00 0.00 2708 98.02
50 04 10 1 26 0.00 31.00 0.00 0.00 0.00 89 5.08
50 04 10 2 61 0.00 30.00 0.00 0.00 0.00 125 12.55
50 04 10 3 106 0.00 30.00 0.00 0.00 0.00 2719 66.5
50 04 10 4 58 0.00 56.00 0.00 0.00 0.00 268 14.97
50 04 10 5 52 0.00 57.00 0.00 0.00 0.00 2562 7.99
50 05 07 1 1 147.00 147.00 147.00 147.00 0.00 2715 0.75
50 05 07 2 2 159.00 161.00 159.00 159.00 0.00 72 9.72
50 05 07 3 1 149.00 149.00 149.00 149.00 0.00 2539 1.94
50 05 07 4 1 155.00 155.00 155.00 155.00 0.00 98 7.3
50 05 07 5 1 155.00 155.00 155.00 155.00 0.00 80 7.61
50 05 08 1 1 94.00 94.00 94.00 94.00 0.00 68 2.75
50 05 08 2 1 100.00 100.00 100.00 100.00 0.00 315 24.9
50 05 08 3 1 98.00 98.00 98.00 98.00 0.00 78 27.58
50 05 08 4 1 104.00 104.00 104.00 104.00 0.00 89 23.33
50 05 08 5 10 104.00 105.00 104.00 104.00 0.00 179 72
50 05 09 1 38 45.00 51.00 45.00 45.00 0.00 315 137.45
50 05 09 2 42 51.00 55.00 51.00 51.00 0.00 474 409.74
50 05 09 3 353 47.00 52.00 47.00 49.00 4.26 66 3600.00
50 05 09 4 1 53.00 53.00 53.00 53.00 0.00 89 67.7
50 05 09 5 287 53.00 61.00 53.00 53.00 0.00 3840 3000.39
50 05 10 1 25 0.00 40.00 0.00 0.00 0.00 53 4.56
50 05 10 2 61 0.00 28.00 0.00 0.00 0.00 70 8.73
50 05 10 3 56 0.00 29.00 0.00 0.00 0.00 158 15.88
50 05 10 4 64 0.00 43.00 0.00 0.00 0.00 72 4.49
50 05 10 5 398 0.00 36.00 0.00 0.00 0.00 60 120.15
50 06 07 1 1 147.00 147.00 147.00 147.00 0.00 88 2.8
50 06 07 2 5 159.00 162.00 159.00 159.00 0.00 2799 35.17
50 06 07 3 1 149.00 149.00 149.00 149.00 0.00 2722 1.49
50 06 07 4 3 155.00 157.00 155.00 155.00 0.00 65 16.29
50 06 07 5 1 155.00 155.00 155.00 155.00 0.00 105 1.87
50 06 08 1 1 94.00 94.00 94.00 94.00 0.00 63 12.06
50 06 08 2 1 100.00 100.00 100.00 100.00 0.00 73 4.89
50 06 08 3 2 98.00 99.00 98.00 98.00 0.00 57 20.02
50 06 08 4 1 104.00 104.00 104.00 104.00 0.00 69 34.92
50 06 08 5 2 104.00 106.00 104.00 104.00 0.00 133 106.79

Table E.7: Solution for instances with 50 nodes (1 of 2)
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Inst. B.B.N. L.B.R. U.B.R. F.B.R. Best Gap% N.Cuts Time[s]

50 06 09 1 28 45.00 55.00 45.00 45.00 0.00 54 345.04
50 06 09 2 109 51.00 57.00 51.00 51.00 0.00 173 1402.51
50 06 09 3 418 47.00 59.00 47.00 50.00 6.38 52 3600.00
50 06 09 4 39 53.00 67.00 53.00 53.00 0.00 347 877.23
50 06 09 5 1 53.00 53.00 53.00 53.00 0.00 2150 163.6
50 06 10 1 54 0.00 32.00 0.00 0.00 0.00 65 7
50 06 10 2 36 0.00 19.00 0.00 0.00 0.00 312 5.43
50 06 10 3 36 0.00 28.00 0.00 0.00 0.00 381 2.84
50 06 10 4 184 0.00 21.00 0.00 0.00 0.00 1792 44.73
50 06 10 5 499 0.00 13.00 0.00 0.00 0.00 58 256.44
50 08 07 1 1 147.00 147.00 147.00 147.00 0.00 4836 7.59
50 08 07 2 1 159.00 159.00 159.00 159.00 0.00 1694 22.77
50 08 07 3 1 149.00 149.00 149.00 149.00 0.00 181 11.1
50 08 07 4 1 155.00 155.00 155.00 155.00 0.00 89 17.43
50 08 07 5 5 155.00 164.00 155.00 155.00 0.00 85 31.07
50 08 08 1 1 94.00 94.00 94.00 94.00 0.00 1582 81.84
50 08 08 2 1 100.00 100.00 100.00 100.00 0.00 2622 147.24
50 08 08 3 2 98.00 99.00 98.00 98.00 0.00 2288 104.03
50 08 08 4 1 104.00 104.00 104.00 104.00 0.00 47 95.32
50 08 08 5 1 104.00 104.00 104.00 104.00 0.00 63 28.46
50 08 09 1 1 45.00 45.00 45.00 45.00 0.00 90 139.19
50 08 09 2 1 51.00 51.00 51.00 51.00 0.00 376 229.24
50 08 09 3 1 47.00 47.00 47.00 47.00 0.00 70 718.29
50 08 09 4 1 53.00 53.00 53.00 53.00 0.00 202 750.48
50 08 09 5 1 53.00 53.00 53.00 53.00 0.00 1689 266.49
50 08 10 1 106 0.00 34.00 0.00 0.00 0.00 4863 19.72
50 08 10 2 216 0.00 63.00 0.00 0.00 0.00 60 51.65
50 08 10 3 121 0.00 22.00 0.00 0.00 0.00 53 30.15
50 08 10 4 70 0.00 25.00 0.00 0.00 0.00 51 18.1
50 08 10 5 1046 0.00 47.00 0.00 0.00 0.00 87 1709.52
50 10 07 1 1 147.00 147.00 147.00 147.00 0.00 2157 4.22
50 10 07 2 1 159.00 159.00 159.00 159.00 0.00 82 75.93
50 10 07 3 1 149.00 149.00 149.00 149.00 0.00 7758 16.06
50 10 07 4 1 155.00 155.00 155.00 155.00 0.00 94 19.96
50 10 07 5 1 155.00 155.00 155.00 155.00 0.00 443 26.45
50 10 08 1 1 94.00 94.00 94.00 94.00 0.00 106 50.79
50 10 08 2 4 100.00 114.00 100.00 100.00 0.00 6138 406.79
50 10 08 3 1 98.00 98.00 98.00 98.00 0.00 226 58.48
50 10 08 4 1 104.00 104.00 104.00 104.00 0.00 42 121.05
50 10 08 5 1 104.00 104.00 104.00 104.00 0.00 2536 135.07
50 10 09 1 116 45.00 50.00 45.00 46.00 2.22 2211 3600.00
50 10 09 2 1 51.00 51.00 51.00 51.00 0.00 59 691.23
50 10 09 3 28 47.00 61.00 47.00 49.00 4.26 303 3600.00
50 10 09 4 1 53.00 53.00 53.00 53.00 0.00 2371 1076.3
50 10 09 5 68 53.00 59.00 53.00 55.00 3.77 351 3600.00
50 10 10 1 918 0.00 24.00 0.00 0.00 0.00 85 977.97
50 10 10 2 444 0.00 28.00 0.00 0.00 0.00 283 187.97
50 10 10 3 394 0.00 33.00 0.00 0.00 0.00 2846 532.46
50 10 10 4 1 0.00 0.00 0.00 0.00 0.00 292 0.35
50 10 10 5 259 0.00 20.00 0.00 0.00 0.00 21 764.87

Table E.8: Solution for instances with 50 nodes (2 of 2)
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[13] N. Mladenović, J. Brimberg, P. Hansen, and J. A. Moreno-Pérez. The p-median prob-
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