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ABSTRACT 
 

Anthracyclines are important and effective anticancer drugs used in the treatment of many 

adult and children malignancies. Doxorubicin (DOX) is the anthracycline most commonly 

used in cancer patients but its cardiotoxicity limits its clinical use. The precise molecular 

basis of anthracyclines cardiotoxicity remains elusive, but a number of theories have been 

proposed, one of which is the formation of reactive oxygen species (ROS). 

Iron aggravates the cardiotoxicity of DOX; indeed, dexrazoxane (DRZ) is the only agent 

able to protect the myocardium from anthracycline-induced toxicity both in experimental 

and clinical settings. Iron has been proposed to catalyse ROS formation in reactions 

primed by DOX. However, the oxidative nature of the role of iron in cardiotoxicity is 

challenged by results showing that antioxidants do not always protect against 

cardiotoxicity. Therefore, the mechanisms of DOX-mediated cardiotoxicity, and the 

protective role of DRZ, remain to be established.  

The hypoxia inducible factors (HIF, HIF-1α and HIF-2α) are transcription factors which 

regulate the expression of several genes mediating adaptive responses to lack of oxygen. 

Iron is required for HIF degradation and therefore decreased iron availability activates HIF 

in normoxic cells. In consideration of the antiapoptotic and protective role of some HIF-

induced genes, we tested the hypothesis that DRZ-dependent HIF activation may mediate 

the cardioprotective effect of DRZ. 

Treatment with DRZ induced HIF protein levels and transactivation capacity in the H9c2 

cardiomyocytes cell line. DRZ also prevented the induction of cell death and apoptosis 

caused by the exposure of H9c2 cells to clinically-relevant concentrations of DOX. 

Experiments involving suppression of HIF-1α activity or HIF-1α overexpression showed 

that the protective effect of DRZ was dependent on HIF-1 activity.  

By examining the expression of HIF target genes with a possible role in cell survival in 

DRZ-treated H9c2 cells we found that a strong increase in protein levels of antiapoptotic 

genes and haem oxygenase (HO-1) plays a role in the HIF-mediated cardioprotection 

offered by DRZ.  

We also explored two possible alternative pharmacological strategies to prevent DOX-

induced toxicity.  
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The first one was based on a small molecular mimic of hypoxia that could be exploited in 

an attempt to limit anthracycline cardiotoxicity. We examined HIF-1α levels and activity, 

as well as protection from DOX damage, in H9c2 cardiomyocytes pre-exposed to DMOG, 

an antagonist of α-ketoglutarate which activates HIF under normoxic conditions. 

However, we did not find any kind of protection from damage induced by DOX in H9c2 

cells pre-treated with DMOG. 

The second one was based on the activation of the sodium-dependent glucose transporter-

1 (SGLT-1), which has been shown to protect different types of cells from various 

injuries. We found that pre-treatment with D-glucose protected H9c2 cells from DOX-

induced toxicity, but the non-metabolizable glucose analog 3-O-methylglucose, and the 

SLGT-1 agonist BLF50 were ineffective, thus indicating that the protection was not 

mediated by the activation of SGLT-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INTRODUCTION  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

1. INTRODUCTION 

 

1.1 DOXORUBICIN 

 

Anthracyclines are important and effective anticancer drugs used in the treatment of many 

adult and children malignancies. The most commonly used anthracyclines are 

Doxorubicin (DOX), Daunorubicin and Epirubicin. 

DOX, (also called adriamycin) consists of a planar tetrahydro-anthracene ring containing 

quinone and hydroquinone groups located on adjacent rings, one short side chain with a 

carbonyl group at the C-13 and an amino-sugar linked through a bond glycoside at C-7 

ring tetracyclic (Minotti G, et al., 2000).  

For many years DOX has assumed an important role in cancer chemotherapy and it is 

commonly used in the treatment of leukemias and lymphomas, breast cancer and 

carcinomas. Despite its wide clinical use, the antitumor mechanism of DOX is not yet well 

understood but is probably related to anthracyclines biochemical properties. 

The structure of DOX is responsible for many different biochemical properties: the 

simultaneous presence of quinone and hydroquinone groups on adjacent rings allows 

anthracyclines to interact with metals and undergo a series of reactions, many of which 

lead to the formation of free radicals, resulting in accumulation of toxic intermediates such 

as superoxide anion or hydroxyl radical. The planar tetrahydro-anthracene permits the 

anthracycline intercalation between DNA base pairs, and the complex stability is 

enhanced by the formation of hydrophobic bonds and hydrogen bonds formed between the 

amino groups and the ribophosphate of DNA helix. It is believed that these mechanisms 

may interfere with cell growth and survival. The antitumor activity of DOX may also be 

explained by the inhibition of DNA polymerase that determines a block in the synthesis of 

nucleic acids. A splitting of DNA strands mediated by inhibition of topoisomerase II, an 

enzyme that favors the positive super-coiling of DNA, may also occur. Despite its efficacy 

as an antineoplastic drug, the use of DOX is unfortunately limited by the onset of severe 

cardiomyopathy, which can be acute or chronic. The acute effects, including tachycardia 

and hypotension, are usually reversible, while chronic effects lead to irreversible changes 

that result in severe heart failure. In the case of DOX, the risk of cardiotoxicity is dose-
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dependent and increases rapidly when the cumulative dose exceeds 550 mg/m2 of body 

surface area. The indication to not exceed this critical threshold could imply the 

interruption of the chemotherapeutic regimen before completion and may thus interfere 

with cancer therapy (Minotti et al., 2004). 

 

1.1.1 MECHANISMS OF DOX-INDUCED CARDIOTOXICITY 

 
a) Role of iron  

Iron seems to play an important role in anthracycline cardiotoxicity. Studies conducted 

some 30 years ago have shown that derivatives of EDTA, which have metal chelating 

properties, prevent injury and cardiac dysfunction due to the use of the drug (Herman EH, 

et al., 1979). As further evidence of the negative effect of iron, in the last years it has been 

also highlighted the cardioprotective effect of dexrazoxane (DRZ), an iron chelator that 

reduces the incidence of cardiotoxicity with a long-term effect, and has proved to be 

effective in numerous clinical trials both in adults and children (Pouillart P. 2004; Wouters 

KA, et al., 2005; Lipshultz SE, et al., 2010).  

Conversely, the involvement of iron in DOX-induced cardiotoxicity has been highlighted 

by the demonstration that primary and secondary iron overloads exacerbate the drug’s 

cardiotoxic effects (Hershko C, et al., 1993; Link G, et al., 1996; Miranda CJ, et al., 2003). 

As it regards the mechanisms undergoing the toxic effect of DOX-iron interaction, the 

mechanism that received the major support was based on the hypothesis that iron may 

catalyze ROS formation in DOX-primed reactions. Indeed, the toxicity of reactive oxygen 

species increases significantly in the presence of iron ions in an aqueous environment 

because the metal can form the hydroxyl radical (OH•) through the Fenton reaction, which 

uses ferrous iron (Fe II) and through the Haber-Weiss reaction which uses ferric iron (Fe 

III). The removal of metal ions (for example by DRZ), prevents the formation of the Fe3+ -

DOX complex and the subsequent formation of reactive free radicals.  

 

b) Metabolism of the drug and ROS formation  

To better understand the mechanisms underlying the toxicity induced by DOX it is 

necessary to examine the metabolic fate of the drug.  

Anthracyclines undergo redox cycling which begins with the monovalent reduction of the 

quinone residues localized on the tetracyclic ring of the drug. This reaction is catalyzed by 
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mitochondrial NADH-dehydrogenase or by mitochondrial and nuclear NADPH-

cytochrome P450 reductase and leads to the formation of a highly unstable semiquinone 

radical (DOX-). DOX- tends to regenerate the quinonic form, by transferring electrons to 

iron-rich structures, or by reducing molecular oxygen to superoxide anion with consequent 

formation of hydrogen peroxide (H2O2) (Gewirtz DA 1999; Minotti G, et al., 2004).  

The reactive intermediates can attack cellular macromolecules such as DNA lipids and 

eventually lead to cell damage and death (FIG. A). The link between the formation of free 

radicals during DOX metabolism and the cardiotoxicity induced by DOX was highlighted 

by the fact that anthracyclines activate a transduction signal pathway that induces cell 

death by apoptosis (Minotti G, et al., 2004).  

 

 

 

FIG. A - Metabolic activation of DOX 
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This redox cycling is particularly harmful to cardiomyocytes that express low levels of 

antioxidant defenses, such as superoxide dismutase and catalase, whose function is to 

convert the active species into less harmful forms. This would account at least in part for 

the particular susceptibility of heart cells to DOX injury as well as for the role of iron in 

DOX cardiotoxicity. As already mentioned above, during DOX metabolism, iron increases 

the toxicity of the intermediates that are formed in some reactions. As a typical "redox 

cycling" agent that is metabolized through redox reactions, DOX releases electronegative 

intermediates or superoxide anions able to relocate the iron from intracellular stores.  

The iron-free radicals model would imply a protective and beneficial effect of antioxidant 

interventions. Indeed, the use of a ‘chain breaker’ antioxidant like vitamin E was able to 

prevent the onset of the typical ultrastructural changes of the endoplasmic reticulum, 

sarcolemma and mitochondria that occurs after DOX transformation in the semiquinone 

radical. However, these results obtained in experimental models were not confirmed in 

clinical settings. Human studies have revealed that vitamin E, at doses able to prevent 

cardiovascular disease, protect from the onset of acute cardiomyopathy but does not offer 

any protection against chronic diseases (Minotti G, et al., 1999; Ladas EJ, et al., 2004; 

Simunek T, et al., 2009).  

An alternative mechanism to explain DOX-mediated cardiotoxicity is the formation of the 

alcohol metabolite of DOX (Doxol) by reduction of the carbonyl group in C13 (FIG. B).  
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FIG. B - DOX is converted to its alcohol metabolite doxorubicinol 
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It has been shown that Doxol accumulates in the heart of rats treated with DOX, at 

concentrations two/three fold higher than in the liver whereas DOX concentrations in the 

two organs are similar (Peters JH, et al., 1981) and this accumulation reflects the 

intramyocardial metabolism of the drug rather than the uptake of the metabolite from the 

blood (Olson RD, et al., 1990).  

This suggested that the cardiotoxicity may depend on the ability of cardiomyocytes to 

form and accumulate Doxol. This seems to occur also in patients undergoing treatment 

with DOX as an antineoplastic agent, as evidenced from investigations performed on 

postmortem cardiac tissue (Stewart DJ, et al., 1993).  

Regarding the mechanism underlying Doxol toxicity, it has been demonstrated that Doxol 

can inhibit Ca2
+/Mg2

+ ATPase of the sarcoplasmic reticulum, the mitochondrial F0F1 

pump, the Na+/K+ ATPase of the sarcolemma (Boucek RJ Jr, et al. 1987; Olson, RD, 

1988). Studies in which human myocardial lysates were exposed in vitro to DOX (Minotti 

G, et al. 1998; Brazzolotto X, et al., 2003) also showed that Doxol interferes with iron 

metabolism by interacting with the Iron Regulatory proteins (IRP), which are cytoplasmic 

proteins that modulate the expression of transferrin receptor and ferritin and play a key 

role in controlling iron uptake, use and intracellular accumulation use (Beinert H and 

Kennedy MC. 1993). IRP-1 can exist as apoprotein with the ability to bind RNA or as 

holoprotein after assembly of a Fe-S cluster. In the latter case IRP-1 has enzymatic 

activity similar to mitochondrial aconitase.  

It has been shown that Doxol may cause the removal of iron (FeII) from the 4Fe-4S 

cluster of cytoplasmic aconitase. Iron removal proceeds through the reoxidation of Doxol 

to DOX and the consequent release of the DOX - Fe (II) complex as final product. Cluster 

disassembly abolishes aconitase activity and leads to the formation of an apoprotein that 

can bind to IRE sequences (Iron Responsive Elements) in the mRNAs of transferrin 

receptor or ferritin. (Minotti G, et al., 1998). However, DOX, thanks to the formation of a 

DOX-Fe complex can also oxidatively modify the Cys residues of IRP-1, probably Cys437, 

which mediates the binding to IRE sequences and this also leads to the loss of RNA 

binding activity. The result of the interaction between Doxol and IRP1 is therefore the 

simultaneous loss of both RNA binding capacity and aconitase activity and the formation 

of a "null protein" with consequent impairment of iron homeostasis.  

Concerning iron homeostasis, the "null protein" is not able to detect the intracellular level 

of the metal and to adjust the uptake and release of iron in the cell as needed. It is also 

important to emphasize that, in addition to modulate the level of ferritin and transferrin 
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receptor, IRP-1 is able to regulate the mRNA for other enzymes related to the use 

(erythroid aminolevulinate synthase), the uptake (DMT1/Nramp2) and the release 

(ferroportin-1, IREG1, MTP1) of iron. This could also lead to impaired formation of 

several enzymes and oxygen binding proteins, whose function depends on the metal 

(catalase, lipoxygenase, cytochromes, and myoglobin).  

DOX may undergo not only reductive metabolism but also other types of metabolism. It 

has been recently discovered that DOX can also undergo oxidative degradation, releasing 

a compound consisting of a single ring, called 3-methossiphtalic acid. DOX oxidative 

degradation requires peroxidase reactions that in the heart seem to be due to the action of 

oxidized myoglobin and/or inducible prostaglandin H2 synthase (iPGH2,) more commonly 

known as cyclooxygenase-2 (COX-2), both having peroxidase activity. Interestingly, 3-

methossiphtalic acid proved to be non toxic when administrated to cardiomyocytes at 

doses exceeding several fold those of DOX (Minotti G, et al., 2004). This degradation 

pathway thus appears to decrease DOX toxicity that requires the action of the intact drug 

or its reductive metabolites and is probably used by cardiomyocytes as a way to counteract 

DOX toxicity. It should be noted that this oxidative degradation may decrease DOX 

cardiotoxicity but at the same time it may also impair its antitumor activity, but the effect 

on tumor cells have not been investigated, yet.  

 

1.1.2 DOXORUBICIN AND APOPTOSIS 

 

As already mentioned above, anthracyclines activate a signal transduction pathway that 

induces cell death by apoptosis (Minotti G, et al., 2004). 

Apoptosis can be induced by many stimuli that vary from cell to cell. These stimuli can be 

both intracellular and extracellular and activate different mechanisms: an intrinsic pathway 

and an extrinsic pathway depending on the origin of death signals.  

The extrinsic pathway is triggered by the binding of an extracellular "death ligand" (eg 

Fas) to its receptor on the cell surface. The complex then uses a molecule that acts as an 

adapter, called Fadd (Fas-associated death domain protein), to bind and recruit molecules 

that eventually determine the activation of procaspase-8. 

The intrinsic pathway is activated in response to both internal damage (such as DNA 

damage) and extracellular signals. DNA damage activates the p53 protein, which blocks 
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cell cycle progression and promotes DNA repair. If the damage is too extensive and 

irreversible, p53 promotes cell apoptosis.  

Apoptotic signals induce mitochondrial cytochrome c release, which leads to activation of 

caspase-9 through the formation of an apoptosome complex between 'apoptosis activating 

factor-1' (Apaf-1), cytochrome c and procaspase-9. The opening of the mitochondrial 

pores, resulting in the release of cytochrome c, is regulated by the formation of 

heterodimers between proapoptotic proteins (Bid, Bax, Bad etc..) (FIG. C).  

 

 

 

 

FIG. C 

Apoptotic Pathways 

 

 

 

DOX may trigger apoptosis through several mechanisms. One of these is the formation of 

ROS following redox cycling (see above). Moreover, as reported before, DOX can interact 

with DNA and enzymes involved in DNA maintenance thus leading to persistent DNA 

damage. Moreover, DOX can affect the mitochondrion, an organelle which is a target of 

DOX toxicity because it is the site of drug accumulation over time. It has been shown that, 

at clinically relevant plasma DOX concentrations (0.5–1 µM), the intramitochondrial 
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concentration is approximately about 100 times higher (50–100 µM). (Kalyanaraman B, et 

al. , 2002) (FIG. D).  

 

 

 

 

 

FIG. D 

Mitochondrial DOX accumulation and cell death 

 

 

 

 

Although there are strong evidences on the mechanisms that induce apoptosis in 

cardiomyocytes treated with DOX in vitro, it is not yet clear how apoptosis may contribute 

to the cardiotoxicity induced by DOX in vivo.  

Moreover, studies in animal models have indeed highlighted the link between apoptosis 

and acute cardiotoxicity, but whether apoptosis is one of the mechanisms involved in 

chronic cardiotoxicity is still controversial (Minotti G, et al., 2004). 
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1.2 HYPOXIA AND HYPOXIA-INDUCIBLE FACTORS 

 

Oxygen is both an environmental and developmental signal that governs important cellular 

pathways and plays a critical role in several physiological and pathophysiological 

conditions. Its cellular demand vary considerably among different tissues, largely due to 

variations in energy requirements from cell to cell.  

Hypoxia is a condition that leads to inadequate availability of O2 in the blood and tissues. 

It may be due to a reduction in the partial pressure of oxygen, low oxygen transport or the 

inability of the tissue to use oxygen, mainly caused by the disrupted microcirculation 

(Sitkovsky M, et al., 2005. Therefore, hypoxia (or low oxygen tension) is part of both 

physiological and pathological processes. 

Oxygen sensing is crucial for cell survival and is a key element for the possibility of living 

organisms to adapt to changing environments or physiological conditions. In addition, 

oxygen-sensing mechanisms are involved in many pathophysiological conditions, 

including stroke, sleep apnea, cancer, hypertension, inflammation, heart failure and 

sudden infant death syndrome (Sharp FR, et al., 2004). To deal with hypoxic conditions, 

cells and organisms have developed efficient mechanism for adaptation and survival.  

HIF-1 is a fundamental mediator of adaptation of cells to hypoxia (Semenza GL. 2001). It 

is a heterodimeric transcription factor consisting of an inducible HIF-1α subunit and a 

constitutively expressed HIF-1β subunit.  

HIF-1 activation leads to increased transcription of more than 100 target genes involved in 

a number of different cellular functions, such as cell survival, cell proliferation, apoptosis, 

glucose metabolism, angiogenesis, erythropoiesis, iron homeostasis, energy metabolism. 

Moreover, gene inactivation experiments in mice have shown that HIF-1 is essential for 

embryonic development (Semenza GL. 2009) (FIG. E). 
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FIG. E 

 

HIF-1 is also the main transcription factor responsible for the tissue adaptation to ischemia 

and plays an important role also in the oxygen sensing organ called carotid body that 

immediately sends to the body signals of adaptation to the low oxygen tension (Sharp FR, 

et al., 2004).  

HIF-1 is a ubiquitously expressed transcription factor that was originally discovered in 

1992 as being responsible for the expression of erythropoietin in hypoxic conditions 

(Semenza GL. 2001). Its subunits, HIF-1α and HIF-1β, coded by differently located genes 

(human chromosome 14 for HIF-1α and chromosome 1 HIF-1β, are basic helix-loop-helix 

(bHLH) proteins of the Per-ARNT-Sim (PAS) family. 

The two proteins have some common characteristics, they both contain nuclear 

localization signals, a basic helix-loop-helix motif (bHLH), which is essential for DNA 

binding to the Hypoxia Responsive Element (HRE) in the promoter region of target genes 

and responsible for subunit dimerization, and the PAS domain. This last sequence 

identifies a protein superfamily, which was initially founded by the Drosophila proteins 

period (Per) and single-minded (Sim) and the vertebrate protein aryl hydrocarbon receptor 

nuclear translocator (ARNT), later discovered to be identical to HIF-1β. HIF-1α has some 
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unique characteristics: it contains the oxygen-dependent degradation domain (ODD) found 

between residues 401-603, this region is highly oxygen regulated and its deletion confers 

stability to the protein in the presence of oxygen. HIF-1α also contains two transactivation 

domains (TAD-N and TAD-C), which are responsible for the transcriptional regulation of 

HIF-1 target genes. These TADs are also involved in the binding of co-activators such as 

p300/CBP and Ref-1, which are essential for HIF-1’s transcriptional activation. HIF-1β 

also contains a TAD domain, but this is not necessary for HIF-1’s transcriptional activity 

(Dèry et al., 2005).  

HIF-1α has several homologues (HIF-2α and HIF-3α) that seem to have partially 

different functions. Although HIF1α/HIF1β dimers and HIF2α/HIF1β dimers bind the 

same DNA sequence, they might be differentially expressed in different cells or tissue, 

resulting in the activation of different target genes with non-overlapping functions (Sharp 

FR, et al., 2004). HIF-1α and HIF-2α knockouts are embryonically lethal, showing that 

each gene has unique functions that cannot be replaced by its homologue. This has been 

confirmed by the evidence that HIF-1α is ubiquitously expressed, whereas HIF-2α 

expression is restricted to endothelial cells and perhaps other specific cell types. HIF-3α 

seems to act as an antagonist of the HIF system because the inhibitor of PAS domain 

protein (IPAS), a dominant negative regulator of HIF-1, was identified as an alternatively 

spliced variant of HIF-3α (Lee JW et al., 2004). 

While HIF-1β is constitutively expressed, HIF-1α is an extremely labile protein with a 

half-life of less than 5 minutes in normoxia. The rapid and continuous degradation of HIF-

1α in normoxic condition is effectively blocked if oxygen availability is reduced (Sharp 

FR, et al., 2004).  

In the presence of O2, iron and 2-oxoglutarate, HIF-1α is hydroxylated by three specific 

oxygen-dependent proline-hydroxylases (PHD1-3) in the cytoplasm and nucleus, thereby 

targeting it for proteosomal degradation (Kaelin et. al., 2008; Harten SK, et al., 2010). 

These enzymes hydroxylate proline residues 402 and 564 in the ODD domain of HIF-1α, 

leading to changes in the conformation of HIF-1α and allowing the von Hippel Lindau 

protein (VHL) to recognize and bind to it. Other factors then bind to VHL, including 

elongin B and elongin C, Cullin 2 and RBX1. This complex acts as an E3 ubiquitin ligase 

for HIF-1α poly-ubiquitylation in the ODD, and HIF-1α is eventually degraded by the 

proteasome (Kaelin, 2008) (FIG. F). 
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FIG. F 

Degradation of HIF-1αααα by the proteasome 
 

 

When one of the co-factors of the PHD (O2, Fe2+, 2-oxoglutarate) is not present, HIF-1α 

and HIF-2α bind the HIF-1β subunit forming a heterodimer able to recognize the 

consensus sequence HRE present in target genes.  

Other mechanisms that determine the proteasomal degradation of HIF-1α in normoxia 

condition are: activation of the protein ARD1, a protein acetyl-transferase of the 

p300/CBP family that by acetylating lysine 532 enhances the interaction with VHL and 

promotes the proteasomal degradation of HIF-1α. The factor inhibiting HIF-1 (FIH1) 

abrogates the interaction between HIF-1 and the transcriptional co-activator p300/CBP. 

FIH1 is a unique asparaginyl-hydroxylase that contains a ferrous ion and uses O2 and 2-

oxoglutarate as co-factors to hydroxylate asparagine 803 in HIF-1α. This decreases 

binding of p300/CBP to HIF-1α and prevents the full transcriptional activation of HIF 

target genes (FIG. G).  
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FIG. G 

 

 

Lack of the cofactors thus promotes both HIF stability and transcriptional activity as 

prolyl- and asparaginyl-hydroxylases are inhibited, thereby preventing hydroxylation of 

HIF-1α and so its degradation, leading to rapid HIF-1α accumulation. In addition to lack 

of oxygen, deficiencies of one of the PHD cofactors can lead to HIF stabilization. This 

was supported by the demonstration that PHD inhibition by the competitive inhibitor 

dimethyl-oxalylglycine (DMOG), a cell-permeable analog of 2-oxoglutarate (Jaakkola P, 

et al., 2001) results in increased HIF-1 activity. 

Moreover, in line with the iron requirement of PHD for HIF-1 degradation, also decreased 

intracellular iron availability activates HIF (Peyssonnaux C, et al., 2008; Mole DR. 2010). 

Accordingly, it has been found that exposure to iron chelators such as desferrioxamine 

(DFO) (Wang GL and Semenza GL. 1993; Bianchi L, et al., 1999) or growth under iron 

deficiency conditions (Jones DT, et al., 2006; Knowles HJ, et al., 2006) is associated with 

a increased level of HIF-1 activity in cultured cells, and HIF-1 has been induced in vivo by 

iron depletion (Dongiovanni P, et al., 2008) or starvation (Peyssonnaux C, et al., 2007).  
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Additionally, the activity of HIF-1 can be increased through phosphorylation and HIF-1α 

can be directly phosphorylated by p42/p44-mitogen-activated protein kinase (p42/44-

MAPK). A study showed that the phosphorylation of threonine 796 enhances the 

transcriptional response in hypoxia and prevents the hydroxylation of Asn-803 by FIH. 

Alternatively, another study demonstrated that p42/p44–MAPK can phosphorylate the 

p300/CBP co-activator, leading to increased HIF-1 transcriptional activity.  

Although hypoxia is the main activator of HIF-1, there is an increasing body of evidence 

demonstrating that a number of non-hypoxic stimuli are also highly able of turning on this 

transcription factor. Such stimuli include growth factor, cytokines, hormones, viral 

proteins (Feldser D, et al., 1999; Richard DE, et al., 2000; Tacchini L, et al., 2001; Zhong 

H, et al., 2000), inflammatory mediators, NO, (bacterial lipopolysaccharide) LPS (Blouin 

CC, et al., 2004), TNF-α (Dèry MA, et al., 2005) and adenosine (De Ponti C, et al., 2007).  

Interestingly, the mechanisms that are involved in activating HIF-1 in hypoxic and 

normoxic conditions are strikingly different (Déry MA, et al., 2005). The main mechanism 

implicated in this induction is an increase of both the transcription and translation of the 

HIF-1α mRNA. The degradation of HIF-1α does not appear to be inhibited when HIF-1 is 

activated by non-hypoxic conditions. These mechanisms seem sufficient to shift the 

balance between synthesis and degradation towards a normoxic accumulation of HIF-1α 

(Déry MA, et al., 2005).  

An interesting mechanism proposed suggests that the activation of phosphatidylnositol 3-

kinase (PI3K) could increase the rate of HIF-1α translation. This involves the activation of 

the ribosomal S6 protein by the PI3K/p70S6K/mTOR pathway. P70S6K regulates the 

translation of a group of mRNAs possessing a 5’-terminal oligopyrimidine tract (5’-TOP), 

a stretch of 4-14 pyrimidines found at the extreme 5’ terminus of certain mRNAs. HIF-

1α’s 5’-UTR contains these tracts, including a long conserved sequence in the extreme 5’ 

terminus. Phosphorylation of the S6 protein of the 40S ribosomal unit by p70S6K 

increases the translation of the 5’TOP mRNAs. Some stimuli like vasoactive hormones 

and LPS can also increase the rate of HIF-1α mRNA transcription. Increases in HIF-1α 

gene transcription are possibly mediated through activation of diacilglycerol-sensitive 

protein kinase C (PKC), a kinase known to stimulate Sp1 gene transcription.  

It is also important to note that non-hypoxic stimuli also strongly activate p42/p44 

mitogen activated protein kinase (p42/p44-MAPK). In this situation, strong HIF-1 
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induction along robust p42/p44-MAPK activation should lead to elevated HIF-1 activity ( 

Déry MA, et al., 2005). 
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1.3 THE IRON CHELATOR DEXRAZOXANE 

 

Chelators are small molecules that bind very tightly to metal ions. Some chelators are 

simple molecules that are easily manufactured (e.g., ethylene diamine tetra acetic acid; 

EDTA). Others are complex proteins made by living organisms (e.g., transferrin). The key 

property shared by all chelators is that the metal ion bound to the chelator is chemically 

inert. Consequently, one of the important roles of chelators is to detoxify metal ions and 

prevent poisoning.  

Iron chelators can be classified using a number of criteria such as their origin (synthetic 

versus biologically produced molecules), their interaction with solvents such as water 

(hydrophobic versus hydrophilic) or their stechiometric interaction whit the metal 

(bidentate versus hexadentate). Some of these properties have an important impact on the 

clinical utility of a chelator. Iron chelators are mainly used and developed to treat the iron 

overload in subjects with primary or secondary iron overload, mainly hemochromatotic 

and thalassemic patients, respectively. However, the use of these compounds as 

therapeutic agents in the treatment of cancer is envisaged. They may act by depleting iron, 

a necessary nutrient, thus limiting tumor growth. Alternatively or additionally, they may 

form redox-active metal complexes that cause oxidative stress via production of reactive 

oxygen species, damaging critical intracellular targets and thereby eliciting a cytotoxic 

response again cancer cells. Studies in vitro have evaluated the structure-activity 

relationships and mechanism of action of many classes of iron chelators and many animal 

studies have confirmed the antitumor activity of several chelators (Lipshultz SE, et al., 

2010).  

Dexrazoxane (DRZ) is the only iron chelator clinically approved to prevent anthracycline 

mediated cardiotoxicity in cancer patients since it has been shown that it can protect the 

myocardium from anthracycline-induced toxicity under both experimental and clinical 

condition (Wouters KA, et al., 2005) with long-term effect (Lipshultz SE, et al., 2010).  

DRZ has two biological activities: a strong inhibitor of topoisomerase II which prevents 

the separation of DNA strands during meiosis and also it is a pro-drug that is 

enzymatically hydrolyzed inside cardiomyocytes to its metal chelating metabolite with 

EDTA-type structure. In particular, after hydrolysis inside the cell, DRZ initially forms 

two intermediate products with an open ring (B and C) and then, a metabolite with two 
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open rings (ADR-925) similar to EDTA and with a strong iron chelator activity (Hasinoff 

BB, et al., 2007) (FIG. H). 

 

 

 

 

FIG. H 

Intracellular metabolism of DRZ 
 

 

 

The cardioprotective effect of DRZ has been consistently demonstrated by many studies in 

vitro, in animal models and in clinical trials. Its protective effect was observed in adults 

and in children and, importantly, does not reduce the antitumor efficacy of anthracyclines 

(Pouillart P. 2004).  

As it regards the mechanisms underlying the cardioprotective effect of DRZ, in 

consideration of  the chelating properties of DRZ and the role of iron in oxidative stress 

triggered by DOX metabolism it has been suggested that the action mechanism of DRZ 

cardioprotection is linked to the decreased iron dependent formation of free O2 radical. 
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1.4  PROTECTIVE EFFECTS OF GLUCOSE TRANSPORTERS 

 
The oxidation of glucose represents a major source of metabolic energy for mammalian 

cells. The cellular uptake of this important nutrient is accomplished by membrane-

associated carrier proteins that bind and transfer it across the lipid bilayer (Bell GI, et al., 

1990).  

Two classes of glucose carriers have been described in mammalian cells: the Na (+)-

dependent glucose cotransporter (SGLT, members of a large family of Na-dependent 

transporters, gene name SLC5A) and the facilitative Na (+)-independent glucose 

transporters (GLUT family, gene name SLC2A) (FIG. I).  

 

 

 

FIG. I 
 

Classical model of intestinal sugar transport 
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Glucose does not represent only a key fuel and an important metabolic substrate for 

mammalian cells, as many studies both in vitro and vivo have shown a cytoprotective 

action of glucose. In particular, in vitro studies found that elevated glucose concentrations 

in the cell culture medium protected the intestinal epithelial cell line Caco-2 from LPS-

induced apoptosis, suggesting that glucose has a cytoprotective action on enterocytes, at 

least in vitro (Yu LC, et al., 2005; Yu LC, et al., 2006).  

The protective effect of glucose is mainly dependent on the activation of the SGLT 

pathways. SGLT-1 activation protected from damages induced by TLR ligands in 

intestinal epithelial cells and in a murine model of septic shock. In intestinal epithelial cell 

lines, glucose inhibited the IL-8/keratinocyte-derived chemokine production and the 

activation of the TLR-related transcription factor NF-κB stimulated by LPS or CpG-

oligodeoxynucleotide (Palazzo M, et al., 2008). 

Oral ingestion of glucose was found to protect 100% of mice from lethal endotoxic shock 

induced by i.p. LPS administration. This protective effects resides in activation of SGLT-

1; in fact, the glucose analog 3-O-methyl-D-gluco-pyranose, which induces the transporter 

activity, but is not metabolized, exerted the same inhibitory effects as glucose both in vitro 

and in vivo (Palazzo M, et al., 2008).  

It has been also demonstrated that oral administration of D-glucose, but not of either D-

fructose or sucrose, prevents LPS-induced liver injury, as well as liver injury and death 

induced by an overdose of acetaminophen, also in this case the effect is the likely 

consequence of glucose-induced activation of the SGLT-1.  

In addition, D-glucose was found to protect the liver from alpha-amanitin-induced liver 

injury although in this case a second signal had to be present in addition to glucose to 

achieve protective efficacy (Zanobbio L, et al., 2009).  

Expression of SGLT1 is mainly seen in intestinal and epithelial cells, but a recent study 

also characterized SGLT-1 expression in cardiac myocytes (Sanjay K. Banerjee et al., 

2009). High levels of SGLT-1 RNA were also found in human cardiomyocytes (Zhou L, 

et al., 2003) and recent studies affirms that positive inotropic effect in failing human 

ventricular myocardium are partially substrate-dependent and are stronger in glucose-

containing solution (Von Lewinski D, et al., 2010). 

In this context, it has been developed a new not metabolized glucoderivative, named 

BLF50, able to activate SGLT-1 and protect against damages induced by LPS. Given the 

cytoprotective and anti-inflammatory effects linked to SGLT-1 activation (La Ferla B, et 
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al., 2010), this new synthetic molecule BLF50, acting at very low dosages, might 

represent a new and effective drug against various cell injuries (FIG. L).  

 

 

 

 

 

FIG. L 

Synthesis and Structure of BLF50 
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2. AIM 

 
DOX is effective in the treatment of a variety of malignancies, but its cardiotoxicity limits 

its clinical use in cancer patients. 

The precise molecular basis of anthracycline cardiotoxicity remains elusive, but a number 

of theories have been proposed, one of which is the formation of reactive oxygen species 

(ROS). 

Iron aggravates the cardiotoxicity of DOX and the iron chelator DRZ is the only agent 

protecting against DOX cardiotoxicity; however, the mechanisms underlying the role of 

iron in DOX-mediated cardiotoxicity and the protective role of DRZ remain to be 

established. As iron is required for the degradation of hypoxia-inducible factors (HIF), 

which control the expression of antiapoptotic and protective genes, the major aim of my 

PhD project was to test the hypothesis that HIF activation by DRZ-dependent iron 

chelation may be involved in the protective effect against DOX-induced toxicity. To this 

purpose, we tested the cardioprotective effect of DRZ in cells treated with DOX.  

These experiments have been performed in the H9c2 embryonic rat heart-derived cell line, 

that has been shown to represent a reliable model for evaluating various characteristics of 

cardiomyocytes, including DOX toxicity. 

Another aim of my project was to investigate two other possible alternative 

pharmacological strategies to prevent DOX-induced toxicity were also explored. 

The first one was based on the demonstration of the involvement of HIF and was aimed at 

evaluating whether small molecular mimics of hypoxia could be exploited in an attempt to 

limit anthracycline cardiotoxicity. To this purpose, HIF levels and activity, as well as 

protection from DOX damage, in H9c2 cardiomyocytes pre-exposed to DMOG, an 

antagonist of α-ketoglutarate that activates HIF under normoxic conditions, were 

examined. 

In the second approach, the protective activity of the sodium-dependent glucose 

transporter-1 (SGLT-1), which has been shown to exert protective effects against different 

types of injuries in various cell types, was evaluated 
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3. METHODS 

 

3.1 CELL CULTURE AND TREATMENTS  

 
The H9c2 embryonic rat heart-derived cell line was obtained from The American Type 

Culture Collection (Manassas, VA, USA) (CRL 1446) and grown at 37°C in 5% CO2 in 

Dulbecco’s modified minimal essential medium adjusted to contain 4 mM glutamine, 1.5 

g/L sodium bicarbonate, 4.5 g/L glucose, 1 mM sodium pyruvate, 100 U/mL penicillin 

and 0.1 ng/mL streptomycin, supplemented with 10% heat inactivated fetal calf serum. 

Subconfluent cells were treated for 24 hours with 0.5 µM DOX (Pharmacia, Milan, Italy) 

in complete growth medium. When appropriate, various concentrations of DRZ (Sigma, 

Milan, Italy) were added to the culture medium for 3 hours, followed or not by DOX 

treatment.  

Cells were also exposed to 100 µM DFO (Sigma) or 1 mM dimethyloxalyl glycine 

(DMOG; Alexis Biochemicals, Lausen, Switzerland) for 24 hours, 1 mM buthionine 

sulphoximine (BSO) for 3 h and 100 µM H2O2 for 3 hours (all from Sigma). When 

appropriate, cells were treated for 3 or 24 hours with various concentrations of DMOG 

(Alexis Biochemicals).  

Cells were also treated for 24 hours with D-Glucose 9 g/L, 13.5 g/L, 22.5 g/L, with 3-O-

methylglucose at the same concentrations of D-Glucose (all from Sigma) and with 1,1 

µM, 0.11 µM, 0.011 µM BLF50 (La Ferla B, et al., 2010). At the end of the various 

treatments, the medium was removed, and the cells were washed with phosphate-buffered 

saline (PBS) and used for several assays. 
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3.2 TRANSIENT TRASFECTION ASSAY 

Subconfluent H9c2 cells maintained in complete medium were transfected with the 

following plasmid constructs:  

- pGL3PGK6TKp vector (a kind gift of PJ Ratcliffe, Oxford, UK), which contains 

an HRE multimer (Tacchini L, et al., 2003);  

- the expression vector pcDNA3ARNTdelta_b (∆ARNT) (obtained from M 

Schwarz, Tübingen, Germany), which codes for the dominant-negative mutant 

form of the HIF-1β ARNT subunit (Tacchini L, et al., 2004);  

-  the expression vector pCMV4HIF-1α, which codes for HIF-1α (kindly provided 

by Dr Wenger, Leipzig, Germany) using TransITTM LT1 (Mirus, Bologna, Italy).  

Six hours after transfection, the cells were washed with PBS, the culture medium was 

replaced by fresh medium and the cells were exposed to the various treatments. 

 

3.3 SHORT HAIRPIN RNA KNOCKDOWN 

 
Short hairpin RNA (shRNA) constructs against Mus musculus HIF-1a (catalogue number 

TR517255) were purchased from Origene Technologies, Inc. (Rockville, MD, USA). The 

targeted sequences were: 

 

CTGTTCACCAAAGTTGAATCAGAGGATA(#1) 

CTTCTGTTATGAGGCTCACCATCAGTTA(#2) 

TCAAGAAACGACCACTGCTAAGGCATCA(#3) 

TTACCTTCATCGGAAACTCCAAAGCCACT(#4) 

(Tacchini L, et al., 2008; Gammella E, et al., 2010). 

 

H9c2 cells maintained in complete medium were plated onto T25 flasks (1 x 106 cells per 

flask). After 24 h, the medium was changed, and the cells were transfected with a mixture 

of the four plasmids (600 ng each) containing the HIF-1α-specific shRNA, or with 

plasmids containing a non-effective shGFP sequence cassette (Origene Technologies, Inc.) 

or the empty pRS vector, in the presence or absence of the pGL3PGK6TKp multimer 
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using the transfection method described above. The medium was changed 48 h later and 

the cells were treated with DOX. The cytosolic extracts were then prepared and the 

Renilla luciferase activities or 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

(MTT) assay was performed as described below.  

To verify transfection efficiency, the cells were transfected with a rhodaminelabelled 

siRNA (Qiagen SpA, Milano, Italy), fixed and observed using fluorescence microscopy 

(excitation 530 nm, emission 570 nm); nuclei were counterstained with 10 µg/mL 4′-6-

diamidino-2-phenylindole (DAPI, Sigma) and fluorescence was observed (excitation 364 

nm, emission 454 nm).  

More than 150 cells were counted and the percentage of transfected cells was determined. 

 

3.4 GENE REPORTER ASSAY 

 
Subconfluent H9c2 cells maintained in complete medium were transfected in six-well 

multiwell plates using TransITTM LT1 (Mirus) with a 50:1 mixture of the pGL3PGK6TKp 

construct and pRL-TK reporter vector containing Renilla luciferase, which was used to 

normalize transfection efficiency.  

When appropriate, the cells were cotransfected with the dominant negative expression 

vector (∆ARNT) or the shRNA constructs. Six hours after transfection, the culture 

medium was replaced by fresh medium and the cells were exposed to the various 

treatments.  

After 24 h, the cells were collected, washed and lysed using the reporter lysis buffer 

(Promega, Milan, Italy) and luciferase activities were measured in a Promega luminometer 

using the Dual-Luciferase Reporter Assay System (Promega) (Tacchini L, et al., 2003). 

The empty vectors showed practically undetectable luciferase activity.  

All of the transfection experiments were carried out in duplicate. 

 

3.5 IMMUNOBLOTTING 

 
To detect the expression of aldolase A, survivin, Mcl1, haem oxygenase (HO-1), P-

glycoprotein (Pgp), BclxL and α-tubulin, the cells were homogenized in 10 mM HEPES, 
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pH 7.6, 3 mM MgCl2, 40mM KCl, 5% glycerol, 0.2% Nonidet P40 (Sigma), 1 mM 

dithiothreitol (DTT) and a protease inhibitor cocktail (Sigma).  

Cells lysate was centrifuged at 16000x g for 5 minutes at 4°C and the supernatant was 

saved for immunoblotting analysis. Nuclear extracts for the determination of HIF-1α, HIF-

2 α and transcription factor II D (TFIID) were prepared as previously described (De Ponti 

C, et al., 2007). In order to analyse cytochrome c release, the cells were resuspended in 

500 mM sucrose, 2 mM NaH2PO4, 16 mM Na2HPO4, pH 7.6, 150 mM NaCl, 1 mM DTT, 

a protease inhibitor cocktail and 10 µg digitonin per 106 cells were added with vortexing. 

The heavy organelles and cell debris were pelleted at 14000x g for 60 seconds at 4°C and 

the supernatant was collected for analysis. Aliquots of cytosolic or nuclear extracts 

containing equal amounts of proteins as assessed using the Bio-Rad protein assay kit (Bio-

Rad, Segrate, Italy) were separated by electrophoresis in acrylamide-SDS gels and 

electroblotted onto Hybond ECL membranes (Amersham Co., Milan, Italy).  

After assessing transfer and the correct loading protein by means of Ponceau S staining, 

the membranes were incubated with antibodies against HIF-1α (H1α 67, 1:1000, Novus 

Biologicals, Littleton, CO, USA), HIF-2 α (1:500 Novus Biologicals); TFIID (1:500, 

Santa Cruz Biotechnology, Santa Cruz, CA, USA), survivin (1:500 Santa Cruz 

Biotechnology), Mcl1 (1:200, Santa Cruz Biotechnology), cytochrome c (1:5000, BD 

Biosciences, Buccinasco, Italy), Pgp (1:500, Sigma), BclxL (1:1000, Cell Signaling 

Technology, EuroClone, Pero, Italy), SGLT-1 (1:1000, Cell Signaling) and α -tubulin 

(1:8000, Sigma). After incubation with appropriate secondary antibodies and extensive 

washing, the antigens were detected by means of chemiluminescence using an ECL Plus 

immunodetection kit (Amersham Co.). The proteins were quantified densitometrically, 

making sure that the signals were in the linear range.  

All of the data were calculated by comparing the intensity of the bands using the same 

film exposure. The values were calculated after normalization to the amount of α-tubulin 

or TFIID, which is an essentially nuclear protein. 

 

3.6 CASPASE ACTIVITY ASSAY 

 
Caspase activity was determined using the ApoAlert Caspase Colorimetric Assay kit 

(Clontech, EuroClone, Pero, Italy) in accordance with the manufacturer’s protocol. In 
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brief, at least 2 x 106 cells per sample were lysed in 50 µL lysis buffer, and the protein 

concentrations in the samples were estimated using the Bio-Rad protein assay.  

After incubation on ice for 10 minutes, the samples were centrifuged at 16000x g for 3 

minutes at 4°C. Each supernatant was mixed with 50 µL of a 2X Reaction Buffer/DTT 

mix and 5 µL of 1 mM caspase-3 substrate (DEVDpNA, 50 µM final concentration) and 

the samples were then incubated for 1 hour at 37°C in the dark. Developed colour was 

measured at 405 nm and caspase activity was calculated in terms of absorbance units per 

µg protein. 

 

3.7 ANNEXIN V ASSAY 

 
Externalization of phosphatidylserine to the outer side of the plasma membrane of 

apoptotic cells was assessed with Annexin V-fluorescein isothiocyanate (FITC).  

After the various treatments, H9c2 cells grown on a coverslip were washed with PBS and 

incubated at room temperature for 5 minutes in the dark with Annexin V-FITC and 

propidium iodide. Then cells were observed under a fluorescence microscope according to 

the instructions of the kit (PromoCell, Heidelberg, Germany).  

The number of positive cells was determined on at least four randomly selected areas from 

using three coverslips for each experimental group. 

 

3.8 MTT ASSAY 

 
H9c2 cells were seeded in quadruplicate in 24-well plates and then left untreated or treated 

with DOX for 24 hours in the presence or absence of shRNA or ∆ARNT.  

At the end of the treatments, cell viability was measured as previously described (Corna 

G, et al., 2004; Bernuzzi F, et al., 2009) using thiazolyl blue (MTT, Sigma) as an indicator 

of mitochondrial function. Briefly, 50 µL of MTT solution (5 mg·mL-1) was added to each 

well with 450 µL of medium and after incubation at 37°C for 2 hours, formazan crystals 

were dissolved by adding 500 µL of the MTT solubilization solution and thorough up-

and-down pipetting. Absorbance was read at 570 nm, and the background absorbance at 

690 nm was subtracted. 
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3.9 STATISTICS 

 
The data are expressed as mean values ± SD and were statistically analysed using Instat-3 

statistical software (GraphPad Software Inc, San Diego, CA, USA) and one-way ANOVA. 
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4. RESULTS 

 
 

4.1 DEXRAZOXANE INDUCES HIF BINDING ACTIVITY AND 
TRANSACTIVATION CAPACITY IN H9c2 CELLS 
 
 
Considering that the depletion of cellular iron stores leads to the induction of HIF-1 

(Peyssonnaux C, et al., 2008; Mole DR. 2010; Wang GL and Semenza GL. 1993; Bianchi 

L, et al., 1999), we investigated whether exposure to the iron chelator DRZ activates HIF-

1 in cardiomyocytes.  

Immunoblot analysis of nuclear extracts of H9c2 cells showed that exposure to DRZ for 3 

hours increased HIF-1α protein levels. The activation was detectable at 10 µM and there 

was no additional increase at 100 µM (Figure 1A). Similar activation was found in 

extracts of cells exposed to the iron chelator deferoxamine (DFO), a well-known inducer 

of HIF-1 (Wang GL and Semenza GL. 1993). Under the same experimental conditions, 

HIF-2α (which is also detectable in untreated cells) was also induced but to a lesser extent 

than HIF-1α (Figure 1A). 

We then used transactivation capacity experiments to determine whether the HIF subunits 

induced by DRZ were transcriptionally actived. In H9c2 cells transiently transfected with 

a luciferase reporter gene controlled by a DNA fragment containing multiple consensus 

HREs, which has previously been shown to drive HIF-1-dependent transcription in 

response to hypoxia and hypoxia-mimics (De Ponti C, et al., 2007; Tacchini L, et al., 

2008), the expression of the reporter gene increased about threefold in response to DRZ 

and about fivefold in response to DFO (Figure 1B). Further indications of the involvement 

of HIF in the DRZ- and DFO-dependent activation of luciferase activity were obtained by 

experiments in which HIF transactivating capacity was almost completely abolished by 

the cotransfection of a plasmid expressing a dominant negative of the HIF-1β subunit 

(∆ARNT), which maintains the capacity of forming a heterodimer but cannot bind DNA 

(Tacchini L, et al., 2004, 2008) (Figure 1B). 
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Figure 1 
 
Dexrazoxane (DRZ) induces HIF-α expression and transactivation capacity. (A) Immunoblot analysis of the nuclear extracts of 
untreated H9c2 cells (C) and cells treated with desferrioxamine (DFO) for 24 h, or different concentrations of DRZ for 3 h, using anti-
HIF-1α and anti-HIF-2α antibodies. The blots were reprobed using the antibody against TFIID as a loading control. The panel shows 
one representative blot and the densitometric quantification relative to C-values. (B) Relative luciferase activity (RLA) in untreated 
H9c2 cells (C) and cells exposed to DFO or DRZ, as described above. The cells were transiently transfected with the empty pGL3 
vector (ev) or a construct in which luciferase was controlled by an HRE multimer and cotransfected using a control vector containing 
the Renilla luciferase gene. When appropriate, the cells were also cotransfected with an expression vector coding for a dominant-
negative mutant of the constitutive HIF-1β subunit (∆ARNT). Luciferase activity was determined after 24 h, corrected for transfection 
efficiency on the basis of Renilla luciferase activity and normalized to the activity recorded in untreated cells (arbitrarily set to 1). Mean 
values ± SD. *P < 0.001; ***P < 0.01; #P < 0.05, n = 3. HIF, hypoxia-inducible factor; HRE, hypoxia response element; TFIID, 
transcription factor II D. 
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4.2 PRE-EXPOSURE TO DEXRAZOXANE PREVENTS 
DOXORUBICIN-MEDIATED APOPTOTIC CELL DEATH 
 
 
To investigate the cytoprotective activity of DRZ, H9c2 cells were exposed to 0.5 µM 

DOX, a concentration within the range of the plasma levels found in patients undergoing 

chemotherapy (Gianni L, et al., 1997). MTT assays showed that 24 hours treatment with 

DOX reduced cell viability by 50% (Figure 2A).  

We also assessed whether exposure to the DRZ concentration that was sufficient to 

activate HIF prevented cell death in H9c2 cardiomyocytes treated with 0.5 µM DOX. 

Figure 2A shows that the cells pretreated with 10 µM DRZ were significantly protected as 

77% of the cells were viable after exposure to DOX.  

In line with previous reports (Bernuzzi F, et al., 2009), the cells exposed to 0.5 µM DOX 

did not show release of the cytosolic enzyme lactic dehydrogenase, which is commonly 

used as a measure of drug-induced damage and is indicative of necrotic cell death (results 

not shown). 

Since previous results indicated that apoptosis is the prevalent form of cell death in H9c2 

cells exposed to low DOX doses (Sawyer DB, et al., 1999; Reeve JL, et al., 2007; 

Bernuzzi F, et al., 2009), we decided to check the activity of caspase-3 (a major effector 

protein of apoptosis) and we found that it was double that observed in untreated cells at 

0.5 µM DOX and returned to control values in cells pre-incubated with DRZ (Figure 2B). 

We also used another assay to evaluate apoptosis and Figure 2C shows that DRZ 

pretreatment also counteracted the increase in DOX-induced apoptotic cell death assessed 

by measuring Annexin V binding to externalized phosphatidylserine (Brumatti G, et al., 

2008).  

As the mitochondrion-mediated apoptotic pathway is important in DOX-induced apoptosis 

(Minotti G, et al., 2004), we also measured cytochrome c release. Figure 2D shows that 

expression of cytochrome c increased about twofold in cells treated with 0.5 µM DOX, 

while a decreasing expression is observed in cells treated with DRZ plus DOX. 

Exposure to DRZ alone did not significantly affect apoptosis (Figure 2B–D). 
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Figure 2 
 
Dexrazoxane (DRZ) protects H9c2 cells from apoptotic cell death. (A) H9c2 cells were left untreated (C), or exposed for 24 h to 
doxorubicin (DOX), for 3 h to DRZ alone or pre-treated with DRZ for 3 h and then exposed to DOX. Viability was evaluated by the 
MTT assay and DOX toxicity was calculated as the percentage of viable cells after drug exposure. (B) H9c2 cells were treated as 
described for panel A, and apoptosis was determined by measuring caspase-3 activity. (C) H9c2 cells were treated as described for 
panel A, and apoptosis was determined by measuring Annexin V-FITC as described in Methods. (D) H9c2 cells were treated as 
described for panel A, and apoptosis was determined by measuring cytochrome c (Cyt c) release. α-Tubulin was used as a loading 
control. The figure shows one representative immunoblot and the densitometric quantification relative to C-values. Mean values ± SD. 
*P < 0.001; **P < 0.005 ***P < 0.01; #P < 0.05, n = 5 for experiments reported in panels A and B, and 3 for experiments reported in 
panel C and D. MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium. 
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4.3 THE PROTECTIVE EFFECT OF DEXRAZOXANE DEPENDS 
ON HIF-1 ACTIVITY 
 
 
In order to investigate the role of HIF-1 in DRZ-mediated cardioprotection directly, we 

investigated the capacity of DRZ to prevent DOX toxicity in H9c2 cells lacking HIF-1 

activity. First, we performed a control experiment in order to check whether the induction 

of HIF-1 transcriptional activity found in cells exposed to DRZ was maintained in cells 

exposed to DRZ plus DOX because DOX, which affects the expression of muscle-specific 

genes (Ito H, et al., 1990) and HIF-1-dependent transcriptional activity (Lee K, et al., 

2009), may blunt HIF-1 activation and thus impair the protective effect of iron chelation.  

However, Figure 3A shows that HIF-1α protein levels were similar in the cells exposed to 

DRZ and those exposed to DRZ plus DOX, as expected. Moreover, the luciferase activity 

driven by the multiple HRE sequences was slightly inhibited in the cells exposed to DRZ 

plus DOX in comparison with those treated with DRZ alone but was still significantly 

higher than in the untreated cells (Figure 3B). 

Having demonstrated that HIF-1 is activated in H9c2 cells exposed to 0.5 µM DOX and 

DRZ, we evaluated cell viability in H9c2 cells transfected with the dominant negative 

HIF-1β subunit ∆ARNT and exposed to DOX with or without DRZ pretreatment.  

MTT assays revealed that the protective effect of DRZ was lost in the transfected cells as 

mortality was not significantly higher than in the cells exposed to DOX without DRZ 

pretreatment. Also in this case exposure to DRZ alone did not significantly affect cells 

viability (Figure 4A).  

This results indicate that HIF plays a role in the DRZ-mediated protection of H9c2 cells. 

Similarly, a protective effect of DRZ was found when caspase 3 activity was measured to 

see the effect on apoptosis (Figure 4B). 
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Figure 3 
 
Doxorubicin (DOX) does not inhibit HIF expression and transactivation capacity. (A) Immunoblot analysis of nuclear extracts of 
untreated H9c2 cells (C) and cells exposed for 24 h to DOX, for 3 h to dexrazoxane (DRZ) alone or pre-treated with DRZ for 3 h and 
then exposed to DOX, using the anti-HIF-1α antibody. The blots were reprobed using the antibody against TFIID as a loading control. 
The panel shows one representative blot and the densitometric quantification relative to C-values. (B) Relative luciferase activity (RLA) 
in H9c2 cells transiently transfected with a construct in which luciferase was controlled by an HRE multimer and treated as described 
for panel A. The cells were cotransfected using a control vector containing the Renilla luciferase gene. Luciferase activity was 
determined after 24 h, corrected for transfection efficiency on the basis of Renilla luciferase activity and normalized to the activity 
recorded in untreated cells (arbitrarily set to 1). Mean values ± SD. *P < 0.001; ***P < 0.01; #P < 0.05, n = 3. HIF, hypoxia-inducible 
factor; TFIID, transcription factor II D. 
 
 
 

 
 

Figure 4 
 
Suppression of HIF activity blocks dexrazoxane (DRZ)-mediated cardioprotection. (A) H9c2 cells were transfected with the expression 
vector ∆ARNT or an empty vector (ev) and treated as indicated in Figure 3A. Viability was evaluated by means of the MTT assay. (B) 
H9c2 cells were transfected and treated as described for panel A, and apoptosis was evaluated by measuring caspase-3 activity. Mean 
values ± SD. *P < 0.001; ***P < 0.01; n = 5. MTT, 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium. 
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In order to verify further the role of HIF-1 in the DOX protection of DRZ-pretreated H9c2 

cells, we used shRNA technology to specifically knockdown HIF-1α.  

First, we tested the transfection efficiency by using a rhodamine-labelled siRNA. Figure 

5A shows a merged image with DAPI-stained nuclei (blu) and extranuclear punctuate 

fluorescence of rhodamine-labelled siRNA (red).  

The efficient (84±5%, see Figure 5A) transfection of H9c2 cells with a set of four 

expression vectors coding shRNAs against HIF-1α led to a reduction in HIF-1 protein 

levels (Figure 5B) and transactivation activity, as demonstrated by the complete inhibition 

of the activation of the luciferase reporter gene under the control of the consensus HREs, 

unlike the cells transfected with an empty control plasmid (Figure 5B).  

In line with the results obtained with the ∆ARNT dominant negative, the knockdown of 

HIF-1 abolished the protection offered by DRZ. Transfecting cells with a vector 

containing a non-effective shGFP sequence cassette, we did not find appreciable 

cytoprotection (Figure 5C). 

In order to demonstrate further that HIF-1 is important for the protective effect of DRZ, 

we investigated whether HIF-1 activation also provides cardioprotection from DOX in 

cells not exposed to the iron chelator.  

Transfection with an expression vector coding for HIF-1α resulted in greatly elevated 

HIF-1 protein levels and markedly stimulated HRE-dependent transcription as shown in 

Figure 6A. 

Then we checked whether the overexpression of HIF-1 play a role in the protection of 

H9c2 cells treated with DOX in absence of DRZ. 

Cells transfected with the expression vector coding for HIF-1 shows a significant 

cytoprotection from DOX-mediated cell death as revealed by MTT assay(Figure 6B).  

As expected, we also observed a reduction of DOX-mediated apoptosis by caspase 3 

assays (Figure 6C).  

These experiments demonstrated that HIF-1α overexpression protects H9c2 

cardiomyocytes from DOX-induced toxicity in the absence of DRZ. 
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Figure 5 
 
Knockdown of HIF-1α blocks dexrazoxane (DRZ)-mediated cardioprotection. (A) Transfection efficiency in H9c2 cells. The figure 
shows a merged image with DAPI-stained nuclei (blue) and punctuate fluorescence of rhodamine-labelled siRNA (red). (B) Relative 
luciferase activity (RLA) and HIF-1α protein levels in untreated H9c2 cells (C) or cells exposed to DRZ for 3 h. The cells were 
transiently transfected with a HRE multimer and also cotransfected with vectors containing the negative control shRNA (NC) or 
shRNA targeting HIF-1α (HIF-1α shRNA). Luciferase activity was determined after 48 h, corrected for transfection efficiency on the 
basis of Renilla luciferase activity and normalized to the activity recorded in untreated cells (arbitrarily set to 1). HIF-1α protein levels 
were determined by immunoblot analysis of the nuclear extracts, as described in the legend to Figure 1. (C) H9c2 cells were transfected 
with vectors containing the negative control shRNA (NC), shRNA targeting GFP (GFP shRNA) or HIF-1α (HIF-1α shRNA) and 
treated as indicated in Figure 3A. Cell viability was evaluated by means of the MTT assay. Mean values ± SD.*P < 0.001; **P < 0.005 
*** P < 0.01; n = 3. siRNA, small interfering RNA; shRNA, short hairpin RNA; HIF, hypoxia-inducible factor; MTT, 3-(4,5-
dimethylthiazol-2-yl)-2,5- diphenyltetrazolium. 
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Figure 6 
 
HIF-1α overexpression is cardioprotective in the absence of dexrazoxane (DRZ). (A) Relative luciferase activity (RLA) and HIF-1α 
protein levels in untreated H9c2 cells (C), exposed to DRZ for 3 h or transfected with a construct that induced the overexpression of 
HIF-1α (pcMV4 HIF-1α). The cells were transiently transfected with a construct in which luciferase was controlled by an HRE 
multimer. Luciferase activity was determined after 24 h, corrected for transfection efficiency on the basis of Renilla luciferase activity 
and normalized to the activity recorded in untreated cells (arbitrarily set to 1). HIF-1α protein levels were determined by immunoblot 
analysis of the nuclear extracts, as described in the legend to Figure 1. (B) Untreated H9c2 cells (C) or cells exposed to doxorubicin 
(DOX) for 24 h were transiently transfected with the empty pGL3 vector (ev) or the pcMV4 HIF-1α vector. Cell viability was evaluated 
by means of the MTT assay. (C) H9c2 cells were treated and transfected as described for panel B and apoptosis was determined as 
described in Figure 4B. Mean values ± SD. *P < 0.001; ***P < 0.01; #P < 0.05, n = 3. HIF, hypoxia-inducible factor; HRE, hypoxia 
response element; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium. 
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4.4 EFFECT OF DEXRAZOXANE ON THE EXPRESSION OF HIF 
TARGET GENES IN H9c2 CELLS 
 
 
In order to investigate further the transcriptional function of HIF activation in DRZ-treated 

cells, we examined the expression of endogenous genes known to be under the 

transcriptional control of HIF in cells exposed to DRZ plus DOX. The immunoblots in 

Figure 7A show that the levels of aldolase A, a typical HIF target gene (Semenza GL, et 

al., 1996), increased after DRZ plus DOX treatment as expected and returned to control 

levels in the cells transfected with ∆ARNT. Moreover, we didn’t find increased levels of 

this protein after treatment with DOX alone.  

Having demonstrated that DRZ prevents apoptosis (see Figure 2), we investigated whether 

HIF target genes, that may play a role in favouring cell survival after DOX-mediated 

damage, were induced in DRZ-treated H9c2 cells.  

We therefore examined a variety of anti-apoptotic genes induced by HIF such Mcl1, 

survivin and haem oxygenase (HO-1) (Craig RW. 2002; Bernuzzi F, et al., 2009; Guha M 

and Altieri DC. 2009). 

Immunoblot analysis showed that exposure to DRZ plus DOX increased the levels of all 

of these anti-apoptotic proteins and that this increase was significantly prevented by 

∆ARNT expression (Figure 7B–D).  

Since it has been shown that mice overexpressing manganese superoxide dismutase 

(MnSOD), which is an HIF-2α target gene (Scortegagna M, et al., 2003), are protected 

from DOX-induced acute toxicity (Yen HC, et al., 1996), we also examined the expression 

of this antioxidant enzyme.  

However, MnSOD levels, which increased as expected in H9c2 cells undergoing oxidative 

stress obtained by exposure to H2O2 or the glutathione-depleting compound BSO, were 

not significantly affected by DRZ alone or combined with DOX (Figure 7E).  

As DOX is a substrate of the Pgp, a multidrug resistance (MDR)–related membrane efflux 

pump that transports a variety of xenobiotics (Takara K, et al., 2006) and is regulated by 

HIF-1 (Comerford KM et al., 2002), we assessed whether Pgp could play a role in the 

HIF-mediated cardioprotection offered by DRZ. This could represent and very simple and 

effective mechanism to avoid the toxic effects of DOX.  

However, Pgp protein expression was not significantly modulated by exposure to DOX or 

DRZ alone. Also exposure to DRZ plus DOX did not increase the levels of this protein. 

Morover, the lack of induction in cells treated with DFO or DMOG (which inhibits HIF 
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degradation) further indicated that HIF is not involved in Pgp activation in H9c2 

cardiomyocytes (Figure 7F). 
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Figure 7 
 
Dexrazoxane (DRZ) induces the expression of antiapoptotic genes. Immunoblot analysis of cytosolic extracts of untreated H9c2 cells 
(C), and cells exposed for 24 h to doxorubicin (DOX), for 3 h to DRZ alone or pretreated with DRZ for 3 h and then exposed to DOX. 
When appropriate, the cells were also transfected with the expression vector ∆ARNT. In some cases, the cells were exposed to DMOG 
for 24 h or to BSO and H2O2 for 3 h, and then washed and re-incubated for 2 h. Antibodies against the indicated proteins were used, and 
the blots were reprobed using the antibody against α-tubulin as a loading control. The panels show one representative blot and the 
densitometric quantification relative to C-values. Mean values ± SD. *P < 0.001; **P < 0.005, n = 3. DMOG, dimethyloxalyl glycine; 
BSO, buthionine sulphoximine. 
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4.5 PRE-EXPOSURE TO DMOG DID NOT PREVENT 
DOXORUBICIN-MEDIATED APOPTOTIC CELL DEATH 
 
 
In order to investigate possible alternative pharmacological strategies to prevent DOX-

induced toxicity, we examined a small molecular mimic of hypoxia such as 

dimethyloxalyl glycine (DMOG), which is a cell-permeable analog of 2-oxoglutarate able 

to inhibit the 2-Oxoglutarate-dependent hydroxylase enzymes, and thus prevents the 

hydroxylation and degradation of HIF-1α (Jaakkola P, et al., 2001).  

Preliminary MTT assays showed that 3 hours treatment with 1 and 0.5 mM DMOG, which 

are concentrations normally used in the literature (Ockaili R, et al., 2005), reduced 

significantly H9c2 cells viability, while DMOG toxicity decreased when H9c2 cells were 

exposed to lower concentrations (0.2 and 0.1 mM) (Figure 8A).  

We then assessed whether exposure to low concentrations of DMOG was sufficient to 

activate HIF and prevent cell death in H9c2 cardiomyocytes treated with 0.5 µM DOX.  

In H9c2 cells transiently transfected with a luciferase reporter gene controlled by a DNA 

fragment containing multiple consensus HREs, the expression of the reporter gene 

increased about twofold after 3 hours exposure to 0.2 mM DMOG and about threefold 

after 24 hour exposure to 0.2 mM DMOG, in comparison to an about fivefold increase in 

response to DFO. At lower concentrations the expression of the luciferase gene was not 

significantly changed (Figure 8B). 

Having established that 3 and 24 hour treatment with 0.2 mM DMOG was able to induce 

HIF-dependent transcriptional activity, we investigated the cytoprotective activity of these 

concentrations of DMOG in H9c2 cardiomyocytes treated with 0.5 µM DOX. Figure 8C 

shows that cells pretreated with 0.2 mM DMOG were not significantly protected after 

exposure to DOX.  
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Figure 8 
 
Dimethyloxalyl glycine (DMOG) did not prevents DOX-mediated toxicity in H9c2 cells. (A) H9c2 cells were left untreated (C), or 
exposed for 3 h to different concentration of DMOG. Viability was evaluated by the MTT assay and DMOG toxicity was calculated as 
the percentage of viable cells after drug exposure. (B) Relative luciferase activity (RLA) in H9c2 cells transiently transfected with a 
construct in which luciferase was controlled by an HRE multimer and treated with desferrioxamine (DFO) for 24 h or different 
concentrations of DMOG for 3 or 24 h. The cells were cotransfected using a control vector containing the Renilla luciferase gene. 
Luciferase activity was determined after 24 h, corrected for transfection efficiency on the basis of Renilla luciferase activity and 
normalized to the activity recorded in untreated cells (arbitrarily set to 1). (C) H9c2 cells were left untreated (C) ore exposed for 24 h 
DOX, for 24 h to DMOG alone or pretreated with DMOG for 24 h and then exposed to DOX. Viability was evaluated by means of the 
MTT assay. Mean values ± SD. *P < 0.001; **P < 0.005; NSP > 0.05, n = 3. MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium; HRE, hypoxia response element. 
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4.6 ROLE OF SGLT-1 IN PROTECTING CARDIOMYOCYTES 
FROM DOX TOXICITY 
 
 
In order to explore possible alternative ways to prevent DOX cardiotoxicity, we 

investigated the cytoprotective activity of several molecules able to activate the sodium-

dependent glucose transporter-1 (SGLT-1) which is a member of a large family of Na-

dependent transporters (gene name SLC5A) and has been shown to exert a protective 

effects from different types of injuries in various cell types (Yu LC, et al., 2005; Yu LC et 

al., 2006; Zanobbio L, et al., 2009; Palazzo M, et al.,2008).  

Expression of SGLT1 is mainly seen in intestinal and epithelial cells, although a recent 

study also characterized SGLT-1 expression in cardiac myocytes (Sanjay K. Banerjee et 

al., 2009). In this context, we first verified whether SGLT-1 was expressed in H9c2 cells. 

Figure 9A shows that SGLT-1 is detectable in H9c2 cells lysates, although its expression 

is lower than in the rat intestinal epithelial cell line IEC-6 which was used as a positive 

control. 

In order to understand whether SGLT1 activation could have a protective role also in our 

experimental system,  H9c2 cells were pretreated with D-Glucose (D-GLU), the non-

metabolizable glucose analog 3-O-methylglucose (3-OMG), and the SLGT-1 agonist 

BLF50 and then exposed to 0.5 µM DOX.  

We initially exposed H9c2 cells to concentrations of 9, 13.5 and 22.5 g/L D-GLU that are 

2, 3 and 5 times greater than the concentration of glucose in the standard culture medium 

for H9c2 cells (4.5 g/L). 

MTT assays revealed that 24 hours pretreatment with 22.5 g/L D-GLU prevented DOX-

mediated cell death whereas pretreatment with 13.5 g/L and 9 g/L D-GLU, did not 

significantly protect H9c2 cardiomyocytes from DOX toxicity (Figure 9B). 

In order to understand whether the protective effect of D-GLU was due to increased 

cellular availability of glucose or to activation of SGLT-1, we successively tested whether 

22.5 g/L 3-OMG was able to protect H9c2 cells after exposure to DOX. Figure 9C shows 

that 22.5 g/L 3-OMG, which reduced cell viability by about 10% when present alone, did 

not significantly protect H9c2 cardiomyocytes from DOX-mediated cell death. 

Given the small but reproducible cytotoxic effect of 22.5 g/L 3-OMG we then tried to see 

whether lower concentrations of 3-OMG were able to decrease the damage induced by 

DOX; however, also 9 g/L and 13.5 g/L 3-OMG seem to exhibit a form of slight toxicity 
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in cardiomyocytes and thus also these lower concentrations failed to show any significant 

cytoprotective effect (Figure 9D). 

BLF50 is a new not-metabolized synthetic glucoderivative that act as a potent activator of 

SGLT-1 at very low dosages. Given the cytoprotective and anti-inflammatory effects 

linked to SGLT-1 activation (La Ferla B, et al., 2010), we investigated the cytoprotective 

activity of various concentrations of this SGLT-1 agonist. 

MTT assays in figure 9E show that 24 hours pretreatment with BLF50 0.011µM protected 

H9c2 cells from DOX toxicity, possibly because treatment with 0.011µM alone increased 

significantly cell viability. On the other hand, higher concentrations of BLF50 did not 

significantly prevent DOX-mediated cell death although also the treatment with BLF50 

0.11µM alone significantly increased cell viability. 
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Figure 9 
 
D-Glucose (D-GLU) prevents DOX-mediated toxicity in H9c2 cells. (A) Immunoblot analysis of SGLT-1 in untreated H9c2 and IEC-6 
cells. (B) H9c2 cells were left untreated (C/D-GLU 4.5 g/L), or exposed for 24 h DOX, for 24 h to different concentrations of D-GLU 
alone, or treated with different concentrations of D-GLU and then exposed to DOX. Viability was evaluated by means of the MTT 
assay. (C) H9c2 cells were exposed to DOX as described above and were pretreated for 24 h with 22.5 g/L 3-OMG. Viability was 
measured as described for panel A. (D) H9c2 cardiomyocytes were left untreated (C/D-GLU 4.5 g/L), or exposed to DOX as describe 
above, or pretreated for 24 h with decreasing concentrations of 3-OMG alone or pretreated with 3-OMG and then exposed to DOX. 
Viability was estimated by MTT assay. (E) H9c2 cardiomyocytes were left untreated (C/D-GLU 4.5 g/L), or exposed to BLF50 alone 
or pretreated with decreasing concentrations of BLF50 for 24 h and then exposed to DOX. Viability was evaluated as described above. 

Mean values ± SD. *P < 0.001; **P < 0.005; ***P < 0.01; #P < 0.05, NSP > 0.05, n = 3. MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium. 
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5. DISCUSSION 

 

 

Anthracyclines are important and effective anticancer drugs used in the treatment of many 

adult and children malignancies. The most commonly used anthracyclines are 

Doxorubicin (DOX), Daunorubicin and Epirubicin. 

The clinical use of anthracyclines to treat many human tumors is limited by its severe 

dose-related cardiotoxicity: clinical studies have established that in order to prevent the 

chronic cardiotoxicity there is a threshold dose of anthracyclines that should not be 

passed. However, it should be noted that compliance with this threshold dose can lead to 

suspension of the use of the drug in cancer chemotherapy even though a therapeutic effect 

has not been obtained. 

The mechanisms that lead to DOX-mediated chronic cardiotoxicity are still controversial 

but have been mainly attributed to oxidative stress (Minotti G, et al., 2004; Chen B, et al., 

2007), and the fact that anthracyclines generate ROS and impair iron homeostasis is in line 

with a large body of evidence suggesting that iron also plays an important role in this 

toxicity (Minotti G, et al., 1999, 2004). This view is supported by the efficient 

cardioprotection induced by DRZ, a clinically approved bis-ketopiperazine that diffuses 

into cells, hydrolyses to an EDTA-like diacid-diamide, and thus meets the structural 

requirements necessary to chelate iron before it catalyses the conversion of O2
•- and H2O2 

to more damaging oxidants (Hasinoff BB and Herman EH. 2007).  

In particular, since iron can form the hydroxyl radical (OH•) through the Fenton reaction, 

which uses ferrous iron (Fe II) and through the Haber-Weiss reaction which uses ferric 

iron (Fe III), DRZ, through the removal of metal ions, may prevent the formation of the Fe 

3+ - DOX complex and the subsequent formation of reactive free radicals whose toxicity 

increases significantly in the presence of “free” iron ions in an aqueous environment.  

On the basis of these premises, iron chelators and antioxidants should both prevent the 

cardiotoxicity induced by anthracyclines, but this is not the case. A number of studies 

have shown that antioxidants offer protection in animal models but not in patients (Ladas 

EJ, et al., 2004; Minotti G et al., 2004; Simunek T, et al., 2009). Therefore, despite the 

clinical usefulness of DRZ, the mechanisms underlying its cardioprotective effects are still 

not fully understood.  
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To understand whether there are protective mechanisms mediated by DRZ that are 

independent of oxidative stress, we hypothesized that HIF-1, a transcription factor that is 

activated not only by the lack of oxygen, but also by low levels of intracellular iron 

(Peyssonnaux C,et al., 2008; Mole DR. 2010), may play an important role in DRZ-

dependent protection of cardiomyocytes. This compound, through its ability to sequester 

intracellular iron, could induce HIF-1 in cardiomyocytes thereby activating an HIF-1-

dependent cytoprotection. 

It has been previously shown that this transcription factor, which plays a key role in 

regulating alterations in the expression of genes that promote cell survival and maintain 

homeostasis (Schofield CJ and Ratcliffe PJ. 2004; Higgins DF, et al., 2008; Semenza GL. 

2009), is central to cardioprotection in models of ischaemic preconditioning (Eckle T, et 

al., 2008) and infarction (Zhou L, et al., 2010). 

Moreover HIF-1 is involved in several other cellular processes, including the regulation of 

energy metabolism; when mitochondrial activity is compromised (for example following 

treatment with DOX, which accumulates in the mitochondria; Kalyanaraman B, et al., 

2002), this transcription factor promotes glycolytic metabolism by favoring an increased 

expression of the glucose transporter GLUT-1 or the glycolytic enzyme aldolase A (Kilic 

M, et al., 2007). This increase in energy production could therefore promote cell survival.  

Our results show that the iron chelation obtained by exposure to DRZ induces HIF binding 

activity and transactivation capacity in H9c2 cells, which we and others have shown 

represent a reliable model for evaluating various characteristics of cardiomyocytes, 

including DOX toxicity (Corna G, et al., 2004; L’Ecuyer T, et al., 2004; Spallarossa P, et 

al., 2004; Li K, et al., 2006; Mukhopadhyay P, et al., 2007; Reeve JL, et al., 2007; 

Turakhia S, et al., 2007; Konorev EA, et al., 2008; Xu X and Richardson DR. 2008; 

Bernuzzi F, et al., 2009) and DRZ cardioprotection (Lyu YL, et al., 2007).  

The fact that (in agreement with previous evidence; Weiss G, et al., 1997) DRZ 

administration up-regulated iron regulatory proteins (results not shown), whose activity is 

known to depend on intracellular iron availability (Recalcati S, et al., 2010), indicates that 

the effects of DRZ are mediated by decreased iron levels rather than by any other 

unforeseen effects. HIF was induced by DRZ concentrations as low as 10 µM, which 

allowed us to use doses that were well within pharmacological levels achieved in patients 

(Hasinoff BB, et al., 2003) and to respect the recommended DOX: DRZ ratio (Thompson 

KL, et al., 2010). 
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In line with the findings of previous studies showing the protective effect of DRZ in vitro 

(Simunek T, et al., 2009) and in vivo (Popelova O, et al., 2009), we showed that pre-

exposure to DRZ prevents DOX-mediated cell death, particularly apoptosis (the prevailing 

mechanism for low-dose DOX cardiotoxicity) (Sawyer DB, et al., 1999; Bernuzzi F, et al., 

2009), although it has been reported that DOX-dependent depletion of GATA4 triggers 

cardiomyocyte autophagic death (Kobayashi S, et al., 2010). 

Importantly, using genetic manipulations involving the loss and gain of function of HIF-1 

levels and activity, we demonstrated the contribution of HIF to DRZ-mediated protection 

against DOX-induced damage in H9c2 cardiomyocytes.  

The involvement of HIF in the survival of DOX-treated H9c2 cells was shown by the fact 

that the protection was abolished by shRNA-mediated HIF-1α knockdown or the ∆ARNT-

mediated inhibition of the DNA binding activity of both HIF-1α and HIF-1β isoforms, 

whereas the overexpression of HIF-1α a was sufficient to provide a level of protection 

against DOX-induced damage that is similar to that obtained with the iron chelator. These 

findings are in line with the demonstration that HIF-1 is required for confluence-

dependent resistance to DOX in breast carcinoma cells (Fang D, et al., 2007) and suggest 

that similar mechanisms may be operating in tumour cells and cardiomyocytes.  

HIF-1α and HIF-2α have different tissue distributions but are activated by common stimuli 

and share a large number of target genes and functions, which hinders any clear 

determination of their specific roles (Semenza GL. 2009).  

We showed that both HIF isoforms, which are susceptible to similar degradation 

mechanisms through the von Hippel-Lindau mediated ubiquitin-dependent proteasome 

pathway (Semenza GL. 2009), were induced by DRZ, but we cannot define the 

contribution of either to the protection of H9c2 cells. However, the loss of 

cardioprotection in cells with shRNA-mediated HIF-1α-specific knockdown and the 

resistance to DOX toxicity in cells overexpressing HIF-1α suggest that this isoform plays 

an important role.  

DOX severely inhibits HIF-1 transcriptional activity in tumour cells (Lee K, et al., 2009), 

although another study did not find any inhibitory effect (Yamazaki Y, et al., 2006).  

We observed only partial inhibition of HIF transactivating capacity in DOX-treated H9c2 

cells (Figure 3B), and not enough to prevent its protective function (Figure 4). 

Importantly, we showed that the expression of HIF target genes was not affected by DOX 

and was also up-regulated in H9c2 cells exposed to DRZ plus DOX (see Figure 7). The 

different experimental conditions (3 hours pretreatment with DRZ before DOX 
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administration in our study vs. hypoxic exposure in the presence of DOX in the study of 

Lee et al., 2009) and the different cell types may explain this discrepancy.  

We also evaluated the effects of DRZ on the expression of a number of HIF target genes 

in H9c2 cells and found that it triggered the expression of the typical HIF target gene 

aldolase A, a glycolytic enzyme which has a positive effect on cell function and adaptation 

to hypoxia (Semenza GL, et al., 1996).  

In line with the antiapoptotic role of some HIF-regulated genes (Higgins DF, et al., 2008) 

and the prevention of apoptosis induced by DRZ pretreatment (see Figure 2), we observed 

the strong up-regulation of surviving and Mcl1, both of which are members of the 

apoptosis protein inhibitor family. Our findings are in line with the known essential 

function of survivin in cell division and the inhibition of apoptosis (Guha M and Altieri 

DC. 2009), as well as with the recent demonstration that the overexpression of survivin in 

cardiomyocytes inhibits DOX-induced apoptosis (Levkau B, et al., 2008). Moreover, it 

has been shown that Mcl1 (a pro-survival protein belonging to the Bcl2 gene family) is 

associated with cardiac myocyte viability (Craig RW. 2002).  

Our previous results suggested that DOX may facilitate the apoptosis of cardiomyocytes 

by inhibiting the antiapoptotic HO-1 (Bernuzzi et al., 2009), which is an HIF-1 target gene 

(Kim HP, et al., 2006). In line with these findings, exposure to DRZ was able to 

counteract the inhibition of HO-1 expression exerted by DOX and resulted in a strong 

increase in HO-1 levels. We point out that in our study, the inhibition of HIF activity by 

the expression of ∆ARNT prevented DOX-induced cell death (see Figure 4) and 

suppressed the induction of these antiapoptotic genes (see Figure 7), thus suggesting their 

role in DRZ-mediated cardioprotection. The incomplete effect exerted by the inhibition of 

HIF-1 activity may be due to the fact that not all the cells were transfected (see Figure 

5A), but the involvement of other transcription factors cannot be ruled out.  

On the other hand, we did not detect any significant modulation of Bcl-xL (results not 

shown), an antiapoptotic protein that protected H9c2 cardiomyocytes against DOX-

induced apoptosis (Reeve JL, et al., 2007). Our results are in line with previous findings 

indicating that Bcl-xL is probably not regulated by HIF-1; NF-kB (but not HIF-1) is 

important in hypoxia-induced apoptosis (Glasgow JN, et al., 2001), and the pathway 

underlying anoxia- and hypoxia-induced cell death is initiated by the loss of function of 

Bcl-xL (Shroff EH, et al., 2007).  

Taken together, these results indicate that the cardioprotective action of DRZ involves the 

HIF-mediated activation of antiapoptotic genes and is in line with the recent 
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demonstration that DRZ prevents apoptosis and heart damage in a rat model of cardiac 

infarction (Zhou L, et al., 2010).  

The role of DRZ in preventing anthracycline-dependent cardiotoxicity does not seem to 

involve the prevention of ROS formation, as we and others have recently obtained 

evidence indicating that oxidative stress does not play a role in the apoptotic cell death of 

H9c2 cardiomyocytes exposed to low DOX concentrations (Bernuzzi F, et al., 2009; Shi 

R, et al., 2009). Accordingly, we did not detect any significant alteration in MnSOD 

expression, an HIF-2α target gene (Scortegagna M, et al., 2003) whose overexpression in 

mice protects against DOX-induced acute toxicity (Yen HC, et al., 1996). Our findings are 

therefore in line with the idea that the toxic role of iron in anthracycline cardiotoxicity is a 

result of reactions that extend beyond canonical oxidative damage and involve other 

mechanisms unrelated to ironcatalysed ROS production. 

Recent evidence showing that Pgp, a membrane efflux pump involved in the development 

of the MDR phenotype (Takara K, et al., 2006), is induced in tumour cells exposed to 100 

µM DRZ (Riganti C, et al., 2008) suggests that, by actively extruding DOX and thus 

lowering its intracellular concentration, Pgp may be a potential mediator of HIF-

dependent cardioprotection. However, we found that Pgp expression was not affected by 

DRZ in H9c2 cells despite concomitant HIF activation; this discrepancy may be explained 

by the cell-specific response of Pgp to iron deprivation, as suggested by a recent study 

showing Pgp downregulation in leukaemic K562 cells exposed to an iron chelator (Fang 

D, et al., 2010).  

The fact that DRZ offers unquestionable protection in vivo, whereas other iron chelators 

whose bioavailability is similar to that of DRZ have either not been protective (Popelova 

O, et al., 2008; Hasinoff BB and Patel D. 2009) or have only been effective at low-

intermediate but not at higher doses (Sterba M, et al., 2006), has still not been explained.  

The protective effect of DRZ may depend on additional and possibly unique mechanisms, 

such as interference with topoisomerase II b-mediated DNA double-strand breaks (Lyu 

YL, et al., 2007). As we found that DFO-mediated iron chelation also activates HIF in 

H9c2 cells, our results do not explain the unique capacity of DRZ to prevent cardiotoxicity 

in vivo. However, our findings demonstrate a novel ROS-independent mechanism based 

on the HIF mediated activation of protective genes, which seems to account for the 

antiapoptotic effect of DRZ against low-dose DOX toxicity in the H9c2 model. This 

indicates that HIF plays a role in DRZ cardioprotection. 



60 
 

We also explored two possible alternative pharmacological strategies to prevent DOX-

induced toxicity.  

The first one was based on dimethyloxalyl glycine (DMOG), a small molecular mimic of 

hypoxia that can inhibit 2-oxoglutarate-dependent hydroxylase enzymes, thus preventing 

hydroxylation of HIF-1α and its proteasomal degradation (Jaakkola P, et al., 2001).  

DMOG is a well known activator of hypoxia-inducible factor (HIF) and some studies have 

reported that DMOG is able to inhibit apoptosis in neurons deprived of nerve growth 

factor (NGF) by inhibiting cytochrome c release and caspase activation (Lomb DJ, et al., 

2007). Other studies have shown that DMOG prevents the decrease in glucose uptake and 

the accumulation of ROS that occur in primary cultures of sympathetic neurons after NGF 

withdrawal. These data implicate HIF-2α in the neuroprotective mechanisms activated by 

prolyl hydroxylase inhibitors and as an obligatory player in a survival pathway activated 

by NGF in developing neurons (Lomb DJ, et al., 2009).  

In line with these and others studies, we therefore tried to demonstrate a HIF-1-mediated 

protection of cardiomyocytes treated with DMOG. However, we did not find any kind of 

protection from damage induced by DOX in cells pretreated with DMOG. We found that 

at concentrations normally used in the literature (0.5 – 1 mM; Ockaili R, et al., 2005), 

DMOG is substantially toxic to cardiomyocytes . The cytotoxic effect of DMOG in H9c2 

cells was rather unexpected although studies in human mesencephalic neural progenitor 

cells have already highlighted the toxicity of this molecule (Milosevic J, et al., 2009). 

Given the intrinsic toxicity of this compound, H9c2 cells were exposed to lower doses of 

DMOG. Indeed, treating H9c2 cells with these low concentrations of DMOG 0.1-0.2 mM 

did not have any toxic effect and DMOG was still able to induce HIF-1, but to a very 

lesser extent than that achieved with an established iron chelator like DFO. Importantly, 

this treatment was not cytoprotective, thus suggesting that the lower extent of HIF-1 

activation might not be sufficient to protect cardiomyocytes from DOX-induced toxicity 

and indicating that the action of HIF may be dose-dependent.  

The second approach was based on the activation of the sodium-dependent glucose 

transporter-1 (SGLT-1) which has been shown to protect cells from various injuries (Yu 

LC, et. al., 2005; Yu LC, et al., 2006; Zanobbio L, et al., 2009; Palazzo M, et al., 2008; La 

Ferla B, et al., 2010; Zhou L, et al., 2003). 

The rationale for these experiments was provided by a large body of evidence suggesting 

that the protective effects of D-Glucose is due to the activation of SGLT-1, as the glucose 
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analog 3-OMG, which induces the transporter activity but is not metabolized, and the 

SGLT-1 agonist BLF50 exerted the same effects as glucose both in vitro and in vivo 

(Palazzo M, et al., 2008). 

Previous studies have shown that human cardiomyocytes express high levels of SGLT-1 

RNA (Zhou L, et al., 2003) and indeed we verified that SGLT-1 is also expressed in the 

H9c2 cell line (see Fig. 9A). Thus, we decided to assess the protective role SGLT-1-

mediated in the H9c2 model of DOX toxicity. 

We found that D-glucose protects H9c2 from DOX-induced toxicity, but this protection 

does not seem to be mediated by the activation of glucose transporter SGLT-1. This 

conclusion is based on the fact that by exposing cells to 3-OMG and BLF50, that have 

been shown to induce the transporter activity (Yu LC, et. al., 2005; Yu LC, et al., 2006; 

Zanobbio L, et al., 2009; Palazzo M, et al., 2008; La Ferla B, et al., 2010; Zhou L, et al., 

2003), we did not find any protection from DOX-toxicity in H9c2 cardiomyocytes.  

These data contrast with those reported in a recent study showing that another glucose 

analog, 2-deoxy-D-glucose (2-DG), is able to prevent DOX-induced damage (Chen K, et 

al., 2011). This glucose analog can enter the cells and be phosphorylated but not further 

metabolized; therefore, it competitively blocks glucose utilization, presumably by 

mimicking caloric restriction effects at the cellular level. The mechanisms by which 2-DG 

protects against DOX toxicity appear to be complicate and are mediated through multiple 

factors, including the preservation of ATP content, the activation of AMP-activated 

protein kinase and the inhibition of autophagy (Chen K, et al., 2011). 3-OMG and 2-DG 

are very similar and they both compete with glucose for uptake into cells and do not 

support glycolysis, but 2-DG is not phosphorylated by hexokinase (Xu YZ, et al., 2001). 

The discrepancy of the results obtained with 2-DG and 3-OMG does not appear to be due 

to the different structure of the molecules but may result from the fact that Chen K, et al., 

used isolated neonatal rat cardiomyocytes and a greater concentration of DOX (1µM).  

Preserved or enhanced glucose uptake has been shown to protect also hematopoietic cells 

(Rathmell JC, et al., 2003; Vander Heiden MG, et al., 2001), neurons (Ravikumar B, et al., 

2003), and cardiomyocytes (Morissette MR, et al., 2003). Furthermore, pretreatment of 

cells with high extra-cellular glucose concentrations or hyperglycemia has been shown to 

enhance de novo synthesis of diacylglycerol and promote protein kinase C (PKC) 

activation to protect cardiomyocytes and neurons from ischemic injury. The mechanism of 

this protection, however, is not clear (Malliopoulou V, et al., 2006; Peter-Riesch B, et al., 

1988; Raval AP, et al., 2003; Whiteside CI and Dlugosz JA. 2002). 
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An interesting study conducted in primary lymphocytes suggested that increased glucose 

metabolism protected cells against the proapoptotic Bcl-2 family protein Bim and 

attenuated degradation of the antiapoptotic Bcl-2 family protein Mcl-1 through the 

phosphorylation of GSK-3, most likely via PKC activity (Zhao Y, et al., 2007).  

These results suggest that the H9c2 protection induced by glucose could be mediated by 

signalling pathway initiated by glucose catabolism which may inhibit apoptotic cells 

death. Since it has been shown that p53 is activated in response to glucose deprivation 

(Assaily W, et al., 2011), one may speculate that in DOX-treated H9c2 cells increased 

glucose availability may blunt DOX-dependent p53 activation and thus prevent apoptosis. 

However, further studies are necessary to understand the mechanisms underlying D-

glucose-mediated cardioprotection in H9c2 cardiomyocytes exposed to DOX. 

Alternatively or concomitantly, glucose may exert its protective effect by simply acting as 

a substrate for glycolysis-dependent energy production in cells in which the mitochondria 

have been damaged by DOX, which specifically affects these organelles. 

In conclusion, our results showing that the activation of the HIF-dependent pathway is one 

of the molecular mechanisms at the basis of the well established and successful 

cardioprotective effect of iron chelation in patients treated with high cumulative doses of 

DOX indicate the HIF pathway as a druggable target to limit anthracycline cardiotoxicity 

in cancer patients. 
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