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Histone acetylation deficits in lymphoblastoid cell
lines from patients with Rubinstein—Taybi syndrome

J P Lopez-Atalaya,' C Gervasini,? F Mottadelli,”> S Spena,? M Piccione,® G Scarano,*

A Selicorni,® A Barco,' L Larizza®

ABSTRACT

Background Rubinstein—Taybi syndrome (RSTS) is

a congenital neurodevelopmental disorder defined by
postnatal growth deficiency, characteristic skeletal
abnormalities and mental retardation and caused by
mutations in the genes encoding for the transcriptional
co-activators with intrinsic lysine acetyltransferase (KAT)
activity CBP and p300. Previous studies have shown that
neuronal histone acetylation is reduced in mouse models
of RSTS.

Methods The authors identified different mutations at
the CREBBP locus and generated lymphoblastoid cell
lines derived from nine patients with RSTS carrying
distinct CREBBP mutations that illustrate different grades
of the clinical severity in the spectrum of the syndrome.
They next assessed whether histone acetylation levels
were altered in these cell lines.

Results The comparison of CREBBP-mutated RSTS cell
lines with cell lines derived from patients with an
unrelated mental retardation syndrome or healthy
controls revealed significant deficits in histone
acetylation, affecting primarily histone H2B and histone
HZ2A. The most severe defects were observed in the lines
carrying the whole deletion of the CREBBP gene and the
truncating mutation, both leading to a haploinsufficiency
state. Interestingly, this deficit was rescued by treatment
with an inhibitor of histone deacetylases (HDACI).
Conclusions The authors’ results extend to humans the
seminal observations in RSTS mouse models and point to
histone acetylation defects, mainly involving H2B and
H2A, as relevant molecular markers of the disease.

INTRODUCTION

Rubinstein—Taybi ~ syndrome (RSTS; Online
Mendelian Inheritance in Man #180849, #613684)
is a poorly understood autosomal-dominant disorder
that affects one out of 125000 newborns.! The
disease is characterised by postnatal growth retar-
dation, cognitive impairment, skeletal abnormalities
and a high incidence of neoplasia.? ® Individuals
with RSTS experience difficulty in planning and
executing motor acts and have a short attention
span and a low intelligence level with an average IQ
of 50, although mental range can go from 25 to
80.* ° The distinctive anatomical features, including
facial dysmorphisms, hypertelorism, prominent
nose, malpositioned ears and especially broad
thumbs and toes, are commonly used for diagnosis
that can be confirmed by genetic screen. Two genes
are currently known to be responsible for RSTS:
CREBBP encoding for the cAMP response element-

binding protein (CREB)-binding protein (also
known as CBP) and located at 16p13.3° and EP300
encoding for the E1A associated protein p300, highly
homologous to CBP, and located at 22q13.” Frame-
shift, nonsense, splice site and missense point
mutations in the CREBBP locus (in decreasing order
of prevalence) are found in about 50% of RSTS
cases, "8 whereas deletions of part or all of the
CREBBP gene and flanking regions may account for
an additional 5%—10% of the cases.’® ' 2% A few
gene-disrupting translocations and inversions have
been also reported® ¥ 2'"% EP300 mutations are
comparatively rare. Only seven cases have been
described so far in patients with a mild clinical
presentation.” 267

CBP and p300 are transcriptional co-activators
with intrinsic lysine acetyltransferase activity®’
(KAT, previously referred to as histone acetyl-
transferase,® HAT) that act in different signal
transduction pathways and are involved in the
control of cell growth, cellular differentiation, DNA
repair, apoptosis and tumour suppression.*? ** They
also play an important role in the development of
the skeletal and central nervous systems. Although
little is still known about the specific epigenetic
modifications associated to this syndrome, as well
as its relative significance in terms of transcrip-
tional defects, the deficiency on KAT activity during
development and in adulthood seems to be the
most likely cause of RSTS symptoms.

Studies in mouse models of RSTS have provided
valuable information on RSTS aetiology and
revealed a critical role for CBP’s KAT activity in
cognitive processes.** > These studies have shown
that the loss or reduction of CBP is associated with
reduced bulk levels of histone acetylation in the
brain. In cbp™’~ mice, the model that better repro-
duces the genetic alteration found in most patients
with RSTS, the acetylation of histone H2B is
particularly affected,®® whereas in neurons of CBP
conditional knockouts, all four histones are affected,
but the deficit in acetylation is still stronger in the
case of histones H2B and H2A.**! No significant
reduction of bulk histone acetylation was observed in
the hippocampus of p300 hemizygous mice, which
show very mild cognitive deficiencies, strengthening
the correlation between reduced neuronal histone
acetylation and cognitive impairments.*?

The main objective of this study is to investigate
whether histone acetylation is also affected in
patients with RSTS. Towards this end, we have
selected a group of patients with RSTS who carry
different molecular lesions of CREBBP and are
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therefore representative of the main types of causative mutations.
We obtained lymphoblastoid cell lines from these patients and
examined the consequences of the mutation in bulk histone
acetylation. The results of these experiments extend our seminal
findings in crebbpy mutant mice and revealed that histone acety-
lation deficits are concomitant with cognitive impairments also in
humans.

MATERIALS AND METHODS

Patients

One hundred ten individuals clinically diagnosed as having RSTS
were genetically tested for mutations of the CREBBP gene. This
scan identified a cohort of CREBBP-positive patients with RSTS,
consisting of 43 patients carrying heterozygous point mutations
and 7 carrying deletions in one allele. Among these cases, we
selected nine patients representative of the wide clinical vari-
ability of the syndrome and its allelic heterogeneity. They all
show skeletal abnormalities with broad thumb or hallux and have
typical facial features of RSTS with psychomotor and mental
retardation ranging from mild to severe. Malformations and other
signs of the disease were reported in some patients. See table 1 for
additional details. The patients with Cornelia de Lange syndrome
(CdLS) all carry heterozygous mutations in the NIPBL gene.

Molecular test of CREBBP mutation and bioinformatic analysis
As a first step in our study, we performed fluorescence in situ
hybridisation (FISH) analysis to detect total or partial deletions
in the CREBBP gene in those samples in which chromosome
spreads could be set up. Then, we screened the coding region of
the CREBBP gene by denaturing high-performance liquid chro-
matography (DHPLC) and direct sequencing. Bacterial artificial
chromosome-FISH (BAC-FISH) on the genomic region
harbouring CREBBP gene and DHPLC/DNA sequencing of all
coding exons of CREBBP were performed as previously
described.'? ?° Reverse transcriptase-PCR (RT-PCR) analysis of
mutated alleles was also performed as previously described.'? All
the detected mutations were searched and confirmed in the
corresponding cell lines. BAC clones for FISH analysis were
selected according to Genome Browser (http://genome.ucsc.edu).
PCR conditions for DHPLC screening were determined using the
software Optimase Protocol Writer. ClustalW2 (http://www.ebi.
ac.uk/Tools/clustalw2/index.html) was used to analyse the
amino acidic sequence alignment of human CBP versus
Drosophila, Caenorhabditis elegans and murine CBP, and versus
human p300. PolyPhen (http://coot.embl.de/PolyPhen) was used
for prediction of the possible effect of any amino acid substi-
tution, and the Splice Site Prediction by Neural Network (http://
www.fruitfly.org/seq_tools/splice.htm) tool at the Berkeley
Drosophila Genome Project was used to predict the conse-
quences of mutations affecting putative splicing donor or
acceptor sites.

Cell lines establishment, maintenance and treatment
Lymphoblastoid cell lines from all patients and healthy indi-
viduals were established by Epstein—Barr virus transformation
of peripheral blood mononuclear cells, in collaboration with
Galliera Genetic Bank (Istituto Galliera, Genoa, Italy). All cells
were grown in RPMI 1640 media (Sigma, Saint Louis, MI, USA)
supplemented with 2 mM L-glutamine, 10% fetal bovine serum
(Invitrogen, Camarillo, CA, USA) and penicillin/streptomycin.
In trichostatin A (TSA) experiments, cells were incubated for 2 h
with vehicle (dimethyl sulfoxide (DMSO)) or 2 uM TSA in fresh
media. This treatment did not affect cell viability in the time
frame of our experiments.

Quantitative RT-PCR

Total cellular RNA isolation was performed using RNeasy kit
(Qiagen Inc., Chatsworth, CA, USA). Reverse transcription was
performed using RevertAid First Strand ¢DNA synthesis kit
(Fermentas, St. Leon-Rot, Germany). Quantitative RT-PCR
(qRT-PCR) was carried out on a ABI 7300 Real-Time PCR
System (Applied Biosystems, Carlsbad, CA, USA) and amplified
using SYBR GreenER qPCR reagent (Invitrogen). Each sample
was assayed in duplicate and normalised using GAPDH levels.
Primer sequences for amplification of CBE, p300 and GAPDH
transcripts were designed using Primer Express Software V.2.0
(Applied Biosystems).

Quantitative western blotting

Western blot analyses were carried out as previously described.*®
The following home-made and commercial primary antibodies
and dilutions were used: rabbit anti-histone H2B (1:10000) and
mouse anti-histone H3 (1:10000) (Abcam, Cambridge, UK),
mouse anti B-actin (Sigma) (1:50 000); anti-acetylated histone
H2A (AcH2A) (1:1000), anti-acetylated histone H2B (AcH2B)
(1:10000), anti-acetylated histone H3 (1:10000) and anti-acet-
ylated histone H4 (AcH4) (1:1000).% Secondary antibodies were
anti-mouse HRP (1:10000) and anti-rabbit HRP (1:10000)
(Sigma).

Fluorescent activated cell sorting (FACS) analysis

Cells (1—5%10° cells) were fixed overnight in 70% ethanol
solution at —20°C, pelleted and washed twice with staining
buffer (phosphate-buffered saline with 1% fetal bovine serum).
A total of 1x10° cells per condition were incubated with rabbit
anti-acetyl histone H2B for 30 min at room temperature. Cells
were washed and then stained with an Alexa Fluor 488-conju-
gated goat anti-rabbit antibody (Invitrogen) for 20 min at room
temperature in the dark. Washes and staining steps were
performed using staining buffer. Background staining was
determined in negative cell lines and with matched fluoro-
chrome-conjugated isotype controls. Cells were analysed on
a FACSAria III flow cytometer (BD biosciences, Franklin Lakes,
NJ, USA).

Statistical methods

Precise description of the statistical methods used in each
experiment is presented in the text. In the graphs, error bars
represent SEM.

RESULTS

Characterisation of novel CREBBP mutations and transcript
analysis in peripheral blood and lymphoblastoeid cell lines from
patients with RSTS

To investigate the acetylation state of the chromatin of cells
from patients with RSTS, we obtained lymphoblastoid cells
lines from peripheral blood of patients of special interest based
on their clinical features and/or the nature of their molecular
pathogenetic lesions. These patients were selected from a large
cohort of 110 patients diagnosed as having RSTS recruited from
different Italian clinical units and screened for mutations in
CREBBP. Among the 50 patients whose clinical diagnosis could
be confirmed by molecular and/or FISH analysis of the CREBBP
gene, nine were selected for further study through the genera-
tion of lymphoblastoid cell lines. This panel of patients with
RSTS is representative of the different clinical manifestations of
the syndrome, as detailed in table 1, and of the allelic hetero-
geneity at the CREBBP locus. The genetic lesions carried by the
selected patients include a whole gene deletion and eight point
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Table 1 Clinical signs of the nine cell line donor patients as compared to those characteristic of patients with RSTS

Patient a1 75 99 114 20 46 98 84 127
Mutation/type Whole gene ¢.2556delC c.85+1G—T  c.4485- c.4728+ c.4627G—-T c.2014G—C  ¢.5060C—T c.4444T—G
deletion p.GIn786ArgfsX21  splicing 71C—G 1G—A p. Asp1543Tyr  p.Leu1338Phe  p.Ser1687Phe p.Tyr1482Asp
microdeletion  truncating splicing splicing missense missense missense missense
Age/sex 30 y/F 14 y/M 4y/M 4y/M 15 y/F Ty/F 9y/M 1y/F 15 y/F
Age at diagnosis 20y Birth Birth 20m Birth 20m 5y 5y 2y
Growth
IUGR — + — — — — - — —
Birth weight (g) NA 3230 3400 3430 3080 2840 2830 3340 2750
Postnatal weight NA 25° NA <10° NA <3° >95° 25° <3°
Postnatal height <3° 10° NA <10° <3° <3° <3° 25° <3°
Feeding problems + NA NA — NA NA — + +
Psychomotor development
Sitting position 12m NA NA 10m 12m NA 13m Tm 16 m
First walk 24m NA NA 17m 30m NA 18 m 16 m 16m
First words 3y NA NA 20m 20m NA 24m 4y 4y
First sentences — NA NA — + 3y — NA
Severity of MR Severe Moderate— NA Severe Severe Mild Mild Moderate— Moderate—
severe severe severe
Behavioural Attention NA NA — Autism NA - — Attention
problems deficit spectrum deficit
disorder disorder disorder
Typical dysmorphisms
Microcephaly + — + + + + — + +
Prominent forehead — + — + + — + — +
Downslanting + + — + + + + — —
palpebral fissures
Prominent backed — + + + + + + + +
nose
Columella below + + + + + + + + +
the alae nasi
Grimacing smile — + — + — - — +
High and vaulted - — + + + - + — -
palate
Micrognathia + — + + - — - + —
Hirsutism - + - - + - — +
Hands
Broad thumb + + + + + + + + +
Bifid thumb — + — — — — — —
Radial deviation of  + NA NA — — + — —
thumb
Other Polydactyly Ulnar
deviation
Feet
Broad hallux + + + + + + + + +
Bifid hallux — — — — + - — — -
Other —
Major malformations
Heart anomalies — — NA ASD — — — Fallot
tetralogy
Ocular anomalies — — — — NA — — —

Genital anomalies - — Cryptorchidism — - — - — -

Kidney anomalies — — — — Vesicoureteral — — Hydronephrosis ~ Vesicoureteral
reflux, renal reflux
hypoplasia

Medical complications

Ocular problems Myopia, — NA — — NA - Strabismus —

strabismus

Dental problems - — NA - — NA - — Malocclusion

Hypoacusia - — NA — — - — —

Orthopaedic Scoliosis — NA Genu valgus, Patellar NA - — —

problems pes planus luxation

Keloids - — NA - — — - — —

Neoplasia Forehead — NA - — Multiple - — —

haemangioma pilomatrixoma
lesions
Other Obesity
Continued
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Table 1 Continued
Patient 4 75 99 114 20 46 98 84 127
Individual Corpus callosum Duodenal
clinical agenesis, malrotation
signs Dandy—Walker
malformation
First report 12 This study This study This study 12 12 This study This study This study

ASD, atrial septal defect; IUGR, intrauterine growth retardation; MR, mental retardation; NA, not assessed; PDA, patent ductus arteriosus; RSTS, Rubinstein—Taybi syndrome.

mutations: four missense, three splicing and a truncating
mutation. Three out of these nine mutations have been previ-
ously described,'? ?° while the characterisation of the remaining

six patients is presented here for the first time.

Missense mutations

All missense mutations were de novo as they were searched
and excluded in the probands’ parents and in 50 healthy indi-
viduals. Patient 46 (c.4627G—T, p.D1543T in exon 28) has been

Figure 1 Localisation of nine CREBBP A

previously described,'? while patients 84, 98 and 127 are carriers
of novel missense mutations (c.5060C —T, p.S1687F in exon 30;
c.2014G—C, p.L1338F in exon 24 and c.4444T —G, p.T1482D
in exon 27, respectively). We checked whether the mutation
found on the DNA could be detected at the RNA level and
confirmed the presence of the aberrant transcript beside the
normal one in all four cases. The comparative amino acid
sequence analysis revealed that all the mutations affect amino
acids that are highly conserved through evolution and in the

1232 1709 2442
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related p300 protein. All four missense mutations are located in
the KAT domain (figure 1AB). In particular, the mutation of
patient 127 maps into the subdomain postulated to be the
coenzyme A binding site (amino acids 1459—1541). The muta-
tion carried by patient 46 has been confirmed also in the DNA
isolated from the cheek and thigh where the patient developed
the benign epithelial tumours pilomatrixomas.

Splicing mutations

Patient 20, previously described,'* and the newly identified
patients 99 and 114 carry different types of splice site mutations.
The mutations found in patients 20 and 99 affect canonical
splicing sites and lead to the activation of cryptic exonic splice
sites, whereas the mutation of patients 114 affects a ‘non-
canonical’ splicing site. In all cases, we investigated the aberrant
CREBBP transcripts resulting from the missplicing. Patient 20
mutation, ¢.47284+1G— A, affecting the intervening sequence
(IVS) 28 donor splice site has been found to generate a transcript
skipping 104 bp of exon 28 through the activation of a cryptic
exonic donor site: the frameshift produced by missplicing should
lead to the incorporation of 38 anomalous amino acids.'? The
splice site mutation identified in patient 99 is a G—T substi-
tution in the first base of IVS1 (85+1 G—T) arising de novo and
yet unreported. Bioinformatic analysis of the patient cDNA
predicted the presence of three different transcripts: the wild-
type one that appears to be expressed at the highest levels and
two longer transcripts. We sequenced the two aberrant tran-
scripts characterised by the retention of different portions of
IVS1 and found that the two transcripts originate from the
activation of two of the predicted donor sites with a highest
score after the canonical one (figure 1C). Translation of the two
aberrant transcripts is hypothesised to generate the same trun-
cated protein of 46 amino acids. Patient 114 carries the de novo
mutation c.4485-7C— G affecting the nucleotide at position 7 of
the consensus sequence in IVS25. According to Splice Site
Prediction, this substitution leads to a decrease of the score of
IVS25 acceptor site. cDNA analysis identified two aberrant
transcripts, one skipping exon 26 and one skipping exons 25 and
26 (figure 1D), that keep the same frame and encode proteins
lacking 49 and 87 aas, respectively.

Truncating mutation

Patient 75 carries a novel truncating mutation, c.2356delC in
exon 13 leading to frameshift and predicting the truncated
protein p.Q786RfsX20. RNA analysis evidenced the presence of
both transcripts: the normal and the aberrant originated by the
mutant allele.

Whole gene deletion
The deletion of patient 4 encompasses a 500 kb region
beyond the 5" and 3’ ends of the CREBBP gene.

112 20

B cells from these nine patients with RSTS were immortalised
using Epstein—Barr virus. For comparison purposes, we also
obtained lymphoblastoid cell lines from blood samples of three
normal individuals and three children with CdLS, a mental
retardation disorder molecularly unrelated to RSTS.

Expression of CREBBP and EP300 in cell lines from patients with
RSTS

We examined by qRT-PCR whether the mutations into the
CREBBP locus affected the level of CBP transcripts. These assays
revealed that the cell lines derived from seven of the nine
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Figure 2 CBP and p300 transcript levels in Rubinstein—Tayhi
syndrome (RSTS) and control lymphoblastoid cell lines. A—B. mRNA
levels for CREBBP (A) and EP300 (B), normalised to GAPDH mRNA
levels, in the cell lines derived from patients with RSTS and control cell
lines (non-RSTS). White squares ([J) depict cell lines derived from
healthy control individuals (CTRL), and white circles (O ) represent cell
lines established from patients with CdLS. The symbol legend for RSTS
cell lines is at the bottom of the figure (see also figure 1B). Symbols in
the figure denote one cell line and represent the average of three to five
individual measurements. Cell line from patient 41 carries a whole gene
deletion of the CREBBP locus and shows a significant reduction of CBP
transcripts compared to control cell lines and to CdLS-derived cell lines
(*p<0.05, one-way analysis of variance followed by Tukey post hoc
test). n=3—5 samples per group. C. The graph shows relative
abundance of CBP and p300 transcripts. Since the efficiency of the two
gRT-PCR primer pairs is the same, this result indicates that CBP is much
more highly expressed than p300 in the lymphoblastoid cell lines.

patients with RSTS showed the same level of CBP transcripts as
the control lines derived from healthy individuals and patients
with CdLS (figure 2A). Patient 41, who carries a complete
deletion of a CREBBP allele, had half-level of mRNA. Patient 20,
whose mutation produces an aberrant transcript lacking part of
exon 28,'% also showed a similar reduction of CBP transcript
since one of the primers used for qRT-PCR mapped in the
sequence missing in this patient. The absence of significant
changes in the other lines indicates that despite the genomic
mutations, the mutant or truncated transcripts are stable and
have a similar transcription rate as the wild-type transcripts.
This was the case even for the cell line derived from patient 795,
who carries an early truncating mutation and likely produces
untranslatable transcripts potentially prone to accelerated decay.
We also tested whether CBP deficiency led to the upregulation of
EP300 expression given the high homology between these two
genes. P300-specific qRT-PCR assays in the 15 cell lines did not
reveal any significant difference at the level of transcription,
indicating that there is no compensation of CBP reduction
through overexpression of p300 mRNA (figure 2B). Interestingly,
our qRT-PCR analysis indicates that the level of CBP transcripts
in these cells is almost one order of magnitude larger than for
p300 transcripts (figure 2C).

Chromatin acetylation deficits in cell lines from patients with
RSTS

We next obtained protein extracts from cultures in exponential
growth for each cell line and assessed for histone acetylation
deficits through western blotting using an array of antibodies
raised against different Lys in the N-termini of histones H2A,
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H2B, H3 and H4. The acetylation test revealed significant
differences in the level of histone H2A and H2B between the
cell lines derived from patients with RSTS (considered as
a group) and either one of the two control groups (figure 3). In
contrast, histones H3 and H4 showed levels of histone acetyla-
tion that did not differ from those observed in samples from
healthy controls and patients with CdLS. Our experiments also
revealed apparent differences between the different RSTS cell
lines. Whereas line RSTS41 showed robust histone acetylation
deficits affecting several histones, most lines showed more
modest and specific deficits, and line RSTS99 was not distin-
guishable from the control lines (table 2). In particular, we

observed the biggest deficits in the lines derived from patients
41,75, 127, 84 and 98.

6of9

Treatment with HDACi reverses the histone acetylation deficits
of RSTS-derived cells

The acetylation of histones is regulated by the counteracting
activity of KAT and histone deacetylase enzymes that respec-
tively add or remove acetyl groups from histones. We next tested
whether the treatment with an inhibitor of histone acetyl-
transferases (HDACI) reversed the hypoacetylation of histones.
Towards this end, we selected the cell line showing the largest
deficit, RSTS41, and treated the cultures either with the HDACI
TSA or with the vehicle DMSO. Like previously reported for
CBP-deficient mice,*® ** western blotting analysis of protein
extracts from cell cultures treated with TSA showed a level of
bulk histone H2B acetylation higher than that observed in
mutant and control cell lines treated with vehicle (figure 4A). To
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Table 2 Summary of the densitometric analysis of immunoblots against histone levels in cell lines from patients with RSTS

Patient 4 75 99 114 20 46 98 84 127

Mutation/type Whole gene c.2556delC c.85+ c.4485- c.4728+ c.4627G—T c.2014G—C ¢.5060C—T c.4444T—G
deletion p.GIn786ArgfsX21  1G—T 71C—G 1G—A p. Asp1543Tyr  p.Leu1338Phe  p.Ser1687Phe  p.Tyr1482Asp
microdeletion  truncating splicing splicing splicing missense missense missense missense

Lymphoblastoid RSTS41 RSTS75 RSTS99 RSTS114 RSTS20 RSTS46 RSTS98 RSTS84 RSTS127

cell line

AcH2A 0.51+0.35 0.760.26 0.93+0.19 0.68+0.38 0.94+0.25 0.90%0.31 0.72+0.17 0.65+0.19 0.64+0.18

F10,78=2.53; p=0.012  p<0.001 NS NS p<0.05 NS NS p=0.05 p<0.05 p<0.05

AcH2B 0.34+0.14 0.77+0.21 0.96+0.05 0.96+0.63 0.66+0.27 0.74%0.21 0.7+0.14 0.84+0.25 0.48+0.14

F1075=5.93; p=2.6E-6  p<0.001 p<0.05 NS NS p<0.01 p<0.01 p<0.05 NS p<0.001

AcH3 0.56+0.35 0.86+0.24 1.2+0.13 0.72+0.33 0.93+0.14 0.92+0.18 0.88+0.19 0.75+0.2 0.78+0.15

F10,64=2.7; p=0.009 p<0.001 NS NS p=0.05 NS NS NS NS NS

AcH4 0.60.36 0.43+0.21 1.36=0.01 0.94+0.88 0.90*0.4 1.24+0.38 0.48+0.12 0.75+0.63 0.99+0.2

F1049=2.02; p=0.057 NS p<0.05 NS NS NS NS NS NS NS

H2B 0.98+0.04 1+0.13 1.01+0.03 1.08*=0.08 1.09+0.1 0.95+0.18 0.84+0.13 0.91+0.01 0.95+0.02

F10,49=0.65; p=0.76 NS NS NS NS NS NS NS NS NS

H3 0.9+0.32 0.95+0.07 1.18+£0.22 0.96=0.24 0.93=0.06 1.09+0.32 0.81+0.16 1.03+0.2 0.81+0.15

F10,56=0.93; p=0.52 NS NS NS NS NS NS NS NS NS

Data are expressed as means+SEM. Significant differences between groups (one-way analysis of variance followed by Fisher’s protected least significant difference post hoc test) are shown

in bold.
n=3—8 samples per group.
NS, not significant.

confirm the rescue of the acetylation deficit using an alternative
technique, we used flow cytometry. Cells were fixed, permea-
bilised, stained with anti-AcH2B antibody and analysed in
a FACSAria IIT cell sorter. We did not observe differences in the
forward scatter/side scatter distribution between genotypes or
treatments, indicating that TSA did not affect cell viability. This
experiment confirmed the reduction of histone H2B acetylation
in cells derived from patient 41 when compared to a control cell
line and the reversal of the deficit upon treatment with TSA
(figure 4B—C).

DISCUSSION

We reported here the identification of six new mutations in the
CREBBP gene associated to RSTS, widening the spectrum of
mutations associated to this disorder. In addition, we investi-
gated the possible histone acetylation deficits in Iymphoblastoid
cell lines derived from nine patients carrying different types of
mutation in the CREBBP gene including those carrying the novel
mutations and three previously reported patients.’? 2° We
observed deficits in histone acetylation in most of these cell lines
that are similar to those observed in the brain of mice deficient
in CBP activity, effectively translating seminal observations in
mouse models of RSTS to humans.

The examination of the acetylation state of the four nucleo-
some histones in the nine cell lines generated from individuals
with RSTS and the six lines from healthy individuals or
mentally impaired individuals with a different pathology
revealed consistent abnormalities. The acetylation assay of the
four nucleosome histones shows a general reduction of bulk
acetylation levels in patients with RSTS as compared to the
controls, particularly for histone H2B and H2A. The worst
deficit was observed in the cell line from patient 41 bearing
a CBP null allele and showing severe mental retardation. Variable
acetylation deficits were observed in patients that are carriers of
missense and splicing mutations. The cells from patients 98, 75,
127 and 114 showed significant deficits affecting the acetylation
state of more than one histone, whereas those from patients 20,
84 and 46 showed milder defects. Finally, the cells derived from
patient 99 (which carry a splicing mutation that predicts
a prematurely truncated protein) did not show any significant
deficit, although we cannot exclude that, in the absence of
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apparent alterations at the bulk histone acetylation level, there
were defects in specific genomic loci. Given the very limited
impact of the splicing mutation in RSTS99 cells, we hypothesise
that the splicing alteration in this patient may be partial.
Although, in the most extreme examples, we observe certain
correlation between cognitive impairments and epigenetic
alterations in the cell lines, overall, it is difficult to correlate the
severity of the molecular alterations and specific symptoms of
the disease. In line with the limited effect of some of the
mutations affecting the KAT domain in our analyses, two recent
studies using primary murine embryonic fibroblasts from CBP/
p300 cre-deleted double knockout mice showed that mutant
CBP proteins carrying missense mutations that disrupt the KAT
domain, including mutations such as Q1500F, previously asso-
ciated to RSTS, still retain significant KAT activity and
their expression only results in a modest reduction in H3K18
acetylation when compared to wild-type CBPR* 4°

Although the role of CBP and p300 as KAT proteins has been
investigated in animal models of the disease, this represents the
first study on acetylation capability performed in human cell
lines obtained from patients with RSTS who are carrier of
different CREBBP genetic lesions. The lack to access to diseased
neural tissue of patients with RSTS severely limits the trans-
lation of molecular observation in animal models to the clinic.
The use of peripheral blood and derived immortalised cell lines
can however provide some initial insight into the molecular
aetiology of the disease till the generation of RSTS-specific
induced pluripotent stem cells and their differentiation to
neurons.*® Thus, the detection of histone acetylation deficits in
samples from patients with RSTS is of considerable value for
understanding the molecular aetiology of this disorder. It has
been suggested that histone acetylation/deacetylation in
neurons play a critical role in memory, addiction, neurogenesis
and other forms of neural plasticity.*” *® As a consequence, some
cognitive and physiological deficits observed in RSTS may not
simply be due to defects originating during development, but
may result from the continued requirement of normal levels of
KAT activity throughout life.>*

Interestingly, the experiments with an HDACi in two RSTS
cell lines showing significant deficits in the acetylation of
histone H2B demonstrated a rescue of the defect, confirming the
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Figure 4 Trichostatin A (TSA) reverses the histone acetylation deficit.
A. Immunoblot against acetylated histone H2B in a control cell line
(CTRL) and in cell lines from patients 46 and 41 shows the reversion of
hypoacetylation of H2B after TSA treatment (2 uM, 2 h.). B-Actin was
used as loading control. B. Frequency histograms of FACS data for
AcH2B levels in a control line (CTRL) and in the cell line derived from
patient 41 show reduced levels of histone H2B acetylation in the
Rubinstein—Taybi syndrome (RSTS) cell line and increased levels of
acetylation after TSA treatment (2 uM, 2 h.) in control and RSTS cell
lines. C. Bar graph showing FACS results expressed as fluorescence
intensity (mean=SEM) normalised to CTRL treated with vehicle
(dimethyl sulfoxide (DMSQ)). n=2—4 experiment per condition.

plasticity of the acetylation state and the possibility of modu-
lating it, and paving the way to the idea of a therapeutic
treatment of RSTS. Given the proven efficacy of HDACI,
including TSA, in RSTS mouse models,*® ¥ #° the confirmation
of the existence of similar biochemical deficits in cell lines from
patients and their reversal by HDACi open new therapeutic
possibilities. There is great interest in the pharmaceutical
industry for developing ‘epi-drugs’ suitable for treating brain
diseases.”® Various histone deacetylases, more specific and
showing less noxious side effects than TSA, are currently being
tested for the treatment of different forms of cancer and
neurodegeneration. If the results of these clinical trials were
positive and the new compounds show minimal side effects, it
would be worthwhile to test their effectiveness also in the
treatment of RSTS.
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