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Abstract

Thanks to the peculiar electronic properties of gas-solid interfaces, surfaces

play an important role in many chemical processes. In my thesis, I consid-

ered few different reactions at surfaces and addressed the problem of their

description by means of quantum dynamical methods. In particular, the fo-

cus of the work is on the inclusion of surface motion in the dynamical mod-

els. This problem is very challenging for state-of-art quantum methods, due

to the unfavorable scaling with the number of degrees of freedom. To avoid

this computational limit a variety of methods were adopted, ranging from a

static approach in a low dimensional Time Dependent Wave Packet (TDWP)

calculations to a full dynamical description of dissipation in the framework of

Multi-Configuration Time-Dependent Hartree method (MCTDH).

I considered three different physical problems. The first one is the exother-

mic, collinearly-dominated Eley-Rideal H2 formation on graphite. In partic-

ular, I focused on the importance of the model used to describe the graphitic

substrate, in light of the marked discrepancies present in available literature

results. To this end, I considered the collinear reaction and computed the Po-

tential Energy Surface (PES) for a number of different graphitic surface mod-

els using Density Functional Theory (DFT) for different dynamical regimes.

I performed quantum dynamics with wave-packet techniques down to the

cold collision energies relevant for the chemistry of the interstellar medium.

Results show that the reactivity at moderate-to-high collision energies sen-

sitively depends on the shape of the PES in the entrance channel, which in

turn is related to the adopted surface model. At low energies I ruled out the

presence of any barrier to reaction, thereby highlighting the importance of

quantum reflection in limiting the reaction efficiency.
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In a second part of my work, I studied the effect of lattice displacement on

the interaction of H2 with the Cu(111) surface using the Specific Reaction Pa-

rameter (SRP) approach to DFT. I systematically investigated how the motion

of the surface atoms affects some features of the PES, such as the dissociation

barrier height and the barrier geometry corresponding to some representative

reaction pathways, and the anisotropy of the potential at these geometries.

This analysis allowed the identification of the surface degrees of freedom that

are likely to be most relevant for H2 dissociation. In particular, I found that the

lattice coordinate displacements that have the largest effect on the H2/Cu(111)

DFT-SRP barrier heights and locations concern the motion of the 1st layer and

2nd layer Cu atoms in the Z direction, and motion of the 1st layer atoms in the

directions parallel to the surface. Whereas the first degree of freedom mostly

affects the barrier geometry, the second and third motions can lower or raise

the barrier height. The latter effect cannot be described with the usual surface

oscillator dynamical models employed in the past to include surface motion,

and its dynamical influence on the dissociative adsorption needs to be further

investigated.

In the third part of the thesis I addressed the problem of including dissi-

pative effects in the reaction dynamics of hydrogen sticking and scattering on

surfaces. I considered dissipative baths with different spectral properties and

represented them with a linear chain of coupled harmonic oscillators, exploit-

ing an equivalent effective-mode representation that has recently been devel-

oped. I studied the system dynamics with MCTDH, aiming on one hand to an

accurate description of dissipation at a short time scale, and on the other hand

to a simplified but qualitatively correct behavior of the long time dynamics.

In this framework, I found a very useful scheme to represent the long time dy-

namics of the system without incurring in unwanted Poincaré’s recurrences.

I used this method to obtain the sticking probability of one hydrogen atom

scattered by a simple one dimensional Morse potential. The methodology de-

veloped in this work is going to be extended to the more realistic problem of

hydrogen sticking on graphitic surfaces.
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Chapter 1

Introduction

Surfaces play a key role in many fields, ranging from traditional catalysis to

photocatalysis and electrochemistry. During the last decades, important goals

have been achieved in the understanding of the basic phenomena occurring

at gas-solid interfaces. This was made possible by the development of in-

creasingly more advanced experimental techniques from one side and by the

possibility of studying realistic theoretical models on the other. Among the

major achievements of the field, it is worth to mention the complete micro-

scopic characterization of the mechanism of Haber-Bosch ammonia synthesis,

for which Gerhard Ertl was awarded with the 2007 Nobel Prize in Chemistry.

However, fundamental questions are still open in the field of surface sci-

ence. One of the most challenging problems related to the modeling of dy-

namical phenomena is the inclusion of electronic and nuclear degrees of free-

dom of the atoms of the solid. Both experimental and theoretical evidence

suggests that in some systems phonon coupling or non-adiabatic effects might

be crucial in the correct description of phenomena occurring at surfaces.

In my thesis I focus on three different gas-surface systems: H2 formation

on graphite through the Eley-Rideal mechanism, H2 dissociative adsorption

on Cu(111) and, from a more general point of view, the vibrational relaxation

and the sticking of H atoms on surfaces. For all the problems considered, the

focus is on the development of a theoretical model with a correct description

1



2 Chapter 1. Introduction

of the surface, possibly including those effects induced by the surface atoms

motion.

In this introduction I present some key concepts about the interaction, the

dynamics and the reactions at surfaces. These general ideas constitute the

background of the problems considered in the thesis.

1.1 Interaction with surfaces

From the energetics point of view, the interaction of a molecule or an atom

with a surface presents the same features of a typical intermolecular potential

energy curve. As a function of the distance of the molecule from the surface,

the potential shows a repulsive wall at short distances and possibly one or

two attractive wells, that allow the existence of stable bound states. When the

system is in such bound state, we say that the atom or molecule (the adsorbate)

is adsorbed on the surface.

Adsorption properties, such as energy and geometry, may vary in a wide

range, depending on the substrate and the adsorbate itself. Generally, we

can distinguish two kinds of adsorption: the physical adsorption or physisorp-

tion, which is due to weak dispersive forces, and the chemical adsorption or

chemisorption, which consists in a true chemical bond between the adsorbate

and the surface.

1.1.1 Physisorption

Physisorption is due to Van der Waals interactions between the molecule and

the surface, and - although weak - is present in any kind of system. It is

characterized by a long interaction distance (few Å), energy of the order of

10 meV and no significant relaxation in the structure, either of the surface or

of the adsorbate.

The long range dependence of the physisorption potential in case of a dis-

persive interaction can be easily derived from the well known R−6 expression
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for the London force [1]. The potential energy for the interaction between two

fragments A and B is

EAB ∝ −αAαB

R6 (1.1)

where R is the distance between the two interacting fragments, and αA and

αB are their polarizabilities. Even if this formula is often described as the clas-

sical interaction between “instantaneous dipoles” in the electrostatic distribu-

tion of the electronic charge, the proper quantum derivation of the formula is

based on second-order perturbation theory (see ref. [2] for details).

In the limit of a large surface-adsorbate distance, we can assume atom-

atom dispersive forces to be additive. Neglecting three and higher body terms,

we can obtain the interaction energy as a sum of two-body terms involving the

adsorbate and each atom of the lattice

Ephys ∝ −∑
i

1

|RASi |
6

where the sum runs over all the lattice atoms Si. If we further assume the

surface to be a continuous charge distribution, we can convert the sum to an

integral ∑S →
�

S ρdR

Ephys ∝ −
�

S

dR
1

|R|6

where R is now the distance between the adsorbate and a point of the vol-

ume S occupied by the solid. We can perform the integration in cylindrical

coordinates
�

S

dR
1

|R|6
=
� ∞

d
dz
� 2π

0
dϑ

� +∞

0
dr

r(√
z2 + r2

)6

where the limit of integration d is the distance between the adsorbate and the

surface. Integrating on ϑ and r we get
�

S

dR
1

|R|6
=

π

2

� ∞

d
dz

1
z4
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Figure 1.1: Examples of physisorption potentials. Left: adsorption potential
of He on noble metals, as a function of the distance of the atom from the
metal surface. The picture - taken from ref. [3] - shows results computed by
Zaremba and Kohn with the physisorption model described therein. Right:
physisorption potential for H on graphite as a function of the distance of
the adsorbate from the surface. For each of the high symmetry sites of the
graphitic surface, data were obtained with highly correlated wave-function
calculation and fitted with a Morse potential [4].

Further integrating on z, we get the d−3 long range dependence of the

adsorption potential

Ephys ∝ − 1
d3 (1.2)

Note that to derive this result, we assumed that the molecule is adsorbed

on a three dimensional solid, and therefore we included all the bulk atoms in

the summation. If we consider adsorption on a single layer (as in the case of

graphene, one of the system considered in this thesis as model for a graphitic

surface), we omit the integration in z and we get

Ephys ∝ − 1
d4 (1.3)

Since it is the results of the adding up of weak interactions, physisorption

is present in a large variety of systems, irrespective of the nature of both the

adsorbate and the surface. As an example, Fig. 1.1 reports the potential en-

ergy curves for the physisorption of He on noble metals and of H on graphite

are reported. It is interesting to note that the physisorption energy of H on
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graphite shows very small changes with respect to the site occupied by the

adsorbate. This general property of physisorption is related to the so called

corrugation of the electronic density, that is small at large distances from the

surface.

1.1.2 Chemisorption

When an atom or a molecule is chemisorbed, a true covalent bond is es-

tablished between the adsorbate and the surface. As for common chemical

bonds, chemisorption is characterized by energies of the order of 1 eV and

distances of 1-2 Å. This kind of interaction is very sensitive to geometry and

orientation, and may require a surface reconstruction. As an example, the

chemisorption of atomic hydrogen on graphite requires the atom to be on top

of a carbon atom. In addition, the interaction is stable only if the surface re-

laxes in the so-called puckered geometry, i.e. the carbon atom beneath moves

outside the surface plane by about 0.35 Å [5].

The electronic structure of a chemisorbed atom or molecule is deeply changed

by the interaction with the surface electronic states. A simplified description

of the physics of chemisorption is given by a model that was developed by

Newns [6], on the basis of a method developed by Anderson [7] for the de-

scription of bulk impurities. In this qualitative picture, chemisorption is de-

scribed through the interaction of a single valence state φa for the adsorbate

and a quasi-continuum of Bloch state φk (k ∈ Z) for the surface. To treat

electron-electron repulsion in an effective one-electron model, Hartree-Fock

approximation is applied. In this way, the Newns-Anderson Hamiltonian may

be written in second-quantized form as

H = εan̂a + ∑
k

εkn̂k + ∑
k

(
Vak b̂a

†
b̂k + Vkab̂k

†
b̂a

)
(1.4)

where b̂i
†

and b̂i are the creation and annihilation operators in the state φi

(with on-site energy ε i), n̂i are the corresponding number operators, Vak is the

hopping energy between the states φa and φk.
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Within this model, some interesting results are obtained by means of Green’s

operator techniques. The Green’s function G(ε) for the Newns-Anderson Hamil-

tonian, formally defined as the resolvent operator

[ε− H] G(ε) = 1 (1.5)

is projected on the “unperturbed” state of the adsorbate, giving the Green’s

function Gaa(ε)

Gaa(ε) = [ε− εa − Σ(ε)]−1 =
1

ε− εa −Λ(ε) + ı∆(ε)
(1.6)

where the self-energy Σ(ε) (that represents the contribution to the state energy

due to interactions between the adsorbate and the band) has imaginary part

Im Σ(ε) = −∆(ε) = −π ∑
k
|Vak|2 δ(ε− εk) (1.7)

and real part given by the Hilbert transform of ∆(ε)

Re Σ(ε) = Λ(ε) =
1
π

Pr
� +∞

−∞

∆(ε′)
ε− ε′

dε′ (1.8)

Note that the function ∆(ε) is nothing but a weighted density of states,

the weights being the matrix elements |Vak|2. In this sense ∆(ε) represents the

surface density of states “seen” by the adsorbate atom.

The Green’s function contains the information about the perturbed state of

the Hamiltonian, projected on the adsorbate unperturbed orbital. It is simply

related to the projected density of states (PDOS) na(ε), representing the con-

tribution of the state φa to the full density of states in the interacting system1.

In particular, it can be shown that

na(ε) = − 1
π

Im Gaa(ε) =
1
π

∆(ε)
(ε− εa −Λ(ε))2 + ∆2(ε)

(1.9)

From its definition, we see that the Green’s function Gaa(ε) has poles in

the eigenvalues of the model Hamiltonian. Since we are interested in states

1More correctly, the PDOS is the projection of the density of states on an atomic or molecular
orbital, in this case chosen as the valence state of the adsorbate φa
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Figure 1.2: Hilbert transform and perturbed localized solutions for a semi-
elliptical ∆ function. In (a), a semi-elliptical ∆ function is depicted, along with
the corresponding Λ function. Panels (b) and (c) show the localized solution
of Newns-Anderson model in the weak chemisorption and strong chemisorp-
tion case, respectively.

which mostly “resemble” the state of the adsorbate and do not belong to the

surface, we focus our attention to those eigenvalues that lie outside the band

energy interval. Such eigenvalues ε l , corresponds to a null band density of

states ∆(ε l) = 0. Hence, from Eq. 1.6, they can be obtained as solution of the

equation

ε− εa = Λ(ε) (1.10)

To proceed, we need to assume a reasonable functional form for the func-

tion Λ(ε). Following the discussion of Newns [6], we can choose a semi-
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elliptical ∆(ε)

∆(ε) =

{
β (1− ε2)1/2 |ε| < 1
0 |ε| > 1

(1.11)

and compute its Hilbert transform

Λ(ε) =
β

π
Pr
� +1

−1

(1− ε′2)1/2

ε− ε′
dε′ =


β
(

ε +
√

ε2 − 1
)

ε < −1

βε |ε| < 1

β
(

ε−
√

ε2 − 1
)

ε > 1

(1.12)

The shape of such Λ function is reported in Panel (a) of Fig. 1.2.

The equations above can be used to discuss two very interesting limiting

cases. In the weak chemisorption regime, the interaction between the adsorbate

and the surface is small. Consequently, ∆ and Λ are slowly varying functions

in the scale of the bandwidth. As depicted in Panel (b) of Fig. 1.2, there is

just one solution of Eq. 1.10, which differs little from εa, the energy of the

unperturbed state. In addition, substituting ∆ ≈ constant and Λ ≈ 0 in Eq.

1.9, we find that the PDOS has a Lorentzian peak centered around this energy

value:

na(ε) =
1
π

∆

(ε− εa)
2 + ∆2

(1.13)

In conclusion, in the weak interaction regime the adsorbate state con-

tribute to the density of states with an approximately Lorentzian peak near

the energy level of the unperturbed valence state itself. With regards to this

point, we note that if we imagine to switch the interaction off and let ∆ → 0,

the Lorentzian density of states tends to a Dirac delta centered around the

value εa. In this limit, the perturbed localized state properly becomes the un-

perturbed adsorbate state.

The opposite limiting case is the strong chemisorption regime. In this case

a substantial interaction is established between the adsorbate and the surface

electron band. As schematically pictured in Panel (c) of Fig. 1.2, the Hamilto-

nian admits two localized solutions, one above and one below the solid band.

In analogy with ordinary molecular orbital theory, the valence state of the ad-

sorbate give raise to a bonding and an anti-bonding peak in the density of

states.
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1.2 Dynamics at surfaces

In this section, we want to schematically define the fundamental dynamical

phenomena that may take place when an atoms or a molecule collides with

a surface. We imagine that a beam of atoms or molecules is directed to the

surface and describe the possible events that may follow. This kind of exper-

iment has a great fundamental interest in surface science, since it gives the

possibility of a direct comparison between theory and experiments. Indeed,

experiments of this kind have been realized for a variety of systems, thanks

to technological developments, such as molecular beams, ultra-high vacuum,

laser spectroscopy.

1.2.1 Atomic and molecular scattering

The simplest event that may take place after the collision with the surface is

scattering: the atom or molecules is reflected back to the gas-phase (possibly

in a different rovibrational state, if any internal degree of freedom is present).

In scattering, the 2D discrete periodicity of the interaction causes the well

known quantum phenomenon of diffraction, i.e. the fact that momentum is

exchanged only in discrete quantities. In this case the Hamiltonian H - de-

pending on the center of mass of the atom - is composed by the kinetic energy

term, which is symmetric under continuous 3D translations, and the poten-

tial energy term, which shows the 2D discrete translational properties of the

surface. Hence the Hamiltonian commutes with the 2D discrete group of the

translations of the surface, that we label with two indices m, n

[H, Tmn] = 0 ∀m, n ∈ Z (1.14)

Since the time evolution operator Ut is function of the Hamiltonian, the

same commutator expression applies for Ut

[Ut, Tmn] = 0 ∀m, n ∈ Z (1.15)

We assume that the system is initially in a state with specific parallel mo-

mentum k‖. We want to find the probability for the system to be scattered in
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a state with different momentum k′‖. Computing the expectation value of the

commutator of Eq. 1.14 between the initial and final momentum states, we

find 〈
k‖
∣∣UtTmn − TmnUt

∣∣∣k′‖〉 = 0

The plane waves
∣∣∣k′‖〉 and

∣∣k‖〉 are eigenvectors of the translation opera-

tors:

Tmn
∣∣k‖〉 = e−ık‖tmn

∣∣k‖〉
Tmn

∣∣∣k′‖〉 = e
−ık′‖tmn

∣∣∣k′‖〉
where tmn is the vector of the translation labelled by m, n. For the reader fa-

miliar with the theory of group representation, we can equivalently say that∣∣∣k′‖〉 and
∣∣k‖〉 span two one dimensional representations of the 2D discrete

group of the translations.

Letting Tmn act on the state
∣∣∣k′‖〉 and

∣∣k‖〉, the commutator expectation

becomes (
e
−ık′‖tmn − e−ık‖tmn

) 〈
k‖
∣∣Ut

∣∣∣k′‖〉 = 0 (1.16)

This equality holds if

e
−ık′‖tmn = e−ık‖tmn ∀m, n ∈ Z

e
−ı
(

k′‖ − k‖
)

tmn = 1 ∀m, n ∈ Z

Comparing last equality with the definition of reciprocal lattice (see e.g. [8]),

we realize that k′‖ − k‖ has to be a vector of the reciprocal lattice. Otherwise,

the condition expressed by Eq. 1.16 forces us to conclude that〈
k‖
∣∣Ut

∣∣∣k′‖〉 = 0

In other words, no transition is possible between the states
∣∣∣k′‖〉 and

∣∣k‖〉.
In conclusion, the periodicity of the interaction determines a strict con-

straint on the momentum exchanged in atomic scattering. The momentum

difference has to be a vector of the reciprocal lattice corresponding to the 2D
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translations of the surface. For conservation of energy, if we assume the sur-

face to be static, the change in parallel momentum has to be compensated by

the change in the perpendicular momentum of the scattered atom. This gives

raise to the typical diffraction pattern which is found in electron or atomic

scattering on surfaces.

When a molecule is scattered, diffraction takes place as well. In this case,

however, the scattered species has internal degrees of freedom which might

be coupled to the translational coordinates via the interaction with the sur-

face. This may lead to energy conversion between translational and internal

degrees of freedom. The diffraction pattern hence is much more structured

than the one resulting from atomic scattering. In this case, the scattering is

said to be elastic when the final rovibrational state of the molecule is the same

as the initial one. On the other hand, scattering is inelastic when the final states

differs from the initial one.

1.2.2 Sticking

So far, we have assumed that after the interaction with the surface, the atom

or the molecule is reflected back to the gas phase. However, in appropriate

conditions sticking can also take place. The sticking probability is defined as

the fraction of atoms or molecules impinging on the surface which are not

scattered back and remain on the surface. From a microscopic point of view,

sticking requires that most of the translational energy is transferred to other

degrees of freedom, so that the atom or the molecule is trapped in an adsorp-

tion well of the interaction potential.

In the case of atomic scattering (or even molecular sticking in which the

molecule stays intact on the surface), no internal degree of freedom can ac-

commodate the translational energy. Hence in this kind of process dissipa-

tion plays a fundamental role: during the collision mechanical coupling with

phonons or non adiabatic coupling with electrons could transfer energy to

the lattice. If the energy loss is high enough, the atom can be trapped in the

adsorption well.
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A very crude model for the description of atomic sticking is the so-called

hard-cube model [9]. In this model the surface is thought as a cube of effec-

tive mass MC moving with an appropriate velocity distribution. The atom or

molecule colliding with the surface transfers to the cube an amount of energy

which can be found imposing energy and momentum conservation. The im-

pinging species is trapped if the energy after the collision is smaller than the

adsorption well depth.

Within this simple analytical model, a particle of mass m and initial veloc-

ity vg colliding with a surface in a square adsorption well of depth Ead gets

trapped if the hard cube is moving with a velocity that is less than a limit

velocity vlim

vc < vlim =
1 + µ

2

√
2Ead

m
− 1− µ

2

√
v2

g +
2Ead

m
(1.17)

where µ is the mass ratio m/Mc. As expected, it is more likely that the atom

gets trapped when the energy transfer is maximum and when vg � 2Ead
m , since

for such parameters, the limit velocity is higher. Integrating a Maxwell distri-

bution for the hard-cube velocity up to vlim, we get the trapping probability

of a particle

Ptrap(vg) =
1
2

+
1
2

erf [αvlim]−
exp

[
−α2v2

lim

]
2
√

πα
√

v2
g + 2Ead

m

(1.18)

where α is a parameter describing the width of the hard cube velocity distri-

bution (hence connected to the surface temperature, α2 ∝ 1/TS).

The hard-cube model explains many trends of atomic sticking that are ef-

fectively found in real systems, like scattering of rare gas atoms on metal sur-

faces (see Fig. 1.3). First, the sticking probability decreases with increasing

kinetic energy of the projectile atom. This is due to the fact that at higher ki-

netic energy, the incoming particle has to lose more energy to be trapped in

the adsorption well, and at the same time the energy transfer becomes less

efficient. Furthermore, the model shows the well-known effect of the particle

mismatch: when the ratio between the particle mass and the effective mass
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Figure 1.3: Sticking probability as a function of the kinetic energy of the inci-
dent atom, computed according to the hard-cube model (Eq. 1.18) for differ-
ent values of the adsorption energy Ead, of the mass ratio µ and of the surface
temperature TS. The picture is taken from Ref. [2].

of the cube increases, more energy is transferred to the surface and the trap-

ping probability increases. Finally, increasing the surface temperature leads

to another well known effect: averaging over a broader range of surface atom

velocities leads to a broader sticking probability curve [2].

As can be seen in Fig. 1.3, in the hard-cube model the sticking probability

tends to 1.0 for vanishing kinetic energy of the projectile. However, this holds

only for a classical projectile and non-activated sticking. The presence of a

barrier, not taken into account in the simple model we discussed, may pre-

vents sticking at low kinetic energy. As an example, H (or D) chemisorption

on graphite requires an electronic structure reconstruction that results in a 0.3

eV barrier. Hence the projectile needs a high translational energy to get into

the adsorption well and to possibly be trapped there. In this case the sticking

probability tends to 0 at small incident energy and has the shape shown in

Fig. 1.4.

Generally speaking, quantum effects may act in two different directions.

On one hand, in systems with activated absorption, tunnelling may increase

the sticking probability for incident energies that are lower than the height
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Figure 1.4: The trapping cross section (in Å2) as a function of the incident
energy, for D normally incident on a 150 K graphite surface. Results are shown
for model potential with barriers of 0.24, 0.20, 0.15 and 0.04 eV, as indicated.
The picture is taken from Ref. [10].

of the barrier. On the other hand, quantum reflection leads to a lower sticking

probability at 0 K, even in the case of non-activated adsorption.

1.2.3 Dissociative adsorption

In the case of molecules, sticking may take place with the conversion of trans-

lational energy to internal degrees of freedom. Such is the case of many di-

atomic molecules that are adsorbed on transition metals surfaces with dissoci-

ation of the molecule itself. Well known is the case of dissociative chemisorption

of H2 on metals, like Cu and Pt, which is relevant for many industrial catalytic

processes.

For a hydrogen molecule impinging on a metal surfaces, the high mass

mismatch essentially prevents non-dissociative sticking. In this kind of sys-

tems, dissociative adsorption has a much higher probability. The feasibility

of the dissociation of the H-H bond (energetically much more expensive in

gas-phase) is explained by a model due to Hammer and Nørskov including

both the bonding σ and the anti-bonding σ? orbital of the molecule, and the
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Figure 1.5: Electronic structure in dissociative chemisorption

sp and d bands of the metal [11]. The interaction with the sp band cause a

Lorentzian enlargement and a shift of both levels in the density of states, in

accordance with the Newns-Anderson weak chemisorption picture. This ef-

fect is not enough to determine the dissociation of H-H bond, as shown in the

case of sp-metals (like Al) that cannot dissociatively adsorb hydrogen.

In transition metals, the further strong interaction with the d electrons

leads to a splitting of both bonding and anti-bonding levels, as predicted

for strong chemisorption in the Newns-Anderson model (see Section 1.1.2).

Hence four bands are formed, two coming from the splitting of the σ state

and two from the σ? state. Depending on the strength of the interaction and

the position of the Fermi level, it is possible that one σ? band is lower in en-

ergy than a σ band, as schematically represented in fig. 1.5. This results in a

weakening of the molecule bond that allows the dissociation of the molecule.

The sticking probabilities for H2 on transition metals have been exten-

sively studied, both theoretically and experimentally. H2 on Cu is the typical

example of activated chemisorption, in which the dissociation requires over-

coming a high barrier (of the order of 1.0 eV ). H2 on Pt, on the other hand, is

the benchmark system for non-activated dissociative adsorption. This oppo-

site behaviour can be explained by the model described above, and relies on

the different coupling between the states of the molecule and the d-band of the

metal. The larger spatial extension of the d orbitals of Pt leads to a stronger
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interaction, causing an additional stabilization of the dissociating molecule

[11].

1.3 Reactions at Surfaces

Many reactions are made possible by the interaction with a surface, that acts

as a catalyst by increasing the rate of a step which is inhibited in the gas-

phase. Among these catalytic reactions, there are processes of great industrial

relevance, such as the synthesis of ammonia or the catalytic hydrogenation of

unsaturated hydrocarbons [12].

As an example, in the gas phase the thermodynamically favoured synthe-

sis of ammonia from H2 and N2 is prevented by a very slow kinetics, due to

the high energy barrier in the dissociation of the N-N triple bond. The iron

catalyst surface dissociatively adsorbs nitrogen with a much smaller reaction

barrier. At the same conditions, H2 is dissociated and chemisorbed to the sur-

face, too. Step by step, the diffusing N atoms can bind three H atoms and then

desorb to the gas-phase.

Similarly, hydrogenation reactions are not feasible in the gas-phase due to

the dissociation barrier of the hydrogen molecule. As discussed in the previ-

ous section, transition metals like Pt and Pd may dissociate H2, even without

any barrier to reaction. The H atoms formed by dissociative adsorption can

diffuse and react with an adsorbed hydrocarbon molecule. Different H atoms

bind to an unsaturated C−C bond and then the hydrogenated hydrocarbon

leaves the surface.

From a general point of view, a complex reaction can be described in a

schematic way with one of three possible mechanisms.

The most common in ordinary condition is the Langmuir-Hinshelwood (LH)

mechanism, which is involved in both the reaction described above. In this

case the reaction takes place between two fragments which have been both

adsorbed on the surface of the catalyst. These two fragments are trapped long

enough to reach thermal equilibrium with the surface. When they get close



1.3. Reactions at Surfaces 17

Langmuir − Hilshelwood

Eley − Rideal

Figure 1.6: Reaction mechanism at surfaces: schematic representations of the
Langmuir-Hinshelwood (top) and Eley-Rideal (bottom) mechanisms

one to each other by thermal diffusion, they recombine giving the product

that may further react or desorb to the gas phase.

In the Eley-Rideal (ER) mechanism, on the contrary, just one of the two

reacting species is adsorbed on the surface. An atom or a molecule coming

from the gas-phase directly collides with the adsorbed fragment and forms

the reaction product. This mechanism is important in extreme conditions -

e.g. in very low temperature regimes - when the diffusion of adsorbed species

is slow and the collision with a gas-phase species becomes more likely than

the reaction of two adsorbed reactants.

The Hot-Atoms (HA) mechanism is intermediate between LH and ER. In

this case one of the the reacting species is a so-called Hot Atom, i.e. an atom

which has been captured by the surface but has not completely dissipated

its kinetic energy, yet. Unlike the reactants of LH mechanism, which are in

thermal equilibrium, the hot atoms move in a super-diffusive regime.

Each of the mechanism described above involves many surface elemen-

tary steps, e.g. dissociative or non-dissociative sticking, diffusion, desorption.

From a theoretical point of view, each step can be independently modeled to

get information on the energetics and the dynamics. As in any complex reac-
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tion mechanism, the step which is slower than the others is the rate limiting

step, i.e. the step that determines the overall kinetics of the reaction.

1.4 Thesis overview

In the present thesis, three different fundamental surface processes will be

considered. All the problems will be discussed from a theoretical point of

view, with a particular interest in the inclusion of effects related to the surface

description and lattice atoms motion.

In chapter 3, I will consider the non activated Eley-Rideal recombination of

H2 on graphitic surfaces. Previous theoretical simulations adopted different

dynamical and energetics models for the surface carbon atoms, and lead to in-

consistent results. In this part of the thesis, I systematically investigate under

simplified conditions how the model choice influences the reaction probabil-

ity. Quantum dynamics is studied in an extremely low energy range, high-

lighting the strong dependence of quantum reflection on the adopted surface

model.

In chapter 4, I will focus on the dissociative sticking of H2 on the Cu(111)

surface. For this reaction, theoretical results have been recently obtained in

very good agreement with most available experiments. However, for some

experiments there is still a large discrepancy which is likely to be due to the

effect of the surface phonons on the reaction. The results presented in the

chapter try to establish a relation between the surface atoms motion and the

reaction barrier, with the aim of showing which surface coordinates are likely

to be the most important for the description on hydrogen dissociative adsorp-

tion.

In chapter 5, vibrational energy relaxation and sticking of an adsorbate on

a surface will be considered from a methodological point of view, with the

aim of developing a technique that could be effectively applied to realistic

problems, such as the sticking of H on graphite. The problem is addressed in

the framework of system-bath quantum dynamics: the interesting dynamical

system can exchange energy with the environment, considered as a huge set
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of harmonic degrees of freedom in thermal equilibrium. In particular, it will

be proposed an approximation scheme that can be consistently applied and

gives excellent results at a much cheaper computational cost than the standard

approach followed until now.

Although different systems are considered, in all the problems addressed

in this thesis a particular role is played by the description and the motion of

the surface. In particular, we can schematically identify two different effects:

an active role and a passive role of the lattice atoms.

In the first two problems the lattice atoms have an active role, since they

are considered for the direct effect that they might have on the course of the

reaction. Different surface description (for H+H / Graphite) or slightly dis-

placed surface atom positions (for H2/ Cu(111)) can induce changes in the

reaction potential properties, like the barrier height or the curvature of the

potential. From a dynamical point of view, the inclusion of such effect re-

quires a small number of additional degree of freedom. Furthermore, in many

cases the description can be simplified by means of an appropriate (sudden or

adiabatic) approximation, in which the additional degrees of freedom is only

effectively included in the system.

In the case of sticking or vibrational relaxation, addressed in chapter 5,

the lattice plays the passive role of a thermal reservoir exchanging energy

with the reacting system. In addition to the direct effects described above, the

coupling to a thermal bath determines energy dissipation, energy fluctuations

and coherence loss. To properly take into account all these effects in a realistic

dynamical model, a large number of degrees of freedom needs to be explicitly

included in the description. This presents a a serious challenge for quantum

dynamics, due to its well known unfavourable scaling with the number of

degrees of freedom. For this reason, the development of a realistic model for

an atom-surface process would be impossible without an approximation on

the quantum dynamical description, like the one proposed in this thesis.
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Chapter 2

Method

In this section the general methods for the quantum simulation of an atom/molecule

scattering on surfaces will be presented. The starting point of the discussion is

the Born-Oppenheimer separation of electronic and nuclear motion. We consider

the evolution of a nuclear wavefunction

HionΦ(R, t) = ıh̄
∂

∂t
Φ(R, t) Hion = − h̄2

2M
∇2

R + V(R) (2.1)

with an interaction potential which is solution of the the electronic problem

HeΨ(r; R) = V(R)Ψ(r; R) (2.2)

parametrically dependent on the geometrical arrangement of the nuclei.

The full quantum dynamical solution of a scattering problem requires (1)

the computation of the Potential Energy Surface (PES) V(r), (2) its represen-

tation by means of an interpolation or fitting procedure with a convenient

functional form and (3) the solution of the time evolution equation for the

nuclei.

A common method adopted to compute the electronic energy is Density

Functional Theory (DFT), that is briefly discussed in Section 2.1. In our work,

DFT techniques have indeed been adopted for addressing H2 formation on

graphite and H2 dissociation on Cu(111). For the H scattering problem, on

the contrary, a Morse model potential was used to describe atom-surface in-

teraction.

21
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In Section 2.2, the Time-Dependent Wave-Packet approach to the solu-

tion of the nuclear quantum dynamical equation will be presented. In par-

ticular, the focus will be on the exact wavepacket technique adopted for the

H2/Graphite calculations and on the Multi-Configuration Time-Dependent

Hartree (MCTDH) approach, followed for H scattering and vibrational relax-

ation.

2.1 Density Functional Theory

The key result of Density Functional Theory (DFT) is a theorem proved by Ho-

henberg and Kohn in 1964 [1]. They showed the existence of a one-to-one

correspondence between the ground state solution of the electronic problem

and the electron density, a much simpler function defined as

ρ(r) = N
� +∞

−∞
dr2 . . .

� +∞

−∞
drN |Ψ(r, r2, . . . rN)|2 (2.3)

As a consequence, in principle the ground state energy can be written a

unique functional of the ground state energy. The great advantage of such

idea is the replacement of the many-body wavefunction Ψ(r1...rN), depending

on 3 N spatial variables, with the electron density ρ(r), which is function of

just 3 variables.

Difficulties in the actual implementation of DFT methodologies arise from

the fact that an explicit analytical expression of the density functional is not

known. To solve this problem, Kohn and Sham proposed an approach based

on a mapping of the actual system to a fictitious non interacting system with

the same electron density [2]. With this expedient, the solution of the elec-

tronic problem can be equivalently found as a non interacting electron density

ρ(r) =
N

∑
i=1
|χi(r)|2 (2.4)

which is sum of the densities of the Kohn-Sham orbitals, solutions of the single

particle Kohn-Sham equation[
− h̄2

2m
∇2 + vext(r) + e2

�
ρ(r′)
|r− r′|dr′ + vXC(r)

]
χi(r) = ε iχi(r) (2.5)
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where vext(r) is the ion external potential and vXC(r) is the so-called exchange-

correlation potential, accounting for the energy terms that are not analytically

known and for which further approximations are required. Kohn-Sham equa-

tion can be solved iteratively at a computational cost that is comparable with

Hartree-Fock methods (or even smaller, if a local exchange-correlation func-

tional is chosen).

A large number of functional forms for the exchange-correlation poten-

tial have been suggested since the work of Kohn and Sham. However, most

of them belong to three main categories: Local Density Approximation (LDA),

Generalized Gradient Approximation (GGA) and hybrid functionals.

In the Local Density Approximation , the exchange-correlation functional

is computed as

ELDA
XC [ρ] =

�
ρ(r)εXC (ρ(r)) dr (2.6)

where εXC(ρ) is the exchange-correlation energy computed for a system with

uniform electron density ρ [3]. The LDA approximation, although very crude,

gives already a good description of systems with a smoothly varying electron

density, such as alkali metals.

To improve the results, many Generalized Gradient Approximation func-

tionals have been proposed. In this case, the exchange-correlation energy is

written as a functional of the electron density and its gradient

EGGA
XC [ρ] =

�
ρ(r)εXC (ρ(r),∇ρ(r)) dr (2.7)

GGA functionals have been successfully used for electronic structure calcula-

tions of adsorbate on transitions metals. Among the large number of different

GGA functionals available, the ones adopted in this work are the Perdew-

Burke-Ernzerhof (PBE) functional [4], the revised Perdew-Burke-Ernzerhof

(RPBE) functional [5] and the Perdew-Wang 1991 (PW91) functional [6].

A third class of approximations consists in the so-called hybrid function-

als. In this case the exchange-correlation energy functional mix a portion of

exact exchange from Hartree-Fock theory with exchange and correlation from

other sources (such as other GGA or LDA functionals) [7]. One of the most
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commonly used hybrid functionals is the Becke 3-Parameter Lee-Yang-Parr

(B3LYP) functional. This approximation scheme was proposed to improve the

results in the case of molecular properties, which tends to be poorly described

by the other methods that are mostly suited for electrons in metals.

2.2 Time-Dependent Wavepacket methods

In the framework of Time-Dependent Wavepacket (TDWP) methods, the solu-

tion of a time-dependent Schrödinger equation

HΦ(R, t) = ıh̄
∂

∂t
Φ(R, t) (2.8)

is found by representing the wavefunction on a finite basis and by evolving

the system in time with convenient operator techniques. In the following I

will just address in general terms these two problems, the representation and

the evolution of the wavefunction. I will not give a detailed description of

all the technical aspects of a TDWP implementation, which are largely depen-

dent on the specific problem considered. At the end of the section, an approxi-

mate time dependent approach will be discussed, i.e. the Multi-Configuration

Time-Dependent Hartree (MCTDH) method.

Further technical aspects connected to quantum scattering theory are pre-

sented in Appendix A.

2.2.1 Representation of the wavefunction

The standard TDWP methodology described above assumes an expansion of

the wavefunction into a direct-product basis

Φ(r1...r f , t) =
N1

∑
j1

. . .
N f

∑
j f

Cj1...j f (t) |j1〉 ...
∣∣j f
〉

(2.9)

where a set of Ni basis functions |ji〉 is chosen for each of the f degrees of

freedom [8].

Very often the basis functions are built with the Discrete Variables Rep-

resentation (DVR) technique [9–11], that is briefly outlined in the following,
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within the theoretical framework introduced by R. G. Littlejohn and M. Cargo

[12, 13].

Let H be the Hilbert space of functions on the configuration space M, de-

fined by the coordinates of the nuclei. We choose a grid {xa} of points in

M and a projector P in H. We suppose that our wavefunction belongs to the

range of the projector. In the applications, this generally does not hold and the

representation becomes approximated. We define a set of functions projecting

the Dirac delta states corresponding to the chosen grid points

|α〉 =
1√
Nα
P |xα〉 (2.10)

where Nα is a normalization factor. If the |α〉 states form an orthonormal set

〈α|β〉 = δαβ (2.11)

they are a convenient basis for the representation of the system, since they

satisfy the interpolation property

〈α |ψ〉 =
1√
Nα

ψ(xα) (2.12)

From the interpolation property we find that the coefficients for the ex-

pansion of |ψ〉 on the basis |α〉 are just the values of the wavefunction on the

grid (except for a normalization factor)

|ψ〉 = ∑
α

|α〉 〈α |ψ〉 = ∑
α

1√
Nα

ψ(xα) |α〉

The coefficients 1√
Nα

ψ(xα) are the Discrete Variable Representation of the func-

tion |ψ〉.
A common way to define the projector P is to built it from an orthonormal

set of function |n〉 as

P = ∑
n
|n〉 〈n| (2.13)

In this case, we can also expand the function |ψ〉 on the basis |n〉

|ψ〉 = ∑
n
|n〉 〈n |ψ〉 = ∑

n
cn |n〉 (2.14)
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The coefficients cn = 〈n |ψ〉 are the Finite Basis Representation of the function

|ψ〉. The two representation are obviously related by a similarity transform,

whose matrix element is

Uαn = 〈α | n〉 =
1√
Nα

φn(xα) (2.15)

The main advantage of representing the wavefunction with a DVR basis

set is the possibility of computing the action of the potential operator (or any

operator that is local in the configuration space) with a simple multiplicative

operation:

〈φ |V|ψ〉 = ∑
α

1
Nα

φ(xα)?V(xα)ψ(xα) (2.16)

Different type of DVR are possible and the choice has to be done in accor-

dance with the properties of each degree of freedom. Representations based

on orthogonal polynomials are particularly convenient when those polyno-

mials are eigenvectors of a part of the Hamiltonian: e.g. Hermite polynomials

(the Gauss-Hermite DVR [14]) for vibrational degrees of freedom, spherical

harmonics (the Gauss-Legendre DVR [15]) for rotational degrees of freedom. In

case of scattering coordinates, on the other hand, a convenient choice is the

DVR based on a finite and discrete set of plane waves [13].

2.2.2 Time evolution

Given an initial wavefunction Φ0(R) = Φ(R, t), Time-Dependent Schrödinger

Equation can be integrated and gives

Φ(R, t) = exp(− ı
h̄

Ht)Φ0(R) (2.17)

so to fully describe the evolution of the system, it is necessary to compute the

time evolution operator, i.e. the exponential exp(− ı
h̄ Ht) [8].

The time evolution operator can be computed by direct diagonalization

of the Hamiltonian just for very small systems, hence approximations tech-

niques are necessary. One of the most common is the so-called Split Operator

(SPO) method, based on the Trotter expansion of the time evolution operator.
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When an operator can be written as a sum of non commuting operators, its

exponential can be expanded as

e(A+B)t = lim
n→∞

(
eA∆teB∆t

)n
∆t =

t
n

(2.18)

The last formula can be used in our case to split the kinetic and the poten-

tial part of the operator. We divide the time evolution from 0 to t in small ∆t

steps, and, at each steps, apply the following time evolution operator [16]

exp(− ı
h̄

H∆t) ≈ exp(− ı
h̄

K
∆t
2

) exp(− ı
h̄

V∆t) exp(− ı
h̄

K
∆t
2

) + O(∆t3) (2.19)

This approximation simplify the problem of the evolution, since it allows

to take advantage of the properties of each operator that compose the Hamil-

tonian. As an example, the potential part of the evolution can be applied as a

local operator, when a DVR basis set is employed.

Generally, in a TDWP calculation we start from an initial state representing

our initial conditions, usually a wavefunction that is product of a Gaussian

wavepacket for the scattering coordinate and of appropriate eigenfunctions

for the other coordinates. With one of the techniques that have been devel-

oped to compute the time evolution operator, such as the SPO approximation,

we propagate the system in time up to the desired time. We then extract the

results we are interested in, such as the probability for the process we want

to study. The reader interested in a more detailed description of the analysis

methodology, should refer to Appendix A.

2.2.3 Multi-Configuration Time-Dependent Hartree

The main drawback of standard TDWP technique is the strong exponential in-

crease with the number of DOFs of both the computation time and the mem-

ory requirements. With today’s computer, it is difficult to go beyond systems

of more than 6 degrees of freedom.

In the past, different wavefunction expansions have been proposed to

avoid this exponential scaling. One of the most successful method, the Multi-

Configuration Time-Dependent Hartree, has been proposed in 1990 by Meyer,

Manthe and Cederbaum [17–19].
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The basis of this method is a different wavefunction expansion:

Φ(r1 . . . r f , t) =
N1

∑
j1

. . .
N f

∑
j f

Aj1...j f (t) φ
(1)
j1

(r1, t) . . . φ
( f )
j f

(r f , t) (2.20)

This wavefunction ansatz is a direct-product expansion of f sets of orthonor-

mal time-dependent basis function
{

φ
(K)
j (r, t)

}NK

j
, that are referred as single-

particle functions (SPFs). The expansion is similar to the standard TDWP ex-

pansion (Eq. 2.9) except for the time dependence of the SPFs. This generaliza-

tion allows to describe the evolution of the wavefunction with a much more

compact expansion, thereby reducing the computation cost of the calculation.

The time evolution equations for the coefficients and the SPFs are usually

derived using the Dirac-Frenkel variational principle. In particular, the work-

ing MCTDH equations are obtained with additional constraints in order to

remove the ambiguity coming from the fact that both the expansion coeffi-

cients and the basis functions depend on time.

The advantage of MCTDH calculations is the possibility of adjusting the

degree of correlation that is required in the description of the system. If we

take just one SPF per degree of freedom, we obtain the Time-Dependent Self-

Consistent-Field (TD-SCF) approximation, in which the wavefunction is ap-

proximated by a single Hartree product. In contrast to electronic structure

calculation, TD-SCF usually gives results that are too poor even for a zero-th

order description of the dynamics.

On the other hand, the increase of the number of SPFs per degree of free-

dom can lead us to the opposite limit, standard TDWP. Hence with MCTDH

we can almost continuously switch from a very cheap but poor description to

a highly accurate but expensive one.
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Chapter 3

Eley-Rideal formation of H2 on
graphitic surfaces

3.1 Introduction

Hydrogen is the most abundant molecule detected in the interstellar medium

(ISM), e.g. in dense and diffuse clouds and in photon-dominated regions, de-

spite hydrogen molecules are continuously dissociated by stellar UV radiation

and cosmic rays. An efficient catalytic route for the recombination of atomic

hydrogen might take place on the surface of interstellar dust grains, an ensem-

ble of very small particles of different sizes and nature [1–3]. In diffuse clouds,

where the intense stellar radiation heats the gas, the largest particles are com-

posed of a silicate core covered by an “organic refractory mantle”, whereas

smaller particles are entirely carbonaceous, being even simple Polycyclic Aro-

matic Hydrocarbons [4–6]. Hydrogen formation in these regions of interstel-

lar space may thus occur on graphitic surfaces, and hydrogen-graphite has

become the prototypical system for studying hydrogen formation in the ISM.

Depending on the physical conditions of interest and on the actual morphol-

ogy of the surface, a number of formation processes are possible, and only an

accurate knowledge of adsorption, diffusion, and recombinative elementary

acts allows one to investigate the role of each given pathway and to estimate

the corresponding rate constant.

31
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Hydrogen atoms may adsorb on graphitic surfaces either chemically or

physically. Physisorbed atoms can only be found in cold environments, since

they already desorb at few tens of Kelvins (Tdes ∼ 30-40 K). Tunneling phe-

nomena guarantee a high mobility of H atoms down to vanishing tempera-

tures [7] and, generally, allow hydrogen molecules to form either through a

Langmuir-Hinshelwood, or an Eley-Rideal, or a Hot-Atom mechanism, or a

combination of them [8–10].

The chemisorption process is limited by a significant energy barrier to the

sticking process [11–19]. In order to form a covalent bond between the ap-

proaching hydrogen atom and a carbon atom of the graphite (0001) surface, it

is required that the carbon’s sp2 orbitals rehybridize to a tetrahedral sp3 state.

This process introduces a substantial lattice reconstruction, with one carbon

atom moving out of the surface plane by about 0.35 Å, thereby causing a sur-

face “puckering”. As a consequence, a barrier to chemisorption ∼0.15 eV

(1700 K) high appears, and essentially prevents (direct) hydrogen sticking in

the chemisorption well at temperatures typical of the ISM (T = 10-100 K in

diffuse clouds). For this reason, direct chemisorption of H atoms is expected

to take place only in photon dominated or shocked regions where the temper-

ature is high enough (T∼ 200− 1000 K). Nevertheless, chemisorbed H atoms

are required in order to explain the observed abundances and have been con-

sidered in many reaction mechanisms for hydrogen formation in the ISM.

Recent studies have shown that, due to the peculiar electronic structure

of graphitic surfaces [20], H atoms tend to cluster already at very low cov-

erages (≤1%) [21–24]. Molecular formation at high temperatures may thus

follow direct recombination of atoms within the clusters (in particular of hy-

drogen pairs lying in para position of an hexagonal ring [21]) and direct (Eley-

Rideal) abstraction may occur on isolated atoms as well as on dimers [25]. In

principle, chemisorbed hydrogen atoms can act as catalysts even at low tem-

perature, e.g. via the barrierless adsorption of H atoms at their para position,

followed by direct Eley-Rideal recombination of the latter [22, 25]. Langmuir-

Hinshelwood reactions, however, are prevented by the lack of mobility of H



3.1. Introduction 33

atoms chemically bound to the surface.

In this work, we focus on the H2-forming, Eley-Rideal reaction involving

a chemisorbed atom and for collision energies which reach the cold regime

(∼ 1− 100 K) where much of the chemistry of the ISM takes place. Many dif-

ferent methodologies and models have been developed to compute the cross

section for this process [26–39] but a direct comparison between these stud-

ies is hard to perform since different researchers adopted different potential

and/or dynamical models. Global differences are, however, already evident

under simplified conditions and persist at any level of description. One of

them is the behavior of the reaction probability in the collinear geometry when

the substrate is kept rigid. As discussed in Ref. [39], some Potential Energy

Surfaces (PES) give rise to a sizable reaction probability and to a resonant be-

havior in the whole energy range 0-0.5 eV [33], whereas others give rise to a

smooth (almost free of resonances) decreasing probability as the energy de-

creases in the same range [39]. In addition, some authors found a tiny barrier

(∼ 10 meV or, equivalently, ∼ 100 K) in the entrance channel of the reaction

and others do not. The existence of such a barrier, of course, has a deep im-

pact on the reaction probability in the astrophysically relevant collision energy

regime.

The aim of the present work is to systematically study how the reaction

dynamics depends on the model adopted for the graphitic surface. We fo-

cus on the collinear reaction and consider how the Potential Energy Surfaces

(PES) resulting from different substrate model give rise to different reaction

probabilities. Clearly, such reduced dynamical models can only have limited

value for the correct description of the title process (and many results con-

cerning these models have been well-known since the birth of the chemical

reaction dynamics), but the main focus here is on how the choice of the sub-

strate affects the dynamics. An extension of the model is of course possible

but for the present purposes it would be limited by the PES construction. We

performed the simulations with quantum dynamical methods, since in the

low energy regime typical of interstellar conditions the quantum behavior of
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iz

z t

Figure 3.1: Coordinate system: zi and zt are the distances of the incident and
target H atoms from the surface. The z coordinate of the nearest carbon atom
C1is either fixed in the puckered geometry (“sudden” model) or optimized at
each position of the H atoms (“adiabatic” model).

H atoms cannot be neglected [39]. In addition we perform extensive first-

principles calculations of the reaction energetics at different theory level, and

definitely rule out the presence of any barrier in the entrance channel of the

reaction.

This chapter is organized as follows: theoretical methods are presented in

Section 3.2, results are given in Section 3.3, and conclusions in Section 3.4.

3.2 Methodology

The adopted dynamical model is a rigid surface model [40, 41] in the collinear

geometry, in which the two H atoms lie along a line perpendicular to the sur-

face. The last assumption does not allow us to determine the cross section,

which is the relevant observable for the process. However, the reaction is es-

sentially collinear dominated, and the computed collinear reaction probability

can be used to get a clear indication on the reaction cross-sections at different

collision energies of the incident H atom. The aim of this investigation is to

see whether and how the adopted surface model impacts on the dynamical

behavior of the system.
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To describe the interaction of the two H atoms with the graphitic surface,

we performed Density Functional Theory calculations with different models

of the surface. First, we considered a cluster model of graphite (coronene

molecule, C24H12), a Polycyclic Aromatic Hydrocarbon commonly used for

this purpose [7, 15]. We computed the interaction energy with the Perdew-

Burke-Ernzerhof (PBE) functional [42, 43] and Dunning’s correlation consis-

tent double ζ basis set (cc-pVDZ) [44], as implemented in GAUSSIAN code

[45]. Second, we considered two different periodic models. In this case the

graphitic surface is described with a 2x2 or 3x3 graphene supercell; inclusion

of additional layers in a slab model does not modify the results significantly,

as expected from the large interlayer separation in graphite (∼ 3.4 Å). The to-

tal energy was computed with the PBE functional with the help of the VASP

code [46] using a plane waves basis set (with a 500 eV cutoff) and a projector

augmented wave (PAW) pseudopotential for core electrons [47, 48]. A vac-

uum space of 20 Å was placed between graphene layers in order to avoid

periodic boundary conditions artifacts and a 15x15x1 Monkhorst-Pack grid of

Γ-centered k-points has been used to sample the Brillouin zone.

For each surface model, we considered two limiting dynamical regimes

which try to include the lattice motion in the rigid setting [16, 33]. In the sud-

den model the position of the carbon atom involved in the C-H bond was kept

fixed in the puckered geometry; in the (surface) adiabatic model the geometry of

the carbon atom was optimized for each position of the two reacting H atoms.

The first limit is appropriate in the high energy regime, where the reaction is

faster than the lattice relaxation, whereas the latter is more adequate at low

energies. It should be noticed, though, that neither model can fully take into

account the effect of the carbon atom motion, that seems to actively promote

the reaction [33].

For each of the six models described above (coronene cluster, 2x2 and 3x3

periodic supercell in the sudden and in the adiabatic regime) we computed

324 points of the PES as a function of the distances of the two H atoms from
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the surface, zi and zt (Fig. 3.1), and used 2D splines to have continuous repre-

sentations of the functions. We used the slope of the ab-initio data at the edge

of the grid to fix the derivatives of the splines, and introduced continuously a

long-range tail to the potential of the form ∼ z−4. The interpolation removes

any ambiguity in the dynamics which might result from the choice of a fitting

function and from the quality of the fitting, leaving us solely with the problem

of the grid density, here chosen to be reasonable high for our purposes.

In the high energy range, we performed the dynamical simulation with a

standard Time Dependent Wavepacket (TDWP) technique [36–38], whereas

for the low energy regime we employed a novel two-wavepacket method

[49], which has been recently implemented and tested in our group in 3D

calculations of the reaction dynamics [39]. The latter method is designed to

handle the dynamics at low energies, where the usual assumption of an ini-

tial wavepacket with only incoming momentum components breaks down.

Briefly, in this approach two linearly independent, zero-momentum centered

wavepackets are propagated in independent runs and the reaction proba-

bilities are computed by properly combining the reaction amplitudes [49].

The latter are obtained by applying absorbing boundary conditions at the

grid edges [50, 51] (i.e. at large zi and zt), here imposed by means of the

transmission-free absorbing potentials of Manolopoulos [52].

With the present models, a time-independent quantum dynamical approach

would be more convenient, especially at low energy, where such an approach

proved indeed to be superior in efficiency and accuracy. However, in fur-

ther developments of this work we aim at extending the dynamical model to

include more degrees of freedom, up to eventually those of the lattice, and

for such high-dimensional quantum problems (either exact or approximate)

time-dependent wavepacket approaches are the only viable alternative.
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AdiabaticSudden

Sudden Adiabatic

Figure 3.2: Contour plots of the 3x3 periodic (top) and coronene (bottom) PES
for the sudden (left) and the adiabatic (right) regimes. Potential is shown
as a function of the height of the incident (zi) and target (zt) H atoms. The
thick red line marks the energy of the vibrational ground state of the target
H atom. Other contour lines have been plot every 0.2 eV with respect to this
vibrational energy. The zero of the energy corresponds to both the H atoms in
the gas phase.

3.3 Results and Discussion

3.3.1 Potential energy surfaces

Our potential energy surfaces (see Fig. 3.2 for an overview) show that H2

Eley-Rideal formation is a non-activated, exothermic reaction. No barrier could

be found along the minimum energy path in any of the models considered

in this work, at variance with previous cluster calculations with a coronene

model which reported a barrier 10 meV high in the entrance channel [10, 33].

We systematically analyzed if such a tiny barrier could arise by using differ-
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ent functionals or basis sets, investigating the same coronene model in both

dynamical regimes (sudden and adiabatic). In addition to the PBE functional

adopted for the dynamics, we used the Perdew-Wang 1991 functional (PW91)

used in Ref. [33], both in conjunction with several Dunning’s correlation-

consistent basis-sets, up to quadruple-ζ. The results are reported in Fig. 3.3

as functions of the distance of the incident H atom from the surface, in the re-

gion where the barrier is expected. It is evident from the graph that the energy

monotonically decreases from the asymptotic to the interaction region, leav-

ing no room for a barrier at increasing basis-set level. Similarly, we exclude

the presence of the barrier in the periodic models.

Apart from the barrier, the computed PES agrees well with those com-

puted by other authors. In both the adiabatic and the sudden models the en-

trance channel goes smoothly into the deep exit channel where the H2 molecule

forms. However, there are differences between the two dynamical regimes.

First of all, the adiabatic reaction is more exothermic than the other, since the

puckering energy is released as the H2 molecule leaves the surface. Secondly,

in the adiabatic model the target H atom is allowed to get nearer to the sur-

face, since the position of the carbon atom beneath is relaxed at each geometry.

This determines a different curvature of the elbow potential which, as we will

see in the following, plays a major role in determining the reaction dynam-

ics. On the other hand, within the same dynamical regime, we hardly see any

difference - at least at the energy scale of Fig. 3.2- between the surface mod-

els adopted; in particular, at this same scale, the results for the 2x2 periodic

model (not reported) cannot be distinguished from those of the 3x3 periodic

model. Differences only appear in the dynamical results.

3.3.2 Quantum dynamical results

Sudden models. Fig. 3.4 shows the results of the quantum dynamical cal-

culations for the three sudden models. In this calculation the H target atom

is initially in the vibrational ground state, the only one accessible in the rele-

vant astrophysical conditions. Though the results for the low and high energy
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regimes are shown on different scales, there is a perfect matching between the

curves where both results - ordinary wavepacket and two-wavepacket ones -

are available.

In addition to the dynamical results obtained with the PES described above,

we have reported previous results obtained with the London-Eyring-Polanyi-

Sato (LEPS) potential fitted by Sha et al. to DFT periodic calculations on the

2x2 unit cell of graphene [16]. The calculations based on this LEPS potential

describe the overall trend of the reaction probability but completely miss the

fine structure that can be found in each of our calculations. This particular

feature, already reported in the collinear calculations by Morisset et al. [33],

is due to Feshbach resonances, i.e. the formation of short lived vibrationally-

excited species in asymptotically closed vibrational levels that become open

at low energies.

This is supported by the comparison of the results for different vibrational

states. The reaction probability for different initial states of the target H atom
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Figure 3.3: Minimum energy path as a function of the height of the incident
H atom, in the region where the presence of a barrier has been reported. We
computed the energy with PW91 (solid symbols) and PBE functionals (empty
symbols), for different Dunning’s basis sets and both the dynamical regimes
(sudden in the left panel and adiabatic in the right panel). We took as reference
the energy of one H atom adsorbed on the surface and the other at infinite
distance.
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Figure 3.4: Eley-Rideal, quantum reaction probability for the three sudden
models with the reagents in the lowest vibrational state, for low energies (left
panels, logarithmic scale from 10−4eV ≈ 1K to 1eV ≈ 10, 000K) and at high
energy on a linear scale (right panels). Green line for coronene, red for 3x3
graphene, black for 2x2 graphene, and blue for the LEPS PES of Sha et al. [16].
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Figure 3.5: Reactive (black) and non reactive (red) classical trajectories for the
2x2 graphene and coronene sudden models are shown as a function of the
incident (zi) and target (zt) heights from the surface.
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is plotted in Fig. 3.6 as a function of the total energy of the system, for the

Coronene and the 2x2 periodic models. The fine structures of the curves are

similar: even if the peaks have different intensities, they are located at the

same total energy values, corresponding to the energies of the resonant states.

This structure is connected in a complex way to the vibrational states of the

reaction channels and the peaks cluster near the energies of the vibrational

levels of both the products and the reagents.

For each of the model potentials we considered, the reaction probability

decreases with the collision energy, in agreement with previous calculations

[33, 37, 39]. None of the PES gives rise to a substantial reaction probability

in the astrophysically relevant energy range (10−3 − 10−2 eV) - except for a

sharp resonance peak for the coronene PES located at 10−2 eV. As previously

discussed, all the potential energy surfaces considered in the present study do

not include any barrier in the entrance channel. Hence the results show that

the low energy behavior is entirely due to quantum reflection.

In the high energy regime, the reaction probability for periodic and cluster

models has a similar behavior, but the coronene potential gives a consistently

higher reaction probability than the periodic ones, as evidenced by a com-

parison between the (smoothed) probability curves shown in Fig. 3.7 (upper

panel) over a broad energy interval. Here smoothing has been accomplished

by averaging each computed data in a narrow energy range to highlight the

global behaviour which is masked by the resonance structure. The differences

are due to a simple classical effect connected to the shape of the elbow in an

otherwise simple, exoergic process. To investigate this point, we computed

a set of classical trajectories, which are reported in Fig. 3.5. These classical

calculations were performed for the same sudden model, for coronene and

the 2x2 periodic lattice models. At the beginning of these trajectories, the tar-

get H atom oscillates with an energy corresponding to its quantum ground

state energy whereas the incident H atom approaches the surface with a ki-

netic energy of 0.5 eV in the collinear geometry. We sampled uniformly the

initial position of the target atom to get insights into the reaction dynamics, as
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shown by plotting the reactive trajectories. No attempt was made to compute

reaction probabilities from QCT calculations, since the reliability of classical

dynamics was already considered in our previous works [36, 37, 39].

Most reactive trajectories share the very same “two bounce” mechanism.

First the incident H atom collides with the target H atom and is pushed back.

This corresponds to the first bounce of the trajectory, that is reflected by the H-

H repulsion. In this first collision, some momentum is transferred between the

two hydrogen atoms and the target atom moves towards the surface. Then the

target atom collides with the surface which triggers the system to the prod-

ucts channel, where the two H atoms leave the surface in a highly excited

vibrational state.

From the graph of Fig. 3.5 it is clear that in all the reactive trajectories

the phase of the vibration of the target atom is similar. This suggests that

the reaction mechanism is possible just for a particular interval of vibrational

phases. For these vibrational phases, the system is reflected in the way de-

scribed above by the two repulsive walls and driven to the products channel.

In light of this, the difference between the periodic and the cluster models is

that the phase interval of the reactive trajectories is broader for the coronene

than the periodic model, suggesting the the former potential drives the hy-

drogen atoms towards the products in a more effective way.

Adiabatic models. The reaction probability for the different surface model

in the adiabatic case are represented in Fig. 3.8 as functions of the kinetic

energy of the incident atom, in the low and high energy regimes. As for

the sudden case, the high energy results have been obtained with ordinary

wavepacket techniques, whereas the low energy curves were computed with

the two-wavepacket approach. Also in this case, the target H atom is initially

in the vibrational ground state.

Apart from the missing resonance structure, in this case the LEPS potential

model fails to reproduce the overall trend of the curve and it highly underes-

timates the reaction probability for collision energy lower than 1.0 eV, thereby
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showing that the LEPS form is not flexible enough to fully describe the inter-

action potential in the adiabatic case.

In the high energy regime, all our surface models predict the reaction prob-

ability with a reasonable qualitative agreement. For collision energy below

0.5 eV, all the curves show sharp resonance peaks, that are particularly simi-

lar for the periodic models. In this energy range the reaction probability for

coronene is higher than for the 3x3 graphene, that in turn is higher than for

the 2x2 graphene, as evidenced in the smoothed data shown in the right panel

of Fig. 3.7.

In any case, the reaction probability increases up to 1.0 eV and then starts

to decrease, due to the competing Collision Induced Desorption (CID) process

[37, 38]. In the energy range considered in this work, the CID channel is closed

for the sudden model, but open for adiabatic models. In the latter case, in

fact, the puckering energy is implicitly released during the dissociation of the

target atom. The adiabatic models are approximately 0.9 eV more exothermic

than the corresponding sudden ones and the CID channel for the adiabatic

PES opens at lower collision energies.

Comparing the graphs in Fig. 3.4 and Fig. 3.8, we see that before sat-

uration is reached, the reaction probability is much higher in the adiabatic

limit than in the sudden one. This can be simply explained by computing

some classical trajectories with the same initial conditions described above.

The reactive trajectories for a collision energy of 0.5 eV in the case of the adi-

abatic 2x2 graphene PES are reported in Fig. 3.9. As can be seen, a similar

“two-bounce” mechanism as the one described above is operating here. The

difference here is the curvature of the surface-target atom repulsive wall that

drives more effectively the system towards the products channel. Hence the

implicit model of surface motion statically affects the reaction by changing the

PES shape and making H2 formation easier.

In the low energy regime the reaction probability decreases with decreas-

ing collision energy as in the sudden model. However, the reaction proba-

bility is different from zero in the astrophysically relevant low energy range.
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Figure 3.8: Eley-Rideal, quantum reaction probability for the three adiabatic
models with the reagents in the lowest vibrational state, for low energies (left
panels, logarithmic scale from 10−4eV ≈ 1K to 1eV ≈ 10, 000K) and at high
energy on a linear scale (right panels). Green line for coronene, red for 3x3
graphene, black for 2x2 graphene, and blue for the LEPS PES of Sha et al. [16].
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Figure 3.9: Reactive (black) and non reactive (red) classical trajectories for the
2x2 graphene adiabatic models are shown as a function of the incident (zi) and
target (zt) heights from the surface.
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As for the high energy results, the reaction probability for coronene is higher

than the probability for graphene, while among the periodic models, the 3x3

surface is more reactive than the 2x2 one. [Notice here that undulating fea-

tures in the curve appear because of the presence of very sharp (long-lived)

resonances which would require extremely long propagation times to be re-

solved]. In this energy range, the reflected fraction of the wavepackets is much

smaller in the adiabatic regime than in the sudden one. This marked differ-

ence in the quantum behaviour of the system is probably related to the cur-

vature of the entrance channel: in the adiabatic models the potential changes

smoothly from the entrance to the exit channel, whereas in the sudden case

this transition is steeper and this increases the chance that the wavepacket is

reflected back.

3.4 Conclusions

In the work presented in this chapter, we computed quantum reaction prob-

ability for the collinear Eley-Rideal formation of H2 over a broad range of

collision energies, including the low energy regime relevant for the chemistry

of the interstellar medium. In particular we investigated whether and how

the dynamics of the system depends on the model adopted for the descrip-

tion of the surface. In light of this, we also addressed the problem of the

presence of a tiny energy barrier in the entrance channel which was found by

different authors [10, 33]. We found that the minimum energy path is mono-

tonically decreasing at any level of theory (in particular, basis-set size), and

this strongly suggests that the title reaction is barrierless.

Concerning the dynamical results, we found that the results markedly de-

pends on the choice of the model. While this is expected in the low energy

regime, where the dynamics is very sensitive to the details of the potential, we

found it to be true also at high collision energies. Under such circumstances,

we found that when the same limiting approach is followed to describe the

motion of the carbon atom - sudden or adiabatic - the results are qualitatively
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consistent but on quantitative grounds differences appear, the reaction proba-

bility being higher for the cluster model than for the periodic models. This is

particularly true for the sudden models, but also holds to some extent for the

adiabatic models. The reason of this discrepancy is the different shape of the

entrance channel, that seems to play a major role in determining the reaction

probability. Even a slight modification in the interaction potential - such as the

difference between the 3x3 and coronene PESs - might drive the system more

effectively towards the products, resulting in a higher reaction probability, see

Fig. 3.7.

In agreement with previous studies, in the low energy regime we found

that for all the models considered the reaction probability tends to zero with

decreasing collision energy. This limiting behaviour can only be due to quan-

tum reflection since, as stated above, our potential energy surfaces turn out

to be barrierless. The efficiency of quantum reflection, on the other hand, is

strongly dependent on the choice of the model, too. In the sudden regime, the

whole wavepacket is reflected back to the entrance channel for any energy

lower than 10−2 eV (100 K). If this were the case, we could reasonably assume

that no reaction would take place in the astrophysical conditions. On the other

hand, in the adiabatic regime, the probability vanishes only at much lower

energies, thereby leaving open the possibility that a model including dynami-

cally the motion of the carbon atom might give a reasonably sized probability

in this energy regime. Also in this case, differences are found from model

to model; for instance, the reaction probability for 2x2 graphene is 2-3 times

higher than for 3x3 graphene in the 10−4 − 10−2 eV range, see Fig. 3.7. From

such discrepancy, we expect a similar factor for the corresponding reaction

cross sections, when we move to three dimensional models.

In conclusion, moving to a less simplified and more realistic higher di-

mensional dynamical approach does require a careful choice of the substrate

model used to build the PES. If the aim is to obtain the probabilities (cross-

sections) for the reaction on graphite, then a large supercell approach seems

to be necessary (maybe even larger than 3x3), especially in the limit where
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the carbon atom follows adiabatically the hydrogen evolution. In this respect,

the above results suggest that modeling graphite (graphene) with a coronene

molecule, despite many appealing features, is inadequate for investigating

the present process. To this we add that while some features of the rigid-

flat surface approximation are appropriate for this system (e.g. the rotational

invariance of the interaction) the motion of the carbon atom needs likely to

be explicitly included in the dynamical treatment (see also Ref. [33]). This

defines a “minimal” 4D (quantum) model, and a corresponding interaction

potential at the level outlined above. Work is currently in progress in order to

set up such a model.

The results presented in this chapter are reported in the following publication:

M. Bonfanti, S. Casolo, G. F. Tantardini and R. Martinazzo,

“Surface models and reaction barrier in Eley-Rideal formation of H2 on graphitic surfaces”

Phys. Chem. Chem. Phys., 13, 16680-16688 (2011)
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[21] L. Hornekær, Ž. Šljivančanin, W. Xu, R. Otero, E. Rauls, I. Stensgaard,

E. Lægsgaard, B. Hammer and F. Besenbacher, Phys. Rev. Lett. 96, 156104

(2006).

[22] L. Hornekær, E. Rauls, W. Xu, Ž. Šljivančanin, R. Otero, I. Stensgaard,

E. Lægsgaard, B. Hammer and F. Besenbacher, Phys. Rev. Lett. 97, 186102

(2006).



50 Chapter 3. Eley-Rideal formation of H2 on graphitic surfaces

[23] L. Hornekær, W. Xu, R. Otero, E. Lægsgaard and F. Besenbacher, Chem.

Phys. Lett. 446, 237 (2007).

[24] A. Andree, M. L. Lay, T. Zecho and J. Küppers, Chem. Phys. Lett. 425, 99

(2006).

[25] N. Rougeau, D. Teillet-Billy and V. Sidis, Chem. Phys. Lett. 431, 135 (2006).

[26] A. J. H. M. Meijer, A. J. Farebrother, D. C. Clary and A. J. Fisher, J. Phys.

Chem. A 105, 2173 (2001).

[27] A. J. H. M. Meijer, A. J. Farebrother and D. C. Clary, J. Phys. Chem. A 106,

8996 (2002).

[28] A. J. H. M. Meijer, A. J. Fisher and D. C. Clary, J. Phys. Chem. A 107, 10862

(2003).

[29] M. Rutigliano, M. Cacciatore and G. D. Billing, Chem. Phys. Lett. 340, 13

(2001).

[30] M. Rutigliano and M. Cacciatore, ChemPhysChem 9, 171 (2008).

[31] B. Jackson and D. Lemoine, J. Chem. Phys. 114, 474 (2001).

[32] S. Morisset, F. Aguillon, M. Sizun and V. Sidis, Phys. Chem. Chem. Phys. 5,

506 (2003).

[33] S. Morisset, F. Aguillon, M. Sizun and V. Sidis, J. Phys. Chem. A 108, 8571

(2004).

[34] D. Bachellerie, M. Sizun, F. Aguillon, D. Teillet-Billy, N. Rougeau and

V. Sidis, Phys. Chem. Chem. Phys. 11, 2715 (2009).

[35] M. Sizun, D. Bachellerie, F. Aguillon and V. Sidis, Chem. Phys. Lett. 498,

32 (2010).

[36] R. Martinazzo and G. F. Tantardini, J. Phys. Chem. A 109, 9379 (2005).

[37] R. Martinazzo and G. F. Tantardini, J. Chem. Phys. 124, 124702 (2006).



BIBLIOGRAPHY 51

[38] R. Martinazzo and G. F. Tantardini, J. Chem. Phys. 124, 124703 (2006).

[39] S. Casolo, R. Martinazzo, M. Bonfanti and G. F. Tantardini, J. Phys. Chem.

A 113, 14545 (2009).

[40] M. Persson and B. Jackson, J. Chem. Phys. 102, 1078 (1995).

[41] D. Lemoine and B. Jackson, Comput. Phys. Commun. 137, 415 (2001).

[42] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

[43] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).

[44] T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).

[45] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,

J. R. Cheeseman, J. J. A. Montgomery, T. Vreven, K. N. Kudin, J. C.

Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci,

M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada,

M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,

Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian,

J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Strat-

mann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,

P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg,

V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas,

D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz,

Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu,

A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith,

M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W.

Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople,

‘Gaussian 03, Revision C.02,’ (2004), Gaussian, Inc., Wallingford, CT.

[46] G. Kresse and J. Furthmüller, Comput. Mat. Sci. 6, 15 (1996).

[47] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

[48] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).



52 Chapter 3. Eley-Rideal formation of H2 on graphitic surfaces

[49] R. Martinazzo and G. F. Tantardini, J. Chem. Phys. 122, 094109 (2005).

[50] D. Neuhasuer and M. Baer, J. Chem. Phys. 90, 4351 (1989).

[51] D. Neuhauser and M. Baer, J. Chem. Phys. 91, 4651 (1989).

[52] D. E. Manolopoulos, J. Chem. Phys. 117, 9552 (2002).



Chapter 4

H2 dissociation on Cu(111)

4.1 Introduction

The correct prediction of elementary processes occurring when H2 scatters

from a metal surface is one of the main challenges in the field of heteroge-

neous catalysis. The reactive scattering of H2 from Cu(111) has often been

used as prototype system. This is because of three reasons. First, a wide range

of experimental results is available for this system [1–11]. Second, many the-

oretical studies modeling a limited number of H2 degrees of freedom have

been performed with the aim of clarifying the mechanisms underlying the

reactive scattering [12–19]. Third, quantum dynamics calculations on reac-

tive scattering modeling all degrees of freedom are possible [20, 21], and have

been used to achieve qualitative [21–24] and quantitative [25–27] comparisons

with experiments on H2 + Cu(111), based on DFT potential energy surfaces

[25, 28, 29].

Recently six dimensional quantum dynamical calculations [25, 26] have

reproduced reaction probabilities measured in molecular beam experiments

[1, 3, 7], initial-state resolved dissociation probabilities inferred from associa-

tive desorption experiments [5, 7], and data on rotationally inelastic scatter-

ing [10] with chemical accuracy. The key idea of this work was to compute

the interaction of H2(D2) with Cu(111) using the Specific Reaction Parameter

(SRP) approach to DFT [30]. In the implementation of the SRP-DFT method

53
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used, the exchange-correlation functional is computed as a weighted average

of suitable GGA functionals. Adjusting the mixing coefficient to reproduce

D2/ Cu(111) molecular beam experiments on the dependence of reaction on

incidence energy [3], a reliable 6D Potential Energy Surface (PES) was ob-

tained.

As most of the dynamical simulations of H2-metal surface scattering so

far, the work assumed a static surface and no electron-hole pair excitation.

The calculations suggest [26] that some refinements of the dynamical model

are still needed to get a proper description of the rotational quadrupole align-

ment parameter of reacting D2 [9], and of vibrationally inelastic scattering of

H2 [6]. For these two observables, quantitative agreement with experiment

has not yet been obtained. However, the rotational quadrupole alignment

parameter has been measured at high surface temperature (TS= 925 K), and

it is not yet known how this parameter depends on TS. Furthermore, there

is some evidence that vibrationally inelastic scattering could be promoted by

the exchange of energy with the surface in a way that depends on TS [26, 31],

and the height of the “vibrational excitation peak” in the time-of-flight exper-

iments of Ref. [6] depends on the amount of energy lost to the surface by H2

[26]. These considerations suggest that for these scattering phenomena a bet-

ter agreement can perhaps be achieved by including some lattice degrees of

freedom in the dynamical model.

In the past, experimental studies have proved that the sticking probability

has a characteristic dependence on the surface temperature [2, 11]. In particu-

lar it has been shown that the effective barrier E0 is, to a good approximation,

independent of TS, whereas the width parameter W that determines the steep-

ness of the curve increases with TS. Quantum dynamical simulations [31–33]

have shown that this behavior is qualitatively consistent with a thermal pop-

ulation of a surface vibrational degree of freedom.

The inclusion of substrate atom motion in gas-surface dynamics is not a

trivial task. Various models have been developed to introduce these effects at

least at a qualitative level. The most popular of these models is the Surface
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Oscillator (SO) model, originally proposed by Hand and Harris [34]. In this

simple one dimensional description of the surface, an oscillator is coupled

to the molecular coordinates to describe the mechanical recoil of the surface

atoms due to the collision with the incoming particle. This model and some

related variants have been applied to a variety of systems: H2 and D2 on Cu

or other transition metals [31–36], N2 on Fe [34], CH4 on Ni and Pt [37–39].

The inclusion of a surface degree of freedom in the SO model broadens the

reaction probability curve and shifts its midpoint (E0) to a slightly higher en-

ergy. This shift is strongly dependent on the mass of the incident particle. In

particular, the effect is very small for scattering and dissociative chemisorp-

tion of H2 [33]. In D2 / Cu(111) reactive scattering, Díaz et al. [26] have

applied an appropriate correction based on the SO model and found a small

decrease of the rotational quadrupole alignment parameter. Even if this ad-

justment improves the agreement with the experiment, it is not sufficient to

get the desired quantitative accuracy. The inclusion of the lattice motion based

on an improved model seems therefore worthy of exploration.

Another model was proposed in the past by Dohle and Saalfrank [33], who

developed the Modified Surface Oscillator (MSO) model, which tries to cap-

ture effects which are not reproduced by the SO model. In the MSO model the

barrier along the reaction path may become larger or smaller depending on

the phonon coordinate. The inclusion of this model also leads to a broadening

and a shift of the reaction probability curve. Unlike the SO model, however,

in the MSO model the curve is shifted to lower energies.

More recently Jackson and co-workers [39, 40] have extensively studied

the PES for CH4 / Ni and CH4 / Pt with Density Functional Theory (DFT),

displaying the dependence of the features of the PES - dissociation barrier

geometry and height - on the motion of the nearest metal atom. Dynamics

calculations performed by them showed that both the change in barrier height

and the displacement of the barrier affect the reaction probabilities, but only

the latter can be reproduced by the SO model. Tiwari et al. [40] showed that

in the case of CH4 / Ni a Sudden Approximation works well. The idea of
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this approach is to compute the scattering probability as an average of the

probabilities computed by fixing the lattice atom in different positions. This

accounts for the “static” effect of the surface displacement, without allowing

any exchange of energy between the molecule and the surface.

Another very interesting approach to include the vibrations of the lattice

in the dynamical simulations was developed by Billing and Adhikari [41–43].

In this semiclassical method, the effect of the phonons is modeled through

an effective "mean-field" potential added to the Hamiltonian. In this way, it

is possible to include many possible effects of the phonons, as long as the

dependence of the potential on the lattice degrees of freedom is known.

The goal of the work presented in this chapter is to make a systematic anal-

ysis of the direct influence of the motion of the lattice atoms on the interaction

of H2(D2) with Cu(111). To have an idea of the possible effects on the reac-

tive scattering, we also compare our results to some simple available models

for the coupling of the lattice to the molecular coordinates. Our purpose is to

identify how the reaction coordinate for H2 dissociation is coupled to the lat-

tice vibrations. This preliminary picture will give us some criteria to predict

which lattice degrees of freedom are likely to play a major role in the reaction

dynamics. The actual quantification of these effects through dynamics studies

will be possibly addressed in future work.

This chapter is subdivided as follows. In section 4.2 we describe the the-

oretical methods used in the present work. The results are shown and dis-

cussed in section 4.3. Finally, conclusions are presented in section 4.4.

4.2 Methodology

Our approach has been to analyze how the motion of different surface Cu

atoms of Cu(111) affects the H2 dissociation barrier geometry and the barrier

height. To represent the motion of the surface, we chose a few localized sur-

face degrees of freedom: the displacement of a 1st layer copper atom in the

direction perpendicular to the surface (Q⊥1 ) and parallel to the surface (Q‖1),
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the displacement of a 2nd layer Cu atom in both the perpendicular and paral-

lel direction (Q⊥2 and Q‖2), and the perpendicular displacement of a 3rd layer

Cu atom (Q⊥3 ). When H2 is near the surface, in each layer it is possible to

choose different Cu atoms. The criterion followed in this case was to displace

the Cu atom (or one of the Cu atoms) which is nearest to the H2 center of

mass.

With respect to the hydrogen molecule’s position, we considered a set of

barriers in the (r, Z, ϑ) coordinates, each corresponding to a representative

(X, Y, ϕ) configuration of H2 (Fig. 4.1). In each of these configurations the H2

center of mass is above one of the high symmetry points of the (111) surface:

top, bridge, hcp (hollow, above a 2nd layer Cu), fcc (hollow, above a 3rd layer

Cu), t2h (halfway between top and hcp) or t2f (halfway between top and fcc).

In each case, the angular coordinate ϕ was chosen to get the lowest barrier for

the ideal frozen surface. In some interesting cases the angular dependence of

the barrier was also studied.

The set of dissociation geometries investigated is schematically depicted

in Fig. 4.1. We identify them in two different ways. For some barrier geome-

tries (e.g. BtH “bridge to hollow”) we use a three letter abbreviation, the first

capital letter indicating the position of the center of mass and the second the

surface high symmetry points towards which the H-H bond is oriented. In

other cases (e.g. t2h(120◦) ), we use the name of the high symmetry impact

site and we specify the orientation by the ϕ angle in parentheses.

For each (X, Y, ϕ) configuration, the dissociation geometry (Zb, rb, ϑb) and

the height of the barrier Eb were computed by locating the transition state for

that fixed configuration. Fixing X, Y, ϕ and a surface geometry, DFT was em-

ployed to compute the electronic energy on a (r, Z, ϑ) grid. These points were

interpolated with a 3D spline function and the transition state was located

with a Newton-Raphson optimization technique based on numerical gradi-

ents and hessians.

DFT calculations were carried out with DACAPO [44]. To accurately re-

produce the energetics of the H2 / Cu(111) interaction the SRP-DFT method
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Figure 4.1: a) The coordinate system used to define the position and the orien-
tation of H2 on the Cu(111) surface. b) Schematic representation of the (X,Y,ϕ)
geometries considered.
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Figure 4.2: The dependence of potential energy curves on different lattice co-
ordinates in the bare Cu(111) surface: Q⊥1 (A), Q⊥2 (B) and Q‖2 (C). The po-
tential has been fitted to an harmonic model (the frequency ω is reported in
the graph). Panel (D) reports the probability to find the atom within a dis-
tance Q from the equilibrium position computed integrating the probability
distribution of Eq. 4.1, for ω=19 meV (blue) and ω = 16 meV (red), at surface
temperatures TS= 0 K (dashed lines) and TS= 925 K (solid lines).
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implemented in Ref. [25, 26] was applied. In this approach the exchange-

correlation energy is computed as a weighted average of two GGA func-

tionals, the Revised Perdew-Burke-Ernzerhof (RPBE) functional [45] and the

Perdew-Wang 1991 (PW91) functional [46]:

ESRP
xc = x ERPBE

xc + (1− x) EPW91
xc

Here, the mixing parameter value x = 0.43 has been chosen semi-empirically

to reproduce the reaction probabilities measured in D2 / Cu(111) molecular

beam experiments [3].

As in Ref. [25, 26], the Cu surface is described with a supercell using four

layers of metal atoms, employing a 2x2 hexagonal surface unit cell. A vacuum

space of 13.0 Å is placed between the four-layer slabs to avoid artifacts due to

the use of periodic boundary conditions in the direction perpendicular to the

slab. The first Brillouin zone is sampled with a 8x8x1 Monkhorst-Pack grid of

k-points. A plane wave basis set with an energy cutoff of 350 eV is used in the

calculations. Further details can be found in Ref. [27].

In the following we will describe the effect of the Cu motion on the barriers

with two quantities: the displacement of the barrier geometry in the (r, Z, ϑ)

space and the change in the barrier height. For small displacements of the

Cu atoms, both effects are roughly linear in the surface coordinate. Following

Ref. [39], we define two linear parameters α and β by

∆Zb = αQ

∆Eb = −βQ

The parameter α accounts for the barrier displacement in the Z direction.

Its maximum value may be presumed to be 1, corresponding to the SO model.

The parameter β, on the other hand, describes the change in barrier height due

to the motion of the lattice atom.
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4.3 Results and discussion

Fig. 4.2 shows the dependence of the SRP-DFT energy of the bare surface

on the Q⊥1 , Q⊥2 and Q‖2 degrees of freedom. The dependence on Q⊥3 is not

reported, since in a four layer slab the 2nd and the 3rd layers are equivalent in

the absence of H2.

From these potential curves we can get a picture of the motion of the Cu

atoms. Treating the oscillations in the harmonic approximation, the vibra-

tional period is in the range 200-260 fs. For the Q⊥1 coordinate, a better fit can

presumably be obtained with a Morse function, describing the anharmonicity

of the potential. However this is not important for the goals of the present

work, and this direction will not be pursued.

Assuming a thermal population of the vibrational harmonic states, the

probability distribution of the copper atom position is given by

p(Q; T) = ∑
ν

pν(T) |φν(Q)|2 (4.1)

where φν(Q) is the ν-th harmonic oscillator eigenstate and pν(T) is the cor-

responding Boltzmann weight. With this simple model, for the 2nd layer Cu

atom at TS = 925 K the probability to find the atom with a ∆Z displacement

greater than 0.2 is 4.5%. In light of this, in our analysis we will focus on a Q

interval of a few tenths of Å.

It should be kept in mind that our way of modeling phonon motion is

approximate. Apart from the already mentioned assumptions - harmonic ap-

proximation and equilibrium thermal distribution - the Cu atom degrees of

freedom we are considering are not phonons by themselves, hence their cou-

pling is not negligible and they cannot be treated independently of one an-

other.

The dependence of the barrier properties on Q⊥1 is reported in Table 4.1

and Fig. 4.3. The changes in barrier heights for Q⊥1 = ±0.2 Å are at most

21 meV, a value which is small compared to the barrier energy itself, which

ranges from 0.63 eV to 1.02 eV for Q⊥1 = 0. For t2h(120◦), TtB and hcp(0◦), in
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Barrier Surface Geometry Barrier Height
config. Q⊥1 (Å) ϑ (◦) ∆r (Å) ∆Z (Å) ∆E ( meV )

BtH - 0.2 90. 0.01 -0.06 21.
+ 0.2 90. 0.01 0.07 -20.

t2h - 0.2 90. -0.04 -0.14 -1
(ϕ = 120◦) + 0.2 90. 0.06 0.15 21.

TtB - 0.2 90. -0.04 -0.16 -2
+ 0.2 90. 0.06 0.17 18.

hcp - 0.2 83. -0.04 -0.09 -21.
(ϕ = 0◦) + 0.2 96. 0.06 0.09 10.

Table 4.1: Effects of the perpendicular motion of the 1st layer Cu atom Q⊥1 on
some relevant dissociation geometries and the associated barrier heights.
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Figure 4.3: Barrier height and Z coordinate of some representative dissocia-
tion geometries as a function of the lattice coordinate Q⊥1 . The fitting param-

eters α (dimensionless) and β (in eV Å
−1

) are reported in the graph.
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the dependence of Eb on Q⊥1 there are deviations from linearity. We adopt a

linear model anyway to have an indication of the order of magnitude of the

effect.

For Q⊥1 6= 0 there are large changes in the geometry of the barrier, and

consequently large α values. The displacement is for the most part larger as

the H2 center of mass is nearer to the moving copper atom, and is maximum

for the TtB configuration.

Since α is considerably lower for the hcp and bridge barriers than for the

top one, the movement of the Cu atom changes the position of the barrier in

a way that depends on (X, Y). Thus motion in Q⊥1 results in a change in the

geometric corrugation [47] of the surface.

The tilted polar angles for the hcp barrier at Q⊥1 6= 0 reflects the local

curvature of the surface and is mostly a geometrical effect. We cannot see the

tilting in other barrier geometries, since in the other configurations the Cu

atom motion cannot change in an asymmetric way the interaction between

the surface and the individual H atoms.

We can assess the capability of the SO model to reproduce the influence

of the Q⊥1 lattice motion by looking at the α parameter. In the SO model, the

barrier height is not affected, but the dissociation geometry is shifted by Q⊥1
in the Z direction. This means that α = 1.0 and β = 0.0 for any dissociation

barrier. From these consideration, the SO model works well for TtB (α = 0.83)

and t2h(120◦) (α = 0.72). In the hcp(0◦) case, β is almost 0 but α = 0.45 is

considerably lower than 1. The approximation is even more severe for the BtH

site, for which both parameters are different from the SO model parameters

(α = 0.34 and β = 0.10 eVÅ
−1

).

We can make a direct comparison between the DFT-SRP potential and the

SO model. We define the coupling potential of the six H2 coordinates r =

(r, ϑ, ϕ), R = (X, Y, Z) and the surface degree of freedom Q as

Vcoup(r, R, Q⊥1 ) = V7D(r, R, Q⊥1 )−V6D(r, R)−Vvib(Q⊥1 )

where V6D is the 6D potential of H2 interacting with the ideal frozen Cu(111)

surface (Q⊥1 = 0) and Vvib(Q⊥1 ) is the potential for the Q⊥1 motion in absence
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Figure 4.4: The coupling potential between H2 and the surface degrees of free-
dom has been plotted as a function of Q⊥1 at some frozen surface barrier ge-
ometries. The DFT points (circles) have been fitted with a quadratic model
(solid lines). The coupling potential curves for the Surface Oscillator model
computed with the Díaz et al. PES [26] are shown with dashed lines.

of the H2 molecule, i. e.

V6D(r, R) = V7D(r, R, 0)

Vvib(Q⊥1 ) = V7D(req
H2

, R∞, Q⊥1 )−V7D(req
H2

, R∞, 0)

where req
H2

is the equilibrium distance of H2 and R∞ corresponds to a negligible

interaction between the molecule and the surface.

Fixing (r, R) at the four lowest barriers geometries of the ideal frozen sur-

face, we compare the DFT-SRP coupling with the coupling assumed by the SO

model (Fig. 4.4). As expected, the SO model works fairly well for the barrier

geometries in which the H2 is near to the moving Cu atom: TtB and t2h(120◦).

For the hcp(0◦) site, the SO model only reproduce qualitatively the quadratic

behavior of the coupling, whereas it completely fails for the BtH barrier.

If we displace a 2nd layer Cu atom, the picture is completely different (Ta-

ble 4.2 and Fig. 4.5). In this case the dissociation geometry does not undergo
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Barrier Surface Geometry Barrier Height
config. Q2nd,⊥(Å) ϑ (◦) ∆r (Å) ∆Z (Å) ∆E ( meV )

BtH - 0.2 90. -0.03 0.01 -48.
+ 0.2 90. 0.03 -0.01 69.

t2h - 0.2 90. -0.02 0.00 -42.
ϕ = 120◦ + 0.2 90. 0.02 0.00 62.

TtH - 0.2 90. -0.01 0.00 -1.
+ 0.2 90. 0.00 0.00 10.

hcp - 0.2 90. -0.01 -0.01 -65.
ϕ = 0◦ + 0.2 90. 0.00 0.01 85.

Table 4.2: Effects of the perpendicular motion of the 2nd layer Cu atom Q⊥2 on
some relevant dissociation geometries and the associated barrier heights.
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large changes and the values of α are very small. Within a few hundredths of

Å, we can assume that the dissociation barrier geometries are not dependent

on Q⊥2 .

In contrast, relevant changes are found in the barrier height. For Q⊥2 =

−0.2 Å, the BtH, t2h(120◦) and hcp(0◦) barrier heights are lowered by 48 meV,

42 meV and 65 meV respectively. In all these configurations, the height de-

creases as the the copper atom moves towards the bulk (β < 0 ). Only the TtH

barrier height is hardly affected by Q⊥2 . In this case the energy is mostly de-

termined by the interaction with the nearest 1st layer Cu atom, and the H2 on

top, which is rather far away from the surface, does not feel the 2nd layer Cu

atom displacement.

Unlike the 1st layer atom displacement, the motion of the 2nd layer Cu

atom does not change the dissociation geometry much, and it has no conse-

quence for the geometrical corrugation of the PES. However, the motion of

a 2nd layer Cu atom does alter the energetic corrugation [47]. For Q⊥2 6= 0

barriers heights are decreased or increased in different ways for the disso-

ciation geometries considered. This causes a marked (X, Y) dependence of

the barrier height change with Q⊥2 which could affect the coupling between

diffraction states of the incident molecule.

It is clear that the SO Model is completely inappropriate for describing the

effect of the 2nd layer Cu atom motion. We therefore compare our results with

the MSO model of Dohle and Saalfrank [33]. With this model the height of

the barrier along the reaction path can become smaller or larger, whereas the

position of the barrier is only slightly affected. The MSO model assumes that

the coupling between the molecule and the surface (1) is linear in the surface

degree of freedom Q and (2) is an exponentially decaying function of Z and r

Vcoup(r, Z, Q) = A Q exp
(
−γ

√
Z2 + 1/4r2

)
By plotting the SRP − DFT coupling potential at some dissociation ge-

ometries as a function of Q (Fig. 4.6, panel (a)), we can see that for small
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Figure 4.6: Fitting of the DFT-SRP Vcoupling the MSO Model by Dohle and Saal-
frank [33]. Graph (a) shows the coupling potential as a function of Q⊥2 com-
puted at some relevant dissociation geometries. The lines are the best linear
curves fitting the data. Graph (b) is the coupling potential at the BtH configu-
ration for Q⊥2 = 0.2Å as a function of (r, Z) while (c) is the fitted exponential
function A′e(Z2+1/4r2)1/2

. In graphs (b) and (c) the gas phase H2 equilibrium
distance is shown using a dotted line. The transition state geometry for the
dissociation is also represented.

values of Q, the coupling is approximately linear. So the first assumption of

the model holds quite well.

We also considered the coupling potential for the BtH configuration and

Q⊥2 = 0.2 Å as a function of r and Z (Fig. 4.6, panel (b)) and we fitted it to the

exponential function of r and Z in the MSO model (panel (c)). At a first glance,

the comparison is not good. In particular the model seems not to have the

right r dependence to reproduce the data. However, the Z dependence seems

at least qualitatively correct and is likely to be the most important feature

affecting the reacting molecule moving to the dissociation geometry.

Given the completely different dependence of the PES on Q⊥1 and Q⊥2 , it

is convenient to establish if the two motions can at least approximately be

considered independently one from the other. We computed the non additive

effects of the two degrees of freedom as:

∆Enon add(Q⊥1 , Q⊥2 ) = ∆Ebarrier(Q⊥1 , Q⊥2 )− ∆Ebarrier(Q⊥1 , 0)− ∆Ebarrier(0, Q⊥2 )
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and using analogous formulas for ∆rnon add and ∆Znon add. From the results

reported in Table 4.3 we can conclude that the effects of the motion of the

two different surface atoms on the reaction barrier are additive to a very good

approximation. In the interval [−0.2 Å, +0.2 Å, ] of the lattice coordinates, the

order of magnitude of the error in the dissociation geometry is just a few mÅ.

Similarly, the error in the barrier height is at most 14 meV and is not relevant

at our scale. In view of this, we can consider the effects of the two degrees of

freedom independently from each other.

Fig. 4.7 shows some preliminary results about the dependence of the bar-

rier heights on Q‖1 , the parallel displacement of a top layer Cu atom. For

each barrier the direction of the Cu atom displacement was chosen to give the

biggest change in energy. In these calculations we assumed that the barrier

geometry is independent of Q‖1 . So we did not optimize the transition state

but fixed the H2 molecule in the dissociation geometry for the ideal frozen

surface. With this rather crude approximation, we can see that this kind of

motion seems to have an effect that closely resembles the effect of Q⊥2 : a sig-

nificant barrier change for the BtH, t2h(120◦) and hcp(0◦) barriers and a very

small difference for the TtH barrier. The BtH and t2h(120◦) barrier heights

seem to depend quadratically on Q‖1 but this may be due to the fixed geome-

try approximation. This problem, i.e. the systematic description of the barrier

geometry change, will be addressed in future work.

For the sake of completeness, we studied the dependence of the barrier

height on the displacement of the 2nd layer Cu atom parallel to the surface and

the 3rd layer Cu atom perpendicular to the surface. (Fig. 4.8). We assumed that

no geometry change occurs for these coordinates as well. Since we found that

Q⊥2 does not change the dissociation geometry, we expect this approximation

to work well in the case of Q‖2 and Q⊥3 .

For the parallel displacement of the 2nd layer Cu, we report the change of

barrier height in the [1,1,-2] direction (corresponding to ϕ = 30◦). For this

particular direction we expect Q‖2 to have the maximum effect on the BtH dis-

sociation barrier. From the SRP-DFT calculations, we found that the [1,1,-2]
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parallel motion gives rise to the largest changes for all the dissociation barri-

ers. However, these changes are still small compared to the changes accompa-

nying perpendicular motion of the same Cu atom. Except for the TtH barrier,

the β coefficient is one order of magnitude larger for Q⊥2 than for Q‖2 .

For all the dissociation barriers considered, the 3rd layer vibration of the fcc

Cu atom has negligible effect on the barrier height. This suggests that the 3rd

layer motion - and reasonably the motion in any lower layer - does not have

an important effect on the reaction. These layers can still have a dynamical

influence by exchanging energy through their coupling with the upper layers

and acting like a thermal bath. However, also considering the mass mismatch

and the small forces, we expect a very small exchange of energy between the

molecule and the surface atoms in this layer, and this effect is unlikely to play

a major role in the dynamics.

Summing up, we have found that the lattice coordinates that cause the

largest effect on the H2 / Cu(111) DFT-SRP barrier heights and locations are

the motion of the 1st layer and 2nd layer Cu atoms in the Z direction, Q⊥1
and Q⊥2 , and the motion of the 1st layer atom in the parallel direction Q‖1 .

The effects of Q⊥1 and Q⊥2 are additive to a good approximation and are very

different from each other. Motion in the first coordinate induces changes in

the position of the barrier, which are partially described by the SO model.

Motion in the latter coordinate, on the other hand, mostly affects the height of

the barrier. As in the MSO model, for small Q⊥2 the coupling is linear in the

lattice coordinate. In this case the dissociation geometry change is negligible

and the almost linear coupling leads to a linear change of the barrier height

with Q⊥2 . Further investigation is needed for the parallel motion of the first

layer atom, Q‖1 .

It is interesting to note that the largest changes in barrier location occur for

first layer Cu atom motion perpendicular to the surface, with the barrier al-

most moving with the surface atom, as in the SO-model. The largest changes

with barrier location are found for the TtH and t2h dissociation geometries

(α = 0.83 and 0.72, respectively), where the molecules centre-of-mass is close
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to the moving atom. This suggests that the barrier location effect mostly re-

sults from the Pauli repulsion between the moving first layer atom and the

impinging molecule. The changes occurring in the barrier height with per-

pendicular motion of a second layer Cu atom, or parallel motion of a first

layer Cu atom, are more subtle, and probably reflect electronic interactions of

a more delocalised nature. We intend to explore these effects in more detail in

a subsequent study.

Another feature of a PES we investigated is the anisotropy of the potential

in the angles of orientation, i.e. the dependence of the barrier height on the

coordinates ϕ and ϑ of H2. A dependence of the anisotropy on the surface

atom motion could increase the reactivity of the molecule in some particular

rotational states, thus resulting in a different quadrupole rotational alignment

parameter in associative desorption.

Fig. 4.9 shows how the barrier height depends on the angular coordinates,

when the 2nd layer Cu atom is displaced from its equilibrium position. Motion
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α (dimensionless) β (eV/Å)
Lattice coord Barrier RPBE SRP PW91 RPBE SRP PW91

BtH 0.34 0.34 0.34 0.104 0.102 0.103
Q⊥1 t2h 0.73 0.73 0.73 -0.069 -0.054 -0.034

TtB 0.83 0.83 0.83 -0.067 -0.051 -0.032
hcp 0.44 0.45 0.46 -0.065 -0.077 -0.120
BtH -0.03 -0.05 -0.11 -0.297 -0.293 -0.287

Q⊥2 t2h 0.00 0.00 0.00 -0.262 -0.261 -0.262
TtH 0.00 0.00 0.00 -0.032 -0.032 -0.027
hcp 0.04 0.04 0.04 -0.372 -0.374 -0.376

Table 4.4: Dependence of the linear coefficients α and β on the SRP mixing
coefficient.

in Q⊥2 has small effects on the angular anisotropy of the PES: the effect both

for ϕ and for ϑ is mostly to shift the curves upwards or downwards. No large

dependence of the barrier height change with Q⊥2 on the angular coordinates

is found.

Even without any influence on the angular anisotropy of the potential, a

change in the rotational quadrupole alignment parameter is still possible. As-

suming normal energy scaling and neglecting the coupling between scattering

coordinates and parallel momentum, the reaction probability is the average of

the reaction probability at each (X, Y) site of the surface [21]. For each site, our

results suggest that Q⊥2 has little effect on the dependence of the reaction prob-

ability on the rotational state, since it does not affect the angular anisotropy.

However, the displacement of the Cu atom changes the barrier height by a

different value at each (X, Y) geometry. In this way the inclusion of Q⊥2 could

favor the reaction at specific (X, Y) configurations with either lower or higher

angular anisotropy, resulting in a different reaction probability for a given ro-

tational state, and consequently a different rotational quadrupole alignment

parameter, which might affect the comparison [26] with experiments [9].

To complete the analysis, we now briefly discuss the DFT-SRP method in

the context of surface motion. The mixing coefficient in the SRP functional

of Díaz et al. [25] was chosen to reproduce the results of an D2 + Cu(111)
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scattering experiment with a low surface temperature (TS = 120 K). In these

conditions, we expect the surface motion influence on the reaction to be small.

Nevertheless, it is possible that the inclusion of a surface degree of freedom

in the dynamical model could affect the reaction probability somewhat even

for a low surface temperature. In this case, a small adjustment of the mixing

coefficient could lead to increased agreement with experiment.

Table 4.4 reports the values of the linear parameters α and β computed

with RPBE, SRP and PW91 for the lattice coordinate Q⊥1 , Q⊥2 and for the usual

dissociation geometries. The RPBE and PW91 functionals correspond to the

extreme possible values of the SRP mixing coefficient: x = 1.0 for RPBE and

x = 0.0 for PW91. We found that the values of α are mostly unaffected by the

change of functional. The differences in the β coefficients, on the other hand,

are few hundredths of eV/Å. Considering the order of magnitude of the Cu

displacement, these differences determine an energy change which is smaller

than 10 meV.

We conclude that a change of PW91-RPBE mixing would not alter the de-

pendence of the barrier on the lattice coordinates much. We can reasonably

assume that our present results would not be significantly affected by an ad-

justment of the coefficient.

4.4 Conclusions

In the work presented here, we have investigated the problem of how the in-

clusion of lattice motion affects the reaction of H2(D2) on Cu(111). With DFT

calculations in the SRP approach, we have studied the dependence of the dis-

sociation geometry and the barrier height on some localized surface degrees

of freedom. We found that within the temperature range relevant to the ex-

periments on dissociative sticking and associative desorption, these effects are

linear to a good approximation. They can be represented by two parameters,

α and β, describing respectively the dissociation geometry displacement in Z

and the change in the barrier height.
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The α and β parameters are highly dependent on the (X, Y) coordinates.

When the molecule is over a top site, the largest changes are caused by motion

of the nearest 1st layer Cu atom and the effect is essentially a shift of the barrier

geometry. The α parameter associated with Q⊥1 is close to 1, whereas β is

almost 0. When the molecule is on a bridge or hollow site, both the 1st layer

and the 2nd layer should be taken into account. In this case the lattice motion

- especially Q⊥2 and Q‖1 - can raise or decrease the barrier height and the β

parameter for these lattice coordinates differs considerably from 0.

At least for the 2nd layer Cu atoms, the effects of lattice motion seem mostly

independent on the angular coordinates (ϑ, ϕ).

From the dynamical point of view, the α parameter takes into account

a simple mechanical recoil effect, which in previous studies has been intro-

duced with the SO model. This effect results in a broadening and a shift of the

reaction probability to higher energies. According to previous dynamical sim-

ulations [26, 34], recoil plays a minor role in the dissociative chemisorption of

hydrogen and deuterium. This fact is well understood in terms of the magni-

tude of the force acting on the lattice atoms and the mass mismatch between

the incident molecule and the metal atoms.

The effect described by β, on the other hand, cannot be included in the PES

using the SO model. For this reason its consequences on the dynamics have

been investigated in very few theoretical works, either with a model coupling

linearly dependent on Q [33] or through the inclusion of a lattice degree of

freedom in the PES [40]. The available results show that the introduction of

this kind of effect lead to a TS dependent broadening and a small shift of the

sticking probability to lower energies.

In conclusion, both lattice effects - the geometry shift and the barrier height

change - probably lead to a broadening of the reaction probability. In the past

it has been shown that the SO model alone is not sufficient to reproduce the

broadening of the sticking curve with TS measured in experiments [7, 25, 26].

Our calculations clearly indicate that the combination of the effects induced

by both the first and second layer could be responsible for this behavior, and
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that it should be necessary to move beyond the SO-model when describing

the effect of surface phonons on reaction of H2 on Cu(111).

Further, we expect that the inclusion of the motion of the 2nd layer Cu atom

in the dynamical model would increase the reaction probability for the bridge

and t2h reaction sites at low incident energy. On the other hand, we expect a

smaller influence on the reaction probability for the top site. Because of the

high ϕ anisotropy at these sites, at the bridge and t2h sites the reaction is not

likely to occur in rotationally excited states with high MJ . This could lower the

rotational quadrupole alignment parameter at low incident energies, leading

to a better agreement with the experimental results for D2 + Cu(111) [9] than

obtained before [26].

As in the dynamical simulations of Tiwari and co-workers [40], the effect

parametrized by β could be relevant for the interaction of H2 on Cu(111) in

the absence of energy transfer to the phonons. In our case the reduced mass

of the incoming molecule and the magnitude of the force acting on the lattice

are even smaller than in the system of Ref. [40]. This makes H2 on Cu an ideal

system for applying vibrational sudden approximations [40, 48, 49], and the

validity of these approximations for the phonons should be explored in future

studies of H2 + Cu(111).

The results presented in this chapter are reported in the following publication:

M. Bonfanti, C. Díaz, M. F. Somers and G. J. Kroes,

“Hydrogen dissociation on Cu(111): the influence of lattice motion. Part I”

Phys. Chem. Chem. Phys., 13, 4552-4561 (2011)
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Chapter 5

Vibrational relaxation and
sticking of H on graphite

5.1 Introduction

Many interesting chemical processes can be effectively described in the frame-

work of system-bath dynamics: in such systems the effect of the environment

can be modeled as a large set of degrees of freedom in thermal equilibrium

coupled to the system of interest. In the specific case of gas-surface dynamics,

as an example, the degrees of freedom of the adsorbing species are coupled to

the phonons and to the electron-hole pair excitations of the solid.

The presence of the environment plays two main roles on the system dy-

namics. On one hand, the energy of the system is transferred to the sur-

rounding and dissipated. This effect is crucial, e.g., in vibrational relaxation

phenomena or atomic sticking on surfaces, which are made possible by the

dissipation of kinetic energy to electrons and phonons. Phenomenologically,

this energy transfer is well described by the Generalized Langevin Equation

(GLE), in which the system is subjected to a random fluctuating force and to

an effective friction force [1].

On the other hand, there is another less obvious effect that is strictly con-

nected to quantum dynamics. The coupling of a quantum system to the sur-

rounding causes the loss of coherence of the wavepacket, hence dramatically

79
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changes the quantum behavior of the system. One of the best studied exam-

ple is the tunneling probability, which is drastically reduced by the coupling

with the environment [2].

The development of dissipative dynamical models is a challenging prob-

lem for current quantum techniques. The exponential scaling of these kinds

of methods prevents a “brute force” approach, in which a large number of

degrees of freedom for the environment is included in the model in an exact

way. For this reason simplified approaches are mandatory, and have indeed

been developed, trying to include the effect of the environment by means of

appropriate approximations.

One approach is based on the theory of open quantum systems and focus

on the derivation of a master equation for the system, i.e. a modified propaga-

tion equation in which the environment is implicitly included in the dynamics

[3, 4]. However, the approximation scheme used in the derivation of this kind

of methods is rigid and prevents the possibility of including interesting phys-

ical properties (such as memory effects in dissipation, or nonlinearity of the

coupling).

An alternative more flexible approach is to explicitly couple the system to

a bath consisting of a large number of harmonic oscillators [5]. The resulting

Caldeira-Leggett Hamiltonian can be used to model either the classical or the

quantum dynamics of a system capable of exchanging energy with the sur-

rounding. Since the classical solution of the Caldeira-Leggett Hamiltonian is

equivalent to a GLE, a connection can be established between the parameters

of the Caldeira-Leggett bath (harmonic frequencies and couplings) and the

fluctuation-dissipation properties of the Langevin force. Hence this impor-

tant result directly relates the microscopic properties of the system and the

phenomenological Langevin model [1, 6].

The actual solution of a quantum system-bath model requires approxima-

tions on the time-dependent wavepacket dynamics to reduce the computa-

tional cost and to make the problem tractable in spite of the large number

of degrees of freedom. To this aim, Multi-Configuration Time-Dependent



5.1. Introduction 81

S

Normal Bath

S

Linear Chain
ω1 ω2

ω3

ω4

ω5

ω6ω7ω8
ω9

ω10

ω11

ω12

Ω1 Ω2 Ω3 Ω4 Ω5

Figure 5.1: Pictorial representation of a normal oscillator bath and the equiv-
alent linear chain, obtained through the effective mode transformation

Hartree (MCTDH) [7–9] and related methods have been shown to be very

effective: baths with tens of degrees of freedom coupled to different model

systems have been used with success in many recent works [10–15].

Still, the bath models applied so far are still too small to allow the descrip-

tion of a realistic system within the Caldeira-Leggett approach. The main

practical problem of a small size bath is the strict limit set on the time of the

dynamics which can be accessed without incurring in Poincaré’s recurrence.

In this sense, a great improvement may be achieved expressing the Caldeira-

Leggett bath in an equivalent linear chain form by an effective mode trans-

formation (Fig. 5.1). This transformation was first used in Ref.s [14, 16, 17]

and has been recently expressed in an analytical form [18, 19]. The advan-

tage of this equivalent representation lies in the fact that the system is directly

coupled only to one oscillator, and not to the whole set of oscillators. In this

form, there are oscillators “far” from the system that do not directly influence

the system dynamics, but are used only to accommodate the energy flowing

along the chain. We expect that a crude approximation on the description of

these oscillators may be applied without critical consequences on the system

dynamics. In the framework of MCTDH methodologies, this can be easily

achieved by using a mean field approximation for the far part of the chain.
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α / a.u. De / eV ωHO / cm−1 Nbound

1.238 1.550 2140 11

Table 5.1: Parameters of the Morse potential of the system. ωHO is the har-
monic frequency at the minimum, Nbound the number of bound states.

In this work, we investigate two typical atom-surface problems - energy

relaxation and sticking - that necessarily require the inclusion of dissipation.

We consider a hydrogen atom subjected to a Morse potential, with model pa-

rameters mimicking the interaction with a graphite surface. The system is

coupled with different model baths, ranging from the ideal Ohmic bath to a

more realistic bath. Quantum dynamics is performed with MCTDH meth-

ods and the performances of the normal and chain bath representations are

compared for both problems.

The details of the models considered are reported in section 5.2, whereas

the methodology adopted is presented in section 5.3. Then the results are re-

ported and discussed in section 5.4 and some conclusions are drawn in section

5.5.

5.2 Models

In this work we studied energy dissipation and fluctuations by means of the

following Hamiltonian, based on the Caldeira-Leggett model [5]

H =
p2

2m
+ V(x) + ∑

k

 p2
k

2mk
+

1
2

mkω2
k

(
qk −

ck f (x)
mkω2

k

)2
 (5.1)

This Hamiltonian is composed of a system of mass m subjected to the poten-

tial V(x) and a variable number of harmonic oscillators, of frequency ωk and

mass mk. It should be noted that in this Hamiltonian, the N harmonic oscil-

lators effectively reproduce the fluctuation and dissipation properties of the

environment, rather than be realistic description of the interacting medium in

which the system is placed [1].
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The system - in our case an atom colliding or adsorbed to graphite - is

described with a single degree of freedom, the distance between the atom and

the surface. To model the system interaction, we choose a Morse potential

V(x) = De

(
e−2αx − 2 e−αx

)
(5.2)

with parameters that best reproduce the adsorption of a hydrogen atom to the

top site of graphite (see Tab. 5.1).

The coupling Vcoupl = ∑k ckqk f (x) between the system and each oscillator

is linear in the bath coordinates and depends on a set of coefficients ck. The

function f (x) has been introduced to switch the coupling off when the atom

is far from the surface. In particular, our choice for f (x) is

f (x) =
1− e−αx

α
(5.3)

where α is the same parameter of the Morse potential [13–15, 20]. This func-

tional form for the coupling is almost linear around the equilibrium position

of the adsorbate ( f (x)→ x for x → 0 ). At the same time, at large distances the

coupling tends to a finite value, which is subtracted from the whole potential

to set the right asymptotic limits.

In addition to the harmonic potential of the oscillators, namely ∑k
1
2 mkω2

k q2
k ,

and the coupling Vcoupl , a third term appears by expanding the square in Eq.

5.1. This contribution Vdist = 1
2 f (x)2 ∑k

[
c2

k/(mkω2
k)
]

depends only on x and

introduce a potential correction, that balances the distortion of the dynamics

due to the effect of the coupling on the system.

We choose the frequencies ωk and the couplings ck of the bath so that the

function

J̃(ω) =
π

2 ∑
k

c2
k

mkωk
δ(ω−ωk) (5.4)

is a proper discretization of a given continuous spectral density J(ω). This

function, in fact, fully characterizes the fluctuation and dissipation proper-

ties of an infinite bath, through the relation that can be established between
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the Caldeira-Leggett Hamiltonian and a Langevin dynamics. The GLE corre-

sponding to Eq. 5.1 can be written as

mẍ = −V ′(x) + f ′(x)
(

ξ(t)−
� ∞

t0

γ(t− τ) f ′(x(τ))ẋ(τ)dτ

)
(5.5)

where γ(t) is a memory-kernel entering in the dissipation term and ξ(t) is a

random force that induces energy fluctuations in the system.

Both the random noise and the memory-kernel are fully determined by

the choice of the spectral density [19]. The function J(ω) is defined in terms

of the Fourier transform of γ(t)

J(ω) = mω<
� +∞

−∞
γ(t) eıωt (5.6)

and this relation can be inverted by exploiting the analytical properties of the

memory-kernel (in particular by means of Kramers-Kronig relations). Fur-

thermore, when the bath is in thermal equilibrium, ξ(t) is a stationary Gaus-

sian noise of vanishing mean, and its correlation function obeys the fluctuation-

dissipation theorem 〈
ξ(t)ξ(t′)

〉
= mkBTγ(|t− t′|) (5.7)

For further details the interested reader should refer to Ref. [21].

A particularly simple case of spectral density is the Ohmic case, J(ω) =

mγω with γ constant. In this special condition, it can be seen from Eq. 5.6 that

γ(t) is a Dirac delta and the dissipation term in Eq. 5.5 depends only in the

velocity at present time. In other words, the system evolution is a Markovian

process: dissipation and fluctuations have no memory of the past dynamics

of the system.

In the present work, we adopted different spectral densities, which are

reported in Fig. 5.2 along with the corresponding memory-kernel γ(t). In

detail, they are:

1. Three truncated Ohmic spectral densities, i.e. J(ω) = mγω for ω ≤
ωc and J(ω) = 0 for ω > ωc. This bath corresponds to a Markovian
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Figure 5.2: Spectral density (top panels) and memory kernels (lower panels)
of the bath models adopted in this work. Left: truncated Ohmic baths with
γ−1 = 50 f s (solid), γ−1 = 100 f s (dotted) and γ−1 = 200 f s (dashed). Right:
non Ohmic baths with the Garg spectral density (dashed) and the PPV-Bump
spectral density (solid).

dynamics on a time scale t � ω−1
c . We considered different values of

the dissipation strength, which in turn determine different relaxation

times: γ−1 = 50 fs (OHMIC-50), γ−1 = 100 fs (OHMIC-100) and γ−1 =

200 fs (OHMIC-200). In all the cases the cutoff frequency has been set to

ωc = 0.02 au.

2. A Lorentzian spectral density

J(ω) =
d2

0
m0

γω

(ω2
0 −ω2)2 + γ2ω2

with a cutoff frequency ωc = 0.02 au (GARG-50). This is the spectral

density felt by a particle interacting with a harmonic oscillator of fre-

quency ω0 and mass m0, which in turn is coupled to a Ohmic bath with
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γ−1 relaxation time. This model has been first introduced by A. Garg

and other authors [22]. We set ω0 = 0.1 au and γ−1 = 50 fs. The param-

eter d2
0/m0 = 1.497 · 10−6 au is chosen so that D2

0 = mbath
2
π

� ∞
0 ω J(ω) dω

is equal for the GARG-50 and the OHMIC-50 model.

3. A realistic spectral density (see Fig. 5.2) adapted from Ref. [23], which

was obtained for the effect of environment on the exciton energy trans-

fer in semiconducting polymers (PPV-BUMP). A Gaussian feature was

added at high frequencies to make the spectral density more structured

[19]. For this spectral density, we set ωcuto f f =5000 cm−1 =0.02278 au.

Note that in Fig. 5.2 the memory-kernels of the Ohmic baths have small os-

cillations, in contrast with an ideal Ohmic bath for which γ(t) = 0 for any

t 6= 0. However, these oscillations, due to the Fourier transform of the cutoff,

are on a time scale of ω−1
c ≈ 1 fs and have an almost negligible effect on the

relaxation phenomena we are interested in, that take place in a period 50 to

200 times larger.

The benchmark calculations reported in this chapter have been obtained

with the normal representation of the bath, i.e. the bath Hamiltonian of Eq.

5.1, properly discretized to reproduce the various spectral densities consid-

ered. The same simulations were realized also with the linear chain represen-

tation of the bath:

H = Hsys + Vdist − D0 f (x) X1 +
1
2

N

∑
n=1

{
P2

n + Ω2
nX2

n
}
−

N−1

∑
n=1

DnXnXn+1

This Hamiltonian is obtained by virtue of a normal-mode transformation of

the Caldeira-Leggett model (Eq. 5.1). In this form the bath is represented by a

set of N harmonic oscillators of unitary mass, with position Xn and momen-

tum Pn. The frequencies Ωn and the couplings Dn can be obtained with a

suitable transformation (described in Ref. [18, 19]).

The advantage of the linear chain representation lies in the possibility to

make a stronger approximation, suggested by a simple consideration: in the

normal bath, all the oscillators are directly coupled to system, whereas in the
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linear chain this is no longer true. This suggests that in the linear chain it is

not necessary to reproduce the precise dynamics of those degrees of freedom

which are less directly coupled to the system. Instead, a large part of the

chain may be treated in a mean field approximation, thereby allowing a huge

reduction of the wavefunction and consequently of the computational cost of

the simulation.

5.3 Methodology

Time propagation was performed with Heidelberg MCTDH package [24], by

expanding the wavefunction on a set of mode-combined single-particle func-

tions. The single-particle functions, in turn, are expanded on a Discrete Vari-

able Representation (DVR) basis set, chosen in accord to the degree of freedom

considered.

5.3.1 Bath representation

In the case of the calculations with a bath in the normal representation (as in

Eq. 5.1), we used a 50 oscillators bath, combined in modes of 5 degrees of

freedom each. We tested the number of single particle functions in order to

check the convergence of the relevant results for the problem considered (the

chosen correlation schemes are reported in Tab. 5.2). In the following we will

describe data obtained with this model as “normal bath” results.

In the case of the linear chain, on the other hand, we used chains of dif-

ferent length and tested different correlation schemes. In most calculations

we used a 100 oscillators long linear chain, but calculations were also done

with 200 and 300 degrees of freedom. We fully correlated just a small part

of this chain (typically Ncorr = 5, 10 or 15 degrees of freedom) and described

the remaining part at a Time-Dependent Self-Consistent-Field (TD-SCF) level.

As discussed above, with this scheme we accurately describe those degrees

of freedom that mostly affect the dynamical behavior of the system, and we
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treat the remaining with a mean field approximation. In the following sec-

tions, we will label these correlation schemes as “partially correlated chains”

(abbreviated as PCC-M-N, where M is the total length of the chain and N is

the number of correlated degrees of freedom).

In some case we also performed calculations in which we used a fully

correlated small chain of few (5, 10 or 15) degrees of freedom. These results

are reported to highlight the effect of the addition of a TD-SCF chain in the

partially correlated chains. These model baths will be addressed as “truncated

chains” (TC-N, where N is the number of degrees of freedom).

In both the partially correlated chains and the truncated chains, we adopted

the same single particle scheme for the correlated degrees of freedom. The

schemes for each number of correlated degrees of freedom and for all the

model baths adopted are reported in Tab. 5.3 (relaxation calculations) and

Tab. 5.4 (sticking calculations). Note that correlation schemes of the sticking

calculations include a much larger number of single-particle functions. This is

due to two different reasons. On one hand, in the sticking problems it is nec-

essary to describe a stronger degree of correlation, as can be analogously seen

for the normal bath models in Tab. 5.2. On the other hand, a higher number of

single-particle functions is required since the system degrees of freedom x has

to be treated as a single mode, due to a technical problems connected to the

calculation of sticking probability with MCTDH package. However, last prob-

lem could be solved in future with the adoption of a different methodology

for sticking simulations and hence a further reduction of the computational

cost of these calculations could be achieved.

5.3.2 Relaxation and sticking models

To study energy relaxation, we considered an initial out-of-equilibrium bound

state with an average position at a distance of 0.159 Å from the minimum of

the potential well. Evolving the system in time, the wavepacket oscillates

around the minimum and transfers energy to the the bath. During the prop-

agation, we computed the total energy of the oscillating hydrogen as the sum
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5 Correlated degrees of freedom 10 Correlated degrees of freedom

All models
x, q1, q2 3
q3, q4, q5 3

All models
x, q1, q2 5
q3, q4, q5 6
q6, q7, q8 6

q9, q10 4

15 Correlated degrees of freedom
Ohmic-50 and Ohmic-100 and

Garg Ohmic-200
x, q1... q3 8 11
q4 ... q7 10 12
q8 ... q11 10 10
q12 ... q15 7 8

PPV-Bump
x, q1, q2 5
q3 ... q5 6
q6 ... q8 6
q9 ... q11 6
q12 ... q15 7

Table 5.3: Single particle scheme of the correlated degrees of freedom in the
chain models for the relaxation calculations.

5 Correlated degrees of freedom
Ohmic-200 and

Ohmic-100 PPV-Bump Garg
x 12 14 16

q1, q2, q3 11 12 14
q4, q5 10 10 12

10 Correlated degrees of freedom 15 Correlated degrees of freedom

Ohmic and
PPV-Bump Garg

x 14 18
q1, q2, q3 12 14
q4, q5, q6 10 10
q7 ... q10 9 9

Ohmic and
PPV-Bump Garg

x 14 18
q1, q2, q3 12 14
q4, q5, q6 10 10
q7 ... q10 9 9
q11 ... q15 8 8

Table 5.4: Single particle scheme of the correlated degrees of freedom in the
chain models for the sticking calculations.
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average momentum length strength
〈p〉/ au Labs / au η / au

4 5.5 0.00008
6 5.5 0.00035
8 5.5 0.00070

10 5.5 0.00095
12 5.5 0.00120

Table 5.5: Parameters of the absorbing potential employed in the sticking sim-
ulations.

of the kinetic and the (non distorted) potential energy of the system plus half

the coupling between the system and the bath:

Esys =
〈
Hsys

〉
+

1
2
〈
Vcoupl

〉
(5.8)

We followed the relaxation dynamics until recurrence time was reached and

the energy flowed back from the bath to the system.

For the same relaxation process, we also considered a quantity that may be

expected to be more sensitive to approximations. We computed the quantum

correlation of the position, defined as

Cx(t) = 〈x(t)x(0)〉 (5.9)

where x(t) is the position operator in the Heisenberg picture. This correlation

function can be computed by combining the results of different wavepacket

propagations. In fact, Cx(t) can be expressed as the matrix element

Cx(t) = 〈ψ0|eıHt x e−ıHt x|ψ0〉 = 〈ψt| x |φt〉

which is just a matrix element between two independently evolving wavepacket:

|ψt〉 = e−ıHt |ψ0〉 is the normal wavefunction, while |φt〉 = e−ıHt x |ψ0〉 can be

obtained by propagating a different initial wavefunction |φ0〉 = x |ψ0〉.
In the case of sticking simulations, the initial wavepacket for the system

was placed far from the equilibrium position (precisely at 6.35 Å), in the asymp-

totic region of the potential. Different simulations were performed with var-
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ious values of the incoming momentum: 4, 6, 8, 10 and 12 au, correspond-

ing to hydrogen kinetic energy of 0.12, 0.27, 0.47, 0.74 and 1.07 eV respec-

tively. We chose a wavepacket with a narrow momentum distribution, so

that we can approximately assume that the wavefunction represents a parti-

cle with a definite kinetic energy corresponding to the average momentum of

the wavepacket. Evolving in time, the H atom reaches the interaction well and

a part of the energy is transferred to the bath. Consequently, a fraction of the

wavepacket is trapped in the well, while the remaining is reflected by the re-

pulsion wall and goes back to the asymptote, where is absorbed by a quadratic

optical potential. Tab. 5.5 reports the length Labs and the strength η of the

absorbing potentials we adopted for each value of the average wavepacket

momentum.

We followed the wavepacket evolution computing the projection of the

wavepacket onto the bound states of the Morse potential

Pbound =
Nbound

∑
n=1
|〈n |ψt〉|2 (5.10)

As a function of time, the resulting bound state probability has the behavior

shown in Fig. 5.3, reported here as an example. This probability is initially

equal to zero since the wavepacket is far from the potential well. When the

wavepacket reaches the potential well the probability increases until at long

time a plateau is reached. The value of this plateau equals the fraction of

the wavepacket which has been trapped in the adsorption potential, i.e. the

sticking probability.

5.4 Results and Discussion

5.4.1 Energy relaxation

Fig.s 5.4, 5.5 and 5.6 show the results of the vibrational relaxation calculations.

In each graph, the system energy is plotted as a function of time, for the sim-

ulations performed with the normal baths, the partially correlated chains and

(where available) the truncated chains.
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Figure 5.3: Bound state projection (Eq.5.10) as a function of time for the sim-
ulation of the OHMIC-100 sticking models. Results corresponding to differ-
ent kinetic energies of the hydrogen atom are reported. The thick lines are
the results obtained with a normal bath, while the other lines are the results
with partially correlated chains: PCC-100-5 (dotted lines) PCC-100-10 (dashed
lines) and PCC-100-15 (solid lines).
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Figure 5.4: System energy (defined as in Eq.5.8) as a function of time for
the relaxation calculations with the OHMIC-50 (top panel) and OHMIC-100
(lower panel) bath models. Each graphs show the results obtained with a nor-
mal bath (thick black line), partially correlated chains of 100 oscillators with
variable number of correlated degrees of freedom (solid lines) and the corre-
sponding truncated chains (dashed lines).
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Figure 5.5: System energy (defined as in Eq.5.8) as a function of time for the
relaxation calculations with the OHMIC-200 bath model. The graph shows
the results obtained with a normal bath (thick black line), partially correlated
chains of 100 oscillators with variable number of correlated degrees of free-
dom (solid lines) and the corresponding truncated chains (dashed lines).

Normal bath calculations predict that the energy relaxation curve in pres-

ence of an Ohmic bath is an exponentially decaying function, in agreement

with what is expected for the corresponding Langevin dynamics. In fact, in

this case energy dissipation has no memory effects, and Langevin equation

at 0 K is essentially a damped oscillator, for which the classical relaxation is

expected to follow an exponential decay. When memory effects are included,

as in the two non Markovian cases considered in our work, the energy profile

shows oscillations superimposed to the decay.

As evident from the graph, the normal calculations have the correct behav-

ior until recurrence time is reached (between 350 fs and 400 fs). To describe

the relaxation at longer times, it is necessary to increase the number of bath

oscillators. This is extremely expensive for the bath in normal form, since all

the new degrees of freedom needs to be correlated to the system itself. For
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Figure 5.6: System energy (defined as in Eq.5.8) as a function of time for
the relaxation calculations with the GARG-50 (top panel) and PPV-BUMP
(lower panel) bath models. Each graphs show the results obtained with a
normal bath (thick black line), partially correlated chains of 100 oscillators
with variable number of correlated degrees of freedom (solid lines) and the
corresponding truncated chains (dashed lines).
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the calculations reported here, we are slightly below the limit of the computa-

tional resources available in our group.

The truncated chain results show that the linear chain and the normal bath

are indeed equivalent. As long as the energy flows along the first degree of the

chains and the dynamics of these oscillators is exactly described, the results

are almost identical. When the recurrence time of the small chains is reached

(approximately 5 fs per 5 correlated oscillators, regardless of the spectral prop-

erties of the bath), the energy gets back to the system and interfere with the

relaxation dynamics.

Concerning the partially correlated chains, we see that when the energy

flows along the first oscillators, the dynamics is again exactly reproduced.

The length of this time regime is the very same as in the truncated chains.

Then, the energy reaches the TD-SCF part of the chain and the dynamics is

no longer exact. However the relaxation of the system proceed, and at long

time reach a minimum which is in good agreement with the asymptote of the

benchmark calculation.

The relaxation dynamics with the partially correlated chains differ from

the normal bath benchmark in a way that is not easy to understand, some-

times underestimating and sometimes overestimating the exact value of en-

ergy. For the ohmic baths, the relaxation curves present an oscillatory behav-

ior, which is reduced by increasing the number of correlated degrees of free-

dom. Comparing the results obtained for different values of the relaxation

time, we see that for greater γ−1 we get worse results since a longer relax-

ation dynamics needs to be described. An excellent agreement is achieved for

non-Ohmic baths: even with Ncorr =10 we obtain almost exact results. This

suggests that the partially correlated chain representation could be especially

suitable for a realistic bath including memory effects.

For PPV-BUMP bath relaxation, we performed some tests to check the long

time performances of the linear chain representation. The results are reported

in Fig. 5.7 for chains of 100, 200 and 300 oscillators, with 10 or 15 fully cor-

related degrees of freedom. As can be seen, by increasing the length of the
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Figure 5.7: System energy (defined as in Eq.5.8) as a function of time for the
long time relaxation calculations with the PPV-BUMP bath model. The graph
reports the results obtained with a normal bath (black line) and partially cor-
related chains of 100 oscillators (dotted lines), 200 oscillators (dashed lines)
and 300 oscillators (solid lines), each with 10 (green) or 15 (blue) correlated
degrees of freedom.

chain, we manage to reach long recurrence time: approximately 460 fs for 100

oscillators, 905 fs for 200 oscillators, 1320 fs for 300 oscillators.

With 10 correlated degrees of freedom we get good results at short time,

approximately up to 400 fs. On a large time scale, however, we see that be-

fore recurrence time is reached, a small amount of energy (∼ 5 meV ) is re-

flected back to the system and the energy slightly increases. As shown by

the PCC-300-15 simulation this problem is solved by increasing the number

of correlated degrees of freedom.

We remark that with Ncorr = 15 we managed to properly describe the

relaxation process for one picosecond with a calculation that lasted slightly
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chain length Ncorr = 10 Ncorr = 15
100 615.63 s 1,746.30 s
200 818.04 s 3,033.85 s
300 1,078.71 s 3,984.57 s

Table 5.6: CPU times of the PPV-Bump long chain calculations, for a 1 ps long
dynamical simulation.

more than one hour. For a normal bath, a simulation with a similar recurrence

time is far beyond the computational limits.

5.4.2 Computational performances

From a computational point of view, the calculations with the partially corre-

lated chains reported here are considerably less time-consuming than the nor-

mal bath benchmarks. Table 5.6 reports the timings of the PPV-BUMP chain

calculations, for which the results have already been reported and discussed

(Fig. 5.7). Those values should be compared with a 400 fs propagation of the

corresponding normal bath, which required a CPU time of 11,561.98 s.

Apart from the absolute amount of time, which is clearly much smaller for

the linear chains, the most promising feature of linear chain calculation is the

scaling with the length of the TD-SCF chain, that is approximately linear. In

turn the length of the chain scales linearly with the recurrence time. Hence,

as shown in Fig. 5.8, the recurrence time of the bath can be increased at a rea-

sonable computational cost. On the contrary, as discussed above, the increase

of the bath dimension in the case of a normal bath is extremely expensive

and the computational limit is rapidly reached with less than 100 degrees of

freedom.

5.4.3 Position correlation function

To check the performances of our methodology with a quantity which might

be more sensitive to the approximation of the bath dynamics, we also consid-

ered the position quantum correlation function. The results for the OHMIC-

50, GARG-50 and PPV-BUMP bath are reported in Fig. 5.9.
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Figure 5.8: Timings of the PPV-BUMP relaxation calculation. On the horizon-
tal axis, the recurrence time of the bath, estimated from the system energy
behavior reported in Fig. 5.7. On the vertical axis, the ratio between the CPU
time of the calculation (in s) and the final time of the simulation (in fs).

Also for this property, the results are very good: the chains almost exactly

reproduce the normal bath behavior in a range of time which depends on

the length of the correlated part. After this time, the correlation functions

gradually differ in both phase and magnitude. Note that again the agreement

is much better for non Markovian dynamics.

5.4.4 Sticking probability

With the technique described in section 5.3, we used the relaxation model

to compute the sticking probability as a function of the incident energy. We

obtained the curves that are shown in Fig. 5.10.

Focusing on the exact normal bath results, we see that in all the cases con-

sidered the sticking probability is higher when the incoming particle is slower,

since relaxation is more efficient. Hence sticking probability monotonically

decreases, as it is expected for a potential without any barrier to adsorption,
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Figure 5.9: Position correlation function (defined as in Eq.5.9) as a function of
time for the relaxation calculations with the OHMIC-50, GARG-50 and PPV-
BUMP bath models (from top to bottom). Each graphs show the results ob-
tained with a normal bath (thick black line) and partially correlated chains of
100 oscillators with variable number of correlated degrees of freedom (red,
green and blue solid lines).
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Figure 5.10: Sticking probability as a function of the incident energy, for
the OHMIC-100, OHMIC-200, GARG-50 and PPV-BUMP bath models (as re-
ported in the figure). In each panel, we report the results obtained with a nor-
mal bath (in black) and those obtained with a partially correlated chain of 100
oscillators with variable number of correlated degrees of freedom (Ncorr = 5
in red, Ncorr = 10 in green and Ncorr = 15 in blue).
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such as the Morse function. For the Ohmic baths, the sticking probability has

an exponential behavior, in agreement with previous results obtained for sim-

ilar models [20]. On the contrary, it is interesting to note that when a non

Ohmic bath is considered, the shape of the sticking curve is different, linear in

a wide range. This suggests that even when the relaxation dynamics is only

indirectly considered, Markovian approximations might not be adequate and

memory effects should be properly taken into account.

With respect to the partially correlated chains, the results are in excellent

agreement with the benchmark calculations. When we adopt 5 correlated de-

grees of freedom, the shape of the sticking curve is already reasonably repro-

duced (at a very low computational cost). The points obtained with 15 degrees

of freedom are almost indistinguishable from the exact results. This fact is

well understood if we consider that in the scattering event, relaxation needs

to be described only as long as the wavepacket is in the interaction region.

Two property of the bath model are essential: (1) the short time relaxation dy-

namics needs to be exactly described and (2) the recurrence time should be

long enough to prevent the trapped fraction of the wavepacket to get out of

the potential well. As shown by the relaxation tests reported above, these are

indeed the properties ensured by the partially correlated chains approxima-

tion. In agreement with this point, for Einc = 0.12 eV a small discrepancy is

always observed, since in this case the scattering wavepacket spends a long

time in the adsorption well and a longer relaxation dynamics needs to be de-

scribed.

5.5 Conclusions

In this work, we considered the vibrational relaxation and sticking processes

for a Morse potential coupled to a thermal bath with different spectral den-

sities, in accordance with the well known Caldeira-Leggett model of dissipa-

tive dynamics. By means of MCTDH, we studied these dynamical phenom-

ena comparing the usual representation of the bath degrees of freedom with



104 Chapter 5. Vibrational relaxation and sticking of H on graphite

a novel effective mode representation [14, 16–19]. This equivalent formula-

tion of the Caldeira-Leggett Hamiltonian allows an approximation scheme

in which a large number of oscillators is included and only a small number

of them is fully described, while the others are treated at a mean-field level.

Within MCTDH framework, this approximate description is conveniently ap-

plied with a TD-SCF ansatz for the mean-field part of the chain.

For the relaxation problems considered, we computed the energy of the

system and the position correlation function as a function of time. We ob-

served that with our approximation the dynamics is exactly reproduced at

short time. For longer time some discrepancies appear, even if a reasonable

agreement is always observed, in particular for non Markovian relaxation

models. In addition to the reduced computational cost, we showed that this

approach has a very important advantage: the CPU time of the calculation

scales linearly with the number of bath oscillators. This property allows us to

enlarge the bath (and hence increase the recurrence time) without incurring in

the severe limit on the number of degrees of freedom which is typical of (both

exact and approximate) quantum dynamics.

Furthermore, we showed that the two properties remarked - the exact

short time dynamics and the possibility to increase the recurrence time - are

the essential characteristics that are needed to simulate processes like sticking,

in which the energy relaxation is only indirectly taken into account. The tests

we performed with our bath models showed that an excellent agreement can

be achieved at a very low computational cost.

In conclusion, in this work we have presented and applied a very promis-

ing approximate methodology, which can be applied within Caldeira-Leggett

dissipative models to reduce the computational costs of the simulations and

avoid recurrence problems related to the finite size of the bath. A future de-

velopment of this work will be the application of this technique to a realistic

sticking problem, in which both the system potential and the spectral density

of the bath are chosen to describe the dynamical properties of a gas-surface

problem.
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Appendix A

Quantum Scattering Theory

In this appendix some key concepts and some applications of quantum scat-

tering theory will be presented. This approach is the natural theoretical back-

ground of experiments in which a beam of incoming particle is scattered by

the interaction with something else (other particles, a surface, a crystal, etc.).

The starting point is splitting the system Hamiltonian in two terms

H = H0 + V (A.1)

a free Hamiltonian H0 and an interaction Hamiltonian V. For t→ ±∞ we assume

that the system is described by an asymptotic state, that evolves according to

H0. For finite times, the system feels also the interaction and evolves accord-

ing to the total Hamiltonian H.

As an example, two colliding particles1 interacting with a potential V will

be described by the Hamiltonian

H = T1 + T2 + V12

where Ti is the kinetic energy operator of the ith particle. In this case the

obvious choice is to set the free Hamiltonian H0 = T1 + T2, i.e. the evolution

of the non interacting particles.

1in this example we assume no internal degrees of freedom, e.g. we can consider two atoms
from a “chemical” point of view

107
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As further example, we consider the full Hamiltonian of a diatomic molecule

in an external potential, such as the interaction of the molecule with a surface,

which can be written as

H = Ttrasl(R) + Trot+vib(r) + Vinternal(r) + Vext(R, r)

where R and r are respectively the coordinates of the center of mass and the

vector distance between the two atoms (in spherical coordinates the bond

length r and the orientation angles ϕ, ϑ ). If we assume that in the scatter-

ing process the molecule does not dissociate, we can set H0 = Ttrasl(R) +

Trot+vib(r) + Vinternal(r). In this way the free evolution will describe the trans-

lation and the rotation of the molecule.

In a scattering experiment, the information that are accessible are the state

in which the system is prepared (which we will call the incoming asymptote)

and the properties measured after the scattering (the outcoming asymptote). On

the other hand, theoretical methods let us describe how the system evolves

according to the full potential, and the link between the actual state and the

asymptotic states may not be trivial. One of the goal of scattering theory is

to relate the interaction potential to the transition probabilities between the

asymptotic states.

In the following we will very often make use the free Hamiltonian eigen-

states. Before going on, a comment on the notation is needed. In general

free Hamiltonian eigenstates are a combination of two parts: a plane wave

for the scattering coordinate (e.g. the relative distance of two colliding parti-

cle, or the center of mass of the molecule experiencing the external potential)

and another part for the other degrees of freedom. In the following we will

generally write the free Hamiltonian eigenstates as

|pα〉 ,
∣∣p′β〉 ,

∣∣p′′γ〉 , . . .

where the the letter p is the momentum associated to the plane wave and the

Greek letter is a collective index labelling the quantum state for the other co-

ordinates. For the sake of convenience, we will assume α to be discrete. This is
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not always true, e.g. the vibrational states of the molecule become continuous

in the dissociation limit. Anyway, the generalization of the equations in this

sense is usually straightforward and implies the substitution of the sum over

α with an integral.

I will just discuss the main definitions and those aspects which are more

related to the problems of scattering of molecules on surfaces. For a more

comprehensive and thorough discussion of scattering theory, we refer to the

books by J.R.Taylor [1] and by R.G. Newton [2].

A.1 Time dependent formalism

A.1.1 Time evolution operator

According to Quantum Mechanics postulates, time evolution of a state is de-

scribed by time dependent Schrödinger equation:

H |ψ〉 = ıh̄
∂ |ψ〉

∂t
(A.2)

The first step in the development of a quantum description of an evolv-

ing system is expressing this differential equation with a continuous group

of operators describing the time dependence of the system, the time evolution

operators. We briefly recall some useful properties of such operator group (for

an exhaustive discussion see Ref. [3]).

Schrödinger equation is a first-order linear differential equation: given an

initial condition, the solution is uniquely determined at any time. Hence we

can define the time evolution of a system with a time evolution operator U(t),

such that

|ψτ+t〉 = U(t) |ψτ〉 (A.3)

where |ψτ+t〉 is the wave-function at time τ + t and |ψτ〉 is the wave-function

at time τ. Time evolution operators are linear unitary operators satisfying the

composition relation

Ut1+t2 = Ut1Ut2
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From the unitarity and the composition relation we can relate the evolution

for positive times and negative times

U†
t = U−t

Substituting Eq. (A.3) in Schrödinger equation we get

HU(t) |ψ〉 = ıh̄
∂ (U(t) |ψ〉)

∂t

which can be rewritten as an operator equivalence:

∂

∂t
U(t) = − ı

h̄
H U(t)

In our case, H does not have an explicit dependence on time and the equation

can be formally integrated, giving a very simple and useful expression for the

time evolution operator

U(t) = exp
(
− ı

h̄
Ht
)

(A.4)

As for the full Hamiltonian, we can build a time evolution operator corre-

sponding to the free Hamiltonian H0, which is solution of Schrödinger equa-

tion for the non-interacting system and can be written as

U0(t) = exp
(
− ı

h̄
H0t
)

(A.5)

when the free Hamiltonian does not depend explicitly on time, as in our case.

A.1.2 Møller operators and S matrix

A scattering experiment can be idealized in the following way. The system

is initially prepared in a state which is a combination of free eigenstates |pα〉.
For the results to be as detailed as possible, we want this incoming asymptote

to be prepared in a well defined quantum state α, or at least to be character-

ized by a very narrow distribution. Long time before the interaction takes

place, the system evolves according to U0(t), since in this asymptotic regime

V(xasym) = 0. When the interaction is “switched on” (e.g. the particles collide,
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or the molecule reach the surface) the evolution of the system is given by the

full Hamiltonian U(t), whose effect is usually to couple degrees of freedom

which are uncoupled in the free evolution. Long time after the interaction, the

state will be a superposition of free eigenstates |pα〉 possibly different from

the initial one and evolving according to U0(t) again.

The relevant information that can be extracted from this experiment, is the

probability for the system to go from the initial state |pα〉 to one other free

state |p′β〉
w(pα← p′β)

For this purpose, we need some tools to relate the incoming and outcoming

asymptotes to the interacting system. These tools are Møller operators, defined

as

Ω± = lim
t→∓∞

U(t)†U0(t) (A.6)

For a detailed discussion of the conditions under which the definition makes

sense and a review of the mathematical properties of Møller operators, the

reader should refer to Ref. [1].

In the present discussion, we will just give a heuristic justification of this

definition. The operator Ω+ can be viewed as the product U(−∞)†U0(−∞),

i.e. an operator that evolves a state vector from t = 0 to t = −∞ as a free

state and then from t = −∞ to t = 0 as an interacting state. The idea is

that Ω+ maps a free state evolving from the incoming asymptote in absence

of the interaction to the state that would evolve from the same asymptote

in the presence of the interaction potential. The same holds for Ω− and the

outcoming asymptote. Schematically,

in asymptote actual state out asymptote

|Ψ〉 Ω+−→ |Ψ+〉
|Ψ−〉 Ω−←− |Ψ〉

We aim at finding an expression of the probability w(pα← p′β). This tran-

sition probability will be the overlap between |pα−〉 (the actual state evolving
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to the asymptote |pα〉) and |p′β+〉 (the actual state evolving from the asymp-

tote |p′β〉)
w(pα← p′β) =

∣∣〈pα−
∣∣ p′β+

〉∣∣2
With Møller operators we have a way to write the unknown actual states in

terms of the free states∣∣p′β+
〉

= Ω+
∣∣p′β〉 |pα−〉 = Ω− |pα〉

and the transition probability is conveniently expressed as

w(pα← p′β) =
∣∣∣〈pα

∣∣∣Ω†
+Ω−|p′β+

〉∣∣∣2 (A.7)

This is the main idea of scattering theory: we have expressed the transition

probability between asymptotic states as the squared modulus of the matrix

element of a scattering operator S, defined as

S = Ω†
+Ω− (A.8)

I just mention two interesting properties involving the operators intro-

duced so far:

1. Møller operators satisfy the so-called intertwining relation

HΩ± = Ω±H0 (A.9)

2. The S operator commutes with the free Hamiltonian H0

[H0; S] = 0 (A.10)

hence, as expected on a physical basis, scattering is possible only be-

tween asymptotic states with the same total energy.

3. For later convenience, by projecting the S operator on the free Hamil-

tonian eigenstates, we decompose it in an elastic term (satisfying mo-

mentum conservation) and an inelastic term (still subjected to energy

conservation), according to the formula〈
pα
∣∣ S|p′β

〉
= δαβδ(p− p′) + 2ıπ δ(Eαp − Eβp′)t(pα← p′β) (A.11)

where t(pα ← p′β) - defined by the last expression - is called on-shell t

matrix.
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A.2 Time independent formalism

In the previous section, we have defined the main tools of scattering theory

in terms of the evolution operators, hence from a time dependent point of

view. The same theoretical scheme can be built in a time independent fashion,

starting from the transformation of the dynamical operator from the time to

the energy domain. In this section we will introduce the main object of time

independent scattering theory, the T operator, and then we will show how it

can be related to the scattering operator.

A.2.1 Green operator

We introduce the Green operator, defined as

G(z) =

{
−ı
� 0
−∞ dt exp (−ı(z− H)t) = G+(z) Im z > 0

+ı
� +∞

0 dt exp (−ı(z− H)t) = G−(z) Im z < 0
(A.12)

where the superscript± indicates the restriction of G(z) to the upper or lower

complex half-plane.

When Re z does not belong to the spectrum of H

lim
ε→0+

G+(x + ıε) = lim
ε→0+

G−(x− ıε) = G(x)

Otherwise G(x) is not defined, and

lim
ε→0+

G+(x + ıε) 6= lim
ε→0+

G−(x− ıε)

Basically, G+(z) and G−(z) are a complex extension of the Fourier trans-

form of the t > 0 and t < 0 restriction of the time evolution operator. In

this sense it should be reasonably accepted that they are an alternative time-

independent way of describing the dynamics of the system.

The necessity to let z ∈ C (and not just a physical meaningful real energy)

comes from the fact that the operator is not defined for z in the spectrum of

H. Hence in the manipulation of the equations involving the green operator

is often convenient to take Im z 6= 0 and then let Im z → 0 after integration.
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This is equivalent to introduce a dumping factor e−εt in the integrals (e.g. in

Eq. A.12, putting z = x + iε) and then to let ε→ 0 (and e−εt → 1 ).

Formally, if z is not in the spectrum of H, we can integrate Eq. A.12

G(z) =
1

z− H
(A.13)

This representation is a very common definition of G(z), and is indeed a con-

venient form to compute its matrix element (as long as z is not in the spectrum

of H).

In the following we will make use of both the green operator correspond-

ing to the full Hamiltonian H and the free Hamiltonian H0. As usual we will

distinguish them with a 0 subscript:

G0(z) =
1

z− H0

Useful formulas relating G(z) and G0(z) are

G(z) = G0(z) + G0(z)VG(z) (A.14)

G(z) = G0(z) + G(z)VG0(z) (A.15)

which can be directly proved by substituting V = (H + z)− (H0 − z).

A.2.2 The operator T

We define the operator T(z) (z ∈ C) as

T(z) = V + V G(z) V (A.16)

As a function of z, the T operator has the same analytical properties of the

Green operator. As we already mentioned, and as we shall see later, our inter-

est in T lies in the fact that it can be directly related to the scattering probabil-

ity.

From equations A.14 and A.15 and the definition of T(z), we can find other

useful relations concerning T(z)

T(z) G0(z) = V G(z) (A.17)

G0(z) T(z) = G(z) V (A.18)
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With the first relation, we can substitute the operator G(z) from the definition

of T(z) and get

T(z) = V + V G0(z) T(z) (A.19)

which is known as Lippmann-Schwinger equation for T(z). This equation is the

cornerstone of the perturbative approach to scattering problems, but we will

not develop further this topic (the interested reader should refer to Chapter 9

of Taylor’s book).

A.2.3 S matrix and T matrix

As we mentioned before, the T(z) operator can be directly related to the S

operator. First we need to obtain an integral representation of the S.

From its definition in terms of Møller operators

S = Ω†
−Ω+ = lim

t→+∞
lim

t′→−∞
U†

0 (t) U(t) U†(t′) U0(t′)

If both limits exists, they can be taken simultaneously

S = lim
t→−∞

U†
0 (−t) U(−t) U†(t) U0(t) = lim

t→−∞
U0(t) U†(2t) U0(t)

Differentiating the expression,

d
dt

U0(t) U†(2t) U0(t) = +ıU0(t)
[
VU†(2t) + U†(2t)V

]
U0(t)

Introducing a dumping factor that will be necessary for further manipula-

tions, we can develop the following integral equation for S

S = I + ı lim
ε→0+

� 0

−∞
dt e+εte−ıH0t

[
V e2ıHt + e2ıHtV

]
e−ıH0t (A.20)

Now we can compute the S matrix element for two free Hamiltonian eigen-

states |βp′〉 and |αp〉 〈
βp′

∣∣ S|αp
〉

=
〈

βp′
∣∣ αp

〉
+

−1
2

lim
ε→0+

〈
βp′

∣∣∣∣VG
(

Eαp + Eβp′

2
+ ı

ε

2

)
+ G

(
Eαp + Eβp′

2
+ ı

ε

2

)
V|αp

〉



116 Chapter A. Quantum Scattering Theory

where we have recognized the definition of Green operator

ı
� 0

−∞
dt exp

(
−ı
(
Eαp + Eβp′ + ıε− 2H

)
t
)

= −1
2

G
(

Eαp + Eβp′

2
+ ı

ε

2

)
Employing Eq. A.17 and A.18, the second term of the equation becomes

lim
ε→0+

〈
βp′

∣∣∣ T(Ẽ + ı
ε

2
)G0(Ẽ + ı

ε

2
) + G0(Ẽ + ı

ε

2
)T(Ẽ + ı

ε

2
)|αp

〉
with Ẽ = (Eαp + Eβp′)/2. Now we can let G0 act on the ket obtaining

lim
ε→0+

(
1

Ẽ + ı ε
2 − Eβp′

+
1

Ẽ + ı ε
2 − Eαp

) 〈
βp′

∣∣ T(Ẽ)|αp
〉

With some simple manipulations, we can recognize in this expression one of

the standard representation of Dirac delta as limit of a Lorentzian distribution

lim
ε→0+

(
2

Eαp − Eβp′ + ıε
− 2

Eαp − Eβp′ − ıε

)
= −4ıπ lim

ε→0+

1
π

ε

(Eαp − Eβp′)2 + ε2 =

= −4ıπδ(Eαp − Eβp′)

In conclusion, the S matrix element is related to T matrix element by〈
αp
∣∣ S|βp′

〉
= δαβδ(p− p′) + 2ıπ δ(Eαp − Eβp′)

〈
βp′

∣∣ T(Eαp + ı0+)|αp
〉

(A.21)

Comparing last expression with Eq. A.11 we see that the already introduced

on-shell t matrix coincides with the matrix element of the T operator:〈
βp′

∣∣ T(Eαp + ı0+)|αp
〉

= t(pα← p′β) (A.22)

A.3 Scattering states

A.3.1 Definition

The scattering states |p±〉 are improper H eigenvectors, that can be used to de-

scribe the scattering event from a time independent perspective. In the appli-

cations, they can be employed in two alternative approaches: 1) they are solu-

tion of an integral equation which is the analogous of Lippmann-Schwinger
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equation for the operator T, 2) they are stationary solutions of Schrödinger

equation, with appropriate boundary conditions.

Scattering states arise in a natural way, as those time independent inter-

acting states corresponding to the asymptotic free states. We assume that the

scattering system that at t → −∞ or t → +∞ can be expressed as the super-

position of free states

|φ〉 =
�

φ(p) |p〉

In analogy with this expression, we introduce two sets of improper eigenstates

|p±〉, the scattering states, such that

|φ±〉 =
�

φ(p) |p±〉

Substituting the two expressions above in the equation relating the asymptote

to the actual state, namely |φ±〉 = Ω± |φ〉, we find that the scattering states

have to satisfy the relation
�

φ(p) |p±〉 = Ω±
�

φ(p) |p〉 (A.23)

The last expression is the rigorous definition of asymptotic states. For the

sake of brevity, we will write:

|p±〉 = Ω± |p〉 (A.24)

We just mention two properties of the scattering states:

• The scattering states are (improper) eigenfunctions of the full Hamilto-

nian with the same eigenvalue as their corresponding free states

if H0 |p〉 = E0 |p〉 ⇒ H |p±〉 = E0 |p±〉 (A.25)

as can be proved by means of the intertwining relation.

• The scattering states satisfy the following relation

T(Ep ± ı0+) |p〉 = V |p±〉 (A.26)
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We want to remark that the definition of scattering eigenstates (Eq. A.24)

does not hold in a strict sense. As an example, from that expression we could

conclude that the scattering states evolve asymptotically as free states

U(t) |p±〉 t→∓∞−→ U0(t) |p〉

which is clearly false, since the scattering states are eigenvectors of the full

Hamiltonian H and hence are stationary states. Last example shows that a

particular care must be paid when dealing with improper states. As long as

this fact is kept in mind, it is however convenient to think to the scattering

states |p±〉 as the actual states evolving from/to the free particle state |p〉.

A.3.2 Lippmann-Schwinger equation for scattering states

In an analogous way as we did before, we want to express the definition of

scattering state as an integral equation. With the same procedure adopted to

derive the expression of the S operator in terms of the T operator (see Section

A.2.3), we can write Ω+ in the integral form

Ω+ = I− ı lim
ε→0+

� 0

−∞
dτ exp(ετ) U(τ)†V U0(τ) (A.27)

Introducing this formula in Eq. A.24, we let the free evolution operator act

on the free state and we get

|p+〉 = |p〉 − ı lim
ε→0+

� 0

−∞
dτ exp

(
−ı(ıε− H + Ep)τ

)
V |p〉

In last expression, we can formally integrate and recognize Green’s operator

G(Ep + ı0+)

|p+〉 = |pα〉+ G(Ep + ı0+)V |p〉

that, by means of relations A.18 and A.26, becomes the Lippmann-Schwinger

(LS) relation for the scattering states

|p+〉 = |p〉+ G0(Ep + ı0+)V |p+〉 (A.28)
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We remark that the definition of the scattering states (and the correspond-

ing LS equation) do not introduce any original element in the theory pre-

sented in previous sections. However, we can think the Lippmann-Schwinger

equation as the representation of the operator equation in the most suitable

basis, i.e. the free Hamiltonian eigenfunctions. In this sense, scattering states

are a very convenient way to express a scattering problem.

A.4 Time dependent and time independent approach

The actual methodologies to study the time evolution of a system fall into two

categories: time independent and time dependent methods.

The main idea of the time independent approach is to look for the scattering

states |pα+〉. As seen in previous section, scattering states are eigenfunctions

of the complete Hamiltonian H and so they are solution of the time inde-

pendent Schrödinger equation, with appropriate boundary conditions. These

conditions are usually introduced by fixing the asymptotic behaviour of the

scattering states, that can be computed from LS equation for the scattering

states

lim
R→∞

〈R | pα+〉 = 〈R | pα〉+ lim
R→∞

〈R|G0(Epα + ı0+)V |pα+〉 (A.29)

In the time dependent approach, on the other hand, the actual time evolu-

tion of the system is considered by solving the time dependent Schrödinger

equation with given initial conditions. In detail we take an initial wavepacket

|Ψ〉 =
�

dpψ(p) |pα〉 (A.30)

By representing both the wavepacket and the evolution operator on a suitable

basis, we evolve the wavepacket in time and then we analyse the results.

These two approaches are equivalent, as can be reasonably expected. Later

we will prove this fact in a particular case, showing that with a the time-

energy Fourier transform we can go from one description to the other.
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A.5 Scattering of molecules on surfaces

In this section, we want to specify our consideration to a diatomic molecule

scattering from a surface. The system can conveniently described by the 3D

position of the center of mass of the particle R = (X, Y, Z) and by another nD

coordinate r = (r, θ, φ, Q1 . . .), such that the Hamiltonian in r has only discrete

eigenfunctions. In particular, r represents both the internal coordinate of the

diatomic molecule and the phonon coordinates of the surface. Since we are

assuming that the molecule cannot dissociate, the molecule Hamiltonian has

just discrete states.

In particular, the Hamiltonian for the system will be

H = T(R) + T(r) + Vasymp(r) + Vcoup(r, R) (A.31)

where we have conveniently split the potential in two terms. Vasymp(r), which

is the limit of the full potential as the molecule-surface distance becomes

infinite, depends just on r and describe the vibrations of the free molecule

and the phonon degrees of freedom. Vcoup(r, R), the difference between the

full potential and the asymptotic potential, describe the interaction of the

molecule with the surface and the correlations between surface and molecule

degrees of freedom. In the following, our free Hamiltonian will be H0 =

T(R) + T(r) + Vasymp(r) and consequently V = Vcoup(r, R).

A.5.1 Asymptotic limit of the scattering states

From LS equation (Eq. A.34), we can write the asymptotic state as

〈Rr | pα+〉 = 〈Rr | pα〉+ 〈Rr|G0(Epα + ı0+)V |pα+〉 (A.32)

where p = (pX, pY,−pZ) is the momentum along R while α = (n, j, mj, ν1 . . .)

is a collective discrete index labelling the bound state for the r wavefunction

(i.e. the rovibrational state of the molecule and the phonon state of the sur-

face). For future convenience, we choose the Z component of the momentum
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to be −pZ, so that pZ is by definition a positive quantity when the incoming

molecule approaches the surface. The free state energy Epα is

Epα =
p2

2M
+ εα

with εα collecting all the energy term depending on the quantum numbers α.

We insert in LS equation the resolution of the identity on the free states

〈Rr | pα+〉 = 〈Rr | pα〉+ ∑
β

�
dp′ 〈Rr|G0(Epα + ı0+)

∣∣p′β〉 〈p′β∣∣V |pα+〉

The periodicity of the the surface implies the invariance of the interaction

potential V with respect to translations of ρ = (X, Y). Both the free state 〈pα|
and the scattering states 〈pα+| span the representation

exp(ıp‖ · τij)

of the lattice translations group
{

τij
}

( p‖ = (pX, pY) is the momentum com-

ponent parallel to the surface). This implies that〈
p′β
∣∣V |pα+〉 = 0

unless p′x − px = mk1 and p′y − py = nk2 (see Section 1.2.1). This allows us to

convert the integration on ρ in a sum on m, n
�

dp′ . . .
〈
p′β

∣∣V|pα+
〉

= ∑
mn

�
dp′z . . .

〈
p′Zp‖mnβ

∣∣∣V|pα+
〉

(A.33)

where the vector p‖mn is the momentum (pX + nk1, pX + mk2) parallel to the

surface.

We can now evaluate the action of the free Green operator G0(Epα + ı0+)

on the following free state using Eq. A.13

〈Rr | pα+〉 = 〈Rr | pα〉+ ∑
mnβ

lim
ε→0+

�
dp′Z

〈
Rr
∣∣∣ p′Zp‖mnβ

〉 〈
p′Zp‖mnβ

∣∣∣V|pα+
〉

Epα − Ep′β + ıε
(A.34)
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∆ > 0 ∆ < 0
−p

+p

+p

−p

Re p Re pZ Z

Im p Im pZ Z

Figure A.1: Poles of the integrating function and path of integration

We want to evaluate the integral in p′Z with the methods of complex anal-

ysis. The denominator of the fraction can be written as

Epα − Ep′β = Epα −
p′2Z + p‖ 2

mn

2M
− εβ =

1
2M

2M

(
Epα − εβ − p‖ 2

mn

2M

)
︸ ︷︷ ︸

∆

−p′2Z


So we can factorize the denominator as

Epα − Ep′β + ıε =
1

2M
(

p̃− p′Z
) (

p̃ + p′Z
)

where p̃ is one of the complex roots of ∆ + ıε (for later convenience, we choose

p̃ to be the root with Im p̃ > 0).

To evaluate the integral, we extend the function in the complex plane, by

taking p′Z ∈ C and we consider the integration along the path schematically

represented in Fig. A.1. In detail, the integration path is a line between −R

and +R on the real axis, and half circumference of radius R in the upper com-

plex half-plane. As R→ +∞, the integral on the real axis becomes the integral

we want to compute while the integral along the half circumference tends to

0. To prove that∣∣∣∣∣∣
〈

Rr
∣∣∣ p′Zp‖mnβ

〉 〈
p′Zp‖mnβ

∣∣∣V|pα+
〉

p̃2 − p′2Z

∣∣∣∣∣∣→ 0 for |p′Z| → +∞
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we have to show that for p′Z ∈ C the modulus of the numerator is bounded.

The absolute value of the first factor can be explicitly computed∣∣∣〈Rr
∣∣∣ p′Zp‖mnβ

〉∣∣∣ =
∣∣∣∣ 1√

2πA
φβ(r)

∣∣∣∣ e−
1
h̄ (Im p′Z)Z

and is bounded if Im p′Z ≥ 0. The second factor can more conveniently con-

sidered in coordinate representation. If we again assume Im p′Z ≥ 0∣∣∣〈p′Zp‖mnβ
∣∣∣V|pα+

〉∣∣∣ =
∣∣∣∣� dr′

�
dR′

〈
p′Zp‖mnβ

∣∣∣R′r′
〉

V(R′r′)
〈
R′r′

∣∣ pα+
〉∣∣∣∣ ≤

≤
(

sup
R′r′

V(R′r′)
) ∣∣∣〈(Re p′Z

)
p‖mnβ

∣∣∣ pα+
〉∣∣∣

Any reasonable potential can be assumed to be bounded except for some

repulsive regions. Anyway the scattering eigenstates are eigenstates of the

full Hamiltonian, and we can reasonably assume that in the repulsive regions

they go to 0 faster than the potential itself.

From this analysis it becomes clear why we choose an integration path

in the upper complex half-plane. If we chose the symmetric path in the lower

half-plane, we couldn’t assume Im p′Z ≥ 0 and the numerator of the integrand

would no longer be bounded.

From the well known Cauchy’s theorem of complex analysis, the integral

along the closed path is 2πı times the sum of the residues of the integrand in

the area contained in the integration path. In our case the integrand has just

one simple pole in the upper half plane, namely + p̃. So
�

dp′z
f (p′Z)

( p̃− p′Z) ( p̃ + p′Z)
= 2πı lim

p′z→ p̃

f (p′Z)
− ( p̃ + p′Z)

= −πı f ( p̃)
p̃

In conclusion, Eq. A.34 becomes

〈Rr | pα+〉 = 〈Rr | pα〉 − 2ıπ ∑
mnβ

lim
ε→0+

M
p̃

〈
Rr
∣∣∣ p̃p‖mnβ

〉 〈
p̃p‖mnβ

∣∣∣V|pα+
〉

(A.35)

Next step is to take the limit ε → 0+. Now two possibilities arise, corre-

sponding to the possible sign of ∆. For ∆ < 0 we have scattering channels
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for which the energy εβ + p‖ 2
mn

2M is greater than the initial energy (for reason that

will become evident later, we call these closed channels). In this case the limit

of p̃ for ε → 0+ is a purely imaginary momentum ı p̄ and the free eigenstates〈
Rr
∣∣∣ p̃p‖mnβ

〉
becomes

〈
Rr
∣∣∣ p̃p‖mnβ

〉
=

1√
2πA

e−
1
h̄ p̄Ze

ı
h̄ p‖mn·ρ

This term contains a exponentially decaying function of Z. So, if we let Z →
+∞ , the closed channels do not contribute to the sum on Eq. A.35.

For the other channels ∆ > 0 and for ε → 0+, p̃ becomes a real positive

momentum p′Z and the free states survive in the limit Z → +∞. From a

physical point of view, since p̄ is the square root of 2M
(

Epα − εβ − p‖ 2
mn

2M

)
, p′Z

is the momentum along Z determined imposing energy conservation when

the system goes from the state |pα〉 to a state with parallel momentum p‖mn

and quantum numbers β. The positive sign of p′Z (meaning that the scattered

molecules move far from the surface) is set by the choice of the integration

path which in turn is connected to the presence of a repulsive wall for negative

values of Z.

From Eq. A.26 we can recognize the matrix element of the T matrix〈
p̃p‖mnβ

∣∣∣V|pα+
〉

=
〈

p̃p‖mnβ
∣∣∣ T|pα

〉
= t( p̃p‖mnβ← pα)

In conclusion, the limit of the scattering states as Z → +∞

〈Rr | pα+〉 → 1√
2πA

[
e

ı
h̄ p·Rφα(r)− 2πı ∑

mnβ

M
p′Z

e
ı
h̄ p′·Rφβ(r) t(p′β← pα)

]
(A.36)

where the components of the momentum p′ parallel to the surface are con-

strained by symmetry
p′X = pX + mk1
p′Y = pY + nk2

(A.37)

and the component along Z is given from energy conservation

p′Z =
[
2M

(
Epα − εβ

)
− p′2X − p′2Y

]1/2

(A.38)
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A.5.2 Asymptotic flux and Cross Section

Now we will use the asymptotic expression of the scattering states to compute

the cross section for the relevant events: elastic and inelastic scattering. The

approach that we will follow is to compute the Z component of the flux along

an analysis surface far from the interaction region. In such conditions, we can

assume that the scattering states are equal to their asymptotic limit. We will

find that the flux is a sum of different terms, each corresponding to a specific

event.

The flux along a surface S can be computed as

Φ =
h̄
µ

�
S

Im
[
Ψ∗~∇Ψ

]
~δn (A.39)

where ~δn is the direction perpendicular to the surface [3]. In our case we com-

pute the flux on a hyperplane Z = Z∞, that is located in the asymptotic region.

The direction that is perpendicular to the surface lies along the +Z direction.

We allow X and Y to vary in one unit cell of the surface. The expression of the

flux hence becomes

Φ =
h̄
µ

�
dr
� LX

0
dX
� LY

0
dY Im (Ψ∗∂ZΨ)|Z=Z∞

By derivation and by taking the complex conjugate of the expression of the

asymptotic limit of the scattering wavefunction (remember that p = (pX, pY,−pZ)),

we get

〈Rr | ∂Z|pα+〉 → 1√
2πA

−
ı
h̄

pZe
ı
h̄ p·Rφα(r)︸ ︷︷ ︸
A1

+
2πM

h̄ ∑
mnβ

e
ı
h̄ p′·Rφβ(r) t(p′β← pα)︸ ︷︷ ︸

A2



〈Rr | pα+〉? → 1√
2πA

e−
ı
h̄ p·Rφ?

α(r)︸ ︷︷ ︸
B1

+ 2πıM ∑
mnβ

1
p′z

e−
ı
h̄ p′·Rφ?

β(r) t?(p′β← pα)︸ ︷︷ ︸
B2


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From the multiplication of these two expression, four terms arise. One

term comes from the incident part of the scattering state (A1× B1), another

term from the scattering part (A2 × B2) while the other two (A1 × B2 and

A2 × B1) represent the interference between the two waves. We take into

account these three parts separately.

Incident Flux The first term A1× B1 is

− 1
2πA

ı
h̄

pZeıp·Rφα(r)e−ıp·Rφ?
α(r) = − ıpZ

2πh̄A
|φα(r)|2

and the flux coming from this term is

Φinc = − 1
2π

pZ

M
(A.40)

which can evidently be associated with an incident beam of particle with ve-

locity
pZ

M
approaching the surface (pZ is positive by definition so the flux is

negative)

Scattering flux The term A2× B2 is

2πı
h̄ ∑

klγ
∑
mnβ

M2

Ap′Z
e

ı
h̄ (p′′−p′)·Rφγ(r)φ?

β(r) t(p′′γ← pα)t?(p′β← pα)

The symmetry condition on p′ (Eq. A.37) implies that

1
A

� LX

0
dX
� LY

0
dY e

ı
h̄ (p′′−p′)·R = e

ı
h̄ (p′′Z−p′Z)Zδmkδnl

while the orthonormality of the discrete states implies
�

dr φγ(r)φ?
β(r) = δγβ

Hence the integration gives

2πı
h̄ ∑

klγ
∑
mnβ

δmkδnlδγβ
M2

p′Z
e

ı
h̄ (p′′Z−p′Z)Z t(p′′γ← pα)t?(p′β← pα) =

=
2πı

h̄ ∑
mnβ

M2

p′Z

∣∣t(p′β← pα)
∣∣2
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recognizing that if m = k, n = l and γ = β then p′′Z = p′Z (since both values

are constrained by conservation of energy).

In conclusion the flux is

Φscattering = 2π ∑
mnβ

M
p′Z

∣∣t(p′β← pα)
∣∣2 (A.41)

which represents the scattering of particles in all the channels that are consis-

tent with energy conservation. Each scattering event has a probability which

is given by the square of the on shell T matrix, as expected from the theory.

Interference flux The term A1× B2 is

+
M
h̄ ∑

mnβ

pZ

p′Z

1
A

e
ı
h̄ (p−p′)·R

(
φ?

β(r)φα(r)
)

t?(p′β← pα)

while the term A2× B1

+
M
h̄ ∑

mnβ

1
A

e
ı
h̄ (p′−p)·R (φ?

α(r)φβ(r)
)

t(p′β← pα)

By integration we find that

Φinter f =
M
h̄

Im
(

t?(−pZp‖α← pα) + t(−pZp‖α← pα)
)

= 0 (A.42)

the interference term is equal to zero2.

2For the reader who is familiar with scattering theory, some comments are appropriate.
The method that we have applied here is often used to derive results that may seems to be in
disagreement with our discussion. In particular, in other context the interference is different
from zero and applying flux conservation this term depending on the forward scattering T
matrix element can be shown to be related to total scattering cross section (the well known
optical theorem).

In our case, even if the flux method is the same, some crucial assumptions of the derivation
mentioned above do not hold. In detail:

• our asymptotic expansion of the scattering states does not contain a forward scatter-
ing term interfering with the incoming wave. The boundary conditions of the problem
forced us to choose the specular channel (−pZp‖α← pα) rather than the forward chan-
nel (pZp‖α← pα) in the integration of the interference term

• as a consequence of Gauss theorem, flux conservation holds for closed surface in the
coordinate space. The choice of the hypersurface S that is convenient for the symmetry
of our system does not allow to apply flux conservation
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Scattering cross sections In conclusion, the total flux is

Φtotal = Φincident + ∑
mnβ

Φmnβ
scattering (A.43)

We can calculate the cross section for the scattering in each open channel

as
∂σ

∂ρ
(p′β← pα) =

Φmnβ
scattering

Φincident

which gives
∂σ

∂ρ
(p′β← pα) = 4π2 M2

pZ p′Z

∣∣t(p′β← pα)
∣∣2 (A.44)

In light of this result, we can define a new scattering matrix element -

which is more convenient for the boundary condition of our specific problem.

In terms of the on-shell T matrix, the new S̃ is defined as

S̃(p′β← pα) = 2πı
M√
pZ p′Z

t(p′β← pα) (A.45)

so that the square of its matrix element is the cross section for the specific

scattering event considered.

With these definition the asymptotic formula for the scattering states be-

comes

〈Rr | pα+〉 → 1√
2πA

[
e

ı
h̄ p·Rφα(r)− ∑

mnβ

√
pZ

p′Z
e

ı
h̄ p′·Rφβ(r) S̃(p′β← pα)

]
(A.46)

A.5.3 Time-Energy Fourier Transform of a wavepacket

In section A.4 we have briefly mentioned that time dependent and time inde-

pendent pictures can be related by a time-energy Fourier transform. We will

show now for the scattering of molecules on surfaces how this can be done,

by extracting information about the scattering states from the actual evolution

of the system.
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Let’s consider a wavepacket, with definite α, p|| and a distribution ψ(pZ)

on pZ. Its free evolution, in absence of the molecule-surface interaction, will

be given by

|Ψ〉 = e−ıH0t
�

dpZψ(pZ) |pα〉 =
�

dpZψ(pZ)e−ıH0t |pα〉 (A.47)

where H0 is the Hamiltonian including the internal degrees of freedom of both

the molecule and the surface. On the other hand, the actual evolution of the

wavepacket will be given by

|Ψ+〉 = Ω+

�
dpZψ(pZ)e−ıH0t |pα〉 =

�
dpZψ(pZ)e−ıHt |pα+〉 (A.48)

where we have used the intertwining relation Eq. A.9.

Fourier transforming the wavepacket for fixed E, we get

� +∞

−∞
dt eıEt |Ψ+〉 =

�
dpZψ(pZ)

� +∞

−∞
dt eı(E−H)t |pα+〉 (A.49)

Since the scattering states are stationary, we can integrate on time

� +∞

−∞
dt eı(E−H)t = 2πδ(E− H)

where δ(E− H) is the projector on the energy shell. If we let the projector act

on the scattering state |pα+〉 we have the Dirac delta

δ

(
E−

p2
‖

2M
− εα −

p2
Z

2M

)
= 2Mδ

(
∆− p2

Z
)

where p|| and εα are respectively the parallel momentum and the internal en-

ergy of the initial wavepacket, and ∆ is equal to 2M
(

E− εα −
p2
‖

2M

)
. Now

we have to possibilities. If the energy E we are considering is lower than than

εα +
p2
‖

2M , ∆ is a negative number, and the integral on pZ is zero. On the other

hand, for ∆ > 0 we set p̄ =
√

∆ and we can transform the Dirac delta as

2Mδ
(

p̄2 − p2
Z
)

=
M
p̄

[δ (pz − p̄) + δ (pz + p̄)]
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Eq. A.49 becomes

� +∞

−∞
dt eıEt |Ψ+〉 =

2πM
p̄

[
ψ( p̄)

∣∣ p̄p‖α+
〉
+ ψ(− p̄)

∣∣(− p̄) p‖α+
〉]

with p̄ =
√

2M (E− εα)− p2
‖

If we choose an initial momentum distribution ψ(pZ) which is narrow and

centered in negative pZ values (the particle is moving towards the surface),

we can assume ψ( p̄) ≈ 0 and

� +∞

−∞
dt eıEt |Ψ+〉 =

2πM
p̄

ψ(− p̄)
∣∣(− p̄) p‖α+

〉
In conclusion, by computing the Fourier transform for different values of

E, we can selectively extract from the evolving wavepacket information on

|pα+〉

|pα+〉 =
|pZ|

2πMψ(pZ)

� +∞

−∞
dt exp(

ı
h̄

Et) |Ψ+〉 E = εα +
p2
‖

2M
+

p2
Z

2M
(A.50)

As evident from this formula, we can get information on the scattering event

just for the internal state α, the parallel momentum p|| and the values of inci-

dent momentum pZ included in the initial wavepacket.
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Appendix B

Vibrational Sudden
Approximation

The Vibrational Sudden Approximation (VSA) is a particular sudden approx-

imation that has been developed in gas-phase scattering dynamics by Bow-

man [1, 2]. For those problems that present a high mass mismatch between

the scattering molecule and the surface atoms (such as H2 on Cu surfaces),

we expect this approximation to be particularly suitable. Indeed, similar ap-

proaches have been followed successfully in scattering systems such as H2 on

Pd(111) [3] or methane in Ni(111) and Pt(111) [4, 5].

In this appendix, the VSA approach is presented and discussed for a sim-

ple model system, and then generalized to a gas-surface scattering problem.

B.1 A simple model in time-independent picture

Following the approach of Ref. [2], we consider a very simple two dimen-

sional model: the linear collision of an atom and a diatomic molecule.

Z

Q

131



132 Chapter B. Vibrational Sudden Approximation

With a simple linear transformation of the coordinate Z (the distance be-

tween the incident atom and the center of mass of the molecule) and of the

coordinate Q (the internal degree of freedom of the molecule) we can define

the dimensionless mass scaled coordinates z and q such that the Hamiltonian

of the system is

H(z, q) = −1
2

∂2
z −

1
2

∂2
q + Vvibr(q) + Vscatt(z, q) (B.1)

where Vvibr is the potential for the vibrations of the diatomic molecule and

Vscatt is the atom-molecule interaction.

When the atom is far from the molecule (z → ∞), Vscatt is negligible and a

convenient set of eigenstates for this system is made of the product functions

〈zq | np〉 = χn(q) ϑp(z) n = 0, 1... p ∈ [−∞; +∞] (B.2)

where ϑp(z) = eıpz is a plane wave of momentum p and χn(q) is the n-th

eigenfunction of the one dimensional molecular Hamiltonian(
−1

2
∂2

q + Vvibr(q)
)

χn(q) = En χn(q) (B.3)

Let’s consider the scattering states for our model system

|np±〉 = Ω± |np〉 (B.4)

These states represent an atom with momentum p that collide with a molecule

in the n-th vibrational state. Without any approximation, we can write the

scattering states as the product

〈zq | np±〉 = χn(q)ϕ±np(z, q) (B.5)

Since the scattering event couples different vibrational states of the target

molecule, 〈zq | np±〉 is not a simple product state, and the function ϕnp still

depends on q.

The Vibrational Sudden Approximation consists in assuming that the func-

tion ϕnp(z, q) is a slowly varying function of the vibrational coordinate q, i.e.

∂2

∂q2

[
χn(q)ϕ±np(z, q)

]
≈ ϕ±np(z, q) ∂2

qχn(q) (B.6)
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The physical meaning of this assumption will be discussed later, from a

time dependent point of view. Now we want to derive an equation to compute

ϕ±np(z, q). The scattering states are eigenfunctions of the Hamiltonian operator(
−1

2
∂2

z −
1
2

∂2
q + Vvibr(q) + Vscatt(z, q)−

(
En +

p2

2

))
χn(q)ϕ±np(z, q) = 0

(B.7)

Applying the VSA approximation we get(
−1

2
∂2

z + En + Vscatt(z, q)−
(

En +
p2

2

))
ϕ±np(z, q) = 0

(
−1

2
∂2

z + Vscatt(z, q)− p2

2

)
ϕ±np(z, q) = 0 (B.8)

This part of the scattering wavefunction is just a solution of a simpler one

dimensional problem, in which the scattering potential depends parametri-

cally on q. We define the VSA Hamiltonian as the the Hamiltonian of this

lower dimensional system

HVSA(q, z) = −1
2

∂2
z + Vscatt(z, q) (B.9)

The VSA Hamiltonian is a family of one dimensional system, in which

the solution is parametrically dependent of the coordinate q. Hence, instead

of dealing with a single two dimensional problem, we now can solve an in-

finite number of simpler one dimensional problems with potential Vq(z) =

Vscatt(z, q).

In the following we will use the semicolon to point out that the depen-

dence on q is parametric. From the same equation, we can see that the solu-

tion is independent on the vibrational state n. From now on we will drop the

n label from the wavefunction. In conclusion, the scattering state in the VSA

is

〈zq | np±〉 = χn(q)ϕ±p (z; q) (B.10)

Consequently, the scattering matrix can be written as

S(pn← p′m) =
〈

pn−
∣∣mp′+

〉
=



134 Chapter B. Vibrational Sudden Approximation

=
�

dq
�

dz
(

χn(q)ϕ−p (z; q)
)? (

χm(q)ϕ+
p′(z; q)

)
=

=
�

dq χ?
n(q)

[�
dz
(

ϕ−p (z; q)
)?

ϕ+
p′(z; q)

]
χm(q)

In square parentheses, we can recognize the q dependent S matrix for the

scattering problem corresponding to the VSA Hamiltonian

S(pn← p′m) =
�

dq χ?
n(q) SVSA(p← p′; q) χm(q) (B.11)

B.2 Validity of VSA

To understand what are the implications of the VSA from a dynamical point

of view, let’s analyze the assumption of Eq. (B.6) from a different point of

view.

Let’s consider a wavefunction χn(q)ϕ(z) that evolves in time according to

the full Hamiltonian of Eq. (B.1)

ψ(q, z, t) = Ut χi(q)ϕ(z) (B.12)

The VSA consists in assuming that the coupling potential commutes with

the vibrational Hamiltonian Hq = − 1
2

∂2

∂q2 + Vvibr(q)[
Hq , Vscatt

]
≈ 0 (B.13)

Under such assumption the vibrational Hamiltonian commutes with the VSA

Hamiltonian and the evolution operator can be split according to

Ut = exp(−ıHt) ≈ exp(−ıHVSAt) exp(−ıHqt) (B.14)

Hence the evolving state becomes

ψ(q, z, t) = exp
(
−ıEi

vibt
)

[exp (−ıHVSAt) ϕ(z) χi(q)] (B.15)

Except for the phase factor exp
(
−ıEi

vibt
)
, Eq. B.15 represents a state evolv-

ing according to the VSA Hamiltonian. Note that this is different from assum-

ing that the scattering and the vibrational coordinates are decoupled. In fact,
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the final evolved state of Eq. (B.15) is not separable in two functions, because

the propagator exp (−ıHVSAt) still depends on q.

Now we can examine the assumption of Eq. (B.13) with greater detail. The

part of Hq which does not commute with the coupling potential is the kinetic

energy part, since multiplicative operators always commute. Explicitly, the

commutation relation can be written as

∂2
qVscatt(z, q) ψ(q, z) ≈ Vscatt(z, q) ∂2

qψ(q, z) (B.16)

which means that the coupling potential is a slowly varying function of q with

respect to the vibrational eigenstates. By applying the derivation rule, we find

that the commutator is proportional to[
Hq , Vscatt

]
ψ(q, z) ∼

(
∂2

qVscatt(z, q)
)

ψ(q, z) + 2
(
∂qVscatt(z, q)

) (
∂qψ(q, z)

)
For small displacement of the vibrational coordinate, we can further as-

sume the coupling potential to be a linear function of q

Vscatt = κq f (z)

The commutator then becomes[
Hq , Vscatt

]
ψ(q, z) ∼ 2κ f (z)

(
∂qψ(q, z)

)
(B.17)

In conclusion, for each (q, z) point, the Vibrational Sudden Approximation is

satisfied if

1. the “local” velocity of the oscillator is small (compared to the momen-

tum on the scattering degree of freedom)

∂qψ(q, z) ≈ 0 (B.18)

2. the coupling coefficient is small (compared to the total potential of the

system)

κ f (z) ≈ 0 (B.19)
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B.3 VSA in molecular scattering

Now we can turn our attention to the scattering of molecules on surface. If we

consider the six degree of freedom of a diatomic molecule and one additional

vibrational degree of freedom for the surface, the Hamiltonian can be written

as

H = − 1
2M
∇2

R −
1

2M
∇2

r −
1

2µ
∂2

Q + V6D(R, r) + Vcoupling(R, r, Q) + Vvib(Q)

(B.20)

We have split the total 7D potential in three terms: V6D is the interaction

of the molecule with the static equilibrium surface, Vvibr is the vibrational po-

tential for the surface degree of freedom and Vcoupling is the coupling between

the molecule and the surface degrees of freedom.

We can apply the Vibrational Sudden Approximation to the vibrational

degree of freedom of the surface:[
− 1

2µ
∂2

Q + Vvib , Vcoupling

]
≈ 0 (B.21)

The VSA Hamiltonian will be

HVSA(R, r; Q) = − 1
2M
∇2

R −
1

2M
∇2

r + V6D(R, r) + Vcoupling(R, r, Q) (B.22)

As in the case of the simple two dimensional problem, this Hamiltonian

is a scattering problem with one less degree of freedom and parametrically

dependent on the vibrational coordinate Q. The VSA scattering matrix will

be

SVSA(f← i; Q)

where the indices i and f labels the initial and final state of the scattered

molecule1. Labelling the initial and final vibrational state of the surface with

µ and µ′, the 7D scattering matrix in the VSA is given by

S(f µ′ ← i µ) =
�

dQ χ?
µ′(Q) SVSA(f← i; Q) χµ(Q) (B.23)

1In detail, i will identify the initial momentum p and the initial rovibrational state of the
molecule ν j mj. The final index f will specify the quantum numbers of the diffraction channel
nX nY and the rovibrational state of scattered molecule ν′ j′ m′j . The final momentum along Z
is fixed by energy conservation.
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where χµ(Q) and χµ′(Q) are two eigenfunctions of the vibrational Hamilto-

nian

Hvib = − 1
2µ

∂2
Q + Vvib(Q) (B.24)

The scattering probability, summed over the final vibrational state of the

surface is

Pscatter(f ← i µ) = ∑
µ′

∣∣S(f µ′ ← i µ)
∣∣2

In this formula, we can substitute the expression of the scattering matrix in

the VSA, Eq. B.23, and get

∑
µ′

∣∣S(f µ′ ← i µ)
∣∣2 = ∑

µ′
S?(f µ′ ← i µ)S(f µ′ ← i µ) =

�
dQ
�

dQ′∑
µ′

χµ′(Q)χ?
µ′(Q′)

(
SVSA(f← i; Q)

)?
SVSA(f← i; Q′) χ?

µ(Q)χµ(Q′)

From the completeness of the vibrational states χµ′

∑
µ′

χµ′(Q)χ?
µ′(Q′) = δ(Q−Q′)

In conclusion, the (molecule) state resolved reaction probability is given

by the average of the VSA scattering probability, with a weight which is given

by the square of the initial vibrational eigenfunction

Pscatter(f µ′ ← i µ) =
�

dQ
∣∣∣SVSA(f← i; Q)χµ(Q)

∣∣∣2 (B.25)

Note that with a knowledge of SVSA(f ← i; Q), the scattering probability can

be computed for any initial state just by changing the vibrational eigenstate in

the integral. From a practical point of view, we can use this equation by com-

puting the VSA scattering matrix on a suitable grid {Qn} and by performing

the integration with

Pscatter(f ← i µ) = ∑
n

∣∣∣SVSA(f← i; Qn)χµ(Qn)
∣∣∣2 wn (B.26)

where the coefficients wn are the weights of the quadrature rule.
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From the state resolved scattering probability, the dissociative adsorption

probability can be computed by

Preact(i, µ) = 1−∑
f

Pscatter(f ← i µ)

The reaction probability then becomes

Preact(i, µ) = 1−
�

dQ
∣∣χµ(Q)

∣∣2 ∑
f

∣∣∣SVSA(f← i; Q)
∣∣∣2 =

= 1−
�

dQ
∣∣χµ(Q)

∣∣2 (1− PVSA
react (i, Q)

)
=
�

dQ
∣∣χµ(Q)

∣∣2 PVSA
react (i, Q)

As for the scattering probability, the reaction probability can be computed

simply averaging the reaction probability with weights equal to the square of

the initial vibrational eigenfunction. In the last formula the reaction probabil-

ity depends on the vibrational state of the surface. If we assume the surface

to be in thermal equilibrium at temperature T, we can average the reaction

probability with a Boltzmann distribution

Preact(i, T) = ∑
µ

exp(
Eµ

kT
) Preact(i µ) = ∑

µ

�
dQ exp(

Eµ

kT
)
∣∣χµ(Q)

∣∣2 PVSA
react (i, Q)

(B.27)
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