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Abstract

Let X be a fuzzy set–valued random variable (FRV), and ΘX the fam-
ily of all fuzzy sets B for which the Hukuhara difference X ⊖H B exists
P–almost surely. In this paper, we prove that X can be decomposed as
X(ω) = C ⊕ Y (ω) where the equality holds for P–almost every ω ∈ Ω,
C is the unique deterministic fuzzy set that minimizes E[d2(X,B)2] as B
is varying in ΘX , and Y is a centered FRV (i.e. its generalized Steiner
point is the origin). This decomposition allows us to characterize all FRV
translation (i.e. X(ω) = M ⊕ Iξ(ω) for some deterministic fuzzy convex
set M and some random element in R

d). In particular, X is an FRV
translation if and only if the Aumann expectation EX is equal to C up
to a translation.
This result includes the well–known case of Gaussian fuzzy random vari-
able for which X = EX ⊕ ξ with ξ being a Gaussian element in R

d, and
the fuzzy Brownian motion Bt that can be written as Bt = Iξt where ξt
is a Brownian process in R

d.

Keywords: Fuzzy random variable; fuzzy random translation; Gaussian
fuzzy random set; Aumann expectation; Hukuhara difference; decompo-
sition theorem;

Introduction

It is widely known (e.g. [5, Theorem 6.1.7]) that a Gaussian fuzzy random
variable decomposes according to

X = EX ⊕ Iξ, (1)

where EX is the expectation of X in the Aumann sense, ξ is a Gaussian
random element in R

d with Eξ = 0 and IA : Rd → {0, 1} denotes the
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indicator function of any A ⊆ R
d

IA(x) =

{
1, if x ∈ A,
0, otherwise,

(for the sake of simplicity, whenever A = {a} is a singleton we shall write
Ia instead of I{a}). Plain speaking, a Gaussian FRV X is just a deter-
ministic fuzzy set (its expected value EX) up to a Gaussian translation
ξ which carries out all the randomness of X. In this view, Equation (1)
entails a “loss in complexity”for the randomness of the Gaussian FRV X
according to which the underlying probability structure can be defined
just only on R

d and no longer on Fkc. Clearly, such loss of complexity
occurs in the more general case of an FRV X that is a random trans-
lation of a deterministic fuzzy set M ; i.e. X = M ⊕ Iξ with ξ being a
random element on R

d. In this paper we shall provide a characterization
for random translations by means of a suitable decomposition theorem
that holds for any FRV. In particular, given a centered FRV X, we shall
define the family ΘX of all deterministic B ∈ Fkc for which the Hukuhara
difference X⊖H B exists almost surely. We shall show that this set is not
empty, convex and closed in (Fkc, d2), where d2 corresponds the L2 metric
in the space of support functions. Further,

C = argmin
U∈ΘX

E(d2(X,U)2)

is unique and there exists an FRV Y such that X(ω) = C⊕Y (ω); in some
sense, C and Y are the deterministic part (with respect to ⊕) and the
random part of X respectively.
Noting that, the Aumann expectation EX is the (unique) Frèchet expec-
tation with respect to d2, i.e.

EX = argmin
U∈Fkc

E(d2(X,U)2),

we obtain immediately the characterization announced above: an FRV X
is a random translation of C (i.e. Y (ω) is almost surely a singleton) if and
only if EX is equal to C. We want to point out how Frèchet expectation is
often presented as the property of the mean value for which EX minimizes
the variance of X.

The paper is organized as follow. Section 1 introduces necessary nota-
tions and literature results. Section 2 studies properties of the Hukuhara
set ΘX whilst Section 3 presents the decomposition theorem for FRV and
a characterization of FRV translation.

1 Preliminaries

Here we refer mainly to [5]. Denote byKkc the class of non–empty compact
convex subsets of Rd, endowed with the Hausdorff metric

δH(A,B) = max{sup
a∈A

inf
b∈B

‖a− b‖, sup
b∈B

inf
a∈A

‖a− b‖},
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and the operations

A+B = {a+b : a ∈ A, b ∈ B}, λ·A = λA = {λa : a ∈ A} with λ > 0.

For a non–empty closed convex set A ⊂ R
d the support function sA :

S d−1 → R is defined by

sA(x) = sup{〈x, a〉 : a ∈ A}, for x ∈ S d−1,

where 〈·, ·〉 is the scalar product in R
d and S d−1 = {x ∈ R

d : ‖x‖ = 1} is
the unit sphere in R

d. The Steiner point of A ∈ Kkc is defined by

ste(A) =
1

vd

∫

S d−1

sA(x)x dλ(x)

where x ∈ S d−1 varies over the unit vectors of R
d, λ is the Lebesgue

measure on S d−1, and vd is the volume of the unit ball of Rd.
A fuzzy set is a map ν : Rd → [0, 1]. Let Fkc denote the family of all

fuzzy sets, which satisfy the following conditions.

1. Each ν is an upper semicontinuous function, i.e. for each α ∈ (0, 1],
the cut set να = {x ∈ R

d : ν(x) ≥ α} is a closed subset of Rd.

2. The cut set ν1 = {x ∈ R
d : ν(x) = 1} 6= ∅.

3. The support set ν0 = {x ∈ Rd : ν(x) > 0} of ν is compact; hence
every να is compact for α ∈ (0, 1].

4. For any α ∈ [0, 1], να is a convex subset of Rd.

For any ν ∈ Fkc define the support function of ν as follows:

sν(x,α) =

{
sνα(x) if α > 0,
sν0(x) if α = 0,

for (x, α) ∈ S d−1 × [0, 1] and where sK(x) = sup{〈x, a〉 : a ∈ K}, for
x ∈ S d−1. Let us endow Fkc with the operations

(ν1 ⊕ ν2)α = ν1
α + ν2

α, (λ⊙ ν1)α = λ · ν1
α, with λ > 0

so that Fkc is a convex cone, and with the metrics

δ∞H (ν1, ν2) = sup{α ∈ [0, 1] : δH(ν1
α, ν

2
α)},

d2(ν
1, ν2) =

(∫ 1

0

∫

S d−1

|sν1(α, u)− sν2(α, u)|2 dα du

) 1

2

.

It is known that (Fkc, δ
∞
H ) is a complete metric space while (Fkc, d2) is not

(cf. [3, Chapter 7]). The generalized Steiner point of A ∈ Fkc is defined
by

Ste(A) =

∫

[0,1]

ste(Aα) dα,

where dα is the Lebesgue measure on [0, 1]. In other words, Ste(A) may
be seen as a weighted average of steiner points of the level sets of A. The
following properties are satisfied (cf. [8]).

1. For any A ∈ Fkc, Ste(A) ∈ A0.
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2. For any A,B ∈ Fkc, Ste(A⊕B) = Ste(A) + Ste(B).

3. Ste : Fkc → R
d is continuous.

Let (Ω, F,P) be a complete probability space. A fuzzy set–valued ran-
dom variable (FRV) is a function X : Ω → Fkc, such thatXα : ω 7→ X(ω)α
are random compact convex sets for every α ∈ (0, 1] (i.e. Xα is a Kkc–
valued function measurable with respect to the δH–Borel σ–algebra). As
a consequence of continuity of Ste(·), if X is an FRV, then Ste(X) is a
random element in R

d.
An FRV X is integrably bounded and we shall write X ∈ L1[Ω; Fkc], if

E(supx∈X0
‖x‖) < +∞. The (Aumann) expected value of X ∈ L1[Ω; Fkc],

denoted by E[X], is a fuzzy set such that, for every α ∈ [0, 1],

(E[X])α =

∫

Ω

Xα dµ = {E(f) : f ∈ L1[Ω;Rd], f ∈ Xα µ− a.e.}.

It should be pointed out that, whenever E[(supx∈X0
‖x‖)2] < +∞ (we

shall write X ∈ L2[Ω;Fkc]), the expected value in the Aumann’s sense is
a Frèchet expectation with respect to d2, i.e.

EX = argmin
U∈Fkc

E(d2(X,U)2),

see for example [7].

Embedding Theorems. It is known that the support function al-
lows us to embed the space of fuzzy sets onto suitable Banach spaces
preserving the metrics δ∞H and d2.
On the one hand, (Fkc, d2) is trivially embeddable in the Hilbert space
of square integrable functions L2([0, 1]× S d−1) by means of the mapping
s : Fkc → L2([0, 1]× S d−1) where s(ν) = sν .
On the other hand, let C(S d−1) denote the Banach space of all continuous
functions v on S d−1 with respect to the norm ‖v‖C = supx∈S d−1 |v(x)|.
Let C([0, 1], C(S d−1)) be the set of all functions f : [0, 1] → C(S d−1)
such that f is bounded, left continuous with respect to α ∈ (0, 1], right
continuous at 0, and f has right limit for any α ∈ (0, 1). Then we
have that C([0, 1], C(S d−1)) is a Banach space with the norm ‖f‖C =
supα∈[0,1] ‖f(α)‖C , and the following embedding theorem holds.

Proposition 1 ([4] and the references therein.) There exists a function
j : Fkc → C([0, 1], C(S d−1)) such that:

1. j(rν1 + tν2) = rj(ν1) + tj(ν2), ν1, ν2 ∈ Fkc and r, t ≥ 0.

2. j is an isometric mapping, i.e.

δ∞H (ν1, ν2) = ‖j(ν1)− j(ν2)‖C , ν1, ν2 ∈ Fkc,

3. j(Fkc) is a closed subset in C([0, 1], C(S d−1)).

As a matter of fact, we can define an injection j : Fkc → C([0, 1], C(S d−1))
by j(ν) = sν , i.e. j(ν)(x,α) = sν(x,α) for every (x, α) ∈ S d−1 × [0, 1],
and this mapping j satisfies above theorem. For simplification, let C :=
C([0, 1], C(S d−1)).
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From Proposition 1 it follows that every FRV X can be regarded as a ran-
dom element of C by considering j(X) = sX : Ω → C, where sX(·)(ω) =
sX(ω)(·). Moreover, if X ∈ L1[Ω; Fkc], for any (x,α) ∈ R

d × [0, 1],
sX(·)(x,α) ∈ L1[Ω;R] and

E[sX(x,α)] = sEX(x,α). (2)

It is known that the support function for fuzzy sets ν ∈ Fkc can be
defined equivalently on the closed unit ball B(0, 1) = {x ∈ R

d : ‖x‖ ≤
1} ⊂ R

d instead of the unit sphere S d−1 by

s∗ν : B(0, 1) → R

x 7→ s∗ν(x) = max{〈x, y〉 : y ∈ R
d, ν(y) ≥ ‖x‖}.

In particular, the following relationship between support function defini-
tions hold

∀(x, α) ∈ S d−1 × [0, 1], sν(x, α) =

{
s∗ν(αx), if α 6= 0;
supy∈ν0

〈y, x〉, if α = 0.

∀x ∈ B(0, 1), s∗ν(x) =

{
‖x‖ sν

(
x

‖x‖
, ‖x‖

)
, if x 6= 0;

0, if x = 0.

In [1], the author prove that a function f : B(0, 1) → R is a support
function of some fuzzy set ν ∈ Fkc if and only if the following six properties
are satisfied:

(Property.1) f is upper semicontinuous, i.e.,

f(x) = lim sup
y→x

f(y), ∀x ∈ B(0, 1).

(Property.2) f is positively semihomogeneous, i.e.,

λf(x) ≤ f(λx), ∀λ ∈ (0, 1], ∀x ∈ B(0, 1).

(Property.3) f is quasiadditive, i.e.,

‖x‖f

(
λ

x

‖x‖

)
≤ ‖x1‖f

(
λ

x1

‖x1‖

)
+ ‖x2‖f

(
λ

x2

‖x2‖

)
,

for every λ ∈ (0, 1], and x, x1, x2 ∈ R
d \ {0}, with x = x1 + x2.

(Property.4) f is normal, i.e.,

f(x) + f(−x) ≥ 0, ∀x ∈ B(0, 1).

(Property.5) f(·)/‖ · ‖ is bounded, i.e.,

sup {f(x)/‖x‖ : x ∈ B(0, 1) \ {0}} < ∞.

(Property.6) f(0) = 0.
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2 Hukuhara set

In this section we shall define the Hukuhara set associated to an FRV X,
namely ΘX . We shall provide some properties of ΘX most of which will
turn out to be useful in the next section where a decomposition theorem
for fuzzy random variables will be set.

Let K be in Fkc such that Ste(K) = 0 and consider

θK = {B ∈ Fkc : Ste(B) = 0 and ∃A ∈ Fkc s.t. B ⊕ A = K};

i.e. the family of those centered convex compact fuzzy sets B for which
the Hukuhara difference K ⊖H B does exist. Note that θK is not empty,
since I0,K ∈ θK and {λ ⊙ K}λ∈[0,1] ⊆ θK . Clearly, if B ∈ θK and A is
the Hukuhara difference between K and B, then A ∈ θK .

Proposition 2 θK is a closed subset in (Fkc, δ
∞
H ).

Proof. Let {Bn} ⊂ θK be a convergent sequence with limit B ∈ Fkc

with respect to δ∞H , we have to prove that B ∈ θK . Equivalently, we
have to prove that there exists A ∈ Fkc such that B ⊕ A = X. For each
n = 1, 2, . . . there exist An ∈ Fkc such that Bn ⊕An = K. Thus, the idea
is to prove that {An}

∞
n=1 converges, w.r.t. δ∞H , to some A ∈ Fkc such that

B ⊕ A = X. To do this, let us consider the following chains of equalities

δ∞H (Am, An) = ‖sAm − sAn‖C
= ‖(sAm + sBm)− (sAn + sBn) + sBn − sBm‖C

= ‖sK − sK + sBn − sBm‖C

= ‖sBn − sBm‖C = δ∞H (Bn, Bm) → 0, for n,m → ∞

where we use the isometry A 7→ sA (first and last equalities) and the
fact that Bn, Bm belong to θK (third equality). Above limit implies that
{An}n∈N is a Cauchy sequence in (Fkc, δ

∞
H ) that is a complete metric

space (e.g. [5, Theorem 5.1.6]), and then there exists A in Fkc such that
An → A. As a consequence, Bn ⊕An → B⊕A for n → ∞ combined with

0 = δ∞H (Bn ⊕ An, X),

guarantees that B ⊕ A = X and hence B ∈ θX ; that is the thesis. �

In what follows we shall need the next lemma according to which a
fuzzy set can be defined starting from its α-cuts.

Lemma 3 (See [3, Proposition 6.1.7, p.39]) If {Cα}α∈[0,1] satisfies

(a) Cα is a non empty compact convex subset of Rd, for every α ∈ [0, 1];

(b) Cβ ⊆ Cα for 0 ≤ α ≤ β ≤ 1;

(c) Cα =
⋂∞

i=1 Cαi
for all sequence {αi}i∈R converging from above to α,

i.e. αi ↑ α in [0, 1];

then the function

ν(x) =

{
0, if x 6∈ C0,
sup{α ∈ [0, 1] : x ∈ Cα}, if x ∈ C0,
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is an element of Fkc with να = Cα for any α ∈ (0, 1] and

ν0 =
⋃

α∈(0,1]

Cα ⊆ C0.

Let X be an FRV. For the sake of simplicity and without loss of gener-
ality, let us suppose that Ste(X) = 0; otherwise one can always considered
its associated centered FRV X̃ = X − ISte(X). Next theorem defines the
Hukuhara set ΘX associated to X, and provides some topological and
vectorial properties of ΘX .

Proposition 4 The subset E = {B ∈ θX} := {ω ∈ Ω : B ∈ θX(ω)} is
measurable in (Ω, F). Moreover, if ΘX = {B ∈ Fkc : P(B ∈ θX) = 1},
then the following statements hold.

(i) ΘX is non–empty.

(ii) B ∈ ΘX if and only if there exist an FRV A such that B ⊕ A = X,
P–a.s.. If X ∈ L2[Ω; Fkc], then A is in L2[Ω; Fkc] too.

(iii) ΘX is a convex subset in (Fkc,⊕). As a consequence, if B ∈ ΘX ,
then {λB}λ∈[0,1] ⊆ ΘX .

(iv) ΘX is a closed subset of (Fkc, δ
∞
H ).

(v) ΘX is a closed subset of (Fkc, d2).

Proof of Proposition 4. Using the definition of θX(ω) and the charac-
terization of element in Fkc via the support functions, we get the following
chains of equalities.

E = {ω ∈ Ω : Ste(B) = 0 and ∃Aω ∈ Fkc, B ⊕ Aω = X(ω)}

= {ω ∈ Ω : Ste(B) = 0} ∩ {ω ∈ Ω : ∃Aω ∈ Fkc, s.t. sB + sAω = sX(ω)}

= Ω ∩ {ω ∈ Ω : fω := s∗X(ω) − s∗B is the support function of some Aω ∈ Fkc}

= {ω ∈ Ω : fω satisfies Properties 1–6}

= E1 ∩ . . . ∩E6,

where Ei = {ω ∈ Ω : fω satisfies Property i} for i = 1, . . . , 6. IfE1, . . . , E6

are measurable events, then E is measurable too. To show this note that
each Ei (i = 1, . . . , 6) can be written as Ei = {ω : gi(ω) ≤ 0} where

g1 = sup{| lim sup
y→x

fω(y)− fω(x)| : x ∈ B(0, 1)},

g2 = sup{λfω(x)− fω(λx) : λ ∈ (0, 1], x ∈ B(0, 1)},

g3 = sup
{
‖x‖fω

(
λ

x

‖x‖

)
− ‖x1‖fω

(
λ

x1

‖x1‖

)
− ‖x2‖fω

(
λ

x2

‖x2‖

)

: λ ∈ (0, 1], x, x1, x2 ∈ R
d \ {0}, with x = x1 + x2

}
,

g4 = − sup{fω(x) + fω(−x) : x ∈ B(0, 1)},

g5 = sup
{ |fω(x)|

‖x‖
: x ∈ B(0, 1) \ {0}

}
,

g6 = |fω(0)|.
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Clearly ω 7→ gi(ω) are measurable maps and hence E is a measurable
event in the σ–algebra F.
ITEM (i). Surely I0 belongs to ΘX , hence ΘX is not empty.
ITEM (ii). The sufficiency is trivial, let us prove the necessity. Let
M := Ec = {ω ∈ Ω : B 6∈ θX(ω)}, by hypothesis P(M) = 0. For every
ω ∈ Ω \ M , there exists Aω ∈ Fkc such that B ⊕ Aω = X(ω). Let us
consider the map

A : Ω → Fkc

ω 7→ A(ω) =

{
Aω, ω ∈ Ω \M,
I0, ω ∈ M.

Since sA = sX − sB a.s., sA is measurable. Hence, the map A defined
above, is the FRV we are looking for. With the same arguments one shows
that A ∈ L2[Ω; Fkc] if X is so.
ITEM (iii). Consider B1, B2 ∈ ΘX . From above part we know that
there exist two FRV A1, A2 with values in Fkc such that B1 ⊕ A1 = X
and B2 ⊕ A2 = X. For any λ ∈ [0, 1], the following hold

λ(B1 ⊕ A1) = λX, (1− λ)(B2 ⊕ A2) = (1− λ)X,

from which we get
λB1 ⊕ (1− λ)B2 ⊕ A = X,

with A = λA1 ⊕ (1− λ)A2. Hence λB1 ⊕ (1− λ)B2 ∈ ΘX .
To prove the last part consider B ∈ ΘX , then λB = λB⊕ (1−λ)I0 ∈ ΘX .
ITEM (iv). Consider a sequence {Bn}

∞
n=1 ⊂ ΘX converging to B ∈ Fkc

in (Fkc, δ
∞
H ), i.e.

δ∞H (B,Bn) → 0, as n → ∞.

We have to prove that B ∈ ΘX . Using the same arguments in (ii), for
any n ∈ N and for every ω ∈ Ω \Mn = {ω ∈ Ω : Bn 6∈ θX(ω)}, there exist
Aω,n such that Bn ⊕ Aω,n = X(ω) and

δ∞H (Aω,m, Aω,n) = δ∞H (Bm, Bn) → 0, as n → ∞.

Thus, the completeness of (Fkc, δ
∞
H ) guarantees that, for every ω ∈ Ω \⋃

n
Mn, {Aω,n}n∈N converges w.r.t. δ∞H to some Aω ∈ Fkc. Further, for

every ω ∈ Ω \M and n ∈ N the following inequalities hold

0 ≤ δ∞H (X(ω),B ⊕ Aω) ≤ δ∞H (X(ω),Bn ⊕ Aω,n) + δ∞H (Bn ⊕ Aω,n, B ⊕ Aω)

≤ 0 + δ∞H (Bn, B) + δ∞H (Aω,n, Aω) → 0

where, for the first addend, we use the fact that X(ω) = Bn⊕Aω,n. Thus
we get the thesis.
ITEM (v). Let us consider a sequence {Bn}

∞
n=1 ⊂ ΘX converging to

B ∈ Fkc in (Fkc, d2), i.e.

d2(B,Bn) → 0, as n → ∞.

We have to prove that B ∈ ΘX . In this case, (Fkc, d2) is not complete
and, hence, we can not repeat all arguments in (iv). In particular, for any

8



n ∈ N and for every ω ∈ Ω\Mn = {ω ∈ Ω : Bn 6∈ θX(ω)}, there exist Aω,n

such that Bn ⊕Aω,n = X(ω) and, using the same arguments in (ii),

d2(Aω,m, Aω,n) =

(∫ 1

0

∫

S d−1

|sAω,m (α, u)− sAω,n(α, u)|
2 dα du

) 1

2

= d2(Bm, Bn) → 0,

as n → ∞ and where dα and du denote the Lebesgue measure on
[0, 1] and the normalized Lebesgue measure on S d−1 respectively. Thus
{sAω,n}n∈N is a Cauchy sequence in the Hilbert space L2(C) and it admits

limit in L2(C), namely fω. Since

‖sAω,n−(sX(ω)−sB)‖L2 = ‖(sAω,n−sX(ω))+sB‖L2 = ‖sB−sBn‖L2 → 0,

it holds

sAω,n

L2

→ fω = sX(ω) − sB.

Note that, fω is not necessarily the support function of some element in
Fkc. In other words, {Aω,n}n∈N is a Cauchy sequence in the non–complete
space (Fkc, d2), but under the embedding j (cf. Proposition 1) we have
that the sequence {j(Aω,n)}n∈N = {sAω,n}n∈N is a Cauchy sequence that

admits limit in the Hilbert space L2(C). But, in general, this limit is not
the image under j of some element of Fkc. We claim, and we shall prove in
what follows, that there exists Aω ∈ Fkc such that sAω = fω = sX(ω)−sB,
i.e. B ⊕ Aω = X(ω) that is the thesis.
In fact, let us consider the family {Cα}α∈[0,1] of subsets of R

d defined by

Cα = {y ∈ R
d : 〈y, u〉 ≤ fω(α, u),∀u ∈ S d−1}, α ∈ [0, 1].

In what follows, we shall prove that the family {Cα}α∈[0,1] satisfies (a),
(b), (c) from Lemma 3, and it defines uniquely a fuzzy set ν whose support
function is, clearly, fω. Thus the fuzzy set ν defined in Lemma 3 is just
the Aω in Fkc we are looking for.
(a). Let α ∈ [0, 1].
Cα is non–empty : since Bα ⊆ (X(ω))α, then for every u ∈ S d−1

fω(α, u) = sX(ω)(α, u)− sB(α, u) ≥ 0 = 〈0, u〉, (3)

i.e. 0 ∈ Cα.
Cα is convex : let λ ∈ [0, 1] and y1, y2 ∈ Cα, for every u ∈ S d−1

〈λy1 + (1− λ)y2, u〉 ≤ λfω(α, u) + (1− λ)fω(α, u) = fω(α, u)

i.e. λy1 + (1− λ)y2 ∈ Cα.
Cα is compact : we have to prove that it is a bounded closed subset of
R

d. Note that {0} ⊆ Bα ⊆ (X(ω))α, then sX(ω)(α, u) ≥ sB(α, u) ≥ 0 for
each u ∈ S d−1 and sX(ω)(α, u) ≥ sX(ω)(α, u)− sB(α, u) = fω(α, u). This
implies that 〈y, u〉 is bounded for every u ∈ S d−1 and hence that Cα ⊆ R

d

is bounded. On the other hand, let {yn} ⊂ Cα be convergent to y ∈ R
d,

then, for every n ∈ N and u ∈ S d−1,

〈yn, u〉 ≤ fω(α, u),

and passing to the limit we obtain the same inequality for y and for every
u ∈ S d−1; i.e. y ∈ Cα. This fact allows us to conclude that Cα is closed
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and hence compact.
(b). Let 0 ≤ α ≤ β ≤ 1. Note that, for every n ∈ N and u ∈ S d−1,
sAn,ω (β, u) ≤ sAn,ω (α, u). Let n → ∞, then fω(β, u) ≤ fω(α, u) for
every u ∈ S d−1; i.e., for every u ∈ S d−1 and n ∈ N, sAn,ω and fω are
non–increasing functions with respect to α. Now, let us consider y ∈ Cβ,
then for every u ∈ S d−1, 〈y, u〉 ≤ fω(β, u) ≤ fω(α, u); i.e. y ∈ Cα and
Cβ ⊆ Cα.
(c). Let {αi}i∈N ⊂ [0, 1] such that αi ↑ α as i tends to infinity, that is
αi ≤ αi+1 and αi → α as i → ∞. Because of αi ≤ α and (b), we have
Cα ⊆ Cαi

and Cα ⊆
⋂

i∈N
Cαi

. It remains to show the opposite inclusion.
To do this let y ∈

⋂
i∈N

Cαi
, i.e. y ∈ Cαi

for all i ∈ N or

〈y, u〉 ≤ fω(αi, u), for every i ∈ N, u ∈ S d−1. (4)

Note that, for every u ∈ S d−1, fω(·, u) is left–continuous with respect to
α because it is the difference of two left–continuous functions (cf. Equa-
tion (3)). Hence, for the arbitrariness of i in (4), we can pass to the limit
as i tends to infinity obtaining 〈y, u〉 ≤ fω(α, u); i.e. y ∈ Cα. �

3 Hukuhara decomposition

Let us recall again the wide–known decomposition for Gaussian FRV X

X = EX ⊕ Iξ (1)

where EX is the Aumann expectation of X, and ξ is a Gaussian random
element in R

d with Eξ = 0. In some sense, Equation (1) reduces the
complexity of FRV X that is equal to its expected value EX (a determin-
istic fuzzy set) up to a random Gaussian translation ξ. In [2], the author
showed another case of “reduction of complexity”; a Brownian fuzzy set–
valued process is reduced to be a Brownian process in R

d. In both cases,
the randomness defined on F can be simpler defined on R

d.
Now, our question becomes the following one. Under what conditions we
can establish that a “reduction of complexity”, like the former, occurs for
fuzzy set–valued random process. In other words: Can a fuzzy process,
whose randomness is given only by vectors, be characterized in some way?
In this section we propose a positive answer to the above question and,
to do this, we shall focus mainly on a decomposition theorem for FRV. In
particular, we shall prove that such a X can be decomposed as the sum
of a deterministic convex fuzzy set and a random FRV in a unique way.
This decomposition allows us to characterize, by means of the Aumann
expected value, the FRV that is a random translation of a deterministic
fuzzy set.

Definition 5 An FRV X is a translation if there exists M ∈ Fkc with
Ste(M) = 0 such that

X(ω) = M ⊕ ISte(X).

In other words, the randomness of a translation X depends only on the
specific location in space and does not depend on its shape. Note that,
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according to (1), every Gaussian FRV X is an FRV translation with
M ⊕ IE(Ste(X)) = EX. Another sufficient condition for X to be an FRV
translation is given by Proposition 6, while a necessary and sufficient
condition will be given in Theorem 9. The latest is based upon the de-
composition established in Theorem 7. Note that Theorem 7 is interesting
by itself since allows us to decompose any FRV X as the sum of a deter-
ministic fuzzy set H⊥

X and an FRV Y that represents the randomness part
of X.

Proposition 6 Let X be an FRV such that EX = Ic where c ∈ R
d.

Then X = Iξ P–a.s. for some random element ξ in R
d. (Clearly X is an

FRV translation.)

Proof. Thesis can be reached using similar arguments in [2, Theorem 8],
or, whenever X ∈ L2[Ω; Fkc], as corollary of the next Theorem 7 and
Theorem 9. �

Clearly, the vice versa of Proposition 6 does not hold, for example in the
case of Gaussian FRV. In order to characterize translation FRV, we need
the following decomposition theorem.

Theorem 7 Let X ∈ L2[Ω; Fkc] with Ste(X) = 0. Thus there exists
H⊥

X ∈ Fkc with Ste(H⊥
X) = 0 and Y ∈ L2[Ω; Fkc] such that X decomposes

according to
X(ω) = H⊥

X ⊕ Y (ω), (5)

for P–almost all ω ∈ Ω. In particular, H⊥
X is the unique element in Fkc

that satisfies (5) and minimizes E[(d2(X,C))2]; i.e., there exists a unique
H⊥

X ∈ ΘX such that

H⊥
X := argmin

B∈ΘX

E[(d2(X,B))2]. (6)

Hence Y is the unique (except on a P–negligible set) FRV such that its
support function is given by sY = sX − sH⊥

X
. Moreover, H⊥

X is a maximal

element in ΘX with respect to the level–wise set inclusion; that is, if C ∈
ΘX with (H⊥

X)α ⊆ Cα for any α ∈ [0, 1], then H⊥
X = C.

Proof. Since ΘX collects all the element of Fkc for which (5) holds, we
have to prove that there exists a unique element in ΘX that minimizes
the map B ∈ ΘX → E[(d2(X,B))2].
At first note that ΘX can be seen as a subset of L2[Ω; Fkc]; in fact, for
each B ∈ ΘX the constant map ω 7→ B is an element of L2[Ω; Fkc] since

E[( sup
b∈B0

‖b‖)2] = ( sup
b∈B0

‖b‖)2 < +∞.

Moreover, ΘX is closed in L2[Ω;Fkc] as a consequence of

E[(d2(A,B))2] = (d2(A,B))2,

for any couples A,B ∈ Fkc, and thanks to the fact that ΘX is closed in
(Fkc, d2), see Proposition 4.
Thus the minimization problem is equivalent to prove that there exists a
unique projection ofX onto ΘX that is a closed convex subset of L2[Ω;Fkc]
endowed with the metric ∆2(·, ·) := E[(d2(·, ·))

2]; hence, there exists a
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unique element H⊥
X ∈ ΘX that realizes the required minimum (6).

As a consequence of H⊥
X ∈ ΘX and of (ii) in Proposition 4, the FRV Y is

defined through its support function sY = sX − sH⊥

X
.

Finally, let C be as in the thesis; thus inclusions (H⊥
X)α ⊆ Cα ⊆ Xα

imply sX −sC ≤ sX −sH⊥

X
. Then, by definition of H⊥

X and d2, necessarily

C = H⊥
X holds. �

The chosen notation wants to recall that, as the proof showed, H⊥
X is

obtained through a projection theorem of the selected FRV X on its
Hukuhara set ΘX . Further, we want to stress out that the suffix X
does not mean that H⊥

X is random. In fact, it does not depend on ω
but rather it is a deterministic element of Fkc (that is a constant element
in L2[Ω; Fkc]) that depends on the whole map ω 7→ X(ω).

The following theorems provide necessary and sufficient condition for
an FRV to be a translation.

Theorem 8 Let X be an FRV translation, and X̃ = X⊕I−Ste(X). Then

X = H⊥
X̃

⊕ ISte(X), P− a.s. (7)

Proof. By hypothesisX = M⊕ISte(X) for some M ∈ Fkc with Ste(M) =

0. Clearly, X̃ = X ⊕ I−ξ = M , M ∈ Θ
X̃

and E[(d2(M, X̃)2)] = 0; that is,
M = H⊥

X̃
. �

Theorem 9 Let X ∈ L2[Ω; Fkc]. X is an FRV translation if and only if
H⊥

X̃
satisfies

EX = H⊥
X̃

⊕ IE(Ste(X)) (8)

with EX being the Aumann expectation; i.e. H⊥
X̃

is EX up to a translation.

Proof. For the “only if”part it is sufficient to compute the expectation
in Equation (7) to get Equation (8).
Consider the “if”part. For the sake of simplicity, let us assume that
Ste(X) = 0, a straightforward argument extend the result in the more
general case of an FRV with non–void Ste(X). Then, in term of support
functions, Equation (5) becomes

sX = sH⊥

X
+ sY = sEX + sY ,

where we use the fact that H⊥
X = EX. Computing expectation of both

sides and using relation (2), we get that sY = 0. Hence Y = Iξ a.s. for
some random element ξ in R

d (cf. [2]). �

Remark 10 In view of Theorem 7 and Theorem 9, if X ∈ L2[Ω; Fkc],
then Proposition 6 holds. In fact, suppose that EX = Ic for some c ∈ R

d,
and compute expectation of both sides in Equation (5)

Ic = EX = H⊥
X ⊕ EY.

Hence, for any α ∈ [0, 1], (H⊥
X)α is a subset of {c} up to a translation,

that is (H⊥
X)α is a singleton as well as (EY )α. Then H⊥

X = Ic′ for some
c′ ∈ R

d, i.e. H⊥
X is equal to EX up to a translation and, by Theorem 9,
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X is an FRV translation that implies Y = Iξ for some random element in
R

d. Finally, rewriting Equation (5) in this particular case, we obtain

X = H⊥
X ⊕ Y = Ic′ ⊕ Iξ = Iξ′ ,

that is the thesis of Proposition 6. �

Moreover, the following results hold.

Corollary 11 Let X ∈ L2[Ω; Fkc] with Ste(X) = 0 and EX = H⊥
X .

Thus X is almost surely deterministic and equal to H⊥
X .

Corollary 12 Let X ∈ L2[Ω; Fkc], D ∈ Fkc and X ′ = X ⊕ D with
Ste(X) = Ste(D) = 0 (hence Ste(X ′) is the origin too). Then H⊥

X′ =
H⊥

X ⊕D.

ΘX

H⊥

X

L2[Ω;Fkc]

L2[Ω× [0, 1]× S d−1]

bI0

b X

b

Figure 1: A qualitative graphical interpretation of some results of Section 2 and
Section 3. In particular, ΘX is represented as a closed convex subset of Fkc

containing the origin and such that, for any B ∈ ΘX and λ ∈ [0, 1], λB ∈ ΘX .
Hence, H⊥

X
is the projection of X on ΘX , as a subset of L2[Ω;Fkc], with respect

to the metric E[d2(·, ·)
2]. Moreover, here we stress out the uniqueness of this

projection because cone L2[Ω;Fkc] is embeddable in the Hilbert space L2[Ω ×

[0, 1] × S d−1] through the map X 7→ j(X) that preserves the metric. Finally,
the following inclusions/embeddings are qualitatively represented: ΘX ⊆ Fkc →֒

L2[Ω;Fkc] →֒ L2[Ω× [0, 1]× S d−1].

Remark 13 shows an example of an X in L2[Ω; Fkc] with Ste(X) = 0 for
which E(X) 6= H⊥

X and for which H⊥
X is not necessarily I0; i.e., in terms

of Theorem 9, X is not a translation but its deterministic part H⊥
X in the

decomposition (5) is not just reduced to the origin.
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Remark 13 Let R
d = R, (Ω = [0, 1],B[0,1], µ) where µ is the Lebesgue

measure and X be the FRV defined by X := I[ω,ω], for any ω ∈ [0, 1].
Clearly X ∈ L2[Ω; Fkc] and Ste(X) = 0. Moreover,

fm(ω) := minX1(ω) = −ω and fM (ω) := maxX1(ω) = ω

are integrable selections of the 1–level RaCS X1; any other integrable
selection f of X1 satisfies

fm(ω) ≤ f(ω) ≤ fM (ω), for each ω ∈ [0, 1].

Then

−
1

2
= Efm ≤ Ef ≤ EfM =

1

2
,

and, by the convexity of Aumann expectation and because X1 = Xα for
any α ∈ [0, 1], EX1 = [− 1

2
, 1
2
] = EXα, that is EX = I[− 1

2
, 1
2
].

We shall prove that EX 6∈ ΘX and hence, by Theorem 8, X is not an
FRV translation. In fact, note that

X ⊖H EX = I[−ω,ω] ⊖H I[− 1

2
, 1
2
] =





I[−ω+ 1

2
,ω− 1

2
], ω > 1

2
,

I0, ω = 1
2
,

it does not exist, ω < 1
2
,

implies

P(EX ∈ θX) = P(there exists X ⊖H EX) = P

(
ω >

1

2

)
=

1

2
,

and hence EX 6∈ ΘX .
Actually we can show that ΘX = {I0} and hence H⊥

X = I0. In fact, by
absurd let B ∈ ΘX with B 6= I0, then there exists α ∈ [0, 1] such that
Bα = [a, b] with a < b and there exists Xα ⊖H Bα, here ⊖H is considered
as the Hukuhara difference for subsets in R. On the other hand

[−ω, ω]⊖H [a, b] =





[−ω − a, ω − b], ω − b > −ω − a,
{− b+a

2
}, ω = b−a

2
,

it does not exist, ω < b−a
2

,

and, as consequence,

P([−ω,ω]⊖H [a, b] does not exist) = µ

[(
−∞,

b− a

2

)
∩ [0, 1]

]
> 0

where the last inequality is due to the fact that, by hypothesis, b− a > 0.
This is an absurd since B ∈ ΘX by hypothesis. Thus ΘX = {I0} 6= EX =
I[− 1

2
, 1
2
].

Finally, in order to produce a more general example, let us consider

X = I[−ω,ω] ⊕ I[− 1

2
, 1
2
] = I[−ω− 1

2
,ω+ 1

2
]

so that, from Corollary 12, we immediately obtain that

I[−1,1] = EX 6= H⊥
X = I[− 1

2
, 1
2
] 6= I0.

�
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4 Conclusion

In this paper, we have proven that any square integrable FRV can be
decomposed as X = H⊥

X ⊕ Y , where H⊥
X is a unique deterministic fuzzy

convex compact set (i.e. in Fkc) and Y is an element of L2[Ω; Fkc]. This
decomposition leads us to characterize FRV translations for which H⊥

X =
EX, where the expectation is in the Aumann sense.
This fact is important, for example, in view of Proposition 6 that allows
us to simplify the complexity of an FRV process {Xt}t≥0 for which the
following EXt = Ic holds at any time t. In fact, since Xt is a translation
at each t, it can be interpreted simpler as a random element on R

d.
In general, working with a centered X in L2[Ω; Fkc] one may distinguish
different cases:

• the trivial one, for which EX = H⊥
X and hence X is a translation.

• the case for which EX 6∈ ΘX but H⊥
X = I0; i.e. X is a “pure”or

“reduced”FRV.

• the case for which EX 6∈ ΘX and H⊥
X 6= I0. In this case, one can take

advantages from decomposition H⊥
X ⊕ Y splitting the deterministic

case from the random one.

The procedure to construct H⊥
X starting from a squared integrable

FRVX, can be viewed as a particular case of a general situation described,
for example, in [6, p.174–175]. There the author plainly illustrates a
“linearisation approach”in order to define expectation for random sets.
The scheme can be easily extended to the FRV case. In particular, the
computation of the expectation of a random element X is associated to
a minimization problem (like in the case of Fréchet expectation). Some
strictly related troubles may arise from this kind minimization problem:
even though a solution to the minimization problem exists (some imposed
constraints may cause to minimize over an empty set) it may be not unique
or, there exists a solution in a larger space (than the one where X lies),
but this solution does not correspond to any element in the work–space.
Note that, in the present paper, we implicity or explicitly encountered
and solved the same problems (existence, uniqueness and “identity”). We
get over all these hitches thanks to the closeness and convexity properties
of ΘX as a subset of L2[Ω; Fkc] →֒ L2[Ω× [0, 1]× S d−1].
In spite of the fact that H⊥

X is defined, according to the above scheme, as
an expected value of the square integrable FRVX, it is simple to show that
it does not satisfy different basic properties of a “reasonable”expectation,
cf. [6, p.190].

We would like to do another remark; decomposition theorem proposed
in Section 3 could not be compared with a regression problem as stated,
for example in [9]. In that paper, the authors look for the best linear
approximation function of a given square integrable FRV Y by another
square integrable FRV X, studying the minimization problem

inf
a∈R,B∈Fkc

E[d2(Y, aX ⊕B)2].

On the other hand, since the regression problem is a linearisation prob-
lem, one can think to approach the same problem using the “Hukuhara
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reduced”FRV Y ⊖H H⊥
Y and X ⊖H H⊥

X instead of the original centered
(SteY = SteX = 0) square integrable FRV Y and X, or, equivalently to
suppose that H⊥

X = H⊥
Y = I0.

Future works may consider the possibility to relax some hypothesis; for
example, replacing R

d with an Hilbert or a Banach space (problems may
arise considering the embedding j and hence the closure of the Hukuhara
set ΘX), or dropping convexity hypothesis and, hence, stating a decom-
position theorem for a random element of Fk and not of Fkc. Finally, note
that we restricted our studies to the well–posedness of a such H⊥

X and
it can be interesting to compute explicitly this fuzzy set, though even in
particular cases.
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[9] A. Wünsche and W. Näther. Least-squares fuzzy regression with
fuzzy random variables. Fuzzy Sets and Systems, 130, 43–50, 2002.

16

http://arxiv.org/abs/1109.6167

	1 Preliminaries
	2 Hukuhara set
	3 Hukuhara decomposition
	4 Conclusion

