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1. Introduction 

Blueberry belongs to the division of Spermatophyta. The flower has an 

ovary, thus placing it in the class Angiospermae, and its seedlings have 

two cotyledons, putting it in the subclass Dicotyledonae. It is a member of 

the Ericaceae family of plants comprising mostly woody shrubs that grow naturally on acid soils. 

This is a large family and is found widely distributed throughout the world.  

The genus Vaccinum is a widespread genus with over 200 species of evergreen and deciduous 

woody plants vary in size from dwarf shrubs to trees; it includes many economically important 

cultivated small fruit species, like blueberries, bilberries and cranberries. Blueberries (Vaccinium 

corymbosum) belong to the subfamily Vacciniaceae, the genus Vaccinium and the subgenus 

Cyanococcus (from Greek “cyano” (blue) and “coccus” (berry). The European blueberry, also called 

bilberry (Vaccinium myrtillus) belongs to the subgenus Euvaccinium. Due to the reduced 

dimension of plants and fruits, this subgenus is not used for cultivation and the fruits naturally 

grow as a characteristic field layer species in boreal forests. In Italy the blueberry production 

includes both highbush blueberry (Vaccinium corymbosum) and bilberry (Vaccinium mirtyllus). 

 

1.1. Bilberry 

Among spontaneous blueberries in Europe, bilberry, also called European blueberry, covers the 

major commercial interest. East Europe is the area in which bilberry is more widespread. Poland is 

the most important producer in Europe (10-30000 Mg/year) followed by Finland (15000 Mg/year), 

Sweden (12000 Mg/year), Slovenia (2000 Mg/year), Italy (440 Mg/year) and Germany (400 

Mg/year). Bilberry is a deciduous dwarf shrub (15-60 cm) and a characteristic field layer species in 

forests. The fruit are dark blue color with colored pulp and can varying in size from 4 to 8 mm and 

in weight from 0.2 to 0.4 g. Flowering time is from May until June while ripening time is from July 

until September. Fruits are manually harvested with an average yield of 1 Kg/ hour/man. 

Bilberries are very well appreciated for their sensory qualities as well as for the high nutritional 

value. They are rich in tannins (7-12%), sugars (15-20%), pectin (8-10%), anthocyanins, 

carotenoids, vitamins (C, B, P) and organic acids. Bilberries can be eaten fresh or used by the food 

industry for different kind of food preparations such as ice creams, syrups, jams, yogurt and 

candies. 

Nutraceutical properties of bilberry are known since the middle ages, when berries were used for 

their sensory qualities but also for treatment of diarrhea and colitis, and for their anti-bacterial 
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properties. The aroma of bilberry is regarded as special and delicious, differing from other 

blueberries.  

Various ecological, physiological and genetic studies have been conducted on bilberry. Research 

has been performed on its morphology, growth habit, pollination system, and population 

dynamics (Flower-Ellis 1971, Sjörs 1989, Jacquemart 1994, Tolvanen 1995, Nuortila et al. 2002). 

Also, its carbon-, nutrition- and water economy has been explored (Havas 1971, Lähdesmäki et al. 

1990, Pakonen et al. 1990, Gerdol et al. 2000, Grelet et al. 2001). Many studies concern the 

response of bilberry to environmental factors like low temperatures (Taulavuori et al. 1997a), 

pollution (Taulavuori et al. 1997b, Reimann et al. 2001), enhanced UV-B radiation (Taulavuori et al. 

1998, Phoenix et al. 2000, 2001) and biotic stresses (Koskimäki et al., 2009). Moreover, several 

studies have been conducted on the content of phenolic compounds and their organ-specific 

distribution in Vaccinium species (Määttä-Riihinen et al., 2004; Riihinen et al., 2008) as well as on 

the expression of genes that attend to the accumulation of phenolic compounds during bilberry 

fruit development (Jaakola et al., 2002). The influence of artificial wounding and solar radiation on 

biosynthesis of flavonoids and hydroxycinnamic acids was recently studied in bilberry leaves and 

fruit (Jaakola et al., 2008; Jaakola et al., 2004). 

 

1.2. Blueberry 

Highbush blueberry is one of the most commercially significant berry crops. It is mainly cultivated 

in United States and Canada, but also in Europe, Australia, Chile and New Zealand.  

Poland is the biggest producer in Europe (11023 Mg/year), followed by Sweden (2576 Mg/year), 

Romania (2353 Mg/year), Italy (1509 Mg/year) and Spain (924 Mg/year) (http://faostat.fao.org/ 

2009). The most productive regions in Italy are Piemonte, Trentino Alto Adige and Lombardia. 

Production of this crop is likely to increase in response to increased consumers demand for 

healthy foods. All the commercial species of blueberry are deciduous woody perennials, with 

simple leaves arranged alternately on the stem. Leaves dimension and morphology can vary 

among cultivars and thus can be used as an aid to identification. The plant is a bushy shrub that 

can reach and exceed 2-3 m in height, plants can be productive for 40-50 years. The root system is 

shallow and expanded, with fine roots colonized by mycorrhizal fungi in the soil. The blueberry can 

grow well on sites where most other crops fail. It performs well on loose textured soils (mixtures 

of sand and peat are optimal). It prefers an organically rich, medium to wet, well-drained soil in 

full sun to partial shade. Plants appreciate a good organic mulch. Pruning, as needed in late winter, 
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begins in the third year after planting. Although blueberries are self-fertile, cross-pollination 

produces the best yields. Flowering time is usually from mid April until the first ten days of May. In 

Italy blueberries ripen between June and September. The fruit is a round berry, with a weight of 1-

3 grams, with a pronounced eye cavity. The characteristics of the eye cavity, and the scar of the 

stalk are useful in identifying cultivars. The color of fruit varies from blue to blackish blue and is 

made clearer by a layer of pruine also typical of the cultivar. The pulp is greenish-white, with a 

sweet-sour taste and contains from 5 to 70 seeds. In the same cultivar, the number of seeds is 

directly proportional to the size of the fruit. Blueberries are widely appreciated for their sensorial 

and health-promoting qualities. Many studies has been conducted on the antioxidant properties 

and phenolic content of blueberry (Howard et al., 2003, Prior et al., 1998), on effects of cold 

temperature storage (Connor et al., 2002, Krupa and Tomala, 2007) and on cultivation and 

breeding techniques (see Prodorutti et al., 2007, for a review). Positive effects of blueberry 

consumption on health and protection from different kind of pathologies have been widely 

documented (Krikorian et al., 2010; Kim et al., 2010; Adams et al., 2010). 

In Italy the production of blueberry starts at the beginning of June until mid/late August. Based on 

the production period, the cultivars were divided into early- (maturing from early June to early 

July), medium- (from late June to mid-late July) and late-ripening (late July to early September). 

Below we report the main characteristics of the cultivars of blueberry (Vaccinium corymbosum) 

that we used in this work: 

 

‘Duke’ 

It is the most widespread early ripening variety and the most used in new plants. It arises from the 

intersection of two cultivars, 'Ivanhoe' and 'Earliblue', and its cultivation began in 1985 in New 

Jersey, USA. The plant is of medium vigor, productive, self-fertile, plants show a good cold 

tolerance. The berries are well distributed in the canopy, easy to collect, with attractive color, rich 

in bloom, aromatic, with good sensorial characteristics. It is a variety that ripens very early, in fact, 

its harvest season is between late June and early July. In the last few years ‘Duke’ has been the 

most widely cultivated blueberry variety, always ensuring optimum productivity. Moreover, it was 

chosen in both the U.S. and in Italy and other Countries for its easy cultivation, for its good 

resistance to cold during the winter months, but especially for excellent quality also in the 

postharvest. 
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‘Blue Ray’ 

'Blue Ray' is a heavy producer cultivar, with high quality, large, powder-blue berries with 

outstanding dessert flavor. Pink tinged flowers are followed by edible, sweet, round, deep blue 

berries to 1.5 cm across. It is a midseason blueberry that ripens in early August. The foliage turns a 

burgundy color in the fall. It is similar to ‘Bluecrop’, but a bit sweeter. This deciduous shrub is 

dense with an upright, multiple-branched growth habit. The shallow, fibrous roots need constant 

moisture and good drainage.  

 

‘Brigitta Blue’ 

Cultivar obtained by free pollination of 'Lateblue' in Michigan and selected in Victoria, Australia. It 

is in cultivation since 1980. The plant is very vigorous, of medium height, with upright habit, fast 

growing, self-fertile. It produces berries of good size and high sugar content, easy to collect, 

suitable for cold storage. It shows a quite high productivity, and cold sensitiveness in winter, so it 

should usually be grown at altitudes lower than 600 m above sea level. 

 

‘Legacy’ 

The plant is vigorous, upright and is particularly suited for southern climates of the USA (low-

chilling variety, i.e., with low demand for cold). The productivity is high and constant. The fruit is 

medium size with excellent flavor and sweetness, considered one of the best-tasting varieties, also 

has a long shelf. The fruit ripens in August, medium-late season. The foliage remains on the bushes 

during the winter. The plant is resistant to collar rot. 

 

1.3. Bioactive compounds and health-promoting properties 

Berry fruits are widely recognized as natural functional products. In fact these fruits represent a 

rich source of phytochemicals such as polyphenols and ascorbic acid (Tab.1). 

 

Tab. 1 Phenolics, anthocyanins and ascorbic acid content of blueberry and bilberry (modified from Szajdek and 
Borowska, 2008). 

Species  Phenolics (mg/100 g FW) Anthocyanins (mg/100 g FW) Ascorbic acid (mg/100 g FW) 

Bilberry  
(Vaccinium myrtillus) 

181.1–525.0 214.7–299.6 6.1-6.8 

Blueberry 
 (Vaccinium corymbosum)) 

261–585 62.6–331.0 12.4–13.1 
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1.3.1. Polyphenols 

 

Polyphenols are biosynthesized 

through the phenylpropanoid 

pathway (Fig.1), which produces a 

wide range of secondary 

metabolites that are different in 

structure and molecular weight, and 

can be divided in four classes: 

phenolic acids (such as benzoic and 

cinnamic acid), tannins, stilbenes 

and flavonoids (such as 

anthocyanins, flavonols and 

flavanols). 

The key polyphenols precursors are 

phenylalanine, obtained via the 

shikimate and arogenate pathways 

and malonyl-CoA, derived from 

citrate produced by the tricarboxylic 

acid (TCA) cycle. Most of the 

biosynthetic enzymes in the 

pathway characterized to date are  

thought to operate in enzyme 

complexes located in the cytosol. 

Flavonoid end products are transported to various sub-cellular or extracellular locations, those 

flavonoids involved in pigmentation (such as anthocyanins) are generally located into the vacuole.  

Polyphenols are very important in the determination of characteristic taste and color of fruits and 

vegetables. In fact, phenolic acids are responsible for acid taste, tannins give astringency and 

flavonoids could attribute a bitter taste. Anthocyanins are the main pigments in fruits, vegetables 

as well as in flowers. 

Phenolic compounds are also involved in allelopathic interactions between plants and animals, 

bacteria and fungi, and have also a role in plant’s defense mechanisms. 

Fig. 1 The phenylpropanoid pathway 
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Berry fruits are characterized by a high content and wide diversity of phenolic compounds (Szajdek 

and Borowska, 2008), the most common phenolic acids in berry 

fruits are cinnamic acid and benzoic acid. In presence of 

polyphenol oxidases phenolic acids lead to browning due to 

oxidation reactions (Shahidi and Naczk, 2004). Anthocyanins are 

a subclass of flavonoids derivatives of 2-phenylbenzopyrylium 

(flavylium cation) (Fig. 2) and valued as pigments in plants. They 

are important health-promoting phytochemicals and are abundant in 

berry fruits. In many fruits, these colored compounds accumulate only 

in the skin, while in bilberry they occur throughout the fruit flesh. In the cells they are located in 

vacuoles in the form of various sized granules. Anthocyanins consist of an aglycone 

(anthocyanidin), sugar(s), and, in many cases, acyl group(s) and they differ with regard to the 

number of hydroxyl groups in a molecule, the degree of methylation of these groups, the type, 

number and place of attachment of sugar molecules and the type and number of aliphatic or 

aromatic acids attached to sugars in the molecule (Heim et al., 2002; Kong et al., 2003). The 

composition of anthocyanins is particularly diversified in the fruit of blueberry and bilberry and 

more than ten anthocyanins were found in these species (Dugo et al., 2001; Du et al., 2004; Kader 

et al., 1996; Lohachoompol et al., 2008). While there are six common anthocyanidins, more than 

540 anthocyanin pigments have been identified in nature, with most of the structural variation 

coming from glycosidic substitutions and possible acylation of sugar residues with organic acids. 

Among the regulatory factors of the anthocyanin pathway which have been characterized so far, 

MYB and helix-loop-helix (HLH) proteins are predominantly represented (Springob et al., 2003). In 

a recent paper, the expression pattern and functional analysis of a SQUAMOSA-class MADS box 

transcription factor, VmTDR4, associated with anthocyanin biosynthesis in bilberry was reported. 

VmTDR4 was demonstrated to play an important role in the accumulation of anthocyanins during 

normal ripening in bilberry, probably through direct or indirect control of transcription factors 

belonging to the R2R3 MYB family (Jaakola et al., 2010).  

Until recently phenolic compounds were regarded as non-nutritive compounds of fruits and 

vegetables which often hinder their technological processing. High level of phenolic compounds, in 

particular tannins, could also have adverse consequences because they inhibit the bioavailability 

of iron, thiamin and proteins, and block the activity of digestive enzymes in the gastrointestinal 

tract. Moreover, tannins can interact with proteins leading to astringency (Szajdek and Borowska, 

Fig. 2: The flavylium cation 
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2008). Nowadays the importance of these compounds in human diet is widely recognized. Many 

researches had been conducted so far to study the health-promoting and antioxidant properties of 

several classes of phenolic compounds (Leopoldini et al., 2004, Rice-Evans et al., 1997, Borges et 

al., 2010). As antioxidants, polyphenols can protect cell components from oxidative damage and 

limit the risk of various degenerative diseases related to oxidative stress (Scalbert et al., 2005). 

Numerous studies in animal models and in vitro have shown that polyphenols added in diet could 

limit the development of cancers, cardiovascular diseases, diabetes and osteoporosis (Scalbert et 

al., 2005). In vitro the antioxidant capacity is commonly evaluated as the ability of different 

phenolic compounds to trap free radicals and reduce other chemicals. Their potency is then 

compared to that of a reference substance, usually Trolox (a water-soluble derivate of vitamn E). 

There are several assays which can be used for this purpose (see Sànchez-Moreno, 2002 for a 

review). However, the value of such measurements to evaluate the health benefits of isolated 

polyphenols or plant extracts is limited because of the following reasons: quite big differences 

have been observed using different methods of evaluation; polyphenols are extensively 

metabolized in the body, thus their structure (and their antioxidant properties) change during 

digestion and then the bioavailability can change widely from a polyphenol to another.  

In conclusion the health benefits of phenolic compounds and, even more, of polyphenols-rich food 

and beverages cannot merely be evaluated as their antioxidant capacity in vitro. A precise 

examination of the type and amount of different polyphenols in a plant extract or food should be 

preferred. This does not exclude that the antioxidant properties of these compounds are a key 

factor that may trigger cell responses at the origin of their biological effects (Scalbert et al., 2005). 

The phenolic content in fruits can be affected by several factors like species, variety, agronomical 

practices, ripeness, climate conditions (Benvenuti et al., 2004; Hӓkkinen and Tӧrrӧnen, 2000; 

Connor et al., 2002; Anttonen and Karjalainen, 2005; Ehala et al., 2005; Castrejὀn et al., 2008). 

1.3.2. Ascorbic acid  

Ascorbic acid (AsA) is one of the most important molecules in biological processes. It is found in 

almost all plants and is involved in many metabolic reactions. Until a few decades ago, the most 

likely answer to the question of what would be the function of ascorbic acid, was that given by 

Albert von Szent Gyorgyi, when he won the Nobel Prize in 1937 for having discovered it: “it is the 

factor able to cure all of the clinical symptoms known as scurvy, a syndrome that occurs in humans 

in case of a diet low in fruits and vegetables”. Today the same question might have different 

answers and few would mention the scurvy, which nowadays is not widespread anymore (Arrigoni 
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and De Tullio, 2002). The functions attributed to AsA are numerous: it acts as a cofactor for several 

enzymes, it plays a key role in scavenging free radicals, it acts as a donor/acceptor in electron 

transport systems located in chloroplasts and plasma membrane and, in some plants , it is the 

substrate for the synthesis of oxalate and tartrate (Diplock et al. 1998; Foyer et al. 1991; Padh, 

1990, Loewus and Loewus, 1987; Foyer, 1993; Bànhegyi et al. 1997; Sauberlich, 1990 ; Noctor and 

Foyer, 1998; Smirnoff, 1996). Most vertebrates are able to synthesize AsA, unlike many 

invertebrates. A few mammals, including humans and some primates have lost the ability to 

biosynthesize it, and then L-AsA is an essential element (vitamin C) for them to be introduced with 

the diet. This deficiency is due to the lack of the enzyme that catalyzes the last step in the 

synthesis, L-1,4- gulono lactone oxidase (Gulo). The gene encoding this enzyme is present in the 

human genome, but is not expressed, because of numerous mutations (Nishikimi and Yagi, 1996; 

Nishikimi et al. 1992; Nishikimi et al., 1994). Chemically AsA is one of the simplest vitamins, it 

consists of a structure with six carbon atoms similar to that of hexose sugars, its precursors. More 

than 45 years ago Isherwood and his colleagues proposed a possible pathway for ascorbic acid 

biosynthesis in plants (Isherwood et al., 1954). This path was based on the conversion of 

derivatives of D-galactose, it was similar to what happens in animals and included an inversion in 

the configuration of the carbon skeleton, from D to L. The data supporting this pathway were 

concentrated mainly on the last step, where L-galactose-1,4-lactone is oxidized to L-ascorbic acid 

by the enzyme L-galactose-1,4-lactone dehydrogenase (GLDH). Over the years, very extensive and 

detailed studies carried by Loewus and his colleagues concluded that the majority (80%) of D-

glucose is converted to L-AsA via a path that does not involve the inversion of the carbon skeleton 

(Saito et al., 1990; Loewus, 1963; Loewus, 1980; Loewus and Loewus, 1987). So it was suggested 

that the synthesis of ascorbic acid in plants could take place in an opposite manner compared to 

what usually happens in animals.  
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Fig. 3: The main ascorbic acid biosynthetic pathway. 

 

Many of the concerns about the data collected during the last decades, have been clarified with 

the proposal of a new biosynthetic route, which involves GDP-L-galactose and GDP-D-mannose as 

precursors (Wheeler et al., 1998) (Fig.3). The first part of this cycle is also involved in the synthesis 

of precursors of cell wall polysaccharides, while the last steps (from the GDP-L-galactose and up) 

are purely dedicated to the synthesis of AsA. The enzyme that catalyzes the last step is L-

galactose-1 ,4-lactone dehydrogenase (GLDH) as originally suggested by Isherwood, but in this 

cycle, the synthesis takes place without inversion of the skeleton to six carbon atoms, according to 

data collected by Loewus. The relevance of this new route also lies in the fact that the synthesis of 

L-AsA is deeply integrated in the metabolism of carbohydrates, polysaccharides of the wall, and in 

the glycosylation of proteins (Davey et al., 2000). Nevertheless, some intriguing questions remain 

unanswered, particularly with regard to the hypothesis that ascorbic acid produced by plants 

could derive from the conversion of uronic acids. It is well known that plants are able to synthesize 
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it from D-glucuronic acid derivatives and D-galacturonic (Isherwood et al. 1954; Mapson and 

Isherwood, 1956; Loewus, 1963; Chattererjee et al. 1960; Isherwood and Mapson, 1962; Loewus 

et al. 1958; Loewus et al., 1958b). The importance from the physiological point of view of this way 

should be interpreted with caution, waiting to get more complete data about it. It can be 

hypothesized that the synthesis of AsA from these precursors has some importance in certain 

conditions or in specific tissues. For example D-glucuronic acid and D-galacturonic are the major 

components of non-cellulosic polysaccharides of the cell wall, and their conversion into ascorbic 

acid may provide a way to recover some of the carbon derived from the disassembly of the wall 

that may occur during abscission, fruit ripening, softening and cell expansion. 

Due to its low electronegativity, AsA can donate electrons to many types of substrates, in fact, it is 

able to interact with many forms of active oxygen, including O2 .- and H2O2 (Halliwell, 1982). The 

direct product of AsA oxidation is the radical monodehydroascorbate (MDHA) also called 

ascorbate free radical (AFR). MDHA has normally a short life span, if not rapidly reduced by 

monodehydroscorbic reductase (MHDAR), it disproportionates into ascorbate and 

dehydroascorbate (DHA). A combination of de novo synthesis and an efficient recycling, thanks to 

monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR) are critical 

in maintaining AsA levels constant. Monodehydroascorbate can in fact be enzymatically reduced 

to AsA in a reaction catalyzed by MDHAR, while DHAR catalyze the reduction of DHA to AsA. 

Reactive oxygen species (ROS) such as superoxide anion (O2
-) and hydrogen peroxide (H2O2) are 

produced during normal plant metabolisms and the detoxification from these compounds can be 

considered as an integral part of the housekeeping duties required for an aerobic existence in 

eukaryotic cells. Oxidative stress can be defined as an imbalance between the production of ROS 

and the biological system's ability to readily detoxify the reactive intermediates or to repair the 

resulting damage. Disturbances in the normal redox state of tissues can cause toxic effects 

through the production of peroxides and free radicals that can damage all components of the cell, 

including proteins, lipids, and DNA. Efficient control of ROS levels includes several enzymatic and 

non-enzymatic systems acting in synchronicity. O2
- produced in different cellular compartments is 

rapidly converted to H2O2 by the action of superoxide dismutase (SOD). The reduction of 

superoxide anion is also possible through direct action of AsA. But the reduction of O2
- just convert 

one destructive ROS to another (H2O2). 

http://en.wikipedia.org/wiki/Reactive_oxygen_species
http://en.wikipedia.org/wiki/Redox
http://en.wikipedia.org/wiki/Peroxide
http://en.wikipedia.org/wiki/Free_radical
http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Lipid
http://en.wikipedia.org/wiki/DNA


 
14 

Introduction 

 

Catalases (CAT) are the enzymes able to reduce H2O2 to water and molecular oxygen. These 

enzymes show high maximum catalytic rates but low affinity for substrates and their absence in 

chloroplasts precludes a role in protection in the Calvin cycle (Noctor and Foyer, 1998). 

An alternative way of H2O2 detoxification is represented by peroxidases, a big family of enzymes 

which are ubiquitous in the cell and have a much more higher affinity for H2O2 than CAT. 

These enzymes requires a reductant molecule since they reduce hydrogen peroxide to water. AsA 

represents the most important reducing substrate for H2O2 detoxification in plants (Noctor and 

Foyer, 1998). Ascorbate regeneration can 

occur by reaction with glutathione, which 

in turn is regenerated by using the 

reducing power of NADPH. From this 

observation, Foyer and Halliwell 

indicated the possible existence of an 

ascorbate-glutathione cycle (Fig. 4), thus 

AsA levels in plants could be 

Fig. 4: Halliwell-Asada cycle. 

 

 maintained by an efficient balance between biosynthesis and recycling. In the recycling route 

(cycle of ascorbate-glutathione or Halliwell-Asada cycle), ascorbate peroxidase (APX) catalyzes the 

oxidation of AsA into monodehydroascorbate (MDHA); as we mentioned, this radical form could 

be spontaneously converted into AsA and dehydroascorbate (DHA). The enzymatic regeneration of 

AsA from MDHA and DHA is catalyzed by MDHAR, DHAR, and glutathione reductase (GR). This 

pathway provides an efficient way of recycling of AsA and detoxification of H2O2 (Noctor and 

Foyer, 1998) with the only consumption of reducing power given by NADH and NADPH. 

In a Western-type diet, ascorbic acid is supplied through the consumption of fruits and vegetables, 

eaten fresh or in the form of juices and processed products. Substantial losses are found in 

processed fruits. The AsA content in plant-derived foods differs from species to species but is also 

depending on environmental conditions, cultural practices, however there is no unique model to 

describe the changes in ascorbic acid content with the progress of maturation (Breene, 1994). 

Processing and storage techniques may also have an effect on the ascorbate content of produce: 

preparation of preserved food, dehydration and storage at low temperatures are techniques by 

which is possible to ensure the supply of plant foods throughout the year. All plant foods are in 

fact seasonal, and may undergo to rapid changes when stored at room temperature without 
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adequate treatment. These changes affect the enzymatic reactions that cause variations in color 

and flavor, as well as have a profound impact on the nutritional value of the product. Losses in AsA 

content during fruit storage can be limited by stocking the fruit at low temperatures (0-4°C), in 

controlled atmospheres with low concentrations of O2 and CO2 concentrations higher than 10% 

(Lee and Kader, 2000). Fruits are subjected to a series of changes after harvest, and the ability to 

maintain the stability of AsA is linked to the enzymatic reactions that lead to its oxidation and 

reduction. There are products most susceptible to the loss of ascorbate and others, like citrus, 

characterized by a low pH of the juice which stabilizes AsA, but all the plant products are intended 

for a progressive decrease of AsA after harvest.  

 

1.4 Plant activators 

Plant resistance activators are a class of either natural or synthetic compounds that stimulate 

active plant defense mechanisms. The induction of pathogen resistance in plants is called 

“systemic acquired resistance” (SAR). SAR is considered as a long lasting 

and broad spectrum mechanism of defense from pathogens. The induction 

of SAR can be achieved by using abiotic agents like salicylic acid, and 2,6-

dichloroisonicotinic acid (Ryals et al., 1994) and benzothiadiazole (BTH, 

Bion®, Fig.5) (Hukkanen et al., 2008). No clear evidences have been so far 

produced to explain how the resistance is developed by these agents. 

Most reports describe a correlation between pathogen resistance and the accumulation of 

pathogen related (PR) proteins or enzymes involved in the scavenging from ROS (Hukkanen et al., 

2008). Several studies demonstrated also that these compounds could lead to an increase in 

plants pathogen resistance and at the same time could stimulate the biosynthesis of secondary 

metabolites such as flavonoids and other phytochemicals like carotenoids and ascorbic acid (Iriti et 

al., 2004; Liu et al 2005). The induction of SAR by the use of plant activators is not easily 

predictable in timing and level of expression and therefore, has not been widely used in many 

crops to date. Among different classes of plant activators we focused our research on BTH, a 

functional analogue of the plant endogenous hormone-like compound salicylic acid (SA), that is 

required for the induction of defense genes leading to SAR establishment. Treatments with 

exogenous BTH were demonstrated to enhance resveratrol and anthocyanin biosynthesis in 

grapevine meanwhile improving resistance to Botrytis cinerea (Iriti et al., 2004), to induce 

resistance of peach to Penicillium expansum and enhance activity of fruit defense mechanisms (Liu 

Fig. 5 Benzothiadiazole 
(BTH). 
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et al., 2005). Moreover, BTH treatments activate antioxidant enzymes (APX, DHAR, MDHAR; GR) in 

pea leaves (Clemente-Moreno et al., 2009) and induce enzyme activities related to anthocyanin 

metabolism in strawberry fruit after harvest (Cao et al., 2010). Although BTH is a synthetic 

analogue of SA, its use is associated to a very low toxicological risk, it is also rapidly degraded in 

plant tissues and lacks any antibiotic activity. 

Jasmonates (jasmonic acid and methyl jasmonate) (Fig.6) are phytohormones that occur widely in 

plants.  The first description of methyljasmonate (jasmonic acid methyl ester) was as a fragrant 

constituent of the essential oil of Jasminium grandiflorum (Demole et 

al., 1962), interestingly, it is also a component of female-attracting 

pheromones in certain moths (Baker et al., 1991). The biosynthesis of 

jasmonates starts with linolenic acid and proceeds through a number of 

classes involving lipoxidation, cyclization and β-oxidation (Creelman and 

Mullet, 1997). They are efficient elicitors or signalling agents and play key 

roles in plant growth and affect many physiological and biochemical processes in plants (Creelman 

and Mullet, 1997, Wang et al., 2008). Based on the findings that some defense genes are inducible 

by jasmonates, it has been speculated that those compounds are involved in pathogen response 

mechanisms (Peña-Cortez et al. 2005). It has also been demonstrated that treatments with 

exogenous jasmonates stimulate the accumulation of secondary metabolites in pre- and 

postharvest. Preharvest treatments with MeJa were effective in enhancing antioxidant activity and 

flavonoid content in Blackberry (Rubus sp.)(Wang et. al., 2008). 

 

1.5 Storage 

Blueberry can be easily stored at low temperature (0°-1°C) and high relative humidity (up to 90%) 

for about a month without significant loss of quality. The main limitations to the preservation at 

low temperatures is due to fungal development (Botrytis cinerea, Alternaria spp. Colletotrichum 

spp.) and weight loss that causes shrivelling and loss of brightness. Fruit weight loss is mainly due 

to water loss, which is produced by a difference in vapour pressure between the fruit and the 

surrounding air. This loss is affected by the area/volume ratio, by mechanical wounding and 

storage temperature (Wills, McGlasson, Graham, and Joyce, 1998). Small-sized fruits, such as 

blueberries, show a high area/volume, and they therefore dehydrate more than larger-sized fruits 

(Chiabrando and Giacalone, 2011; Cabezas, 2004; Navarrete, 2004; Wills et al., 1998). The 

controlled atmosphere (CA), especially the use of CO2-enriched (9-10 kPa) and low O2 (1-4 kPa) gas 

Fig. 6 Methyl jasmonate 
(MeJa). 
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mixtures, can reduce or prevent the onset of fungal contaminations. Several researches have 

demonstrated the useful role of CO2-rich atmospheres in enhancing blueberry storage life, for long 

periods, albeit with different responses among varieties (Connor et al., 2002). Controlled 

atmosphere storage could also affect the levels of nutrients and health-promoting compounds in 

blueberry. Anthocyanin content and antioxidant capacity resulted higher in blueberries cv 

‘Bluecrop’ after 2-4 weeks of cold storage in CA (Krupa and Tomala, 2005). In the study conducted 

by Connor and colleagues (2002) ripe fruit from most of the blueberry cultivars tested 

demonstrated stability in the antioxidant activity, total phenolic content, and anthocyanin content 

during cold storage, and one cultivar demonstrated an increase during the first 3 weeks of storage. 

On the other hand high CO2 concentration (between 10 and 20 kPa) has been demonstrated to 

have a detrimental effect on AsA content in berry fruits (Agar et al., 1997). 

Little is known so far about the effects of a long-term storage of blueberries on quality 

parameters, and on the levels of health promoting compounds such as ascorbic acid and 

phenolics.  
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2. Aim  

 

Blueberry and bilberry possess one of the highest antioxidant capacities in berries due to the high 

content of anthocyanin pigments; they are also a moderate source of ascorbic acid (AsA). It is 

accepted that the content of phenolics and ascorbic acid in berries is not only affected by genetic 

differences and pre-harvest environmental conditions, but also by the degree of maturity at 

harvest.  

In postharvest, different storage conditions may also strongly influence antioxidant capacity of this 

produce and there are many factors which contribute to improve fruit quality maintenance such 

as temperature, gas concentration and cultivar.  

 

The aims of the present Ph.D. project were: 

• To acquire a better understanding about the changes in bioactive compounds content 

during fruit development, ripening and storage of blueberry by measuring the 

accumulation of compounds (phenolics and ascorbic acid), enzymatic activities and 

expression profiling of genes related to ascorbic acid biosynthesis and recycling during 

development and ripening; 

• To acquire a better knowledge on the effects and mechanisms of action of plant activators 

that could be effective in stimulating the accumulation of health-promoting compounds. 

Integration of transcripts and metabolites data analyses in order to find possible 

correlations between gene upregulation and metabolites accumulation following to 

treatments with plant defence activators such as methyljasmonate and benzothidiazole; 

• To define optimal storage conditions to extend the shelf life of fresh produce while 

ensuring both commercial and nutraceutical quality. Application of controlled atmosphere 

technologies in long term cold storage of different cultivars of blueberry. Analyses of 

quality attributes and health promoting compounds; 

• To identify commercial cultivars of blueberry with the highest attitude to storage; 

• To detect possible biochemical indexes useful to point out the onset of product 

degradation during storage. 
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3. Ascorbic Acid Metabolism During Bilberry (Vaccinium 
myrtillus L.) Fruit Development 

 

3.1. Introduction 

Bilberry (Vaccinium myrtillus L.), also known as European blueberry, is a woody shrub widespread 

in northern Europe. Its berries are valued for their nutraceutical properties and are among the 

fruits with the highest antioxidant activity due to their high phenolic compounds content, 

particularly anthocyanins (Prior, Cao, Martin, Sofic, and McEwen, 1998). The berries are also a 

moderate source of another antioxidant compound, ascorbic acid (AsA). Since humans are not 

able to biosynthesize this compound, plant-derived AsA, along with its oxidized form 

(dehydroascorbic acid), represents an essential vitamin in diet (vitamin C). AsA can act as an 

antioxidant in a wide number of enzymatic and non-enzymatic reactions in humans (Ishikawa, 

Dowdle, and Smirnoff, 2006), and it is also active in the non-enzymatic regeneration of other 

antioxidant molecules such as α-tocopherol (vitamin E). In addition, as a strong antioxidant, AsA 

has a beneficial role in reducing the risk derived from cardiovascular, age-related and chronic 

human disorders and acts as a co-substrate in reactions catalyzed by several dioxygenases (De 

Tullio and Arrigoni, 2004). It has also been reported that AsA may have a role in the prevention of 

certain forms of cancer (De Tullio and Arrigoni, 2004). 

AsA has several essential functions in plant physiology. Most importantly, AsA functions as a 

cofactor for enzymes involved in cell expansion and cell division and is a co-substrate for the 

biosynthesis of important plant hormones such as ethylene and gibberellic acid (Davey et al., 

2000). It is also an effective radical scavenger that is able to interact with the reactive oxygen 

species (ROS) that are produced during cell wall lignification, cell division, photosynthesis and 

stress responses (Davey et al., 2000; Halliwell, 1996). Moreover, in some plant species, AsA 

appears to be the substrate for oxalate and tartrate biosynthesis (Davey et al., 2000). 

In plants, the main biosynthetic route of AsA proceeds from mannose-6-phosphate to AsA via 

GDP-mannose and GDP-galactose (Fig. 7) (Ishikawa et al., 2006). However, many studies suggest 

the co-existence of several alternative pathways for AsA in plants (Davey et al., 2000; Ishikawa et 

al., 2006). The AsA levels in plants are maintained by an efficient balance between biosynthesis 

and recycling. In the recycling route, ascorbate peroxidase (APX) catalyzes the oxidation of AsA 

into monodehydroascorbate (MDHA), a radical form that is spontaneously converted into AsA and 

dehydroascorbate (DHA) (Fig. 7). The enzymatic regeneration of AsA from MDHA and DHA is 
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catalyzed by monodehydroascorbate 

reductase (MDHAR), dehydroascorbate 

reductase (DHAR), and glutathione 

reductase (GR). The recycling pathway, 

also known as ascorbate-glutathione 

cycle, provides an efficient way of 

recycling of AsA and detoxification of 

H2O2 (Noctor and Foyer, 1998). Several 

studies have been conducted on the 

content of phenolic compounds and 

their organ-specific distribution in 

Vaccinium species (Määttä-Riihinen et 

al.,2004; Riihinenet al., 2008) as well as 

on the expression of genes that attend 

to the accumulation of phenolic 

compounds during bilberry fruit 

development (Jaakola et al., 2002). 

However, little is known about the 

molecular mechanisms that regulate the biosynthesis and recycling of AsA in these small fruits 

during development and ripening. The aim of the present work was to study the expression of the 

genes that encode enzymes from the main AsA biosynthetic and recycling routes in relation to the 

AsA content in bilberry fruit at four different developmental stages, that is, from unripe green to 

over-ripe berries. The AsA accumulation and the expression of the AsA-related genes in different 

fruit tissues (pulp and skin) of over-ripe berries were analysed as well. Moreover, the activities of 

the antioxidant enzymes APX, MDHAR, DHAR and GR catalyzing the oxidation and recycling of AsA 

were measured. 

 

3.2. Materials and methods 

3.2.1. Plant material 

Bilberry fruits growing naturally in the forest in Oulu, Finland (65°01’ N, 25° 28’ E), were harvested, 

from June to August 2010, at four different ripening stages; 1: unripe green, 2: unripe purple, 3: 

ripe, 4: over-ripe (Fig. 8). In order to determine the AsA content and measure the expression of 

Fig. 7: The main AsA biosynthetic and recycling pathway 
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the AsA-related genes in different fruit tissues, pulp and skin from over-ripe berries (stage 4) were 

separated after harvesting. All samples were immediately frozen in liquid nitrogen and stored at 

80 °C until used for the analyses. 

 

3.2.2. RNA isolation 

Total RNA was isolated from intact berries as well as from skin and pulp samples using the CTAB 

method described by Jaakola et al. (2001). The quality of the RNA was verified by measuring the 

absorbance spectrum with NanoDrop N-1000 spectrophotometer (NanoDrop technologies, 

Wilmington, DE, USA). The RNA was reverse-transcribed to obtain cDNA using the SuperScript™ III 

Reverse Transcriptase kit (Invitrogen, Carlsbad, CA, USA). The cDNA was purified from the genomic 

DNA according to Jaakola et al.(2004). 

 

3.2.3. Quantitative RT-PCR (qRT-PCR) 

A bilberry fruit specific EST database created at the University of Oulu was used for identifying the 

sequences of the genes related to AsA biosynthesis and to design gene-specific primers for qRT-

PCR analyses. The EST database was created using the 454 GS-FLX platform (Roche Applied 

Sciences, Indianapolis, IN, USA). Contigs were assembled using MIRA (Chevreux et al., 2004), and 

highly similar mRNA sequences were identified using BLAST (NCBI). The gene-specific primers 

designed for glucose-6-phosphate isomerase (GPI), GDP-D-mannose pyrophosphorylase (GMP), 

GDP-D-mannose-3´, 5´-epimerase (GME), L-Galactose-1-phosphate phosphatase (GPP), ascorbate 

peroxidase (APX), monodehydroascorbate reductase (MDHAR), and dehydroascorbate reductase 

(DHAR) are shown in Table 2. In order to test the efficiency of the primers and normalization of the 

results in each experiment, a standard curve was created from different dilutions of cDNA from 

ripe bilberry fruit samples. Specificities of the amplified PCR products were verified using melting 

curve analysis. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as a reference 

gene for the relative quantification of PCR products (Jaakola et al., 2002, Tab. 2). The results were 

calculated with LightCycler®480 (Roche) software, using the calibrator-normalized PCR efficiency-

corrected method (technical Note No. LC 13/2001, Roche Applied Science). 
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Tab. 2: Gene-specific primer sequences used for the qRT-PCR analysis. 

 
Gene Primers 5’>3’ bp Tm (°C) 

GPI Forward: ATGCATCTCGGAAGAAAGGA 20 59.77 
 Reverse: GACAGTCGTGCCTGCACTTA 20 60.06 
GMP Forward: GCCCCTTGTTGATTTTGGTA 20 59.80 
 Reverse: CGGTCTCTTGAGAGCATGTG 20 59.57 
GME Forward: GTGGGAACACAAGCTCCAGT 20 60.16 
 Reverse: CCCATCTCCATAAATCCCAAT 21 59.86 
GPP Forward: TCTCAGTCGGAGCTTGTGAA 20 59.70 
 Reverse: ATGCCACAGAGATCCAATGC 20 61.05 
APX Forward: GCATTCCGATCACTCTCTGC 20 60.93 
 Reverse: ACGGAGCATAATTGGAGCAC 20 60.10 
MDHAR Forward: TTTCTGGAGAGTGGGACACC 20 60.09 
 Reverse: CACGCGTGAAGTACGACAAC 20 60.37 
DHAR Forward: TTGGATCTGAACCCAGAAGG 20 60.04 
 Reverse: TCACTGGGATCCTTGCTCTT 20 59.80 
GAPDH Forward: CAAACTGTCTTGCCCCACTT 20 63.98 
 Reverse: CAGGCAACACCTTACCAACA 20 63.53 

 

3.2.4. Determination of AsA content 

AsA extraction was performed according to Sinelli et al. (2008). Briefly, 3 g of berries were 

homogenized in a mortar containing 4 mL of cold, 6% (w/v) metaphosphoric acid and centrifuged 

at 10,000 × g at 4 °C. The pellet was washed with 3 mL of 6% cold metaphosphoric acid and 

centrifuged at 10,000 × g at 4 °C. The supernatants were combined and cold 6% metaphosphoric 

acid was added to a final volume of 10 mL. The extracts were filtered through a 0.45 μm syringe 

filter before injection to the high-performance liquid chromatography (HPLC). The extraction was 

carried out in triplicate. 

The HPLC- diode array detector (DAD) analysis for the determination of AsA content was 

performed, with minor modifications, according to Sinelli et al. (2008). An Agilent 1100 HPLC 

system (Agilent Technologies, Palo Alto, CA, USA) fitted with Agilent 1100 autosampler, an Agilent 

1100 binary pump, and an Agilent 1100 DAD was used in this study. The HPLC separation was 

performed with Inertsil ODS-3 4.6 × 250 mm column (GL Sciences, Tokyo, Japan) with 5 µm 

particle size. The temperature of the column oven was set at 20 C, and the injection volume was 

10 µL. Data were acquired and processed using Hewlett Packard ChemStation software (Agilent 

Technologies). 

 

3.2.5. Analysis of water content 

To measure the water content of the samples, the intact berries as well as the skin and pulp 

samples were freeze-dried (Flexi-Dry, FTS Systems, Stone Ridge, NY, USA) and weighted before 

and after the procedure. 
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3.2.6. Analysis of enzyme activities 

Quadruplicates samples of berries (5 g) were homogenized in a mortar at 4 °C with 10 mL of 100 

mM potassium phosphate buffer (pH 7.8) containing 1 mM EDTA, 25% glycerol (w/v), 0.25% Triton 

X-100 (w/v) and 1 g of polyvinyl-polypyrrolidone (PVPP). Just before the extraction, 2 mM β-

mercaptoethanol, 1 mM PMSF (dissolved in DMSO), and 1 mM sodium ascorbate were added to 

the buffer. The homogenate was filtered through two layers of cheesecloth and centrifuged at 

20,000 x g at 4 °C for 30 min to separate insoluble material. The supernatant was then stored at 

80 °C until used for analyses of enzyme activities.  

Protein content was determined according to Bradford (1976) using bovine serum albumin (BSA) 

as a standard. The enzyme activities were measured with a Cary 50 Bio spectrophotometer (UV-

Visible) (Varian Australia Ptv Ltd., Victoria, Australia). 

 

3.2.7. APX (EC 1.11.1.11) activity assay 

APX activity was assayed by measuring the decrease in the ascorbate concentration at 290 nm 

(extinction coefficient: 2.8 mM-1 cm-1) according to Nakano and Asada (1981) with slight 

modifications. The assay mixture consisted of 50 mM potassium phosphate buffer (pH 7.0) 

supplemented with 0.1 mM EDTA and 0.5 mM sodium ascorbate. The reaction was triggered by 

adding 0.1 mM H2O2. 

 

3.2.8. MDHAR (EC 1.6.5.4) activity assay 

The activity of MDHAR was measured by observing the decrease in absorbance at 340 nm due to 

oxidation of NADH (extinction coefficient: 6.22 mM-1 cm-1) according to Arrigoni et al. (1981) with 

slight modifications. The MDHA was generated by the ascorbate/ascorbate oxidase (A.O.) 

complex. The assay mixture consisted of 50 mM Tris-HCl buffer (pH 7.6) supplemented with 2.5 

mM sodium ascorbate and 0.1 mM NADH. The reaction was triggered by adding 0.14 U of A.O. 

 

3.2.9. DHAR (EC 1.8.5.1) activity assay 

DHAR activity was measured by observing the increase in absorbance at 265 nm due to the 

formation of ascorbate (extinction coefficient: 14 mM-1 cm-1). The reaction mixture contained 50 

mM potassium phosphate buffer (pH 7.0) supplemented with 0.1 mM EDTA and 0.2 mM DHA. The 

reaction was triggered by the addition of 2.5 mM glutathione (GSH) according to the method of 

Nakano and Asada (1981).  
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3.2.10. GR (EC 1.6.4.2) activity assay 

The GR activity was calculated by measuring the decrease in absorbance at 340 nm due to 

oxidation of NADPH (extinction coefficient: 6.22 mM-1 cm-1) as described by Donahue et al. (1997). 

The reaction buffer consisted of 100 mM Tris-HCl (pH 7.8), 2 mM EDTA and 0.5 mM glutathione 

disulfide (GSSG). 

 

3.2.11. Statistical analysis 

Statistical analyses were performed using SPSS software (SPSS Inc., Chicago, IL, USA). Significant 

differences were calculated by Duncan’s mean test. Differences at p ≤ 0.05 were considered as 

significant. 

 

3.3. Results 

The protein content in bilberry fruits varied markedly during the ripening period, and the highest 

concentrations were found at the ripening stages 3 and 4 (Fig. 8). Also, the fresh weight/dry 

weight ratio of fruits increased during the ripening process, reaching the highest value at the 

ripening stage 4 (Fig. 8). 

 

 
 

Fig. 8: Protein content and fresh weight/dry weight ratio in different ripening stages of bilberry fruit (Stage 1: 
unripe green, stage 2: unripe purple, stage 3: ripe, stage 4: over-ripe). Values represent means ± SD (n = 3). 

 

The AsA concentrations were measured from all four stages of berry ripening (Fig. 8). The unripe 

green fruits showed the highest AsA content in both relation to fresh weight and dry weight (Tab. 

3). A significant decrease was recorded from the first to the second stage, but during the later 

http://en.wikipedia.org/wiki/Glutathione_disulfide
http://en.wikipedia.org/wiki/Glutathione_disulfide


 
25 

Chapter 3: Ascorbic Acid Metabolism During Bilberry (Vaccinium myrtillus L.) Fruit Development 

 

stages of the ripening process, the AsA level remained relatively stable. In the stages 3 and 4, 

when the fruits are normally consumed, the AsA content was over 6 mg 100 g-1 FW (~50 mg 100 g-

1 DW). In over-ripe berries (stage 4), AsA was mostly accumulating in the berry skin, in which the 

concentration was almost twice as high as that in pulp. 

 

Tab. 3: AsA content (mg 100 g-1 FW and mg 100 g-1 DW) in bilberry fruit at different ripening stages and in different 
tissues. Values represent means ± SD (n = 3). Different letters indicate significant differences (p ≤ 0.05) according to 
the Duncan’s mean test. 

 
Ripening stage/Tissue AsA (mg 100 g

-1
) 

 FW DW 

Stage 1 unripe green 8.25 ± 0.43a 50.67 ± 2.64a 

Stage 2 unripe purple 6.52 ± 0.47b 44.90 ± 3.26b 

Stage 3 ripe 6.81 ± 0.36b 46.61 ± 2.45ab 

Stage 4 over-ripe 6.14 ± 0.22b 
 

49.03 ± 1.78ab 

Berry skin (Stage 4 over-ripe) 3.81 ± 0.47a 33.32 ± 4.11a 

Berry pulp (Stage 4 over-ripe) 2.22 ± 0.03b 16.92 ± 0.25b 

 

The expression of the genes encoding some of the enzymes involved in the main AsA biosynthetic 

and recycling routes was studied during the bilberry fruit ripening process (Fig. 9). Transcripts of 

GPI were approximately three times higher at the second stage of ripening when compared to the 

other developmental stages (Fig. 9A). In contrast, GMP appeared to be highly expressed in the first 

stage of ripening, but the expression decreased in stages 2 and 3 increasing again at the over-ripe 

stage (Fig. 9B). Both GME and GPP showed the highest expression values in unripe berries (stages 

1 and 2) which was followed by a decrease in expression levels during the ripening process (Fig. 9C 

and D). The expression of APX, the gene encoding the first enzyme in the AsA recycling pathway, 

reached the highest levels in stages 1 and 3 (Fig. 9E). Part of the AsA oxidized by APX can be 

recycled by the enzymatic action of MDHAR and DHAR. MDHAR showed the highest transcript 

abundance in stage 2 (Fig. 9F). In contrast, DHAR was highly expressed in stages 1 and 3, thus 

showing an expression pattern very similar to APX (Fig. 9G). The expression data of all the 

analyzed genes from both the main biosynthesis and the recycling pathway showed higher 

transcripts abundance in berry skin in comparison to pulp (Fig. 9H). For example, more than three-

fold higher expression level for GPI, five-fold for GME, three-fold for GPP and six-fold for MDHAR 

were detected in skin compared to pulp. 
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Fig. 9: Expression of the AsA biosynthetic genes A) GPI, B) GMP, C) GME, D) GPP, and recycling genes E) APX, F) 
MDHAR and G) DHAR during bilberry fruit ripening and in H) over-ripe bilberry fruits in two different tissues: skin 
and pulp. Values represent means ± SD (n = 3). 

 

The activities of the antioxidant enzymes from AsA recycling pathway during the bilberry fruit 

ripening process are presented in Fig. 10. For all the enzymes in the recycling route, except for GR, 

the highest activity values were registered in the green unripe berries. Both APX and DHAR 



 
27 

Chapter 3: Ascorbic Acid Metabolism During Bilberry (Vaccinium myrtillus L.) Fruit Development 

 

activities decreased significantly from the first to the second stage but remained stable during the 

later stages of ripening (Fig. 10A and C). The decrease of MDHAR activity from initial stage 1 to 2 

was followed by an increment in the activity in stages 3 and 4 (Fig. 10B). GR activity, in contrast, 

was characterized by a gradual increase from stage 1 to stage 3 followed by a decrease at stage 4 

to values equal to those observed in stage 2 (Fig. 10D). 

 

Fig. 10: Activities of A) APX, B) MDHAR, C) DHAR and D) GR during bilberry fruit ripening. Values represent means ± 
SD (n = 4). Different letters indicate significant differences (p ≤ 0.05) according to the Duncan’s mean test. 

 

3.4. Discussion 

AsA content is an important trait in crops because it has a central role in the plant physiology and 

it is an essential vitamin in human diet. In order to develop health promoting crops with high 

nutritional value and quality traits, a better understanding of the mechanisms leading to the 

accumulation of AsA is crucial. The AsA level in plants is mainly determined by genotype but is also 

influenced by different environmental factors such as light (Badejo, Fujikawa, and Esaka, 2009; Li 

et al., 2009), date of harvest (Felicetti and Mattheis, 2010), and both biotic (Davey, Auwerkerken, 

and Keulemans, 2007) and abiotic stresses (Gautier et al., 2010). 

In the present study, the highest AsA content in bilberry fruits was measured in unripe green 

fruits. A significant decrease in the AsA level was recorded from the first to the second stage, but 

the AsA content remained relatively stable during the later stages of ripening. This result clearly 

differs from the data obtained from grapes and tomato, in which the AsA levels increased 

progressively during fruit development (Cruz-Rus Botella, Valpuesta, and Gomez-Jimenez, 2010; 

http://www.scopus.com/authid/detail.url?authorId=7004541673
http://www.scopus.com/authid/detail.url?authorId=7003548674
http://www.scopus.com/authid/detail.url?authorId=8553460100
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Ioannidi et al., 2009). Our previous studies on blueberry cultivars (V. corymbosum) showed a 

strong increase in the AsA levels during the berry ripening process (data not published). AsA 

accumulation in bilberry fruits seems to be more similar to apple fruit (Li, Ma, Zhang, and Pu, 

2008) and acerola (Badejo et al., 2009; Eltelib, Badejo, Fujikawa, and Esaka, 2011), in which the 

AsA levels in young fruits are higher compared to mature fruits. 

The expression of the AsA-related genes of the main biosynthetic route was studied during 

bilberry fruit ripening and also compared to AsA levels. As many of the encoded enzymes of the 

pathway are also involved in other metabolic routes, and since the levels of AsA are also highly 

affected by the recycling route, total consistency with the AsA level is not expected. For example, 

GPI, which is the most distinct enzyme in the main biosynthetic route leading to AsA, is also 

strongly implicated in the sugar metabolism. The transcripts of GMP in bilberry fruit were found to 

be related with AsA levels, particularly in the early stages of development (stages 1-3). This is 

consistent with earlier studies where GMP was found to show a strong correlation with the AsA 

levels during acerola fruit development and it was suggested to play a major role in AsA 

biosynthetic pathway in acerola fruit (Badejo, Jeong, Goto-Yamamoto, and Esaka, 2007; Badejo et 

al., 2009). However, in tomato, a negative correlation between GMP expression and AsA 

accumulation was detected (Ioannidi et al, 2009), which suggests different regulatory mechanism 

of GMP between plant species. 

The expression of both GME and GPP showed a pattern similar to the AsA levels, with the highest 

transcript levels at the early stage of ripening followed by a slight decrease at the last stages. 

Similar expression pattern for GME has been observed in grape berries (Cruz-Rus et al., 2010) and 

in tomato (Ioannidi et al., 2009). The GME is supposed to be the key enzyme in the major AsA 

biosynthetic pathway but it also has a role in the biosynthesis of non-cellulosic cell-wall 

polysaccharides (Gilbert et al., 2009). Thus, it represents a significant linkage between the two 

metabolic pathways. GPP is suggested to play a regulatory role in AsA biosynthetic pathway during 

tomato fruit ripening (Ioannidi et al., 2009) and it was also demonstrated to be required for 

maximal AsA accumulation in Arabidopsis (Conklin et al., 2006). 

The partial inconsistency between the expression of the genes in the main AsA biosynthetic route 

and the AsA accumulation during bilberry fruit ripening can also be consequence of post-

transcriptional or post-translational modifications taking place in gene regulation. In a recent 

study by Imai, Ban, Terakami, Yamamoto and Moriguchi (2009) on peach fruit, suggestions were 

made that the turnover rate of the main AsA biosynthetic enzymes results in no apparent 
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relationship with gene expression levels. This aspect may play some role in AsA biosynthetic 

routes that possibly exist in bilberry. 

In addition to the main AsA biosynthetic route, the recycling pathway also affects the levels of 

AsA. In order to obtain more detailed information about the AsA metabolism in bilberry fruits, the 

gene expression and activities of enzymes in recycling pathway was also investigated. The 

expression patterns of the two important genes in recycling pathway, APX and DHAR, appeared to 

be consistent although the enzymes have opposite effects on the AsA level. At the first stage of 

ripening, the activity patterns of the two enzymes were similar, showing high expression level. The 

MDHAR also showed the highest activity at first stage of ripening. Thus, the great activity level of 

both DHAR and MDHAR at the first developmental stage seems to guarantee the high AsA level 

despite of the strong activity of APX. GR, the last enzyme in the AsA recycling pathway, showed a 

different activity pattern compared to the other enzymes of the recycling pathway. Furthermore, 

GR has other important roles in plants, such as involvement in the cell’s scavenging system for 

reactive oxygen compounds in plants by reducing GSSG to GSH (Rao and Reddy 2008).  

The gene expression and enzyme activity patterns of the recycling enzymes were not strictly 

correlated to each other. The expression patterns and enzyme activities of both APX and DHAR 

correlated with each other in stages 1, 2 and 4 but not in stage 3. Furthermore, the expression 

pattern of MDHAR appears to behave in the opposite way when compared to its activity and the 

AsA level. In addition, recent studies of relationship between MDHAR1 transcript levels and AsA 

levels in tomato fruits also showed a negative correlation (Ioannidi et al., 2009). In contrast to 

these results, a high correlation between enzyme activity and mRNA abundance of MDHAR and 

DHAR in response to ripening and stresses was observed in acerola fruits (Eltelib et al., 2011). On 

the other hand, a negative correlation was also shown between MDHAR activity and the AsA 

content in acerola over-ripe fruits (Eltelib et al., 2011). Eltelib et al. (2011) explained the 

mechanism of regulation in acerola to be due to a possible stimulation of low amount of AsA on 

the transcription and the enzyme activity of MDHAR. However, in our study, the MDHAR activity is 

better correlated to the AsA levels in all the stages and, therefore, a different mechanism of 

regulation should be hypothesized in bilberry. 

In order to obtain some information about the distribution of this important nutrient at the time 

when the berries are commonly consumed, the content of AsA and the AsA related gene 

expression were measured in two different fruit tissues, skin and pulp, at the end of ripening. The 

higher AsA levels and the transcript abundance of all the studied AsA biosynthesis genes were 
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observed in skin compared with pulp. This was expected since the fruit skin represents the primary 

fence against biotic and abiotic stresses and thus requires a high accumulation of antioxidants and 

bioactive defence compounds, as it has already been hypothesized in earlier studies conducted 

with apple (Felicetti and Mattheis, 2010; Li et al., 2008). 

In conclusion, the present work is the first to report the study on the AsA metabolism in bilberry.  

The biosynthesis of AsA is at its highest at the beginning of the berry development and stays at a 

fairly stable level over the later ripening stages. In ripe bilberries, the content of AsA is almost 

twofold in the skin when compared to the berry pulp in good correlation with the higher 

expression of all examined AsA pathway genes in the skin. Also especially at the early stages of 

development, the expression of the key enzyme genes in the main AsA biosynthetic route was 

consistent with the detected AsA levels.  
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4. Effect of BTH on Ascorbic Acid Content and Recycling 
and on Phenolics Content During Blueberry (Vaccinium 
corymbosum L.) Fruit Development 
 

4.1. Introduction 

The consumption of fruits plays an important role as a health-promoting factor and is mainly 

associated with the antioxidant activity of several compounds which are largely present in vegetal 

produce. Blueberries (Vaccinium corymbosum L.) are considered one of the fruits with the highest 

antioxidant potentials, owing to the high phenolic content and to the moderate presence of 

ascorbic acid. Ascorbic acid (AsA, vitamin C) is an essential constituent of the human diet, since 

humans are unable to synthesize it. AsA is one of the most important free radical scavengers in 

plants, animals and humans. In mammals, AsA is considered to play a significant role in protecting 

against various oxidative stress-related diseases such as cancers, cardiovascular diseases, aging, as 

well as stimulating the immune system. Furthermore, as the most effective and least toxic 

antioxidant, AsA interacts in plants (enzymatically and non-enzymatically) with damaging oxygen 

radicals and their derivatives, so-called reactive oxygen species (ROS), originated as byproducts of 

normal cellular metabolism in chloroplasts, mitochondria and peroxisomes. The toxicity of ROS is 

linked to their ability to initiate radical cascade reactions which can cause lipid peroxidation, 

protein and DNA damage and lead finally to cell death. Oxidative stress is a condition originated by 

the intracellular accumulation of toxic levels of ROS through saturation of the antioxidant 

enzymatic and non-enzymatic defence mechanisms. Ascorbate is oxidized by enzymatic or non-

enzymatic reactions. Ascorbate peroxidase (APX) mediates the scavenging of hydrogen peroxide to 

water with the simultaneous oxidation of AsA with a high specificity. Ascorbate oxidation always 

leads to the intermediate monodehydroascorbate (MDHA) radical which normally has a short life 

span and, if not rapidly reduced by MDHA reductase (MDHAR), spontaneously dismutates into 

ascorbate and the labile dehydroascorbate (DHA). DHA is reduced to ascorbate by the action of 

DHA reductase (DHAR), using glutathione as the reducing substrate. DHA can undergo irreversible 

hydrolysis to form 2,3-diketo-L-gulonic acid with consequent loss of biological activity (Bode et al., 

1990) or is directly catabolized to a number of breakdown products including oxalate and tartrate 

(Loewus, 1988).  
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Due to the interaction with ROS, AsA is involved also in the modulation of processes such as cell 

division, lignification and in incompatible plant-pathogen interactions (Conklin, 2001). During 

incompatible plant-pathogen interactions, the recognition of an invading pathogen stimulates an 

‘oxidative burst’ and a coordinated defense response, mediated by ROS.  

Blueberries are a rich source of phenolic compounds, a broad class of secondary metabolites 

synthesized in the phenylpropanoid pathway and acting as antioxidants. Structurally, these 

substances are characterized by at least one aromatic ring linked to one or more hydroxyl groups. 

Recent studies have demonstrated that the presence of phenols in food is particularly important 

for their oxidative stability and anti-microbial protection. Phenolic compounds can act as 

antibiotics, as a fence against UV radiation, as insect repellent and signal molecules in plant-

microorganism interactions. They are also constituents of complex polymeric structures like lignin 

and suberin and they have a prominent role in determining color and flavor of fruit and 

vegetables. Phenolic pigments are involved in pollination and seed dispersal by attracting insects 

and herbivores. Anthocyanins are phenolic compounds of particular interest within the group of 

flavonoids. They are the main pigments in many fruits and vegetables, their color varies from red 

to blue depending on the pH of the medium in which they are located and on the formation of 

salts with metals present in those tissues. Color is only one type of signal used to attract insects; 

phenolic substances such as vanillin, can act as odors that attract pollinators to the flowers. In 

general, the role of secondary metabolites in plant defense mechanisms is related to their 

particular chemical and physical characteristics that make them poisonous or repellent. For 

example, during fruit ripening several changes in the phenolic compounds pool take place 

determining a decrease in astringency (deterrent for animals who want to eat of the fruit not yet 

fully developed) and increase in the visual appeal with most color deriving from anthocyanins. The 

presence of phenolic compounds in epidermal cells of plant tissues is effective in preventing 

mutagenesis and phenomena like the formation of pyrimidine dimers, DNA damage induced by 

exposure to UV-B and UV-C radiation and is able to prevent photo-destruction of coenzymes NAD 

or NADP. Another possible advantage for cellular constituents, due to the presence of phenolic 

substances, is derived from their antioxidant properties and its ability to chelate metals. These 

properties result in a reduction of the probability of photo-oxidation of some compounds in 

conditions of high light intensities. Researches carried out on leaves exposed to high light 

intensities suggested that flavonoids may act as antioxidants in response to such stresses (Tattini 

et al., 2004). Studies conducted on tomato and watermelon (Rivero et al., 2000) showed that 
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thermal stress causes an accumulation of phenolic compounds such as flavonoids and 

phenylpropanoids. Phenylalanine ammonia lyase (PAL), the key enzyme of the biosynthesis of 

phenolic compounds is influenced by many environmental factors, such as light (through its effects 

on phytochrome), temperature, concentration of nutrients (Hahlbrock et al., 1989). Also stress 

caused by nitrogen deficiency may influence the content of flavonoids ( Løvdal et al., 2009). A 

further property of phenols is to act as antifungal agents, different classes of phenolic substances 

have antimicrobial activity that can effectively combat fungal infections, bacterial or viral 

infections. The sequence of events that constitute the immune response to infection, may include 

in succession: death and necrosis of the host cell, accumulation of toxic phenols, changes in host 

cell walls by phenolic substituents (esterification reactions) or creation of physical barriers and, 

finally, production of specific substances such as phytoalexins. 

This inducible defence mechanism that provides a long-lasting, systemic resistance against 

broad spectrum of pathogens is called Systemic acquired resistance (SAR). The treatment of plants 

with various biotic and abiotic agents (e.g. plant pathogens, nonpathogens, plant extracts, cell wall 

fragments and synthetic chemicals) can trigger SAR and lead to the induction of resistance to 

subsequent pathogen attack. In the vast majority of cases, SAR depends on the early increase of 

the endogenously synthesized hormonelike compound salicylic acid, which induces a specific set of 

defense genes. These genes include those coding for pathogenesis-related-proteins (PR) and key 

enzymes of secondary metabolic pathways, thus improving phytoalexin synthesis and, in turn, 

plant resistance. However, some studies suggest that induced resistance by pathogens or 

synthetic SAR inducers affect plant metabolism broadly, exerting effects on primary as well as on 

secondary metabolism. Among the synthetic activators (inducers) of plant disease resistance, the 

benzothiadiazole (BTH) acibenzolar-S-methyl, is a well-studied functional analogue of salicylic acid 

(Schurter et al.,1987; Friedrich et al.,1996) that has been shown to induce SAR in monocots and in 

many horticultural crops and fruit trees.  

BTH has been shown to systemically protect wheat against powdery mildew infection (Görlach 

et al.1996), tobacco against TMV (Friedrich et al. 1996), Arabidopsis against Pseudomonas syringae 

(Lawton et al.1996) and tomato against Cucumber mosaic virus (Anfoka, 2000). The effect of BTH 

on antioxidative metabolism has also been described. For example, it increased POX, SOD and 

ascorbic acid content in peach fruit (Liu et al. 2005). Treatment of soybean cells resulted in 

increased glutathione reductase (GR), monodehydroascorbate reductase (MDHAR) and 

glutathione-S-transferase (GST) activities, as well as higher ascorbate and glutathione content 
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(Knörzer et al. 1999). However, BTH was found to inactivate catalase and ascorbate peroxidase, 

the two major H2O2 scavenger enzymes; accordingly, an increase in H2O2 occurred in treated 

tissues (Wendehenne et al. 1998), suggesting that changes in H2O2 levels or in cellular redox state 

may be involved in BTH⁄SA-mediated activation of certain defence responses (Wendehenne et al. 

1998). BTH treatments were also demonstrated to be effective on phenolic metabolism,  in fact 

BTH induced enzyme activities related to anthocyanin metabolism in strawberry fruit after harvest 

(Cao et al., 2010), enhanced resveratrol and anthocyanin biosynthesis in grapevine, meanwhile 

improving resistance to Botrytis cinerea (Iriti et al., 2004) and increases proanthocyanidins in 

grape (Iriti et al., 2005).  

The aim of this study was to investigate the effects of spray treatments with BTH on health-

promoting properties of two different blueberry cultivars at different stages of ripening. We 

measured the content of ascorbic acid and the specific activities of the enzymes involved in its 

recycling route. We also studied the effect of treatment on phenolic compounds by measuring the 

levels of total phenolics, total flavonoids and total anthocyanins. Changes in some quality 

parameters such as total titratable acidity and soluble sugars content were also measured. 

 

4.2. Matherial and Methods 

4.2.1. Plant material 

Blueberry (Vaccinium corymbosum, L.) were grown in Berbenno (SO), in northern Lombardy at 650 

meters on sea level. Berry samples 

were collected from plants from two 

different cultivars, 'Brigitta' and 

'Duke' 24 hours after spray 

treatments with 0.118 mM BTH 

(trade name: Bion®, Syngenta). 

Berries from untreated plants were 

also collected as a control. After 

harvest, fruit were sorted in four 

different ripening stages (Fig. 11). 

Berries of every different ripening 

stage were then divided, weighed, 

placed in plastic bags and stored at 

Fig. 11: Ripening stages: Stage 1 unripe green, Stage 2 unripe purple, 
Stage 3 ripe, Stage 4 full ripe. 
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 -80 °C until laboratory analysis. 

 

4.2.2. Total titratable acidity (TTA) determination 

The total titratable acidity (TTA) was determined on 5 g of berries from stages 3 and 4 following 

homogenization of the berries with an equal weight of water for 5 min. The homogenate was 

titrated to pH 8.3 with 0.1 N NaOH with a Crison automatic titrator (Crison Instruments A. G., Baar, 

Switzerland), and TTA was calculated and expressed as milliequivalents per 100 grams of fresh 

weight. 

4.2.3. Analysis of water content 

To measure the water content of the samples, the intact berries were freeze-dried and weighted 

before and after the procedure. 

 

4.2.4. Total soluble solids (TSS) determination 

Total soluble solids, expressed as °Brix, were determined by a hand refractometer (Atago mod., 

N1, Tokyo, Japan) on juice obtained from squeezing 5 g of berries. 

 

4.2.5. Determination of AsA content 

For ascorbate analysis, 7.5 g of blueberries were homogenized in a mortar with 10 mL of cold 6% 

(w/v) metaphosphoric acid and centrifuged at 10,000 × g at 4 ◦C. The supernatant was transferred 

into a 25-mL volumetric flask at 4 ◦C. The pellet obtained by centrifugation was washed with 8 mL 

of cold metaphosphoric acid solution and centrifuged. The supernatants were combined and cold 

6% metaphosphoric acid was added to a final volume of 25 mL. After filtration through 0.2-

µmnylon filter, a 10 µ L sample aliquot was injected onto an Inertsil ODS-3 (5 µm; 4.6mm×250mm) 

GL Science column at 20 ◦C attached to a Series 200 LC pump (PerkinElmer, Norwalk, CT, USA). The 

column was eluted with 0.02 M-orthophosphoric acid at a flowrate of 0.7 mL/min and ascorbic 

acid was monitored at 254 nm with a UV-975 intelligent UV–vis detector (Jasco model 7800, 

Tokyo, Japan). Peaks were converted to concentrations by using the dilution of stock ascorbic acid 

to construct a standard curve. Chromatographic data were stored and processed with a Perkin 

Elmer TotalChrom 6.3 data processor (PerkinElmer, Norwalk, CT, USA) (Sinelli et al., 2008). 

 

4.2.6. Analysis of enzyme activities 

Quadruplicates samples of berries (5 g) from stages 3 and 4 were homogenized in a mortar at 4 °C 

with 10 mL of 100 mM potassium phosphate buffer (pH 7.8) containing 1 mM EDTA, 25% glycerol 
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(w/v), 0.25% Triton X-100 (w/v) and 1 g of polyvinylpolypyrrolidone (PVPP). Just before the 

extraction, 2 mM β-mercaptoethanol, 1 mM PMSF (dissolved in DMSO), and 1 mM sodium 

ascorbate were added to the buffer. The homogenate was filtered through two layers of 

cheesecloth and centrifuged at 20,000 g at 4 °C for 30 min to separate insoluble material. The 

supernatant was then stored at 80 °C until used for analyses of enzyme activities.  

Protein content was determined according to Bradford (1976) using bovine serum albumin (BSA) 

as a standard. The enzyme activities were measured with a Cary 50 Bio spectrophotometer (UV-

Visible) (Varian Australia Ptv Ltd., Victoria, Australia). 

 

4.2.7. APX (EC 1.11.1.11) activity assay 

APX activity was assayed by measuring the decrease in the ascorbate concentration at 290 nm 

(extinction coefficient: 2.8 mM-1 cm-1) according to Nakano and Asada (1981) with slight 

modifications. The assay mixture consisted of 50 mM potassium phosphate buffer (pH 7.0) 

supplemented with 0.1 mM EDTA and 0.5 mM sodium ascorbate. The reaction was triggered by 

adding 0.1 mM H2O2. 

 

4.2.8. MDHAR (EC 1.6.5.4) activity assay 

The activity of MDHAR was measured by observing the decrease in absorbance at 340 nm due to 

oxidation of NADH (extinction coefficient: 6.22 mM-1 cm-1) according to Arrigoni, Dipierro, and 

Borracino (1981) with slight modifications. The MDHA was generated by the ascorbate/ascorbate 

oxidase (A.O.) complex. The assay mixture consisted of 50 mM Tris-HCl buffer (pH 7.6) 

supplemented with 2.5 mM sodium ascorbate and 0.1 mM NADH. The reaction was triggered by 

adding 0.14 U of A.O. 

 

4.2.9. DHAR (EC 1.8.5.1) activity assay 

DHAR activity was measured by observing the increase in absorbance at 265 nm due to the 

formation of ascorbate (extinction coefficient: 14 mM-1 cm-1). The reaction mixture contained 50 

mM potassium phosphate buffer (pH 7.0) supplemented with 0.1 mM EDTA and 0.2 mM DHA. The 

reaction was triggered by the addition of 2.5 mM glutathione (GSH) according to the method of 

Nakano and Asada (1981).  
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4.2.10. GR (EC 1.6.4.2) activity assay 

The GR activity was calculated by measuring the decrease in absorbance at 340 nm due to 

oxidation of NADPH (extinction coefficient: 6.22 mM-1 cm-1) as described by Donahue et al. (1997). 

The reaction buffer consisted of 100 mM Tris-HCl (pH 7.8), 2 mM EDTA and 0.5 mM glutathione 

disulfide (GSSG). The reaction was initiated by adding 0,05 mM NADPH. 

 

4.2.11. Determination of total phenolics, total flavonoids and total anthocyanins 

For spectrophotometric analysis, 5 g of homogenized berries were extracted with 25 or 50 mL of 

acidified methanol (1% HCl) by mixing for one hour, then centrifuged at 10,000g for 10min at 15°C. 

Total phenolic content was determined according to the Folin-Ciocalteau method (Waterhouse, 

2005). One milliliter of Folin-Ciocalteau reagent, 5mL of distilled water and 2mL of 20% Na2CO3 

were added to 0,1mL of extract in a 20 mL volumetric flask and immediately diluted to the final 

volume with distilled water. The optical density, after 90 minutes, was measured at 700 nm on a 

UV–vis spectrophotometer (Jasco model 7800, Tokyo, Japan). Results were expressed as 

milligrams of gallic acid per 100 grams of fresh weight. Total flavonoids were evaluated 

spectrophotometrically at 280 nm from berries from stages 3 and 4. A catechin standard curve 

was set and results were reported as milligrams of catechin per 100 grams of fresh weight (Iriti et 

al., 2005). The total anthocyanins (ACY) were estimated by the pH differential method (Cheng and 

Breen, 1991). Absorbance was measured on a UV-vis spectrophotometer (Jasco model 7800, 

Tokyo, Japan) at 520 nm and at 700 nm in buffers at pH 1.0 and 4.5, using the following equations: 

 

A=[(A520 - A700) pH1.0 - (A520 - A700) pH4.5] 

ACY (mg/l) = (A x MW x DF x 1000)/(ε x 1) 

 

with a molar extinction coefficient (ε) of cyanidin-3-glucoside of 29600. Results were expressed as 

milligrams of cyanidin-3-glucoside equivalent per 100 grams of fresh weight. 

 

4.1.12 Statistical analysis 

Statistical analyses were performed using SPSS software (SPSS Inc., Chicago, IL, USA). Significant 

differences were calculated by Duncan’s mean test. Differences at p ≤ 0.05 were considered as 

significant. 

 

http://en.wikipedia.org/wiki/Glutathione_disulfide
http://en.wikipedia.org/wiki/Glutathione_disulfide
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4.3. Results and Discussion 

4.3.1. Total titratable acidity (TTA)  

We observed that the titratable acidity decreased most markedly in 'Duke' moving from 

third to fourth ripening stage (Fig. 12). 'Brigitta' showed the highest values and maintained 

them even at the most advanced stage of maturation, this feature could be linked to the 

good attitude of 'Brigitta' to storage. From our analyses it was confirmed that the total 

titratable acidity, an important index of maturation along with total soluble solids, 

decreases during maturation, as also reported in other studies on Vaccinium corymbosum L. 

(Castrejon et al., 2008; Remberg et al., 2006). 

'Duke' treated with BTH tends to have more acidity, especially in third stage. 'Brigitta' 

treated in the third stage also showed more acidity, while the fourth had lower values 

compared the control.  

 

Fig. 12: Total titratable acidity (TTA). Values represent means ± SE (n = 4). 
 

 

4.3.2. Analysis of water content 

Generally the percentage of dry matter (Tab. 4) increased along ripening consistently with 

data previously reported for blueberry (Kalt and Mc Donalds, 1996). In ‘Duke’ the 

percentage of dry matter in berries treated with BTH showed lower values compared with 

controls in all ripening stages, but in stage 3 this difference was not statistically relevant. In 

control samples from ‘Brigitta’ the levels of dry matter measured along ripening were not 

statistically different, while in treated samples, at the end of the the ripening process, an 

increment in dry matter was detected. In this cultivar the treatment determined lower 

percentage of dry weight in stages 1 and 2 but not in samples from the stages 3 and 4.  
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4.3.3. Total soluble solids (TSS)  

In both the cultivars we observed an increase of the soluble solids content throughout berry 

ripening (Tab.4) and this is consistent with data previously published (Shutak et al. 1956; 

Castrejon et al., 2008). There were no significant differences between cultivars for 

untreated samples, on the contrary berries of ‘Duke’ treated at stage 3 and 4 with BTH had 

lower soluble solids content respect to the same berries of ‘Brigitta’. In the fourth ripening 

stage, 'Brigitta' and 'Duke' showed an average content of soluble solids of about 10° Brix, 

this value was also reported by Prior and colleagues (1998) for blueberries. Treatment with 

BTH had significant effects on both cultivars, in all stages of maturity except stage 2 and 4 

for ‘Duke’. It should be specified that the two cultivars, however, showed an opposite 

behavior: in 'Brigitta', in fact, the berries treated with BTH showed a higher sugar content in 

both the third and fourth stage, while in 'Duke' non-treated berries resulted to be more rich 

in soluble solids at stage 3. 

 

4.3.4. AsA content 

In both of the cultivars there was a sharp increment in AsA levels along ripening with the 

lowest levels in samples from stages 1 and two. This data are quite different compared with 

what we observed during development and ripening of bilberry (Vaccinium myrtillus) in 

which the levels of AsA were not changing dramatically and showed the highest levels at the 

first ripening stage. The ascorbic acid content in 'Duke' and 'Brigitta' (Tab. 4) was about 2.5 

mg/100 g FW in berries from the third ripening stage, while fully mature 'Duke' showed 

higher levels compared with 'Brigitta' (4.2 mg/100 g FW and 3 mg/100 g FW respectively). 

Our results are slightly different from what reported by other authors. For example Prior 

and colleagues (1998) found in ripe berries from the cultivar 'Duke' higher contents of 

ascorbic acid (about 7.3 mg/100 g FW), this is probably due to many factors which can affect 

the accumulation of this compound, such as different climatic conditions, cultural practices 

and different stage of ripening at harvest. The values measured for the two cultivars differ 

statistically at the fourth ripening stage. Variability in the concentration of ascorbic acid 

between cultivars was also reported in a study on two blueberry cultivars, 'Darrow' and 

'Bluecrop', which investigated the effect of the genetic diversity and of date of harvest on 

ascorbate and phenolic compounds (Lata et al., 2005) and also by Prior and colleagues in 

their studies on Vaccinium spp. (1998). 
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For each cultivar, samples from the last ripening stage showed a significant difference 

compared to other stages, considering both treated and non treated berries, the only case 

in which there was no difference between the fourth and third stage was found in 'Brigitta' 

after treatment.  

Treatment with BTH had no significant effect in 'Brigitta' along all the ripening process. For 

'Duke', treatment decreased significantly AsA content in the first ripening stage, on the 

contrary in the fourth stage the level of AsA was higher in treated berries, nevertheless 

without showing a statistically detectable difference.  

 

Tab. 4: Effect of BTH treatment on dry matter (%), soluble solids content (°Brix) and ascorbic acid content in 
‘Brigitta’ and ‘Duke’ at different ripening stages. (Values represent means ± SE (n = 4). Different letters indicate 
significant differences (p ≤ 0.05) according to the Duncan’s mean test. 
 

Cv/Ripening stage Dry matter (%) Soluble solids (°Brix) AsA (mg 100 g
-1 

FW) 

 Control BTH Control BTH Control BTH 

Duke       

Stage 1 unripe green 11.13±0.03a 10.52±0.03a 6.53±0.07a 5.80±0.11a 0.53 ± 0.08a 0.15 ± 0.02a 

Stage 2 unripe purple 11.90±0.12b 11.41±0.01b 7.07±0.29b 6.47±0.27a 1.24 ± 0.27ab 1.07 ± 0.24a 

Stage 3 ripe 12.09±0.01b 11.28±0.42b 8.03±0.39c 7.95±0.42b 2.29 ± 0.27b 2.52 ± 0.25b 

Stage 4 full ripe 13.97±0.34c 12.78±0.13c 9.53±0.52d 9.67±0.40c 4.25 ± 0.37c 5.04 ± 0.36c 

       

Brigitta        

Stage 1 unripe green 12.08±0.21a 10.30±0.03a 5,80±0.11a 6.33±0.18a 0.31 ± 0.22a 0.09 ± 0.04a 

Stage 2 unripe purple 13.49±0.65a 11.09±0.01a 6.73±0.13b 6.87±0.18a 0.75 ± 0.18a 0.58 ± 0.25a 

Stage 3 ripe 12.87±0.53a 13.17±0.49b 8.53±0.28c 9.33±0.21b 2.40 ± 0.22b 2.39 ± 0.32b 

Stage 4 full ripe 13.85±0.62a 14.46±0.57c 10.20±0.09d 10.60±0.15c 3.00 ± 0.20c 3.01 ± 0.35b 

 

4.3.5. Enzyme activities 

Significant differences in the activity of enzymes involved in the AsA recycling through the 

ascorbate-glutathione cycle were detected among blueberry cultivars and among ripening stages 

as well (Fig.13). BTH resulted to be effective in stimulating the enzymatic activities but different 

cultivars react differently to treatment at different ripening stages. 

APX is the first enzyme in the cycle, it shows high affinity for AsA as a substrate and is very 

important in the detoxification from H2O2. BTH is thought to inhibit the activity of APX 

(Wendehenne et al., 1998), leading to a burst in H2O2 production. In the third ripening stage we 

measured higher activities with respect to the last stage, in both the cultivars, ‘Brigitta’ showed 

slightly higher activities compared with ‘Duke’. At this stage BTH had no effect on the APX activity. 

Along the ripening process the APX activity decreased in both, ‘Brigitta’ and ‘Duke’, but in fully ripe 

samples treated with BTH the values were significantly higher. Those data are not supporting the 

hypothesis of an inhibitory effect on the activity of APX by BTH. We have not measured the levels 
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of H2O2 but since we collected samples 24 hours after treatment and treatments were repeated 

starting from the beginning of fruit pigmentation throughout the harvest season, is possible to 

speculate that after an initial suppression of the APX activity, the high levels of H2O2 lead to an 

increment in the enzymatic activity as we observed in full ripe samples.De Pinto et al.( 2006) 

pointed out the relevance of different timing and amounts of H2O2 as critical points for APX 

behaviour. The constant production of low amounts of this reactive species, determines a 

transient rise in APX. Such a rise is aimed at restoring redox impairment due to H2O2 

overproduction. An activation (intensification, strengthening) of the antioxidant metabolism has 

been reported widely in the literature as a first line of defence against moderate oxidative stress 

(Shigeoka et al., 2002; Morita et al, 1999). It is likely that the regulation of APX expression and 

activity is part of a mechanism for controlling the balance between beneficial and detrimental 

roles of H2O2 in plant cells. 

MDHAR is the enzyme that allows the regeneration of AsA from MDHA. A rapid regeneration of 

AsA is necessary to maintain its antioxidant potential (Wang et al., 2011). MDHAR was reported to 

be influenced by many stresses and treatments. For example exposure of mature green tomatoes 

to low oxygen, regardless of concentration, resulted in a decrease of MDHAR transcript levels after 

1 h (Ioannidi et al., 2010). In a recent study Stevens and colleagues (2008) showed that MDHAR 

activity levels correlate with reduced AsA levels in tomato fruit under chilling stress. From our 

results MDHAR activity appeared to be positively correlated with AsA accumulation, in the last two 

ripening stages. In both the cultivar levels of activity increased from stage 3 to 4, but this pattern 

appeared much more evident in ‘Duke’ compared with ‘Brigitta’. Treatment with BTH was 

effective in stimulating the MDHAR activity in both of the cultivars only on the third stage of 

ripening, while no differences were observed in samples from stage 4. 

DHAR is the enzyme committed to catalyze the reduction of dehydroascorbate to AsA by using the 

reducing power deriving from the oxidation of glutathione. Thus DHAR represents a valuable 

component involved in the protection of cells from oxidative stress. Increased DHAR activity was 

reported in response to various ROS-inducing stresses, including hydrogen peroxide, ozone, salt, 

drought and low temperature treatments (Eltayeb et al., 2006). Our study revealed that the DHAR 

activity was different among cultivars. In fact ‘Duke’ showed the highest levels of activity in both 

the ripening stages, but appeared not to be sensitive to BTH. On the other hand ‘Brigitta’ had 

lower levels in third and fourth ripening stage, but was positively affected by BTH treatment 

showing significant increments in activity values. 
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GR catalyzes the regeneration of oxidized glutathione derived from the activity of DHAR, thus it is 

important in maintaining the efficiency of the recycling pathway of ascorbate. A past study 

revealed a positive correlation between GR activity and AsA levels (Wang et al., 2011). BTH was 

reported to increase the activity of GR in strawberry fruit during storage (Cao et al. 2010). In our 

experiment we did not observed great changes in GR activity and the values we recorded were 

quite similar between cultivars and at different ripening stages. The only significant change was 

observed in ‘Duke’ at the last stage of ripening in which the levels increased in treated berries 

compared with the control.  

 

Fig. 13: Effect of BTH on activities of APX, MDHAR, DHAR and GR in ‘Duke’ and ‘Brigitta’ at two ripening stages. 
Values represent means ± SE (n = 4). Different letters indicate significant differences (p ≤ 0.05) according to the 
Duncan’s mean test. 
 

4.3.6. Total phenolics, total flavonoids and total anthocyanins 

The stress response triggered by BTH can result in an activation of the secondary metabolic 

pathway that leads to accumulation of phenolic compounds. In fact, treatments with BTH were 

reported to be effective in enhancing PAL activity and increasing the levels of total phenols, 

flavonoids and anthocyanins. In this work we measured the levels of phenolic compounds during 

the ripening process and we evaluated the effectiveness of BTH in stimulating those parameters.  

The lower levels of total polyphenols (Fig. 14) were found in 'Brigitta', particularly in the third 

ripening stage (150.5 mg/100 g FW). Along the process of maturation 'Duke' maintained higher 

levels of polyphenols, but on the other hand the levels decreased sharply at the second and third 
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ripening stage (about 270 mg/100 g FW in control plants). The amount of total phenols that we 

measured is comparable with those reported by Prior and his colleagues (1998) for 'Duke' in their 

study (306 mg / 100 g FW). Strawberry has been reported to have an higher content of total 

polyphenols at the early stages of maturation (Halbwirth et al., 2006). In ‘Duke’ and ‘Brigitta’, 

during ripening, after a consistent decrease, total polyphenols increased to reach in stage 4 the 

same levels as in stage 1. 

Moreover, the differences we found with other published studies dealing with other blueberry 

cultivars prove that polyphenol content depends on genetic background, as previously suggested 

(Prior et al. 1998; Taruscio et al., 2004).  

The BTH treatment was effective in ‘Brigitta’ in stimulating phenolic production and this allowed 

to accumulate significantly higher amounts of total phenols in the first, third and fourth stages. On 

the other hand, no effect was detected in ‘Duke’ after BTH treatment. 

 

 

Fig. 14: Effect of BTH treatment on total phenolics content in two cultivars ‘Duke’ and ‘Brigitta’. Values represent 
means ± SE (n = 4).  
 

Flavonoids represent a valuable part of the pool of phenolic compounds in blueberry. In this 

study the amount of total flavonoids and the effect of BTH were investigated in the two 

blueberry cultivars at the end of the ripening progress (stages 3 and 4), when berries are 

commonly consumed (Fig. 15). The levels we found are comparable with those reported for 

blueberry in a recent study (Marinova et al., 2005). The content of flavonoids increased at 

the end of ripening and at the last stage the higher levels were registred in both of the 

cultivars. 'Duke' showed higher concentrations compared with ‘Brigitta’, confirming this 

cultivar as the better source of phenols and the most rich in flavonoids (319.4 mg/100 g FW 

at stage 4). 

Treatment with BTH had significant effects only in the third stage of 'Brigitta', in which the 

berries have a higher flavonoids content compared to control, although the trend is toward 
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an increment in flavonoids also in ‘Duke’ at the third ripening stage of ripening and in 

‘Brigitta’ at the fourth. 

 

 

Fig. 15: Effect of BTH treatment on total flavonoids content in two cultivars ‘Duke’ and ‘Brigitta’. Values represent 
means ± SE (n = 4).  

 

Among phenolic compounds, the flavonoid subclass of anthocyanins is one of the most 

interesting and representative in blueberry. 

The content of total anthocyanin increased switching from the second to the fourth ripening 

stage in both of the cultivars tested (Fig. 16), as reported by Macheix and colleagues (1990), 

which showed that the more colorful berries are also the most rich in anthocyanins. Also the 

study of Prior (1998), showed that anthocyanins levels increase during maturation in several 

Vaccinium species (Vaccinium corymbosum L. (Highbush), Vaccinium ashei Reade 

(Rabbiteye), Vaccinium angustifolium (Lowbush) and Vaccinium myrtillus L. (Bilberry)). 

Within each cultivar, the three stages of maturation considered differ statistically. The 

content of anthocyanins was reported to have a wide range of variation, Mazza and 

colleagues (1993), reported for Vaccinium corymbosum L. values ranging from 25 to 495 

mg/100 g FW, Prior and his colleagues showed contents of anthocyanins, from 93 to 235 

mg/100 g FW). 

In our study, at all the considered stages of maturity, cultivars differ significantly in 

anthocyanin content, with greater differences at the last ripening stage in which 'Duke' (164 

mg/100 g FW) was confirmed to be a better source of this class of compounds compared to 

'Brigitta' (95 mg/100 g FW). 

The increase in anthocyanin content, associated with a decrease of other phenolic 

substances during maturation was also reported in other studies (Kalt et al., 2003) and 
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might suggests that  changes in the pool of total phenolics with a greater accumulation of 

anthocyanins could typically occur during ripening, (Castrejon et al., 2008). 

We did not mention any data on the amount of anthocyanins in unripe green berries (stage 

1) as those pigments were not detectable. In fact unripe berries were reported to 

completely lack of those pigments (Kalt et al., 2003). 

BTH had a positive effect on anthocyanins levels, at the third ripening stage in 'Brigitta' and 

'Duke' as well as on the fourth stage in 'Brigitta’.  These data are supporting the hypothesis 

that BTH has the ability to stimulate the production of phenolic antioxidants and pigments 

in some berry fruits as previously reported (Irit et al., 2004). 

 

 

Fig. 16: Effect of BTH treatment on total anthocyanins content in two cultivars ‘Duke’ and ‘Brigitta’. Values 
represent means ± SE (n = 4).  

 

4.4. Conclusions 

In this study we evaluated the effect of BTH treatment on two blueberry cultivars during ripening. 

Analyses were directed to the study of accumulation of health-promoting compounds (such as 

polyphenols, anthocyanins, flavonoids and ascorbic acid) and important parameters considered as 

indices of maturity (such as soluble solids and titratable acidity). Moreover we studied the effect 

of treatment on the enzymatic system committed in  the detoxification from H2O2 by measuring 

the specific activities of APX, MDHAR, DHAR and GR. 

At the end of the ripening process, the soluble solids content increased in all cultivars while the 

titratable acidity decreased. 'Brigitta' had the highest values of acidity and keep them until the last 

stage of maturation, this feature might explain the greater storage attitude of this cultivar. In 

'Brigitta', BTH had a stimulating effect on both the parameters mentioned above (with the only 

exception  of a slight decrement in titratable acidity in the fourth ripening stage). In 'Duke', no 
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significant effects were detected after treatment, the only exception was an increase in titratable 

acidity in samples from the third stage. 

Ascorbic acid content can be affected by many factors such as genetic diversity, climate 

conditions, stage of ripening, biotic and abiotic stresses. In this study we observed for all cultivars 

an increase in AsA levels along the maturation, this increment was more marked in 'Duke', which 

also showed the highest values in full ripen berries. The treatment with BTH caused an increment 

in the ascorbic acid content only in 'Duke' at the end of ripening. From this results we can deduce 

that BTH did not directly affect the AsA levels. However the treatment appeared to be effective in 

stimulating the activities of the enzymes involved in AsA recycling pathway and in the 

detoxification from H2O2 indicating a possible role of this enzymatic system in plant-pathogen 

responses triggered by BTH and in restoring AsA levels after an oxidative stress. Our data showed 

differences in the responses for different cultivars and different stages of maturation and in some 

cases an increment in the activity of certain enzymes has helped to maintain the cycle effective, 

despite the drop in activity observed in other enzymes. The total polyphenols levels were 

interested by a decline during ripening in both of the cultivars we studied, showing an upturn at 

the end of ripening. The effect of treatment with BTH only affected the polyphenol content in 

'Brigitta'. 

The levels of flavonoids in ‘Duke’ were almost double then those measured in ‘Brigitta’, but on the 

other hand ‘Brigitta’ resulted to be positively influenced by treatment with BTH. 

The total anthocyanins increased during maturation, in all cases analyzed. At the end of ripening, 

'Duke' showed the highest content of anthocyanins compared with 'Brigitta'. BTH was effective in 

stimulating the synthesis of anthocyanins at the third ripening stage for both cultivars and fourth 

stage of 'Brigitta', so, the response of blueberry to BTH treatment could be considered cultivar-

dependent.  

The different trends of total phenolics, total flavonoids and anthocyanins observed along ripening 

shows that the phenolic pool varied consistently during the process. 

Blueberry is confirmed to be an high-valuable nutraceutical product, however it shows significant 

differences in antioxidants content depending on genetic diversity and in response to different 

cultivation practices. 

In this study BTH stimulated the accumulation of anthocyanins and of polyphenols, in the last 

stages of ripening (especially in 'Brigitta'). It was also active in stimulating the enzymatic 

mechanisms of response to oxidative stress. 
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The increase in content of antioxidants in fruits represent an interesting challenge which can lead 

to beneficial effects on human health, as well as on qualitative aspects of the fruits, such as color 

or storage performance. From our results, in blueberry, an activation of secondary metabolism, 

with a consequent increase in polyphenolic compounds, did not affect the primary metabolites 

accumulation such as soluble solids and organic acids, which were not negatively affected 

following the treatment. It is important to point out how different cultivars behave differently 

during ripening and, even more, in response to treatment. In fact, in many cases 'Duke' and 

'Brigitta' showed different or even opposite behavior after treatment with BTH, suggesting that 

the responses are modulated differently according to different genotypes.  

Collectively our results could be useful in breeding programs aiming to develope cultivars with 

optimal traits in terms of health-promoting components and quality attributes. 
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5. Effects of Methyljasmonate on Phenolic Metabolism in 
Blueberry (Vaccinium corymbosum, L.) 

 

5.1. Introduction 

Blueberries (Vaccinium corymbosum, L.) are very appreciated for their health promoting traits. 

They have been demonstrated to be one of the richest sources of health-promoting compounds 

and antioxidants among fruits (Prior et al., 1998). In fact they show a high content of phenolic 

compounds and a moderate content of ascorbic acid (vitamin C) and carotenoids (Szajde, and 

Borowska, 2008). Phenolics, which include flavonoids and their subclass, anthocyanins, are 

secondary metabolites that frequently serve as pigments in plants, but are also involved in many 

biological interactions. Their biosynthesis occurs through the phenylpropanoid pathway (Fig. 17). 

 

 

Fig.17. The phenylpropanoid metabolic pathway 

 

Recently more attention has been paid to the health-promoting and antioxidant compounds 

contained in fruits because epidemiological studies revealed that high polyphenol-rich fruit intake 

appears to be positively correlated with reduced effects of many human pathologies (Scalbert et 
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al., 2005). A significant positive correlation was reported between antioxidant capacity and 

anthocyanins and total phenolics in ripe blueberries (Prior et al., 1998). 

Methyljasmonate (MeJa) is a phytohormone which plays a key role in plant growth and in many 

physiological and biochemical processes. A new potential concept for enhance antioxidant 

capacity of fruit products is based on the use of chemical compounds which activate the plant’s 

own defence systems. The use of plant activating compounds such as MeJa stimulated the studies 

of the biochemical and genetic basis of plant response following their use in pre- and postharvest 

treatments. It has been shown that MeJa treatments stimulate secondary metabolites production 

in many plant species. Recent studies demonstrated that preharvest treatments with two different 

concentrations (0.01 and 0.1 mM) of MeJa enhance antioxidant activity and flavonoids content in 

blackberries (Wang et al., 2008). Moreover raspberries treated during storage with MeJa showed 

the highest ascorbate content, antioxidant activity and enzymatic activity of the Halliwell Asada-

cycle (Wang et al., 2006); application of MeJa also significantly enhanced the level of resveratrol in 

strawberry fruit (Wang et al., 2007) and raspberry fruits treated with MeJa maintained higher 

levels of antioxidant capacity, total anthocyanins compared to untreated fruits during storage 

(Ghasemnezhad and Javaherdashti, 2008). Other studies demonstrated that MeJa was effective in 

stimulating different responses in higher plants. Several lines of evidence suggest that this 

compound play an important role as signal molecules in plant defence mechanisms (Tripathy and 

Dubey, 2004). Jasmonates have been shown to activate genes encoding antifungal proteins and 

several other genes involved in phytoalexin biosynthesis (Tripathy and Dubey, 2004). Exogenous 

applications of jasmonates caused the accumulation of paclitaxel and related taxanes, alchaloids, 

rosmarinic acid and anthocyanins, in several plant species (Creelman and Mullet, 1997). 

In this study we hypothesized that spray applications of a MeJa solution on blueberry plants during 

ripening could stimulate the biosynthesis of health-promoting phenolic compounds at harvest. 

This could happen through the activation of key genes of the phenylpropanoid metabolic pathway. 

Our purpose was to determinate the changes in expression patterns of the key genes in the 

phenolic biosynthetic pathway in blueberries treated with MeJa, at different time points. 

Moreover, we measured the levels of different classes of phenolic compounds (such as phenolic 

acids, flavonols, flavan-3-ols, gallic acid esters and stilbenes) in order to evaluate the effectiveness 

of the treatment. 
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5.2. Materials and methods 

5.2.1. Plant material 

Blueberry plants (Vaccinium corymbosum, L.) were grown in an experimental field under natural 

conditions. One cultivar (‘Blue Ray’) was studied on the first year (summer ‘2009’) and two 

cultivars (‘Blue Ray’ and ‘Duke’) were treated and analyzed in the second’s year experiment 

(summer 2010). 

 

5.2.2. Chemical treatments 

Six plants for each cultivar were treated with MeJa 0.1 mM plus 0.05% Tween-20, the solution was 

applied as a foliage-berry spray to runoff when berries were starting to develop color (varìason). 

The control plants were sprayed with a 0.05% Tween-20 solution. Berries were picked up 

randomly 3 h, 6 h, 9 h and 24 h after treatment, immediately frozen in liquid N2, stored at -80°C 

and used for molecular analyses. Four days and one week after the treatment, berries from each 

plant were harvested, and sorted in four ripening stages (Stage 1: unripe green, Stage 2: unripe 

purple, Stage 3: ripe, Stage 4: full ripe), then the last two stages, corresponding to commercial 

maturity (Stages 3 and 4), were selected and stored at -80°C for HPLC analyses. 

The field experiments and treatment were carried out at the same location over two growing 

seasons. 

 

5.2.3. Total RNA isolation and gene expression analyses 

Total RNA was extracted from berries (about 2-3 g) according to Wan and Wilkins (1994) with 

slight modifications. Berries were grinded in a mortar under liquid N2 and the powder transferred 

to 5 volumes of a 80°C pre-heated extraction buffer (0.2 M sodium borate decahydrate/ 30 mM 

[ethylenebis(oxyethylenenitrilo)] tetraacetic acid/ 1 % (w/v) sodium lauryl sulphate/ 1 % (w/v) 

deoxycholic acid/ 10 mM dithiothreitol (DTT)/ 1 % (w/v) Igepal/ 2% (w/v) polyvinylpyrrolidone-40). 

The extracts were vortexed for 30 s to thoroughly mix, then 0.015% (w/v) proteinase K (Sigma, 

Italy) was added before the tubes were gently inverted and placed horizontally in a shaking 

incubator at 37C for 1.5 h. Then 0.08 volumes of 2 M KCl were added and the extracts were 

incubated on ice for 30 min, then centrifuged at 12,000 x g for 30 min and the aqueous phases 

transferred into tubes containing one volume of 4 M LiCl (Sigma, Italy), and precipitated overnight.  

The next morning, the precipitate was pelleted by centrifugation at 12,000 x g for 30 min at 4C, 

resuspended in 600 μl of DEPC-treated water and passed directly into 1 volume of chloroform 
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(Sigma, Italy). The extracts were then vortexed, the resulting turbid solution was centrifuged at 

13,500 x g for 10 min at 4C, the supernatant containing the RNA removed, precipitated in 

isopropanol and  3M sodium acetate on ice for 30 min, washed in 80 % (v/v) ethanol and 

resuspended in 80 µL sterile water. RNA was quantified by measuring the absorbance spectrum 

with NanoDrop N-1000 spectrophotometer (NanoDrop technologies). The quality of the isolated 

RNA was verified by electrophoresis on a denaturing agarose gel. 

 

5.2.4. Gene expression analyses 

Gene expression were determined by qRT-PCR (ABI7300, Applied Biosystem, Italy) using specific 

primers. Primers were designed for phenylanlanine ammonia lyase (VmPAL, AY123770.1), 

chalcone synthase (VmCHS, AY123765.1), flavanone 3β-hyddroxylase (VmF3H, AY123766.1), 

dihydroflavonol 4-reductase (VmDFR, AY123767.1), anthocyanidin synthase (VmANS, 

AY123768.1), anthocyanidin reductase (VmANR, FJ666338.1), chalcone reductase (VcCCR, 

FJ197338.1). (Tab. 5).  

 

Tab. 5: Primers pair used for qRT-PCR. All primers were designed using primer select software (Lasergene) or 
Primer3 on line software (http://fokker.wi.mit.edu/primer3/input.htm). 

 

Primer Sequence (5’->3’) bp Tm (°C) 

VmPAL  for TTACAACAATGGGTTGCCCT 20 64 
VmPAL rev CCTGGTTGTGTGTCAGCACT 20 64 

VmCHS for AGGACCCAAGGCCATCA 17 64.4 
VmCHS rev ATCATGAGTCGCTTCACGG 19 64 

VmF3H for TGGGATTGGAAGAAGACAGG 20 64 
VmF3H rev ATGGGTTCTTGGGCCTAATC 20 63.8 

VmDFR for GAAGTGATCAAGCCGACGAT 20 64.2 
VmDFR rev ATCCAAGTCGCTCCAGTTGT 20 63.7 

VmANS for GCCCTCAACCGGAGCTTGCC 20 74.2 
VmANS rev CGACCGTGTCGCCAATGTGC 20 74.4 

VmANR for GCTGGTGTTTCTCCCACAAT 20 63.9 
VmANR rev GATTCTTTTTCCGCCACAAA 20 63.7 

VcCCR for CACTCTCAACGCCAGCATAA 20 64 
VcCCR rev AATTTCAACCACATCTCCGC 20 63.8 

VmGAPDH for ACTGTCTTGCCCCACTTGCCA 21 71.2 
VmGAPDH rev ACCAACAGCCTTGGCAGCACC 21 72.7 

 

Five µg of total RNA were reverse transcribed using Superscript III (Invitrogen, Italy) and a mix of 

random primers and oligo dT. In order to avoid genomic DNA amplification total RNA was treated 

with DNase I (Sigma, Italy). 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=24250859
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=24250866
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&id=24250873
http://fokker.wi.mit.edu/primer3/input.htm
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The SYBR green chemistry was used for gene expression analyses. Dissociation curves have been 

performed to check the absence of primer dimers and other amplification by-products.  

The amplification program was set to: 1 cycle at 50°C for 2 min then at 95°C for 2 min; 40 cycles at 

95°C for 30sec; 55 °C for 1 min and 72°C for 30 sec (signal acquisition stage); 72°C, 10 min and 

dissociation curve. Glyceraldehyde-3-phosphate dehydrogenase (VmGADPH, AY123769.1) was 

used as internal control (Jaakola et al., 2002, Tab. 5).  

 

5.2.5 Analysis of Phenolic Acids, Flavonols, Flavan-3-ols, Gallic Acid Esters and Stilbenes 

An extraction method was used for the HPLC analysis of phenolic compounds in berry samples 

(Kammerer et al., 2004). Frozen berries (10 g) were ground using a mortar and pestle and 

macerated (24 h) in 50 mL of acidified methanol (0.1 % HCl).  Each sample was evaporated to 

dryness using a rotary evaporator and dissolved in 20 mL of acidified water (pH 3). Mixture was 

then extracted three times with diethyl ether and three times with ethyl acetate. Sodium sulphate 

was added to the extracts in order to completely dehydrate. Each sample was again evaporated to 

dryness in a rotary evaporator and dissolved in 4 mL of a 50% methanol solution, filtered through 

a 0.45 µm syringe filter before injection into HPLC.  

HPLC separation of the phenolic compounds was achieved on a Nova-Pack C18 column (4 µm X 30 

cm X 3,9 mm) protected with a guard column (Waters). The mobile phase was A: water/acetic acid 

(98:2), B: 0.5% acetic acid dissolved in a water/acetonitrile solution (50:50), the applied gradient 

was:  

Time (min) %A %B 

0 10 90 

10 15 85 

13 15 58 

20 24 76 

40 30 70 

60 55 45 

75 100 0 

83 100 0 

85 10 90 

90 10 90 

 

Analysis of chromatograms was performed using a specific software (CramQuest). The 

identification of phenolic compounds in the chromatograms was based on the retention times and 
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on the comparison of the shapes of their UV/Vis spectra with those of the representative 

standards and of earlier data previously published. 

 

5.3. Results and Discussion 

5.3.1. Transcript accumulation of phenylpropanoids-related genes 

We measured the transcripts abundance of the main genes in the phenylpropanoid pathway for 

two different blueberry cultivars, ‘Blue Ray’ and ‘Duke’ after a spray treatment with a MeJa 

solution. In order to determine the most suitable time-point for gene expression analysis, the 

patterns of expression were tested in a time-course experiment, samples of treated and control 

berries were collected and analyzed 3, 6, 9 and 24 h after treatment. Data referred to ‘Blue Ray’ 

were collected over two different growing season (2009 and 2010), while data referred to ‘Duke’ 

were collected during one growing season (2010). 

PAL is one of the best characterized enzymes of plant secondary metabolism. It converts L-

phenylalanin into trans-cinnamate (E-cinnamate) by the trans-elimination of ammonia and the 

pro-3S proton. PAL can also show a similar activity like tyrosine ammonia lyase (TAL) against 

tyrosine and TAL enzyme can also show PAL activity (Davies and Schwinn, 2006). 

During the first year of our experiments ‘Blue Ray’ samples showed a 2,5-fold increment of PAL 

transcripts 9 hours after treatment (Fig. 18). During the second year’s experiments the effect of 

the treatment on PAL transcripts appeared to be confirmed, with a strong (10-fold) increment of 

expression on treated samples after 9 hours, moreover, on the second year’s samples a lower 

induction was registered after 3 hours and a slight repression of the gene was observed after 24 

hours. The effect of induction on PAL expression was recorded also in ‘Duke’ with a 2-fold 

increment of transcripts on treated samples 9 hours after the treatment. 
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Fig. 18: PAL gene expression. Analyses were performed using qRT-PCR at different time course (0-24 h) in control 

(0.05% Tween-20) or 0.1 mM MeJa treatment. Data are means with standard deviations of ΔΔCt between genes and 

GAPDH as internal control. Reactions were repeated four times using two biological samples. 

 

CHS carries out a series of sequential decarboxylation and condensation reactions, using 4-

coumaroyl-CoA (in most species) and three molecules of malonyl-CoA, to produce a polyketide 

intermediate that then undergoes cyclization and aromatization reactions that form the A-ring and 

the resultant chalcone structure (naringerin chalcone). The key role of CHS in flavonoids 

biosynthesis has made it a focus of research for many years, and it is now very well characterized 

(Davies and Schwinn, 2006). 

The treatment with MeJa appeared to be effective in stimulating the expression of CHS, in both 

the cultivars studied (Fig. 19). In ‘Blue Ray’ the most marked effect was registered after 9 hours 

with an 8-fold increase of transcripts on the first year’s experiment and with a stronger effect on 

the second year, with a 28-fold increment of transcript levels at the same time point. During the 

second year’s experiment a repression of the CHS transcripts was registered for ‘Blue Ray’ 6 and 

24 hours after treatment. ‘Duke’ showed a significant increment of transcripts (5-fold) after 9 

hours, even if it was less marked compared with the one observed in ‘Blue Ray’. 
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Fig. 19: CHS gene expression. Analyses were performed using qRT-PCR at different time course (0-24 h) in control 

(0.05% Tween-20) or 0.1 mM MeJa treatment. Data are means with standard deviations of ΔΔCt between genes and 

GAPDH as internal control. Reactions were repeated four times using two biological samples. 

 

(2S)-Flavanones are converted stereospecifically to the respective (2R, 3R)-dihydroflavonols (DHFs) 

by F3H, thus this enzyme is required for the biosynthesis of flavonols, catechins and 

proanthocyanidins. F3H transcripts were reported to be coordinated with flavonols formation in 

Maize anthers (Debo et al., 1995); in bilberry leaves exposure to sunlight was reported to 

stimulate F3H expression and increase flavonols accumulation (Jaakola et al., 2004). Our study 

revealed a controversial response of F3H to MeJa treatment. Relative expression data are shown 

in Figure 20. In ‘Blue Ray’ during the first year’s experiment no significant effect was reported, 

while in the second year’s experiment we observed a decrease in transcripts levels following to 

the treatment in both of the cultivars. This repression was stronger in ‘Blue Ray’ and was observed 

9 hours after the treatment, in ‘Duke’ the down regulation occurred 6 hours after treatment and 

was less marked. 
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Fig. 20: F3H gene expression. Analyses were performed using qRT-PCR at different time course (0-24 h) in control 

(0.05% Tween-20) or 0.1 mM MaJa treatment. Data are means with standard deviations of ΔΔCt between genes and 

GAPDH as internal control. Reactions were repeated four times using two biological samples. 

 

DFR is the enzyme which catalyzes the stereospecific conversion of (2R,3R)-trans-DHF’s to the 

respective (2R,3S,4S)-flavan-2,3-trans-3,4-cis-diols (leucoanthocyanidins) and so it represents the 

first step toward the biosynthesis of anthocyanins. In a study conducted on bilberry leaves DFR 

gene expression was reported to be minimally influenced by solar radiation in comparison with 

PAL CHS and F3H (Jaakola et al., 2004). In a study conducted on Arabidopsis, jasmonate in 

presence of sucrose resulted to be effective in stimulating the expression of DFR and other 

downstream genes in the anthocyanins biosynthetic route (Loreti et al., 2008). In our experiments 

MeJa was effective in stimulating the expression of DFR in both cultivars (Fig. 21). In ‘Blue Ray’ 

samples from the first year’s experiment a slight (2,3-fold) increment in transcripts was recorded 

24 hours after the treatment, while in the second year’s experiment the effect was observed in 

both cultivars 9 hours after MeJa foliage spray application.  
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Fig. 21: DFR gene expression. Analyses were performed using qRT-PCR at different time course (0-24 h) in control 

(0.05% Tween-20) or 0.1 mM MeJa treatment. Data are means with standard deviations of ΔΔCt between genes and 

GAPDH as internal control. Reactions were repeated four times using two biological samples. 

 

The role of ANS in the biosynthetic pathway is to catalyze the reduction of leucoanthocyanidins to 

the corresponding anthocyanidins. Artificial infection of Vaccinium vitis-idaea L. with Exobasidium 

species carried to high levels of expression of ANS (Pehkonen et al., 2008), indicating a possible 

involvement of anthocyanins in plant responses to stress or a role in defence against pathogens. 

The effect of solar radiation on the expression of ANS in bilberry leaves was recorded as a slight 

increment of transcript, but this was lower than the effect observed for PAL, CHS and F3H (Jaakola 

et al., 2004). We registered an 80-fold increment on ANS transcripts that was triggered by MeJa in 

berries from ‘Blue Ray’ 9 hours after treatment during the second year’s experiment (Fig. 22). Data 

from ‘Blue Ray’ in the first year and from ‘Duke’ also indicate the effectiveness of MeJa treatment: 

high gene expression was recorded at the same time point (9 hours) but the increment was lower. 
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Fig. 22: ANS gene expression. Analyses were performed using qRT-PCR at different time course (0-24 h) in control 

(0.05% Tween-20) or 0.1 mM MeJa treatment. Data are means with standard deviations of ΔΔCt between genes and 

GAPDH as internal control. Reactions were repeated four times using two biological samples. 

 

The conversion of anthocyanidins to the corresponding 2,3-cis-flavan-3-ols is catalyzed by ANR. It 

contributes, together with leucoanthocyanidin reductase (LAR), to biosynthesis of catechins and 

proanthocyanidins. Recent studies suggest an involvement of abscissic acid (ABA) in controlling 

the proanthocyanidin biosynthesis coregulating ANR and LAR in grape skin (Lacampagne et al., 

2010). In the study ABA was shown to affect tannin content and to be involved in tannins 

biosynthesis by decreasing LAR and ANR activity and repressing the expression of related genes a 

few days after application. From our results it looks that MeJa had a different effect on ANR. The 

expression of ANR (Fig. 23) was augmented following to MeJa treatment in ‘Blue Ray’ as well as in 

‘Duke’, and the effect was much more evident in ‘Duke’ samples. In both cases the most relevant 

changes in expression levels were registered 9 hours after spray application.  
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Fig. 23: ANR gene expression. Analyses were performed using qRT-PCR at different time course (0-24 h) in control 

(0.05% Tween-20) or 0.1 mM MeJa treatment. Data are means with standard deviations of ΔΔCt between genes and 

GAPDH as internal control. Reactions were repeated four times using two biological samples. 

 

In this study we also evaluated the hypothesis that MeJa might stimulate the branch of the 

phenylpropanoid pathway which leads to the biosynthesis lignin. Lignin biosynthesis has received 

growing attention in the cell wall field because lignin is a limiting factor in a number of agro-

industrial processes. Cinnamoyl-CoA reductase (CCR) is the entry point for the lignin-specific 

branch of the phenylpropanoid pathway and is considered to be a key enzyme controlling the 

quantity and quality of lignins (Tamasloukht et al., 2011). From the preliminary evaluation that we 

conducted on this study it is possible to observe that MeJa stimulated this branch of the pathway 

(Fig. 24). In fact we registered a great increment in CCR transcripts especially in the experiment 

conducted in 2010 on ‘Blue Ray’ when treated berries showed a 400-fold increment of transcripts 

3 hours after the treatment. In the same experiment ‘Duke’ did not show any relevant change in 

CCR expression. In the experiment conducted in 2009 the expression of this gene in ‘Blue Ray’ was 

affected by treatment but with a less marked response and at different time points, showing the 

higher accumulation of transcripts 9 hours after MeJa application.  
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Fig. 24: CCR gene expression. Analyses were performed using qRT-PCR at different time course (0-24 h) in control 

(0.05% Tween-20) or 0.1 mM MeJa treatment. Data are means with standard deviations of ΔΔCt between genes and 

GAPDH as internal control. Reactions were repeated four times using two biological samples. 

 

 

5.3.2. Analysis of Phenolic Acids, Flavonols, Flavan-3-ols, Gallic Acid Esters and Stilbenes 

In this study we measured the effects of MeJa on the phenolic profile in two blueberry cultivars by 

measuring changes in levels of different classes of phenolic compounds 3 days (Tab. 6) and one 

week (Tab. 7) after the treatment. The data were collected during one growing season (2010). The 

method we used for extraction and HPLC separation allowed us to identify 20 compounds 

belonging to the classes of phenolic acids, flavan-3-ols, gallic acid esters, flavonols and stilbenes. 

The main part of those compounds was extracted and recovered in the ethyl acetate fraction. 
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Tab. 6: Contents of phenolic compounds in blueberries (cv. ‘Duke’ and ‘Blue Ray’) 3 days after treatment with 0.1 
mM MeJa. Mean values from duplicate assays are expressed as catechin equivalents (µg/g of fresh weight). 

 
    DUKE BLUE RAY  

  Ripening stage 3   4    3    4    

    Control MeJa Control MeJa Control MeJa Control MeJa 

Phenolic Acids gallic acid 23 25 36 58 11 10 19 207 

  vanillic acid 82 78 47 52 39 39 25 31 

  syringic acid 25 15 18 21 33 41 17 30 

  caffeic acid 34 51 44 52 75 65 62 65 

  caftaric acid 26 20 21 21 10 8 5 6 

  trans p-cumaric acid 28 11 24 38 47 47 9 16 

  ferulic acid 51 17 49 56 23 34 29 15 

  TOTAL 269 217 238 297 237 244 165 369 

Flavonols quercetin 3-o-glucoside 568 571 303 389 330 334 301 283 

  kaempferol 3-o glucoside 64 71 43 44 72 72 66 37 

  myricetin3-o glucoside 66 61 118 175 82 135 203 221 

  TOTAL 698 704 463 609 483 541 570 541 

Flavan-3-Ols 
(Catechins) 

(monomers and polymers) 

catechin 29 20 17 18 18 9 6 6 

epicatechin 772 979 439 507 568 679 600 474 

gallocatechin 5 6 6 7 5 7 10 5 

    catechin 3-o-gallate 70 44 53 40 119 71 92 60 

  epicatechin 3-o-gallate 17 5 19 21 21 17 24 13 

  proanthocyanidin B1 33 25 54 76 27 30 32 49 

  proanthocyanidin B2 3764 3162 1899 1974 5770 6443 5366 4927 

  TOTAL 4691 4241 2487 2645 6528 7256 6131 5535 

Stilbenes trans-resveratrol 63 59 53 62 78 89 81 52 

  TOTAL 63 59 53 62 78 89 81 52 

Gallic Acid Esters ethyl gallate 35 24 35 36 33 33 14 17 

  methyl gallate 5 6 5 7 6 8 5 5 

   TOTAL 40 30 40 43 39 41 19 22 
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Tab. 7: Contents of phenolic compounds in blueberries (cv. ‘Duke’ and ‘Blue Ray’) one week after treatment with 
0.1 mM MeJa. Mean values from duplicate assays are expressed as catechin equivalents (µg/g of fresh weight). 

    DUKE BLUE RAY 

  Ripening stage 3   4    3    4    

    Control MeJa Control MeJa Control MeJa Control MeJa 

Phenolic Acids gallic acid 14 12 31 32 9 15 23 20 

  vanillic acid 84 86 80 61 49 44 40 33 

  syringic acid 13 20 19 12 6 51 30 35 

  caffeic acid 33 32 67 46 91 91 24 33 

  caftaric acid 18 23 25 20 9 12 1 7 

  trans p-cumaric acid 10 23 19 11 68 62 28 32 

  ferulic acid 64 53 62 45 83 54 29 22 

  TOTAL 236 250 303 227 315 331 175 180 

Flavonols quercetin 3-o-glucoside 646 602 514 406 444 354 248 274 

  kaempferol 3-o glucoside 60 73 41 34 83 141 64 48 

  myricetin3-o glucoside 84 70 173 165 179 160 218 260 

  TOTAL 790 745 728 605 706 655 530 583 

Flavan-3-Ols 
(Catechins) 

(monomers and polymers) 

catechin 9 19 16 9 13 16 11 6 

epicatechin 499 705 445 353 933 1065 589 714 

gallocatechin 36 7 17 6 6 7 9 5 

    catechin 3-o-gallate 67 64 51 13 109 76 59 54 

  epicatechin 3-o-gallate 9 21 30 23 31 26 13 10 

  proanthocyanidin B1 21 22 41 49 41 48 46 65 

  proanthocyanidin B2 4232 3472 3505 2405 7612 6575 4688 5162 

  TOTAL 4873 4310 4106 2858 8746 7812 5415 6016 

Stilbenes trans-resveratrol 64 63 62 52 104 97 79 59 

  TOTAL 64 63 62 52 104 97 79 59 

Gallic Acid Esters ethyl gallate 29 34 20 15 28 26 10 10 

  methyl gallate 4 5 4 6 8 10 8 6 

   TOTAL 32 39 24 21 37 36 18 17 

 

Seven phenolic acids were identified in this work: gallic, vanillic and syringic, belonging to the 

subclass of hydroxybenzoic acid derivates (HBA); caffeic, caftaric, trans-p-cumaric and ferulic from 

the subclass of hydroxycinnamic acids derivates (HCA). Seventeen phenolic acids were identified in 

berry fruits in a previous study (Zadernowski et al., 2005) while only p-cumaric, ferulic and caffeic 

were identified in a study conducted on 18 different berry species (Määttä-Riihinen et al., 2004). 

The type of phenolic acids as well as the levels, that we measured, are comparable with those 

reported in previous studies. Treatment with MeJa affected the amount of phenolic acids in a 

different way depending on the cultivar, on the ripening stage and on the time elapsed from 

treatment. Three days after treatment the total amount of phenolic acids increased in all the 

conditions with the only exception of stage 3 of ‘Duke’, in which values decreased by 19% 

compared with control. In ‘Blue Ray’ a much relevant positive effect was observed in berries from 
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stage 4 where levels were more than double compared with control, this was mainly due to a 10-

fold increment in levels of gallic acid. One week after the treatment no relevant differences 

between treated and control samples were registered, the only exception is represented by stage 

4 of ‘Duke’ in which levels decreased by around 25%. PAL is the enzyme which mediates the 

formation of cinnamic acid from phenylalanine, this represents a pivotal branch point of primary 

and secondary metabolism and is the first and most important regulatory step in the formation of 

many phenolic acids (Mandal et al., 2010). An increase in levels of phenolic acids could then be 

correlated to the higher transcripts accumulation of PAL that we recorded in this experiment. This 

hypothesis is supported by other similar results found in literature, for example methyl jasmonate 

dramatically enhanced phenolic acids accumulation in Salvia miltiorrhiza. Meantime, several 

phenolic acid biosynthetic gene transcripts (such as PAL) were coordinately induced (Xiao et al., 

2009).  

In our study the class of flavonols was mainly represented by quercetin-3-o-glucoside, followed by 

kaempferol-3-o-glucoside and myricetin-3-o-glucoside. Quercetin resulted to be the most 

prevalent flavonol in blueberry in previous studies (Määttä-Riihinen et al., 2004) while in the same 

study kaempferol was not detected. The total amount of flavonols increased 3 days after MeJa 

treatment only in ‘Duke’ at the latest ripening stage. Among the compounds in this class 

myricetin-3-o-glucoside appeared to be the more sensitive to treatment and showed the highest 

increases. One week after the treatment only slight changes in flavonols levels were detected. CHS 

and F3H were reported to be among the genes necessary to the biosynthesis of flavonols (Pollastri 

and Tattini, 2011). From our findings the correlation between the expression of those genes and 

flavonols accumulation is not yet clear, CHS resulted strongly affected by the treatment with an 

increase in transcripts, while F3H appeared to be repressed by MeJa 9 and 6 hours after treatment 

in ‘Blue Ray’ and ‘Duke’ respectively, but flavonols levels after three days and one week resulted 

generally quite stable or showed slight changes as mentioned above. 

Flavan-3-ols (catechins) resulted the most abundant class among the phenolic compounds that we 

identified. Epicatechin and proanthocyanidin B2 were the most prevalent compounds among 

monomers and polimers respectively. High content of epicatechin is a typical feature in berries 

from Vaccinum species, as reported by Määttä-Riihinen and colleagues (2004). Also in a Dutch 

study epicatechin dominated among flavan-3-ols in plant-derived foodstuffs (Arts et al., 2000). In 

general the treatment with MeJa determined only little changes in catechins accumulation. The 

most significant change induced by treatment was observed in ‘Duke’ at the last ripening stage 



 
64 

Chapter 5. Effects of Methyljasmonate on Phenolic Metabolism in Blueberry (Vaccinium 
corymbosum, L.) 

 

one week after treatment, with a decrement (30%) in levels. Three days after treatment 

proanthocyanidin B2 resulted quite stable without showing great changes due to MeJa, on the 

other hand epicatechin showed a positive response to treatment with slight increments. Only in 

‘Blue Ray’ at stage 4 we registered a decrement in epicatechin accumulation following the 

treatment. One week after treatment proanthocyanidin B2 showed a reduction in ‘Duke’ at both 

ripening stages while epicatechin showed a general positive effect due to the treatment with the 

highest increment in ‘Duke’ at the third ripening stage. Catechins derive from leucocyanidin and 

anthocyanidins which accumulate through the reaction catalyzed by the enzymes DFR and ANS 

and are converted to flavan-3-ols by the reactions catalized by ANR and LAR. Positive correlation 

between catechin contents and gene expression suggested also a possible role of enzymes like PAL 

and C4H in catechins biosynthesis and a crosstalk between phenylpropanoid and flavonoid 

pathways (Singh et al., 2009). In this study an increment in transcripts of ANR and DFR was 

stimulated by MeJa, this could in part correlate with the changes in accumulation of catechins that 

we observed. 

In our samples the class of stilbenes was only represented by trans-resveratrol. This compound 

has been widely recognized as a high-valuable health-promoting component in berry fruits. The 

levels we found in our samples ranged between 60 and 100 µg/g FW and resulted higher 

compared with whose reported in other studies (Može et al., 2011; Wang et al., 2010) which were 

between 2 and 4 µg/g FW. Numerous factors, such as varietals and regional differences, the 

degree maturity at harvest, as well as the analytical procedure used for extraction and 

quantification of phenolics might contribute to these differences as referred by Zadernowski and 

colleagues in their study (2005). In our study the treatment with MeJa affected very weakly the 

content of trans-resveratrol. Another study evaluated the effectiveness of allyl isothiocyanate as a 

potential elicitor able to enhance phenolic content in blueberry, but this did not affect the content 

of trans-resveratrol in ‘Duke’ blueberry (Wang et al., 2010).  

Esters of gallic acid represent minor compounds and, in our study, resulted to be present at low 

concentrations in blueberry. We found two compounds belonging to this class, ethyl gallate and 

methyl gallate, the former has been reported to be involved in the amelioration of oxidative 

damage in in vitro models (Kaur et al., 2011), the latter was identified as the active constituent of 

Pistacia integerrima for mediating its anti-inflammatory activity (Mehla et al., 2010). We did not 

observe any relevant effects of MeJa treatments on the accumulation of those compounds. 
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5.4 Conclusions 

In this work we evaluated the effects of treatments with methyl jasmonate (0.1 mM) on the 

phenolic profile as well as on the gene expression of the key genes in the phenylpropanoyd 

pathway in two cultivars of blueberry (Vaccinium corymbosum).  

Quantitative RT-PCR analyses revealed that MeJa strongly enhanced the expression of PAL, CHS 

and ANS in both the cultivars with a transient increment in transcripts levels 9 hours after the 

treatment. The treatment appeared to be effective also in stimulating the expression of DFR and 

ANR at the same time point.  

Interestingly we found a strong effect of MeJa on the expression of CCR, the first enzyme in the 

branch of the pathway which leads to the accumulation of lignins. This data could reveal a 

competitive relation between different branches of the pathway and, in the future, could be 

useful in manipulating the pathway toward the accumulation of desired products. 

Metabolic profiling analyses performed with HPLC technique allowed us to identify 20 phenolic 

compounds belonging to the classes of phenolic acids, flavonols, flavan-3-ols (monomers and 

polymers), gallic acid esters and stilbenes. Among every class we individuated the most prevalent 

compounds in both cultivars of blueberry.  

MeJa stimulated the accumulation of phenolic acids, and the highest levels were measured three 

days after the treatment. Flavonols levels were also higher in ‘Duke’ three days after treatment. 

Effects of MeJa were detected on the levels of flavan-3-ols, however different cultivars at different 

ripening stages were differently stimulated by the treatment. From our results blueberry resulted 

to be a valuable source of trans-resveratrol, but no effect of the treatment was detected on the 

accumulation of this compound belonging to the the class of stilbens. Data obtained from 

transcripts and metabolite analyses resulted to be well-paralleled and allowed us to make 

comparisons and observe good correlations in the so called gene-to-metabolite networks for 

secondary metabolism in blueberry (Rischer et al., 2006). However more detailed analyses, for 

example on the regulatory factors of this pathway remains to be performed as an interesting 

challenge for future analyses. 
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6. Long-term Cold Storage of Highbush Blueberry 
(Vaccinium corymbosum, L.) 

 

6.1. Introduction 

Blueberry (Vaccinium corymbosum, L.) is a fruit crop rich in antioxidants and vitamins (such as 

phenolic compounds and ascorbic acid). The quality of this fruit and the content of health-

promoting compounds are influenced by many factors, such as environmental conditions, genetic 

diversity and degree of maturity at harvest (Connor et al. 2002, Ehlenfeld and Prior, 2002). 

Blueberry was often reported as an high perishable produce, thus its commercial value could be 

strongly affected by storage conditions. In postharvest, quality and product losses are mainly due 

to dehydration, weight loss, shrivel and fungal spoilage. Shelf life extension can be achieved by the 

use of cold storage ( 0-1°C) and controlled atmosphere (CA) with low oxygen (1-4- kPa O2) and high 

carbon dioxide (9-12 kPa CO2) concentrations. The effects of storage were reported to be different 

between different cultivars (Connor et al., 2002). The content in anthocyanins increased during 

the first 2-4 weeks of storage, and the levels were higher in fruit stored under controlled 

atmosphere with low O2 and high CO2 levels (Krupa and Tomala, 2007). Higher titratable acidity 

values were reported in blueberries stored under CA, compared with controls stored in natural 

atmosphere (Chiabrado and Giacalone, 2011), moreover differences in the levels of total phenolics 

and in antioxidant activities were observed among different rabbiteye blueberry cultivars during 

the first days of storage in CA and in the same study fungal development was minimized by CA 

storage (Schotsmas et al., 2007). Little is known so far about the effects of long-term storage on 

blueberry. In this study we investigated the effects of two different conditions of controlled 

atmosphere on two late season blueberry cultivars (‘Legacy’ and ‘Brigitta’) by measuring quality 

parameters during long-term storage. We measured titratable acidity, soluble solids content, 

water loss as well as changes in ascorbic acid level, total phenolics, total flavonoids and total 

anthocyanins. We individuated the most prevalent classes of anthocyanins in blueberry and 

reported the changes in respective levels, measured by HPLC. Moreover, we measured the levels 

of malondyaldeide (MDA) expressed as thiobarbituric acid reacting species (TBARS) as a 

biochemical index of lipid peroxidation during storage. 
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6.2. Material and methods 

6.2.1. Fruit material 

Two late season blueberry cultivars, ‘Brigitta’ and ‘Legacy’ were used in this experiment. The 

berries were harvested at full maturity (100% of the surface dark blue colored) from an 

experimental field in Berbenno (SO), Italy, at 650 mt. altitude. 

 

6.2.2. Storage conditions 

Blueberries were transported to the laboratory, sorted into 

200 g punnets and stored at 0°C and 90% R.H., either in 

natural atmosphere (control) or in two different controlled 

atmospheres: 

 

CA1 and CA3: 10 kPa CO2, 4 kPa O2 

CA2 and CA4: 9 kPa CO2, 1 kPa O2 

 

Both of the controlled atmosphere conditions were 

replicated in double in two different cabinets (Fig.25).  

Gas concentrations were monitored and managed through a GAC 5000 device with a gas analyzer 

(Fruit Control Equipments s.r.l., Locate Triulzi, Italy). Different gas mixtures were generated by 

mixing flows of air, CO2 and O2-free N2. 

Analyses were performed immediately after harvest as well as at nine storage time points along 

storage, for both of the cultivars and for all the different storage conditions (Tab.8). 

 

Tab. 8: Time points for the two different cultivars. 

Time 
point 

‘Legacy ‘ 
(days of storage) 

‘Brigitta ‘ 
(days of storage) 

T1 14 12 

T2 28 33 

T3 42 47 

T4 56 61 

T5 71 76 

T6 89 94 

T7 105 110 

T8 127 132 

T9 142 147 

 

Fig. 25: Cabinet used for the CA storage 
experiments. 
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For each time point a visual evaluation was made, then the weight loss, the percentage of 

damaged berries, and the percentage of dry matter of fresh berries were measured. Other berries 

from the same sampling were stored at -80°C for successive analyses. Analyses of weight loss and 

decay were performed on samples from both replicates for each conditions (CA1 CA2 CA3 CA4) 

while other analyses were made on samples from CA1 and CA2. 

 

6.2.3. Weight loss 

Punnets were weighed at the beginning of the storage and at each time point, the result were 

expressed as percentage. 

 

6.2.4. Decay 

Berries which showed shrivel or fungal spoilage were considered damaged and eliminated. The 

amount of damaged berries was expressed as percentage on the total in each punnet. 

 

6.2.5. Dry matter 

Dry matter content was measured by weighting the berries before and after completely drying in 

oven at 60 °C and the result was expressed as percentage of dry matter. 

 

6.2.6. Total soluble solids ( TSS) determination 

Total soluble solids, expressed as °Brix, were determined by a hand refractometer (Atago mod., 

N1, Tokyo, Japan) on juice obtained from squeezing 5 g of berries. 

 

6.2.7. Total titratable acidity (TTA) determination 

The total titratable acidity (TTA) was determined on 5 g of berries following homogenization with 

an equal weight of water for 5 min. The homogenate was titrated to pH 8.3 with 0.1 N NaOH with 

a Crison automatic titrator (Crison Instruments SpA, Carpi (Modena)), and TTA was calculated and 

expressed as milliequivalents per 100 grams of fresh weight.  

 

6.2.8. Determination of total phenols, and total flavonoids  

For spectrophotometric analysis, 5 g of homogenized berries were extracted with 25 or 50 mL of 

acidified methanol (1% HCl), by mixing for one hour, then centrifuged at 10,000×g for 10 min at 

15°C. Total phenolic content was determined according to the Folin-Ciocalteau method 
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(Waterhouse, 2005). One milliliter of Folin-Ciocalteau reagent, 5 mL of distilled water and 2 mL of 

20% Na2CO3 were added to 0,1mL of extract in a 20 mL volumetric flask and immediately diluted 

to the final volume with distilled water. The optical density, after 90 minutes, was measured at 

700 nm on a UV–Vis spectrophotometer (Jasco model 7800, Tokyo, Japan). Results were expressed 

as milligrams of gallic acid per gram of dry matter. Total flavonoids were evaluated 

spectrophotometrically at 280 nm. A catechin standard curve was set and results were reported as 

milligrams of catechin per gram of dry matter (Iriti et al., 2005). 

 

6.2.9. Anthocyanins extraction and determination  

Frozen samples (20 g) were grounded in a Waring Blender and extracted two times in a 

acetone/water solution (70:30). Each sample was evaporated in a vacuum centrifuge at 20°C for 

90 minutes and resuspended in 2% methanol and 5% formic acid. 

Anthocyanins were identified by LC-DAD-MS and HPLC analyses. Pigments were separated on a 

Symmetry column (5 µm; 250x4.6 mm), Waters. Anthocyanins (20 µL injected) were eluted with a 

gradient of 2% HCOOH (mobile phase A) and CH3CN:CH3OH:H2O:HCOOH (20:20:58:2) (mobile 

phase B). The applied gradient was: 

Time (min) %A %B 

0 80 20 

30 65 35 

40 55 45 

50 45 55 

60 35 65 

70 20 80 

80 10 90 

83 80 20  

 

The mass spectrometer was a Perkin Elmer series 200. Anthocyanins present in the extract were 

evaluated qualitatively by measuring the molecular weight [M]+ and product ions obtained in MS. 

The structural studies were conducted using the software QuanOptimize. Anthocyanins content 

were quantified as cyaniding-3-glucoside and total concentration of each representative subclass 

compound was calculated from a calibration curve. Results are expressed as micrograms per gram 

of dry matter. Figure 26 shows a typical chromatogram from our samples and a list of compounds 

we individuated and the relative retention times. 

 



 
70 

Chapter 6: Long-term Cold Storage of  Highbush Blueberry (Vaccinium corymbosum, L.) 

 

 

Fig. 26: Chromatogram of analytical HPLC of Highbush blueberry anthocyanins. 

 

6.2.10. Determination of AsA content 

For ascorbate analysis, 7.5 g of blueberries were homogenized in a mortar with 10 mL of cold 6% 

(w/v) metaphosphoric acid and centrifuged at 10,000 × g at 4 ◦C. The supernatant was transferred 

into a 25-mL volumetric flask at 4 ◦C. The pellet obtained by centrifugation was washed with 8 mL 

of cold metaphosphoric acid solution and centrifuged. The supernatants were combined and cold 

6% metaphosphoric acid was added to a final volume of 25 mL. After filtration through 0.2 µm 

nylon filter, a 10 µL sample aliquot was injected onto an Inertsil ODS-3 (5 µm; 4.6mm×250mm) GL 

Science column at 20 ◦C attached to a Series 200 LC pump (PerkinElmer, Norwalk, CT, USA). The 

column was eluted with 0.02 M-orthophosphoric acid at a flowrate of 0.7 mL/min and ascorbic 

acid was monitored at 254 nm with a UV-975 intelligent UV–vis detector (Jasco model 7800, 

Tokyo, Japan). Peaks were converted to concentrations by using the dilution of stock ascorbic acid 

to construct a standard curve. Chromatographic data were stored and processed with a Perkin 

Elmer TotalChrom 6.3 data processor (PerkinElmer, Norwalk, CT, USA) (Sinelli et al., 2008). 
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6.2.11. TBARS (Thiobarbituric Acid Reactive Substances) determination 

Five grams of pulp were used for the extraction. Samples were homogenized in 25 mL of 5% TCA 

then centrifuged at 4 ° C at a speed of 10,000 x g for 30 minutes. For the determination of TBARS 

the extract was added to a solution of 15% TCA and 0.5% TBA and added of water to a final 

volume of 3 mL. Samples were then mixed with a vortex and heated at 95°C for 15 minutes in a 

water bath, rapidly cooled and centrifuged at 4,000 x g for 15 minutes to precipitate solid 

residues. The samples were then analyzed in a spectrophotometer (Jasco model 7800, Tokyo, 

Japan) at three different wavelengths, 532, 600 and 440 nm. The absorbance at 532 nm was 

determined and this value was subtracted from the absorbance at 600 nm (as an index of non-

specific turbidity). The value obtained was purged from the absorbance at 440 nm due to sucrose. 

The concentration of TBARS expressed as MDA equivalents (nmol / g FW), was calculated 

according to the (Du and Bramlage, 1992):  

 

{[(A532-A600) - [(A440-A600) (8.4 / 147)]} / 157000] 106  
 

8.4 = ε of  sucrose at 532 nm  
147 = ε of sucrose at 440 nm  
157000 = ε of MDA at 532 nm  
 

6.2.12. Statistical analysis  

Statistical analyses were performed using SPSS software (SPSS Inc., Chicago, IL, USA). Significant 

differences were calculated by Duncan’s mean test. Differences at p ≤ 0.05 were considered as 

significant. 

 

6.3. Results 

6.3.1. Weight loss 

Weight losses during fruit storage are mainly due to water evaporation. This phenomena are 

influenced by many factors such as the ratio between area and volume of fruit. Storage in 

controlled atmosphere can be effective in retarding the weight losses thanks to high relative 

humidity conditions applied. Table 9 shows the percentage of weight loss in 'Brigitta' stored in two 

conditions of controlled atmosphere and in the control. The most evident losses were registered in 

the control samples (C), which showed a weight loss of 42% after 147 days of storage. Samples 

stored in controlled atmosphere were characterized by a lower weight loss rate at all sampling 

times. At the end of storage the percentage of weight loss found in all the conditions of controlled 
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atmosphere was definitely lower compared with the one registered in samples stored in natural 

atmosphere. The samples stored in CA1 were characterized by a weight loss of about 4.3%, while 

those stored in CA2 had a lower weight loss at the end of storage (about 3 %).  

 

Tab. 9: Weight loss (%) ‘Brigitta’. Values represents means ±SD. 

 
 Storage time (days) CONTROL CA1 CA3 CA2 CA4 

0 0 0 0 0 0 

12 3,85 ±0,40 0,48 ±0,55 0,42 ±0,11 0,13 ±0,01 0,51 ±0,06 

33 10,22 ±0,08 0,53 ±0,29 1,40 ±0,07 0,40 ±0,42 0,76 ±0,08 

47 11,16 ±13,60 1,33 ±0,66 1,86 ±0,05 0,72 ±0,21 1,04 ±0,76 

61 20,60 ±10,56 2,88 ±0,00 1,98 ±0,13 0,86 ±0,10 2,80 ±0,27 

76 24,32 ±0,52 2,66 ±0,99 2,41 ±0,02 1,29 ±0,06 2,15 ±0,04 

94 38,30 ±3,07 1,88 ±0,63 3,54 ±0,30 1,58 ±0,19 3,04 ±0,22 

110 35,22 ±1,19 2,72 ±0,19 3,61 ±0,18 1,67 ±0,08 2,88 ±0,10 

132 38,40 ±1,58 3,47 ±1,23 4,31 ±0,41 3,00 ±0,25 4,87 ±0,60 

147 42,54 ±0,31 4,33 ±0,61 4,54 ±0,57 2,98 ±0,22 3,48 ±0,32 

 

With regard to the cultivar ‘Legacy’ samples stored at 0° C in natural atmosphere showed greater 

weight loss compared with blueberries stored under CA, as shown in Table 10. 

The lower weight loss was observed in the condition CA2, (with losses of about of 4 %) while 

berries stored in other conditions showed higher losses. 

Compared to 'Brigitta', 'Legacy' showed slightly higher weight losses, both in control (48,41% for 

‘Legacy’ and 42,54% for ‘Brigitta’) and in controlled atmosphere (8,35% for ‘Legacy’ and 4,54% 

‘Brigitta’). 
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Tab. 10: Weight loss (%) ‘Legacy’. Values represents means ±SD. 
 

Storage time (days) CONTROL CA1 CA3 CA2 CA4 

0 0 0  0 0 0 

14 4,63 ±0,02 0,47 ±0,01 0,5 ±0,02 0,38 ±0,09 0,54 ±0,15 

28 9,87 ±0,37 1,01 ±0,17 1,49 ±0,15 1,05 ±0,08 0,84 ±0,11 

42 14,32 ±0,32 1,22 ±0,07 2,04 ±0,24 1,82 ±0,28 3,29 ±0,45 

56 19,08 ±0,74 1,4 ±0,53 2,99 ±0,76 1,97 ±0,58 4,57 ±2,27 

71 22,77 ±2,14 2,09 ±0,11 2,7 ±0,40 2,22 ±0,08 3,75 ±0,64 

89 29,63 ±0,76 2,16 ±0,88 3,94 ±0,33 2,18 ±0,10 6,22 ±1,68 

105 30,37 ±7,83 2,87 ±1,37 4,76 ±0,07 2,49 ±0,52 7,63 ±1,36 

127 42,96 ±0,20 4,68 ±2,35 6,59 ±0,08 4,06 ±0,75 8,14 ±0,81 

142 48,41 ±1,96 4,56 ±1,68 6,22 ±0,49 3,71 ±0,25 8,35 ±0,67 

 

6.3.2. Decay 

At each time point the punnets were visually inspected for the appearance of blemishes and 

fungal development. Decay was minimal up to 47 days. In all storage conditions, the percentage of 

damaged berries of the variety 'Brigitta' reaches 50% (estimated as the percentage over which the 

produce is not marketable anymore) at the 147th day of storage. Table 11 shows that during the 

first two months of storage (till 61 days) the number of damaged berries increased slowly, then a 

rapid deterioration of the quality was observed.  

Tab. 11: Damaged berries (%) ‘Brigitta’. Values represents means ±SD. 

Storage time (days) CONTROL CA1 CA3 CA2 CA4 

0 0  0  0 0 0 

33 7,04 ±0,93 3,87 ±1,98 3,29 ±3,10 1,00 ±0,41 4,23 ±2,65 

47 4,71 ±1,56 4,98 ±0,98 5,46 ±3,16 - 2,21 ±1,70 

61 12,29 ±5,31 6,15 ±0,68 6,79 ±0,38 3,43 ±2,05 4,96 ±3,73 

76 14,28 ±2,31 8,31 ±0,63 2,94 ±1,02 5,88 ±2,16 20,61 ±17,35 

94 21,28 ±8,8 11,44 ±0,66 8,28 ±3,18 2,25 ±0,18 12,82 ±4,44 

110 19,27 ±1,68 18,35 ±0,9 11,99 ±4,8 12,25 ±2,63 22,78 ±3,93 

132 35,97 ±5,28 31,01 ±1,65 36,04 ±1,91 44,38 ±0,09 46,63 ±8,49 

147 51,86 ±1,37 46,52 ±1,9 48,17 ±0,3 53,57 ±1,72 50,23 ±3,09 

 

Also with regard to the cultivar ‘Legacy’ (Tab. 12) the control reaches 50% of damaged berries 

after 142 days of storage, we observe a linear increase in decay incidence starting from the 71st 

day until the end of the experiment. At end of storage no significant differences were observed 

among samples stored in natural conditions (control) and in controlled atmosphere, with the only 

exception of the samples in CA4 condition where the degradation occurred quickly. 
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Tab.12: Damaged berries (%) ‘Legacy’. Values represents means ±SD. 

 
Storage time (days) CONTROL CA1 CA3 CA2 CA4 

0 0  0  0 0 0 

14 1,06 ±0,05 2,14 ±1,69 - - 1,46 ±0,71 

28 4,75 ±1,44 2,00 ±1,42 1,74 ±0,69 3,48 ±1,03 0,53 ±0,74 

42 6,29 ±2,35 5,80 ±4,19 3,59 ±1,76 0,42 ±0,06 3,54 ±2,21 

56 7,00 ±1,89 7,29 ±3,16 7,76 ±0,19 10,87 ±8,56 14,61 ±6,71 

71 8,08 ±0,95 8,94 ±0,73 8,49 ±2,58 8,95 ±2,68 20,35 ±4,97 

89 12,16 ±1,16 27,97 ±20,27 21,02 ±10,44 9,53 ±6,03 38,21 ±4,82 

105 11,97 ±1,08 17,14 ±1,18 28,72 ±7,72 24,67 ±13,34 34,95 ±1,08 

127 40,13 ±7,33 36,8 ±0,61 46,66 ±5,81 45,33 ±6,07 46,69 ±6,49 

142 50,06 ±4,31 51,09 ±4,43 50,69 ±1,79 49,42 ±3,23 47,74 ±5,61 

 

6.3.3. Dry matter 

The percentage of dry matter was generally lower in samples stored in controlled atmosphere in 

both cultivars. This result is in accordance with what showed from the analysis of weight losses. 

In 'Brigitta' (Fig. 27) the values measured in the early days of storage were similar for all the 

conditions. Starting from 47th day, levels in the fruits stored in natural atmosphere increased from 

12.5% to 14.7% and remained stable until the end of storage (14.5%). 

At the same time point (at the end of storage) levels in CA1 and CA2 dropped reaching values 

around 11.5%, without substantial differences between the two different conditions of controlled 

atmosphere. 

.  

Fig. 27: Dry matter (%) 'Brigitta'. Values represent means ± SD (n =3) 
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A similar trend was observed in 'Legacy ‘ (Fig. 28), with only a slight decrease in the samples stored 

in CA1 and CA2. In fact, after 89 days of storage a decrease was observed and from an initial value 

of 14.6%, at the end of storage the values were around 13%. On the other hand fruits stored in 

natural atmosphere reached the maximum amount of dry matter at the end of storage (16.1%). 

 

 

Fig. 28: Dry matter (%) 'Legacy'. Values represent means ± SD (n =3). 

 
6.3.4. Total soluble solids (TSS) determination 

At harvest, the soluble solid content, expressed as °Brix was similar among the two cultivars (11.1 

in 'Brigitta' and 11.2 in 'Legacy'). In 'Brigitta' (Fig. 29) as well as 'Legacy' (Fig. 30), berries stored in 

natural conditions (control) showed levels of TSS higher than those measured in berries stored in 

CA, but different trends were observed comparing the two cultivars. In fact in 'Brigitta', values 

measured in control samples were generally higher than those in CA1 and CA2 for most of the 

storage period, with the only exception of samples analyzed after 132 days of storage in which the 

values among the three different conditions were comparable. 

 

Fig. 29: Total soluble solids 'Brigitta'. Values represent means ± SD (n =3). 
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No substantial differences among different storage conditions were observed In 'Legacy' at the 

beginning of the trial (until 42 days). The control showed a stronger decrease after 56 days of 

storage compared with values registered in controlled atmosphere, but along the storage, the 

levels were constant until the end of the trial, and were comparable to those measured at harvest 

time. On the other hand, in CA1 and CA2 a gradual decline was observed and minimum values 

were reached at the end of storage. No substantial differences between different conditions of 

controlled atmosphere (CA1 and CA2) were observed. 

 

Fig. 30: Total soluble solids 'Legacy'. Values represent means ± SD (n =3). 
 

6.3.5. Total titratable acidity  (TTA)  

The acidity values measured for the two cultivars throughout the storage period are shown in 

Figures 31 and 32. At the beginning of the storage 'Brigitta' showed of 11.6 meq/100 g fw. These 

values tended to increase along storage showing however an irregular trend, characterized by a 

slight initial drop, and followed by a decisive increase after 61 days. At the end of the experiment, 

berries stored in controlled atmosphere showed much higher values compared with those 

measured at harvest. The maximum values were reached in blueberries stored in natural 

atmosphere (control) after 132 days while at the end of storage values were comparable with 

those measured at harvest time. 
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Fig. 31: Total titratable acidity 'Brigitta' (meq/100 g FW). Values represent means ± SD (n =3). 
 

In 'Legacy' at harvest the values of acidity were about the half of those found in 'Brigitta' (5.6 

meq/100 g FW). However at the end of storage, after 142 days the values were only slightly lower 

than those measured in 'Brigitta'. Also in 'Legacy' the gradual increase in acidity was characterized 

by an irregular pattern, as seen in 'Brigitta'. In general there were no significant differences 

between the three different storage conditions. The only exception was observed in samples 

stored in CA1 which showed a marked increase in acidity values after 127 days, followed by a 

decline recorded at the succesive sampling in which values were similar with those measured in 

control and CA2. 

 

Fig. 32: Total titratable acidity 'Legacy' (meq/100 g FW).Values represent means ± SD (n =3). 

 

6.3.6. Total polyphenols 

The levels of total polyphenols at harvest were found to be significantly higher in 'Legacy' (21,06 

mg gallic acid/g DW) compared with 'Brigitta' (12,98 mg gallic acid/g DW). The changes in 

polyphenol content were different among the two cultivars studied. In 'Brigitta' (Fig. 33), after 47 

days of conservation, there were slight differences and the higher levels were measured in 
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samples stored in controlled atmosphere (CA1 and CA2). Then there was no evidence of marked 

differences among the three different conditions of storage that we applied. At the last two 

samplings, after 132 and 147 days of storage, berries in natural atmosphere (control) showed  

higher levels, reaching a maximum (19.52 mg gallic acid/g DW) after 132 days of storage. 

 

Fig. 33: Total phenolics 'Brigitta'. Values represent means ± SD (n =4).  
 

In 'Legacy' the content of total polyphenols underwent significant changes throughout the storage 

period (Fig. 34). After 42 days the highest levels were reached in samples stored in CA2 storage 

condition. However, these values, decreased dramatically after 56 days and remained stable 

around 15 mg of gallic acid / g DW up to 127 days of storage, showing only a slight increase at the 

end of  the experiment (18.52 mg gallic acid/g DW). However, fruit stored in CA1 and control 

showed an opposite behaviour, with a strong increase of levels after 56 days. In subsequent 

sampling the samples stored in natural atmosphere showed only a gradual decline followed by a 

slight increase at the end of storage. Berries stored in CA1 showed a decrement after 89 days, 

followed by a peak (25.4 mg gallic acid / g DW) recorded at 127 days of storage. At the end of the 

experiment the values were similar to those measured after 42 and 89 days (16.3 mg gallic acid/g 

DW) and were comparable with those found in CA2. 
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Fig. 34: Total phenolics 'Legacy'. Values represent means ± SD (n = 4). 

 

6.3.7. Total flavonoids 

At harvest time 'Legacy' (Fig. 36) was found to be a richer source of flavonoids than 'Brigitta' (Fig. 

35), with values of about 18 mg catechin/g DW compared with 11 mg catechin/g DW measured in 

'Brigitta'. 

In 'Brigitta' after 47 days of storage the highest values were measured in berries stored in CA2, 

then these values decreased reaching a minimum after 94 days (7.79 mg catechin/g DW). 

Blueberries stored in CA1 maintained a stable trend, with contents around 12 mg catechin/g DW, 

showing a decrease only at the latest stages of storage, after 132 days. At the end of storage, after 

147 days the content in the fruits stored in CA1 and CA2 was similar (about 9 mg catechin/g DW). 

'Brigitta' stored under natural atmosphere (control) accumulated the highest levels of flavonoids 

at the end of storage (16.6 mg catechin/g DW) showing, however, an irregular trend over the 

considered storage period. 

 

Fig. 35: Total flavonoids 'Brigitta'. Values represent means ± SD (n = 3). 
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In 'Legacy' only minor differences between different treatments were observed.  Berries stored in 

CA2 showed the highest levels. However, a peak in the accumulation of flavonoids (29.14 mg 

catechin/g DW) was measured at the end of storage (142 days) in fruits stored in natural 

atmosphere. 

 

Fig. 36: Total flavonoids 'Legacy'. Values represent means ± SD (n = 3). 

 
6.3.8. Total anthocyanins 

The anthocyanin content is reported as sum of all the singular peaks individuated in the HPLC 

chromatograms.  

At harvest the content was more than 1,5 times higher in ‘Legacy’ compared with ‘Brigitta’. The 

changes that we observed in anthocyanin levels along storage were quite different, revealing 

differences among the two cultivars.  

During the first days of storage in ‘Brigitta’ (Fig. 37) there was a general increase in the 

anthocyanin concentration. In the initial period of storage the highest levels were detected in 

samples stored in CA2 condition. From the 61th day of storage the values slightly decreased in 

samples stored in CA while remain quite stable in those stored in natural atmosphere. 
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Fig. 37: Total Anthocyanins 'Brigitta'. Values are the sum of particular anthocyanins identified by HPLC expressed as 
Cyanidin-3-galctoside equivalents (µg/g DM). 

  

During the first two months of storage there was an evident positive effect of the controlled 

atmosphere on the anthocyanin content on berries from the cultivar ‘Legacy’ (Fig. 38). In fact 

while the samples stored in natural atmosphere showed a rapid decrement in the content, berries 

stored in CA1 and CA2 conditions showed a drastic increment during the first days of storage. 

From that time point until the end of the trial levels decreased in all the different CA conditions, 

reaching a stable level similar to the one measured at harvest for the samples stored in controlled 

atmosphere and slower for those conserved in natural atmosphere. 

 

Fig. 38: Total Anthocyanins 'Legacy'. Values are the sum of particular anthocyanins identified by HPLC expressed as 
Cyanidin-3-galctoside equivalents (µg/g DM). 

 

6.3.9. Anthocyanin profiling 

In this experiment we detected 10 different anthocyanins from blueberry by separation of 

pigments using HPLC technique. The compounds we found and their prevalence expressed as 

percentage are resumed in table 13. 
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Tab. 83: Anthocyanins found in Blueberry. 
Percentage indicates the prevalence of each molecule among the total amount. 

ANTHOCYANIN BRIGITTA % LEGACY% 

Delphinidin-3-galactoside 17 15 

Cyanidin-3-galctoside 3 4 

Delphinidin-3-arabinoside 11 7 

Petunidin-3-galactoside 13 13 

Cyanidin-3-arabinoside 2 2 

Peonidin-3-galactoside 1 2 

Petunidin-3-arabinoside 7 5 

Malvidin-3-galactoside 28 34 

Malvidin-3-glucoside + Peonidin-3-
arabinoside 1 2 

Malvidin-3-arabinoside 16 16 

 

Malvidin-3-galactoside, Delphinidin-3-galactoside Malvidin-3-arabinoside, Petunidin-3-galactoside, 

Delphinidin-3-arabinoside resulted as the most prevalent anthocyanins found in both of the 

cultivar we analyzed in this work. 

The storage conditions similarly affected the quantitative changes of particular anthocyanins and 

total anthocyanins. 

Considering the changes in the anthocyanin profile during storage, a general increment was 

observed after about 2 months of storage (61 days for ‘Brigitta’ and 56 days for ‘Legacy’) for all the 

different conditions applied and then at the successive dates of analysis there was a general 

decrease of pigments content in berries. However differences were observed between controlled 

atmosphere and common cold storage. In general, comparing the two different conditions of 

controlled atmosphere, the highest levels of the prevalent pigments were registered in berries 

stored in CA2 condition (9 kPa CO2 and 1 kPa O2). In ‘Brigitta’ Malvidin-3-arabinoside (Tab.15) and 

secondly Delphinidin-3-arabinoside (Tab.14) showed high levels in berries stored under natural 

atmosphere, especially at the end of storage. On the other hand Delphinidin-3-galactoside (Tab. 

14) and Petunidin-3-galactoside (Tab. 14) appeared generally to be more abundant in berries 

stored under one of the controlled atmosphere condition compared with berries under natural 

cold storage. 
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Tab. 9: Content of particular anthocyanins (Delphinidin-3-galactoside, Cyanidin-3-galactoside, Delphinidin-3-arabinoside, Petunidin-3-galctoside, Cyanidin-3-arabinoside) 
expressed as Cyanidin-3-galctoside equivalents (µg/g DM) in ‘Brigitta’ depending on the gaseous composition of atmosphere and storage time. Values represent means ± 
SD (n = 3). 

 
Storage Time 

(days) 
Condition of 

storage 
Delphinidin-3-galactoside Cyanidin-3-galactoside Delphinidin-3-arabinoside Petunidin-3-galctoside Cyanidin-3-arabinoside 

0 AT HARVEST 483,7 ±2,7 97,8 ±1,1 312,2 ±1,9 515,5 ±1,6 65,2 ±0,6 

47 CONTROL 1012,2 ±0,1 156,7 ±0,9 663,7 ±1,0 775,4 ±0,9 115,4 ±0,3 

47 CA1 1034,7 ±2,5 130,6 ±0,7 649,2 ±1,7 699,2 ±2,3 88,0 ±0,4 

47 CA2 1351,6 ±2,5 219,6 ±1,1 834,7 ±2,1 998,5 ±3,2 141,6 ±0,1 

61 CONTROL 1037,3 ±0,4 196,5 ±0,9 656,4 ±0,2 923,7 ±2,8 131,3 ±0,0 

61 CA1 851,1 ±1,6 147,3 ±1,4 562,2 ±0,1 766,4 ±2,3 97,6 ±1,8 

61 CA2 1198,3 ±2,7 144,1 ±1,5 682,3 ±2,5 942,9 ±2,7 105,4 ±0,3 

94 CONTROL 1186,6 ±2,6 161,1 ±1,3 784,1 ±2,2 834,1 ±3,5 125,7 ±1,9 

94 CA1 1039,0 ±1,7 171,9 ±0,8 647,6 ±0,8 755,2 ±2,8 108,7 ±0,1 

94 CA2 849,8 ±2,1 176,6 ±1,9 520,8 ±2,1 703,9 ±4,4 111,8 ±0,2 

132 CONTROL 1123,2 ±8,7 176,5 ±0,8 792,1 ±1,2 757,3 ±2,2 149,1 ±0,6 

132 CA1 785,3 ±0,4 136,8 ±3,6 478,0 ±8,3 619,3 ±1,8 89,4 ±2,3 

132 CA2 1287,5 ±8,2 372,8 ±1,9 520,0 ±4,8 1049,3 ±4,2 177,2 ±2,4 

147 CONTROL 1238,5 ±10,7 178,9 ±1,6 875,7 ±7,2 779,2 ±4,1 153,7 ±1,8 

147 CA1 811,5 ±2,8 137,2 ±0,3 491,9 ±2,2 617,5 ±0,1 86,1 ±0,1 

147 CA2 933,4 ±0,8 153,2 ±0,6 582,2 ±1,0 721,1 ±0,5 99,4 ±0,8 

 

 

 

 



 
84 

Chapter 6: Long-term Cold Storage of  Highbush Blueberry (Vaccinium corymbosum, L.) 

 

 
 
 
 
 
 
 
Tab. 10: Content of particular anthocyanins (Peonidin-3-galactoside, Petunidin-3-arabinoside, Malvidin-3-galactoside, Malvidin-3-glucoside + Peonidin-3-arabinoside, 
Malvidin-3-arabinoside) expressed as Cyanidin-3-galctoside equivalents (µg/g DM) in ‘Brigitta’ depending on the gaseous composition of atmosphere and storage time. 
Values represent means ± SD (n = 3). 
 

Storage 
Time (days) 

Condition of 
storage 

Peonidin-3-
galactoside 

Petunidin-3-
arabinoside 

Malvidin-3-galactoside Malvidin-3-glucoside + Peonidin-3-
arabinoside 

Malvidin-3-arabinoside 

0 AT HARVEST 41,3 ±1,2 276,7 ±0,5 1180,4 ±2,9 53,3 ±0,7 673,3 ±1,3 

47 CONTROL 56,0 ±0,8 437,0 ±1,6 1571,0 ±1,7 79,4 ±0,7 1051,1 ±2,4 

47 CA1 43,8 ±0,8 375,1 ±1,0 1384,8 ±4,5 70,9 ±1,8 757,4 ±1,1 

47 CA2 59,1 ±0,4 533,9 ±1,8 1715,8 ±2,1 77,7 ±0,3 972,6 ±5,6 

61 CONTROL 72,6 ±0,2 499,5 ±0,9 1982,6 ±1,0 94,0 ±0,2 1289,4 ±3,9 

61 CA1 53,0 ±0,2 436,4 ±0,5 1721,3 ±4,3 72,5 ±0,0 1032,7 ±3,4 

61 CA2 54,4 ±1,5 469,8 ±5,3 1914,3 ±37,0 70,4 ±1,9 939,0 ±6,7 

94 CONTROL 61,8 ±1,4 472,2 ±0,4 1780,5 ±76,6 85,6 ±1,4 1210,0 ±0,9 

94 CA1 51,8 ±0,8 393,5 ±0,3 1397,0 ±1,4 64,1 ±0,1 766,1 ±2,1 

94 CA2 65,3 ±0,4 369,1 ±2,1 1555,7 ±5,3 71,9 ±0,7 922,3 ±3,8 

132 CONTROL 68,5 ±0,2 474,8 ±0,3 1683,0 ±120 86,4 ±0,3 1208,4 ±3,7 

132 CA1 33,6 ±2,4 327,1 ±3,0 1306,0 ±11,0 53,5 ±4,6 611,6 ±0,5 

132 CA2 134,4 ±4,2 367,0 ±0,4 2958,0 ±19,5 115,3 ±0,5 1147,6 ±7,5 

147 CONTROL 70,1 ±0,7 483,5 ±4,5 1449,2 ±10,3 90,4 ±0,3 1167,4 ±7,2 

147 CA1 43,0 ±0,3 321,5 ±0,6 1158,6 ±0,1 51,9 ±1,1 642,9 ±0,8 

147 CA2 44,7 ±0,4 385,9 ±0,1 1261,8 ±0,9 55,8 ±0,8 724,4 ±1,4 
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Tab. 11: Content of particular anthocyanins (Delphinidin-3-galactoside, Cyanidin-3-galactoside, Delphinidin-3-arabinoside, Petunidin-3-galctoside, Cyanidin-3-arabinoside) 
expressed as Cyanidin-3-galctoside equivalents (µg/g DM) in ‘Legacy’ depending on the gaseous composition of atmosphere and storage time. Values represent means ± SD 
(n = 3). 
 

Storage Time 
(days) 

Condition of 
storage 

Delphinidin-3-galactoside Cyanidin-3-galactoside Delphinidin-3-arabinoside Petunidin-3-galctoside Cyanidin-3-arabinoside 

0 AT HARVEST 889,9 ±3,2 238,0 ±0,9 389,5 ±0,6 823,7 ±2,6 120,0 ±0,5 

42 CONTROL 774,0 ±2,3 210,9 ±0,2 362,1 ±1,6 691,2 ±1,5 114,3 ±0,2 

42 CA1 914,0 ±2,5 214,4 ±1,5 416,9 ±0,1 722,2 ±2,2 110,9 ±0,7 

42 CA2 1494,8 ±7,1 322,0 ±4,1 661,5 ±4,9 1182,3 ±5,2 168,1 ±0,1 

56 CONTROL 669,6 ±0,5 238,0 ±0,2 308,0 ±0,9 620,1 ±1,6 129,6 ±0,2 

56 CA1 1300,7 ±22,5 315,7 ±2,5 598,4 ±13,3 1170,5 ±21,1 159,4 ±0,1 

56 CA2 1171,6 ±3,2 282,2 ±0,4 460,4 ±0,8 1160,3 ±2,2 144,3 ±0,8 

89 CONTROL 942,8 ±8,0 224,8 ±3,3 425,0 ±5,9 789,6 ±5,8 119,7 ±1,0 

89 CA1 894,5 ±5,4 273,1 ±0,8 404,0 ±2,2 794,9 ±4,5 138,7 ±0,8 

89 CA2 989,6 ±11,1 250,7 ±1,4 462,9 ±3,9 856,9 ±8,3 127,2 ±1,7 

127 CONTROL 1318,1 ±5,0 347,7 ±3,0 578,8 ±5,4 1063,9 ±7,1 181,3 ±0,8 

127 CA1 658,7 ±0,7 283,1 ±0,5 273,0 ±0,8 692,2 ±0,5 136,4 ±0,1 

127 CA2 923,5 ±6,6 118,8 ±2,2 561,5 ±7,0 706,3 ±8,9 81,8 ±1,4 

142 CONTROL 769,2 ±20,7 208,5 ±10,3 314,7 ±11,7 618,5 ±13,3 107,0 ±3,9 

142 CA1 1002,6 ±1,9 261,6 ±1,1 447,5 ±1,1 816,9 ±2,6 133,7 ±0,7 

142 CA2 924,7 ±1,8 340,1 ±0,1 385,2 ±0,7 851,7 ±1,7 161,8 ±0,2 
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Tab. 127: Content of particolar anthocyanins (Peonidin-3-galactoside, Petunidin-3-arabinoside, Malvidin-3-galactoside, Malvidin-3-glucoside + Peonidin-3-arabinoside, 
Malvidin-3-arabinoside) expressed as Cyanidin-3-galctoside equivalents (µg/g DM) in ‘Legacy’ depending on the gaseous composition of atmosphere and storage time. 
Values represent means ± SD (n = 3). 
 

Storage 
Time (days) 

Condition of 
storage 

Peonidin-3-
galactoside 

Petunidin-3-
arabinoside 

Malvidin-3-galactoside Malvidin-3-glucoside + Peonidin-3-
arabinoside 

Malvidin-3-arabinoside 

0 AT HARVEST 108,9 ±1,1 316,3 ±0,5 2099,1 ±3,5 98,5 ±0,9 1012,2 ±3,7 

42 CONTROL 97,6 ±1,4 287,1 ±0,3 1811,0 ±7,9 93,6 ±1,1 995,7 ±1,8 

42 CA1 85,4 ±0,1 296,7 ±0,3 1651,0 ±5,7 80,5 ±0,5 870,6 ±2,1 

42 CA2 127,2 ±1,1 475,1 ±3,1 2581,4 ±20,8 121,9 ±1,5 1331,8 ±7,7 

56 CONTROL 98,6 ±0,1 260,5 ±0,5 1641,7 ±3,8 90,5 ±0,7 1015,3 ±0,8 

56 CA1 139,0 ±4,0 436,6 ±11,3 3153,9 ±199,8 115,3 ±7,1 1405,3 ±31,4 

56 CA2 137,6 ±1,7 406,4 ±1,4 3318,7 ±24,8 124,1 ±0,4 1353,7 ±7,5 

89 CONTROL 103,2 ±0,9 305,7 ±2,9 1911,0 ±11,5 94,4 ±0,5 991,4 ±9,5 

89 CA1 104,4 ±1,2 313,0 ±1,6 1868,2 ±10,5 91,8 ±0,0 961,7 ±4,7 

89 CA2 100,5 ±0,6 352,1 ±3,3 1967,4 ±19,7 92,8 ±0,1 1028,9 ±12,5 

127 CONTROL 145,3 ±0,5 411,8 ±0,7 3010,3 ±11,2 129,8 ±1,1 1372,7 ±9,9 

127 CA1 104,0 ±1,4 268,4 ±0,4 1995,7 ±32,9 89,9 ±1,0 979,3 ±3,5 

127 CA2 44,0 ±0,1 379,5 ±3,0 1722,1 ±18,9 59,0 ±2,0 789,4 ±6,1 

142 CONTROL 84,6 ±2,6 242,9 ±0,5 1697,6 ±15,4 74,9 ±0,3 776,5 ±18,6 

142 CA1 99,4 ±0,7 317,0 ±1,3 1825,9 ±0,7 86,8 ±0,2 911,6 ±5,7 

142 CA2 111,3 ±1,1 324,8 ±1,0 1913,0 ±3,9 95,5 ±0,6 996,1 ±4,1 
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Different storage conditions affected the levels of anthocyanins also in ‘Legacy’. All the most 

prevalent anthocyanins showed highest levels in berries stored under controlled atmosphere, with 

only few exceptions (Tab. 16 and 17). CA2 resulted as the controlled atmosphere condition which 

more frequently determinates the highest content of pigments. However, comparing with 

‘Brigitta’, in samples from the cultivar ‘Legacy’ the differences between storage conditions were 

less marked. 

 

6.3.10. AsA content 

Due to its high lability, ascorbic acid levels were monitored for a shorter period (94 days) in 

comparison with that considered for the analysis of phenolic compounds and quality attributes. 

Moreover, the cultivar ‘Legacy’ resulted to be a very poor source of ascorbic acid, with levels in 

certain cases undetectable, thus data measured from this cultivar are not reported in the present 

work.  

The ascorbic acid content in 'Brigitta' is illustrated in Figure 39. Fruits stored in natural atmosphere 

(control) showed an initial increase in content along the first 12 days of storage, with values higher 

than those measured in samples from CA conditions, then a gradual decline occurred and, after 94 

days, ascorbate levels were similar to those measured at harvest. 

In berries stored in CA1 and CA2 the ascorbic acid content increased during the first 12 days of 

storage, although levels were lower than the ones measured in the control. No relevant 

differences between the two different conditions of CA were observed.  

In samples stored in controlled atmosphere, the levels of ascorbic acid were more stable and 

generally higher than those registered in natural atmosphere (control), especially in samples from 

CA2 condition. Highest levels were measured during the first two months of storage. After 76 days 

of cold storage, the AsA levels were hardly detectable in all the different storage conditions. 

Fruits collected at that time point presented very low contents of ascorbic acid and showed a very 

strong decrease compared to the previous samplings.  

At the end of the experiment, AsA levels remained low in samples from CA2, while slightly 

increased in those from CA1 and control. 



 
88 

Chapter 6: Long-term Cold Storage of  Highbush Blueberry (Vaccinium corymbosum, L.) 

 

 

Fig. 39: Ascorbic acid content 'Brigitta'. Values represent means ± SD (n = 3). 

 

6.3.11. TBARS (Thiobarbituric Acid Reactive Substances) 

The measurement of TBARS (Thiobarbituric Acid Reactive Substances) represents a useful assay for 

screening and monitoring lipid peroxidation, as an indicator of oxidative stress in fruits and 

vegetables. 

Figure 40 shows the changes in the concentration of TBARS expressed as MDA equivalents (nmol / 

g DM) during cold storage of blueberries form the cultivar ‘Brigitta’. 

In the middle of storage period, TBARS levels were higher in fruit stored in natural atmosphere 

(control), indicating a more pronounced state of senescence. 

After an initial decrement, samples stored under natural atmosphere showed the highest levels of 

peroxidation until 94 days of storage. The levels of TBARS determined in the fruits stored in CA1 

showed a similar trend, even if lower, than those in the control. On the other hand the content of 

TBARS in samples stored in CA2 condition, did not vary throughout the storage, and showed the 

lowest values duringduring the same period, indicating a smaller level of oxidative stress and a 

slowdown in the process of senescence in fruits stored in that condition.This effect was more 

pronounced in the intermediate period of storage. 
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Fig. 40: MDA content in ‘Brigitta’ expressed as nmol/g DM. Values represent means ± SD (n = 3). 

 

6.4. Discussion 

The use of cold storage and controlled atmosphere with high CO2 and low O2 levels has been 

recognized to be the most effective technique to preserve the quality of fruits and extend their 

commercial life.  

In this study we set up a trial storing blueberry fruit under different conditions of cold storage, in 

natural and controlled atmosphere. We evaluated the effects of storage by measuring different 

quality parameters such as weight loss, decay, soluble sugars content and total titratable acidity. 

We also measured the changes in levels of phenolic compounds, flavonoids, anthocyanins and 

ascorbic acid. The experiment was conducted using two late season cultivar, ‘Brigitta’ and ‘Legacy’, 

with the aim to prolong as much as possible the storability of this valuable product and preserve 

its quality attributes. 

We protracted the samplings for a period much longer than the one normally expected for this 

produce. In general we have focused more attention to what was happening at the beginning of 

the conservation, in a period of about two months, being the most interesting in terms of 

commercial and practical applications. 

Weight losses were lower in berries stored under controlled atmosphere, with a particular positive 

effect in those stored under 9 kPa of CO2 and 1 kPa O2. Dry matter content was also generally 

higher in berries stored under controlled atmosphere.  

Sampling procedures were quitted when more than 50% of berries resulted damaged because of 

high shrivel or fungal development. This happened after about 150 days of storage for both of the 

considered cultivars, without differences due to different storage conditions. However during the 
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first two months of storage no significative decay incidence was registered in consitance with data 

which were previously reported (Connor et al., 2002).  

We observed a general negative effect of controlled atmosphere on the TSS content. This effect 

was more evident in ‘Brigitta’ compared with ‘Legacy’. Different behaviour among cultivars was 

observed also during storage in controlled atmosphere of rabbiteye blueberries (Schotsmans et 

al., 2007). Our results are different from what found by Smittle and Miller (1998) , which reported 

a general decrement in sugar content during storage with a positive effect of controlled 

atmosphere compared with natural conditions. However the changes we report in this study can 

be considered low, and the sugar amount that we estimated during the whole storage period 

indicates that fruits had sufficient reserves and substrates of respiratory metabolism.  

Berry fruits contain many different organic acids and changes in their amount could influence 

other compounds stored in the vacuoles such as anthocyanin pigments. During storage organic 

acids can undergo to changes due to several factors. High CO2  concentrations could affect the pH 

and the metabolism of organic acids during storage as reported by Holcroft and Kader (1999). In 

our study TTA was found to be higher in ‘Brigitta’ compared with ‘Legacy’ at harvest. During 

storage the values were characterized by a general increase and by an irregular pattern. This 

increase was unexpected because usually a decrement in TTA was reported in berry fruits (Gil et 

al., 1997; Holcroft, 1998). This phenomena could be explained thinking that not all the organic acid 

are consumed during storage but some could be accumulated. For example Holdcroft and 

colleagues (1998) observed an increase in succinic acid levels during storage of strawberries and 

this was hypothesized to be the result of inhibition of the enzyme succinate dehydrogenase which 

can take place during storage and be affected by storage conditions.  

Total phenolic compounds were measured in two cultivars and differences were observed at 

harvest as well as during storage. ‘Legacy’ showed values clearly higher than ‘Brigitta’ and this 

data appear to be consistent with those reported in previous studies for the same cultivars 

(Connor et al., 2002). During storage slight changes were observed in ‘Brigitta’ while a more 

irregular pattern has been observed in ‘Legacy’. In both cases after the first 42 and 47 days of 

storage respectively, the highest levels were measured in berries stored under controlled 

atmosphere (9 kPa of CO2 and 1 kPa of O2).  

Flavonoids represent a relevant portion of the phenolic compounds pool in berry fruits (Marinova 

et al., 2005). Flavonoids concentration was not reported to be affected by controlled atmosphere 

conditions during cold storage of apples (van der Sluis et al., 2001). In a study on cold storage of 
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strawberry fruits, the amount of flavonols did not change along storage (Cordenunsi et al., 2005) 

contrarly to what observed for anthocyanins. From our results ‘Legacy’ was as well a better source 

of flavonoids as it was for total phenolic compounds. The content of flavonoids has been positively 

influenced by controlled atmosphere conditions (9 kPa of CO2 and 1 kPa of O2) especially at the 

beginning of storage and it can be hypothesized that the changes were mostly due to an 

increment in the levels of anthocyanins. 

In this work we performed an HPLC analysis in order to identify and study the changes in 

anthocyanin contents in blueberry fruits belonging to two of the most widespread commercial 

varieties. We identified 10 anthocyanin molecules and the data appeared to be comparable with 

those previously reported for blueberry (Krupa and Tomala, 2007; Määttä-Riihinen et al., 2004 ). 

Our results confirmed ‘Legacy’ as the richest source of all classes of phenolic compounds analyzed, 

compared with ‘Brigitta’. Total anthocyanin content as well as levels of particular anthocyanins 

were similarly affected by different storage conditions. A general increment in levels was observed 

during the first days of storage in both the cultivars as reported in previous studies (Connor et al., 

2002; Holcroft and Kader, 1999; Krupa and Tomala, 2007). The increment in the anthocyanin levels 

at the beginning of storage could be explained by a protraction in the activity of secondary 

metabolism during storage as well as by changes in the molecular structure of some phenolic 

compounds which could lead to a switch from some classes to others.  

During storage, changes in the structure of cellular components and tissues should be also taken 

into account, thus tissue changes and degradation could influence the extractability of pigments.  

Gas composition had a different effect on anthocyanin levels depending on the cultivar. In fact, in 

‘Brigitta’, samples stored in CA2 showed the highest content of anthocyanins while samples stored 

in CA1 conditions showed results more similar to those from the control. The same differences 

between CA1 and CA2 were not observed in ‘Legacy’, in which both of the gas compositions 

appeared to be effective in increasing the amount of anthocyanins pigments. 

Ascorbic acid levels were monitored during storage of blueberries from the cultivar ‘Brigitta’, in 

parallel we measured the levels of TBARS as index of lipid peroxidation of cellular membranes. We 

observed a pronounced increment of AsA levels during the first 12 days of storage. Many factors 

such as genetic diversity, growing and environmental conditions, and date of harvest could affect 

the accumulation and biosynthesis of this important nutraceutical component in fruits. Previous 

studies showed that storage in high CO2 reduced vitamin C concentrations in many fruits and 

vegetables (Bangerth, 1997). Storage in controlled atmosphere with high CO2 levels do not have a 
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beneficial effect on vitamin C content (Agar et al., 1997). The reduction of vitamin C could be 

explained by an increase of ascorbate peroxidase (APX) activity stimulated by an increment of 

ethylene, triggered by CO2 as reported by Agar and colleagues (1997). Moreover in the same study 

was hypothesized that and increment in CO2 levels could inhibit the activity of 

monodehydroascorbic reductase (MDHAR) and dehydroascorbic reductase (DHAR). The initial 

increment that we observed in AsA levels is not completely supporting those hypotheses. We 

measured the amount of AsA, and we did not measure the levels of dehydroascorbate (DHA) thus 

it is possible to speculate that the increment that we reported is likely due to changes in AsA/DHA 

ratio and to changes in the activity of the enzymes of the Halliwell –Asada cycle instead of an 

increase in the biosynthesis. During storage CA2 condition appeared to be the best to control this 

parameter. In fact AsA levels were higher in samples stored under 9 kPa of CO2 and 1 kPa of O2. In 

parallel, CA2 condition appeared to be effective in maintaining the lowest levels of TBARS. during 

the storage period. TBARS is so confirmed to be an useful index of product degradation during 

storage. 

In conclusion fruits from tested cultvars demonstrated stability in quality attributes and 

marketability during the cold storage period. Among the two cultivars, ‘Legacy’ appeared to be a 

better source of phenolic compounds but at the same time a very poor source of ascorbic acid. 

‘Brigitta’ showed generally a good attitude to storage that could be likely due to higher acidity 

values in comparison to ‘Legacy’. 

Controlled atmosphere was effective in preserving berries from weight losses but had no 

significative effects on retarding decay. Among the different applied CA conditions, CA2 (9 kPa CO2 

and 1 kPa O2) was the most effective in reducing weight losses and in maintaining high levels of 

flavonoids, anthocyanins and ascorbic acid. 
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