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Abstract

In this paper, we prove that a fuzzy set–valued Brownian motion Bt,
as defined in [2], can be handle by an R

d–valued Wiener process bt, in the
sense that Bt = Ibt ; i.e. it is actually the indicator function of a Wiener
process.

1 Introduction

Stochastic (fuzzy) set–valued evolution is a relevant topic that was studied
largely by different authors (e.g. [2, 3, 4] and references therein). The
following question was stated by Molchanov in [4, Open Problem 1.24,
p.316]:

Define a set–valued analogue of the Wiener process and the
corresponding stochastic integral.

In [2], the authors tackle the proposed problem defining a fuzzy set–valued
Brownian motion in Fkc, the family of convex fuzzy subsets of Rd with
compact support. In the sequel we shall prove that such a process is
equivalent to consider simply a Wiener process in R

d. This is based upon
the fact that the Brownian motion is a zero–mean Gaussian (fuzzy set–
valued) process.
In fact, it is widely known (cf. [3, Theorem 6.1.7]) that a Gaussian random
fuzzy set decomposes according to

X = EX ⊕ Iξ, (1)

where EX is in the Aumann sense, ξ is a Gaussian random element in R
d

with Eξ = 0 and IA : Rd → {0, 1} denotes the indicator function of any
A ⊆ R

d

IA(x) =

{

1, if x ∈ A,

0, otherwise,

(for the sake of simplicity, whenever A = {a} is a singleton we shall write
Ia instead of I{a}). Equation (1) means that X is just its expected value
EX up to a random Gaussian translation ξ. In some sense, EX represents
the “deterministic” part of X whilst ξ represents its random part. It is
also known (cf. [4, Proposition 1.30, p.161]) that a zero–mean random set
is actually a random element in R

d with zero–mean. Such a result can
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be easily extended to the fuzzy case and, jointly to decomposition (1),
implies

X = I0 ⊕ Iξ = Iξ.

Roughly speaking, the definition of Brownian motion in [2] for random
fuzzy sets drives down the complexity of the chosen (fuzzy) framework.
In fact, a Gaussian fuzzy random set with zero–mean is reduced to be a
random Gaussian element in R

d.
In this paper we shall provide an alternative proof of the last fact using
selections.

The paper is organized as follow. Section 2 is devoted to preliminaries
such as random (fuzzy) sets, embedding theorems and Brownian motion
for fuzzy sets (according to [2]). In Section 3 we prove the main result
of the paper, whilst in Section 4 we provide a proof to the statement
“zero–mean random set is a random element in R

d with zero–mean”.

2 Preliminaries

Here we refer mainly to [3]. Denote byKkc the class of non–empty compact
convex subsets of Rd, endowed with the Hausdorff metric

δH(A,B) = max{sup
a∈A

inf
b∈B

‖a− b‖, sup
b∈B

inf
a∈A

‖a− b‖},

and the operations

A+B = {a+ b : a ∈ A, b ∈ B}, λ · A = λA = {λa : a ∈ A}.

A fuzzy set is a map ν : Rd → [0, 1]. Let Fkc denote the family of all
fuzzy sets, which satisfy the following conditions.

1. Each ν is an upper semicontinuous function, i.e. for each α ∈ (0, 1],
the cut set να = {x ∈ R

d : ν(x) ≥ α} is a closed subset of Rd.

2. The cut set ν1 = {x ∈ R
d : ν(x) = 1} 6= ∅.

3. The support set ν0+ = {x ∈ Rd : ν(x) > 0} of ν is compact; hence
every να is compact for α ∈ (0, 1].

4. For any α ∈ [0, 1], να is a convex subset of Rd.

Let us endow Fkc with the metric

δ
∞
H (ν1

, ν
2) = sup{α ∈ [0, 1] : δH(ν1

α, ν
2
α)}.

and the operations

(ν1 ⊕ ν
2)α = ν

1
α + ν

2
α, (λ⊙ ν

1)α = λ · ν1
α.

Let (Ω, F,P) be a complete probability space. A fuzzy set–valued ran-
dom variable (FRV) is a function X : Ω → Fkc, such thatXα : ω 7→ X(ω)α
are random compact convex sets for every α ∈ (0, 1] (i.e. Xα is a Kkc–
valued function measurable with respect to the δH–Borel σ–algebra).

An FRVX is integrably bounded and we shall writeX ∈ L1[Ω, F, µ; Fkc] =
L1[Ω; Fkc], if ‖X0+‖H := δH(X0+, {0}) ∈ L1[Ω;R].
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The expected value of an FRV X, denoted by E[X], is a fuzzy set such
that, for every α ∈ (0, 1],

(E[X])α =

(
∫

Ω

Xαdµ

)

= {E(f) : f ∈ L
1[Ω;Rd], f ∈ Xα µ− a.e.}.

Embedding Theorem. Let S d−1 be the unit sphere in R
d. For any

ν ∈ Fkc define the support function of ν as follows:

hν(x, α) =

{

hνα (x) if α > 0,
hν

0+
(x) if α = 0,

for (x, α) ∈ S d−1 × [0, 1] and where hK(x) = sup{〈x, a〉 : a ∈ K}, for
x ∈ S d−1.
It is known that support function satisfies the following properties:

1. for any ν1, ν2 ∈ Fkc, hν1⊕ν2(·, ·) = hν1 (·, ·) + hν2(·, ·),

2. for any (x,α) ∈ R
d × [0, 1], hX(·)(x, α) ∈ L1[Ω;R], E[hX(x,α)] =

hE[X](x, α).

Let C(S d−1) denote the Banach space of all continuous functions v on
S d−1 with respect to the norm ‖v‖C = supx∈S d−1 |v(x)|. Let C([0, 1], C(S d−1))
be the set of all functions f : [0, 1] → C(S d−1) such that f is bounded,
left continuous with respect to α ∈ (0, 1], right continuous at 0, and f has
right limit for any α ∈ (0, 1). Then we have that C([0, 1], C(S d−1)) is a
Banach space with the norm ‖f‖C = supα∈[0,1] ‖f(α)‖C , and the following
embedding theorem holds.

Proposition 1 ([2] and the references therein.) There exists a function
j : Fkc → C([0, 1], C(S d−1)) such that:

1. j is an isometric mapping, i.e.

δ
∞
H (ν1

, ν
2) = ‖j(ν1)− j(ν2)‖C , ν

1
, ν

2 ∈ Fkc,

2. j(rν1 + tν2) = rj(ν1) + tj(ν2), ν1, ν2 ∈ Fkc and r, t ≥ 0.

3. j(Fkc) is a closed subset in C([0, 1], C(S d−1)).

As a matter of fact, we can define an injection j : Fkc → C([0, 1], C(S d−1))
by j(ν) = hν , i.e. j(ν)(x, α) = hν(x, α) for every (x, α) ∈ S d−1 × [0, 1],
and this mapping j satisfies above theorem. For simplification, let C :=
C([0, 1], C(S d−1)).
From Proposition 1 it follows that every FRV X can be regarded as a
random element of C by considering j(X) = hX : Ω → C, where hX(ω) =
hX(ω).

Fuzzy set–valued Brownian motion. For the results in this sub-
section we refer to [2] or we shall specify if otherwise.

Definition 2 [6] A FRV X : Ω → Fkc is Gaussian if hX is a Gaussian
random element of C.
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A random element hX taking values in C is Gaussian if and only if, for
any n ∈ N and f1, f2, . . . , fn ∈ C

∗
, the real vector–valued random variable

(f1(hX), f2(hX), . . . , fn(hX)) is Gaussian, whereC
∗
is the conjugate space

of C (i.e. the set of all continuous linear functionals on C).
It follows from the properties of hX and elements in C

∗
that X + Y is

Gaussian if X and Y are Gaussian FRV. Also λX is Gaussian whenever
X is Gaussian and λ ∈ R.

Proposition 3 [3, Theorem 6.1.7] A FRV X is Gaussian if and only if
X is representable in the form

X = E[X]⊕ Iξ,

where ξ is a Gaussian random element of Rd with zero mean.

Definition 4 Assume that {Ft : t ≥ 0} is a σ–filtration satisfying the
usual condition (complete and right continuous). {Xt : t ≥ 0} is called
an adaptive fuzzy set–valued stochastic process if for any t ∈ R+, Xt is
an Ft–measurable FRV. An adaptive fuzzy set–valued stochastic process
{Xt : t ≥ 0} is called Gaussian if, for any t ∈ R+, Xt is Gaussian.

An adaptive fuzzy set–valued stochastic process X = {Xt : t ≥ 0} is
Gaussian if and only if {(f1(hXt), . . . , fn(hXt)) : t ≥ 0} is a real vector–
valued Gaussian process, for any n ∈ N and f1, f2, . . . , fn ∈ C

∗
. Further,

the following theorem holds.

Definition 5 An adaptive fuzzy set–valued stochastic process {Bt : t ∈
R+} is called a fuzzy set–valued Brownian motion if and only if {hBt : t ∈
R+} is a Brownian motion in C.

Proposition 6 Assume that a fuzzy set–valued stochastic process {Bt :
t ≥ 0} satisfies B0 = I0. Then {Bt : t ≥ 0} is a fuzzy set–valued Brownian
motion if and only if it is a Gaussian process and

1. E[fi(hBt)] = 0, for any t ≥ 0, fi ∈ C
∗
, i = 1, . . . , n,

2. E[fi(hBt)fi(hBs )] = t ∧ s, for any s, t ≥ 0, fi ∈ C
∗
, i = 1, . . . , n,

3. E[fi(hBt)fj(hBs )] = 0, for any s, t ≥ 0, fi, fj ∈ C
∗
, i 6= j, i, j =

1, . . . , n.

In [2, Theorem 4.3 and Theorem 4.4] the authors provide also some
properties of a fuzzy set–valued Brownian motion that are very similar to
those of the real case.

Proposition 7 Let {Bt : t ≥ 0} be a fuzzy set–valued Brownian motion.
The following hold.

1. {Bt+t0}t≥0 is a fuzzy set–valued Brownian motion for any t0 ≥ 0.

2. {ν ⊕Bt}t≥0 is a fuzzy set-valued Brownian motion for any fuzzy set
ν ∈ Fk.

3. { 1√
λ
Bλt}t≥0 is a fuzzy set-valued Brownian motion for any λ > 0.

4. {tB 1√
t

}t≥0 is a fuzzy set-valued Brownian motion.

5. If Ft = σ{Bs : s ≤ t}, then {Bt,Ft}t≥0 is a fuzzy set–valued mar-
tingale.
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3 A FRV Brownian motion is a Wiener

process in R
d

This section is devoted to prove Theorem 8: the main result of this paper.

Theorem 8 A fuzzy set–valued process {Bt : t ≥ 0} is a Brownian
motion, if and only if,

Bt = Ibt , µ–a.e.

where {bt : t ≥ 0} is a Wiener process in R
d.

According to Definition 5 a fuzzy set–valued Brownian motion Bt is a
process taking values in F (that is a functional space over R

d). On the
other hand, the previous result provides a way to handle a fuzzy set–
valued Brownian motion simply using a random vector of Rd. In other
words, we observe a “complexity reduction”, i.e. from F to R

d.
Moreover, in view of Theorem 8, Property 2 in Proposition 7 is true if
and only if ν = I0, whilst the remain properties in Proposition 7 still hold
due to the same properties of the driving Wiener process bt in R

d.
Actually the “complexity reduction” stated in Theorem 8 is strictly

related to the characterization of Gaussian FRV (cf. Proposition 3), to
Property 1 of Proposition 6, and to the following result obtained for ran-
dom closed sets.

Proposition 9 Let X be in L1[Ω;K] and let a ∈ R
d.

∫

Ω
Xdµ = {a} if

and only if there exists a x ∈ L1[Ω;Rd] such that X = {x} µ–a.e. and
∫

Ω
xdµ = a.

Corollary 10 Let X be in L1[Ω;K].
∫

Ω
Xdµ = {0} if and only if there

exists a x ∈ L1[Ω;Rd] such that X = {x} µ-a.e. and
∫

Ω
xdµ = 0.

Although Proposition 9 and Corollary 10 are proved by Molchanov in [4,
Proposition 1.30, p.161], we shall propose in Appendix 4 alternative proofs
via selections avoiding the use of the support function as Molchanov did.

Lemma 11 For each (x,α) ∈ R
d × [0, 1], the following map belongs to

C
∗

ϕx,α : C → R

s 7→ ϕx,α(s) = s(x,α).

Proof. Map ϕx,α is linear since, for any s1, s2 in C and λ1, λ2 ∈ R, the
following chain of equalities hold.

ϕx,α(λ1s1 + λ2s2) =[(λ1s1 + λ2s2)(α)](x) = [λ1s1(α) + λ2s2(α)](x)

=λ1s1(α, x) + λ2s2(α, x) = λ1ϕx,α(s1) + λ2ϕx,α(s2).

For the continuity, let us consider any s ∈ C. For each ε > 0 and h ∈ C

such that ‖h‖C < ε, the following relations complete the proof.

|ϕx,α(s+ h)− ϕx,α(s)| = |ϕx,α(h)| = |h(α, x)| ≤ ‖h‖C < ε.

�

Proof of Theorem 8. The “if”part is trivial.
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In order to prove the “only if”part let us consider the fuzzy set–valued
Brownian motion {Bt : t ≥ 0}.
STEP 1. According to Proposition 6 and Proposition 3, for any t ≥ 0 and
f ∈ C

∗
, it satisfies

0 = E[f(hBt )] = E[f(hE[Bt]⊕Iξt
)].

where ξt is an Gaussian random element of Rd with Eξt = 0. By the fact
that, for any ν1, ν2 ∈ Fc, hν1⊕ν2 = hν1 + hν2 (cf. Proposition 1), using
the linearity of the expected value and of f , we get

0 = E[f(hE[Bt])] + E[f(hIξt
)] = f(hE[Bt]) + f(E[hIξt

])

= f(hE[Bt]) + f(hIE[ξt]
) = f(hE[Bt]), (2)

for any t ≥ 0 and f ∈ C
∗
, where for the last two equalities we use

hEX = EhX and the fact that ξt is zero mean.
Clearly hE[Bt] ≡ 0. On the contrary, there will exists an α ∈ [0, 1] such
that hE[Bt](α) 6≡ 0; i.e. there exists an α ∈ [0, 1] and x ∈ R

d such that
hE[Bt](α, x) 6= 0. Let us consider the map defined by ϕx,α(s) = s(x,α). It

is an element of C
∗
(cf. Lemma 11). Then ϕx,α(hE[Bt]) 6= 0 contradicts

Equation (2).
As a consequence, E[Bt] = I0 for each t ≥ 0; i.e.

E[(Bt)α] = {0}, (3)

for each t ≥ 0 and α ∈ (0, 1].
STEP 2. Combining Corollary 10 with Equation (3) we obtain that, for
each t ≥ 0 and α ∈ (0, 1], (Bt)α is actually µ–a.e. a random singleton
with null mean value; i.e. (Bt)α = {bt} µ–a.e. with bt being a random
element of Rd such that Ebt = 0. By definition of α–level sets for fuzzy
set, (Bt)α ⊃ (Bt)β for any 0 ≤ α ≤ β ≤ 1, and then Bt = Ibt µ–a.e..
Since {Bt}t≥0 is a fuzzy set–valued Brownian motion, {bt}t≥0 is a Brow-
nian motion in R

d, and this fact concludes the proof. �

Note that Proof of Theorem 8 only uses the fact that {Bt} is a Gaus-
sian process for which any finite distribution, at any time t, has null
expectation.

We want to point out that, although one can associate a fuzzy set–
valued Brownian motion at any Brownian motion in C (using the em-
bedding in Proposition 1), in general, the contrary is not possible. This
is due to the embedding properties. In fact, j(Fkc) is a proper subset of
C([0, 1], C(S d−1)).
As a consequence, a Gaussian element in C([0, 1], C(S d−1)) can assume
different values (even “negative”), whilst this could not happen in Fkc

since, the embedding j could not carry back all the possible “fluctua-
tions”of gaussian element.

In this view, a definition of fuzzy set–valued Brownian motion, that
take care completely the complexity of the (fuzzy) set–valued framework,
has to take into account the above arguments and must pay attention to
the possibly degeneracy.
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4 Proof of Proposition 9

In [4, Proposition 1.30, p.161] Molchanov proposed a proof of Proposi-
tion 9. It involves the support function of a set. Here we propose a
different approach, via random sets selections, that is interesting by itself,
and that leads to the same result.

For the sake of generality, here we shall consider X to be a separable
Banach space with BX its borel σ–algebra and (Ω, F) to be a measurable
space endowed with a positive finite measure µ (till now X was Rd and µ

a probability measure).
In order to prove Proposition 9 we need the following two lemmas. Roughly
speaking, the former says that any non–null vector in X can be separated
from zero using a suitable countable family of elements of X∗. The sec-
ond lemma says that, for any couple of different (on some set of positive
measure) integrable random elements in X, there exists an element of X∗

that separates (on a set of positive measure) these two random elements
of X.

Lemma 12 There exists {φn}n∈N ⊂ X∗ such that whenever x ∈ X \ {0}
there exists n ∈ N for which φn(x) 6= 0.

Proof. Let {xn}n∈N be a dense subset of X. As a consequence of
the Hahn-Banach Theorem (cf. [1, Corollary II.3.14, p. 65]) there ex-
ists {φn}n∈N ⊂ X

∗ such that φn(xn) = ‖xn‖X and ‖φn‖X∗ = 1 for all
n ∈ N. Then

− ‖y‖X ≤ φn(y) ≤ ‖y‖X, ∀y ∈ X \ {0}, ∀n ∈ N. (4)

Let x ∈ X \ {0} and n ∈ N such that ‖x− xn‖X ≤ ‖xn‖X
2

. By (4) we have

φn(x) = φn(xn) + φn(x− xn) ≥ ‖xn‖X − ‖x− xn‖X ≥
‖xn‖X

2
> 0

i.e. φn(x) > 0 that concludes the proof. �

Lemma 13 Let x1, x2 ∈ L1[Ω;X] and A = {ω ∈ Ω : x1(ω) 6= x2(ω)}
with µ(A) > 0. Then there exists ϕ ∈ X

∗ such that

Aϕ = {ω ∈ Ω : ϕ[x1(ω)] > ϕ[x2(ω)]}

has positive measure (i.e. µ(Aϕ) > 0).

Proof. Let x = (x1 − x2) then A = {ω ∈ Ω : x(ω) 6= 0} and let
{φn}n∈N ⊂ X

∗ as in Lemma 12. We claim that there exists n ∈ N such
that µ(Aφn) + µ(A−φn) > 0. By contradiction, if An = Aφn ∪ A−φn , we
have

µ(An) ≤ µ(Aφn) + µ(A−φn) = 0, ∀n ∈ N.

Now we prove that A ⊆
⋃

n∈N
An: let ω ∈ A then x(ω) 6= 0 and, by

hypothesis, there exists n ∈ N such that φn(x(ω)) 6= 0. Hence φn(x(ω)) >
0 or φn(x(ω)) < 0 i.e. ω ∈ An and thus A ⊆

⋃

n∈N
An.

This means that µ(A) ≤ µ(
⋃

n∈N
An) = 0 that contradicts hypothesis

(µ(A) > 0) and concludes the proof. �

Proof of Proposition 9. The “if” part is trivial. Vice versa, let us
suppose that

∫

Ω
xdµ = a holds for all x ∈ SX , where integral is in the
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Bochner sense. Let us recall that a Bochner integrable map is also Pettis
integrable and by definition (see [7, 5]) we have

∫

Ω

φ(x)dµ = φ(a), ∀φ ∈ X
∗
, ∀x ∈ SX . (5)

Now, by contradiction, let us suppose that x1, x2 are distinct elements of
SX i.e. A = {ω ∈ Ω : x1(ω) 6= x2(ω)} has positive measure. Then, by
Lemma 13, there exists ϕ ∈ X

∗ such that Aϕ = {ω ∈ Ω : ϕ[x1(ω)] >
ϕ[x2(ω)]} has positive measure. Let us consider xϕ = IAϕx1 + IAC

ϕ
x2.

Clearly xϕ is a selection of X (i.e. xϕ ∈ SX), and
∫

Ω

ϕ(xϕ)dµ =

∫

Aϕ

ϕ(x1)dµ+

∫

AC
ϕ

ϕ(x2)dµ

>

∫

Aϕ

ϕ(x2)dµ+

∫

AC
ϕ

ϕ(x2)dµ = ϕ(a)

which contradicts Pettis integrability (5). �

5 Conclusion

We proved that a fuzzy set–valued Brownian motion is actually a degener-
ated process. In particular, it can actually be handle by a wiener process
in the understanding space. This simplification is due mainly both to the
well–known Gaussian degeneracy and to the “null”expectation.
Moreover, we provided an alternative proof to Proposition 9: an inte-
grable set–valued map, which integral is a singleton, is almost everywhere
an integrable singleton–valued map

We think that used hypothesis can be relaxed in different ways in order
to get generalizations. For example, the space R

d can be replaced with a
more general one. In this case, the difficulty lies in the fact that one have
to redefine fuzzy set–valued Brownian motion in the new space as well as
to use a different embedding theorem.
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