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In the field of energy and environmental application of heterogeneous photocatalysis 

TiO2 appears as the most active and most suitable semiconductor.1,2 In fact, TiO2 has a 

high oxidation ability, its photogenerated holes being at E0 = 2.9 V vs. NHE at pH 0; 

moreover, it is biologically and chemically inert, photostable and cheap.  

In nature, TiO2 can crystallize in the three polymorphs anatase, rutile and brookite. 

Anatase is thermodynamically less stable than rutile. It exhibits a shorter wavelength 

absorption edge and is largely recognized to be more active than rutile in oxidative 

detoxification reactions. Mixtures of these two polymorphs may produce intriguing 

effects on charge carrier transfer processes in photocatalytic applications.3,4 

However, the following major factors limit both photocatalytic efficiency and 

activity of TiO2: 

a) The band gap of anatase TiO2 is 3.2 eV, i.e. it absorbs light in the UV region, so 

that only a small portion (5%) of sunlight can be used for photocatalytic processes. 

b) As in all semiconductors, photogenerated electron-hole couples undergo fast 

recombination in competition with charge transfer to adsorbed species. 

c) The use of slurries could limit the industrial applications of photocatalysis, the 

separation of semiconductor powders after liquid phase reactions being troublesome 

and expensive.   

In this context, during this PhD project different routes have been explored for 

solving the first two limiting aspects of TiO2 use in photocatalytic processes. 

 

At first the effects of TiO2 surface modification were investigated, aiming at 

mitigating the high rate of photogenerated electron/hole pairs recombination. The 

attention was first focused on the consequences produced by the deposition of noble 

metal nanoparticles on TiO2. In noble metal-modified photocatalysts, photopromoted 

electrons can be ‘captured’ by the noble metal nanoparticles, which have a Fermi level 

lower in energy than the conduction band potential. This facilitates electron transfer to 

adsorbed reducible species and favours electron–hole separation, with a consequent 

increase of the semiconductor photocatalytic activity. Whereas noble metal co-catalysts 

are known to be beneficial in the photocatalytic production of hydrogen from water 

solutions,5-7 their effective role in photocatalytic oxidative reactions may appear rather 

controversial, especially in the case of gold-modified TiO2,
8–10 the properties of such 
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metal-oxide composites depending on the conditions of gold deposition, on gold 

loading, particle size and shape, and also on storage conditions.11-14 

A systematic study was thus undertaken on the photocatalytic performance of 

commercial TiO2 (Degussa P25) bearing gold nanoparticles deposited by deposition-

precipitation (DP), with particular attention on the method, either thermal or chemical, 

employed to reduce the Au(III) precursor into metallic gold. Two organic substrates, 

i.e. the azo dye Acid Red 1 (AR1) and formic acid (FA), were employed as substrates 

in photocatalytic oxidative degradation kinetic tests. Hydrogen peroxide evolution was 

also monitored during the runs in order to have a better insight into the role played by 

gold nanoparticles on both oxidative and reductive primary photocatalytic processes 

(Chapter 5).15 

Other Au/TiO2 photocatalysts were then prepared by employing the photodeposition 

technique, based on the irradiation of aqueous suspensions containing P25 TiO2 and 

chloroauric acid under anoxic conditions. Gold loading in the 0.1-1.0 wt.% range was 

obtained by this way.16  

The role played by photodeposited gold nanoparticles on the primary photocatalytic 

processes involving photopromoted conduction band electrons and valence band holes 

was also tested in both an oxidation and a reduction reaction, i.e. in the photocatalytic 

mineralization of formic acid (FA) and in the photoreduction of pollutant Cr(VI) in 

aqueous suspensions at pH 3.7, under UV-visible light irradiation. Some combined 

reactions were also performed in the presence of both FA and Cr(VI) substrates 

(Chapter 6). Commercial TiO2 samples with different phase composition and surface 

area were then tested as photocatalysts in the photoinduced reduction of Cr(VI). This 

reaction was also coupled with the simultaneous photocatalytic oxidation of the 

pollutant azo dye Acid Orange 8 (AO8) or of formic acid, acting as hole scavengers. In 

general the co-presence of oxidizable and reducible species ensured better separation of 

photogenerated charge carriers, resulting in a higher rate of organics oxidation and 

Cr(VI) reduction, especially in the case of high surface area anatase TiO2, having the 

strongest affinity for Cr(VI) and AO8, as demonstrated by competitive adsorption 

tests.17 

 

The central part of this PhD work was devoted to the exploration of different routes 

to minimize the major drawback of TiO2 as a photocatalytic material, i.e. its high-
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energy band gap (3.2 eV). The fact that TiO2 is able to absorb only a small portion of 

sunlight represents a great limitation in its use as photocatalyst, particularly for the 

conversion of solar into chemical energy. 

Anion doping with p-block elements was successfully pursued in recent years to 

sensitize TiO2 towards visible light,18,19 either by introducing newly created mid-gap 

energy states, or by narrowing the band gap itself. However, the nature of doping 

titanium dioxide with main group elements, such as N,18,20,21 C,19,22,23 B,24 S,23,25 P,26 

I,27 and F,28-30 is still not completely understood. The insertion of dopant impurities in 

the oxide structure may induce light absorption in the visible region, but also increase 

the rate of the undesired recombination of photogenerated charge carriers, an effect 

becoming relatively lower, the higher is the crystallinity of the oxide structure. 

In this PhD thesis, the attention was focused on sulphur, fluorine and boron as 

dopants of TiO2, the effects of N or C doping on the photocatalytic efficiency of TiO2 

having been widely investigated in the last decade.18-23 The sol-gel method, which is 

very flexible and suitable for systematic structure vs. photoactivity studies, was adopted 

to incorporate the anion dopants in the TiO2 structure. Two series of TiO2-based doped 

samples were first prepared by the sol-gel method in the presence of different amounts 

of dopant source (thiourea and NH4F for S-doped and F-doped samples, respectively), 

followed by calcination at different temperature (500, 600 or 700°C). Reference 

undoped materials were prepared by following the same synthetic procedure apart from 

the addition of the dopant precursor. All samples were characterized by BET, UV-vis 

absorption, XPS, HRTEM, XRD and EPR analyses. The effects of the dopant amount 

and of the calcination temperature on the structural features of the doped materials were 

systematically investigated in relation to their photocatalytic activity.  

The photocatalytic degradation of formic acid (FA) in aqueous suspension was 

employed first as test reaction. This substrate was chosen mainly because it does not 

absorb in the visible region, thus allowing a straightforward evaluation of the 

photocatalysts’ visible light activity, and undergoes direct photomineralization without 

forming any stable intermediate species, which simplifies the interpretation of kinetic 

results (Chapter 7).31  

The photocatalytic behaviour of an extended series of NH4F-doped TiO2 

photocatalysts was further explored in two other reactions, i.e. the decomposition of 

acetic acid in aqueous suspension and the gas phase mineralization of acetaldehyde.  
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In the photooxidation of both these organic substrates, neither of which absorbs 

visible light, the good photooxidation ability of the NH4F-doped materials (D-TiO2 

series) was further confirmed. Furthermore, the photooxidation of acetic acid was also 

investigated systematically as a function of the irradiation wavelength, by collecting so-

called action spectra. This type of analysis, representing the most powerful 

photocatalytic characterization tool to determine the effective wavelength-dependent 

response and activity of a photocatalyst,32,33 was carried out in the laboratories of the 

Catalysis Research Center, Hokkaido University in Sapporo (Japan), under the 

supervision of Prof. Bunsho Ohtani (Chapter 8). The comparison between the shapes of 

the absorption and the action spectra allowed to distinguish between absorption features 

which are active or inactive in photocatalysis.34   

XPS and EPR analysis of NH4F-doped materials, even if calcined at 700°C, revealed 

the presence of residual nitrogen-containing species, that might be responsible for the 

spectral features and/or photoactivity of NH4F-doped TiO2. Indeed, the conflicting 

results reported in the literature on the effects of fluorine as TiO2 dopant28-30 are most 

likely due not only to the different routes employed to prepare the doped materials, but 

also to difficulties in the interpretation of results obtained with photocatalysts 

containing more than one dopant element, because of possible synergistic effects.29,30 

In order to better clarify the role of fluorine and/or nitrogen dopants of TiO2, another 

series of doped photocatalysts was prepared according to the same synthetic procedure 

employing HF instead of NH4F as dopant source, thus avoiding the co-presence of 

nitrogen impurities in the material. At the same time, aiming at elucidating the effects 

of F-doping and co-doping of TiO2, an investigation was started on the effects of the 

co-presence of p-block elements boron and fluorine in titania. The photocatalytic 

activity of these new doped systems, prepared by using the sol-gel method in the 

presence of different amounts of dopant source and calcined at different temperatures, 

was investigated in the oxidative decomposition of formic and acetic acid in aqueous 

suspension. Moreover, in order to better compare the photoactivity of these 

photocatalytic systems with that of samples prepared in presence of the NH4F dopant 

source (D-TiO2 series), the photooxidation of the transparent acetic acid substrate was 

systematically investigated as a function of irradiation wavelength for the three main 

new series of doped samples. All photocatalysts were characterized by BET, XRD, 

UV-vis absorption analyses, so as to enlighten the effects of dopant concentration and 
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calcination temperature on the structural features of the doped materials, in relation to 

their photocatalytic activity (Chapter 9). 

 

Finally in the last part of the PhD thesis the effect of noble metal (Pt and Au) 

nanoparticles photodeposition on the activity of the best performing series of NH4F-

doped TiO2 photocatalysts calcined at 700°C was investigated in both energetically 

down-hill and up-hill reactions, i.e. in formic acid and acetic acid degradation in 

aqueous suspensions and in hydrogen production from methanol/water vapour 

mixtures, a reaction which has been thoroughly investigated in our research group.35,36 

Intriguing synergistic effects of TiO2 doping and of noble metal nanoparticles 

deposition have been observed in both types of reaction (Chapter 10). 
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2.1 Introduction  

Environmental pollution, such as contaminated water or polluted air, has become a 

global issue threatening the health of mankind. Typical polluting sources are toxic 

organic molecules or exhausted gas compounds which are released from household 

waste, livestock waste and local industries. Science is thus involved in searching for 

new alternatives and ecologically sustainable methods for cleaning up environmental 

contamination. Different solutions for depollution have already been proposed: air 

scrubbing, adsorption, activated carbon, etc., but some of them only remove the 

pollutant from one phase to another one and then require additional processes to 

eliminate toxic compounds. 

Heterogeneous photocatalysis is a potential solution that has been the object of 

intense research efforts since the early 1970s, when Fujishima and Honda discovered 

the photocatalytic splitting of water on TiO2 electrodes.1 This technique can be 

envisaged as one of the most promising Advanced Oxidation Process (AOPs) because 

of its specific advantages, such as bland reaction conditions, the possibility of using 

molecular oxygen as oxidant species, the total mineralization of pollutants into 

substances innocuous to the environment. 

Heterogeneous photocatalysis is based on the interaction between  semiconductor 

materials and light. By considering that we can get ‘free’ light from the sun, the idea of 

using solar light energy as resource to clean up the environment is an ideal and 

extremely promising approach.  

Sun light, with wavelengths ranging from 10-5 to 105 nm, is a clean and renewable 

energy source that is readily available. Before reaching the Earth’s surface, a part of the 

solar energy is absorbed by the stratosphere, ozonosphere and other atmospheric layers. 

Of the solar radiation reaching the Earth, 5% is UV light, 50% is visible light and the 

remaining part is composed of infrared and longer wavelengths radiation (Fig. 2.1). 

Approximately a 40% of the total amount of radiation arriving to Earth, mainly 

composed of visible, infrared, and radio energies, is constantly arriving to its surface. In 

particular Ultraviolet light (UV-light), generally divided into three regions, A (315 – 

400 nm), B (280 – 315 nm) and C (100 – 280 nm), is responsible for most of the 

photochemical processes occurring in the atmosphere. While the UV-C region is 

mostly filtered by Earth’s ozone layer, UV-A and UV-B radiations still pass and have 
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the potential to generate photochemical processes such as the synthesis of vitamin D in 

our body or the tanned skin colour we get after having been exposed to sunlight.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Earth’s light environment (solar spectrum). 
 

The development of photocatalytic technology with its different kinds of application  

(see Table 2.1) has especially promoted, in its early age, a revolutionary idea of 

cleanliness, as suggested by the Japanese ‘fathers’ of this field. Whereas in the past 

‘light cleaning’ meant a cursory job – a quick wipe-up or dusting – in the future it will 

come to mean ‘cleaning with light’, as depicted in Fig. 2.2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2 Representation of a city governed by urban photocatalysis, proposed by Italcementi 
group. 
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Property Category Application 

Self-cleaning Material for residential and
office buildings 

Exterior tiles, kitchen and bathroom components,
interior furnishings, plastic surfaces, building
stones

Indoor and outdoor lamps
and related systems 

Translucent paper for indoor lamp covers,
coatings on fluorescent lamps and highway
tunnel lamp cover glass 

Materials for roads Tunnel wall, soundproofed wall, traffic signs and
reflectors

Others Tent material, clothes for hospital garments and
uniforms and spray coating for cars

Air-cleaning Indoor air cleaners Room air cleaner, photocatalyst-equipped air
conditioners and interior air cleaner for factories

Outdoor air purifiers Concrete for highways, roadways and footpaths,
tunnel walls, soundproofed walls and building
wallsWater puification Drinking water River water, groundwater, lakes and water
storage tanks

Others Fish feeding tanks, drainage water and industrial
wastewater

Antitumor activity Cancer therapy Endoscopic-like instruments

Self-sterilizing Hospital Tiles to cover the floor and walls of operating
rooms, silicone rubber for medical catheters and
hospital garments and uniforms

Others Public rest rooms, bathrooms

Table 2.1 Overview of different photocatalysis applications. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Principles of semiconductor photocatalysis  

Photocatalysis is generally defined as the change in the rate of a chemical reaction or its 

initiation under the action of ultraviolet, visible or infrared radiation in the presence of 

a substance – the photocatalyst – that absorbs light and is involved in the chemical 

transformation of the reaction partners. Moreover, when a solid material is used as the 

photocatalyst the definition of heterogeneous photocatalysis is preferred.2 The most 

commonly used photocatalysts are semiconductor materials (most of them metal 

oxides) which, unlike metals, possess a void energy region (band-energy structure), 

where no energy levels are available (Fig. 2.3). The void region which extends from the 

top of the filled valence band to the bottom of the vacant conduction band is called 

band gap, Eg.   

Activation of a semiconductor photocatalyst is achieved through the absorption of a 

photon of ultra-band gap energy, which results in the promotion of an electron from the 

valence band into the conduction band, e-
CB, and in the concomitant generation of a 

hole in the valence band, h+
VB. The reaction of either the photopromoted electron with a 
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reducible adsorbed substrate (usually oxygen in aerated system) and/or the hole with an 

oxidizable adsorbed species can subsequently occur. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Simplified scheme of semiconductor activation. 
 

The probability and the rate of such charge transfer processes depend on the position 

of the conduction and valence band edges and on the redox potentials of the adsorbed 

species. For example, when a semiconductor is used as a photocatalyst in the 

environmental remediation, usually involving the photodecomposition or complete 

mineralization of organic pollutants, it should be capable to generate a valence band 

hole with a redox potential that is positive enough to oxidise the organic pollutant. At 

the same time the photogenerated electron in the conduction band should be negative 

enough to reduce adsorbed O2 to superoxide radical anion.3  

Figure 2.4 shows the band gap values of different semiconductors and their position 

on the electrochemical scale. A substrate can successfully interact only with some 

semiconductors: it is necessary that the electrochemical potential value of the electron 

acceptor is more positive (down in the graph) than the semiconductor conduction band 

potential, and that the electron donor potential is more negative (up in the graph) than 

that of the semiconductor valence band. A photocatalytic reaction can take place only 

under such conditions. 
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heat h e VBCB →+ +−

+•+ +≡→≡+ HO-Ti OH-Ti  hVB
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CB OH Ti OH-Ti  e +≡→≡+ •−

++→ν+ VB
-
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Figure 2.4 Relationship between the band structure of some selected metal oxide and non-oxide 
semiconductors and the redox potentials of water splitting.4 
 

Recombination of electron-hole pairs can occur, in competition with charge transfer 

to adsorbed species, in the volume of the semiconductor particle or in its surface with 

the release of heat. This phenomenon represents the major deactivation path which 

could significantly decrease the overall photocatalytic efficiency. 

The detrimental process of back-donation to the semiconductor after charge transfer 

to the adsorbed species can also occur. Thus, by considering TiO2 as an example of 

semiconductor with photocatalytic properties, the main reaction scheme of a 

photocatalytic process can be mainly summarized in the following equations and 

depicted in Fig. 2.5. 

 

a) Charge separation  

(2.1) 

 

b) Bulk/surface recombination 

(2.2) 

 

c) Surface trapping 

(2.3) 

       (2.4) 
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OH-Ti H  O-Ti  eCB ≡→+≡+ +•−

OH-Ti OH Ti h -
VB ≡→+≡+ •+

OH-Ti  Ox  O-Ti  Red 11 ≡+→≡+ •

OH-Ti  Red Ti  OH  Ox 222 ≡+→≡++ •

OH-Ti  Ox  O-Ti  Red 22 ≡+→≡+ •

OH-Ti  Red Ti  Ox 11 ≡+→≡+ •

d) Surface recombination 

               (2.5)  

    (2.6) 

 

e) Interfacial charge transfer  

(2.7) 

 (2.8) 

 

f) Back reaction 

 (2.9) 

 (2.10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Schematic representation of a nanosized photocatalyst particle where the de-
excitation process (following the initial irradiation) can occur in four general ways: (A) 
surface recombination, (B) volume recombination, (C) reduction with electron acceptors, and 
(D) oxidation with electron donors.5 
 

It’s worth to remember that a semiconductor free of impurities is defined intrinsic. A 

semiconductor doped with impurities is called extrinsic. 

Doping involves the addition of a different element into the semiconductor. The 

simplest example of this involves the introduction of a group V element (e.g., P) or a 

group III element (e.g., Al) into a group IV element (e.g., Si). The addition of P into Si 
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introduces occupied energy levels into the band gap close to the lower edge of the 

conduction band, thereby allowing facile promotion of electrons into the conduction 

band (Fig. 2.6b). The addition of Al introduces vacant energy levels into the band gap 

close to the upper edge of the valence band, which allows facile promotion of electrons 

from the valence band (Fig. 2.6c). This leads to the formation of holes in the valence 

band. 

Doped semiconductors in which the dominant or majority charge carriers are 

electrons are referred to as n-type semiconductors, whereas those in which holes are the 

majority charge carriers are referred to as p-type semiconductors. 

 

 

 

 

 

 

Figure 2.6 Schematic diagram of the energy levels of an a) intrinsic, b) n-type and c) p-type  
semiconductor. 
 

Another important concept in discussion of solid state materials is the Fermi level. 

This is defined as the energy level at which the probability of occupation by an electron 

is ½ at absolute zero temperature; for example, for an intrinsic semiconductor the 

Fermi level lies at the mid-point of the band gap (Fig. 2.6a).  

Doping changes the distribution of electrons within the solid, and hence changes the 

Fermi level. For a n-type semiconductor, the Fermi level lies just below the conduction 

band (Fig. 2.6b), whereas for a p-type semiconductor it lies just above the valence band 

(Fig. 2.6c). In addition, as with metals, the Fermi level of a semiconductor varies with 

the applied potential; for example, moving to more negative potentials will raise the 

Fermi level.6 

The contact between a semiconductor and another phase (liquid, gaseous or metallic) 

generally causes a charge redistribution. In order for the two phases to be in 

equilibrium, their electrochemical potential must be the same. The electrochemical 

potential of the solution is determined by the redox potential of the electrolyte solution, 

and the redox potential of the semiconductor is determined by the Fermi level. 

a) b) c) 
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If the redox potential of the solution and the Fermi level do not lie at the same 

energy, a movement of charge between the semiconductor and the solution is required 

in order to equilibrate the two phases. The excess charge that is now located on the 

semiconductor does not lie at the surface but extends for a significant distance (100 - 

10000 Å). This region is referred to as the space charge region, and has an associated 

electrical field. Hence, there are two double layers to consider: the interfacial 

(semiconductor/solution) double layer, and the space charge double layer. For an n-

type semiconductor the Fermi level is typically higher than the redox potential of the 

solution, and hence electrons will be transferred from the semiconductor into the 

solution. Therefore, there is a positive charge associated with the space charge region, 

and this is reflected in an upward bending of the band edges. Since the majority charge 

carrier of the semiconductor has been removed from this region, this region is also 

referred to as a depletion layer (Fig. 2.7). 

 

 

 

 

 

 

Figure 2.7 Band bending for an n-type semiconductor in equilibrium with a solution. 
 

As for metals, changing the applied potential shifts the Fermi level. The band edges 

in the interior of the semiconductor (i.e., away from the depletion region) also vary 

with the applied potential in the same way as the Fermi level. However, the energies of 

the band edges at the interface are not affected by changes in the applied potential. 

Therefore, the change in the energies of the band edges on going from the interior of 

the semiconductor to the interface, and hence the magnitude and direction of band 

bending, varies with the applied potential. There are three different situations to be 

considered: 

• at a certain potential, the Fermi level lies at the same energy as the solution redox 

potential (Fig. 2.8b). There is no net transfer of charge, and hence there is no band 

bending. This potential is referred to as flatband potential, Efb. 
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• depletion regions arise at potentials positive of the flatband potential, E > Efb, for 

an n-type semiconductor (Fig. 2.8a). 

• at potentials negative of the flatband potential (E < Efb) for an n-type 

semiconductor, there is now an excess of the majority charge carrier (electrons) in 

this space charge region, which is referred to as an accumulation layer (Fig. 2.8c).6  

 

 

 

 

 

 

Figure 2.8 Effect of varying the applied potential (E) on the band edges in the interior of an n-
type semiconductor. a) E > Efb, b) E = Efb, c) E < Efb. 
 

2.3 TiO2 as photocatalyst  

As for any common catalytic material, which is not consumed during the course of a 

chemical reaction, a photocatalyst must be stable and not prone to decompose due to 

long exposure to light. In addition, for some processes in which  water suspensions are 

used, stability in water at various pH is essential.  

As a general rule, a good photocatalyst must be:7 

• photoactive 

• able to absorb visible and/or near UV light 

• biologically and chemically inert 

• photostable (i.e. not liable to photoanodic corrosion) 

• inexpensive  

• non-toxic 

In many cases, the semiconductor risks to incur in oxidative decomposition by the 

photogenerated holes. Generally, only n-type semiconductor oxides are stable towards 

photoanodic corrosion, although such oxides usually have large band gap, so that the 

semiconductor absorb only UV light. CdS is an example of a highly active 

semiconductor which can be activated using visible light (thus, sunlight could be used), 

but, as usually occurs for visible light absorbing semiconductors, it is subject to 

a) b) c) 
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photoanodic corrosion and this feature makes it unacceptable as a photocatalyst for 

water purification. 

Among different semiconductor photocatalysts, TiO2 appears as the most active and 

most suitable one for a wide variety of energy and environmental applications. In fact, 

TiO2 has a high oxidation ability, its photogenerated holes being at E0 = 2.9 V vs. NHE 

at pH 0; moreover, it is biologically and chemically inert, photostable and cheap. 

Finally the location of the bottom of conduction band (Fig. 2.4) is suitable for using this 

material for the photocatalytic production of hydrogen from water, which has received 

extensive attention in the last decade for its potential application in the field of solar 

energy harvesting, conversion and storage.4,8-10 

Even after choosing TiO2 as semiconductor in photocatalytic experiments, the choice 

of its crystalline form is important as well. The crystalline forms of TiO2 are anatase, 

rutile and brookite. 

 

Brookite is a natural phase, which is quite difficult to synthesize in a laboratory. It is 

also rare in nature and structurally more complex than the other two polymorphs. It is 

constituted by an elementary cell containing 8 formula units with an orthorhombic 

symmetry. The Ti surrounding coordination polyhedron is an octahedron and there is a 

high oxygen atom packing. It forms very flat small tubular crystals with a variable 

color, from yellow to brown reddish. This polymorph is metastable: out of a restricted 

pressure and temperature interval it is converted into the two other phases (Fig. 2.9). 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 Phase diagrams of TiO2 at low and high pressures. 
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The rutile and anatase phases are the most used in photocatalytic studies (Fig. 2.10). 

Rutile is the most common mineral form of TiO2 in nature. The rutile structure is not 

compact. Its unit cell is tetragonal: one axis is 30% shorter of than the other two (a = 

4.593 Å, c = 2.959 Å). The structure is constituted by very distorted octahedral TiO6, 

with oxygen ions shared with other adjacent Ti ions. Every Ti ion is a octahedral 

surrounded by six O ions, and every O ion is surrounded by 3 Ti ions at the edges of an 

equilateral triangle. It can be envisaged as a central body cubic lattice of Ti ions that is 

considerably distorted. The crystallites can be present in nature as black or reddish and 

also transparent when completely without impurities. The color can also be orange if 

the mineral is in very thin needle form.  

Anatase, also improperly called octahedrite, presents a tetragonal bipyramidal 

symmetry, with a form similar to an elongated octahedron (a = 3.785 Å, c = 9.514 Å). 

The structure is based on a polyhedral chain of TiO6. The difference with rutile is that 

anatase presents a more distorted structure, where every polyhedron shares 4 edges 

with the adjacent one. In particular, the tetragonal elementary cell contains 4 units, 

instead of 2, and the cell sides are a = 3.785 Å and c = 9.514 Å. The anatase crystals are 

really small, the natural color ranges from blue sapphire to yellow-brown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10 Bulk crystal structure of rutile and anatase.11 
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These differences in lattice structures cause different mass densities and electronic band 

structures for the two main TiO2 polymorphs. In particular titanium dioxide is 

characterized by an allowed and indirect band gap, which is equal to 3.2 and 3.0 eV, 

respectively, for the anatase and rutile phase. The band gap occupied states (valence 

band, VB) are mostly O 2p atomic orbitals-derived, while the conduction band (CB) is 

mostly Ti 3d-derived (Fig. 2.11).12  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11 Molecular orbital structure of anatase: a) atomic levels, b) crystal – field split 
levels, c) final interaction states.12 
 

Moreover TiO2, like other oxides and chalcogenides, is thermodynamically stable as 

a non-stoichiometric compound, with anion deficiencies. Therefore, a more correct 

denotation would be TiO2-x. Generally the material defects, such as vacancies, can 

introduce localized ionized states. In the case of TiO2 oxygen vacancies are formally 

compensated by the adoption of the +3 oxidation state by an equivalent number of 

titanium atoms. These Ti3+ ions operate as electron donors, introducing localized levels 

next to the conduction band. This is due to the n-type semiconductor character of TiO2. 
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The anatase phase is one of titania’s most studied cristalline phases because it is 

commonly considered as the most photoactive polymorph, especially for the 

decomposition of water and organic compounds. 

As previously mentioned, after photoexcitation of  titania, electron-hole pairs are 

transferred to surface-adsorbed reactants in competition with mutual recombination. 

Since recombination is expected to occur on grain boundaries and crystal defects, the 

use of single-crystal particles with a low density of defects is one of the possible 

strategies to be pursued. Indeed, single-crystal anatase particles exhibited a high level 

of photocatalytic activity when they had a large specific surface area.13  

In general, well developed anatase single crystals exhibit a octahedral shape, i.e., 

tetragonal bipyramids, dominated by {101} facets, which are the thermodynamically 

most stable surface.14-16 Interest has thus been shown in octahedral shape with {101} 

facets.17-20 On the other hand, the preparation of single-crystal anatase particles with a 

largely-truncated octahedral shape with two square {001} facets, e.g., a decahedral 

shape, has also been reported.21,22 

Since the {001} surface is more reactive for dissociative adsorption of reactant 

molecules compared with {101} facets,23-27 high photocatalytic efficiency is expected 

for particles with {001} facets,28 though present information about their photocatalytic 

activity is still scarce. In agreement with natural minerals, a truncated octahedral 

bipyramid, exposing eight {101} facets as well as two {001} facets, has been shown to 

be the most thermodynamically stable shape of anatase crystallites based on Wulff 

construction.15,30 In spite of the important applications of anatase TiO2, experimental 

studies on the photoactive property of a single crystal surface have been limited by the 

difficulty in obtaining high-quality (and purity) anatase samples.31 A few studies have 

suggested a significant role of facets of TiO2 polyhedral particles for photocatalytic 

reactions.32,33 Recently developed hydrothermal reaction methods have enabled the 

preparation of anatase crystalline particles with well-developed {001} facets in a 

relatively high yield. In particular Yang et al. have synthesized uniform anatase TiO2 

single crystals with a high percentage (around 47%) of {001} facets using hydrofluoric 

acid as a morphology controlling agent.21 

The same research group has also reported a new solvothermal method using 2-

propanol as a synergistic capping agent and reaction medium, together with HF to 

synthesize high-quality anatase TiO2 single-crystal nanosheets (SCNSs) with 64% of 
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{001} facets.34 The efficiency of these TiO2 SCNSs materials in heterogeneous 

photocatalytic reactions was investigated by measuring the formation of active 

hydroxyl radicals (•OH) upon irradiation, which are considered as one of the most 

important oxidative species in photocatalysis reactions.35 Terephthalic acid (TA) was 

used as a fluorescence probe because it can react with •OH in basic solution to generate 

2-hydroxy terephthalic acid (TAOH), which emits a unique fluorescence signal peaking 

around 426 nm.36 The normalized (calculated per unit surface area) concentration of 
•OH radicals generated from SCNSs clean surfaces was found to be more than 5 times 

higher than that on standard Degussa P25 TiO2. It’s important to note that in order to 

compare the photocatalytic activity of well-defined anatase single crystal particles with 

that of commercial TiO2 photocatalytic powders, the crystalline size should be at least 

of submicrometric scale, in order to have a surface area comparable to that of 

commercial powders. Ohtani et al. succeed in this goal; decahedral-shaped anatase 

titania particles (DAPs) have been prepared by controlled gas-phase reaction of 

titanium(IV) chloride and oxygen at 1473K (Fig. 2.12).37,38 

 

 

 

 

 

 

 

 

 

 

Figure 2.12 A representative SEM image of decahedral anatase-titania particles prepared by 
controlled gas-phase reaction of titanium(IV) chloride and oxygen at 1473 K. Most particles 
expose two square (001) facets and eight trapezoidal (101) facets.37 
 

In this case the photocatalytic activity of DAPs was reported to be much higher than 

the photocatalytic activities of commercial titania particles, e.g., Degussa (Evonik) P25, 

presumably due to relatively large specific surface area able to adsorb a large amount of 

substrate(s) and due to high crystallinity, i.e. less crystal defects to reduce e−–h+ 

recombination. Aiming at investigating the intrinsic effect of decahedral shape on 
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photocatalytic activity, Ohtani’s group compared results obtained with DAPs with 

those described in their recent study, in which the photocatalytic activities and the 

physical and structural properties of 35 commercial titania powders were statistically 

analyzed to find the predominant properties determining the activity in a given reaction 

system.39 Standardized photocatalytic activities for five kinds of reactions were fairly 

well reproduced by a linear combination of six kinds of physical and structural 

properties of photocatalysts, i.e., specific surface area, density of crystal defects, 

primary particle size, secondary particle size and existence of anatase and rutile phases. 

It was suggested that high levels of photocatalytic activity of DAPs could not be 

reproduced by the correlation equations derived in the above-mentioned multivariable 

analysis,40 i.e., another property, such as “shape” may affect the photocatalytic 

activities. A more detailed study on this shape effect still needs further investigation.  

The rigorous statistical approach of Ohtani’s research group39 merits to be 

appreciated, because for the first time they tried to prove, in a strict scientific sense, the 

common understanding or myth in the photocatalysis field that anatase is more active 

than rutile. 

 

2.4 Modifications of TiO2 photocatalysts  

Even if TiO2 still remains as the most active and most suitable semiconductor 

photocatalyst for a wide variety of energy and environmental applications, the 

following major factors limit its photocatalytic efficiency and activity: 

1.  The band gap of TiO2 (anatase phase) is 3.2 eV, i.e. it absorbs light in the UV 

region, so that only a small portion (5%) of the sunlight can be used for 

photocatalytic processes. 

2. As in all semiconductors, photogenerated electron-hole couples undergo fast   

recombination in competition with charge transfer to adsorbed species. 

3. The use of slurries could limit the industrial applications of photocatalysis, the 

separation of semiconductor powders after liquid phase reactions being troublesome 

and expensive.   

Concerning the third point, several practical problems arise from the use of TiO2 

powders in photocatalytic processes: (a) difficult separation of the insoluble catalyst 

from the liquid, (b) aggregation of the suspended particles, especially at high 

concentration and (c) difficulties in a possible scale-up to continuous flow systems. In 
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this regard the use of photocatalysts in thin film form would not only avoid the 

drawbacks encountered with powder suspensions, but could also have photoinduced 

surface hydrophilicity applications.41 

Among the different methods applied to obtain TiO2 films,42-47 the so called ‘doctor 

blade’ method appears as a fast and no-energy consuming procedure for the production 

of thin porous films with good uniformity, high adhesion and reproducible properties, 

which are expected to have very good photocatalytic activity. Several other techniques 

have been developed to produce tailored photocatalysts films, such as CVD (chemical 

vapour deposition), magnetron sputtering, drop casting or electrochemical anodisation.    

However, in this PhD work the attention was focused on the exploration of different 

routes for the solution of the first two previously listed limiting aspects of TiO2 use in 

photocatalytic processes. In order to extend the spectral breadth and efficiency of TiO2 

photoresponse, a lot of scientific efforts have been done in the last decade.  

In this regard we can identify the following four main generations of TiO2 

photocatalysts.48 

i) the first generation involved pure TiO2 materials. 

ii)  the second generation consists of TiO2 materials doped with metals, such as Cr, V, 

W, Mo, Ru, Os, Re, Rh, Co, Al, Sn and Fe.48-50 The charged carrier recombination 

rates and interfacial electron-transfer rates can be significantly altered due to doping 

with metal ions. The photoreactivity of doped TiO2 is influenced by several 

parameters such as the dopant concentration, the energy levels of dopants 

differently located within the TiO2 lattice, their d electronic configurations and the 

light intensity.49,50 Therefore the photocatalytic performance of doped materials 

varies case by case. For example Cao et al. noticed that Sn4+-doped TiO2 film, 

prepared by plasma enhanced CVD method, exhibits more surface defects and a 

consequent enhanced photocatalytic activity for the degradation of phenol under 

both UV and visible light.51 

Wang et al. found that in Fe3+-doped TiO2 synthesized by oxidative pyrolysis the 

formation of rutile was strongly promoted by iron doping.52 Choi et al., in turn, 

found that doping TiO2 with metal ions (Fe3+, Mo5+, V4+) by sol–gel method 

significantly increased the photoreactivity as the dopant concentration increased.50 

Karvinen et al. theoretically investigated the role of transition metal dopants (V3+, 

Cr3+, Mn3+, Fe3+) in both anatase and rutile TiO2 models and observed significant 
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bang gap narrowing caused by those metals only in the anatase system.53 However 

Herrmann et al. reported that metal ion dopants like Cr3+, for example, can increase 

electron–hole recombination.54 Much additional work have been done on metal 

doping of TiO2, but a detailed understanding from a surface science viewpoint has 

not yet been achieved. 

Among the second generation of photocatalysts, structural and/or surface 

modification of TiO2 by noble metal (Pd, Pt, Au) deposition represents an emerging 

research field which has attracted wide attention. In particular there are two main 

approaches to the noble metal modification of TiO2. Firstly, the high rate of 

photogenerated electron/hole pairs recombination can be limited by loading noble 

metal nanoparticles only on the surface of TiO2. In these systems, photopromoted 

electrons can thus be ‘captured’ by the noble metal nanoparticles, which have a 

Fermi level lower in energy than the conduction band potential of the 

semiconductor (Fig. 2.13 and 2.14), with a consequent increase of the overall 

photocatalytic efficiency, especially under UV light.55 

 

 

 

 

 

 

 
Figure 2.13 Equilibration of semiconductor-metal nanocomposites with the redox couple 
before and after UV irradiation.55 
 
 

 

 

 

 

 
 
Figure 2.14 Schematic representation of the catalysis mechanism of gold nanoparticles 
deposited on TiO2 surface. 55 

It’s important to take into account that the gold nanoparticles deposited on the 

TiO2 surface are known to induce strong localized surface plasmon resonance 
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(LSPR) responsible for light absorption around 550 nm, which was recently found 

to produce the photoinduced oxidation of 2-propanol over Au/TiO2.
56 The presence 

in these reaction systems of a semiconducting material for electron transfer and of 

oxygen as an electron acceptor was found to be necessary. In particular the 

mechanism of visible-light-induced oxidation of organic compounds on gold–

titania, proposed by Kowalska et al., is schematically shown in Fig. 2.15.  

First, incident photons are absorbed by gold particles through their LSPR 

excitation. Electrons may be then injected from Au particles into the CB of titania 

and reduce molecular oxygen adsorbed on the surface of titania. The resultant 

electron-deficient gold can oxidize organic compounds, such as 2-propanol and 

acetic acid, to be recovered to its original metallic state. Therefore, the 

photocatalytic action of gold particles was confirmed, for the first time, by 

observing a resemblance of action and absorption spectra (Fig. 2.16), with a 

turnover number exceeding unity. 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 2.15 Schematic representation of the mechanism of organic compounds oxidation by 
Au/TiO2 under vis irradiation.56 
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Figure 2.16 Action spectrum of 2-propanol oxidation on TiO2 (ST41): ● Au-modified, □ 
bare, and ▬ absorption spectrum of Au/TiO2 (ST41) measured with barium sulfate as a 
reference.56 
 

A second way to modify TiO2 by noble metals consists in the insertion of metal 

ions (due to a doping process) into the semiconductor crystal structure, with a 

consequent decrease of the titania band gap extension. Details of photon absorption 

for gold ions doped in TiO2, reported by Li et al., are depicted in Fig. 2.17.57 

 

 

 

 

 

 

 

 

Fig 2.17 Proposed AuxTi1-xO2 energy level and photoinduced electron excitation.57  
 

Furthermore, the transfer of conduction-band electrons from TiO2 to another 

semiconductor might also be a feasible way to decrease charge recombination in 

photoexcited TiO2.
58-63 On this basis, titanium dioxide has been combined with 

several semiconductor oxides, such as ZrO2, SnO2, WO3 and ZnFe2O4. Increased 

surface acidity, as well as textural/structural modifications especially in the surface 

layers, have been invoked to explain the higher photocatalytic activity of coupled 

oxides.64 
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Moreover, in the last years these kind of coupled systems have found important 

environmental applications. For example, electron storage in the presence of O2 was 

successfully realized in a hybrid WO3/TiO2 material. In particular, this system could 

be charged under UV irradiation, holding the electrons in the presence of O2 for a 

long term, and can be discharged by a suitable reduction process which could be 

represented by the reduction treatment of poisonous heavy metal ions.65 

Furthermore it was shown that the introduction of CeO2 into the TiO2 framework 

not only improve the thermal stability of the ordered mesoporous structure, but also 

effectively extend the photo-response of TiO2 to the visible-light region.66 

iii) the third generation of materials mainly consists of TiO2 doped with non-metal 

elements, in order to shift the absorption threshold of TiO2 into the visible light 

range. In particular, after the first report about visible-light-sensitive N-doped TiO2 

photocatalysts in 2001,67 the attention has been mainly switched to the preparation, 

characterization and testing of different types of TiO2 doped with p-block elements, 

such as S, C, B, P and I.68-72 Such materials exhibit a red shift of the light absorption 

edge, the origin of which has arisen a lively debate. The main point of discussion 

concerns the eventual narrowing of the semiconductor band gap as a consequence of 

doping or the creation of intra band gap states. Also, the chemical nature and the 

location in the solid of the dopant species responsible for visible light activity is still 

controversial, together with the role of oxygen vacancies, stabilized by the presence 

of dopants as a result of charge compensation.73-75 

iv) the fourth generation of materials is based on the surface deposition of dye 

sensitizer molecules on the TiO2 semiconductor. Surface sensitization of the 

photocatalyst via chemisorbed or physisorbed dyes can increase the efficiency of 

the photoexcitation process and expand the excitation wavelengths range of the 

photocatalyst through excitation of the sensitizer followed by charge transfer to the 

semiconductor. The mechanism of the process is briefly outlined by reactions (2.11) 

and (2.12). Organic and/or inorganic dyes, such as erythrosin B, thionine and 

analogs of Ru(bpy)3, are commonly used as sensitizers.76,77 

 

Dye + hv → Dye*         (2.11) 

Dye* + TiO2 → Dye*• + TiO2 (e
-)       (2.12) 
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These systems can find application especially for the photocatalytic evolution of 

H2 and/or photocurrent production, even when the energy of light is lower than the 

band gap of pure TiO2 (Fig. 2.18). 

The interaction of the sensitizer with light plays an important role in determining 

the efficiency of sensitized TiO2. However, a careful design is required in order to 

avoid some drawbacks such as thermal instability of the dye and a high 

recombination of the charged carriers.78 

 

 

 

 

 

 

 

 

 

Fig 2.18 Scheme of sensitized-type photocatalyst.4  
 

It’s worth to underline that in most cases the emergence of visible light response in 

doped materials sacrifices the UV light activity of TiO2, mainly because doping 

generates impurity and/or vacancy levels in the bulk acting as recombination centres. 

Furthermore, the oxidation power and mobility of photogenerated holes in localized 

narrow bands are less than in the TiO2 valence band.79-81 

As an alternative, the visible light activation of TiO2 has been recently achieved by 

surface modification with oxides of transition metals including Fe,82-84 Cu 85 and Cr.86 

This approach is attractive in that visible light response can be induced in such hybrid 

materials without the introduction of impurity/vacancy levels into the bulk of TiO2. 

In the Cu(II) grafted system,85 visible light was first assumed to initiate interfacial 

charge transfer (IFCT), so that electrons in the valence band of TiO2 are directly 

transferred to Cu(II) and form Cu(I), as well as holes in the TiO2 valence band, which 

are able to decompose organic substances. In contrast, Cu(I) produced by electron 

transfer reduces adsorbed O2 through multielectron reduction, with the consequent 

consumption of photoexcited electrons (Fig. 2.19).  
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Figure 2.19 Proposed mechanism for the generation of photocatalytic activity under visible 
light for Cu(II)-grafted TiO2 systems. Visible light irradiation induces interfacial charge 
transfer (IFCT) from the valence band of TiO2 to Cu(II) ions.85 
 

The mechanism proposed in the case of grafted Cr(III) ions is slightly different, 

because the Cr(IV)/Cr(III) redox potential is slightly above that of the TiO2 valence 

band. In this system a charge transfer process would occur from the grafted atomic 

metal ions into the conduction band of TiO2.
86 The photoproduced Cr(IV) species may 

oxidize organic molecules and return back to the original Cr(III) state, while the 

electrons in the TiO2 conduction band are consumed in the reduction of adsorbed 

oxygen molecules (Fig. 2.20). 

 

 

 

 

 

 

 

 

 

 
 
Figure 2.20 Proposed mechanism for the generation of photocatalytic activity under visible 
light. Visible light irradiation induces a metal charge transfer process (MMCT) from the 
grafted Cr(III) metal ions to the conduction band (CB) of TiO2, mainly consisting of Ti(3d) 
orbitals.86 
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The visible light induced activity of such hybrid materials is noticeable in the case of 

rutile TiO2; however, the effect is small for anatase TiO2. A key point in this kind of 

surface modification is the dispersion state of the metal oxide on the TiO2 surface.  

Very promising results have been recently obtained by means of the chemisorption-

calcination cycle (CCC) technique, in which metal complexes are adsorbed by 

chemical bonds on the TiO2 surface.87,88 The organic ligands are then oxidized by post-

heating to prepare metal oxide clusters and ultrathin films at a molecular scale. 

The choice of the semiconductor could strongly affect the photoefficiency of  these 

novel and promising grafted systems. In this regard it was found that Cu(II)/WO3 

showed a higher quantum efficiency respect to Cu(II)/TiO2 during the decomposition of 

2-propanol under visible light irradiation.89 This fact could be ascribed both to the 

higher visible light absorption capability of the first system respect to the second one 

and to the intrinsic higher oxidation power of the holes photogenerated in the VB of 

WO3 respect to those obtained in TiO2 materials.  

These preliminary results described in the literature suggest metal ions grafting of 

TiO2 as a simple and effective method for the design of novel and efficient 

photocatalysts which respond to visible light irradiation, even better than well-known 

and commercially available doped materials (N-doped TiO2, HP-NO8, Showa Denko, 

which is already used for indoor application). 
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Different strategies such as sol-gel, micelle and inverse micelle, hydrothermal, 

solvothermal, direct oxidation, chemical vapour deposition, flame spray pyrolysis  

electrodeposition, sonochemical and microwave methods have been proposed to 

synthesise TiO2 materials for photocatalytic applications.1  

Among all these techniques, the sol-gel method is the most commonly used due to its 

relatively low cost and great flexibility. This technique has been chosen for the 

preparation of home-made doped TiO2 samples, which have been investigated during 

this PhD thesis (Chapters 7-10). 

 

3.1 Sol-gel process  

Sol and gels are two forms of matter in colloidal state, which are either available in 

nature (milk, serum) or prepared by chemical synthesis. The activity for synthesizing 

inorganic materials by sol – gel processes began in 1846 with Ebelman’s discovery of 

SiO2 formation upon hydrolysis of tetraethylorthosilicate (TEOS) under acidic 

conditions.2 In 1864, studies on the structure of inorganic gels confirmed that a gel 

consisted of a solid network with continuous porosity (three dimensional molecular 

network). In the mid-1970s the interest in sol – gel process increased significantly 

when monoliths were produced by carefully drying the gel.3  

Nowadays, the sol – gel process is used to prepare various types of materials, which are 

implemented into a variety of technologies, such as nonlinear optical devices, 

luminescent solar concentrators and chemical sensors. 

The sol - gel method is based on inorganic polymerization reactions, involving four 

basic steps: hydrolysis, polycondensation, drying and thermal decomposition of 

precursors. These are, usually, inorganic metal salts or metal organic compounds such 

as metal alkoxides M(OR)n or oxoalkoxides MO(RN)n, where R is associated with 

saturated or unsaturated aryl or alkyl groups, in some cases with β-diketonates 

(RCOCHCOR') or metal carboxylates M(O2CR)n.
4 When specifically preparing TiO2-

based materials by sol-gel method, titanium alkoxide (e.g. titanium tetraisopropoxide) 

is often used as a precursor.  

 

The general mechanisms in the metal-organic route are based on the growth of metal 

oxo-polymers in a solvent. The main reactions at work can be divided into two steps: 
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1. first step: hydroxylation upon the hydrolysis of alkoxy groups 

M-OR + H2O � M-OH + R-OH                      (3.1) 

2. second step: polycondensation due to water (a) and/or alcohol (b) condensation 

M-OH + HO-M � M-O-M + H2O         (3.2) 

M-OH + RO-M � M-O-M + ROH         (3.3) 

 

Generally speaking, the hydrolysis reaction, through the addition of water replaces 

alkoxide groups (OR) with hydroxyl groups (OH). Subsequent condensation reactions 

involving the M-OH groups produce M-O-M bonds plus the by-products water or 

alcohol. Additionally, because water and alkoxides are immiscible, the use of a mutual 

solvent such as an alcohol is necessary. With the presence of this homogenizing agent, 

i.e. the alcohol, hydrolysis is facilitated due to the miscibility of the alkoxide and 

water.5  

Several parameters, such as type of precursor, type of solvent, water content, pH, 

concentration of precursor and temperature, can influence the structure of the initial gel, 

and, in turn, the properties of the resulting materials, including the crystal structure, 

particle size, shape and crystallinity.6-19   

In particular hydrolysis and polycondensation reactions, which are the main paths 

during the sol-gel reaction, may be strongly promoted by either acid or alkaline pH. 

Examples will be reported below with reference to the formation of SiO2, but the 

invoked mechanisms are general and can be apply to any other oxide. 

 

Under acid conditions, e.g. with mineral acids, the hydrolysis reaction is speeded up 

more efficiently than the condensation reaction:5,20-22 

 

 

 

 

Condensation involves the attack of silicon atoms carrying protonated silanol species 

by neutral ≡Si-OH nucleophiles.  

� acid conditions promote the formation of protonated silanol species, but inhibit 

some nucleophiles; 
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� the most basic silanol species (expected to be protonated) are those contained in 

monomers or weakly branched oligomers: so a bushy network of weakly branched 

polymers is obtained. 

 

 

 

 

Under basic conditions, e.g. with ammonia, hydroxyl anions (OH-) and deprotonated 

silanol (≡Si-O-) are better nucleophiles than water and silanol species; a fast attack at 

the silicon atom and both hydrolysis and condensation reactions occur simultaneously. 

The condensation involves the attack of a deprotonated silanol (≡Si-O-) on a neutral 

siloxane species; the acidity of silanol increases when -OH or -OR groups are replaced 

with -O-Si≡ groups because of the reduced electron density on the Si atom:5,20-22 

 

 

 

 

 

 

 

The result of basic catalysis is an aggregation (monomer-cluster) that leads to more 

compact highly branched silica networks, that are not interpenetrable before drying and 

thus behave as discrete species. 

The gel, which is a solid matrix containing the solvent, needs to be dried in order to 

remove the solvent. The period between the formation of the gel and its drying is 

known as ageing, during which the gel may keep undergoing the hydrolysis or the 

condensation. The ageing step is crucial to obtain an increase of the strength of the gel 

without changing the pore structure and an increase of the pore size while reducing the 

surface area through dissolution and riprecipitation of the particles.  

Drying is the following step in the sol–gel process, which is necessary in order to 

remove the solvent from the gel-network. The methods adopted for the elimination of 

the residual solvent are influenced by the specific use of the dried material. The choice 

of how to perform the solvent removal is not trivial especially in the case of an oxide 
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where the surface state is ruling the reactivity. Further, the solvent elimination route 

might affect not only the surface features, but also the bulk and the morphological 

characteristics of the powders.23-27 In particular there are three main procedures. The 

gels can be dried: 1) by heating in oven (xerogels); 2) by freeze drying (cryogels); 3) by 

reaching supercritical solvent conditions in autoclave (aerogels). 

Finally a calcination step (thermal treatment), in a different temperature range, is 

necessary in order to convert the dried gel to a crystalline material. During this 

procedure the following reactions can occur: 

• desorption of physically adsorbed solvent and water molecules from the walls of 

micropores (100-200 °C); 

• decomposition of residual organic groups into CO2 (300-500 °C); 

• collapse of small pores (400-500 °C); 

• collapse of larger pores (700-900 °C); 

• persistent polycondensation (100-700 °C). 

Sintering and densification phenomena also take place, via typical sintering 

mechanisms, such as evaporation condensation, surface diffusion, grain boundary and 

bulk diffusion. The small particle size of the powders leads to high reactivities and 

enhanced sintering and/or coarsening rates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Schematic overview of the sol-gel process.4 
 



Chapter 3 
 
 

 55 

The sol-gel approach has numerous advantages. For instance, it allows tailoring of  

both the bulk properties (such as phase composition) and the surface characteristics 

(such as the surface area, the total pore volume distribution, etc) of a material on a 

nanometer scale from the earliest stages of processing.  

Moreover this technique permits: 

• the production of new hybrid organic–inorganic materials, which do not exist in 

nature; 

• the synthesis of high purity products (submicron powders, nuclear fuels, electronic 

and ionic conductors, magnetic materials) because organometallic alkoxy 

precursors can be purified by distillation or recrystallisation; 

• the use of low temperature in the first step of the process, so that thermally labile 

compounds can be entrapped in the sol–gel matrix; 

• the production of different physical forms (fibers, monoliths, coatings, powder) by 

modifying few experimental parameters (Fig. 3.2). 

The main drawbacks consist in the possible high cost for the majority of alkoxide 

precursors and in the long processing steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Schematic view of the different physical forms obtained by sol–gel synthesis. 
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θ=λ sen d 2  n 

3.2 X-ray Powder Diffraction (XRPD)  

X-ray powder diffraction (XRPD) is a non-destructive analytical technique widely 

applied for the characterization of crystalline materials.28-31 This method has been 

traditionally used for phase identification, quantitative analysis and the determination 

of structure imperfections of powdered solid samples. 

Powder diffraction is commonly used to identify unknown substances, by comparing 

diffraction data with those in the international data base. In fact each crystalline solid 

produces distinctive diffraction patterns. The technique may be also useful to 

characterize heterogeneous solid mixtures, to determine relative abundance of 

crystalline compounds and, if coupled with one of the refinement techniques (e.g. the 

Rietveld refinement), can provide quantitative structural information. 

When a monochromatic X-ray beam passes through a crystalline sample, it interacts 

with the electrons in the atoms, resulting in scattering of the radiation. If the matter is 

crystalline, i.e. the atoms are organized in planes and the distances between the atoms 

are of the same magnitude as the X-rays wavelength, constructive and destructive 

interference will occur. The process of diffraction is described in terms of incident and 

reflected (or diffracted) rays, each forming an angle, θ, with a fixed crystal plane.  

In particular, when the interaction of the incident rays with the sample produces  

constructive interference (Fig. 3.3), the diffraction phenomena satisfy the so-called 

Bragg law:32 

              (3.4) 

where:  

λ = incident light wavelength. 

n = integer positive number (0,1,2,3, etc.). 

d = interplane spacing. 

θ = angle between the incident radiation and the planes (h k l). 

The incident angle is chosen by rotating the crystal relative to the beam, the 

wavelength is fixed and thus the interplanar spacing d is obtained. The conclusion is 

that any set of planes in a crystal will reflect an X-ray beam if the set of planes is at 

right angle to the incident beam. But there arises another question, whether the planes 

will reflect the beam strongly or not.  

The intensity of the reflected beam is proportional to the product of the intensity of 

the incident beam and the concentration of electrons in the reflecting plane. Thus if the 
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unit cell dimensions are known and, subsequently, the atomic number of each of the 

atoms, it is possible to calculate the concentration of electrons and hence the intensity 

of the reflected beam. 

Now considering the reverse situation, if the size of the unit cell and the intensities of 

the reflections are known, the positions of atoms and also the relative number of 

electrons per atom are found. It is obvious that all compounds with different formula or 

unit cells have different collections of d-spacings and different intensities of reflections. 

The observed patterns of spacings and intensities can thus be used to identify an 

unknown compound in a specific crystalline phase. 

 

 

 

 

 

 

 

 

 

 
 
Figure 3.3 Bragg's Law for X-ray diffraction. The diffracted X-rays exhibit constructive 
interference when the distance between paths ABC and A'B'C' differs by an integer number of 
wavelengths (λ).32  
 

In powder diffraction it’s important to have samples with a smooth plane surface, 

with the crystallites randomly distributed.  

The powder sample is filled in a small disc and placed in the analysis equipment. The 

monochromatic X-ray source is placed on a rotating arm, in order to light the sample 

with a variable angle θ. The reflected radiation is collected by the detector, even fixed 

on a rotating arm, placed at twice this angle. As 2θ is the angle measured between the 

detector and the incident beam, as shown in Fig. 3.4, the diffracted radiation is 

collected by the detector at the very same incident angle θ.  
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Figure 3.4 Schematic diagram of an X-ray diffractometer. 

 

A typical diffraction pattern consists of a plot of reflected intensities versus the 

detecting angle 2θ. Comparing the results with the data base of organic and inorganic 

spectra leads to the determination of the analyzed species.  

In particular in this work XRPD patterns of all investigated photocatalysts were 

collected using a Philips PW3020 powder diffractometer, operating at 40 kV and 40 

mA, employing filtered Cu Kα radiation (λ = 1.54056 Ǻ) as X-ray source. The 

diffractograms were recorded by continuous scanning between 15.025° and 99.975° 

(2θ) angles, with a step of 0.05°. Quantitative phase analysis was made by the Rietveld 

refinement method,33-35 using the ‘‘Quanto” software.36 

Moreover from XRPD patterns, crystallite sizes can be calculated. Generally as the 

size of the crystallite decreases, the angular spread of the reflection increases. In this 

thesis the value of the FWHM (full width at half maximum) of the most intensive line 

of each phase was used in order to measure the mean particle (crystallite) size, by 

applying the Scherrer formula: 

 

 (3.5) 

 

where: 

d(hkl) = size (nm) of particles in the direction vertical to the corresponding lattice plane.  

λ = X-ray incident wavelength. 

β = line broadening at half maximum intensity (FWHM) expressed in rad. 

θ = incident angle. 
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This formula is quite satisfactory for studies comparing the crystallite sizes of a 

number of samples belonging to a related series, but it should be used with caution 

when sizes of best absolute accuracy are needed. In this regard the Sherrer equation 

shows two main limitations:  

1. the numerical value of the shape factor K for spheres has been approximated to 

0.9.37 

2. the pure diffraction width of the sample, β, does not directly correspond to that of 

the observed peak, because of instrumental aberrations (broadening due to the 

optical path in the diffract-meter). In order to solve this problem Warren proposed 

the following equation:38,39 

(3.6) 

according to which the squared breadth of the observed peak (B2) equals the sum of 

the squares of breadths of the pure diffraction profile (β2) and the profile of the 

instrumental broadening (b2). The instrumental broadening is usually evaluated by 

means of the spectrum of a standard Si powder. 

Equation (3.6) yields a most convenient and sufficiently reliable means for 

correcting observed line breadths for instrumental broadening, when the primary 

purpose is the comparison of crystallite sizes and not the evaluation of absolute 

dimensions. The Sherrer equation is limited to nano-scale particles. It is not used for 

grains larger that 0.1 µm because in that situation pure diffraction breadth becomes 

negligibly small in comparison with the breadth due to the experimental 

arrangement. 

Furthermore broadening of FWHM of XRPD peaks is also induced by distortion 

of the crystalline lattice. The Williamson–Hall equation includes this, as well as the 

effect of particle size.40 In other words, Scherrer’s equation neglects the effect of 

crystal lattice distortion. So, for samples that are expected to have a large degree of 

distortion, analyses using the Williamson–Hall equation should be carried out. 

Anyway it’s strongly recommended to compare the particles size results calculated 

from XRPD data with those obtained by using other techniques, such as 

transmission or scanning electron microscopy.  

 

Finally a few critical aspects related to the use of XRPD analysis in photocatalysis 

field of research merit to be outlined. One of the limitation of XRPD analyses is that 
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only crystalline phases can be detected, while the amorphous component, if present in 

samples, exhibits no diffraction peaks. Actually there are no reports showing a 

quantitative determination of the amorphous content. Thus, the amorphous content 

should be determined as a remaining of the crystalline part and therefore an accurate 

determination of the crystalline content is necessary. In principle, XRPD peak intensity 

is proportional to the content of the corresponding crystallites, but a problem is how to 

get global standard samples of each crystalline phase, because smaller crystallites may 

exhibit lower peak intensity.41 In this regard an accurate analysis of crystalline content 

(including amorphous component determination) can be guaranteed when pure 

crystalline particles included in a sample are chemically extracted (from the original 

sample) and used for making an XRPD calibration curve42,43 based on the assumption 

that crystallites and amorphous particles are separated, i.e. not in the form of, for 

example, a core–shell structure (Fig. 3.5). In fact, if a sample particle is made by a 

core–shell structure, a precise determination of the crystalline content may be very 

difficult.  

 

 

 

 

 

Figure 3.5 Representative patterns of mixture of crystallites (white and gray particles) and 
amorphous parts (black).46 

 

Confusion regarding the term “crystallinity” arises because the term is discussed on 

the basis of sharpness of an XRPD peak, e.g. “Sharpness of the peak indicates higher 

crystallinity of a photocatalyst.” Since the width of an XRPD peak reflects the size of a 

particle, as previously described for the Sherrer equation, peak sharpness shows the 

size of crystallites. In this sense, “crystallinity” is used to show how crystallites grow to 

be larger sized particles.  

Another use of the term “crystallinity” is to show perfectness of crystals, i.e. higher 

crystallinity means lower density of crystalline defects. Assuming that larger 

crystallites are expected to contain a lower density of crystalline defects, the sharpness 
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of XRPD peaks can also be a relative/indirect measure of this second meaning of 

“crystallinity”. 

 

3.3 X-ray Photoelectron Spectroscopy (XPS)  

X-ray Photoelectron Spectroscopy is a surface chemical analysis technique based on 

monitoring the energy of electrons emitted by a system under stimulation of X-rays.44 

Traditionally, when the technique has been used for surface studies it has been 

subdivided according to the source of exciting radiation into:  

• X-ray Photoelectron Spectroscopy (XPS) using soft X-ray (200-2000 eV) radiation 

to examine core levels; 

• Ultraviolet Photoelectron Spectroscopy (UPS) using vacuum UV (10-45 eV) 

radiation to examine valence levels; 

• The development of synchrotron radiation sources has enabled high resolution 

studies to be carried out with radiation spanning a much wider and more complete 

energy range (5-5000 eV), but such type of analysis is, and will remain, a minority 

of all photoelectron studies due to the expense, complexity and limited availability 

of such sources. 

Photoelectron spectroscopy is based upon a single photon in/electron out process. The 

energy of a photon is given by the Einstein relation:  

 (3.7) 

where h is the Planck constant (6.62·10-34 J·s), and ν is the frequency (Hz) of the 

radiation. 

Photoelectron spectroscopy uses monochromatic sources of radiation (i.e. photons of 

fixed energy). In XPS the photon is absorbed by an atom in a molecule or solid, leading 

to ionization and the emission of a core (inner shell) electron. By contrast, in UPS the 

photon interacts with valence levels of the molecule or solid, leading to ionisation by 

removal of one of these valence electrons. The kinetic energy distribution of the 

emitted photoelectrons (i.e. the number of emitted photoelectrons as a function of their 

kinetic energy) can be measured using any appropriate electron energy analyser and a 

photoelectron spectrum can thus be recorded. 
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Knowing the kinetic energy of the emitted electrons (KE), the electron binding 

energy (BE) of each of the emitted electrons can be determined as a difference between 

the energy of the primary photon (hν) and the kinetic energy of the photoelectron: 

            (3.8a) 

The positions of the peaks in the XPS spectrum plotted as emission intensity vs. the 

electron binding energy gives the information about the atomic composition of the 

sample surface. Furthermore, the intensity of the peaks is related to the concentration of 

the element within the sampled region. Thus, the technique provides a quantitative 

analysis of the surface composition and is sometimes known by the alternative 

acronym, ESCA (Electron Spectroscopy for Chemical Analysis).  

The most commonly employed X-ray sources are those giving rise to:  

Mg Kα radiation: hν = 1253.6 eV 

Al K α radiation: hν= 1486.6 eV 

The emitted photoelectrons will therefore have kinetic energies in the range of ca. 0-

1250 eV or 0-1480 eV . 

 

 

 

 

 

 

Figure 3.6 Photoelectron (eP) and Auger electron (eA) emission processes induced by X–rays.44 

 

It’s worth to note that, as schematically depicted in Fig. 3.6, the binding energies (BE) 

of energy levels in solids are conventionally measured with respect to the Fermi level 

of the solid, rather than the vacuum level. This involves a necessary correction to the 

equation given above in order to account for the work function (Φ) of the solid, as 

described by the following relation: 

            (3.8b) 
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The exact binding energy of an electron depends not only upon the level from which 

photoemission is occurring, but also upon:  

1. the formal oxidation state of the atom; 

2. the local chemical and physical environment. 

Changes in either (1) or (2) give rise to small shifts in the peak positions in the 

spectrum, so-called chemical shifts. Such shifts are readily observable and interpretable 

in XPS spectra because the technique:  

• is of high intrinsic resolution (as core levels are discrete and generally of a well-

defined energy); 

• is a one electron process (thus simplifying the interpretation). 

Atoms of a higher positive oxidation state exhibit a higher binding energy due to the 

extra coulombic interaction between the photo-emitted electron and the ion core. This 

ability to discriminate between different oxidation states and chemical environments is 

one of the major strengths of XPS technique.  

In practice, the ability to resolve between atoms exhibiting slightly different 

chemical shifts is limited by the peak widths which are governed by a combination of 

factors, in particular:  

• the intrinsic width of the initial level and the lifetime of the final state;  

• the line-width of the incident radiation - which for traditional X-ray sources can 

only be improved by using X-ray monochromators; 

• the resolving power of the electron-energy analyser. 

Finally the basic requirements for a photoemission experiment (XPS or UPS) are: 

1. a source of fixed-energy radiation (an X-ray source for XPS or, typically, a He 

discharge lamp for UPS);   

2. an electron energy analyser (which can disperse the emitted electrons according to 

their kinetic energy, and thereby measure the flux of emitted electrons of a 

particular energy); 

3. a high vacuum environment (to enable the emitted photoelectrons to be analysed 

without interference from gas phase collisions). 

Such a system is illustrated schematically in Fig. 3.7. There are many different 

designs of electron energy analyser but the preferred option for photoemission 

experiments is a concentric hemispherical analyser (CHA), which uses an electric field 
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between two hemispherical surfaces to disperse the electrons according to their kinetic 

energy. 

 

 

 

 

 

 

Figure 3.7 Basic scheme of XPS instrumentation. 

 

3.4 UV-vis Diffuse Reflectance Spectroscopy (DRS UV-vis)  

Diffuse Reflectance Spectroscopy is based on the interaction between a UV or visible 

beam and a powdered sample, from which the beam can be reflected in all directions. 

Only the fraction of beam which is scattered within a sample and returned to the 

surface is considered to be a diffuse reflection. All the reflected radiation can thus be 

collected within an integrating sphere, enhancing the signal-to noise ratio. The internal 

walls of the sphere are usually covered with barium sulfide, a compound that ensures a 

reflectivity greater than 0.98 in the UV-vis light region. Moreover the reflectance 

spectrum of a reference standard (BaSO4) should always be recorded prior to that of 

any other sample. 

 

 

 

 

 

 

Figure 3.8 Schematic representation of the radiation interaction with the sample; Rs stands for 
the specular reflected beam, Rd for the diffuse reflected beam. 

 

It’s clear that the raw diffuse reflectance spectrum is different from its equivalent 

absorption due to the multiple surface reflections of the powder grain. At the same time 

N 

Rs 

Rd 

Rd 
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photoabsorption is one of the most significant steps in photocatalysis and the estimation 

of the number (or flux) of absorbed photons is an important fundamental experiment, 

considering the first law of photochemistry,45 i.e. light must be absorbed by a chemical 

substance in order to promote a photochemical reaction. However, it’s still rather 

difficult to get accurate expressions of photoabsorption spectra of solid materials. 

In the literature on photocatalysis, a photoabsorption spectrum, i.e. a plot of the 

absorption extent as a function of wavelength, is usually reported in terms of 

absorbance units or Kubelka–Munk function. The former, i.e. absorbance, is 

traditionally defined as log(I0/I), where I0 and I are the intensities of incident and 

transmitted light, respectively. Otherwise when photoabsorption is measured in a 

reflection mode, I can be considered the reflection intensity, while I0 represents the 

reflection of a ‘standard material’, such as BaSO4, which can reflect all the incident 

light, i.e. 100% reflection. In this regard the Kubelka-Munk (KM) function, usually 

employed for samples diluted with a medium of less photoabsorption, is otherwise 

defined as follows:  

 

 (3.9) 

 

where R∞, α and s are the diffuse reflectance (I/I0), the absorption coefficient in cm-1 

units and the scattering factor, respectively.  

The use of absorbance units for measurements performed in reflectance mode is not 

correct, since absorbance can be defined for the case where extinction of light intensity 

is assumed to be induced only by photoabsorption and not by scattering.  

Moreover, as pointed out by Ohtani in a recent review,46 both these kinds of 

absorption expressions are not appropriate as a measure of absorbed light intensity. 

Absorbance and K-M units are mainly proportional to the concentration of a given 

material dispersed in a homogeneous medium (liquid or solid matrix), but not to the 

number of photons absorbed by a solid sample. This is easily understood by the fact 

that absorbance values equal to 1 and 2 correspond to 90 and 99% absorption of 

incident light. In order to calculate the extent of photoabsorption of a solid sample, it’s 

thus strongly recommended to measure absorption which can be calculated as (1-R), 

where R represents the diffuse reflectance value.  

 



Chapter 3 
 

 66 

ν
−ν

=α
η

h

)Eh( g

In photocatalysis, especially when dealing with doped materials, extremely important 

is to estimate the optical absorption edge energy of a semiconductor material. The 

optical absorption edge energy is the minimum photon energy required to promote 

electrons from the highest occupied molecular orbital (HOMO) to the lowest 

unoccupied molecular orbital (LUMO). Two basic types of electronic transitions are 

distinguished, i.e. direct and indirect.47 Direct transitions demand only the excitation of 

electrons by photons, while indirect transitions require additionally concerted 

vibrations and energy from the crystal lattice (phonons). The electron energy near the 

absorption edge in the case of semiconductors is given by:48 

 

 (3.10) 

 

where α is the absorption coefficient, hv is the energy of the incident photon and Eg is 

the optical absorption edge energy. The variable η depends on the type of the optical 

transition caused by photon absorption. In crystalline semiconductors η can assume the 

following values: 

• 1/2 when the transition is direct-allowed 

• 3/2 when the transition is direct-forbidden 

• 2 when the transition is indirect-allowed 

• 3 when the transition is indirect-forbidden 

In the case of amorphous, homogeneous semiconductors η is 2 independently of the 

type of transition.49 In case of TiO2, η = 2 is usually considered. 

Experimental diffuse reflectance data cannot be used directly to measure absorption 

coefficients (α) because of scattering contributions to the reflectance spectra. Scattering 

coefficient s, however, depends weakly on energy and F(R∞) can be considered to be 

proportional to the absorption coefficient within the narrow range of energy containing 

the absorption edge features. In such way, the determination of the absorption edge 

energy can be estimated from the (F(R∞)·hv)1/η versus hv plot. In particular the 

experimental band gap value can be obtained from the x-intercept of the straight 

tangent line to this plot. 

Figure 3.9 shows an example of the above-mentioned analysis for a well-crystallized 

rutile titania.46 In this case the linearity of (F(R∞)·hv)1/η versus hv plots has been 

checked for both allowed direct or indirect modes of transition.  
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Figure 3.9 Two kinds of plot for the determination of band gap energy (Eg) of rutile titania. 
Assumptions of indirect (left) and direct (right) allowed transitions give band gaps of 3.00 and 
3.14 eV, respectively.46  

 

We can note that these plots show a quite similar extent of linearity, that is 0.14 eV 

and 0.20 eV for indirect and direct transition, respectively. Moreover their x-intercepts, 

3.00 and 3.14 eV, are expression of the corresponding optical band gap.  

In this regard the real difficulty that this approach encounters in the calculation of 

experimental band gap values has been recently recognized.46 In fact, the range of the 

linear part of the plots (Fig. 3.9) seems to be arbitrarily chosen and there seem to be no 

absolute ways/rules to discriminate the effective transition mode and to find reasonable 

data on semiconductor band gap energy. Moreover the absorption spectra, especially of 

doped materials, can be strongly affected by the presence of impurities or surface 

states. Therefore, discrimination of real narrowing of the semiconductor band gap from 

absorption originated by bulk or surface modification is rather difficult.  

 

3.5 Surface area and pore structure evaluation by gas adsorption  

Surface area and porosity are important parameters in powdered materials. The most 

widely used techniques for estimating surface area are based on physical adsorption of 

gas molecules on a solid surface.  

Generally gas adsorption on solid surfaces and in the pore spaces is a complex 

phenomenon involving mass and energy interaction and phase changes. Depending 

upon the strength of the interaction, all adsorption processes can be divided into the two 
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categories of chemical or physical adsorption. The former, also called irreversible or 

chemisorption, is characterized mainly by large interaction potentials, which lead to 

high heats of adsorption often approaching the values of chemical bonds. This fact, 

coupled with other spectroscopic, electron spin resonance, and magnetic susceptibility 

measurements, confirms that chemisorption involves true chemical bonding of the gas 

or vapour with the surface. Because chemisorption occurs through chemical bonding, it 

is often found to occur at temperatures above the adsorbates’ critical temperature. 

Strong bonding to the surface is necessary, in the presence of higher thermal energies, 

if adsorption has to occur at all. Also, as it is true for most chemical reactions, 

chemisorption is usually associated with an activation energy. In addition, 

chemisorption is necessarily restricted to, at most, a single layer of chemically bound 

adsorbate at the surface.  

Another important factor relating to chemisorption is that the adsorbed molecules are 

localized on the surface. Because of the formation of a chemical bond between an 

adsorbate molecule and a specific site on the surface, the adsorbate is not free to 

migrate along the surface. This fact often enables the number of active sites on catalysts 

to be determined by simply measuring the quantity of chemisorbed gas. 

The second category, reversible or physical adsorption, exhibits characteristics that 

makes it most suitable for surface area determinations as indicated by the following: 

• Physical adsorption is accompanied by low heats of adsorption with no violent or 

disruptive structural changes occurring on the surface during the adsorption 

measurements. 

• Unlike chemisorption, physical adsorption may lead to surface coverage by more 

than one layer of adsorbate. Thus, pores can be filled by the adsorbate for pore 

volume measurements. 

• At elevate temperatures physical adsorption does not occur or is sufficiently slight 

that relatively clean surfaces can be prepared on which to make accurate surface 

area measurements. 

• Physical adsorption equilibrium is achieved rapidly since no activation energy is 

required as in chemisorption. An exception here is adsorption in small pores, where 

diffusion can limit the adsorption rate. 
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• Physical adsorption is fully reversible, enabling both the adsorption and desorption 

processes to be studied. 

• Physical adsorbed molecules are not restrained to specific sites and are free to cover 

the entire surface. For this reason surface areas, rather than the number of sites, can 

be calculated. 

The kinetics and thermodynamics of adsorption have been extensively studied, but, 

when surface area and pore structure are the subject of interest, it’s essential to 

establish the meaning of an adsorption (desorption) isotherm. This is a measure of the 

molar quantity of gas n (or standard volume Vα, or general quantity q) taken up, or 

released, at a constant temperature T by an initially clean solid surface as a function of 

gas pressure P. In order to increase the amount of physisorbed molecules (usually 

nitrogen) most frequently the test is conducted at a cryogenic temperature, usually that 

of liquid nitrogen (LN2) at its boiling point (77.35 K at 1 atm pressure). Convention has 

established that the quantity of gas adsorbed is expressed as its volume at standard 

temperature and pressure conditions (0°C and 760 torr and denoted by STP), while the 

pressure is expressed as a relative pressure, which is the actual gas pressure P divided 

by the vapor pressure P0 of the adsorbing gas at the temperature of the test. Plots of  Vα 

as the ordinate against P/P0 as the abscissa reveal much about the structure of the 

adsorbing material (called the adsorbent) simply from their shape. 

The theory mainly used in order to get essential information (such as surface area 

and pore distribution) from experimental adsorption isotherm is known as BET theory 

from the surnames of its creators, Brunauer, Emmett and Teller.50 This is an extension 

to multilayer adsorption of the Langmuir model (related to monolayer molecular 

adsorption) and the resulting BET equation is expressed as follows:  

 

 (3.11) 

 

where: 

Vα = volume of adsorbed gas at pressure P. 

Vm = monolayer volume. 

P = gas pressure. 

P0 = saturation gas pressure. 
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The value of parameter C, fairly constant for a given class of materials, e.g. oxides and 

metals, in simplest terms is given by the following equation:  

 

 (3.12) 

where: 

q1 = heat of adsorption of the first layer.  

qL = heat of liquefaction of the adsorptive. 

R = gas constant.  

T = absolute temperature. 

 

Small values of the C parameter stand for a higher affinity between molecules than 

between the molecules and the adsorbing species, resulting in lower wettability. On the 

contrary, high C values describe the typical isotherm, characterized, firstly, by a 

monolayer adsorption and then by the multilayer one, layer by layer (Fig. 3.10). 

 

 

 

Figure 3.10 Examples of high (on the left) and low (on the right) wettability of a solid surface.  

 

Equation (3.11) can also be written in the linear form: 

(3.13) 

 

Isotherm data for most solids when using nitrogen as the adsorptive and plotting them 

in according to equation (3.12) yield a straight line within the range 0.05 < P/P0 < 0.35.  

 

 

 

 

 

 

 

 

Figure 3.11 BET transform plot with a regression line through the linear region. 
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From the slope and intercept values of the BET linear plot it is possible to calculate 

both the amount of adsorbate corresponding to the first monolayer, Vm, and the C 

parameter can be calculated. Assuming that the surface occupied by a N2 molecule is 

16.2·10-20 m2, once calculated Vm, it’s easy to obtain the Specific Surface Area (SSA) 

of the adsorbing material, by the following equation: 

 (3.14) 

 

where: 

NA = Avogadro number (6.023·1023 molecules mol-1). 

SN2 = surface occupied by a N2 molecule adsorbed on the monolayer. 

22.414 = volume (dm3) occupied by 1 mole of gas under standard conditions. 

g = sample quantity (g). 

 

Moreover, the C value is most frequently between 50 and 300, when using nitrogen 

at 77 K. A high or negative C value is indicative of micropores and their measurement 

cannot be analysed by this BET model without further modification. 

 

3.6 Impedance analysis  

Electrochemical techniques imply the application of an electric perturbation (current, 

potential) to an electric circuit, causing the appearance of a response. Electrochemical 

Impedance Spectroscopy (EIS) studies the system response to the application of a 

periodic small amplitude AC signal. These measurements are carried out at different 

AC (alternative current) frequencies and, thus, the name impedance spectroscopy has 

been adopted.51 This technique leads to highly accurate results as the system, being at 

the steady state, can be investigated for a long time and over a large range of potentials. 

The analysis of the system response contains information about the interface, its 

structure and the reactions taking place there. 

Considering the application of an arbitrary (but known) potential E(t), the resistance 

(R) measures how strongly a circuit opposes to current flow, i(t), in direct current (DC) 

conditions: 

DC conditions: R = E(t) i(t)          (3.15) 
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On the contrary, impedance (Z) measures how strongly a circuit opposes to current 

flow in alternating current (AC) conditions: 

AC conditions: E(t) = Z i(t)          (3.16) 

Both resistance and impedance are measured in Ohm (Ω). 

The applied potential and the current intensity have typical sine wave flow: 

E(t) = E0 sin(ωt)           (3.17) 

i(t) = i0 sin(ωt + ϕ)           (3.18) 

where ω stands for the frequency and ϕ for the phase angle. 

According to the Euler relationship applied to complex numbers, both previous 

equations may be described by: 

E = E0 exp(jωt)           (3.19) 

i = i0 exp[j(ωt+ϕ)]           (3.20) 

As shown in relation 3.16, Z is the ratio between the applied potential and the current 

intensity; applying the complex number property, it can be described as: 

Z(ω) = E0 exp(jωt) / i0 exp[j(ωt+ϕ)] = |Z| exp(jϕ) = |Z| (cos ϕ + jsin ϕ)    (3.21) 

|Z| cos ϕ + |Z| jsin ϕ = Z’ – jZ’’ = Re(Z) – Im(Z)       (3.22)  

Thus, impedance is defined as the transfer function (TF) between E(t) and i(t) at any 

frequencies ω and is a complex number containing phase information as well as 

magnitude. 

EIS is based on the transfer function principle: the system is perturbed by a sine 

wave input signal and the output response, produced by the system, is recorded. When 

the input is the current intensity and the output is a potential, the TF is simply the 

impedance Z. Although EIS may be applied in a large number of electrochemical 

fields, its application is not so popular because it’s a very sensitive technique and it 

must be used with great care. Besides, it is not yet well understood because of complex 

data analysis for quantification. 

 

3.6.1 Mott-Schottky theory applied to impedance analysis 

Photocatalyst particles can be considered as individual micro-electrodes kept under 

open circuit potential, inside which charge carriers (electrons and holes) can be 

generated upon band gap excitation. These charge carriers then migrate to the surface, 

eventually participating in a chemical reaction with a surface-adsorbed species. 
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The Mott-Schottky theory applied on impedance analysis gives information about the 

donor density and the flat band potential. The donor density represents the charge 

carriers density but can also be associated to the ability of the semiconductor in 

releasing electrons, available for the photoinduced process. The flat band potential is a 

measure of the reducing power of n-type semiconductor materials such as TiO2. It is 

related to the electron affinity of the semiconductor and the charge density at its 

surface. 

Efb is also defined as the potential at which the Fermi energy lies at the same energy 

as the solution redox potential; hence there is no net transfer of charge and no band 

bending. As doping changes the distribution of electrons within the solid and hence 

changes the Fermi level, also the flat band potential is influenced by the characteristics 

of the material.52 

From the flat band potential and the band gap values, the valence and conduction 

band can be localized and an evaluation of the relationship between the semiconductor 

bands and the pollutant redox potentials can be made, as well as an approximate 

prediction of the photocatalytic activity of semiconductors. 

In particular flat band potentials and donor densities of TiO2 thin films at the 

semiconductor/electrolyte junction can be obtained from Mott-Schottky plots using the 

following equation: 

 

 (3.23) 

 

 

where: 

ε0 = permittivity of free space. 

εTiO2 = permittivity of the semiconductor electrode. 

e0 = elementary charge. 

ND = donor density. 

E = applied potential. 

EFB = flat band potential. 

k = Boltzmann’s constant. 

T = temperature of operation. 

Csc = space charge capacitance. 
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The 1/C2 vs. E plot should thus yield a straight line, intersecting the potential axis at 

EFB value. The donor density ND value can be calculated from the slope of this line. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 Mott-Schottky plot obtained at different frequencies for TiO2 thin film electrodes.53 
 

The commonly most employed frequency is 1000 Hz.54,55 

 

3.7 Electron microscopy  

Since its invention, the electron microscope has been a valuable tool in the 

development of scientific theory and it contributed greatly to biology, medicine and 

material sciences. This wide spread use of electron microscopes is based on the fact 

that they permit the observation and characterization of materials on a nanometer (nm) 

to micrometer (µm) scale. The basic theory for electron microscopy are here shortly 

presented, focusing on the two basic types of Ems; SEM (Scanning Electron 

Microscope) and TEM (Transmission Electron Microscope). In particular the main 

attention will be paid to the latter one, which has been employed in this PhD thesis.  

Electron Microscopes are scientific instruments that use a beam of highly energetic 

electrons to examine objects on a very fine scale. This examination can yield 

information about the topography (surface features of an object), morphology (shape 

and size of the particles making up the object), composition (the elements and 

compounds that the object is composed of and the relative amounts of them) and 

crystallographic information (how the atoms are arranged in the object). 

Electron Microscopes were developed due to the limitations of Light Microscopes 

which are limited by the physics of light to 500x or 1000x magnification with a 
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resolution of 0.2 µm. In the early 1930's this theoretical limit had been reached and 

there was a scientific desire to see the fine details of the interior structures of organic 

cells (nucleus, mitochondria...etc.). This required 10.000x plus magnification which 

was just not possible using Light Microscopes. 

The Transmission Electron Microscope (TEM) was the first type of Electron 

Microscope to be developed and is patterned exactly on the Light Transmission 

Microscope except that a focused beam of electrons is used instead of light to "see 

through" the specimen. It was developed by Max Knoll and Ernst Ruska in Germany in 

1931. The first Scanning Electron Microscope (SEM) debuted in 1942, with the first 

commercial instruments around 1965. Its late development was due to the electronics 

involved in "scanning" the beam of electrons across the sample. 

Electron Microscopes (EMs) function exactly as their optical counterparts except that 

they use a focused beam of electrons instead of light to "image" the specimen and gain 

information as to its structure and composition. 

 

3.7.1 Electron-matter interactions  

When an electron beam interacts with the atoms in a sample, individual incident 

electrons undergo two types of scattering - elastic and inelastic. In the former, only the 

trajectory changes and the kinetic energy and velocity remain constant. In the case of 

inelastic scattering, some incident electrons will actually collide with and displace 

different kind of electrons from the specimen, thus loosing their kinetic energy. Figure 

3.13 summarizes the main secondary signals (with different relative intensity) that can 

be produced due to electron–matter interactions.56 

By considering the large amount of information obtained by this kind of interaction 

it’s essential try to amplify each single signal by using different kinds of 

instrumentation. In this regard the first main difference between SEM and TEM, 

mainly concerning the sample location in the microscope, can be outlined. 

In particular SEM studies the information related to secondary and backscattered 

electrons, detected on the same side with respect to the incident electrons beam. In this 

case the sample holder is located at the end of microscope’s column (Fig. 3.14a). On 

the contrary TEM deals with transmitted, elastically or inelastically scattered electrons, 

detected on the opposite side with respect to the incident electrons beam. In this case 

the sample holder is located in the middle of the microscope’s column (Fig. 3.14b).  
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Figure 3.13 Signals generated when a high-energy beam of electrons interacts with a thin 
specimen. Most of these signals can be detected in different types of electron microscopes. The 
directions shown for each signal do not always represent the physical direction of the signal 
but indicate, in a relative manner, where the signal is strongest or where it is detected.  
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 General scheme of a) SEM  and b) TEM  instrumentations.  
 

Both SEM and TEM instruments must work under ultra high vacuum conditions     

(10-7-10-8 Pa) in order to avoid any kind of collision between the electrons beam and 

atoms, which are not those contained in the investigated sample.  

a) b) 
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Moreover there are essential instrumental components which are common to SEM and 

TEM systems: electron guns, which can be divided into thermoionic and field-emission 

types, and metal apertures and magnetic lenses necessary to confine and focus the 

electron beam toward the specimen (thanks to the application of a proper potential).  

 

3.7.2 Electrons exploited in Trasmission Electron Microscopy (TEM) 

TEM exploits three different interactions of electron beam-specimen: unscattered 

electrons (transmitted beam), elastically scattered electrons (diffracted beam) and 

inelastically scattered electrons. 

When incident electrons are transmitted through the thin specimen without any 

interaction occurring inside the specimen, then the beam of these electrons is called 

transmitted. The transmission of unscattered electrons is inversely proportional to the 

specimen thickness. Areas of the specimen that are thicker will have fewer transmitted 

unscattered electrons and so will appear darker; conversely the thinner areas will have 

more transmitted and thus will appear lighter. 

Another part of the incident electrons, are scattered (deflected from their original 

path) by atoms in the specimen in an elastic fashion (without loss of energy). These 

diffracted electrons according to Bragg’s law are then transmitted through the 

remaining portions of the specimen. In this case a diffraction pattern and the related 

information about orientation, atomic arrangements and phases present in the examined 

area can be obtained.  

There are essentially three different imaging modes in TEM, which can be selected 

by changing proper apertures of the back focal plane (after the objective lens) (Fig. 

3.15):  

1. Bright field mode: the aperture selects only transmitted electrons. In this case, 

factors such as mass and thickness of the sample influence the formation of the 

image.  

2. Dark field mode: in this case only diffracted electrons, which gave strong 

interaction with the sample, are selected. The image obtained can give information 

about the presence of defects or different phases of the specimen.  

3. High resolution (HR-TEM): in this case both transmitted and diffracted electrons 

are selected. Using proper corrections for spherical aberration, special high 

resolution TEMs can generate images with a resolution below 0.1 nm; it’s thus 
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possible observe reticular planes and get crystallographic information of the 

examined sample. By considering that for TEM analysis the analyzed electrons 

have to pass through the sample, the specimens have to be rather thin, less than 100 

nm. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.15 Generalized description of the three main imaging modes in TEM.  
 

HR-TEM measurements in the present study were performed by Prof. Patrizia Canton 

at Università degli Studi di Venezia. 

 

3.8 Extended X-ray absorption fine structure (EXAFS)  

EXAFS spectroscopy provides structural information about a sample by way of the 

analysis of its X-ray absorption spectrum. It allows determining the chemical 

environment of a single element in terms of the number and type of its neighbours, 

inter-atomic distances and structural disorders. This determination is confined to a 

distance given by the mean free path of the photoelectron in the condensed matter, 

which is between 5 and 10 Å radius from the element.57-59 

These characteristics make EXAFS a powerful structural local probe, which does not 

require a long-range order. It is an important technique in several fields of natural 

sciences, from earth sciences to biochemistry. 
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Since EXAFS is a technique selective for a particular element and sensible only for a 

short-range order, it is one of the most appropriate spectroscopies to be applied in the 

following cases:  

• amorphous solids, e.g. ceramics, 

• liquids, e.g. solutions of ionic compounds or gels which cannot be studied by X-ray 

diffraction, 

• biomolecules, e.g. solutions of metalloproteins, 

• homogeneous and heterogeneous catalysts. 

Furthermore, EXAFS does not require any particular experimental conditions, such as 

vacuum (at least in principle). There are several types of sample-holders that allow 

collecting experimental data under varying temperature and pressure, or while the 

sample is undergoing a chemical reaction (in-situ studies). Measures taken under 

working conditions are of critical importance in the case of heterogeneous catalysts in 

order to understand their behavior during catalysis, and in studying temperature and 

pressure induced changes.  

On the other hand, there are some problems associated with this spectroscopy. First, 

the necessity of synchrotron light as a source, which is expensive and not easily 

available. Second, the use of simulation and best-fit procedures to obtain structural 

parameters; these methods are time consuming and they sometimes give ambiguous or 

unreliable results. However, if the system under study is properly chosen, EXAFS is 

able to supply useful and even essential information. 

 

3.8.1 Origin of the EXAFS signal  

The X-ray absorption coefficient for an atom, indicated as µx, is directly proportional 

to the probability of absorption of one photon and is a monotone decreasing function of 

energy. It shows several discontinuities known as absorption edges: they occur when 

the energy of the incident photons equals the binding energy of one electron of the 

atom and are classified with capital letters (K, L, M...) according to the principal 

quantum number of the electron in the ground state (n = 1, 2, 3...). There are many 

tables describing the energy position of all existing absorption edges for all types of 

atoms. The X-ray absorption coefficient µx can also be defined according to Lambert-

Beer law as follow:  

 (3.24) 
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where I0 e I represent the incident and the transmitted intensity of X-rays, respectively. 

Figure 3.16 shows this behaviour for Rh atoms: it is possible to recognize four edges 

due to K and L (LI, LII and LIII) electrons in the diagram of the absorption coefficient 

of atomic rhodium.  

 

 

 

 

 

 

 

 

Figure 3.16 X-ray absorption spectrum for Rh atoms.  
 

The edge energy is characteristic of each atom. In the case of an isolated atom 

(monatomic gas), the absorption coefficient decreases monotonously with energy 

between two subsequent edges. In all other situations, the spectrum also shows 

oscillations that start at the edge and finish a thousand eV above; e.g. Figure 3.17 

shows the absorption spectrum of metallic Rh at edge K. 

 

 

 

 

 

 

 

 

 

 

Figure 3.17 Absorption spectrum for metallic Rh (K edge) showing EXAFS signal. 
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Generally X-ray absorption spectrum can be divided into two main regions: 

• XANES (X-ray Absorption Near Edge Structure): this is the portion of the X-ray 

absorption spectrum that extends from below the absorption edge to about 60-100 

eV above the same edge. 

• EXAFS (Extended X-ray Absorption Fine Structure): this is the portion of the 

absorption spectrum which starts about 60-100 eV above the absorption edge. 

 

An incident photon is able to extract a core electron if its energy is equal to or greater 

than the edge energy. The ejected electron is called photoelectron and it has the 

characteristics of both a particle and a wave. Its kinetic energy is given by: 

 (3.25) 

where Ex is the energy of the X-ray photon and E0 the energy of the edge. Its wave 

vector modulus is given by: 

 

(3.26) 

If the absorbing atom is isolated, the photoelectron propagates as an unperturbed 

isotropic wave (Figure 3.18a), but in most cases there are many other atoms around the 

absorber. These become scattering centers of the photoelectron wave (Figure 3.18b). 

 

 

 

 

 

 

 

Figure 3.18 Schemes of scattering processes.  
 

The final state of the photoelectron can be described by the sum of the original and 

scattered waves. This leads to an interference phenomenon that modifies the interaction 

probability between core electrons and incident photons. Constructive interference 

increases while destructive interference decreases the absorption coefficient of the atom 

(Fig. 3.19).  

 

a) b) 
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Figure 3.19 Example of effects produced on EXAFS spectrum due to a) constructive or b) 
destructive interference.  
 

This interference phenomenon, for a given energy of the photoelectron, depends on 

the distance between emitting and scattering atoms, and their atomic numbers. 

The EXAFS signal χ(k) is defined as a function of the wave vector k. It is 

mathematically defined as: 

 

(3.27) 

 

where µx is the experimental absorption coefficient and µ1x is the intrinsic atomic 

absorption coefficient. 

By applying proper analytical expressions (whose detailed explanation goes beyond 

the scope of this thesis), EXAFS analysis allows obtaining coordination numbers, 

interatomic distances and an estimate of the disorder around the central atom. In 

particular EXAFS spectroscopy allows estimating structural parameters with a 

precision highly dependent on the data and analysis quality. Errors are usually about 

0.01–0.02 Å for interatomic distances, and 5–15 % for coordination numbers. 

 

Finally, since EXAFS spectroscopy requires an intense polychromatic X-ray source, 

the most suitable light source is a synchrotron storage ring. The most common EXAFS 

beam-line works in transmission (Fig. 3.20). It collects data measuring how the beam 

intensity decreases as it passes through the sample while scanning energy using a 

crystal monochromator. Experimental spectra are usually recorded by scanning energy 

 Constructive interference a)  

Destructive interference 

b) 
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from about 200 eV below the explored edge to 1000 eV above it. Energy steps can be 

of 0.1–2.0 eV, depending on the energy interval and the experimental setup. The 

incident and transmitted X-ray fluxes are usually monitored by using ionization 

chambers.  

 

 

 

 

 

 

 

 

Figure 3.20 General scheme of experimental set-up adopted in EXAFS analysis.  
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In this chapter the main experimental details of the set up used to investigate the 

photocatalytic activity of differently modified TiO2 materials will be briefly presented. 

The set up employed in the laboratory of Prof. Elena Selli’s group at the Università 

degli Studi di Milano (Dipartimento di Chimica Fisica ed Elettrochimica) will be 

described first, followed by an illustration of the different types of set up used during 

my staying at the laboratory of Professor Bunsho Ohtani at the Catalysis Research 

Center, Hokkaido University, Sapporo, Japan.  

 

4.1 Set-up in Milano  

In Milano the same photocatalysis set-up was employed to obtain the results discussed 

in Chapters 5-7 and 9. In particular, all photocatalytic degradation runs were performed 

under atmospheric conditions in a magnetically stirred cylindrical quartz reactor, 

inserted in a home-made housing consisting in a black box mounted on optical bench.  

The irradiation source was an Osram, model Powerstar HCI-T, 150 W/NDL lamp, 

mounted on a Twin Beam T 150 R reflector, emitting at λem > 340 nm, with an average 

full emission intensity on the reactor of 2.53·10-7 Einstein s-1 cm-2, as periodically 

checked by ferrioxalate actinometry.1,2 A 285 nm cut off filter was usually mounted at 

the black box entrance. Eventually 400 and 455 nm cut off filters were employed in 

some runs in order to perform experiments under visible light only. The lamp and the 

reactor were separated by a fixed distance of 10 cm. The whole set up was maintained 

at ambient temperature by a continuous stream of air. 

 

 

 

 

 

 

 

 

 

Figure 4.1 (a) Schematic representation of the set up used for testing the phototocatalytic 
activity of TiO2-based materials in Milano. (b) Photograph of the light source (ii) and of the 
black box (i), equipped with a 285 nm cut off filter, mounted on the fixed optical bench.  
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All irradiated aqueous suspensions were always prepared using water purified by a 

Milli-Q water system (Millipore) and usually contained 0.1 g L-1 of photocatalyst. They 

were preliminarily sonicated in a Eurosonic, Model 22, apparatus for 30 min. After 

substrate addition, they were always magnetically stirred in the dark for 15 min to 

attain the adsorption equilibrium of the substrate on the photocatalyst surface, before 

starting irradiation. Stirring was continued during the runs. The lamp was always 

switched on at least 30 min before the beginning of irradiation. At different time 

intervals during the run, 2 mL-samples of the suspension were withdrawn from the 

reactor, centrifuged employing a EBA-20 Hettich centrifuge and the surnatant was 

analysed for residual organic substrate content. 

All kinetic runs were repeated at least twice, to check their reproducibility. Formic 

acid concentration was usually monitored by ion chromatography with conductivity 

detection, employing a Metrohm 761 Compact IC instrument, after calibration for 

formate ion concentration in the 0-50 ppm range. A Perkin Elmer Lambda 16 

spectrophotometer was always employed for all spectrophotometric analyses during the 

runs. An Amel, model 2335 pHmeter, was always employed for pH measurements. 

The emission spectrum of the commercial metal halide lamp employed in this set up 

is depicted in Fig 4.2. 

 

 

 

 

 

 

 

    

 

 

 

 

Figure 4.2 Emission spectrum of OSRAM ‘Powerstar’ lamp. 
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The photocatalytic conditions, chosen for each photocatalytic activity test reaction,  

including the preliminary adsorption time, the amount of photocatalyst and the 

concentration of the test molecule, the volume of the reaction suspension and its pH  

conditions will be detailed in each chapter. Water purified by a Milli-Q water system 

(Millipore) was used throughout.  

 

4.2 Set-ups in Sapporo 

In Sapporo different kinds of experimental set up were employed in order to deeply 

investigate the photocatalytic activity of non metal-doped TiO2 materials, as detailed in 

Chapters 8-9.  

 

4.2.1 Gas phase acetaldehyde decomposition under polychromatic irradiation  

The investigation of acetaldehyde decomposition is considered to be important from a 

practical point of view because this organic substrate is known to be one of the 

principal odour-causing gases in indoor air, particularly in cigarette smoke. 

The photocatalytic oxidative decomposition of gas-phase acetaldehyde in air was 

carried out in a closed cylindrical glass vessel, with a volume of 357 mL and an inner 

diameter of 5.37 cm. The photocatalyst powder (20 mg) was uniformly spread on a 

glass plate (1.0 cm × 1.0 cm), placed on the bottom of the photoreactor and pre-

irradiated for 1 h in order to purify it from any adsorbed organic compound (Fig 4.3). 

Then gaseous acetaldehyde (0.36 mL, corresponding to ca. 0.014 mmol) was injected 

into the photoreactor, containing ambient air, thus attaining a 1000-ppm initial 

acetaldehyde concentration. This injection was performed through a rubber septum by 

using a lock-pressure syringe that allows organic substrate addition at the desired 

pressure, 1 atm in our case. In order to attain the adsorption equilibrium of the substrate 

on the photocatalyst surface, the system was then kept in the dark for 1 h. Irradiation (λ 

> 290 nm) was performed through a top window of the photoreactor using a 300-W 

xenon lamp (ILC Technology CERMAX-LX300F). Its emission spectrum is shown in 

Fig. 4.4. Acetaldehyde and CO2 concentrations were automatically measured at fixed 

time intervals using an Agilent 3000 MicroGC. 

The evolution of CO2 was also monitored during irradiation to check whether 

acetaldehyde was effectively converted into CO2 in the presence of the different 

photocatalysts, according to the reaction: CH3CHO + 5/2 O2 → 2 CO2 + 2 H2O. 
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Figure 4.3 Apparatus for gas-phase acetaldehyde photocatalytic degradation. 
 

The graph below shows the emission spectrum of the used Xenon lamp. 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Emission spectrum of the 300-W Xenon lamp.  

 

4.2.2 Acetic acid oxidative decomposition under polychromatic irradiation  

The photocatalytic tests were performed in a glass tube (18 mm in inner diameter and 

180 mm in length) with a volume of ca. 35 mL. Each photocatalyst powder (50 mg) 

was suspended in an aqueous solution (5.0 mL) containing 5.0 vol.% of acetic acid. 

This amount of photocatalyst powder in the suspension was large enough to ensure 

total light absorption. The glass tube was sealed with a double-capped rubber septum 

and Parafilm, to prevent leakage of gas and/or contamination during the runs (Fig. 4.5). 

The suspensions were irradiated using a 400-W high-pressure mercury lamp (Eikosha) 

under vigorous magnetic stirring (1000 rpm) (Fig. 4.5). The wavelength of light was > 

290 nm, with an average emission intensity of 390 mW, which was checked daily using 
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a Molectron PM5200 laser power meter (Fig. 4.7). The reaction temperature was kept 

at 25 °C using a thermostated water bath. At regular time intervals during the runs, 0.2 

mL samples of the gas in the tube were withdrawn with a gas-tight syringe and 

analysed using a Shimadzu GC-8A gas chromatograph with a TC detector, equipped 

with MS- 5A and Porapak-Q columns (Fig 4.7). The molar amount of carbon dioxide 

(CO2) was calibrated considering the increase in pressure in the reaction tube 

consequent to the increased amount of gas-phase molecules. The kinetic runs were 

monitored for 80 min and repeated at least twice, in order to check their reproducibility. 

 

 

 

 

 

 

 

 

 

 
Figure 4.5 a) Apparatus employed for acetic acid photooxidation. This system allows the 
simultaneous analysis of more than one photocatalyst because the Hg lamp (400 Watt) is 
surrounded by 12 glass tube containers fixed at a specific distance from the irradiation source 
and immersed in the same thermostated water bath. b) Example of glass tubes adopted during 
the photocatalytic tests.  
 

The graph below shows the emission spectrum of the used Hg lamp. 

 

 

 

 

 

 

 

 

 

 
Figure 4.6 Emission spectrum of the 400-W high-pressure Hg lamp.  

a) b) 
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Figure 4.7 a) Shimadzu GC-8A gas chromatograph with a TC detector, equipped with 
Porapak-Q column, used for CO2 gas phase analysis. b) Molectron PM5200 laser power meter 
used for daily checking the emission intensity of the Hg lamp. 
 
 

4.2.3 Action spectra of acetic acid decomposition  

In order to better elucidate the origin of the enhanced photoactivity of home-made 

doped materials and verify their possible activation in the visible region, the 

photooxidation of the transparent acetic acid substrate was systematically investigated 

as a function of the irradiation wavelength. Different series of action spectra, yielding 

the wavelength dependence of the apparent quantum efficiency, were thus performed.  

As pointed out by recent review papers, action spectra analysis represents one of the 

most important and powerful photocatalytic characterization tools that enables one to 

discriminate the origin of real photoresponse by checking the wavelength dependence 

of photoactivity.3,4 In particular, in order to show real visible-light induced activity of 

doped semiconductors it’s strongly recommended to evidence resemblance between 

their absorption (diffuse reflectance) spectra and their action spectra.  

In this regard Fig. 4.8 shows representative results proving visible-light response of 

sulfur-doped titania,5 as a rare case among studies on visible light-sensitive 

photocatalysts, showing the resemblance of a diffuse-reflectance spectrum with an 

action spectrum for the photocatalytic oxidative decomposition of acetic acid in aerated 

a) 

b) 
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aqueous solution; in this case doping of (or at least modification with) sulfur induced 

photoabsorption and photocatalytic activity in the visible-light region.   

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Diffuse reflectance (photoabsorption) and action spectra for acetic acid 
decomposition in aerated aqueous solutions of sulfur-doped titania (S-TiO2) and Degussa 
(Evonik) P25.  
 

Monochromatic light irradiation is required in order to record an action spectrum. In 

this thesis the photocatalytic decomposition of acetic acid in aerated liquid suspensions 

was investigated as a function of irradiation wavelength in quartz cells with a ca. 10.5 

mL volume. Each photocatalyst powder (20 mg) was suspended in an aqueous solution 

(2.0 mL) containing 5.0 vol.% of acetic acid. The suspensions were stirred in the dark 

for 15 min, to attain the adsorption equilibrium of the substrate on the photocatalyst 

surface. A 300-W xenon lamp (Hamamatsu Photonics C2578-02) was employed as the 

irradiation source within a diffraction grating-type illuminator (Jasco CRM-FD), 

allowing selection of the irradiation wavelength in the 300–520 nm range, with a full 

width at half-maximum intensity (FWHM) of ca. 17 nm, irrespective of the selected 

irradiation wavelengths range, and a 20-nm step (Fig. 4.9).  

The irradiation intensity, measured by a Hioki 3664 optical power meter (Fig. 4.9), 

was in the 15–20 mW range. All other conditions were similar to those of 

photocatalytic activity tests under high-pressure mercury lamp irradiation except for the 

use of Shimadzu GC-14B gas chromatograph with a FID detector, equipped with a 

Shimadzu MTN-1 kit for CO2 methanation. The action spectra of selected 

photocatalysts were also measured in the 370–460 nm range with a 10-nm step and a 

narrower FWHM under otherwise identical experimental conditions. 
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Figure 4.9 a-b) Apparatus employed for acetic acid photooxidation under monochromatic light 
irradiation. c) Hioki 3664 optical power meter used for checking the emission intensity at each 
selected wavelength. 
 

The wavelength-dependent apparent quantum efficiency Φapp was calculated as the 

ratio between the rate of photogenerated holes consumption and the flux of incident 

photons, by taking into account the fact that 8 electrons (holes) are required according 

to the stoichiometry of the reaction: CH3COOH + 2 O2 � 2 CO2 + 2 H2O. In particular 

the calculation of apparent quantum efficiency was performed by using the following 

formula: 

    (4.1) 

 

 

where: 

v = zero-order rate constant of CO2 photocatalytic evolution obtained during acetic acid 

decomposition under a specific irradiation wavelength (λ).   

I = incident light intensity on the quartz cell, measured at the investigated irradiation 

wavelength (λ). 

h = Planck constant (6.62·10-34 J·s). 

c = speed of light (3.00·108 m·s-1). 

NAV = Avogadro constant (6.02·1023 mol-1). 

b) 

c) 

a) 
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Finally it’s worth to recall that the calculation of apparent quantum efficiency of 

heterogeneous photocatalytic reactions is mainly based on the following assumptions:  

• The number (n) of photogenerated electrons/holes necessary to obtain a molecule 

product of the photocatalytic reaction (in our case CO2) are produced by the 

absorption of the same number (n) of photons.  

• By considering the difficulty in determining the amount of photons really absorbed 

by the investigated suspension (mainly because of scattering limitations), one can 

just refer to the number of incident photons, thus referring to ‘apparent’ , and not 

real, quantum efficiency.  
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5.1 Introduction 

Heterogeneous photocatalysis with semiconductors is widely investigated as a useful 

technique not only for the degradation of contaminants in waste water and air, but also 

for solar energy harvesting.1-5 Photocatalytic processes are initiated by semiconductor 

excitation with photons of energy higher than the band gap, yielding electron-hole pairs 

formation. Adsorbed organic compounds usually undergo oxidative decomposition, 

initiated either by the attack of hydroxyl radicals, produced by reaction of valence band 

holes with water or surface hydroxyl groups, or by direct interaction with photo-

generated holes, leading to oxidised intermediates. At the same time, photo-promoted 

conduction band electrons may be scavenged by interaction with adsorbed reducible 

species, i.e. oxygen molecules if present, or H+ in water to yield hydrogen molecules.  

Two major factors presently limit extensive applications of photocatalytic processes. 

First of all, the most widely employed semiconductor photocatalysts, i.e. ZnO, WO3 

and in particular TiO2 for its outstanding stability and electronic properties, can absorb 

only a minor portion of the solar energy, their bandgap being above 3 eV. Doping with 

non-metallic impurities6,7 presently appears the most promising route to solve this 

problem.4,5 The second limiting factor is that photogenerated electron/hole pairs 

undergo very fast recombination, releasing energy in the form of unproductive heat or 

photons. Conduction band electrons transfer to molecular oxygen has been recognised 

as the rate determining step in photocatalytic oxidation processes.8 If O2 is not reduced 

at a sufficiently high rate, electrons accumulate on the photocatalyst, with a consequent 

enhancement of electron-hole recombination. 

Such highly undesired energy dissipation path may be reduced in the presence of 

noble metals on the semiconductor surface.9,10 Owing to the formation of a Schottky 

junction at the metal-semiconductor interface, conduction band electrons can be 

efficiently captured by noble metals having a Fermi level lower in energy than the 

semiconductor conduction band potential. This would facilitate electron transfer to 

reducible species and increase electron-hole separation. 

The deposition of noble metals, such as platinum,11-14 gold,12,15-23 silver24,25 and 

palladium,9,12,26 on semiconductor oxides has been reported to increase their 

photocatalytic activity, though controversial results have also been reported.26-29 In fact, 

whereas the positive effect of noble metal co-catalysts on the photocatalytic production 

of hydrogen from water is well established since long time,9,10,30-32 their effective role 
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in photocatalytic oxidative reactions is still under debate, especially in the case of gold-

modified TiO2.
33-36 Recent studies evidenced that the properties of such metal/oxide 

composites depend on the preparation method, in particular on the conditions of gold 

deposition, on gold loading, particles size and shape, and also on storage conditions.37-

39  

Deposition-precipitation (DP) is one of the most successful wet-chemical methods to 

deposit highly dispersed Au nanoparticles on metal oxides having an isoelectric point 

above 5, such as MgO, TiO2, and Al2O3. The method has been widely employed in 

recent years to produce gold nanoparticles catalytically active, e.g. in the oxidation of 

CO at low temperature. The deposition of gold(III) species is usually followed by 

calcination to reduce the metal and obtain gold nanoparticles in metallic form.40  

In the present study the photocatalytic performance under visible light of TiO2 

modified by gold nanoparticles deposition according to the DP procedure has been 

investigated, focusing on the effects induced by the deposition conditions and on the 

method, either thermal or chemical, employed for subsequent gold reduction. The 

photocatalytic oxidative degradation of two organic substrates, i.e. the azo dye Acid 

Red 1 (AR1) and formic acid (FA), was employed as test reaction. The main reductive 

path simultaneously occurring in the presence of air, i.e. hydrogen peroxide evolution 

initiated by O2 combination with conduction band electrons, was also monitored during 

the runs, in order to have a better insight into the role played by gold nanoparticles on 

both primary photocatalytic processes. 

 

5.2 Experimental section  

5.2.1 Preparation and characterisation of Au/TiO2 photocatalysts 

Degussa P25 TiO2 (50 m2 g-1, nanoporous, usually 80% anatase and 20% rutile, purity 

> 99.5%) was employed as starting material and used as received. Four series of 

Au/TiO2 photocatalysts, labelled as DP x%, DPU x%, DPN x% and DPH x% , with “x” 

referring to the mass percent of gold, were prepared as follows. 

The DP series was prepared following the original Haruta’s method.40 The TiO2 

support was dispersed in water (about 10 g L-1) and the required amount of gold, in the 

form of HAuCl4 solution (10 g L-1 Au), was added under vigorous stirring. Then the pH 

was adjusted to 10 by dropwise addition of a 1 M NaOH solution. The suspension was 

stirred for 3 h, filtered and repeatedly washed with distilled water to remove residual 
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Na+ and Cl- ions, as well as Au species not adsorbed on the semiconductor. Gold was 

then reduced by calcination in air at 450°C for 4 h. 

The DPU samples were prepared according to a modified deposition method,37 using 

urea as the precipitating agent. The required amount of TiO2 was added to an aqueous 

solution containing HAuCl4 (0.100 g L-1 Au) and urea (0.42 M). The suspension, 

thermostated at 80°C, was vigorously stirred for 4 h, until pH 7 was reached. The slurry 

was then filtered, washed thoroughly with water, dried at 80°C for 2 h and then 

calcined in air at 450°C for 4 h. This method allows a gradual and homogeneous 

addition of hydroxide ions throughout the suspension, thus minimising metal hydroxide 

precipitation in the aqueous phase and the consequent loss of precious metal. 

DPN and DPH photocatalysts were prepared following the initial steps of the above-

described DP procedure, but avoiding the final calcination step. DPN Au/TiO2 was 

prepared by suspending the AuIII /TiO2 powder in distilled water (about 10 g L-1), 

followed by reduction due to addition, under stirring, of a 0.1 M freshly prepared 

solution of NaBH4 (NaBH4/Au = 5 mol/mol). After 10 min the slurry was filtered, 

thoroughly washed with distilled water and finally dried at 80°C for 2 h. Alternatively, 

the AuIII /TiO2 powder was reduced in a hydrogen stream (10 mL min-1) at 150°C for 2 

h, yielding the DPH 1% sample. 

The actual Au loadings on the TiO2 powder were determined by ICP analysis on the 

filtrate. Au/TiO2 photocatalysts with the following percent weight content of gold were 

prepared: 0.06%, 0.13%, 0.38% (DP), 0.5% and 2.5% (DP and DPU), 1.3% (DPN and 

DPH). A reference sample (0% Au) for each series was also prepared following the 

above described procedures, except for HAuCl4 addition. 

 

UV–vis diffuse reflectance (DR) spectra were recorded using a Lambda 19, Perkin-

Elmer spectrophotometer equipped with an RSA-PE-20 integrating sphere assembly, 

using a calibrated SRS-99-010 Spectralon Reflectance Standard, produced by 

Labsphere, as a reference material.  

HRTEM analysis was carried out with a JEM 3010 (JEOL) electron microscope 

operating at 300 kV, point to point resolution at Scherzer defocus of 0.17 nm. 

Specimens for HRTEM analysis were sonicated in 2-propanol and then transferred as a 

suspension to a copper grid covered with a holey carbon film. 
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XPS analyses were performed by a PHI-5500 – Physical Electronics spectrometer, 

equipped with a monochromatised source with aluminium anode (Kα = 1486.6 eV), 

operating at a 200 W of applied power, 5.85 eV pass energy and 0.05 eV energy step. 

XPS spectra were collected at takeoff angles of 45°. The analysis area was around 0.5 

mm2, the depth within 10 nm. The charging effect on the analysis was corrected 

considering the binding energy (BE) value of C 1s, due to adventitious carbon, at 284.8 

(±0.3) eV. Quantification and spectral line decomposition were obtained using the PC-

ACCESS software provided by Physical Electronics. These analyses were performed 

by Dr. Laura Meda at Eni Donegani, Novara. 

X-ray diffraction analysis was performed employing a Philips PW 1820 powder 

diffractometer, operating at 40 kV and 40 mA, using filtered Cu Kα radiation (λ = 

1.54056 Å). The BET surface area was measured by N2 adsorption/desorption at 77 K 

on a Micromeritics ASAP 2010 apparatus.  

  

5.2.2 Photocatalytic activity measurements 

5.2.2.1  Materials 

Acid Red 1 (AR1, an azo dye bearing two sulfonic groups), see Scheme 5.1, and formic 

acid (FA) were purchased from Aldrich. Peroxidase (type II, from horseradish) was 

purchased from Sigma. Tris(hydroxymethyl)aminomethane 99.7% was purchased from 

Baker Chemicals and p-hydroxyphenylacetic acid (POHPA), > 98% (fluorescence 

degree) was purchased from Fluka. All reagents were employed as received.  

 

 

 

 

 

 

 

 

 

Scheme 5.1  Acid Red 1 (AR1). 
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5.2.2.2 Apparatus and procedure 

All photocatalytic degradation runs were performed under atmospheric conditions in a 

magnetically stirred 60 mL cylindrical quartz reactor, inserted in a home made housing 

consisting in a black box mounted on optical bench, as described in Section 4.1. In 

particular the initial concentration of AR1 and FA in the aqueous suspensions 

containing 0.1 g L-1 of photocatalyst were 2.5 × 10-5 M and 1.0 × 10-3 M, respectively.  

The cleavage of the AR1 azo bond, leading to its photobleaching, was monitored by 

spectrophotometric analysis at 531 nm [maximum AR1 absorption, ε = (3.13 ± 0.02) × 

104 M-1 cm-1]. FA mineralization was usually determined using a Total Organic Carbon 

(TOC) analyser (Shimadzu Instruments, TOC-5000A) in both the total carbon (TC) and 

inorganic carbon (IC) modes. TOC content was then calculated as the difference 

between TC and IC analyses. In some of the runs, FA concentration was monitored also 

by ion chromatography; results perfectly matching those of TOC analysis were 

obtained by this way. 

All kinetic runs were performed at natural pH, up to ca. 70% substrate degradation, 

and repeated at least twice, to check their reproducibility. The pH of the suspension 

was measured before and after each degradation run. A decrease in pH was observed 

during AR1 photocatalytic degradation, from an initial value in the 6.5-5.5 range to a 

final value in the 4.5-3.8 range, as a consequence of the production of stable acids, due 

to the removal of the sulfonic groups and the oxidation of the azo double bond.41 

During FA degradation the pH increased, from initial values of 3.7 to ca. 4.8, as a 

consequence of the mineralization of the acid to CO2 and H2O. 

Hydrogen peroxide concentration was monitored during the photodegradation runs 

by fluorimetric analysis (λex = 316.5 nm, λem = 408.5 nm) of the fluorescent dimer 

formed in the horseradish peroxidase-catalysed reaction of hydrogen peroxide with p-

hydroxyphenylacetic acid (POHPA),42,43 using a 605-10S Perkin Elmer fluorescence 

spectrophotometer and an appropriate calibration curve, as already described.44 In 

several experiments of FA photocatalytic degradation, H2O2 production was so high 

that successive dilutions of the surnatant solution were necessary to obtain fluorescence 

signals falling within the linear intensity vs. H2O2 concentration range, in order to avoid 

saturation of the fluorescence signal and auto-absorption phenomena. 
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5.3 Results and discussion 

5.3.1 Photocatalysts design 

As in most studies on gold-modified titanium dioxide photocatalysts,12,19,21-23 the 

investigated Au/TiO2 specimens were obtained by gold nanoparticles deposition on 

Degussa P25 TiO2, which is widely employed as benchmark in photocatalysis owing to 

its high photocatalytic activity, though its properties may vary from batch to batch. This 

TiO2 powder is manufactured by flame hydrolysis of titanium tetrachloride at high 

temperature and consists of intimately interconnected anatase (ca. 80%) and rutile 

particles. Recent studies of our research group evidenced that the photocatalytic 

performance under UV light of Au/TiO2 photocatalysts prepared from P25 strongly 

depends on the procedure employed to deposit gold and on its amount on the TiO2 

surface.45 During this thesis the attention was focused on the visible light activity of 

Au/TiO2 photocatalysts and on the effects of gold nanoparticles deposition on the 

photocatalytic paths. All investigated Au/TiO2 samples were prepared by deposition-

precipitation, employing two different procedures to induce Au precipitation37,40 (DP 

and DPU series) and different routes, either thermal (DP and DPU series) or chemical 

(DPN and DPH series), to reduce gold. Furthermore, aiming at discriminating the 

effects of gold nanoparticles on the oxide surface from those induced by TiO2 

modifications consequent to the deposition treatment,39 for each series of Au/TiO2 

photocatalysts a blank sample was prepared following exactly the same procedure, 

apart from the addition of the gold precursor. 

 

5.3.2 Photocatalysts characterisation 

5.3.2.1 UV-vis DR spectra 

The deposition of gold nanoparticles on TiO2 was confirmed by the colour change of 

the modified oxide powder, turning from white into purple of different intensity, 

originated from the surface plasmon resonance of nanocrystalline Au0 particles. As 

shown in Fig. 5.1, reporting the absorption properties of the DP Au/TiO2 series in 

comparison to that of P25, all modified specimens, including the blank DP 0% sample, 

exhibited a red-shift of the absorption edge. A similar effect, whose origin is unclear, 

was reported in recent literature.23 Gold containing samples also displayed the typical 

plasmon resonance absorption band, with a maximum around 550 nm. This absorption 

is observed when the wavelength of the incident light is much larger than the 
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nanoparticle size and is originated by light in resonance with the surface plasmon 

oscillation, causing the free electrons in the metal to oscillate in resonance with the 

light’s frequency.46 The intensity of the plasmon resonance band clearly increased with 

increasing the gold loading for the lower loading values in the DP series (Fig. 5.1), 

without any appreciable difference in the absorption maximum, indicating a 

progressive increase in particles density without marked variation of their dimensions. 

The absorption increase was much smaller when passing from 0.5% to 2.5% Au, with a 

sort of saturation behaviour. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1  Absorption spectra of the DP Au/TiO2 series with increasing Au loading. 
 

By comparing the absorption bands of the DP series (Fig. 5.1) with those of the other 

Au/TiO2 series (Fig. 5.2), some differences can be noticed, in relation to the gold 

nanoparticles properties46 depending on the deposition method. In particular, DPU 

Au/TiO2 exhibited a plasmon resonance band slightly shifted to longer wavelengths 

with respect to the DP series, indicating larger Au nanoparticles dimensions, whereas 

for the chemically reduced DPN and DPH photocatalysts the plasmon absorption band 

was blue-shifted and apparently less intense. This points to smaller gold nanoparticles46 

obtained by chemical reduction with respect to those obtained by the DP and DPU 

methods, both implying a calcination step.  
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Figure 5.2  Absorption spectra of different Au/TiO2 samples. 
 

5.3.2.2  XPS analysis 

The presence of gold nanoparticles was confirmed by XPS analysis. The XPS spectra 

of Au/TiO2 photocatalysts exhibit two peaks at binding energies (BE) of ca. 84.0 eV 

and 87.7 eV, originated from Au 4f7/2 and 4f5/2 electrons of metallic gold.39,47 Though 

exhibiting a light purple colour, the DP 0.13% and DPH 1% powders had a surface 

gold content below the XPS detection limit. 

The surface chemical composition of representative Au/TiO2 photocatalysts, as 

determined by XPS analysis, is reported in Table 5.1. All samples maintained a O/Ti 

atom ratio very close to 2, indicating no variation in the metal oxide composition,39 and 

all of them, including the unmodified P25, exhibit a not negligible amount of 

adventitious surface carbon, with a percent amount of carbon slightly higher in the DP 

series. Trace amounts of Si 2p (ca. 1%), of Cl 2p (ca. 1%) and of N 1s (below 1%) 

were also detected, without any distinct dependence on the preparation conditions. In 

particular, no significant variation of chlorine atoms content was determined with 

respect to that of pristine P25, indicating the almost negligible persistence of Cl- ions 

originated from the gold precursor. 

In order to evidence possible variations of surface hydroxyl groups,19,39,47 the oxygen 

1s peak was fitted by two components, corresponding to oxygen in the oxide lattice 

(530.7 eV) and surface OH groups or undissociated water (531.8 eV). For all samples, 
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lattice oxygen constituted the majority of surface oxygen atoms,39 being around 83% 

for unmodified P25 and also for the various specimens of the different Au/TiO2 series. 

 

Table 5.1  Surface composition of TiO2 and Au/TiO2 photocatalysts from XPS analysis. 
 

Atom %  

 C 1s O 1s Ti  2p Au 4f 

P25 14.1 55.9 28.0 --- 

DP 0% 12.8 55.5 28.0 --- 

DPU 0% 14.2 56.3 28.2 --- 

DPN 0% 12.5 55.7 28.5 --- 

DPH 0% 14.1 56.4 28.2 --- 

DP 0.13% 18.8 51.5 26.6 n.d. 

DP 0.5% 18.6 52.4 25.7 0.46 

DPU 0.5% 13.3 54.4 28.4 0.16 

DPN 1% 15.5 53.8 27.6 0.19 

DPH 1% 17.2 53.6 27.0 n.d. 

 

        n.d. = not determined 

 

5.3.2.3 HRTEM analysis  

Gold deposition on TiO2 was also verified by HRTEM analysis, yielding valuable, 

direct information on the dimension and the distribution of Au nanoparticles on the 

TiO2 surface. The mean diameter of gold nanoparticles obtained by chemical reduction 

varied between 2 and 4 nm, as shown in Fig. 5.3 (a,b) for DPN 1% and DPH 1%, 

respectively. Gold particles could hardly be distinguished in the HRTEM image of this 

latter (Fig. 5.3 b), because they are apparently embedded between oxide particles. On 

the contrary, deposited Au nanoparticles were clearly visible in the DP and DPU 

samples, with larger, rather variable dimensions, in the 4-10 nm range, as shown in Fig. 

5.3 (c,d). This directly confirms the hypothesis drawn from the analysis of the plasmon 

resonance bands in DR analyses, i.e. the heat treatment at 450°C used for gold 
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reduction in the DP and DPU series implies the formation of larger particles of metallic 

gold, with respect to DPN and DPH photocatalysts. 

 

 

Figure 5.3 HRTEM images of Au/TiO2: a) DPN 1%; b) DPH 1%; c) DP 0.5%; d) DPU 0.5%. 
 

5.3.2.4 XRD and BET analyses  

Practically identical XRD patterns were obtained with P25, DP 0%, DP 0.5%, DPU 

0.5% and DPN 1% samples (not shown for the sake of brevity). Thus, gold deposition 

and calcination at 450°C apparently did not affect the original polymorph composition 

(anatase to rutile ratio ≈ 85/15 in the employed P25 batch), in agreement with recent 

reports.23 Typical crystalline gold reflexes, expected at ca. 2θ = 38.5 and 44°, could not 

be detected in our XRD spectra, as in similar cases.48  

Also the specific surface area of TiO2, which has been recently reported to influence 

its photocatalytic activity more than its crystal structure,49 did not vary upon gold 

nanoparticles deposition. In fact, BET analysis did not evidence any significant change 

in surface area for both blank and Au/TiO2 samples with respect to unmodified P25, all 

a b) 

c d) 



Chapter 5 
 

 111 

measured surface areas ranging between 50 and 53 m2 g-1, perfectly in line with 

analogous results obtained by other research groups.12,19,25 

 

5.3.3 Photocatalytic activity 

The photocatalytic activity of Au/TiO2 samples was tested in aqueous suspensions, 

employing the azo dye AR1 or formic acid (FA) as degradation substrates. The stability 

of both substrates in aqueous solution was preliminarily verified under the adopted 

irradiation conditions. We also verified that they did not undergo any dark reaction 

catalysed by TiO2 or by the deposited gold nanoparticles, which are known to catalyse 

low temperature CO oxidation. In particular, the stability of FA, even at 50°C, in a non-

irradiated water suspension containing DPN 1% Au/TiO2 was checked by highly 

sensitive ion chromatographic analysis.  

 

5.3.3.1 AR1 photocatalytic degradation 

The photocatalytic degradation of AR1 under visible light irradiation occurred at 

constant rate, i.e. according to a zero-order rate law, in the presence of both TiO2 and 

Au/TiO2 photocatalysts. The rate constant values k, obtained from the experimental 

AR1 concentration vs. time data, are collected in Fig 5.4, in the form of normalised 

values with respect to the rate constant value kP25 obtained with the benchmark P25 

TiO2 photocatalyst [kP25 = (2.30 ± 0.05) × 10-9 M s-1]. None of the Au/TiO2 

photocatalysts was more efficient than unmodified P25 and the effect of gold 

nanoparticles at first glance appeared small and not positive. 

A more careful inspection of the rate data shown in Fig. 5.4 allows one to distinguish 

the effects induced by P25 TiO2 modification consequent to the different Au deposition 

procedures from those induced by gold nanoparticles themselves. The degradation rate 

obtained with blank samples (0% Au content) was ca. 30% lower than that measured 

with unmodified P25 in the case of the DP and DPU series; the rate decrease was more 

limited for the chemically reduced DPN and DPH series. Thus, any modification of P25 

implies a decrease of photocatalytic activity in AR1 degradation and this is more 

evident in the case of thermal treatments. However, the possible heat-induced 

conversion of the anatase phase into the usually less photoactive rutile phase should be 

excluded, on the basis of our XRD results. Furthermore, no significant variation in 

surface area of the photocatalysts with respect to P25 could be detected by BET 
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analysis. A reasonable explanation of the decreased photoactivity is that heat treatments 

reduce the amount of surface OH groups,19,23 as verified by FTIR analysis.47 This 

would lead to a decreased efficiency of hole trapping in the form of TiO• and a lower 

availability of •OH radical precursors. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Photocatalytic degradation of AR1: ratio between the zero-order rate constant k 
measured with different Au/TiO2 samples and that obtained with unmodified P25, kP25. 

 

The effects induced by the presence of gold nanoparticles on the TiO2 surface can be 

evaluated by comparing the activities of Au/TiO2 photocatalysts of each series to that 

of the corresponding blank specimens (0% Au loading). Whereas for the DP and DPU 

series small up and down effects can be seen (Fig. 5.4), with a clearly positive effect of 

Au nanoparticles only in the case of DP 0.5%, the presence of gold led to an activity 

decrease for the DPN and DPH photocatalysts, prepared by chemical reduction. 

Kinetic results of hydrogen peroxide evolution during AR1 photodegradation 

complete this rather complex photoactivity picture. As already mentioned, H2O2 is 

produced through the main reduction path parallel to photocatalytic dye oxidation, i.e. 

O2 reduction by conduction band electrons eCB
–, according to reactions (5.1) and (5.2): 

 

O2 + eCB
–  → O2

•–            (5.1) 

O2
•– + eCB

–  + 2 H+  → H2O2                         (5.2) 
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As shown in Fig. 5.5, hydrogen peroxide concentration in the aqueous phase 

continuously increased during all AR1 photodegradation runs, though with different 

slope for the different photocatalysts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5  H2O2 evolution during AR1 photodegradation on different Au/TiO2 samples, also 
including blank samples. 

 

In the presence of all blank photocatalysts the rate of H2O2 accumulation was lower 

than with P25. A clearly parallel behaviour was thus observed between the oxidative 

and the reductive photocatalytic paths occurring on the bare TiO2 surface: blank 

samples leading to lower AR1 photodegradation rate also led to lower H2O2 production 

rate, with almost identical photocatalytic activity scale for the two processes. This is in 

line with the identification of photogenerated charge carriers separation in 

semiconductors as the limiting step in both oxidative and reductive photocatalytic 

processes. 

At difference with its effect in AR1 oxidative photodegradation, the presence of gold 

nanoparticles on the semiconductor led to an increase in H2O2 production rate within 

each photocatalyst series (see Fig. 5.5), with the maximum H2O2 amount produced with 

DP 0.5%, the photocatalyst exhibiting the higher photoactivity in AR1 degradation. 

The maximum hydrogen peroxide concentration attained during AR1 degradation with 

different Au/TiO2 photocatalysts is reported in Table 5.2. 
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Table 5.2 Maximum H2O2 concentration attained during FA and AR1 photodegradation on P25 
and on Au/TiO2 samples. 

 

105 ×××× [H2O2]max  (M) 
 

AR1 FA 

P25 2.9 0.07 

DP 0.06% 3.2 0.52 

DP 0.13% 3.6 1.1 

DP 0.38% 4.1 21.7 

DP 0.5% 7.9 27.9 

DP 2.5% 7.4 24.4 

DPU 0.5% 3.1 7.6 

DPN 1% 3.3 25.4 

DPH 1% 2.4 0.61 

 

The effect of gold nanoparticles on TiO2 thus appears controversial: they favour eCB
– 

transfer to O2 leading to H2O2 production, but the rate of AR1 photodegradation does 

not increase in parallel, probably resulting from several concurring effects. Of course, 

both adsorption equilibria and photoinduced electron transfer reactions can be affected 

by any surface modification of TiO2. 

The presence of gold nanoparticles may inhibit substrate adsorption on TiO2. 

Preliminary tests performed with DP 1% Au/TiO2 evidenced a substantial decrease of 

AR1 adsorption with respect to unmodified P25.45 This is in line with the reported shift 

of the iso-electric point of Au/TiO2 to lower pH values with respect to unmodified 

TiO2,
16 which extends the pH region where the photocatalytic surface is negatively 

charged and the adsorption of negatively charged compounds, such as the bisulphonic 

azo dye AR1, is hindered. 

Furthermore, as to mechanistic aspects, it is worth recalling that the azo dye AR1 

itself absorbs a considerable portion of visible light under the adopted irradiation 

conditions. As shown in Fig. 5.6, its absorption spectrum largely overlaps the emission 

spectrum of the irradiation source employed in the present study. A self-sensitised 

mechanism is thus expected to be also at work: the dye molecule, excited by visible 

light, is able to transfer an electron into the conduction band of TiO2, converting itself 
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into its radical cation,50-52 which undergoes oxidation by interaction with O2. The 

injected electron can then react with dioxygen adsorbed on the TiO2 surface, to 

generate the superoxide radical anion and then other active oxygen species, such as 

H2O2, according to reactions (5.1) and (5.2). 

Figure 5.6  Emission spectrum of the Osram lamp and absorption spectrum of a 2.5 × 10-5 M 
aqueous solution of the dye AR1. 

 

In order to verify the existence and extent of such mechanism, photocatalytic runs 

were carried out under conditions that exclude semiconductor band gap excitation. The 

high energy components of the emission spectrum of the lamp, which are absorbed by 

TiO2, were eliminated by means of 400 or 455 nm cut off filters. Under such conditions 

AR1 degradation obviously occurred at lower rate. The rate constants obtained when 

employing P25 as photocatalyst were kP25 = (2.0 ± 0.1) × 10-10 M s-1 (λirr > 400 nm) and 

kP25 = (9.5 ± 0.7) × 10-11 M s-1 (λirr > 455 nm), i.e. the reaction rate was reduced to ca. 

8.7% and 4.1% with respect to the rate measured with the full lamp emission. This 

demonstrates that a self-sensitised AR1 degradation mechanism was operative, parallel 

to that initiated by semiconductor band gap excitation, and its weight on the overall 

AR1 degradation under full lamp irradiation depended on the emission spectrum itself. 

Gold nanoparticles on TiO2 may affect the weight of this self-sensitised path. When 

employing the 455 nm cut off filter and DP 2.5% as photocatalyst, the rate constant of 

AR1 photodegradation was k = (7.8 ± 0.2) × 10-11 M s-1, to be compared with k = (1.40 
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± 0.02) × 10-9 M s-1 obtained with the full lamp emission. Thus, a residual reaction rate 

around 5.6% was maintained with λirr > 455 nm, i.e. slightly higher than the residual 

reaction rate obtained with P25 (vide supra), which does not exclude a possible role of 

gold nanoparticles in favouring the self-sensitised photodegradation of the dye. 

Coming back to the photocatalytic activity results of Figs 5.4 and 5.5, a more in 

depth mechanistic analysis can be provided after discussing the results obtained in the 

photocatalytic degradation of formic acid (FA), whose interpretation is much more 

straightforward. In fact, FA does not absorb visible light, which excludes the existence 

of a self-sensitised path, and undergoes direct photocatalytic mineralization to CO2 and 

H2O, without the formation of any stable intermediate species, which may adsorb and 

react on the semiconductor surface, as in the case of AR1. 

 

5.3.3.2 HCOOH photocatalytic mineralisation  

FA photocatalytic degradation also occurred according to a zero-order rate law. The 

photocatalytic activity scale of the investigated TiO2 and Au/TiO2 samples can be 

appreciated in Fig. 5.7, reporting also in this case the ratio between the zero order rate 

constant of FA degradation obtained with each photocatalyst and that obtained in 

presence of unmodified P25 [kP25 = (1.50 ± 0.02) × 10-7 M s-1].  

The decrease in activity consequent to the modification induced by Au deposition 

implying a thermal treatment was confirmed also in FA degradation: DP and DPU 

blank samples (0% Au) exhibited a lower photocatalytic activity with respect to 

unmodified P25. Chemical reduction by NaBH4 also led to a decrease in photoactivity 

(DPN 0%), whereas the blank sample undergone hydrogen treatment (DPH 0%) was 

even more photoactive than P25 (Fig. 5.7). A comparison between the photoactivity of 

blank specimens in AR1 (Fig. 5.4) and FA (Fig. 5.7) degradation demonstrate that the 

effects induced by the deposition treatments influence the photocatalytic activity in 

different ways, which also depend on the adsorption and prevailing photodegradation 

mechanism of the organic substrate. 

Fig. 5.7 also shows that for all the Au/TiO2 photocatalyst series the presence of gold 

nanoparticles on TiO2 was beneficial in the photocatalytic degradation of FA. As to the 

effect of Au loading, investigated within the DP series, the photocatalytic activity 

increased with increasing Au loading up to an optimal value (0.10 – 0.40%), and then 



Chapter 5 
 

 117 

1.00

0.53

1.44

0.93

1.05 1.04

0.81

1.01

0.78 0.85

1.36

1.13

0.88

0.61

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

P25 DP 
0%

DP
0.06%

DP
0.13%

DP
0.38%

DP
0.5%

DP
2.5%

DPU
0%

DPU
0.5%

DPU
2.5%

DPN 
0%

DPN 
1% 

DPH  
0%

DPH  
1%

k
 / k

P
25

decreased. An optimal balance clearly exists between the beneficial role of gold 

nanoparticles in capturing eCB
–, thus reducing the eCB

– - hVB
+ recombination rate, and 

the detrimental shielding effects of Au surface nanoparticles, decreasing the fraction of 

light absorbed by TiO2. Similar trends and also similar values of optimal gold loading 

were recently reported in the degradation of different substrates.12,19,23,33 

 

 

 

 

 

 

 

 

 

 

Figure 5.7  Photocatalytic degradation of formic acid: ratio between the zero-order rate 
constant k measured with different Au/TiO2 samples and that obtained with unmodified P25, 
kP25. 

 

Au/TiO2 photocatalysts prepared through chemical reduction (DPN 1% and DPH 

1%) exhibited the best photocatalytic performance in FA photomineralization, with the 

highest rate increase attributable to the presence of Au nanoparticles being observed 

with DPN 1% (Fig. 5.7). Such photoactivity increase, higher than those observed for 

the DP and DPU series (Fig. 5.7), can be related to the lower Au nanoparticles size (2-3 

nm) evidenced by HRTEM images. Very small Au particles were reported to be most 

active in CO oxidation39,40 and to possess no more metallic, but semiconducting 

properties.53 Their beneficial effect in photocatalytic processes might thus be ascribed 

to the creation of a semiconductor-semiconductor contact in Au/TiO2, which could 

increase the separation of charge carriers photoproduced upon band gap excitation.19 

With the FA substrate, unable to absorb visible light and undergo self-sensitised 

photocatalytic degradation, we also tried to evidence possible photoactivity initiated by 

excitation of the gold plasmon band, which has been first hypothesised by Ohtani’s 
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group36 in the case of gold deposited on large rutile particles. However, FA degradation 

rates measured with P25, DPN 0% and DPN 1% under irradiation with λirr > 400 nm 

were all ca. 5% of the corresponding rates measured under full lamp irradiation, 

indicating no rate increase consequent to gold nanoparticles excitation, in agreement 

with the results obtained also by Ohtani et al. when investigating the visible light-

induced effects of gold deposition on P25.36 

The H2O2 concentration profiles detected during FA photocatalytic degradation with 

the DP series photocatalysts are reported in Fig. 5.8. It is well established,44,54,55 that 

H2O2 formation can hardly be detected during FA photomineralization on unmodified 

TiO2, because of the high reactivity of the intermediate species produced on the oxide 

surface under irradiation.54 The data shown in Fig. 5.8 confirm that practically no H2O2 

could be detected during FA photomineralization on bare TiO2 photocatalysts (P25 and 

DP 0%).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8  H2O2 evolution during FA photodegradation on P25 and on DP Au/TiO2 samples 
with increasing Au loading. 

 

By contrast, hydrogen peroxide was detected with gold-containing photocatalysts 

and its amount increased with increasing gold nanoparticles content up to DP 0.5%, and 

then slightly decreased with DP 2.5%. H2O2 concentration vs. irradiation time curves 

initially increased up to a maximum value and started to decline when total FA 

mineralization was attained. Maximum H2O2 concentration values recorded during FA 
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photodegradation on different Au/TiO2 specimens, also reported in Table 5.2, were 

much higher than those attained during AR1 photocatalytic degradation, although the 

opposite occurred with the bare TiO2 photocatalysts (see also Fig.s 5.5 and 5.8). 

 

5.3.3.3 H2O2 photocatalytic degradation 

A higher H2O2 accumulation during photocatalytic runs may result from either a higher 

production rate, or a lower H2O2 degradation rate, occurring through interaction with 

both conduction band electrons and valence band holes on the illuminated photocatalyst 

surface.56 

Hydrogen peroxide photostability tests were performed with aqueous suspensions 

containing no organic substrate and initial H2O2 concentrations similar to those 

produced during the photocatalytic runs. The results shown in Fig. 5.9 demonstrate that 

P25 was the most active photocatalyst in hydrogen peroxide degradation under the 

irradiation conditions of the present work and any modification of its surface properties 

led to a decrease in photoactivity. In fact, H2O2 degradation was slower with DP 0%, 

though proceeding up to complete H2O2 disappearance. When a similar test was 

performed with gold-containing DP 0.5%, H2O2 concentration initially slightly 

decreased, but then tended to an almost constant value, indicating that the rate of H2O2 

production (clearly occurring in this case also in the absence of organic species 

undergoing simultaneous oxidation) equaled its degradation rate under irradiation. 

The lower photoactivity of DP 0% with respect to P25 demonstrates that the lower 

H2O2 amount detected during AR1 photodegradation with blank photocatalysts (Fig. 

5.5) resulted from slower H2O2 formation, and not from faster H2O2 photodegradation 

on these latter, compared to P25. Furthermore, as to the effect of gold nanoparticles on 

the oxide surface, the higher H2O2 amounts detected with Au-containing photocatalysts 

in both AR1 and FA photocatalytic degradation (Fig.s 5.5 and 5.8 and Table 5.2) 

resulted from increased H2O2 formation rates, consequent to faster eCB
– transfer to 

adsorbed dioxygen according to reaction (5.1), as discussed above. O2 preferential 

adsorption on gold nanoparticles57 was also invoked to contribute to the enhancement 

of eCB
– transfer rate. 
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Figure 5.9  Hydrogen peroxide concentration profiles in aqueous suspensions containing 0.1 g 
L-1 of photocatalyst under irradiation in the absence of organic substrates. 
 

5.3.3.4 Role of Au nanoparticles in FA photomineralization  

Gold nanoparticles on TiO2 clearly had a beneficial role in both the photocatalytic 

degradation of FA (Fig. 5.7) and the parallel reduction of adsorbed oxygen yielding 

hydrogen peroxide (Fig. 5.8). FA strongly adsorbs on the TiO2 surface and undergoes 

rather fast photocatalytic oxidation preferentially initiated through direct electron 

transfer to valence band holes,55,58,59 without the formation of any stable intermediate 

species. Upon one electron oxidation of FA, the highly unstable species CO2
•–, or 

HCO2
• depending on pH, with a pKa of 1.4, are formed:55,60  

HCOO– + hVB
+  → CO2

•– + H+          (5.3) 

Because of the highly negative redox potential of the strongly reductant CO2
-• radical 

anion, i.e. E°(CO2/CO2
•–) = -1.8 V, this radical could either originate the so-called 

current doubling effect by injecting electrons into the semiconductor conduction 

band,61 or mediate the reduction of a wide variety of molecules and, in particular, that 

of dissolved O2, according to reaction (5.4).  

CO2
•– + O2  → CO2 + O2

•–           (5.4) 

The so produced superoxide radical anion O2
•– is a H2O2 precursor, according to 

reaction (5.2). Therefore, during FA photocatalytic degradation dioxygen reduction 
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proceeds on the photocatalyst surface through both the direct action of conduction band 

electrons, reaction (5.2), and that of adsorbed CO2
•– radical anions. Gold nanoparticles 

on the oxide surface had a beneficial role in both these electron transfer processes, as 

demonstrated by the higher FA degradation rate and much higher H2O2 production rate 

in the presence of optimal Au amounts on the TiO2 surface. 

 

5.3.3.5 Role of gold on the photocatalytic oxidation of AR1 

AR1 molecules mainly undergo photocatalytic oxidation according to a hydroxyl 

radical-mediated mechanism.41,55,59,62 The low AR1 initial concentration, much smaller 

than the FA initial concentration, contributes in making this indirect oxidation path 

favoured with respect to direct interaction with photoproduced valence band holes. Fig. 

5.4 shows that gold deposition on TiO2, especially in the case of small nanoparticles 

(DPN and DPH series), was not beneficial in AR1 photocatalytic degradation, whereas 

the simultaneous H2O2 production did not change substantially (Table 5.2).  

In order to understand these results, it is worth recalling that valence band holes 

(+2.5 V vs. NHE) and also photoproduced •OH radicals (+1.9 V vs. NHE) could in 

principle be both able to oxidize metallic gold Au0 in contact with the semiconductor 

surface into AuI [E°(Au+/Au0) = +1.68 V vs. NHE].63,64 Gold in nanoparticle size 

domains is expected to be even more reactive than in the form of bulk metal. The Au+ 

ions, so generated at the Au/TiO2 interface, might be back reduced by photoexcited 

conduction band electrons. Consequently, the •OH radicals consumed in gold oxidation 

are no more available to attack and oxidise AR1 molecules, whereas conduction band 

electrons involved in AuI back reduction are not available for adsorbed O2 reduction 

(see Scheme 5.2). Gold nanoparticles would definitely act as recombination centres of 

photoproduced active species in the case of organic substrates, such as AR1 in this 

study, unable of strong direct interaction with photoproduced valence band holes. 

Indeed, the maximum H2O2 concentration evolved on Au/TiO2 during AR1 

photodegradation runs was only doubled with respect to that produced on unmodified 

P25 (Table 5.2) and one order of magnitude lower than that measured during FA 

photodegradation on the same Au/TiO2 photocatalysts. 
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Scheme 5.2 Comparison of relevant homogeneous phase potentials in aqueous solution at pH 
7.0.    

 

By contrast, in the case of FA photocatalytic degradation, the formation of the 

strongly reductant CO2
•– species on the photocatalyst surface may contribute in 

maintaining gold in the metallic form through reaction (5.5): 

Au+ + CO2
•– → Au0 + CO2           (5.5) 

This may be the principal origin of the rate increase in FA degradation observed upon 

gold nanoparticles deposition on TiO2 and of the different efficiency of the investigated 

series of photocatalysts towards AR1 and FA photocatalytic degradation. AR1 

photodegradation results appeared controversial, not only because also a parallel self-

sensitised mechanism is at work, but mainly because in the mechanism initiated by 

band gap excitation AR1 oxidation does not occur through direct interaction with 

valence band holes, but through hydroxyl radicals attack. This would favour Au partial 

oxidation and gold acting as recombination centre of photoproduced charge carriers. 

Present results are in line with the recently reported enhanced photocatalytic oxidation 

induced by the presence of silver on the TiO2 surface, observed only for organic 

compounds that are predominantly oxidised by holes.25 
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6.1 Introduction 

The mobility and toxicity of aqueous chromium, a notoriously toxic, mutagenic and 

carcinogenic,1,2 common component of industrial wastes,3 depend on its oxidation state. 

Cr(VI), usually present in the form of highly soluble and toxic chromate anions, can 

efficiently be converted into Cr(III), which exhibits lower toxicity and mobility in the 

environment,4,5 by photocatalytic reduction on semiconductors.6-11 When employing 

TiO2, the most widely used semiconductor photocatalyst,12-14 this process is possible on 

the grounds of the energy level of the TiO2 conduction band and of the reduction 

potential of the Cr(VI)/Cr(III) couple and it is favored at low pH. In fact, due to the 

three electrons involved in Cr(VI) reduction to Cr(III), the potential of this couple shifts 

to more positive values with decreasing pH with a slope higher than that of the 

conduction band edge shift with pH.11 

In order to investigate the influence of the surface and structural properties of this 

semiconductor on its photocatalytic activity, a series of commercial TiO2 samples with 

different phase composition and surface area was tested in the photocatalytic reduction 

of Cr(VI) in aqueous suspensions at pH 3.7 under UV-visible light irradiation. This 

reaction was also coupled with the simultaneous photocatalytic oxidation of an organic 

pollutant, i.e. the azo dye Acid Orange 8 (AO8), see Scheme 6.1, and of formic acid 

(FA), also in this case chosen because it is a small organic molecule undergoing direct 

photocatalytic mineralization to CO2 and water, without the formation of any stable 

intermediate species. 

 

 

 

 

 

 

 

 Scheme 6.1 Acid Orange 8 (AO8). 

 

Investigation on the simultaneous reduction and oxidation processes occurring under 

irradiation on the photocatalyst surface in contact with water not only provides valuable 

information on the rate of the electron transfer paths at work in the reaction system, but 
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is of great importance in consideration of the fact that heavy metals, which can be 

photocatalytically reduced, and organic pollutants, which can be removed by 

photocatalytic oxidation, very often coexist in wastewaters. As outlined by Prairie et al. 

in their early study,8 an efficient design of photocatalytic systems for wastewater 

treatment must take into account both oxidation and reduction processes. 

The photocatalytic reduction of Cr(VI) was already investigated in the presence of 

organics frequently present in natural and waste waters, such as humic substances,9 or 

pollutants, such as phenol and 4-chlorophenol,15-17 dyes,18-20 methyl tert-butyl ether,21 

or carboxylic acids.17,22 An increase in the rate of Cr(VI) photocatalytic reduction was 

usually observed. Most of these studies were performed employing the P25 TiO2 

photocatalyst and were mainly focused on the effects of substrates concentration and of 

pH. This study is mainly focused on the effects of the TiO2 phase composition and 

surface area on the rate of both Cr(VI) photocatalytic reduction and simultaneous 

oxidation of organic compounds, also in relation to their competitive adsorption on the 

photocatalyst surface. 

Furthermore, the deposition of noble metals on semiconductor oxides is expected to 

enhance their photocatalytic activity by increasing the separation of photogenerated 

electron – hole pairs.23 Indeed, the Fermi level of noble metals is usually lower in 

energy than the conduction band edge of TiO2. Thus, photopromoted electrons can be 

captured by the noble metal, while photoproduced holes remain in the semiconductor 

valence band. However, whereas the positive effect of noble metal co-catalysts on the 

photocatalytic reduction processes, such as hydrogen production from water or O2 

reduction yielding hydrogen peroxide, is well established,24-26 their effective role in 

photocatalytic oxidative reactions is still under debate, especially in the case of gold-

modified TiO2.
27,28 

Thus, the effect on Cr(VI) photocatalytic reduction of gold nanoparticles 

photodeposited on the TiO2 surface was also investigated and compared to their effect 

in the photocatalytic mineralization of formic acid. A series of TiO2–based 

photocatalysts with different Au loadings were prepared and tested. The modifications 

induced on the photocatalyst surface by the noble metal photodeposition treatment were 

also taken into account. 
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6.2 Experimental section  

6.2.1 Photocatalysts preparation and characterisation  

Most chemicals, i.e. K2Cr2O7, formic acid (FA), purity 95-97%, and Acid Orange 8 

(AO8), were purchased from Aldrich. They were all employed as received, apart from 

AO8, which was purified by repeated crystallization from methanol, as already 

mentioned.29  

Mixed phase Degussa P25 titanium dioxide (ca. 80% anatase, 20% rutile, surface 

area 48 m2 g-1, according to our BET analysis),30 and two pure anatase samples, 

purchased from Alfa Aesar, were employed as photocatalysts in powder form. These 

latter were labeled A118 and A235, with A standing for anatase, followed by a number 

indicating their surface area in m2 g-1. 

The series of gold-modified photocatalysts (Au/TiO2) was prepared starting from 6 

vol.% methanol/water suspensions, containing 3 g L-1 of TiO2 (Degussa P25) and the 

required amount of Au(III) acetate, as gold precursor, preliminary dissolved in an 

acidic aqueous medium. Au(III) photoreduction to metallic gold nanoparticles 

deposited on TiO2 was achieved by irradiating the suspensions for 2 h under nitrogen 

atmosphere (see Scheme 6.2a). An immersion fluorescent, low pressure mercury arc 

lamp (Jelosil) was employed as the irradiation source, emitting in the 300–400 nm 

range, with a maximum emission peak at 360 nm (see Scheme 6.2b). 

 

 

 

 

 

 

 

 

 

 

 

 
Scheme 6.2 a) Set up employed in order to perform gold nanoparticles photodeposition on TiO2 
samples; A: reactor, B: immersion UV lamp, C: stirrer, D: thermostat. b) Emission spectrum of 
the immersion fluorescent, low pressure mercury arc lamp (Jelosil). 

 

a) b) 
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Gold-modified TiO2 powders were recovered after at least five centrifugation and 

washing cycles, up to the complete removal of residual ions and organic precursors. 

They were then dried at 70 °C for 1 day and stored in the absence of light and humidity. 

They were labeled with P, standing for “photodeposited”, followed by their nominal 

gold content, in weight percent. A reference sample (P 0%) was prepared following 

exactly the same procedure, except for the addition of the gold precursor. 

UV-Vis diffuse reflectance (DR) spectra were recorded with a Lambda 19, Perkin 

Elmer spectrophotometer equipped with an integrating sphere. HRTEM images were 

obtained with a JEM 3010 (JEOL) electron microscope operating at 300 kV. XPS 

analyses were performed by a PHI-5500-Physical Electronics spectrometer, equipped 

with a monochromatized source with aluminum anode (Kα = 1486.6 eV). These 

analyses were performed by Doctor Laura Meda at Eni Donegani group. XRD analysis 

was performed employing a Philips PW 1820 power diffractometer, using filtered Cu 

Kα radiation. The BET surface area was measured by nitrogen adsorption/desorption at 

77 K employing a Micromeritics ASAP 2010 apparatus.  

 

6.2.2 Photocatalytic and adsorption tests 

All photocatalytic runs were performed in aqueous suspensions under atmospheric 

conditions, in a magnetically stirred 100 mL reactor, as described in Section 4.1. 

Appropriate volumes of stock solutions containing Cr(VI), Acid Orange 8 (AO8) or 

formic acid (FA) were added to pre-sonicated aqueous suspensions containing 0.1 g L-1 

of photocatalyst. The initial concentration of the photocatalytic reaction substrates in 

the aqueous suspensions were fixed at the following values: 3.3 × 10-5 M for Cr(VI), 

from a solution obtained by dissolving K2Cr2O7 in water, 1.0 × 10-3 M for FA,  2.8 × 

10-5 M for AO8. At different time intervals during the runs, 3 mL-samples of the 

suspension were withdrawn from the reactor and centrifuged. The supernatant was 

analyzed colorimetrically for Cr(VI) residual content, using the 1,5-diphenylcarbazide 

method.31 AO8 photobleaching was monitored during the runs by spectrophotometric 

analysis at the wavelength of maximum AO8 absorption, i.e. 490 nm. The molar 

extinction coefficient of the dye at this wavelength is ε = (3.06 ± 0.02) × 104 M-1 cm-1, 

according to previous calibration.29 FA content in the supernatant was determined by 

ion chromatography, as already described in Section 4.1.  



Chapter 6 
 

 133 

All kinetic runs were performed up to ca. 70% Cr(VI) removal and repeated at least 

twice, to check their reproducibility. The initial pH of the suspensions was fixed at pH 

3.7 by addition of the appropriate volume of a concentrated HClO4 solution. No 

addition was necessary in the case of FA-containing suspensions, because 3.7 was the 

natural pH of the aqueous suspensions containing 1.0 × 10-3 M FA. No significant pH 

variation occurred during the runs. 

Aiming at investigating the substrates affinity for the different photocatalysts, 

adsorption tests were performed at pH 3.7 under the same initial conditions of the 

photocatalytic runs, except for the amount of TiO2, which was fixed at 1.0 g L-1. The 

suspensions were kept under stirring in the dark and samples were withdrawn after 30 

min, 1 h, 6 h and 24 h, centrifuged and analyzed for the Cr(VI) and/or AO8 amount in 

the supernatant. Adsorption equilibrium was attained in 30 min. 

 

6.3 Results and discussion 

6.3.1 Photocatalysts characterization 

XRD analysis confirmed the mixed phase composition of Degussa P25, with a 78:22 

anatase-to-rutile ratio, and mean diameter of the anatase and rutile crystallites of 25 ± 5 

and 35 ± 8 nm, respectively.30 Also the composition (pure anatase) of the A118 and 

A235 samples was confirmed by XRD analysis; the mean diameter of crystallites was 

18 ± 3 and 9 ± 1 nm, respectively. 

These TiO2 samples exhibit quite similar absorption properties, with an absorption 

onset around 400 nm, according to UV-Vis DR measurements. In comparison to the 

pure anatase samples, P25 exhibits a slightly red-shifted absorption edge (see Fig. 6.1, 

inset), due to the presence of the rutile phase, characterized by a smaller band gap value 

(i.e. 3.0 eV vs. 3.2 eV for anatase). 

As shown in Fig. 6.1, all Au/TiO2 samples exhibited the typical plasmon resonance 

band of gold nanoparticles (< 20 nm), centered at 550 nm, i.e. red shifted compared to 

the pure gold plasmonic peak (520 nm), indicating interaction between gold and the 

titania support. The intensity of the plasmon resonance band regularly increased with 

increasing the gold loading without any appreciable difference in the absorption 

maximum (Fig. 6.1), indicating a progressive increase in gold nanoparticles density on 

the oxide surface without marked variation of their dimensions. 
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Figure 6.1 Absorption spectra of P25 TiO2 and of the Au/TiO2 photocatalysts series, with 
increasing Au loading, prepared by photodeposition. Inset: absorption spectra of P25, A118 
and A235. 

HRTEM analysis yielded direct information on the dimension and the distribution of 

Au nanoparticles. Examples of HRTEM images are reported in Fig. 6.2. The mean 

diameter of gold nanoparticles obtained by photoreduction varied between 5 and 20 

nm. Compared to other gold deposition techniques (e.g. the deposition-precipitation 

method studied in Chapter 5), photodeposition was reported to produce larger and more 

spherical noble metal nanoparticles.33 

 

 

 

 

 

 

 

Figure 6.2 HRTEM images of selected Au/TiO2 samples. 

No variation in XRD patterns was expected after gold deposition by the adopted 

photodeposition procedure, not implying any heat treatment, as already verified in 

previous studies.32,34 Also the specific surface area of P25 TiO2 did not vary upon gold 

P 0.1% P 1% P 0.5% 



Chapter 6 
 

 135 

nanoparticles deposition, in line with analogous results reported in Chapter 5 and also 

obtained by other research groups.32,35-37 

The XPS analysis of the surface chemical composition, reported in Table 6.1, 

confirmed that all samples maintained a O/Ti atom ratio very close to 2, indicating no 

variation in the metal oxide surface composition, and confirmed the presence of gold 

nanoparticles deposited on the Au/TiO2 photocatalysts. The gold percent surface 

amount detected by XPS analysis regularly increased with increasing the nominal gold 

loading of the samples prepared by photodeposition.  

 
Table 6.1 Surface composition, from XPS analysis, of P25 TiO2 and of Au/TiO2 photocatalysts 
prepared by photodeposition of different percent amounts of gold nanoparticles on P25 TiO2. 

 

Atom %  

 C 1s O 1s Ti  2p Cl 2p Au 4f 

P25 14.1 55.9 28.0 0.8 --- 

P 0% 16.2 54.5 27.4 0.6 --- 

P 0.1% 15.6 54.8 27.7 0.6 0.06 

P 0.3% 16.8 54.0 26.7 0.7 0.12 

P 0.5% 15.8 54.2 27.4 0.8 0.16 

P 1% 16.4 54.4 26.3 0.7 0.21 

 

Furthermore, XPS analysis did not evidence any significant variation of chlorine 

content and of adventitious surface carbon content with respect to the values detected 

for pristine P25 TiO2, indicating negligible persistence of Cl- ions or of organic 

substances originating from the gold precursor. 

 

6.3.2 Cr(VI) photocatalytic reduction tests on TiO2 

The photocatalytic reduction of Cr(VI) occurred according to a first order rate law in 

the presence of both TiO2 and Au/TiO2 photocatalysts. Determination coefficients R2 

obtained by treating the Cr(VI) concentration vs. time data according to a first order 

rate law were always greater than 0.98. The photoactivity of different photocatalyst 

powders was thus compared in terms of first order rate constants of Cr(VI) reduction 

obtained under identical irradiation conditions in the presence of an equal photocatalyst 
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amount (0.1 g L-1). The effect of pH was preliminarily investigated employing P25 – 

containing suspensions, in order to attain optimal Cr(VI) photoreduction conditions. 

The rate constant of Cr(VI) photocatalytic reduction at the natural pH conditions of the 

dichromate suspension, i.e. pH ca. 6.5, was (8.2 ± 0.8) × 10-5 s-1, whereas an almost 

doubled rate constant, i.e. (1.61 ± 0.05) × 10-4 s-1, was determined employing a 

suspension at pH 3.7, obtained by HClO4 addition. All subsequent runs were thus 

performed at this pH. This result is in agreement with previous findings of different 

laboratories and is expected from the already mentioned shift of potentials with 

decreasing pH.8,11,12,38-40  

The photocatalytic activity of the different bare TiO2 samples investigated in the 

present work can be compared in Fig. 6.3, in terms of first order rate constants of 

Cr(VI) reduction. Their uncertainties, obtained from repeated runs, are also shown in 

the figure. P25 TiO2 was found to be the best performing photocatalyst, followed by 

A118 and by A235. The rate of Cr(VI) reduction thus appears totally independent of 

the photocatalyst surface area, but rather limited by the intrinsic efficiency in 

photoproduced charges separation of the employed photocatalyst powder. P25 TiO2, 

manufactured by flame hydrolysis of titanium tetrachloride at high temperature, 

exhibits outstanding photocatalytic activity in several reactions, to be attributed to its 

peculiar nanostructured arrangement of interwoven anatase-rutile crystallites hindering 

charge recombination by charge separation across interfaces.41,42 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 6.3 Rate constants of Cr(VI) photocatalytic reduction in the absence of organics and in 
the presence of the azo dye AO8 and of formic acid (FA). 
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6.3.3 Effect of AO8 on Cr(VI) adsorption and photocatalytic reduction on TiO2 

Preliminary tests of Cr(VI) and AO8 equilibrium adsorption on the investigated 

photocatalysts were performed at pH 3.7 under the same conditions employed in 

photocatalytic runs, except for a 10-fold higher amount of TiO2. 

The percent amount of Cr(VI) adsorbed on the photocatalysts, both in the presence 

and in the absence of AO8, is shown in Fig. 6.4. The adsorption of Cr(VI), present in 

the suspensions in the form of negatively charged Cr2O7
2- ions, clearly increased with 

increasing the surface area of the TiO2 photocatalysts. The extent of Cr(VI) adsorption 

on all photocatalysts was lower in the presence of the azo dye, indicating competitive 

adsorption. Indeed, at pH 3.7 both AO8 and Cr(VI) are in the anionic form, whereas the 

TiO2 surface is positively charged, its point of zero charge being at pH higher than 3.7. 

The extent of AO8 equilibrium adsorption on the photocatalysts was also measured, 

both in the presence and in the absence of Cr(VI). The results shown in Fig. 6.5 

demonstrate that AO8 largely adsorbed on the TiO2 photocatalysts, and that the 

adsorbed amount was also larger on higher surface area photocatalysts. The fact that 

AO8 adsorption occurred in competition with dichromate adsorption was confirmed by 

the lower AO8 adsorption extent attained in the presence of Cr(VI) (Fig. 6.5). The 

effects of competitive adsorption were more pronounced in the case of P25 

photocatalyst, as expected, due to its lower specific surface area (Fig.s 6.4 and 6.5). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 Percent amount of Cr(VI), in the form of dichromate anion, adsorbed at equilibrium 
on TiO2 photocatalysts (1.0 g L-1), in the absence and in the presence of the AO8 azo dye. 
Overall Cr(VI) concentration: 3.3 × 10-5 M; overall AO8 concentration: 2.8 × 10-5 M. 
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Figure 6.5 Percent amount of AO8 adsorbed at equilibrium on TiO2 photocatalysts (1.0 g L-1), 
in the absence and in the presence of Cr(VI) as dichromate anion. Overall AO8 concentration: 
2.8 × 10-5 M; overall Cr(VI) concentration: 3.3 × 10-5 M. 

 

The simultaneous presence of Cr(VI) and of the azo dye AO8, undergoing 

photocatalytic oxidation under irradiation, led to a marked enhancement of the rate of 

Cr(VI) photoreduction, which was clearly higher for photocatalysts with higher surface 

area (see Fig. 6.3). Similar results were obtained in the presence of other organics, e.g. 

methyl tert-butyl ether,21 different dyes18-20 or carboxylic acids.17,22 

The dye itself was found to undergo photocatalytic oxidation according to a first 

order rate law, both in the presence and in the absence of Cr(VI). In both cases the 

photocatalytic bleaching of the dye increased with increasing the surface area of the 

photocatalyst, as shown in Fig. 6.6. Furthermore, AO8 photodegradation was markedly 

enhanced by the simultaneous presence of Cr(VI) and this effect was more remarkable 

for the two high surface area pure anatase photocatalysts (Fig. 6.6). 

As already mentioned in Chapter 5, aromatic azo dyes undergo photocatalytic 

bleaching through an oxidation mechanism mainly involving hydroxyl radicals, which 

upon band gap excitation are photocatalytically generated on the oxide surface from the 

oxidation of surface –OH groups or water molecules. These radicals attack the diazo 

moiety, leading to loss of visible light absorption.43-46 This occurs on the photocatalyst 

surface, the hydroxyl radicals being unable to leave it.47 Consequently this oxidation 

path is largely favored by substrate adsorption on the photocatalyst surface. In fact, 
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both in the presence and in the absence of Cr(VI) the rate of AO8 photocatalytic 

oxidation increased with the surface area of the employed photocatalyst (Fig. 6.6), on 

which a larger percent amount of dye could adsorb (Fig. 6.5). The simultaneous 

photooxidation of the organic dye clearly had a synergistic effect in Cr(VI) reduction, 

and this effect was greater, the larger was the surface area of the photocatalyst (Fig. 

6.3). 

In fact, the photocatalytic activity in Cr(VI) reduction in the absence of AO8 did not 

increase with increasing the photocatalyst surface area, because it mainly depends on 

the intrinsic efficiency of electron-hole separation, as stated above. However, the 

simultaneous presence of Cr(VI) and AO8 led to an enhancement of the photocatalytic 

activity, which was clearly higher for photocatalysts with higher specific surface area, 

i.e. for photocatalysts on which AO8 underwent faster degradation. Indeed, 

photopromoted conduction band electrons became more readily available for Cr(VI) 

reduction in the presence of AO8, which indirectly consumed photoproduced valence 

band holes and thus inhibited electron-hole recombination. Therefore, the co-presence 

of oxidizable and reducible species ensured better separation of photogenerated charge 

carriers, especially in the case of high surface area anatase TiO2, having the strongest 

affinity for both degradation substrates, as demonstrated by competitive adsorption 

tests. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 Rate constants of AO8 photocatalytic oxidation in the absence and in the presence 
of Cr(VI). 
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Concerning the mechanistic aspects of Cr(VI) photocatalytic reduction, the reaction 

was shown to occur through a sequence of one electron transfer steps and experimental 

evidence was obtained of the involvement of Cr(V) in the form of aquo and EDTA 

complex.48,49 When the reaction was combined with the photocatalytic oxidation of an 

organic species able itself to absorb light, such as the azo dye AO8 in the present study, 

absorbing a considerable portion of visible light under the adopted irradiation 

conditions, a sensitized mechanism might be at work, in parallel to that initiated by 

semiconductor band gap absorption. In fact, as shown in Scheme 6.3, the electronically 

excited state of the dye, produced by visible light absorption, is able to transfer 

electrons into the conduction band of TiO2 or to adsorbed Cr(VI), producing a dye 

radical cation, which easily undergoes oxidation by O2 molecules. Such reaction path is 

responsible for the visible light-induced photocatalytic reduction of Cr(VI) in the 

presence of dyes20 and is perfectly compatible with the surface area and adsorption 

dependence observed for the rate of both oxidation and reduction reactions 

simultaneously occurring on the photocatalyst surface. 

 

 

 

 

 

 

 

 

 

 

 

Scheme 6.3 Dye-sensitized and band gap absorption-initiated paths of simultaneous Cr(VI) 
reduction and AO8 oxidation.  

 

In contrast, present photocatalytic activity results, clearly dependent on the surface 

area of the employed photocatalyst, seem to exclude that the enhanced Cr(VI) 

photoinduced reduction observed in the presence of AO8 occurred through direct 

electron transfer from AO8 to Cr(VI) in a AO8-Cr(VI) complex in the aqueous phase, 

as suggested to occur in the case of the azo dye Acid Orange 7.20 In fact, both Cr(VI) 
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and AO8 were found to be perfectly photostable in aqueous solutions containing no 

TiO2, even after prolonged irradiation under the conditions employed in the present 

study. Similar Cr(VI) complexes were shown to play a role in the photocatalytic Cr(VI) 

reduction in the presence of, e.g., salicylic and citric acids.20,22,50  

On the other hand, evidence was recently obtained of the formation of a charge 

transfer complex between Cr(VI) and TiO2 that could be excited by visible light.51 The 

efficiency of Cr(VI) reduction attained by selectivity exciting this complex was found 

to be higher than that produced by exciting the semiconductor itself. An electron 

transfer path initiated by this way cannot be excluded to be at work under the here 

adopted irradiation conditions. 

 

6.3.4 Effect of formic acid on Cr(VI) photocatalytic reduction 

Aiming at excluding the possibility of any dye-sensitized photocatalytic reaction path, 

we investigated the effect of the presence of formic acid in the photocatalytic reduction 

of Cr(VI). This acidic organic substrate does not absorb light in competition with TiO2 

and, as already mentioned in Chapter 5, it is known to undergo photocatalytic oxidation 

mainly through direct interaction with photoproduced valence band holes,43,46,52 

without forming any stable mineralization intermediate. 

The effect of FA addition on the rate of Cr(VI) photocatalytic reduction is also 

shown in Fig. 6.3 and can be easily compared with that of AO8 addition in the 

irradiated suspensions. The rate of Cr(VI) photoreduction was clearly higher in the 

presence of both organic species, with respect to the rate measured in the absence of 

any organics. However, the photoactivity trend within the investigated photocatalyst 

series obtained after FA addition was completely different with respect to that observed 

after AO8 addition. In fact, a remarkable rate increase was obtained upon FA addition 

when employing P25 TiO2, whereas FA addition had much smaller effects on Cr(VI) 

reduction rate in the case of the two high surface area pure anatase photocatalysts, the 

photoactivity of which markedly increased upon AO8 addition. Thus Cr(VI) reduction 

in the presence of a direct hole scavenger, such as FA, appears to be still limited by the 

electron-hole separation intrinsic properties of the semiconductors, rather than by 

effects related to their surface area and substrate adsorption capability. 

Simultaneous to Cr(VI) photocatalytic reduction, FA underwent photocatalytic 

mineralization at constant rate, i.e. according to a zero-order rate law, as already 
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reported in Chapter 5, in line with previous studies.32,46,52 Fig. 6.7 shows that pure 

anatase A118 was the best performing photocatalyst in FA mineralization in the 

absence of Cr(VI). Comparable results were obtained under UV irradiation.30 However, 

the rate of FA mineralization dramatically dropped when Cr(VI) was added to the 

irradiated suspensions, down to a rather low value, almost independent of the employed 

TiO2 photocatalyst (Fig. 6.7). Very low FA conversion (below 10%) was attained in 

this case at the end of the runs. This effect could not be attributed to Cr(VI)-FA 

interactions in the aqueous phase, because aqueous solutions containing both Cr(VI) 

and FA at pH 3.7 were found to be perfectly stable both in the absence and in the 

presence of irradiation, in contrast to previous studies carried out under intense UV 

irradiation.53 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7 Zero-order rate constants of FA photocatalytic oxidation in the absence and in the 
presence of Cr(VI). 

It is worth noting, however, that the initial FA concentration in our suspensions was 

more than one order of magnitude higher than the initial Cr(VI) concentration and that 

the rate of FA oxidation, coinciding with the zero-order rate constants values of Fig. 

6.7, was similar to the rate of Cr(VI) photocatalytic reduction in the presence of FA, 

calculated as r = k [Cr(VI)], k being the first order rate constants reported in Fig. 6.3 for 

Cr(VI) reduction in the presence of FA. Thus the photocatalytic oxidation and 

reduction processes proceeded at almost the same rate on the photocatalysts surface. 

This rate was lower than the rate of FA oxidation in the absence of Cr(VI), indicating 

that chromium species adsorbed on the photocatalyst surface inhibit FA photocatalytic 
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oxidation. Indeed, previous studies on Cr(VI) photocatalytic reduction in the presence 

of carboxylic acids evidenced an inhibition in TOC degradation50 or even an increase of 

TOC amount22 during the photocatalytic runs, which were attributed to deactivation of 

the photocatalyst surface due to Cr(III) adsorption or to desorption of organic species 

from the photocatalyst surface under irradiation, respectively. This chromium-induced 

inhibition in the photocatalytic mineralization of organics should deserve attention, 

because it may cause problems in the photocatalytic treatment of waste waters. 

 

6.3.5 Effect of gold nanoparticles deposition on TiO2 

The effects induced on the rate of Cr(VI) reduction by the presence of gold 

nanoparticles photodeposited on the surface of P25 TiO2 can be appreciated in Fig. 6.8, 

where the first order rate constants obtained with the Au/TiO2 photocatalysts series are 

reported as normalized values with respect to the rate constant value kP25 obtained with 

unmodified P25 TiO2. Also with the Au/TiO2 photocatalysts, Cr(VI) photoreduction 

became faster upon FA addition to the irradiated suspensions, with an average 4-fold 

increase of the rate constants of Cr(VI) reduction (data not shown).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8 Effect of gold nanoparticles photodeposited on TiO2 on the photocatalytic reduction 
of Cr(VI): ratio between the first order rate constants k measured in the presence of Au/TiO2 
samples with different gold loading (wt.%) and that obtained with unmodified P25, kP25. 
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The photocatalytic activity scale of the Au/TiO2 samples in FA oxidation can be 

appreciated in Fig. 6.9, showing the ratios between the zero-order rate constants of FA 

degradation obtained with each photocatalyst and that measured in the presence of 

unmodified P25. On the other hand, FA oxidation rate dropped to very low values in 

the presence of Cr(VI), in a way almost identical to that shown in Fig. 6.7 in the case of 

the unmodified photocatalysts. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9 Effect of gold nanoparticles photodeposited on TiO2 on the photocatalytic oxidation 
of FA: ratio between the zero-order rate constants k measured in the presence of Au/TiO2 
samples with different gold loading (wt.%) and that obtained with unmodified P25, kP25. 

As shown in Fig. 6.9 the presence of photodeposited gold nanoparticles had a 

beneficial role primarily in increasing the rate of FA oxidation and, as already 

mentioned in Chapter 5, this can be attributed to the formation of the carbon dioxide 

radical anion upon the one electron oxidation of FA. In fact, such strongly reductant 

species may contribute in maintaining gold in its photocatalytically active metallic 

form, avoiding the possible formation of Au+ by Au(0) interaction with conduction 

band holes.32 Furthermore the photoactivity increase in FA oxidation obtained by gold 

photodeposition on P25 TiO2 was slightly higher than that obtained with gold-modified 

TiO2 prepared according to the deposition-precipitation method (see Chapter 5),54 as 

clearly shown in Fig. 6.10, and the photodeposition procedure itself, even in the 

absence of gold precursor, slightly increased the photoactivity of P25 (see P 0% vs. P25 

in Fig.s 6.9 and 6.10). 
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Figure 6.10 Ratio between the zero order rate constants k of formic acid photocatalytic 
degradation measured with different Au/TiO2 photocatalysts and that obtained with unmodified 
P25, kP25. Au/TiO2 photocatalysts contained the indicated weight percent amounts of gold and 
were prepared by deposition precipitation (DP), deposition precipitation in the presence of 
urea (DPU), both followed by thermal gold reduction, and deposition precipitation followed by 
reduction with NaBH4 (DPN) or hydrogen (DPH); or photodeposition (P). 

As suggested by results reported in Fig. 6.10, photodeposition technique, not 

requiring any kind of high-temperature reduction step, seems thus to be the most 

promising method for Au nanparticles deposition on TiO2.   

The rate enhancement observed in the case of Cr(VI) photocatalytic reduction upon 

loading P25 TiO2 with gold nanoparticles (Fig. 6.8) shows an unclear trend as a 

function of metal loading. Also in this case the photodeposition procedure produced 

positive effects on P25 photoactivity, which were even greater than in FA 

photocatalytic degradation. In fact, the rate constant of Cr(VI) photoreduction almost 

doubled when P25 TiO2 was pre-irradiated under anaerobic conditions in the absence 

of gold precursor (see k/kP25 of P 0% in Fig. 6.8), most probably as a consequence of 

the partial TiO2 surface reduction, whereas metal loading did not exhibit a definite 

effect. The improvement of the photocatalytic efficiency of these Au/TiO2 materials in 

Cr(VI) reduction should thus be attributed more to partial TiO2 reduction than to the 

presence of gold nanoparticles. Indeed, rather small effects of noble metals on the rate 

of Cr(VI) photocatalytic reduction were reported in the literature, for example in the 

case of mesoporous titania photocatalysts embedding gold nanoparticles,55 whereas 
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platinization of titania was found to produce no improvement in its photoactivity in 

Cr(VI) reduction.56 

The rate of both photocatalytic oxidation and reduction reactions were found to 

slightly vary with metal loading, attaining a maximum value for the P 0.3% 

photocatalyst in the case of Cr(VI) reduction (Fig. 6.8) and for P 0.5% in the case of 

FA oxidation (Fig. 6.9), i.e. for a 0.5 wt.% gold loading, as in previous studies.32 These 

maximum reaction rates were attained for an optimal balance between the detrimental 

shielding effects of Au surface nanoparticles, decreasing the fraction of light absorbed 

by TiO2, and their beneficial role in capturing conduction band electrons, thus reducing 

the recombination of photoproduced electron-hole couples. Present results demonstrate 

that, when discussing the modifications in Cr(VI) reduction photoactivity induced by 

the presence of noble metal nanoparticles on the photocatalyst surface, the effects 

induced by the deposition procedure should be clearly distinguished from those induced 

by noble metal nanoparticles themselves. 
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7.1 Introduction 

As already mentioned, TiO2 can still be envisaged as the most active and most suitable 

semiconductor photocatalyst.1,2 because it is biologically and chemically inert, 

photostable and cheap, and has a high oxidation ability, its holes being photogenerated 

at E0 = 2.9 V vs. NHE at pH 0. However, two major factors limit the photocatalytic 

efficiency of TiO2: i) its band gap is larger than 3 eV, i.e. it mainly absorbs light in the 

UV region and only a small portion (less than 5%) of the sunlight can be exploited for 

photocatalytic processes; ii)  as in all photoexcited semiconductors, photogenerated 

electron-hole pairs undergo fast recombination in competition with charge transfer to 

adsorbed species yielding redox reactions.  

One of the ways which have been successfully pursued to shift the optical response 

of TiO2 into the visible spectral range consists in doping with p-block elements. 

However, the insertion of dopant impurities in the oxide structure may favour the 

recombination of photogenerated charge carriers, whose rate is known to become 

relatively lower, the higher is the crystallinity degree of the oxide structure. 

Whereas the effects of N or C doping on the photocatalytic efficiency of TiO2 have 

been widely investigated in recent years,3-10 much less is known on the use of other 

dopants, such as sulphur and fluorine. Umebayashi et al. first succeeded in synthesising 

S-doped TiO2 (S-TiO2) using the ion implantation method, followed by thermal 

annealing, and indicated that S is introduced into TiO2 as an anion to replace lattice 

oxygen.11-13 Ohno et al. obtained increased photocatalytic activity under visible light 

with S-TiO2 prepared from titanium tetra-isopropoxide and thiourea14,15 and pointed to 

S4+ ions substitution for titanium ions in the lattice. Fluorine-doped titania (F-TiO2), 

prepared by hydrolysis of the same titanium precursor in a mixed NH4F-H2O solution, 

was investigated by Yu et al.,16 who observed a small red shift in the band gap 

transition and a photocatalytic activity exceeding that of P25. F-doped TiO2 synthesised 

by spray pyrolysis17 from an aqueous solution of H2TiF6 or prepared by sol-gel18 with 

addition of a small amount of trifluoroacetic acid also exhibited increased photoactivity 

under both ultraviolet and visible light irradiation.  

The widely employed sol-gel synthesis method19,20 is particularly suited to 

accomplish the incorporation of different dopants in the TiO2 structure and to 

investigate systematically the effects of the dopant content and doping conditions on 

the structural and photocatalytic properties of the material. In fact, the possibility of 
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altering a great number of variables (e.g. pH, Ti precursor, solvent, doping precursor, as 

well as temperature, reaction time and operational sequence in their synthesis) makes 

this method very flexible and suitable for systematic studies.  

In the present work we investigated the photocatalytic performance under visible 

light of two series of TiO2-based doped materials, a sulphur-doped one (S-TiO2) and a 

fluorine-doped one (F-TiO2). Both were prepared by the sol-gel method in the presence 

of different amounts of dopant sources, followed by calcination at different 

temperature. Undoped TiO2 samples prepared by the same synthetic procedure, apart 

from the addition of the dopant precursor, and calcination conditions were employed as 

reference materials, to enlighten the effects of dopant concentration and calcination 

temperature on the structural features of the doped materials, in relation to their 

photocatalytic activity. The photocatalytic degradation of formic acid (FA) in aqueous 

suspensions was chosen as test reaction, mainly because it does not absorb in the 

visible region, thus allowing a straightforward evaluation of the photocatalysts’ visible 

light activity, and undergoes direct photomineralisation without forming any stable 

intermediate species, which simplifies the interpretation of kinetic results. Furthermore, 

the effects of surface TiO2 fluorination on this reaction have been extensively 

investigated in our research group.21,22 Of course, different photocatalytic activity 

scales might be found employing different test compounds.23,24 

 

7.2 Experimental section  

7.2.1 Photocatalysts preparation and characterisation  

The two series of doped titanium dioxide samples, S-TiO2 and F-TiO2, were prepared 

by using the sol-gel method. 100 mL of anhydrous ethanol solution containing 10 mL 

of dissolved titanium(IV) isopropoxide (Aldrich 97%) was heated at 30°C. Then a 

water solution containing different amounts of dopant source (thiourea for S-doped 

TiO2 and NH4F for F-doped TiO2) was added dropwise under vigorous stirring in order 

to obtain a 1/58 specific molar Ti/H2O ratio and (S or F)/Ti nominal percent molar 

ratios equal to 5, 12 and 50 (corresponding to increasing dopant amounts). An 

immediate exothermic hydrolysis reaction occurred. After stirring and refluxing for one 

hour, the suspension was concentrated under reduced pressure at 35°C. The so obtained 

slurry was kept in a furnace at 70°C overnight, to eliminate organic compounds. 

Precursor powders were then calcined under a 100 mL min-1 air flow at different 
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temperature (500, 600 and 700°C) for 4 h. An initial heating ramp of 5°C min-1 was 

always adopted. 

The samples obtained by this way were labelled as X_Y_Z, with X referring to the 

symbol of the dopant element (X = S or F), Y indicating the dopant/Ti nominal percent 

molar ratio, and Z the calcination temperature in Celsius. Reference undoped materials 

were prepared by following exactly the same synthetic route in the absence of dopant 

precursor, followed by calcination under identical conditions (E_0_Z series 

photocatalysts). All reagents were purchased from Aldrich and employed as received. 

Water purified by a Milli-Q water system (Millipore) was used throughout. 

The BET specific surface area was measured by N2 adsorption / desorption at liquid 

nitrogen temperature in a Micromeritics ASAP 2010 apparatus, after out-gassing in 

vacuo at 300 °C for at least 6 h.  

X-ray powder diffraction (XRPD) patterns were recorded on a Philips PW3020 

powder diffractometer, by using the Cu Kα radiation (λ = 1.54056 Å). Quantitative 

phase analysis was made by the Rietveld refinement method,25 using the “Quanto” 

software.26 

UV-vis diffuse reflectance (DR) spectra were recorded by a Perkin-Elmer Lambda 

35 apparatus equipped with an integration sphere (Labsphere RSA-PE-20), using a 

calibrated SRS-99-010 Spectralon Reference Standard, produced by Labsphere, as 

reference material. 

XPS analysis were performed by a PHI-5500-Physical Electronics spectrometer, 

equipped with a monochromatised source with aluminium anode (Kα = 1486.6 eV), 

operating at 200 W applied power, 5.85 eV pass energy and 0.05 eV energy step. XPS 

spectra were collected at take off angles of 45°. The analysis area was around 0.5 mm2, 

the depth 10 nm. The charging effect on the analysis was corrected considering the 

binding energy value of C 1s, due to adventitious carbon, at 284.8 (±0.3) eV. 

Quantification and spectral line decomposition were obtained using the PC-ACCESS 

software provided by Physical Electronics. These analyses were performed by Dr. 

Laura Meda at Eni Donegani, Novara. 

HRTEM analysis was carried out with a JEM 3010 (JEOL) electron microscope 

operating at 300 kV, point-to-point resolution Scherzer defocus of 0.17 nm. Specimens 

for HRTEM analysis were sonicated in 2-propanol and then transferred as a suspension 

to a copper grid covered with a holey carbon film. 
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Electron Paramagnetic Resonance (EPR) spectra were run at the University of Turin 

by Prof. Giamello’s research group, on a X-band CW-EPR Bruker EMX spectrometer 

equipped with a cylindrical cavity operating at 100 kHz field modulation. EPR spectra 

were recorded both at room temperature (RT) and at the liquid nitrogen temperature 

(LNT). Experiments were carried out in static vacuum obtained connecting Suprasil 

quartz glass tubes to a high vacuum pumping system (residual pressure P < 10-3 mbar). 

 

7.2.2 Photocatalysts activity measurements 

All photocatalytic FA degradation runs were performed as already detailed in 

Section 4.1,27 under atmospheric conditions in a magnetically stirred 60 mL 

cylindrical quartz reactor, inserted in a home made housing consisting in a black 

box mounted on optical bench. All irradiated aqueous suspensions contained 0.1 g 

L-1 of photocatalyst and were preliminarily sonicated for 30 min. Then the 

appropriate volume of formic acid (FA) solution was added, to obtain an initial 

concentration of FA equal to 1.0 × 10-3 mol L-1. At different time intervals during 

the runs, 2 mL-samples of the suspension were withdrawn from the reactor, 

centrifuged and analysed for residual FA content by ion chromatography. All 

kinetic runs were performed at natural pH, up to ca. 70% substrate degradation. 

During FA degradation the pH increased,28 as already mentioned in Chapter 5. 

 

7.3 Results and discussion 

7.3.1 Photocatalysts characterisation 

XRPD analysis evidenced that both types of doping inhibit the anatase into rutile phase 

transition. In fact, as shown by the traces reported in Fig. 7.1, the undoped material 

calcined at 500°C contained anatase, exhibiting the (101) reflection at 2θ = 25.4°, as 

the only crystalline phase, with a very small amount (ca. 2%) of brookite (small peak at 

2θ = 30.7°), and underwent a phase tranformation from anatase into rutile when 

calcined at higher temperature, as revealed by the increase of the rutile (110) reflection 

at 2θ = 27.4°, rutile representing more than 60% of pure TiO2 calcined at 700°C.  

By contrast, all doped materials did not undergo such phase transformation, remaining 

almost pure anatase, even if calcined at 700°C, as exemplified in Fig. 7.1.  
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The phase composition of all samples, obtained by Rietveld refinement of XRPD 

data, are reported in Table 7.1, together with anatase crystallite dimensions, calculated 

by using the Scherrer equation.29 These latter clearly increase with increasing the 

calcination temperature, from 15 to 38 nm in undoped TiO2, from 7 to 40 nm in the 

case of S-TiO2 and from 13 to 50 nm in the case of F-TiO2. Thus, S-doped TiO2 exhibit 

a trend very similar to that of undoped TiO2, whereas F-doping appears to favour the 

formation of slightly larger anatase TiO2 particles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.1 XRPD spectra of undoped TiO2 and of the a series of F-doped TiO2, calcined at 
different temperature. 
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Sample
dopant/Ti        

molar ratio 
(%)

anatase 
(%)

brookite 
(%)

rutile 
(%)

dA/nm

E_0_500 0 99 1 - 15

E_0_600 0 90 - 10 32

E_0_700 0 38 - 62 65

F_5_500 5 98 2 - 13

F_5_600 5 100 - - 44

F_5_700 5 99 - 1 49

F_12_500 12 100 - - 19

F_12_600 12 100 - - 33

F_12_700 12 100 - - 48

F_50_500 50 100 - - 30

F_50_600 50 100 - - 50

F_50_700 50 100 - - 87

S_5_500 5 98 2 - 8

S_5_600 5 98 2 - 17

S_5_700 5 99 - 1 39

S_12_500 12 100 - - 7

S_12_600 12 98 2 - 15

S_12_700 12 98 - - 40

S_50_500 50 99 1 - 7

S_50_600 50 100 - - 16

S_50_700 50 100 - - 36

Table 7.1 Phase composition and crystallite dimensions, dA, obtained from XRD analysis, 
by assuming the absence of amorphous phase, of the investigated photocatalyst series. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

The HRTEM images shown in Fig. 7.2 confirm a somewhat larger dimension of F-

doped TiO2 particles calcined at 700°C, with respect to those of the undoped material 

calcined at 500°C, and a very high crystallinity degree (Fig. 7.2a). 
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Figure 7.2 HRTEM images of (a) F_5_700 and (b) E_0_500. 

 

BET analysis showed a decrease in surface area of the TiO2-based photocatalysts 

with increasing the calcination temperature for the same nominal dopant amount, 

consequent to particles sintering. The results reported in Fig. 7.3 for different TiO2 

series containing an increasing nominal F amount clearly show that moderate F-doping 

is beneficial for obtaining materials with larger surface area, especially if calcined at 

relatively low temperature, which remains higher than that of pure TiO2, even after 

calcination at 700°C. 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 7.3 Specific surface area of pure TiO2 and of the F-TiO2 series of photocatalysts 
calcined at different temperature. 
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The absorption features of the investigated TiO2-based photocatalysts, reported in 

Fig. 7.4 in the form of F(R)1/2 vs. energy, evidence that after calcination at 500°C, 

especially for samples containing a relatively high amount of dopant, doped samples 

are able to absorb light at wavelengths longer than those typical of the TiO2 band gap 

absorption onset. However, when calcined at progressively higher temperature, doped 

TiO2 looses this ability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4 Absorption features of undoped TiO2 and of the F_5, F_12 and F_50 doped TiO2 
series, containing increasing amounts of fluorine in the order, calcined at different 
temperature. 

 

Table 7.2 reports the results of XPS analysis of the undoped materials and of F- and 

S-doped TiO2 with a 5 mol.% nominal F/Ti ratio (X_5_Z series). For all samples the 

presence of carbon, oxygen and titanium is confirmed on the solid surface, with a O/Ti 

ratio slightly higher than 2, together with negligible and almost constant surface 

amounts of nitrogen. The amount of dopant species (F or S) clearly decreased with 

increasing the calcination temperature and fluorine was below the detection limit in 

sample F_5_700. Furthermore, F-doped TiO2 always contained a surface dopant 
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amount lower than the nominal value (i.e. 5%), possibly indicating a higher 

concentration of dopant species in the bulk favoured by the fact that F- ions have a 

ionic radius practically identical to that of O2- ions. In the case of the S-doped series, 

the surface concentration of dopant was higher than for the F-doped series, though also 

in this case remaining below the nominal value. Furthermore, the S 2p XPS peak was at 

168.7 eV, indicating the presence of S4+ and S6+ on the photocatalyst surface.19 

 

Table 7.2 XPS analysis, in terms of atom per cent, of undoped, F- and S-doped TiO2. 
 

Atom %  

 C 1s O 1s Ti 2p N 1s F 1s S 2p 

E_0_500 16.6 55.2 26.2 0.4 --- --- 

E_0_600 17.4 54.8 25.4 0.4 --- --- 

E_0_700 15.8 56.1 26.2 0.3 --- --- 

F_5_500 13.9 56.5 26.8 0.3 1.1 --- 

F_5_600 16.7 55.3 25.8 0.3 0.1 --- 

F_5_700 15.0 55.8 27.0 0.3 0 --- 

S_5_500 11.2 59.0 25.6 0.9 --- 2.5 

S_5_600 13.1 58.6 25.9 0.4 --- 1.7 

S_5_700 14.2 56.4 27.3 0 --- 0.7 

 

 

7.3.2 Photocatalytic activity 

FA oxidative degradation always occurred at constant rate, i.e. according to a zero-

order rate law, as already mentioned and also found in previous studies.21,27-29 The 

photocatalytic activity of the investigated TiO2 samples can be compared in Fig. 7.5, in 

terms of zero-order rate constant, k0. First of all, on the undoped samples the reaction 

proceeded at a lower rate with respect to that attained on moderately doped oxides. 

Furthermore, with undoped TiO2 the reaction rate decreased with increasing the 

calcination temperature, most probably as a consequence of the anatase into rutile 

transformation. 

Moderate S-doping and particularly F-doping were beneficial in increasing the 
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photocatalytic activity of the TiO2 photocatalysts. Furthermore, this effect increased 

with increasing the calcination temperature, being maximal for moderately F-doped 

samples F_5_700 and F_12_700. Excessive amounts of dopant (X_50 series) obviously 

increase the extent of defects in the oxide structure, acting as recombination centres of 

photogenerated charge carriers, with a consequent decrease of the photocatalytic 

reaction rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5 Zero-order rate constants of FA photomineralisation on photocatalysts containing 
different amounts of dopants and calcined at different temperature. 
 

S-doped TiO2 showed a photocatalytic activity quite similar to that of the undoped 

materials. In this regard the insertion of S, characterised by a relatively large ionic 

radius, into the TiO2 crystalline structure appears rather difficult. Moreover, XPS 

measurements showed a higher than expected amount of sulphur-containing species on 

the photocatalyst surface, which might hamper FA adsorption and photocatalytic 

degradation. However, at difference with respect to the undoped material, the reaction 

rate was higher in the presence of samples calcined at higher temperature, though being 

characterised by lower surface area and higher mean particle dimensions. This indicates 

that sulphur enters indeed into the TiO2 lattice structure and makes it more crystalline 

by stabilising the anatase phase up to 700°C. 

Low F doping levels and calcination at 700°C were most beneficial in increasing the 

rate of FA photocatalytic degradation (Fig. 7.5). This may appear surprising, because 
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the F_5_700 and F_12_700 samples have relatively low surface area (16 and 12 m2 g-1, 

respectively). The surface area exposed to the water phase is expected to play a major 

role in the oxidative degradation of FA, mainly proceeding through direct FA 

interaction with valence band holes, thus implying direct interaction of the substrate 

with the photocatalyst surface. Furthermore, TiO2 surface fluorination was shown to 

produce the opposite effect, i.e. a marked decrease in FA mineralization rate, 

consequent to the hampered adsorption of FA on the fluorinated TiO2 surface.21 Both 

facts inconvertibly demonstrate that fluorine doping induces bulk modifications of TiO2 

that ensure better charge separation and that such effect is maximum for samples 

calcined at high temperature.  

 To better understand the role of fluorine doping in our F-doped TiO2 samples, a 

series of photocatalytic runs were carried out employing a 400 nm cut off filter, to 

ascertain the existence of photoactivity consequent to the formation of intra band gap 

states possibly involved in light absorption. As shown in Fig. 7.6, under such 

conditions FA photodegradation occurred at low, but still measurable rate only in the 

case of F-doped materials calcined at 700°C, with a photoactivity scale identical to that 

obtained under full lamp emission. This seems to exclude the presence of photoactivity 

other than that consequent to band gap absorption. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.6 Photocatalytic degradation of FA on different photocatalysts, in the presence of a 
400 nm cut off-filter. 
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E F_5 F_12 F_50 S_5 S_12 S_50

500 °C - NO, Nb
·, Ti3+ NO, Ti3+ NO, Nb

·, Ti3+ NO, Nb
· NO NO

600 °C - Nb
·, Ti3+ NO, Ti3+ NO, Ti3+ NO NO NO, Ti3+

700 °C - NO, Ti3+ NO NO Ti3+ NO, Ti3+ NO, Ti3+

7.3.3 EPR characterisation 

A systematic EPR characterisation of the investigated F- and S-doped TiO2 

photocatalysts was performed in order to ascertain the presence and role of Ti3+ centres 

and of other paramagnetic species in relation to their photocatalytic activity.  

Some examples of EPR spectra recorded with doped samples are shown in Fig. 7.7, 

whereas Table 7.3 resumes the features of all paramagnetic species observed at liquid 

nitrogen temperature (LNT) in S- and F-doped TiO2. No other species were detected at 

room temperature (RT) and for this reason all EPR data will be referred to LNT 

spectra. Bare TiO2 does not show any paramagnetic signal, whereas doped systems 

exhibit different signals whose intensity depends on the calcination temperature (Fig. 

7.7). The observed signals can be divided in two categories. The first one involves 

nitrogen containing species and the second is due to titanium reduced centres (Ti3+). 

The abundance of these two kinds of species is strictly related to the calcination 

temperature adopted in preparation. 

For F-doped samples the concentration of both paramagnetic species decrease with 

increasing the calcination temperature. In S-doped samples, paramagnetic nitrogen 

containing species are much more abundant at low calcination temperature, whereas 

Ti3+ concentration increases at high temperature. Except for F_12_600, the nitric oxide 

radical (NO) roughly corresponds to the overall EPR spectral intensity in all analysed 

systems (see for example Fig. 7.7). 

 

Table 7.3 Paramagnetic species observed in S- and F-doped TiO2 calcined at different 
temperature. 
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Figure 7.7 Examples of EPR spectra recorded with S-doped samples (containing 5 mol.% of S) 
calcined at different temperatures. The features typical of NO are marked (�) in the upper 
spectrum. 
 

7.3.3.1 F-doped TiO2 

Previous work of Giamello’s group in Turin30-33 put in evidence that when ammonium 

compounds are employed in the synthesis of non metal doped TiO2, different nitrogen 

containing species can be observed. Some of them are diamagnetic and other show 

paramagnetic character. Among the paramagnetic species, a first type of N based 

paramagnetic centre is observed at LNT and disappears by raising the recording 

temperature, but showing up again, reversibly and with unchanged intensity, by cooling 

the system down to LNT. This species, characterised by a rhombic g and A tensor, is 

assigned to the paramagnetic nitric oxide (NO) radical encapsulated in micro-voids (or 

closed pores) generated during the synthesis process.32 The temperature effects 

observed in its signal are due to the fact the EPR spectrum of NO in the gas phase is not 

observable in the free electron region, but it becomes visible in this region when this 

species is weakly adsorbed and polarized on a cationic surface centre at relatively low 

temperature. The second paramagnetic species, also characterised by orthorhombic g 

and A tensors, is assigned to a species containing a single nitrogen atom and trapped in 

the bulk of TiO2.
33 This species, labelled as Nb

•, can be observed by EPR both at RT 

and at LNT. Both species are usually located in the bulk of the doped systems. In the 

present work, the NO species was observed in almost all samples, its concentration 
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decreasing upon raising the calcination temperature (see for example Fig. 7.7). By 

contrast, the Nb
• centre, observed mainly for low calcination temperature and always 

with a very low intensity, are possibly responsible for the visible light absorption 

observed in samples calcined at 500°C (see Fig. 7.4).  

 The second signal observed in F-doped samples has no visible hyperfine structure 

and is characterised by an axial g tensor (g⊥= 1.991 and g// = 1.951) and narrow line. 

This signal is unambiguously assigned to Ti3+ ions in the lattice. The presence of Ti3+ 

species in the solid is a direct consequence of the inclusion of fluorine. The presence of 

F in the lattice position usually occupied by oxygen introduces an extra electron in the 

system, which is localized on Ti ions in the TiO2 structure.34-36 

 

7.3.3.2 S-doped TiO2 

S doped samples show many features in common with the F-doped series. In this case 

Nb
• species was observed in one case only (S_5_500), while the NO radical was 

observed in all samples except for S_5_700. This series of samples also shows the 

presence of Ti3+ species when they are calcined at high temperature (700°C). The 

stabilisation of Ti3+ species in sulphur-doped TiO2 was never reported up to date. The 

presence of such paramagnetic centre, as in the case of fluorine doping, can be ascribed 

to a charge imbalance effect which needs the presence of an extra electron for 

compensation. 

 Concerning sulphur doping of TiO2, different possibilities are reported in the 

literature, depending on the sulphur oxidation state. Theoretical and experimental 

evidences show that S2- substitution in O2- lattice position is possible, but no charge 

imbalance is expected in this case.3,37 XPS measurements evidenced high valence 

sulphur doping in the form of S(IV) or S(VI).14,38,39 High valence sulphur can be 

associated either to surface containing species (SO4
2- or SO3

2- like) or to substitutional 

doping in the Ti4+ cation position. In this second case, if a cationic S6+ sulphur replaces 

a lattice titanium, charge imbalance in TiO2 occurs and two more electrons are needed 

to warrant the electrical neutrality in the solid. The excess of electrons can be stabilised 

on the Ti4+ ions by generating Ti3+ centres, easily detected by the EPR technique, as 

follows:  

Sx
6+ Ti4+

(1-3x) Ti2x
3+ O2

2- 
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8.1 Introduction  

As already mentioned in the previous Chapter, many efforts have been made in the past 

decade1,2 in order to overcome one of the major drawbacks of the use of TiO2 as a 

photocatalyst, i.e. its relatively large energy band gap (3.2 eV for the anatase phase), 

which hampers the exploitation of solar light in photocatalytic reactions. Anion doping 

with p-block elements has been successfully pursued to sensitize TiO2 towards visible 

light,3,4 either by introducing newly created mid-gap energy states or by narrowing the 

band gap itself. The effectiveness, but also the still not completely understood nature of 

doping titanium dioxide with main group elements, such as N,3,5-12 C,4,13-16 B,17-19 

S,12,14,20-24 P,25,26 I,27,28 and F,29-38 has been ascertained in a great number of studies, 

which also demonstrated that the insertion of dopant impurities into the oxide structure 

may increase the rate of the undesired recombination of photocatalytically generated 

charge carriers. In contrast, the recombination rate is known to become lower, the 

higher is the crystallinity degree of the oxide structure. 

Conflicting results regarding the effects of fluorine (F) as dopant element for TiO2 

have been reported,29-38 likely due to the different routes employed to prepare the doped 

materials and also to difficulties in the interpretation of photocatalytic results obtained 

with photocatalysts containing more than one dopant element, because of possible 

synergistic effects.33,38 In most cases, F-doping apparently did not cause any 

appreciable shift of the fundamental band gap absorption edge of TiO2.
29,34,36 This is 

consistent with theoretical band calculations,3,31 indicating that when TiO2 is doped 

with fluorine, localized high-density energy levels, composed of F 2p states, reside 

below the valence band of TiO2. However, despite this, F-doped materials exhibit 

visible-light-driven photocatalytic activity, the origin of which is still very uncertain. In 

fact, F atoms included in the semiconductor structure, owing to their high 

electronegativity, could stabilize the electron release upon oxygen depletion during the 

calcination treatment.34,35 In this case, visible light photocatalytic excitation by 

extrinsic absorption bands of so-generated oxygen vacancies can generate free charge 

carriers that can take part in surface chemical reactions. The photocatalytic activity of 

F-doped materials might also be related to the peculiar formation of Ti3+ centres, 

obtained by charge compensation effects consequent to the insertion of F- ions in the 

O2- sites of the TiO2 lattice. Accumulation of photoexcited electrons on Ti3+ surface 

states, followed by their transfer to oxygen adsorbed on the photocatalyst surface, with 
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a consequent decrease of the electron-hole recombination rate, was originally 

proposed29 to account for the enhanced photoactivity of F-doped TiO2. However, the 

Ti3+ defect centres were recently located ca. 0.6 eV below the bottom of the conduction 

band36 and may be unable to react with adsorbed oxygen, if they are not on the external 

layers of the material. 

The systematic investigation described in the previous chapter concerning the 

photocatalytic activity under visible light of a series of doped TiO2 photocatalysts 

synthesized by the sol-gel method in the presence of different amounts of NH4F and 

calcined at different temperature (500–700°C)39 evidenced that the photoactivity of 

such materials in the degradation of formic acid in aqueous suspensions was higher 

than that of undoped materials prepared by the same synthetic route. Of course, aiming 

at verifying the effective visible light activation of doped materials, the choice of an 

appropriate photocatalytic test reaction is crucial and the use of substrates that are able 

to absorb visible light and inject electrons into the semiconductor from their 

electronically excited state should be avoided.40 Furthermore, the ranking of the 

photocatalytic activity of TiO2 samples is known to depend on the test molecule.41,42 

The photocatalytic behaviour of an extended series of NH4F-doped TiO2 

photocatalysts was explored in two other reactions, i.e. the decomposition of acetic acid 

in aqueous suspensions and the gas phase mineralization of acetaldehyde. Neither of 

these substrates absorbs visible light. In order to obtain an insight into the origin of the 

enhanced photoactivity of such materials under visible light, the photocatalytic 

oxidation of acetic acid was also investigated systematically as a function of irradiation 

wavelength, by collecting so-called action spectra. This type of analysis, representing 

the most powerful photocatalytic characterization tool to determine the effective 

wavelength-dependent response and activity of a photocatalyst,40,43 had never been 

applied to similarly doped materials. By comparing the shapes of the action spectra 

with those of the absorption spectra of the investigated photocatalysts a model is 

proposed, which allows a clear distinction between light absorption and effective 

photoactivity as a function of irradiation wavelength. 
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8.2 Experimental Section 

8.2.1 Doped-TiO2 preparation and characterisation 

The series of doped titania (D-TiO2) photocatalysts was prepared by the sol-gel method 

already described in Chapter 7,39 in the presence of different amounts of NH4F, used as 

a dopant source, and calcined at different temperature (500–700°C). The nominal 

dopant/Ti percent molar ratios were 3, 5, 12 and 25 in this case. NH4F-doped TiO2 

samples were labelled as D_X_Y, with X referring to the nominal dopant/Ti percent 

molar ratio and Y referring to the calcination temperature in Celsius. Reference 

undoped materials, prepared by exactly the same synthetic route in the absence of 

NH4F, are referred to as the D_0_Y photocatalysts series. All reagents were purchased 

from Aldrich and employed as received. 

XPS analysis was performed by using a JEOL JPS-9010MC spectrometer with Mg 

Kα radiation, 10 eV pass energy and 0.1 eV energy step. The analysis area of the 

sample pellets was about 6 mm2, the depth about 1–2 mm. The charging effect on the 

analysis was corrected by considering the binding energy value of C 1s at 284.7 eV, 

due to adventitious carbon. Quantification was obtained using the SPEC-SURF 

software provided by Jeol.  

Diffuse reflectance (DR) spectra of the photocatalyst powders were recorded on a 

Jasco V-670 spectrophotometer equipped with a PIN-757 integrating sphere, using 

barium sulphate as a reference, and then converted into absorption (A) spectra (A  = 1 – 

R). 

Gas phase acetaldehyde decomposition under polychromatic irradiation was 

performed as detailed in Section 4.2.1. Acetic acid decomposition was investigated 

under polychromatic irradiation as detailed in Section 4.2.2, whereas the  action spectra 

analysis of this reaction is fully detailed in Section 4.2.3. 
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8.3 Results and Discussion 

8.3.1 Photocatalysts structure 

The main structural features, determined by XRD, BET and XPS analyses, of the 

investigated series of undoped and doped TiO2 photocatalysts are collected in Table 

8.1. The phase composition of all samples, obtained by Rietveld refinement of XRD 

data, clearly confirms that doping inhibits the anatase into rutile transformation that 

occurs when pure TiO2 is calcined at a temperature above 500°C.39 This phase 

transformation is inhibited by the addition of Ti4+ complexing ions (e.g. sulphates, 

phosphates, fluorides), reducing the condensation of spiral chains of rutile TiO6 

octahedra.34 A similar argument was used to account for the full anatase composition of 

sulphur-doped anatase.24  

The anatase crystallite dimensions dA, calculated using the Scherrer equation,44 

clearly increased with increasing the calcination temperature for the same nominal 

dopant amount. This trend was accompanied by a decrease in specific surface area 

(SSA), as revealed by BET analysis. Doping appears to be beneficial for obtaining 

materials with larger surface area, especially if calcined at a relatively low temperature. 

The SSA of doped materials usually remained higher than that of pure TiO2, even after 

calcination at 700°C. 

XPS analysis confirmed the presence of carbon, oxygen and titanium on the surface 

of all samples,39 with an O/Ti ratio slightly higher than 2, together with roughly 

constant surface amounts of nitrogen, on both undoped and doped samples (see Table 

8.1). The XPS signal in the F 1s binding energy region consisted of only one band, 

peaking around 684 eV, due to surface fluoride ions.29,37 No XPS signal at 688 eV, 

assigned to substitutional ions in the F-TiO2 lattice, was detected, possibly always 

being below the detection limit of the XPS technique.  

The effective dopant/Ti molar ratio determined by quantitative XPS analysis, also 

shown in Table 8.1, was usually lower than the nominal value according to the 

synthesis of the different doped TiO2 series. Furthermore, the amount of fluoride ions 

physically adsorbed on the TiO2 surface usually decreased with increasing the 

calcination temperature. 
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Sample
dopant/Ti        

molar ratio 
(%)

anatase 
(%)

brookite 
(%)

rutile 
(%)

dA/nm SSA/m2 g-1
surface                  

molar F/Ti 
(%)

surface                  
molar N/Ti 

(%)

P25 80 - 20 25 50

A45 100 - - 35 45

JRC-TiO-8 100 - - 4 338

D_0_500 0 99 1 - 15 15 - 2.8

D_0_600 0 90 - 10 32 9 - 2.8

D_0_700 0 38 - 62 65 7 - 3.0

D_3_500 3 98 2 - 16 65 n.d. n.d.

D_3_600 3 97 - 3 32 32 n.d. n.d.

D_3_700 3 93 - 7 40 22 n.d. n.d.

D_5_500 5 98 2 - 13 63 6.0 2.9

D_5_600 5 100 - - 44 31 4.3 2.6

D_5_700 5 99 - 1 49 16 3.7 2.9

D_12_500 12 100 - - 19 43 7.1 2.9

D_12_600 12 100 - - 33 23 5.0 3.0

D_12_700 12 99.5 - 0.5 48 12 4.4 4.2

D_25_500 25 100 - - 19 39 9.6 3.4

D_25_600 25 100 - - 47 15 6.5 3.3

D_25_700 25 100 - - 110 8 11.5 2.6

Table 8.1 Phase composition and crystallite dimensions, dA, obtained from XRD analysis, by 
assuming the absence of amorphous phase; specific surface area (SSA), obtained from BET 
analysis; and surface F/Ti and N/Ti molar ratios, obtained from XPS analysis of the 
investigated photocatalysts series.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n.d. = not determined 

 

8.3.2 Photocatalytic activity tests under polychromatic irradiation 

8.3.2.1 Liquid phase acetic acid photocatalytic oxidation under UV light  

The photocatalytic activity of doped TiO2 photocatalysts was first evaluated in the 

oxidative decomposition of acetic acid in aqueous suspensions. The use of this 

substrate as a photocatalytic degradation test molecule presents two advantages, apart 

from the main pre-requisite that it does not absorb visible light: 1) the reaction is 

relatively simple, yielding CO2 with few intermediates and 2) because of the acidity of 

the suspension, CO2 is promptly removed from the liquid into the gas phase, where it 

can be easily determined. 
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The photocatalytic evolution of CO2 from suspensions containing acetic acid and 

either pure or doped TiO2 samples always occurred at constant rate, i.e. the rate obeyed 

a zero-order rate law. Thus, the activity of the investigated photocatalysts can be 

compared in terms of the zero-order rate constants of acetic acid photocatalytic 

oxidation reported in Fig. 8.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1 Zero-order rate constants of CO2 photocatalytic evolution during acetic acid 
decomposition under polychromatic irradiation on commercial TiO2 photocatalysts and on 
doped TiO2 photocatalysts containing different dopant amounts and calcined at different 
temperature. 

 

One can notice, first of all, that the reaction in the presence of undoped TiO2 

proceeded at a lower rate than that attained in the presence of moderately doped TiO2. 

Moreover, with undoped TiO2 (D_0 series) the reaction rate decreased with increasing 

the calcination temperature, probably as a consequence of the already mentioned 

anatase into rutile transformation (Table 8.1). 

Moderate doping increased the photocatalytic activity of TiO2 and this effect 

increased with increasing the calcination temperature of the photocatalyst, attaining a 

maximum value for moderately doped D_5_700 calcined at 700°C, in good agreement 

with the results, discussed in the previous chapter, of formic acid photodecomposition 

tests.39 This may appear unusual, since the highest photoactivity was achieved with a 

photocatalyst characterized by a relatively small surface area and large mean particle 
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size (see Table 8.1). In any case, doping seems to induce modifications of TiO2 that 

increase its photocatalytic activity and such an effect is maximum for samples calcined 

at high temperature. Although surface fluorination of TiO2 is expected to retard the 

photocatalytic oxidation of carboxylic acids, as verified in the case of formic acid,45 

this effect cannot be attributed exclusively to surface effects, i.e. to the slightly smaller 

amount of surface fluorine detected on the surface of D–TiO2 samples calcined at a 

higher temperature (Table 8.1). On the other hand, an excessive amount of dopant 

(D_25 series) could increase the extent of defects in the oxide structure, acting as 

recombination centres of photogenerated charge carriers, with a consequent decrease in 

the photocatalytic reaction rate. 

The photoactivity data presented in Fig. 8.1 evidence that the best performing doped 

materials were more active than two pure anatase phase materials, labelled JRC-TiO-8 

and A45, possessing very different specific surface areas (see Table 8.1), and also more 

active than commercial P25 TiO2. 

 

8.3.2.2 Gas phase photocatalytic decomposition of acetaldehyde under Xe lamp 

irradiation  

The photocatalytic degradation of acetaldehyde proceeded according to a first-order 

rate law. A comparison of first-order rate constants for CH3CHO degradation on doped 

and commercial photocatalysts is shown in Fig. 8.2. They were obtained from the gas 

phase CH3CHO concentration vs. time profiles, neglecting the amount of substrate 

adsorbed on the photocatalyst surface. This kinetic behaviour is compatible with a 

diffusion-limited reaction, with CH3CHO surface concentration always being close to 

zero, because substrate molecules undergo oxidation as soon as they come into contact 

with the irradiated photocatalyst surface. Under such conditions the diffusion rate, and 

consequently the overall reaction rate, is proportional to the substrate concentration in 

the gas phase.46 Furthermore, the diffusion rate of the substrate is expected to increase 

with increasing the photocatalyst surface area. In fact, if the thickness of the diffusion 

layer is negligibly small, the diffusion cross section almost coincides with the surface 

area and a correlation between the photocatalytic reaction rate and the specific surface 

area of the photocatalyst is usually expected.46 

However, by considering the first-order rate constant values shown in Fig. 8.2, one 

can notice, rather surprisingly, that this kind of relation does not apply in the case of 
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these doped TiO2 photocatalysts. In fact, the general trend of reaction rate increasing 

with increasing the calcination temperature obtained for doped TiO2 in both formic and 

acetic acid photocatalytic decomposition in liquid phase was also found in this gas-

phase test reaction, with the highest photocatalytic activity being achieved with 

samples characterized by small surface area, and moderately doped D_5_700 being 

confirmed as the best performing photocatalyst. Opposite results would have been 

expected for this gas-solid phase test reaction, the rate of which was demonstrated to be 

positively affected by photocatalysts’ large surface areas, ensuring fast diffusion of 

acetaldehyde and O2 reactants.46 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.2 First-order rate constants of CH3CHO photodegradation under xenon lamp 
irradiation on photocatalysts containing different dopant amounts and calcined at different 
temperature.  

 

Only doped TiO2 photocatalysts of the D_3 series showed in acetaldehyde 

decomposition (Fig. 8.2) an opposite photoactivity trend vs. calcination temperature 

from that shown in acetic acid photooxidation (Fig. 8.1). In fact, within this series the 

rate of acetaldehyde decomposition slightly decreased with increasing the photocatalyst 

calcination temperature, probably as a consequence of the anatase into rutile 

transformation. Both the very low rutile content of D_3_600 and D_3_700 and the 

decrease in SSA with increasing the calcination temperature of these samples (Table 

8.1) contributed to the reduction of their overall photoefficiency. Anatase crystallites 
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were shown to be highly photoactive in both the present reactions under aerated 

conditions, whereas a negative contribution of the rutile phase was demonstrated just in 

the case of gas-phase acetaldehyde decomposition.46 

 

8.3.3 Action spectra analysis 

8.3.3.1 Action spectra of acetic acid decomposition (300–520 nm range) 

In order to better elucidate the origin of the enhanced photoactivity of doped materials 

and verify their possible activation in the visible region, the photocatalytic oxidation of 

the transparent acetic acid substrate was systematically investigated as a function of 

irradiation wavelength. The action spectra were first measured for the D_0, D_5 and 

D_12 series in the 300–520 nm range with a 20-nm wavelength step. A comparison of 

the action spectra and the absorption spectra of selected photocatalysts, normalized to 

the highest apparent quantum efficiency Φapp and absorption value, respectively, is 

shown in Fig. 8.3. For undoped and doped TiO2 samples calcined at high temperature, 

the onset wavelength of the action spectra was red-shifted compared with that of the 

absorption spectra. This is probably due to the relatively large FWHM of the light 

employed in photocatalytic runs compared to that used for absorption measurements46 

and to the fact that TiO2 absorbs more at shorter wavelengths than at longer 

wavelengths in a given wavelengths range. 

This effect was not observed in the case of doped TiO2 calcined at 500°C. In fact, as 

shown in Fig. 8.3, these full anatase photocatalysts, though exhibiting small absorption 

at wavelengths longer than those typical of the TiO2 band gap absorption onset, did not 

show any appreciable photocatalytic activity under visible light irradiation. On the 

other hand, as better outlined in the following systematic analysis of action vs. 

absorption spectra, doped samples calcined at 700°C were active also under irradiation 

at wavelengths longer than that of their band gap absorption onset (see D_5_700 and 

D_12_700 panels in Fig. 8.3). 
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The action spectra of acetic acid decomposition obtained in the presence of undoped 

TiO2 calcined at different temperature are shown in Fig. 8.4a. The apparent quantum 

efficiency in the 300–400 nm wavelengths range decreased with increasing the 

calcination temperature of these undoped materials, whereas their absorption spectra, 

shown in Fig. 8.4b, exhibit exactly the opposite trend, i.e. a red-shifted band gap 

absorption with increasing the calcination temperature, due to the phase transition from 

anatase to rutile. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.4 a) Action spectra of acetic acid decomposition and b) absorption spectra of 
undoped TiO2 calcined at different temperatures. 
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The results reported in Fig. 8.4 can be explained by assuming that the anatase phase 

is more photoactive than rutile in acetic acid decomposition.46 In fact, the flat-band 

potentials of TiO2 depend on its crystalline form, being at -0.16 and 0.04 V vs. NHE 

(pH 0) for anatase and rutile TiO2, respectively. In the case of photocatalytic oxidation 

reactions, such as acetic acid decomposition, photo-excited electrons are scavenged by 

molecular oxygen at the TiO2 surface, where one-electron reduction of O2 occurs. 

Considering that the O2/HO2˙ potential is -0.046 V vs. NHE, anatase, but not rutile, is 

expected to efficiently reduce O2 to HO2˙ under band gap excitation, resulting in the 

higher photocatalytic activity of anatase in acetic acid decomposition. Furthermore, less 

active rutile in undoped D_0_600 and D_0_700 may also exert a so-called ‘inner filter’ 

action, by absorbing a fraction of light that is no longer available for anatase phase 

photoactivation.46,47 

For doped samples the wavelength-dependent apparent quantum efficiency in acetic 

acid decomposition was found to vary with both the dopant content and the calcination 

temperature of the investigated photocatalysts. The action spectra presented in Fig. 8.5, 

referring to samples containing different nominal dopant amounts (D_0, D_5 and D_12 

series), all calcined at the highest temperature (700°C), showed that the apparent 

quantum efficiency of doped materials was higher than that of undoped TiO2. This 

could be mainly ascribed to the full anatase phase composition of doped materials, 

whereas D_0_700 also contained rutile, which, as already mentioned, is expected to be 

less active in the photocatalytic decomposition of acetic acid. However, a larger 

amount of dopant (D_12 series) led to a lower apparent quantum efficiency, especially 

under UV irradiation (300–340 nm), probably as a consequence of the already 

mentioned enhanced recombination of electron-hole couples photoproduced in this 

region, due to the increased extent of defects in the oxide structure acting as charge 

recombination centres. The action spectra trend shown in Fig. 8.5 is in line with the 

photocatalytic activity trend obtained under full lamp emission in both liquid phase and 

gas phase oxidation reactions investigated in the present work (see Fig.s 8.1 and 8.2, 

respectively). 
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Figure 8.5 Action spectra of acetic acid decomposition obtained in the presence of undoped 
(D_0) and differently doped samples (D_5 and D_12), all calcined at 700°C. 

 

 The effect of calcination temperature on the photoactivity of samples containing the 

same nominal dopant amount is enlightened by the action spectra of the D_5 series, 

shown in Fig. 8.6.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.6 Action spectra of acetic acid decomposition obtained in the presence of moderately 
doped samples (D_5 series) calcined at different temperatures. 
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Two relative photocatalytic efficiency scales can be found, depending on the 

irradiation wavelength region. For λirr < 400 nm the photoactivity of doped samples 

slightly decreased with increasing the calcination temperature, whereas for λirr ≥ 400 

nm the opposite trend was observed. The same wavelength-dependent photoactivity 

trend was also obtained for the action spectra of the D_12 series. This suggests that 

doping might have beneficial effects on the photoactivity of samples calcined at a 

relatively high temperature, with a general photocatalytic efficiency trend in this 

wavelengths region perfectly matching that achieved under full lamp emission. 

On the basis of these intriguing results the photoactivity of selected photocatalyst 

series was investigated more in depth in a smaller wavelengths range, centred in the 

near UV-Vis region. 

 

8.3.3.2 Action spectra of acetic acid decomposition (370–460 nm range) 

The action spectra in the 370–460 nm range obtained with a 10-nm wavelength step for 

the D_5, D_12 and D_25 doped series, shown in Fig. 8.7, clearly confirm that within 

each series of doped materials a progressively higher calcination temperature ensured a 

better apparent quantum efficiency at λirr < 420 nm.  

The most straightforward demonstration that a certain material is an effective 

photocatalyst consists in the resemblance of its action spectrum with its absorption 

spectrum.40,43 However, no appreciable and obvious similarity can be found by directly 

comparing the action spectra of doped samples shown in Fig. 8.7 with their absorption 

spectra shown in Fig. 8.8. In fact, all samples calcined at 500°C, especially those 

containing a relatively large amount of dopant, absorbed light at wavelengths longer 

than those typical of the TiO2 band gap absorption onset. However, this visible light 

absorption did not induce any appreciable activity in acetic acid photocatalytic 

decomposition in this irradiation wavelengths range. On the contrary, doped samples 

calcined at higher temperature (600 and 700°C) did not exhibit any noticeable extra 

absorption with respect to undoped TiO2, but they showed increased efficiency in acetic 

acid photocatalytic oxidation in the 370–410 nm range. By comparing the absorption 

properties of our materials with their wavelength-dependent photocatalytic activities, a 

qualitative model was developed, that provides a reasonable interpretation of our 

apparently controversial results.  
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Figure 8.7 Action spectra of acetic acid decomposition in the 370–460 nm wavelengths range 
of the a) D_5, b) D_12 and c) D_25 doped TiO2 photocatalysts series.  
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Figure 8.8 Absorption spectra of the a) D_5, b) D_12 and c) D_25 doped TiO2 series. 
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8.3.4 Model for absorption and action spectra deconvolution 

8.3.4.1 Absorption spectra deconvolution 

The absorption spectra of samples belonging to the same series, i.e. containing a fixed 

nominal dopant amount, were compared first, to highlight the effects of calcination 

temperature and evidence the presence of possible sub-bands, through a procedure of 

absorption spectra subtraction. As can be seen in the examples shown in Fig. 8.9 

referring to the D_25 series, the absorption spectra of samples calcined at a lower 

temperature were subtracted from those of samples calcined at a higher temperature. As 

all doped samples, even those calcined at 700°C, consist of pure anatase phase, any 

artifact in the difference spectra due to rutile phase absorption can be excluded (vide 

infra). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.9 Difference absorption spectra calculated for the D_25 series: the absorption 
spectra of samples calcined at a lower temperature were subtracted from those of samples 
calcined at a higher temperature. 

 

The so-obtained difference absorption spectra (Fig. 8.9) invariantly consisted of a 

positive part, labelled peak A, in the near-UV region and a negative part at longer 

wavelengths in the near-visible region, labelled as peak B.  

For each difference spectrum, labelled as curve C in the example shown in Fig. 8.10, 

a deconvolution of peaks A and B was then performed. Based on the assumption that 

peak B appearing in the longer wavelengths side is symmetrically shaped, the profile of 

peak A was obtained after subtracting the so-obtained peak B from curve C. This 
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procedure was applied to each difference absorption spectrum for each of the D_5, 

D_12 and D_25 series.  

Finally, by assuming that peak A and peak B are absent in the absorption spectrum of 

doped samples calcined at 500 and 700°C, respectively, within each series the 

contribution of peaks A and B to the absorption spectrum of each doped sample was 

finally calculated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.10  Deconvolution of peaks A and B from the difference of the absorption spectra of 
samples D_25_700 and D_25_600. 

 

The so-obtained results, presented in Fig. 8.11, showed that for each series of doped 

samples the contribution of peak B (with a maximum around 420 nm) decreased with 

increasing the calcination temperature, while that of peak A (with a maximum around 

365 nm) increased.  
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Figure 8.11 Contributions of peaks A and B to the absorption spectra of photocatalysts of the 
a) D_5, b) D_12 and c) D_25 series calcined at different temperatures. 
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On the other hand, by comparing the contributions of peaks A and B to the 

absorption spectra of samples calcined at the same temperature, but containing different 

nominal dopant amounts, the maximum intensity of both peaks A and B was found to 

increase with increasing the nominal dopant amount within the D_5, D_12 and D_25 

series (see for example Fig. 8.12). The maximum position of both peaks A and B was 

not affected by either the calcination temperature or the dopant content. 

In contrast, different results were obtained when the same kind of spectral 

subtraction analysis was applied to the absorption spectra of the D_3 series. In this 

case, sample D_3_700 calcined at 700°C did not consist of pure anatase, but contained 

ca. 7% of rutile phase (Table 8.1). The contribution of the so-obtained peak A for 

D_3_700 is also included in Fig. 8.12. This extra absorption peak is clearly red-shifted 

with respect to peaks A of the other D-TiO2 series and should be ascribed to the typical 

band gap absorption shift of the rutile phase with respect to the anatase phase. This 

confirms that peak A with a maximum at about 365 nm obtained for D_5, D_12 and 

D_25 series is originated by an absorption contribution different from that of the rutile 

phase. 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 8.12 Contribution of peak A to the absorption spectra of doped samples calcined at 
700°C. Only D_3_700 contains a small amount of rutile phase. 
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The intensity of the absorption peak B of doped samples was found to linearly 

increase with increasing the amount of surface fluorine detected by XPS analysis 

(Table 8.1), with a higher slope for samples calcined at 500°C than for those calcined at 

600°C (not shown). An analogous correlation could not be established for the 

maximum intensity of peak A. 

 

8.3.4.2 Action spectra deconvolution 

Aiming at ascertaining whether absorption peaks A and B are active in acetic acid 

decomposition, a subtraction procedure similar to that performed for the absorption 

spectra was carried out also for the action spectra recorded in the 370–460 nm range 

(Fig. 8.7). Thus, for each series of doped materials the action spectra of samples 

calcined at 500°C were subtracted from those of samples calcined at 600 and 700°C. In 

this way the difference action spectra shown in Fig. 8.13 were obtained. 

In the visible light region (λ > 420 nm) the action spectra of doped samples calcined 

at 600 and 700°C do not show any appreciable difference from that of the sample with 

the same nominal dopant amount calcined at 500°C. This indicates that absorption peak 

B, which is particularly evident in the absorption spectra of photocatalysts calcined at 

500°C, does not produce any photoactivity in acetic acid decomposition to CO2 under 

visible light. 

On the other hand, doped samples calcined at 600 and 700°C showed an increase of 

photocatalytic activity in the UVA region with a maximum slightly red-shifted with 

respect to the maximum of absorption peak A. Such photoactivity enhancement was 

higher for photocatalysts calcined at the highest temperature (700°C), i.e. for 

photocatalysts exhibiting the most intense absorption peak A, clearly demonstrating 

that peak A is active in acetic acid decomposition. Of course, this type of analysis was 

not performed at λ < 370 nm, because the test reaction in this wavelengths region is 

mainly promoted by anatase band gap absorption. 

By comparing the difference spectra shown in Fig.s 8.11 and 8.13, one may thus 

conclude that doping TiO2 with NH4F, followed by high temperature calcination, 

extends anatase band gap absorption on the long wavelengths side (peak A) and that 

this absorption in the UVA region is photoactive in acetic acid decomposition, whereas 

absorption peak B, appearing at longer wavelengths, is inactive in this reaction. 
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Figure 8.13 Difference action spectra of the a) D_5, b) D_12 and c) D_25 photocatalysts 
series. The action spectrum of each sample calcined at 500°C was subtracted from those of 
samples calcined at a higher temperature. 
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8.3.5 XPS analysis before and after etching 

Aiming at correlating absorption peaks A and B to the chemical composition of our 

doped TiO2 photocatalysts, a detailed XPS analysis of D_12_500 and D_12_700 was 

performed before and after etching with Ar ions. High-resolution XPS spectra of 

D_12_500 in the F 1s and N 1s binding regions are shown in Fig. 8.14 a and b, 

respectively. The XPS spectrum in the N 1s binding energy region is dominated by a 

rather broad signal with a maximum around 400 eV, typically assigned to different 

forms of interstitial nitrogen dopants.1,48-50 After etching a new component appeared, 

peaking at 397 eV, usually associated to substitutional nitrogen located on an oxygen 

lattice site.3,49,51 On the other hand, the F 1s XPS signal consisted of only one band 

peaking at ca. 684 eV, attributed to F- ions adsorbed on the photocatalyst surface,29,34,36 

which decreased after etching. No signal located around 688 eV, originating from 

fluorine substituting oxygen in the TiO2 crystal lattice,29.33 appeared either before or 

after etching (Fig. 8.14a). 

Similar results were obtained for the highly photoactive D_12_700 sample calcined 

at 700°C (Fig. 8.14 c and d). In this case, the F 1s signal at 684 eV was lower than that 

in the high-resolution XPS spectrum of the D_12_500 sample (Fig. 8.14c vs. Fig. 14a), 

indicating a smaller amount of adsorbed fluorine. This signal almost completely 

disappeared after etching (Fig. 8.14c), i.e. the fluorine content in the bulk was below 

the detection limit of XPS analysis. Concerning the high-resolution N 1s XPS signal, 

the component peaking at 397 eV, increasing after etching and attributed to 

substitutional nitrogen, in Fig. 8.14d, is even more evident than that in Fig. 8.14b, 

confirming the presence of nitrogen in the photocatalyst bulk, also after calcination at 

700°C. 

These results exclude the possibility of detecting fluorine in bulk D-TiO2, especially 

in samples calcined at high temperature, whereas they confirm the persistence of 

nitrogen species in the D-TiO2 structure of photocatalysts calcined at 700°C, even 

though this does not correspond to any absorption under visible light irradiation. The 

present results are in line with previous findings obtained by EPR analysis (see Section 

7.3.3),39 revealing the persistence of nitrogen species within the TiO2 structure even 

after calcination at 700°C. In fact, the EPR spectra of both D_5 and D_12 series were 

dominated by the 4-lines signal attributed to the photocatalytically inactive 
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paramagnetic nitric oxide (NO) radical encapsulated in microvoids, which almost 

completely masked the possible presence of Ti3+ centres. 

 

 

 

 

 

 

 

 

 

 

Figure 8.14 High-resolution XPS spectra of the F 1s (a and c) and the N 1s (b and d) binding 
energy regions of D_12_500 (a and b) and D_12_700 (c and d) before (solid line) and after 
etching with Ar ions (dotted line). 
 

8.3.6 Origin of absorption peaks A and B 

The investigated D-TiO2 photocatalysts contained both fluorine and nitrogen, according 

to XPS analysis, and although the nominal N/F molar ratio was fixed to 1 in all 

samples, their nitrogen content was probably larger than their fluorine content, as 

already found in similar systems.52  

According to DFT calculations,48 N-impurities give rise to localized states above the 

valence band and greatly favour the formation of oxygen vacancies. Paramagnetic N-

containing species, though in concentration three orders of magnitude lower than bulk 

and surface doping levels,50 were indicated to be responsible for visible light absorption 

and for the photoinduced electron transfer to adsorbed electron scavengers, such as 

molecular oxygen.48 On the other hand, the main effect of fluorine doping was the 

retarded anatase into rutile transformation,29,35 yielding a highly crystalline pure 

a) b) 

c) d) 
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anatase39 after calcination at 700°C. Substitutional F dopants induce the formation of 

Ti3+ species in the bulk of polycrystalline anatase,29 which introduce localized states in 

the band gap below the conduction band,36 but no visible light absorption.33-36 Finally, 

N–F co-doping produces a charge compensation between p-type (N) and n-type (F) 

dopants, that reduces the energy cost to dope the material.52 Consequently, the number 

of oxygen defects present in N–F co-doped TiO2 is expected to be smaller than in N-

doped TiO2. 

A strong similarity between the absorption features of D_X_500 samples (Fig. 8.8) 

and N-doped TiO2 can be noticed in the visible region. The ‘long tail’ absorption at λ > 

400 nm of pale yellow N-doped samples is commonly attributed to nitrogen species of 

different dopant sources.1,48,53 The intensity of this visible light absorption increases 

with increasing the dopant amount and decreases with increasing the calcination 

temperature, with a trend identical to that observed for N-doped TiO2.
49,54,55 

Therefore peak B, being most evident in the absorption spectra of doped samples 

calcined at 500°C and decreasing in intensity with increasing the calcination 

temperature (see Figs. 8.8 and 8.11), can safely be attributed to nitrogen doping.33 

However, no photoactivity in acetic acid decomposition corresponds to this absorption 

peak.56 The holes generated by visible photons absorption in intra-band gap states of N-

doped TiO2 were shown to be ineffective in oxidizing several substrates,57 formic acid10 

among them, possibly due to their insufficient oxidizing power and/or low mobility. 

Alternatively, peak B might also be originated by surface states, which, however, 

would at the same time act as effective charge recombination centres, with the 

consequent absence of reactivity, a hypothesis which might hardly be proved. 

The existence of peak A was evidenced for the first time by the spectral subtraction 

analysis performed in the present study. Such absorption feature is active in acetic acid 

decomposition (see Figs. 8.11 and 8.13). However, any attempt to correlate its intensity 

with the amount of Ti3+ species detectable by EPR analysis and with the possibly 

formed oxygen vacancies failed because the EPR spectra of our NH4F-doped 

photocatalysts were dominated by the signal of photocatalytically inactive NO 

radicals.39 However, the intensity of peak A, and the consequent activity in acetic acid 

decomposition, increased with increasing the photocatalyst calcination temperature. 

Thus, this absorption feature might be attributed to extrinsic absorption originating 

from surface oxygen vacancies or surface defects,34,35,58,59 the formation of which is 



Chapter 8 
 
 

 196 

expected to be favoured by F-doping at high calcination temperature. Indeed, 

photoluminescence signals attributed to such features have been reported to increase 

with increasing the calcination temperature of F-doped TiO2 materials,34 though the 

amount of oxygen defects in N–F co-doped TiO2 is expected to be smaller than that in 

N-TiO2.
52 On the other hand, peak A appears as an extra absorption on the longer 

wavelengths side of the band gap absorption itself. Thus, it may be simply a 

consequence of the higher crystallinity of D-TiO2 samples calcined at a high 

temperature, with respect to those calcined at 500°C, resulting in a higher absorption 

capability,56 as originally proposed by Hattori et al.  in the case of F-doped TiO2.
60 

A definitive attribution of absorption peaks A and B, together with evidence of 

possible synergistic effects due to the co-presence of N and F dopants, might be 

obtained by comparing present results with those obtained with a series of F-doped 

TiO2 photocatalysts containing no nitrogen. Such materials were thus synthesised and 

the results of their photocatalytic activity analysis are discussed in Chapter 9.  

 

8.3.7 Mott-Schottky analysis 

In order to investigate more in depth the origin of photoactive absorption peak A and to 

get information about the electrochemical properties of the materials, such as flat band 

potential and donor density values, a Mott-Schottky analysis was done by performing 

EIS (Electrochemical Impedance Spectroscopy) measurements, as described in Section 

3.6. Before presenting the main results, some experimental details on the preparation of 

the thin TiO2 films on conducting materials and on the conditions adopted in this kind 

of analysis will be briefly described. All EIS experiments were performed by the 

Electrochemical group of Prof. Patrizia Mussini in our Department at the Università 

degli Studi di Milano.  

Semiconductor thin films on conductive indium-tin oxide (ITO) glass to be employed 

as electrodes were prepared following the manual dip-coating procedure described 

below. 150 mg of photocatalyst powder were suspended within 1.0 mL of ethanol and 

sonicated for 30 min. A specific glass area (1 cm × 1 cm) of ITO was then immersed 

for two seconds in the so-obtained suspension and left in air for two seconds. This 

procedure was constantly repeated ten times for each electrode. The as-prepared 

electrodes were then dried in oven at 70°C for one day. 
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The electrochemical setup consisted of three electrodes: the working electrode (TiO2 

thin film), a platinum wire used as counter electrode and a saturated calomel electrode 

as reference. The experiment was performed in aqueous 0.1 M KCl solution at pH 7 in 

the absence of light. The potential was systematically varied between -1.00 and +1.00 

V with the current frequency range being modulated between 10 Hz to 1000 Hz by 

using an AUTOLAB PGSTAT20 – Potentiostat Galvanostatic instrument with the 

specific NOVA software for impedance analysis. 

The range of scanning potentials was chosen after applying cyclic voltammetry 

analysis to the working electrode. In particular, as the flat band potential and the donor 

density of the analysed semiconductors must be determined when the electrode surface 

is not modified by the application of any potential, i.e. when no redox processes occur, 

impedance analysis were performed in the so-called capacitive current range, with the 

electrode working as a capacitor, causing a charge carriers redistribution between the 

electrolyte and the electrode. 

Examples of Mott-Schottky plots (see Section 3.6.1) obtained at 1000 Hz with D_5 

doped series samples are shown in Fig. 8.15. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.15 Mott-Schottky plots obtained at 1000 Hz for D_5 doped samples.  
 

The calculated values of donor density (Nd) and flat band potential (Efb) of the 

investigated photocatalysts in film form are presented in Table 8.2. 
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Sample E fb (V) N d/1020 cm-3

D_0_500 -0.381 1.04

D_0_600 -0.353 0.93

D_0_700 -0.430 0.58

D_5_500 -0.310 0.26

D_5_600 -0.535 0.27

D_5_700 -0.283 0.48

D_12_500 -0.184 0.49

D_12_600 -0.363 0.42

D_12_700 -0.459 0.64

D_25_500 -0.335 0.47

D_25_600 -0.366 0.61

D_25_700 -0.334 0.99

As TiO2 is an n-type semiconductor, the flat band potential value can be considered 

at approximately the same energy level as the conduction band; thus, from Efb values 

the photocatalytic reducing power of semiconductor materials can be estimated.  

As shown in Table 8.2, all flat band potentials obtained from Mott-Schottky plots are 

negative, as expected, without any significant and systematic variation among them. 

This may result from two main factors: i) as already mentioned, the thin film electrodes 

were prepared by dip-coating; this deposition procedure was not so well-optimized and 

the homogeinity of the films, necessary to perform good measurements, depended on 

the dispersion extent of the photocatalyst in ethanol within the suspension; ii) according 

to the definition of flat band potential, only the phenomena occurring in the space 

charge region are considered, without taking into account the Helmoltz plane and the 

diffusive layer, where potential abatement also occurs; this approximation results in 

low precision potential values.61-63 

The attention was thus mainly focused on a possible correlation between the 

photocatalytic/absorption properties of doped materials and the corresponding donor 

density parameter (Nd), determined from the slope of Mott-Schottky plots (see Table 

8.2).  

Table 8.2 Flat band potential (Efb) and charge carrier concentration (Nd) values of home-made 
photocatalysts obtained by using the Mott-Schottky analysis.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 8 
 

 199 

1.04

0.49 0.47

0.26

0.93

0.27

0.42

0.610.58

0.48

0.99

0.64

0.0

0.5

1.0

1.5

D_0 D_5 D_12 D_25

N
d
/1

0+2
0  c

m
-3

 

500°C
600°C
700°C

Bahnemann et al. found that TiO2 films which exhibit a more negative flatband 

potential Efb have higher Nd values and also higher photon efficiency values in the 

reduction of methylviologen under UV(A) irradiation. Hence, a direct correlation 

between Efb, Nd, and the photocatalytic reduction capability could be postulated. 

However, a similar correlation between the photonic efficiency of methylene blue 

oxidation and Efb and Nd properties was not found.64 

In our case, the donor density values (Nd) obtained for all series of NH4F-doped TiO2 

photocatalysts can be compared in Fig. 8.16.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.16 Donor density values obtained for doped TiO2 photocatalysts containing different 
dopant amounts and calcined at different temperatures.  

 

First of all, for each series of doped materials, containing the same nominal dopant 

amount but calcined at different temperatures, the trend of Nd values appears in good 

agreement with that of the corresponding activity in the photocatalytic oxidation of 

three different organic substrates (acetic acid, formic acid and acetaldehyde). The Nd 

value was invariantly higher in samples calcined at higher temperature in each series of 

photocatalysts containing the same nominal dopant amount. In contrast, for the 

undoped materials (D_0 series), the Nd value decreased with increasing the calcination 

temperature. In this regard the presence of a dopant, mainly, but not exclusively, 

fluorine, seems to favour and stabilize the formation of point defects at high calcination 
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temperature, which in the case of titanium dioxide films can correspond to oxygen-ion 

vacancies to be related to the donor density parameter (Nd).
65-69    

Therefore by considering the general trend of Nd parameter and photocatalytic 

activity for each series of doped materials, the formation of oxygen vacancies (and or 

surface defects) seems to produce beneficial effects on the overall photoefficiency of 

the materials calcined at high temperature (700°C), which are also expected to be 

characterised by a higher crystallinity degree.   

At the same time, samples calcined at fixed temperature and containing an increasing 

nominal dopant amount were characterised by progressively higher Nd values, whereas 

in this case their photocatalytic activity decreased with increasing the dopant content 

(Figs. 7.5, 8.1 and 8.2). It’s worth noting that for NH4F-doped samples calcined at 600 

and 700°C a good correlation can be found between the maximum intensity of 

photoactive absorption peak A (located at 365 nm) and the corresponding Nd value (Fig 

8.17). Doped samples calcined at 500°C are not taken into account in this correlation 

because, according to the model described in Section 8.3.4 peak A does not contribute 

to their absorption spectra.  

In order to give a possible explanation of these results, it’s worth underlining that Nd 

values have been determined in the absence of irradiation, i.e. they give information on 

the structure of the material under dark conditions. Band gap excitation by light 

absorption produces electron-hole couples in the semiconductor. Point defects, the 

amount of which might be thought to increase with increasing the Nd value, may 

contribute in light absorption (peak A) and activation of the photocatalyst. However, an 

optimum photocatalytic activity results from the balance of two opposite effects, i.e. the 

possible increased amount of active species produced on the photocatalyst surface upon 

increased light absorption, which might contribute in increasing interface electron 

transfer reactions, and the detrimental effect of point defects acting as recombination 

centres of photoproduced charge carriers, which increases with increasing their amount, 

i.e. with increasing the dopant content. This optimum balance is obtained for doped 

materials containing ca. 5 mol.% of NH4F, exhibiting the highest photocatalytic 

activity in the three photocatalytic oxidation reactions (Figs. 7.5, 8.1 and 8.2). 

The presence of an optimum content of point defects (and of the Nd parameter) in 

order to attain the best photocatalytic efficiency was also pointed out by Baram et al. In 

particular their study, based on open circuit potential decay measurements, evidenced 
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that in TiO2 films characterized by high charge carrier concentration, the charge 

transfer rate to the solution can be slower than expected.70 

On the basis of the results reported in this paragraph, one can outline that impedance 

measurements can indirectly provide information on the defective structure of doped 

semiconductors but cannot be used as a unique prediction tool of their photonic 

efficiency especially in photocatalytic oxidation reactions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.17 Comparison between the maximum absorption intensity of peak A (measured at 
365 nm) and the corresponding value of Nd for doped samples calcined at a) 600°C and b) 
700°C. 
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9.1 Introduction  

In the previous Chapter the photocatalytic behaviour of an extended series of NH4F-

doped TiO2 photocatalysts has been thoroughly investigated in both liquid and gas 

phase reactions. In particular the attention has been focused on the possible activation 

of doped materials in the visible range by studying the photooxidation of acetic acid as 

a function of the irradiation wavelength, thus collecting so-called action spectra. By 

comparing the shapes of the action spectra with those of the absorption spectra of the 

investigated photocatalysts a model was proposed, based on spectral features 

deconvolution, which allows a clear distinction between inactive light absorption and 

effective photoactivity, possibly consequent to extrinsic absorption originating from 

surface oxygen vacancies or surface defects. XPS and EPR analysis of NH4F-doped 

materials, even if calcined at 700°C, revealed the presence of residual nitrogen-

containing species, that might be responsible for the spectral features and/or 

photoactivity of NH4F-doped TiO2, which should thus be more correctly envisaged as 

N and F co-doped TiO2.  

In order to better clarify the role of fluorine and/or nitrogen dopants in TiO2, another 

series of doped photocatalysts was prepared according to the same synthetic procedure 

employing HF instead of NH4F as dopant source, thus avoiding the co-presence of 

nitrogen impurities in the material. At the same time, aiming at elucidating the effects 

of F-doping and co-doping of TiO2, an investigation was started on the effects of the 

co-presence of p-block elements boron and fluorine in titania. In the literature there is 

little information about the photoactivity of B-F co-doped TiO2 systems; moreover, 

these materials have been mainly investigated in the photocatalytic degradation of 

organic dyes,1,2 which are not appropriate target molecules for photocatalytic test 

reactions aiming at verifying the effective visible light activation of doped materials.3 

All photocatalysts were prepared by the sol-gel method in the presence of different 

amounts of dopant source (HF for HF-doped TiO2 and H3BO3 for B-doped TiO2), 

followed by calcination at different temperatures (as already described in Chapter 8). 

The photoactivity of TiO2 samples singly doped or also co-doped with fluorine and 

boron (BF-doped TiO2) has been investigated in the photooxidation of transparent 

formic acid and acetic acid in aqueous suspensions.  

Finally, in order to compare the photoactivity of these systems with that of samples 

prepared in the presence of NH4F as dopant source (Chapter 8), the photooxidation of 
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the transparent acetic acid substrate was also systematically investigated as a function 

of irradiation wavelength for the three main new series of doped TiO2 samples.  

The prepared photocatalysts were characterized by BET, XRD, UV-vis absorption 

and TEM analysis, in order to enlighten the effects of dopant concentration and 

calcination temperature on the structural features of the doped materials, in relation to 

their photocatalytic activity.  

 

9.2 Experimental Section 

9.2.1 Doped-TiO2 preparation and characterisation 

All photocatalysts were prepared by the sol-gel method starting from an anhydrous 

ethanol solution containing a fixed concentration of titanium isopropoxide and different 

amounts of dopant source (HF for HF-doped TiO2 and H3BO3 for B-doped TiO2), in 

order to obtain dopant/Ti percent nominal molar ratios equal to 3, 5, 12 and 25, by 

following the general procedure already described in the Section 7.2.1. 

The effect of calcination temperature (at 500, 600 and 700°C) was investigated also 

for these materials, which were also labelled as X_Y_Z, with X referring to the dopant 

element symbol, Y to the nominal dopant/Ti percent molar ratio and Z to the 

calcination temperature in °C. Moreover co-doped materials were prepared in the 

presence of the two dopant sources HF and H3BO3, so as to obtain dopant/Ti percent 

nominal molar ratios equal to 3, 5 and 12 (BF-doped TiO2), with the HF/H3BO3 ratio 

always fixed at 1. Reference undoped materials, prepared by exactly the same synthetic 

route in the absence of dopant source, are referred to as the X_0_Z photocatalysts 

series. All reagents were purchased from Aldrich and employed as received. 

The BET specific surface area was measured by N2 adsorption / desorption at liquid 

nitrogen temperature in a Micromeritics Tristar II 3020 V1.03 apparatus, after out-

gassing at 300°C for 1 h under N2 stream. X-ray powder diffraction (XRPD) patterns 

were recorded on a Philips PW3020 powder diffractometer, by using the Cu Kα 

radiation (λ = 1.54056 Å). Quantitative phase analysis was made by the Rietveld 

refinement method,25 using the “Quanto” software.4 Diffuse reflectance (DR) spectra 

of the photocatalyst powders were recorded on a Jasco V-670 spectrophotometer 

equipped with a PIN-757 integrating sphere, using barium sulphate as a reference, and 

then converted into absorption (A) spectra (A  = 1 – R).  
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Sample
dopant/Ti        

molar ratio 
(%)

anatase 
(%)

brookite 
(%)

rutile 
(%)

dA/nm SSA/m2 g-1

HF_0_500 0 99 1 - 15 15

HF_0_600 0 90 - 10 32 9

HF_0_700 0 38 - 62 65 7

All photocatalytic FA degradation runs were performed as already detailed in Section 

4.1 under atmospheric conditions in a magnetically stirred 60 mL cylindrical quartz 

reactor, inserted in a home made housing consisting in a black box mounted on optical 

bench. All irradiated aqueous suspensions contained 0.1 g L-1 of photocatalyst and were 

preliminarily sonicated for 30 min. Then the appropriate volume of formic acid (FA) 

solution was added, to obtain an initial concentration of FA equal to 1.0 ×  10-3 mol L-1. 

Acetic acid decomposition under polychromatic irradiation was performed as detailed 

in Section 4.2.2, whereas the  action spectra analysis of this reaction was performed as 

described in Section 4.2.3. 

 

9.3 Results and Discussion 

9.3.1 Photocatalysts structure 

The main structural features, determined by XRD and BET analyses, of the 

investigated series of undoped and doped TiO2 photocatalysts are collected in Tables 

9.1 a-d.  

 
Table 9.1 a-d: Phase composition and anatase crystallites dimensions, dA of the investigated 
photocatalysts series, obtained from XRD analysis using the Scherrer equation, by assuming 
the absence of amorphous phase.  
 

a) Undoped TiO2 
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Sample
dopant/Ti        

molar ratio 
(%)

anatase 
(%)

brookite 
(%)

rutile 
(%)

dA/nm SSA/m2 g-1

HF_3_500 3 100 - - 23 44

HF_3_600 3 100 - - 41 25

HF_3_700 3 100 - - 56 20

HF_5_500 5 100 - - 22 45

HF_5_600 5 100 - - 40 28

HF_5_700 5 100 - - 55 22

HF_12_500 12 100 - - 20 34

HF_12_600 12 100 - - 50 16

HF_12_700 12 100 - - 57 18

HF_25_500 25 100 - - 20 21

HF_25_600 25 100 - - 49 11

HF_25_700 25 100 - - 85 8

Sample
dopant/Ti        

molar ratio 
(%)

anatase 
(%)

brookite 
(%)

rutile 
(%)

dA/nm SSA/m2 g-1

B_5_500 5 97 3 - 10 103

B_5_600 5 100 - - 16 45

B_5_700 5 64 - 36 43 9

B_12_500 12 96 4 - 8 132

B_12_600 12 100 - - 13 52

B_12_700 12 97 - 3 40 9

B_25_500 25 78 13 - 6 133

B_25_600 25 100 - - 19 25

B_25_700 25 100 - - 61 8

b) HF-doped TiO2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c) B-doped TiO2 
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Sample
dopant/Ti        

molar ratio 
(%)

anatase 
(%)

brookite 
(%)

rutile 
(%)

dA/nm SSA/m2 g-1

BF_3_500 3 100 - - 12 66

BF_3_600 3 100 - - 19 46

BF_3_700 3 98 - 2 36 21

BF_5_500 5 100 - - 12 58

BF_5_600 5 100 - - 18 41

BF_5_700 5 95 - 5 29 21

BF_12_500 12 100 - - 11 51

BF_12_600 12 100 - - 17 37

BF_12_700 12 98 - 2 14 21

d) BF-doped TiO2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XRPD analysis showed that HF doping inhibits the anatase into rutile phase 

transition even when the starting HF concentration was really low (HF_3 series). In 

fact, all doped samples, even if calcined at 700°C, contained more than 99% of the 

anatase phase.  

In the case of doping with H3BO3 different results were obtained. Firstly, a selective 

formation of brookite phase occurred for B-doped samples calcined at 500°C, 

especially with relatively high nominal dopant amounts (B_25_500). Secondly, full 

anatase material can be obtained after calcination at 700°C only by employing a 

relatively large nominal amount of H3BO3 (B_25 series). 

In the case of the BF-doped systems, full anatase materials were generally obtained, 

but traces of rutile phase (about 2−5 %) appeared after calcination at 700°C. The 

dimensions of anatase crystallites, calculated according to the Scherrer equation, did 

not sensibly depend on the nominal amount of fluorine in the HF series, whereas B- 

and BF-doping appeared to favour the formation of slightly smaller anatase TiO2 

particles. The unusual trend of anatase crystallite dimensions decrease by increasing the 

nominal dopant amount, in particular in samples calcined at 700°C, was clearly 

obtained for BF co-doped photocatalysts.  
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XRPD analysis of singly boron- or boron and fluorine- doped systems did not show 

any extra signal possibly associated to B2O3 phase formation, thus suggesting the 

possible homogeneous inclusion of the dopant element into the TiO2 structure. In the 

literature, the separation of boron from the TiO2 crystal, generally followed by the 

formation of a layer of diboron trioxide phase on the surface of TiO2 nanoparticles was 

related not only to the calcination temperature but also to the nominal dopant amount.5 

In particular, at high B concentration (generally higher than 20 mol.%), boron ions can 

be expelled from the TiO2 structure during calcination, forming nanoclusters and 

subsequently a film of B2O3, which retards the crystal growth, stabilizing the anatase 

phase. Conversely at low B concentration (lower than 5 mol.%), the formation of 

oxygen vacancies, induced by the dopant,6 might favour the anatase to rutile 

transformation.5 

BET analysis showed a decrease in surface area of the TiO2-based photocatalysts 

with increasing the calcination temperature for the same nominal dopant amount, 

consequent to particles sintering. SSA obtained for TiO2 samples containing fluorine 

(HF and BF series) were not so different respect to those measured for NH4F-doped 

materials, already reported in Section 8.3.1. At the same time H3BO3-doping seems to 

be the most beneficial for obtaining materials with larger surface area, especially if 

calcined at relatively low temperature (500°C). This is in agreement with previous 

results showing that the presence of boron in the bulk of TiO2 material resulted in lower 

crystallite dimensions and, consequently, in a higher surface area of the system.7 

By considering the great number of doped materials prepared in this thesis work, it’s 

essential to compare the most significant absorption spectra of the differently doped 

series. Thus, the absorption spectra of the HF series should be compared with those of 

the NH4F-doped samples (D-TiO2), in order to ascertain the origin of the absorption 

peak B appearing in the near-visible region for these latter, which was demonstrated to 

be inactive in acetic acid decomposition (Chapter 8). 

The differences between the absorption spectra of NH4F-doped samples (D_5 and 

D_25 series) and the corresponding ones of the HF-doped series are reported in Fig. 

9.1. By considering that all doped samples, even those calcined at 700°C, consist of 

pure anatase phase, any artifact in the difference spectra due to rutile phase absorption 

can be excluded, as already mentioned.  
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Figure 9.1 Difference of absorption spectra of NH4F-doped (labelled as D) samples and the 
corresponding HF-doped samples (containing no nitrogen dopant). 
 

The contribution of peak B (with a maximum around 420 nm) is evident for samples 

prepared starting from NH4F as dopant source and calcined at 500°C. At the same time, 

HF-doped samples calcined at 700°C appear to absorb more in the near UV-region 

where peak A is located. Thus, the difference spectra reported in Fig. 9.1 seem to 

confirm the attribution of inactive peak B mainly to nitrogen doping and active peak A 

to structure effects related to the presence of the fluorine dopant. 

The absorption spectra of the B_5 and BF_5 series do not show any significant extra 

absorption contribution in the visible region similar to those observed for NH4F-doped 

TiO2 calcined at 500°C (Fig. 8.8). For both of these doped series, samples calcined at 
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700°C exhibit a slightly red-shifted absorption edge due to the presence of the rutile 

phase, which is more marked in case of B_5_700 (Fig. 9.2a), in agreement with XRPD 

analysis (see Table 9.1). The addition of fluorine, even if co-present with another p-

block element such as nitrogen or boron, seems thus to play an essential role in 

inhibiting the anatase into rutile phase transition.   

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 9.2 Absorption spectra of a) B_5 and b) BF_5 doped TiO2 calcined at different 
temperatures.  
 

9.3.2 Photocatalytic tests  

9.3.2.1 Formic and acetic acid photocatalytic oxidation under polychromatic 

irradiation 

The photocatalytic activity of these new series of doped TiO2 samples in the oxidative 

decomposition of formic and acetic acid in aqueous suspension can be compared in Fig. 
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9.3 and 9.4, respectively, in terms of zero order rate constants.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.3 Zero-order rate constants of formic acid photo-mineralisation on photocatalysts 
containing different amount/type of dopants and calcined at different temperatures. 
 
 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 9.4 Zero-order rate constants of CO2 photo-evolution during acetic acid decomposition 
on photocatalysts containing different amount/type of dopants and calcined at different 
temperatures. 
 



Chapter 9 
 
 

 218 

0.38

0.20

0.43

0.79

0.52

0.21
0.16

0.61
0.55

0.43

0.58

0.47

0.0

0.3

0.6

0.9

1.2

ra
te

 c
on

st
an

t/
µµ µµm

ol
C

O
2 
m

in
-1

   UNDOPED

500 °C 700 °C 

HF
NH3 

H3BO3 

NH4F (dopant/Ti) molar ratio=5%

H3BO3 + HF

First of all, on the undoped samples both reactions were confirmed to proceed at a 

lower rate with respect to that attained on moderately doped TiO2. Moreover, with the 

undoped (HF_0) and B_5 series the reaction rate decreased with increasing the 

calcination temperature, most probably as a consequence of the anatase into rutile 

transformation, as already mentioned. The general trend of reaction rate increase with 

increasing the calcination temperature of doped materials, especially in case of the HF 

series, is in perfect agreement with the results previously obtained for NH4F doped 

samples (D series) reported in Chapters 7 and 8 (see Fig.s 7.5 and 8.1).  

This marked similarity suggests that the beneficial effect obtained for doped samples 

calcined at higher temperature can be mainly related to the (structural) modifications 

induced by fluorine rather than by the presence of nitrogen as a dopant. 

This fact is outlined in Fig. 9.5, where the effects of a fixed nominal amount (5 

mol.%) of each single dopant source in the liquid phase oxidative decomposition of 

acetic acid is compared for samples calcined at 500 or 700°C. In the case of samples 

calcined at 700°C the best photoactivity results were clearly obtained for TiO2 samples 

fluorine-doped (HF series) or fluorine co-doped with another p-block element (N or B).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.5 Zero-order rate constants of CO2 photo-evolution obtained during acetic acid 
decomposition on photocatalysts containing 5 mol.% of different dopants. 
 

It’s worth underlining that nitrogen doping of TiO2, starting from NH3 as dopant 

source, cannot inhibit the anatase into rutile phase transition up to 700°C. In fact a TiO2 

sample prepared under identical conditions in the presence of 5 mol.% of NH3 and 
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calcined at 700°C was found to contain only 19% of anatase and 81% of rutile phase, 

with a specific surface area of 7 m2 g-1. The corresponding nitrogen-doped sample 

calcined at 500°C was a full anatase material with SSA of 72 m2·g-1. 

Among the new photocatalytic materials discussed in this Chapter the highly boron-

doped sample B_25_600 was found to be the best performing one in both liquid phase 

reactions (Fig.s 9.3 and 9.4). The origin of this marked enhancement of photoactivity 

still remains unclear. Unfortunately, we could not perform a detailed XPS investigation 

of the B-doped materials, that should give essential information about the oxidation 

state and the chemical environment surrounding the boron dopant. In fact, the dopant 

element can exist in a separate surface B2O3 phase, not detected by XRPD analysis, or 

can be incorporated in the TiO2 structure both in substitutional to oxygen form or into a 

tetrahedral interstitial site.8,9 

Improvement of photoactivity for B-doped TiO2 systems has already been reported, 

even if controversial results can be found in the literature. In fact while Chen et al. 

observed a band-gap increase due to B-doping and attributed it to quantum-size 

effects,5 Zhao et al. detected a red shift in the absorption spectrum of B-doped TiO2.
8 

This apparent contradiction can be explained considering the different geometry and 

electronic structure of B-doped TiO2, as recently shown by Geng et al.10 In fact, boron 

atoms can substitute oxygen atoms, sit in interstitial positions, or also substitute Ti 

atoms. DFT calculations indicate that the latter case is the least favourable, while the 

remaining two have comparable energy, suggesting that both cases can occur in real 

materials.10 Notably, only O-substitution will lead to band-gap narrowing, while the 

occupation of an interstitial site will produce a blue-shift of the absorption properties of 

the doped materials.8,10 

The absorption spectra of the here investigated B-doped samples, especially in the 

case of the most photoactive B_25_600 sample, do not show any extra ‘tail’ 

contribution in the visible region. This is clearly shown in Fig.s 9.6 and 9.7, reporting 

the absorption spectra of samples containing different nominal dopant amounts, but all 

calcined at 600°C, and those of the B_25 series, respectively. Thus, the here adopted 

preparation methodology seems to lead to interstitial rather than to substitutional B-

doped TiO2. The slight red-shifted absorption observed for B_25_500 could be ascribed 

to the presence of the brookite phase. 
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Figure 9.6 Absortpion spectra of B-doped samples containing different nominal dopant amount 
but calcined at the fixed temperature of  600°C.  
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 9.7 Absortpion spectra of B_25 doped TiO2 series.  
 

Furthermore TiO2-doping with boron was found to enhance the hydration ability of 

the photocatalyst;11 this may produce a beneficial effect on the photoactivity of 

B_25_600, which, even if characterized by a relative low SSA (25 m2·g-1), exhibits a 

very good photocatalytic performance in liquid suspensions (Fig.s 9.3 and 9.4). Also, 

the possible formation of a new B2O3 phase, that XPS analysis could detect, may also 
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be tentatively invoked to account for the relatively high photoefficiency of B-doped 

materials (especially of  B_25_600), because the interface between the two different 

phases may act as a separation site for the photogenerated electrons and holes.  

Finally, co-doped BF_5_700 was more active than HF_5_700 in formic acid 

photodecomposition, but not in acetic acid oxidation. This could be related to the 

different experimental conditions employed in the two test reactions. In fact, while 

acetic acid photooxidation was performed under UV light irradiation, the 

photodecomposition of formic acid was studied using a lamp mainly emitting visible 

light. Under such conditions a higher photoefficiency in the visible region might be 

evidenced. Therefore, in order to better elucidate the origin of the enhanced 

photoactivity of doped samples (especially of BF_5_700) and verify their possible 

activation in the visible region, the photooxidation of transparent acetic acid was 

systematically investigated with the three main HF_5, BF_5 and B_25 series as a 

function of irradiation wavelength in the 370-460 nm range, with a 10-nm step. 

 

9.3.2.2 Action spectra of acetic acid decomposition (370-460 nm range)  

The action spectra in the 370−460 nm range obtained with a 10 nm wavelength step for 

the HF_5, BF_5 and B_25 doped TiO2 series are shown in Figure 9.8. 
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Figure 9.8 Action spectra of acetic acid decomposition in the 370-460 nm wavelength range of 
the a) HF_5, b) BF_5 and c) B_25 doped TiO2 photocatalysts series.  
 

First of all only for the HF_5 and BF_5 series a progressively higher calcination 

temperature ensured a better apparent quantum efficiency in the whole wavelengths 

region, whereas boron doping (Fig. 9.8 c) did not produce this kind of effect. This 

effect was also observed with the NH4F-doped series (D_5 series) in Fig. 8.7 and 

attributed to the presence of active extra absorption peak A (Chapter 8). A similar 

explanation may be applied in the case of the full anatase HF_5 series. In fact the action 

spectra substraction procedure, described in Section 8.3.4.2 and systematically applied 

for NH4F doped materials, was applied also to the HF_5 series, i.e. the action spectra of 
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samples calcined at 500°C were subtracted from those of samples calcined at 600 and 

700°C (Fig. 9.9). Also for HF-doped samples calcined at 600 and 700°C an increase of 

photocatalytic activity in the UVA region was ascertained, with a maximum and 

relative intensity in good agreement with those obtained for the corresponding D_5 

series (see Section 8.3.4.2). 

This provides an unequivocal confirmation of the hypothesis made in Chapter 8, i.e.  

fluorine (and not nitrogen) as the main responsible for the observed photoactivity 

increase in the UVA region of doped samples, probably due to an extension of the 

anatase band gap absorption on the long wavelengths side (peak A) after calcination at 

high temperature.12 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.9 Difference action spectra of the HF_5 photocatalysts series. The action spectrum of 
the sample calcined at 500°C was subtracted from those of samples calcined at higher 
temperatures. 
 

At the same time the difference absorption spectra obtained for the BF_5 series (Fig. 

9.10) should be interpreted differently. In fact, while the photoactivity increase in the 

UVA region obtained with BF_5_600 could be still related to the effect of fluorine 

doping, in the case of BF_5_700 a red shift in the maximum position of the 

photoefficiency increase is observed. However, among the BF_5 series only BF_5_700 

contains 5% of rutile, having a band gap absorption onset red shifted with respect to 

that of the anatase phase. So aiming at ascertaining whether light absorption by rutile 

could be responsible for the observed photoefficiency increase, a substraction 

procedure similar to that performed for the action spectra was carried out for the 
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absorption spectra of the BF_5 series (Fig. 9.11). A satisfactory matching between the 

maximum positions of both apparent quantum efficiency increase and extra light 

absorption of mixed phase BF_5_700 (around 390 nm) was found. Thus, the enhanced 

photoefficiency observed for BF_5_700 sample could be related to the unexpected 

positive effect produced by the rutile phase rather than to other extra absorption peaks 

possibly due to co-doping. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.10 Difference action spectra of the BF_5 photocatalysts series. The action spectrum 
of the sample calcined at 500°C was subtracted from those of samples calcined at higher 
temperatures. 
 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 9.11 Difference absorption spectra of the BF_5 photocatalysts series. The absortpion 
spectrum of sample calcined at 500 °C was subtracted from those of samples calcined at higher 
temperatures. 
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Anyway we can try to check if the extra absorption peak of BF_5_700 can be 

completely ascribed to rutile phase by comparing the absorption difference profile 

reported in Fig. 9.11 with that obtained by subtracting the absorption spectrum of full 

anatase undoped sample calcined at 500°C (HF_0_500) from that of the mixed phase 

undoped HF_0_700 sample calcined at 700°C. This kind of comparison is reported in 

Fig. 9.12.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9.12 Difference absorption spectra of the BF_5 and HF_0 photocatalysts series. The 
dashed line was obtained by subtracting the absortpion spectrum of full anatase sample 
calcined at 500°C from that of the mixed phase sample BF_5_700 calcined at 700°C. 
 

The maximum positions of the extra absorption contribution of the rutile phase 

obtained for undoped and BF codoped samples do not strictly coincide. The position of 

this maximum may be affected by the presence of the dopant boron element. This fact 

is further evidenced in Fig. 9.13 where the profiles of Fig. 9.12 are compared to the 

difference calculated between the absorption spectrum of mixed phase B-doped sample 

calcined at 700°C (B_5_700) and that of full anatase B-doped sample calcined at 500°C 

(B_5_500): the maximum positions of rutile phase absorption calculated for B_5_700 

and BF_5_700 series almost coincide.  

The action spectrum of a BF co-doped sample calcined at a temperature intermediate 

between 600°C and 700°C and composed of pure anatase phase might allow to 

discriminate the effect produced by the rutile phase only or by the co-presence of 
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dopant elements at high calcination temperature in the acetic acid photooxidation 

reaction.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9.13 Difference absorption spectra of the BF_5, B_5 and HF_0 photocatalysts series. 
The absorption spectrum of full anatase sample calcined at 500°C was subtracted from that of 
mixed phase sample calcined at 700°C. 
 

Finally in order to investigate the effect produced by BF co-doping respect to HF 

doping, the action spectra obtained for the HF_5 and BF_5 series were systematically 

compared (Fig. 9.14).   

At λ < 390 nm, the HF doped samples were invariantly more active that the 

corresponding BF codoped materials for each calcination temperature. On the contrary, 

for λ > 390 nm the photoactivity of BF co-doped samples slightly increased with 

respect to that of the corresponding HF doped materials with increasing the calcination 

temperature. This means that boron addition can produce positive effects on the 

photoefficiency in acetic acid decomposition in the near UV region with increasing the 

calcination temperature of codoped materials. However, it’s important to recall that 

also in this case BF_5_700 contained 5% of rutile, whereas HF_5_700 was a full 

anatase sample. So the enhanced photoefficiency observed for BF_5_700 could be still 

related to the unexpected positive effect produced by the rutile phase, rather than to 

other types of extra absorption peaks to be possibly ascribed to codoping.  
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Figure 9.14 Comparison between the action spectra of acetic acid decomposition in the 370–
460 nm wavelengths range obtained for the HF_5 and BF_5 series calcined at a) 500°C, b) 
600°C and c) 700°C. 
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10.1 Introduction  

The deposition of gold nanoparticles, especially if carried out by photoreduction, can 

improve the photocatalytic activity of commercial TiO2 powder (Degussa P25) by 

increasing the rate of formic acid oxidation (Chapter 6). At the same time home-made 

NH4F-doped TiO2 materials, characterized by a relatively high cristallinity degree, 

exhibit excellent ability to photo-oxidise different organic substrates (Chapters 7-8). 

The idea of combining both these positive effects (bulk and surface modifications of 

TiO2 materials) was the aim of the work reported in this chapter.  

The effect of noble metal nanoparticles (Pt and Au) photodeposition on the series of 

differently NH4F-doped TiO2 photocatalysts calcined at 700°C (previously showing the 

best photocatalytic performances) was thus investigated in both energetically down-hill 

and up-hill reactions, i.e. in both formic and acetic acid degradation in aqueous 

suspension and in hydrogen production from methanol/water vapour mixtures, also 

aiming at getting a better insight into the role played by noble metal nanoparticles on 

both reduction and oxidation photocatalytic processes. Thermodynamically down-hill 

oxidation reactions have been employed so far to test the activity of the photocatalytic 

TiO2-based materials investigated in the present thesis. The low temperature production 

of hydrogen through photocatalytic steam reforming of organics on metal oxide 

semiconductors is an up-hill reaction, which provides a way to convert solar energy 

into chemical energy with a small CO2 impact compared to the use of fossil fuels. In 

fact, contrarily to traditional steam reforming, the photo-assisted process occurs at 

room temperature and atmospheric pressure and no feed stock needs to be burnt 

because the required energy is totally supplied by photons. 

Organic compounds also deriving from renewable sources, i.e. biomasses, acting as 

hole scavengers, can play an essential role in increasing the overall rate of 

photocatalytic hydrogen evolution. For instance, methanol is widely used as a 

sacrificial agent in the liquid–phase photocatalytic production of hydrogen1-4 and has 

already been employed by our research group as a volatile organic electron donor in a 

model reaction for photocatalytic hydrogen formation from renewable sources.5-7 

The prepared photocatalysts were characterized by BET, XRD, UV-vis absorption, 

EXAFS and HRTEM analyses and the modifications induced on the photocatalytic 

activity by the noble method photodeposition treatment were also taken into account. 

All the photocatalytic activity results have been compared to the photocatalytic 
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efficiency of commercial P25 (Degussa), also modified according to the same 

photodeposition procedure. 

To the best of my knowledge, there is no report in the literature on NH4F doping of 

TiO2 coupled with noble metal nanoparticles deposition to improve the photocatalytic 

activity of titania in the UV-vis region.  

 

10.2 Experimental Section 

10.2.1 Doped-TiO2 preparation and their surface modification  

A series of doped titania (D-TiO2) photocatalysts was prepared by the sol-gel method in 

the presence of different amounts of NH4F, used as a dopant source, and calcined, in 

this case, at a fixed temperature of 700°C. The nominal dopant/Ti percent molar ratios 

were 5, 7 and 12. Doped materials were labelled as D_X, with X referring to the 

nominal dopant/Ti percent molar ratio. Reference undoped material, prepared by 

exactly the same synthetic route in the absence of NH4F, is defined as the D_0 sample. 

More details on the preparation of the materials and on their characterisation analyses 

can be found in Chapter 8.  

The TiO2 samples modified by noble metal nanoparticles photodeposition were 

prepared starting from 6 vol.% of methanol/water suspensions, containing 3 g L-1 of 

D_X sample and the amount of noble metal precursor necessary to obtain a fixed 

nominal metal loading of 0.5 wt.%, which was already shown to be the optimal content 

for improving formic acid (FA) photooxidation (Chapter 6). HAuCl4 was employed as 

noble metal precursor in the case of gold nanoparticles deposition, H2PtCl6 was used 

for platinum deposition.   

Au(III) and Pt(IV) photoreduction to metallic nanoparticles deposited on TiO2 was 

achieved by irradiating the suspensions for 2 h under nitrogen atmosphere. The 

immersion fluorescent, low pressure mercury arc lamp (Jelosil), already described in 

Section 6.2.1, was employed as the irradiation source (see Scheme 6.2b). Noble metal-

modified D_X powders were recovered after at least three centrifugation and washing 

cycles, up to the complete removal of residual ions and organic precursors. They were 

then dried at 70°C for 1 day and stored in the absence of light and humidity. These 

samples were labelled as M/D_X, where M refers to the noble metal (Au or Pt) 

deposited on the previously described  home-made NH4F doped-TiO2 materials.    
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Reference samples were prepared by following the same procedure, except for the 

addition of the noble metal precursor, and labelled as R/D_X with R standing for 

‘reference’. 

The same method of noble metal nanoparticles photodeposition was also employed 

to modify commercial mixed phase Degussa P25 titanium dioxide.8 All reagents were 

purchased from Aldrich and employed as received. 

 

10.2.2 Photocatalysts characterisation  

UV-Vis diffuse reflectance (DR) spectra were recorded with a Lambda 19, Perkin 

Elmer spectrophotometer equipped with an integrating sphere an then converted into 

absorption (A) spectra (A = 1 – R). HRTEM images were obtained with a JEM 3010 

(JEOL) electron microscope operating at 300 kV.  

Structural features of the gold and platinum nanoparticles in the as-prepared 

photocatalyst were characterized by XAFS, including X-ray absorption near-edge 

structure (XANES) and extended X-ray absorption fine structure (EXAFS). The XAFS 

spectra for the Au and Pt L3-edge were recorded on the ANKA-XAS beamline using a 

Si(111) double-crystal monochromator detuned to ca. 60% of the maximum intensity. 

Incident and transmitted X-ray intensity were measured by ion chambers (Oxford). The 

experiments were performed at the ANKA Synchrotron Strahlungsquelle of Karlsruhe 

Institute of Technology by Dr. Gian Luca Chiarello. Standard PtO2, Pt and Au foils 

were used to extract experimental EXAFS parameters for Pt-O, Pt-Pt and Au-Au bond 

lengths, respectively. 

 

10.2.3 Photocatalytic tests  

10.2.3.1 Formic acid and acetic acid degradation  

All photocatalytic FA degradation runs were performed as already described (Section 

4.1) under atmospheric conditions in a magnetically stirred 60 mL cylindrical quartz 

reactor. All irradiated aqueous suspensions contained 0.1 g L-1 of photocatalyst; the 

initial concentration of FA was equal to 1.0 × 10-3 mol L-1. Acetic acid decomposition 

under polychromatic irradiation was investigated as described in Section 4.2.2. 
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10.2.3.2 Hydrogen production from methanol photo-steam reforming  

The photocatalytic activity in hydrogen production by methanol photo-steam 

reforming: 

CH3OH + H2O � CO2 + 3 H2                                                                                  (10.1)  

was tested in the expressly set up, closed recirculation laboratory scale apparatus 

sketched in Fig. 10.1, already employed in previous studies.5,7,9 

The photocatalyst powder was deposited on 20–40 mesh (0.85–0.42 mm) quartz 

beads by mixing 14 mg of it with 3 g of quartz beads and 1.2 mL of distilled water, 

followed by drying in oven at 70°C for 6 h. The so-obtained photocatalyst bed was 

inserted in the photoreactor consisting in a flat cylindrical Plexiglas cell, having a 

central 2 mm thick and 50 mm in diameter round hollow, frontally closed by a Pyrex 

glass optical window (irradiation surface ca. 20 cm2). The photoreactor was connected 

to a closed stainless steel system (see Fig. 10.1a), where the gas phase was recirculated 

at a constant rate by means of a metal bellow pump. The system was preliminarily 

purged with nitrogen in order to remove any oxygen trace. During the photocatalytic 

tests, the photocatalyst bed was continuously fed with a stream of 40 mL min-1 of N2 

saturated with the vapour of a 20 vol.% methanol–water solution thermostatted at 30°C, 

corresponding to a methanol molar fraction x of 0.10 in the liquid phase. 

The reactor temperature during irradiation was 55 ± 5 °C, as monitored by a 

thermocouple placed inside the cell. The absolute pressure was 1.2 bar at the beginning 

of the runs and slightly increased during irradiation, as a consequence of the 

accumulation of products in the gas phase. During the runs, typically lasting 6 h, the 

recirculating gas was analysed on-line by sampling it every 20 min by means of a 

pneumatic sampling valve placed at the exit of the photoreactor. Gas samples were 

automatically injected into an Agilent 6890 N gas-chromatograph, equipped with two 

columns (HP-PlotU and Molesive 5A), two detectors (thermoconductivity and flame 

ionisation) and a Ni-catalyst kit for CO and CO2 methanation. N2 was used as carrier 

gas. The GC response was calibrated by injecting known volumes of H2, CO and CO2 

into the recirculation system through the loop of a six ways sampling valve. When 

testing noble metal nanoparticles modified photocatalysts, purging by nitrogen in the 

dark was required every 2 h, due to the high products accumulation in the recirculating 

gas phase. 
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The irradiation source was Xenon lamp (LSH302 of LOT Oriel, 300 W), see Fig. 

10.1b, placed at 13 cm from the reactor, emitting in the 350–450 nm wavelength range 

with a full irradiation intensity of 6·10-8 einstein s-1 cm-2 on the reactor, determined by 

ferrioxalate actinometry.10 Its constancy was checked daily by means of a UVA lux-

meter. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10.1 a) Sketch of the experimental setup for photocatalytic activity tests: (A) cross 
section of the Plexiglas photoreactor; (B) photocatalyst bed; (C) Pyrex glass window; (D) 
detectors (GC with TCD and FID); (E1, E2) six ways sampling valves; (F) bellow pump; (G) 
bubbler containing CH3OH/H2O solutions; (H) refrigerator-condenser; (L) thermostat; (M) 
four ways ball valve; (N) gas flow meter; (TI) temperature indicator; (PI) pressure indicator. 
b) Sketch of the adopted light source. 
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Sample
dopant/Ti        

molar ratio 
(%)

anatase 
(%)

brookite 
(%)

rutile 
(%)

dA/nm SSA/m2 g-1

P25 80 - 20 25 48

D_0 0 38 - 62 65 7

D_5 5 99 - 1 49 16

D_7 7 99.5 - 0.5 44 14

D_12 12 99.5 - 0.5 48 12

10.3 Results and discussion  

10.3.1 Photocatalysts characterisation  

10.3.1.1 XRD and BET analyses 

The main structural features of the investigated naked TiO2 samples, determined by 

XRD and BET analyses, are summarized in Table 10.1. 

 
Table 10.1 Phase composition and crystallite dimensions, dA, obtained from XRD analysis, by 
assuming the absence of amorphous phase; specific surface area (SSA), obtained from BET 
analysis of the investigated photocatalysts series.  
 

 

 

 

 

 

 

 

 

The phase composition of NH4F-doped samples, obtained by Rietveld refinement of 

XRD data, clearly shows that doping inhibits the anatase into rutile phase transition, 

which is typically observed after annealing undoped titania at 700°C (see Chapter 7). 

Moreover the SSA of doped materials is slightly larger with respect to that of the 

corresponding undoped TiO2.  

XRD patterns obtained for the samples modified by noble metal nanoparticles 

deposition (not shown for the sake of brevity) were practically identical to those of the 

corresponding unmodified samples. Also the specific surface area of TiO2 did not vary 

upon noble metal nanoparticles deposition. This is in agreement with analogous results 

obtain for gold modified samples discussed in Chapter 7.  

 

10.3.1.2 UV-Vis DR spectra  

The deposition of gold nanoparticles on TiO2 was confirmed by the colour change of 

the modified oxide powder, turning from white into purple, originated from the surface 

plasmon resonance of nanocrystalline Au0 particles.  
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As shown in Fig. 10.2 gold containing samples display the typical plasmon resonance 

absorption band, with a maximum around 550 nm, i.e. red shifted compared to the pure 

gold plasmonic peak (520 nm), indicating interaction between gold and titania support. 

Sample Au/D_0 exhibit a red-shift of the absorption edge because of the relative high 

content of rutile phase. Au modified samples obtained starting from an intermediate 

amount of dopant source (D_5 and D_7) exhibit a plasmon resonance band which is 

slightly shifted to shorted wavelengths with respect to the other samples, indicating 

smaller Au nanoparticles dimensions,11 and is characterized by a relatively higher 

maximum absorption intensity. 

Pt/TiO2 samples, appearing as grey powders, exhibit a broad absorption in the visible 

region (higher respect to the corresponding unmodified TiO2 samples), without any 

specific plasmonic band (Fig. 10.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 10.2 Absorption spectra of P25 TiO2 and NH4F doped photocatalysts series modified by 
gold nanoparticles (0.5 wt.%) photodeposition. 
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Figure 10.3 Absorption spectra of P25 TiO2 and NH4F doped photocatalysts series modified by 
platinum nanoparticles (0.5 wt.%) photodeposition. 
 

10.3.1.3 EXAFS analysis  

10.3.1.3.1 Pt modified TiO2 samples 

The Pt L3-edge XANES spectra for metallic Pt, PtO2 and home-made Pt/TiO2 

photocatalysts are shown in Figure 10.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.4 Pt L3-edge (11564 eV) XANES spectra of Pt, PtO2 and home-made NH4F-doped 
photocatalysts series modified by platinum nanoparticles (0.5 wt.%) photodeposition. 
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The XANES spectra of Pt/TiO2 photocatalysts are intermediate between those of the 

two reference samples (Pt foil and PtO2), suggesting that Pt nanoparticles deposited by 

photoreduction method on the TiO2 surfaces are not present with a unique oxidation 

state. This fact is clearly outlined in Fig. 10.5 where the Fourier transforms (FTs) of 

χ2(k) EXAFS signals for the standard and of the investigated samples are shown 

without phase shift correction.   

The main structural parameters (bond length, R, and coordination number, CN) 

obtained for Pt/TiO2 samples by using a proper simulation program are summarized in 

Table 10.2.  All spectra exhibit, with a different relative intensity, both the peak 

associated to Pt-Pt bond for metallic Pt and the typical signals related to Pt-Pt and Pt-O 

(first shell of coordination) bonds for oxidized Pt state (PtO2).  

The signal associated to the second shell of Pt-O coordination for PtO2 is absent in all 

spectra, suggesting a relative small size of photodeposited Pt nanoparticles. Moreover 

the absence of the Pt-Pt shell at 3.103 Å typical of PtO2 demonstrates that the samples 

possess passivated metal Pt nanoparticles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.5 Fourier transform (FTs) of the χ2(k) EXAFS signals for Pt, PtO2 and home-made 
Pt/TiO2 photocatalysts. 
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Pt foil Pt-Pt 12.0 ± 0.6 2.765 ± 0.002

Pt-O_1 5.7 ± 0.5 2.016 ± 0.007

Pt-Pt* 6.6 ± 1.6 3.103 ± 0.005

Pt-O_2 11.5 ± 4.7 3.677 ± 0.029

Pt-O_1 1.4 ± 1.2 2.038 ± 0.046

Pt-Pt 7.6 ± 1.5 2.747 ± 0.011

Pt-O_1 1.7 ± 0.6 1.960 ± 0.026

Pt-Pt 7.0 ± 1.9 2.730 ± 0.016

Pt-O_1 2.8 ± 0.6 1.975 ± 0.021

Pt-Pt 4.9 ± 2.5 2.743 ± 0.025

Pt-O_1 1.5 ± 0.5 1.966 ± 0.026

Pt-Pt 6.4 ± 1.8 2.731 ± 0.017

Pt-O_1 2.5 ± 0.5 1.972 ± 0.019

Pt-Pt 3.5 ± 1.4 2.723 ± 0.015

Pt/D_7

Pt/D_12

Ref. PtO2

Pt/P25

Pt/D_0

Pt/D_5

Sample Shell CN R (Å)

Table 10.2 Main structural parameters (interatomic distances, R, and coordination number, 
CN) obtained from EXAFS analysis for Pt/TiO2 samples.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By considering the presence of platinum not only in the metallic form, an iterative 

fitting algorithm was used in order to calculate the relative amount of Pt4+ and Pt0 in 

each sample. This kind of mathematical approach is briefly explained for the Pt/D_0 

sample in Fig. 10.6. In this simulation, a linear combination of the two reference 

spectra of Pt4+ and Pt0 (red curve) is refined against the experimental curve (in blue 

color), in order to minimize the residual. The relative percent contribution of oxidized 

and metallic platinum states are thus calculated and summarized in Table 10.3.  
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Pt/P25 85 15

Pt/D_0 69 31

Pt/D_5 54 46

Pt/D_7 73 27

Pt/D_12 61 39

Sample Pt0 wt.% Pt 4+ wt.%

 

 

 

 

 

 

 

 

 

 

 

Figure 10.6 Example of iterative fitting algorithm performed in order to calculate the relative 
amount of Pt4+ and Pt0 for the Pt/D_0 photocatalyst. 

 

Table 10.3 Relative percent contribution of oxidized and metallic states of platinum 
nanoparticles, calculated for Pt/TiO2 samples.  

 

 

 

 

 

 

 

Among all the investigated samples, Pt/D_5 and Pt/P25 materials show the relative 

highest contribution of Pt4+ and Pt0 forms respectively. By comparing the results 

reported in Tables 10.2 and 10.3 an expected correlation between the relative percent of 

Pt(IV) and the coordination number (CN) associated to the first shell of Pt-O can be 

found; so the increase of Pt(IV) content is followed by an increase of Pt-O coordination 

number.  

Anyway there seems not to be a direct correlation between the relative percent 

amount of metallic/oxidized states of deposited platinum nanoparticles and the 

corresponding nominal NH4F dopant amount of home-made samples.  

 



Chapter 10 
 
 

 242 

10.3.1.3.2 Au modified TiO2 samples 

The Au L3-edge XANES spectra for metallic Au and home-made Au/TiO2 

photocatalysts are shown in Figure 10.7. 

 

 

 

 

 
 
 
 
 
 
 
 
 

 

 

Figure 10.7 Au L3-edge (11564 eV) XANES spectra of Au and home-made NH4F-doped 
photocatalysts series modified by gold nanoparticles (0.5 wt.%) photodeposition. 

 

The XANES spectra of the investigated Au/TiO2 photocatalysts resemble that of the 

Au foil reference, indicating that Au nanoparticles, deposited by the photoreduction 

method on the TiO2 surfaces, are present in full metallic state. This fact is clearly 

confirmed in Fig. 10.8, where the Fourier transforms (FTs) of χ2(k) EXAFS signals for 

the standard and the investigated samples are shown without phase shift correction. 

Main structural parameters (bond length, R, and coordination number, CN) obtained for 

Au/TiO2 samples, by using similar simulation programs briefly described for Pt/TiO2 

materials, are summarized in Table 10.4.   

Let’s focus our attention on the Au coordination number calculated for the 

investigated samples. Generally a gold atom surrounded only by other gold atoms (in 

bulk form) has a coordination number (CN) equal to 12. Therefore for a gold atom 

exposed to the surface a lower coordination number is expected. In particular, the 

coordination number may decrease for smaller gold nanoparticles, characterized by an 

average higher amount of gold atoms at the surface with respect to those located into 
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Au foil Au-Au 11.9 ± 0.6 2.862 ± 0.003

Au/P25 Au-Au 11.4 ± 0.8 2.856 ± 0.003

Au/D_0 Au-Au 11.1 ± 1.0 2.857 ± 0.004

Au/D_5 Au-Au 9.6 ± 1.5 2.860 ± 0.007

Au/D_7 Au-Au 10.9 ± 1.4 2.851 ± 0.007

Au/D_12 Au-Au 12.0 ± 0.6 2.855 ± 0.004

Sample Shell CN R (Å)

the bulk. As a result, the coordination number, obtained by EXAFS experiments, could 

give an indirect information about the relative gold nanoparticles size. On the basis of 

the data reported in Table 10.4, home-made samples containing an intermediate 

nominal dopant amount (D_5 and D_7) seem to be characterized by relative smaller 

gold nanoparticles. No further information about metal nanoparticles size can be 

obtained for other Au/TiO2 samples which are characterized by gold coordination 

number closer to 12.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.8 Fourier transform (FTs) of the χ2(k) EXAFS signals for Au and home-made 
Au/TiO2 photocatalysts. 

 

Table 10.4 Main structural parameters (bond length, R, and coordination number, CN)  
obtained from EXAFS analysis for Au/TiO2 samples.  
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10.3.1.4 HRTEM analysis  

Gold and platinum photodeposition on TiO2 was also verified by HRTEM analysis, 

yielding valuable and direct information on the dimension and the distribution of noble 

metal nanoparticles on the TiO2 surface (see Fig. 10.9).   

 

 

 

Figure 10.9 HRTEM images of TiO2 samples modified by noble metal nanoparticles deposition: 
a) Au/D_7; b) Pt/D_7; c) Au/D_0.  

 

Home-made TiO2 doped samples consisted of micro-aggregates of single crystal 

nano-spheres, with average diameter dimensions (40-50 nm) which are consistent with 

those obtained by XRPD analysis (Table 10.1). In particular, the photodeposition 
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technique seems to ensure a good dispersion of both gold and platinum nanoparticles 

on the TiO2 surface, as shown in Figs. 10.9 a and b.  

Moreover in the case of Au/TiO2 samples, full anatase moderately doped material 

(D_7) showed smaller gold nanoparticles with respect to those obtained for undoped 

material (D_0), in agreement with indirect information obtained by EXAFS analysis. 

It’s worth to recall that larger and more spherical gold nanoparticles were also obtained 

by using the photodeposition method for mixed phase commercial TiO2 powder 

(Degussa P25), as shown in Chapter 6.  

 

10.3.2 Photocatalytic tests  

10.3.2.1 Liquid phase reactions: formic and acetic acid photocatalytic oxidation 

The photocatalytic activity scale of the home-made TiO2 and the corresponding 

samples modified by surface Au or Pt nanoparticles photodeposition can be appreciated 

in Fig. 10.10. The photoactivity scale obtained for the same samples during acetic acid 

oxidation is shown in Fig. 10.11. In this case the activity is expressed in terms of zero-

order rate constant of CO2 photo-evolution from TiO2 suspensions containing acetic 

acid. 

For all of the doped TiO2 series the photodeposition of gold or platinum 

nanoparticles was beneficial in the degradation of both organic substrates. Moreover in 

case of FA decomposition (Fig. 10.10) the effects induced by the photodeposition 

procedure itself can be distinguished from those induced by the presence of noble metal 

(NM) nanoparticles. Indeed the degradation rates obtained with reference samples 

(R/TiO2), prepared by irradiating the bare photocatalysts in a methanol/water solution 

under nitrogen atmosphere, under identical conditions as those employed for NM 

nanoparticles deposition, but in the absence of noble metal precursors, were lower that 

those measured with the corresponding unmodified samples; in particular the rate 

decrease was larger for blank NH4F-doped samples than for P25. This negative effect 

may partly be explained by considering that residual methanol molecules might 

compete with formic acid molecules for the photogenerated positive holes (h+). This 

phenomenon is in line with the results reported in Chapter 5 indicating that any 

modification of standard P25 TiO2 (Degussa), consequent to treatments to deposit 

noble metal nanoparticles on its surface, implied a decrease of photocatalytic activity in 
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organic substrate degradation; this was particularly evident in the case of the DP 

(deposition-precipitation) method, which requires thermal treatments.  

 

 

   

 

 

 

 

 

 

 

 

 

Figure 10.10 Zero-order rate constants of formic acid photo-mineralisation on photocatalysts 
prepared starting from different amounts of NH4F dopant (D series) and modified by 
photodeposition of 0.5 wt.% of Au or Pt nanoparticles. R/TiO2 refers to blank samples, 
prepared by following the same photodeposition procedure, except for the addition of the noble 
metal precursor. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.11 Zero-order rate constants of CO2 photo-evolution during acetic acid 
decomposition on photocatalysts prepared starting from different amounts of NH4F dopant (D 
series) and modified by photodeposition of 0.5 wt.% of Au or Pt nanoparticles.  
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The rate constant values reported in Fig.s 10.10 and 10.11 clearly confirm that Pt is a 

better co-catalyst than Au. The difference in the photocatalytic performance of these 

two metal as co-catalysts can be related to their work function values (Φ), i.e. the 

energy required to promote an electron from the Fermi energy level into vacuum (the 

higher is Φ , the lower in energy is the Fermi level). In fact, the greater is the difference 

between the metal work function and that of the TiO2 support, the higher is the 

Schottky barrier,12,13 the electronic potential barrier generated by the band alignment at 

the metal–semiconductor heterojunction, with consequent increased efficiency of 

photogenerated electron trapping by the metal and consequent transfer to O2 molecules 

adsorbed on the photocatalyst in water. For the 111 crystal plane, Φ = 5.31 eV for Au 

and Φ = 5.93 eV for Pt,14 whereas Φ values in the 4.6–4.7 eV range are reported in the 

literature for TiO2.
15 Consequently, Pt is a more efficient electron trapper than gold, 

thus ensuring a more efficient charge separation in line with the higher photoactivity of 

Pt-modified TiO2.  

Furthermore, the rate constant values in formic acid decomposition presented in Fig. 

10.10 evidence that the best performing doped materials modified by surface NM 

nanoparticles were even more active than P25 TiO2 from Degussa, modified by 

following the same photodeposition procedure.    

Possible synergistic effects on the photocatalytic activity of the material induced by 

bulk (NH4F doping) and surface (NM nanoparticles deposition) TiO2 modification 

merit to be outlined. However the term ‘synergetic effect’ has not yet found a unique 

definition in the field of photocatalysis.   

Ohtani in a recent review16 has tried to explain the concept of ‘synergetic effect’ as 

follows: when more than two kinds of photocatalysts are used as a mixture, the overall 

photocatalytic activity exceeds the sum of activities of each photocatalyst. Moreover 

when a certain component alone is not a photocatalyst, and its mixture with a 

photocatalyst shows improved activity, that component should be called “co-catalyst”  

or “enhancer” , and the improvement cannot be attributed to a synergistic effect.  

Even if this kind of interpretation does not allow us to talk about a real synergy for 

our NM modified doped TiO2 systems, a more detailed comparison about the effects 

induced by noble metal nanoparticles deposition on different photocatalytic materials 

(commercial, undoped and differently NH4F-doped TiO2 photocatalysts) merits to be 

undertaken.  
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In this regard looking at the data reported in Fig. 10.10 the intrinsic positive effect 

induced by NM nanoparticles deposition (∆Au or ∆Pt) can be defined as the difference 

between the zero-order rate constant of formic acid degradation obtained with the Au or 

Pt/D_0 samples and that obtained with naked D_0. In a similar way the effect produced 

by only  NH4F doping, ∆dop, can be expressed as the difference between the zero-order 

rate constant of formic acid degradation obtained with naked D_X samples and that 

obtained with naked D_0. This contribution of course varies with the amount of dopant 

source employed in the synthesis of D_X samples. Finally, the overall combined 

beneficial effect of bulk and surface modification, ∆syn, can be estimated as the 

difference between the zero-order rate constant of formic acid degradation obtained 

with Au or Pt/D_X samples and that obtained with naked D_0. This series of 

calculations can be easily expressed as follows: 

 

∆Au = k (Au/D_0) – k (D_0)           (10.2) 

∆Pt = k (Pt/D_0) – k (D_0)          (10.3) 

∆dop = k (D_X) – k (D_0)          (10.4) 

∆syn = k (Au or Pt/D_X) – k (D_0)         (10.5) 

 

Therefore, if the value of ∆syn exceeds the sum of each separately calculated 

contribution (∆dop + ∆Au or ∆Pt), a synergistic effect of NH4F doping and surface NM 

deposition could be recognized. This kind of comparison is depicted in Fig.s 10.12 and 

10.13 for formic acid and acetic acid test reaction, respectively.  

 

 

 

 

 

 

 

 

 

 

 

1.5 1.5

1.2

1.9

2.4

0.8

0

1

2

3

0 5 10 15
molar dopant/Ti percent

(∆
A

u
 +

 ∆
do

p
)·

10
-7

/ M
·s

-1

0

1

2

3

∆
sy

n
·1

0-7
/ M

·s
-1

a) Au effect 



Chapter 10 
 
 

 249 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.12 Calculation of beneficial effect on the photoactivity in formic acid decomposition, 
induced by NH4F doping and a) Au or b) Pt nanoparticles: comparison between the sum of the 
single contributions (∆dop + ∆Au or ∆Pt) and the combined effect (∆syn) of bulk and surface TiO2 
modifications as a function of the percent nominal dopant/Ti ratio.  
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Figure 10.13 Calculation of beneficial effect on TiO2 photoactivity in acetic acid 
decomposition, induced by NH4F doping and a) Au or b) Pt nanoparticles deposition: 
comparison between the sum of the single  contributions (∆dop + ∆Au or ∆Pt) and the combined 
effect (∆syn) of bulk and surface TiO2 modifications as a function of the percent nominal 
dopant/Ti ratio.  

 

Calculation compared in Figs. 10.12 and 10.13 clearly show that for both liquid 

phase test reactions (formic and acetic acid photooxidation), ∆syn contributions were 

always  higher than the ∆dop + ∆Au or ∆dop + ∆Pt sums.  

The beneficial synergistic effect of simultaneous bulk and surface TiO2 modification 

was particularly evident in the case of acetic acid decomposition performed with Pt 

modified doped TiO2 (Fig. 10.13b); the maximum synergistic effect was systematically 

attained with photocatalysts prepared starting from 7 mol.% of dopant source (D_7 

series). On the contrary, no synergistic effect was attained in formic acid 

photodecomposition with NM-modified and relatively highly doped materials (D_12 

series) which, as already observed in Chapter 8, may be characterized by a large extent 

of defective sites that could act as recombination centres of photogenerated charge 

carriers, with a consequent decrease in the photocatalytic activity.  
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10.3.2.2 Photocatalytic production of H2 by photo-steam reforming of methanol 

A recent, systematic investigation on the photocatalytic steam reforming reaction of 

methanol evidenced that methanol undergoes oxidation up to CO2 through the 

formation of formaldehyde and formic acid as intermediate species; carbon monoxide, 

methane, methyl formate, dimethyl ether and acetaldehyde were also identified as side 

products.5  

The products distribution and their selectivity can be tuned by changing the methanol 

molar fraction x in the liquid solution, thus changing the ratio of the methanol to water 

partial pressure in the feeding mixture. In particular, H2 and CO2 evolution close to the 

molar ratio expected from overall methanol steam reforming (reaction (10.1)) is 

achieved only for very low x values (x < 0.01) and formaldehyde becomes the main 

reaction product, for higher x values. Furthermore, the rate of hydrogen production kH2 

follows a bell-shaped curve when plotted vs. x, with a maximum at x = 0.4, and the rate 

of CO2 production rCO2 exhibits a hyperbolic decay curve vs. x. Hence, in the present 

study x = 0.1 was adopted as standard reaction condition, because it represents a good 

compromise between a high rH2 value and high selectivity in hydrogen production to 

CO2, SCO2, defined as SCO2 = (3 kCO2/kH2 ) × 100. The selectivity to CO is defined as SCO 

= (2 kCO/kH2 ) × 100. 

In all photocatalytic tests H2, CO2 and CO evolution occurred at constant rate during 

irradiation, as in previous studies.5 The rates of H2, CO2 and CO production obtained 

with the investigated photocatalysts are reported in Table 10.5, together with the SCO2 

and SCO selectivity values. It is worth recalling that the rate of CO production is very 

important when considering photocatalytic hydrogen as a feedstock for fuel cells. In 

fact, CO would certainly be the most undesired by-product, being a well-known poison 

for Pt-based catalysts in fuel cells. 

Among the unmodified oxides, commercial P25 was confirmed to be the most 

photoactive photocatalysts under UV-Vis irradiation (Table 10.5 and inset of Fig. 

10.14). Among the doped oxides, D_5 was by far the most active photocatalyst; 

however, in contrast with the results obtained during formic or acetic acid 

photooxidation, undoped mixed phase D_0 sample showed higher photoactivity than 

full anatase D_7 and D_12 highly doped materials, even if these latter samples were 

characterized by larger specific surface area (see Table 10.1). By taking into account 

that anatase phase is characterized by a more negative ECB potential value respect to 



Chapter 10 
 
 

 252 

H2 CO2 CO CO2 CO

D_0 0.0651 0.0093 0.0042 42.9 12.9

D_5 0.1883 0.0105 0.0111 16.7 11.8

D_7 0.0372 0.0061 0.0029 49.2 15.6

D_12 0.0447 0.0051 0.0014 34.2 6.3

Au/D_0 0.5758 0.0221 0.0064 11.5 2.2

Au/D_5 3.7864 0.1756 0.0778 13.9 4.1

Au/D_7 2.3407 0.1245 0.0643 16.0 5.5

Au/D_12 0.9944 0.0417 0.0184 12.6 3.7

Pt/D_0 3.0012 0.1797 0.0164 18.0 1.1

Pt/D_5 10.4731 0.7670 0.2458 22.0 4.7

Pt/D_7 5.9948 0.3924 0.0964 19.6 3.2

Pt/D_12 2.6848 0.1568 0.0251 17.5 1.9

P25 0.6113 0.0193 0.0466 9.5 15.2

Au/P25 5.8432 0.3297 0.2597 16.9 8.9

Pt/P25 14.4796 1.4224 0.4359 29.5 6.0

Sample
k/mmol h-1 gcat

-1 % Selectivity

that of rutile phase, i.e. -0.45 V and -0.37 V vs. NHE at pH 7, the electrons 

photogenerated in anatase conduction bands are thus expected to have a greater ability 

from promoting hydrogen formation.6 However, the absorption threshold of anatase is 

at shorter wavelength with respect to that of rutile, and thus anatase is able to absorb a 

lower fraction of the emission spectrum of the xenon lamp. This may explain why the 

D_0 sample exhibits a lower activity with respect to the D_7 and D_12 samples. 

Furthermore NH4F over-doping, even if being able to stabilize the most photoactive 

anatase phase, led to a really marked photoefficiency decrease. This could be ascribed 

to the possible formation of an excess of structure defects which can play an 

detrimental role in favouring the undesired electron-hole recombination process.  

 

Table 10.5 Zero order rate constants of H2, CO2 and CO production (k) and percent selectivity 
to CO2 and CO in hydrogen production on bare and 0.5 wt.% Au or Pt modified doped TiO2 
samples under UV-Vis irradiation. Results obtained with commercial P25 are also reported for 
comparison.    
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Figure 10.14 Zero order rate constants of H2, CO2 and CO production (k) on bare (inset) and 
0.5 wt.% Au or Pt modified doped samples under UV-Vis irradiation. Results obtained with 
commercial P25 are also reported for comparison. 
 

On Au- or Pt-deposited TiO2 samples the rate of hydrogen production was 

systematically more than ten-fold higher in comparison to the values obtained with the 

corresponding bare oxides. Indeed, as already mentioned, noble metal nanoparticles on 

the semiconductor surface are able to capture photopromoted conduction band 

electrons, due to the electronic potential barrier generated by the band alignment at the 

metal/semiconductor heterojunction (Schottky barrier). This phenomenon favours 

interface electron transfer, thus increasing the efficiency of charge separation of the 

electron–hole pairs photo-generated on the semiconductor upon light absorption. In this 

case methanol photo-oxidation occurs at the semiconductor surface, acting as photo-

anode, whereas hydrogen evolution takes place on the noble metal surface, acting as 

photo-cathode. 

Moreover, noble metal nanoparticles deposition on TiO2 samples (especially in case 

of Pt) generally induced a decrease of the SCO value indicating that the more efficient is 

the separation between photoproduced charge carriers in the photocatalyst, the more 

efficient are not only the eCB
- - involving reduction paths, mainly leading to H2 

production, but also the hVB
+ - initiated complete methanol oxidation to CO2.  
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An important point that merits to be outlined is the fact that an almost identical bell-

shaped photoactivity trend with increasing the dopant content was obtained for the 

naked, Au- and Pt-modified titania series (see Fig. 10.14), with the 5% NH4F-doped 

samples always being the best photocatalysts within each series. This demonstrates the 

crucial role that the electronic structure of doped materials has in determining the 

absorption features and the photoproduced charge separation and mobility within the 

photo-catalyst doped oxide. 

Moreover Pt was still confirmed to be a better co-catalyst than Au, in agreement with 

their work function values (ΦAu = 5.31 eV, ΦPt = 5.93 eV) as already discussed in 

Chapter 9. This confirms the main role of the noble metal is limited to an increase 

efficiency of electron-hole separation by ‘capturing’ conduction band electrons, Pt 

always being more efficient than Au in ensuring this. However, the intrinsic charge 

carrier production and the efficiency in their separation is exclusively determined by 

the bulk electronic features of the photocatalytic material.  

The best photoactivity was reached for Pt-modified samples characterized by smaller 

noble metal nanoparticles size (2-5 nm), also thanks to their more homogeneous 

distribution on the oxide surface, as suggested by HRTEM and EXAFS analysis. 

Recently this general trend of hydrogen production rate increase with decreasing the Pt 

particle size has also been shown for TiO2 photocatalysts, prepared by flame spray 

pyrolysis.5,17   

However, concerning different methods of noble metal deposition on TiO2, NM- 

photodeposition technique seems to guarantee both higher hydrogen production rate 

and lower selectivity to CO with respect to surfactant-stabilized preformed NM 

nanoparticles deposition, which was previously investigated in our research group.5 In 

fact, in the case of commercial P25 modified by 0.5 wt.% Pt deposited from pre-

stabilized preformed Pt nanoparticles,18 an hydrogen production rate of 7.75 mmol h-1 

gcat
-1 and a selectivity to CO of 8.3% were obtained, by adopting the same experimental 

set-up described in Fig. 10.2 with a more intense light source. 

Finally, in order to estimate the relative effect induced by noble metal nanoparticles 

deposition on commercial, undoped and differently NH4F-doped TiO2 photocatalysts, 

the ratio between the hydrogen production rate obtained with each NM-modified 

sample and that obtained with the corresponding naked photocatalyst were calculated. 

These values are reported in Table 10.6. 
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Sample k Au /k k Pt /k

P25 9.6 23.7

D_0 8.8 46.1

D_5 20.1 55.6

D_7 62.9 161.2

D_12 22.2 60.1

H2 photo-production 

Table 10.6 Ratio between the zero order rate constants of hydrogen photo-production obtained 
with each NM modified sample and that attained with the corresponding naked photocatalyst. 

 

 

 

 

 

 

 

 

 

The increased photoefficiency in methanol photo-steam reforming produced by the 

presence of Au or Pt nanoparticles on TiO2 was remarkably higher for the NH4F-doped 

systems respect to that of the corresponding undoped or commercial photocatalysts, in 

good agreement with results previously obtained in acetic acid oxidation. In particular 

the maximum positive effect was attained for the D_7 sample. By this way NH4F 

doping provided a synergistic positive contribution to the already beneficial effect 

produced by noble metal nanoparticles, in the case of the photo-reduction path leading 

to H2 production.  

 

As a conclusion of this chapter, one can thus highlight that very intriguing synergistic 

effects of simultaneous bulk and surface TiO2 modification were thus evidenced for 

both energetically down-hill and up-hill reactions, which can be interpreted in relation 

to the structural properties of the materials. On one side, doping guarantees that the 

most active TiO2 anatase phase is stabilized up to high calcination temperature, 

ensuring high crystallinity and good photoinduced charge carriers production, whereas 

noble metal nanoparticles contribute in increasing the separation of photoproduced 

charge carriers, resulting in enhanced photocatalytic performances of the here 

investigated photocatalyst systems.  
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The present PhD thesis was mainly devoted to explore different routes for improving 

the photocatalytic activity of TiO2 for environmental applications, especially in the 

photodegradation of organic pollutants in aqueous suspensions. The general 

conclusions achieved by investigating the photocatalytic degradation of different 

substrates in the presence of TiO2-based materials modified by non-metal doping 

and/or by noble metal nanoparticles deposition can be briefly summarized as follows.    

 

Photocatalytic activity of TiO2 modified by gold nanoparticles deposition: effects of the 

adopted deposition technique 

 

The first part of the thesis was devoted to a systematic study on the photocatalytic 

performance of commercial TiO2 (Degussa P25) bearing gold nanoparticles deposited 

by deposition-precipitation (DP), with particular attention to the method, either thermal 

or chemical, employed to reduce Au(III) into metallic gold. Two organic substrates, i.e. 

the azo dye Acid Red 1 (AR1) and formic acid (FA), were employed as substrates in 

photocatalytic oxidative degradation kinetic tests. Hydrogen peroxide evolution was 

also monitored during the runs in order to have a better insight into the role played by 

gold nanoparticles on the reduction path parallel to organics’ oxidation. 

The presence of gold on TiO2 was found to facilitate both the electron transfer to O2 

and the mineralization of formic acid, mainly proceeding through direct interaction 

with photoproduced valence band holes. The so-formed highly reductant CO2
•- 

intermediate species may contribute in maintaining gold in metallic form. The 

controversial results obtained in the photocatalytic degradation of the AR1 dye were 

rationalized by taking into account that with this substrate, mainly undergoing 

oxidation through a hydroxyl radical mediated path, the photogenerated holes may 

partly oxidize gold nanoparticles, which consequently act as recombination centres of 

photoproduced charge carriers. 

These investigations also evidenced that the effects due to the presence of gold 

nanoparticles on the TiO2 surface should be distinguished from those induced on the 

TiO2 surface by the deposition treatment itself. In particular, the DP technique, 

requiring a high temperature reduction step, produced a decrease in TiO2 photoactivity, 

as demonstrated in the case of blank samples produced following the DP procedure in 

the absence of gold precursor.  
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For this reason, other Au/TiO2 photocatalysts were prepared by photodeposition, by 

irradiating an aqueous suspension containing P25 TiO2 and chloroauric acid under 

anoxic conditions. This technique ensures the direct deposition of metallic 

nanoparticles on the semiconductor, without any need of subsequent heat-treatment. 

HRTEM analysis showed that photodeposition produced larger and more spherical gold 

nanoparticles compared to other gold deposition techniques. 

Furthermore, the photodeposition procedure itself, even in the absence of gold 

precursor, produced positive effects on TiO2 photoactivity, especially in the case of 

Cr(VI) photoreduction, most probably as a consequence of irradiation under anaerobic 

conditions, inducing partial TiO2 surface reduction. The rate of both investigated 

photocatalytic reactions (formic acid photooxidation and Cr(VI) photoreduction) was 

found to depend on metal loading, the maximum value being attained for ca. 0.5 wt.% 

Au, representing an optimal balance between the detrimental shielding effects of 

surface Au nanoparticles, decreasing the fraction of light absorbed by TiO2, and their 

beneficial role in capturing photopromoted electrons, thus reducing the electron-hole 

recombination rate. Photodeposition was thus found to be the best technique for noble 

metal nanoparticles deposition on TiO2-based materials.   

 

Photocatalytic activity of non metal doped-TiO2 materials 

 

In the central part of the thesis the attention was focused on sulphur, fluorine and boron 

as dopants of TiO2, the effects of N or C doping on the photocatalytic efficiency of 

TiO2 having already been widely investigated in the last decade. The sol-gel method, 

which is very flexible and suitable for systematic structure vs. photoactivity studies, 

was adopted to incorporate anion dopants in the TiO2 structure. Two series of TiO2-

based doped samples were first prepared by the sol-gel method in the presence of 

different amounts of dopant source (thiourea and NH4F for S-doped and F-doped 

samples, respectively), followed by calcination at different temperature (500, 600 or 

700°C). Reference undoped materials were prepared by following the same synthetic 

procedure apart from the addition of the dopant precursor.  

First of all, XRPD analysis showed that both types of doping inhibit the phase 

transition from anatase into rutile up to 700°C. Moreover, while the dimension of 

anatase crystallites seems to be independent of the presence of sulphur, NH4F doping 
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appears to produce larger anatase TiO2 particles. BET analysis showed a surface area 

decrease with increasing the calcination temperature even if NH4F doping seemed to 

limit particles sintering effects, especially in case of samples calcined at 500°C.  

While S-doped TiO2 showed a photocatalytic activity in FA photodegradation quite 

similar to that of the undoped materials, most probably due to the presence of oxidised 

sulphur species on their surface, moderate doping with NH4F was extremely beneficial 

in increasing the reaction rate, especially for photocatalysts calcined at high 

temperature, consisting of highly crystalline pure anatase, in which the rate of 

detrimental charge carriers recombination was reduced.  

In particular, the general trend of photocatalytic activity increase with increasing the 

calcination temperature (attained for each series of doped materials) appeared rather 

surprising, since the highest photoactivity was reached with photocatalysts 

characterized by a relatively smaller specific surface area (SSA). In fact SSA is 

expected to play an essential positive role in FA degradation, mainly proceeding 

through direct interaction of FA with photoproduced valence band holes. At the same, 

an excessively high doping level was shown to limit TiO2 photoactivity, possibly due to 

the formation of an increasing number of defects in the oxide structure, acting as 

recombination centres of photogenerated charge carriers.  

The same trend of photoactivity improvement was obtained for home made NH4F-

doped TiO2 in two other reactions, i.e. the decomposition of acetic acid in aqueous 

suspension and the gas phase mineralization of acetaldehyde. This very important 

achievement demonstrates that the photoactivity scale of materials results from their 

intrinsic electronic structure, being independent of specific interactions with the 

substrate and/or the presence of a solvent. Moreover, home made NH4F-doped samples 

were even more active than traditional benchmark P25 TiO2 (Degussa) and other 

commercial full anatase materials possessing different SSA.  

XPS and EPR analysis of NH4F-doped materials, even if calcined at 700°C, revealed 

the presence of residual nitrogen containing species. So for these samples it is better to 

invoke an N and F co-doping. 

In order to study the possible activation of these materials in the visible light region 

the photooxidation of acetic acid was also investigated systematically as a function of 

the irradiation wavelength, by collecting so-called action spectra. By comparing the 

shapes of the action spectra with those of the absorption spectra of the investigated 
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photocatalysts a model was proposed, based on spectral features deconvolution, which 

allows to make a clear distinction between light absorption by the materials which does 

not produce any photocatalytic reaction and light absorption leading to effective 

photoactivity in acetic acid decomposition. In this regard for each doped sample the 

contribution of two different extra absorption peaks was calculated. The contribution of 

a photocatalytically inactive absorption peak (called B) located in the near visible 

region (with a maximum around 420 nm) decreased by increasing the calcination 

temperature. On the contrary the contribution of a photocatalytically active absorption 

peak (called A) located in the UVA region (with a maximum around 365 nm), close to 

the typical band gap absorption onset of anatase TiO2, increased with increasing the 

calcination temperature, within each series of doped samples.  

While peak B was attributed to nitrogen doping which can produce photoinactive 

intra band gap states, the origin of active peak A is still under discussion. This 

absorption feature might be attributed to extrinsic absorption originating from surface 

oxygen vacancies or surface defects, the formation of which is expected to be favoured 

by F-doping at high calcination temperature. On the other hand, peak A might be 

simply a consequence of the higher crystallinity of NH4F-doped samples calcined at 

relatively high temperature (700°C). 

In order to better clarify the role of fluorine and/or nitrogen dopants of TiO2, another 

series of doped photocatalysts was prepared according to the same synthetic sol-gel 

procedure, employing HF instead of NH4F as dopant source, in order to avoid the co-

presence of nitrogen impurities in the material. At the same time, aiming at elucidating 

the effects of F-doping and co-doping of TiO2, an investigation was started on the 

effects of the co-presence of p-block elements boron and fluorine in titania.  

A comparison between the photoefficiency of samples singly or co-doped with 

fluorine was essential in order to confirm fluorine, and not nitrogen, as the main 

responsible for the observed photoactivity increase in the UVA region for doped 

samples calcined at high temperature. 
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Photocatalytic activity of NH4F-doped TiO2 modified by noble metal nanoparticles 

photodeposition   

 

In the last part of the thesis the effect of noble metal (Pt and Au) nanoparticles 

photodeposition on the series of NH4F-doped TiO2 photocatalysts calcined at 700°C 

was investigated in both energetically down-hill and up-hill reactions, i.e. in formic 

acid and acetic acid degradation in aqueous suspension and in hydrogen production 

from methanol/water vapour mixtures. 

The photoactivity results obtained in formic acid degradation clearly demonstrate 

that the best performing home made doped materials were even more active than 

commercial P25 TiO2 from Degussa, used as a standard photocatalyst, both before and 

after surface modification by noble metal nanoparticles deposition by the same 

photodeposition procedure.  

Very intriguing synergistic effects of simultaneous bulk and surface TiO2 

modification were evidenced, which can be interpreted in relation to the structural 

properties of the materials. On one side, doping guarantees that the most active TiO2 

anatase phase is stabilized up to high calcination temperature, ensuring high 

crystallinity of the photocatalytic material, whereas noble metal nanoparticles 

contribute to a better separation of photoproduced charge carriers, resulting in a more 

efficient electron transfer to adsorbed protons, yielding H2.  

Doping of TiO2 enhanced the hydrogen production rate, with an identical bell-shaped 

trend with increasing the dopant content for the naked, Au- and Pt-modified titania 

series, with the 5 mol.% NH4F-doped sample always being the best photocatalyst 

within each series. Over-doping led to a photoefficiency decrease, most probably due to 

an excess of structure defects. 

Pt was confirmed to be a better co-catalyst than Au for both organic substrates 

decomposition and H2 production, in agreement with their work function values ΦAu = 

5.31 eV and ΦPt = 5.93 eV. In general, the highest photoactivity was reached for Pt-

modified samples characterized by smaller noble metal nanoparticles size (2-5 nm), 

also thanks to their more homogeneous distribution on the oxide surface, as suggested 

by HRTEM and EXAFS analysis.  
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