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Topological defects of nematic liquid crystals confined in porous networks†
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We study the formation of topological defects in nematic liquid crystals confined in open bicontinuous

networks produced in glass by femtosecond laser micromachining. We obtain a careful classification of

the number and localisation of the defects as a function of the topological properties of the network.

Our findings lead to a general formula that predicts the total topological charge in open complex

networks, thus complementing the classic Stein–Gauss theorem. Our result provides a justification for

the observed multistability of nematics confined in porous networks.
1 Introduction

Multistable devices with memory based on nematic liquid crys-

tals (NLCs) require energy only for switching between different

configurations, which are then spontaneously maintained.

Therefore they have recently generated significant technological

interest for applications to memories and electronic paper

displays. In general, multistability arises whenever the liquid

crystal is subject to frustrating boundary conditions creating

multiple topologically distinct configurations that minimise the

energy.1,2 These configurations can be associated with certain

topological defects, i.e. discontinuities in the order parameter

space, all characterised by a ‘‘topological charge’’ that depends

on the arrangement of the nematic director in their proximity.3–6

Configurations become metastable when the position of the

topological defects is constrained by boundary conditions: this is

the case, for example, of the tristable nematic device.7 A very

recent study by Araki et al. has shown that in bicontinuous

networks with homeotropic boundary conditions the nematic

ordering induced by external fields is maintained whenever the

geometry of the network is able to stabilise the trajectories of the

defect lines.8 This result provides a basis for understanding

previously observed memory properties in NLCs,9,10 and it also

shows the importance of the rational design of materials with

specific and tunable memory properties. The topological prop-

erties of the networks can be defined by means of computer

simulations, which are, however, expensive and time consuming.

We therefore looked for a simpler method to evaluate the total
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Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

† Electronic supplementary information (ESI) available. See DOI:
10.1039/c1sm05813d

This journal is ª The Royal Society of Chemistry 2011
topological charge of a generic 3D network, which can allow

rapid and reliable prediction of its multistability properties. In

simple cases, computing the topological charge is effectively

equal to evaluating the total number of topological defects.

The classic theorem that is invoked in the case of NLCs with

homeotropic (perpendicular) anchoring was formulated by Stein

in 197911 and we will call it the Stein–Gauss (SG) theorem. The

theorem relates the total topological charge of confined NLCs to

the Euler characteristic of the confining surface. However, this

result cannot be used, for example, for the system analysed in

Araki et al.:8 first, the theorem only applies to NLCs incorpo-

rated in smooth closed surfaces; in addition, it is valid for

geometries where only point defects or reducible loops (RLs), i.e.

loops contractible to a point, are stable. In this paper, through

a combination of experimental results and theoretical arguments,

we formulate a simple expression enabling calculation of the

topological charge in open networks that are beyond the reach of

the validity of the SG theorem.

2 Results and discussion

We decided to take a heuristic approach and work on a model

experimental system. We chose to start working on a network

that is open and bicontinous, but where the geometry and the size

of the interconnecting channels are such that point defects are the

only type of topological defects observed. The network was

produced in fused silica using femtosecond laser micro-

fabrication. This technique12,13 consists of laser irradiation in the

volume of the substrate followed by chemical etching in HF

solution selectively removing the irradiated material. The

advantages of this method are that: (i) it creates directly buried

microchannels; and (ii) it produces intrinsically circular channel

cross-sections. This last feature is particularly interesting for the

present work since it allows the model developed for the analysis

of NLC alignment in capillaries to be directly applied.14 With this

tool we could produce 3D bicontinuous networks, with tens of

micron-size channels, as shown in Fig. 1a–b.
Soft Matter, 2011, 7, 10945–10950 | 10945
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Fig. 1 Microfabricated glass channels filled with NLCs viewed between

crossed polarisers. (a) Channels arranged in a skewed cubic structure

(focus on the middle plane). (b) Detail and zoom on two nodes with 3 and

4 arms. Polarisers are at 45� with respect to the channels axis. (c–f) 2D

analogues of a 3-arm node with a point defect first along the channel (c)

then in the centre of the node (e). (d) and (f) are pictorial representations

of the nematic director in the observed area. Arrows indicate the escape

radial (ER) In or Out in the channels.

Fig. 2 NLC in 4-arm nodes. (a) 1 Out configuration (no defects in the

node); (d) 2 Out with one hyperbolic hedgehog. (g) 4 In (radial hedgehog

in the node). (b, e, h) Channels form an angle around 20� with respect to

the axis of the crossed polarisers. (c, f, i) Representations of the nematic

director configuration inside the channels. Arrows indicate the In andOut

directions. Defects are highlighted with black dots.
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Such a complex structure can be greatly simplified by consid-

ering it as a ‘‘jigsaw’’ made of building blocks consisting of

a certain number of channels all merging in one node, as shown,

for example, in Fig. 1b. In the figure, two nodes are highlighted,

respectively with 3 and 4 arms. We call the number of arms the

valence v of the node. We hence focussed on simpler, 2D struc-

tures, made by single nodes with v¼ 3 (Fig. 1c–f), 4, 5 or 6 (all the

possible valences found in the cube in Fig. 1) where we were able

to precisely count the topological defects.

The channels were filled with the thermotropic NLC CCN47

by Merck. The low birefringence of this compound allows the

analysis of its conformation under crossed polarisers even in

thick channels, using quasi-monochromatic illumination.15 For

every observation, the NLC was heated above the nematic–

isotropic transition temperature and then slowly cooled down

into the nematic phase. We saw that along the channels the NLC

adopted the escape radial (ER) configuration with point

defects:14,16,17 this is expected, as the ER configuration is

preferred to the planar polar configuration, with two parallel

defect lines, when the channel diameter is large (typically, more

than a micron). In the ER configuration, the nematic director

progressively aligns parallel to the channel axis upon moving

away from the surface. This is visualised under crossed polarisers

as a characteristic pattern of light and shadow (due to the bire-

fringence of the NLC) that depends on the relative orientation of

the channel axis and the polarisers. A direction of the ER with

respect to the node can be assigned from the study of the bire-

fringence pattern of the sample under crossed polarisers when the

channel axis is tilted by an angle of about 22� with respect to the

transmission axis of one of the polarisers (this method is

explained in detail in the Supplementary Materials, Section 2†).

We classify as In the direction of the ER when it is pointing

towards the node and as Out the opposite escape direction. A

priori, there is no way to predict the ER direction in the channels,

as the two directions are energetically equivalent.
10946 | Soft Matter, 2011, 7, 10945–10950
The topological charge in the node was determined by looking

at the birefringence pattern at the crossing point and also by

following the dynamics of the topological defects during the

equilibration time. Upon repeated thermal cycles to the isotropic

phase and back, we observed a variety of topological charges in

the nodes. We made at least 10 independent observations of the

NLC in each of the 3-, 4-, 5- and 6-arm nodes, finding that the

topological charge in the nodes always correlated to the direction

of the escape of the channels around it.

As examples, we show and explain here some of the director

patterns in the 3- and 4-arm nodes. Fig. 1c and 1e show two

different transmission patterns through cross polarisers of

a 3-arm node. Their analysis leads to the reconstruction of the

director pattern as in Fig. 1d and 1f. The node is defect-free and,

in the immediate proximity of the node, two channels have an In

escape and one has an Out escape (Fig. 1c,d). A hyperbolic point

defect is present in one of the arms, appearing as a ‘‘butterfly’’-

like pattern. As the defect travels to the node and localises at one

corner (Fig. 1e,f), we obtain a different condition: the defect in

between the twoOut channels, escape directions being one In and

two Out.

Fig. 2 shows some of the experimental observations in a 4-arm

node. The structure is defectless when one arm is Out while the

other three are In (panels a, b, c). We instead find one hyperbolic

hedgehog when two channels are Out and two are In (panels d, e,

f). One radial hedgehog is found when all channels are In (panels

g, h, i). The results of the observations of defects for 3-, 4-, 5- and

6-arm nodes are summarised in the first four columns of Table 1,

where every configuration is classified on the basis of the number

nOut of channels with an Out escape.

It is important to clarify here the notation we have adopted for

the topological charge. Hyperbolic and radial point defects in

nematics are topologically equivalent (they can be transformed
This journal is ª The Royal Society of Chemistry 2011
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Table 1 Total chargeM of topological defects observed in nodes with 3–
6 arms and in a roundabout (last column), linked to the number of Out
channels. Empty table entries are for configurations which were not
clearly observed experimentally

nOut 3-arm 4-arm 5-arm 6-arm Round

0 +1 0
1 0 0 0 �1
2 �1 �1 �1 �1 �2
3 �2 �2 �2 �3
4 �4

Fig. 3 Topological defects of NLCs in microchannels. (a) Pictorial

image of a sphere and a capped cylinder with the internal defect. On the

right, the cylinder is ideally divided into 3 parts, where the defect is found

only in the cap. (b) Pictorial representation of two possible configurations

of the nematic director in a 4-arm node (analogous to those in Fig. 2c,2f)

and the ideal ‘‘capping’’. (c) How to join two adjacent nodes (scheme). (d)

Roundabout type structure filled with NLCs and different escape direc-

tions, indicated by arrows.

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

C
ol

or
ad

o 
at

 B
ou

ld
er

 o
n 

21
 N

ov
em

be
r 

20
11

Pu
bl

is
he

d 
on

 0
7 

Se
pt

em
be

r 
20

11
 o

n 
ht

tp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
1S

M
05

81
3D

View Online
continuously into one another); therefore, assigning a positive or

negative topological charge to them is arbitrary.18,19 Neverthe-

less, it is very common to assign a positive charge +1 to a radial

point defect and a negative charge �1 to a hyperbolic

hedgehog,5,20 according to the so-called winding number. The

reason is that a radial point defect and a hyperbolic defect, when

brought together, annihilate and give a defect-free state. In the

presence of a line defect, however, the situation is much more

complex and the topological charge of the final state depends on

the coalescence path of the defects. Here, however, we are

observing only point defects with unit topological charge (ener-

getically much more favorable than point defects with a higher

integer charge) which are stable after an equilibration time and

which are separate in space. We can therefore assume that the

radial point defects and the hyperbolic point defects do not

change their winding number in this context: so, we will follow

the notation in ref. 5 and 16 which assigns a +1 charge to the

radial point defects and a �1 charge to the hyperbolic point

defects.

The topological charge M in the nodes is found, from our

experiments, to follow the simple rule:

M ¼ 1 � nOut (1)

where nOut indicates the number of the channels with an Out ER

direction.

With these nodes being intrinsically open structures, the SG

theorem cannot be rigorously applied. However, we show now

that this empirical formula is coherent with it. The SG theorem

states that, in a confined NLC with homeotropic anchoring, the

total topological charge M, which is the sum of the topological

charges mi of individual point defects, equals the Euler charac-

teristic E of the confining surface divided by 2:M ¼ Si mi ¼ 1/2 E.

E is the integral of the Gaussian curvature over the whole surface

and it is invariant for all the topologically equivalent surfaces, i.e.

surfaces that can be mapped onto each other with a continuous

invertible function. In a simple case such as a sphere, E ¼ 2,

therefore M ¼ 1, corresponding to a radial hedgehog or

a reducible loop with charge +1 in the centre of the sphere as

shown in Fig. 3a. A sphere is also topologically equivalent to

a closed cylinder (with homeotropic anchoring everywhere),

therefore the expected topological charge is +1. If one wants to

have an ER configuration in the middle of the cylinder the defect

is pushed towards one ‘‘cap’’ of the cylinder, as shown in Fig. 3a.

The same concept of homeotropic capping can then be applied to

all the channels merging in a node: doing this, one sees that the In

channels can be smoothly capped with no topological defects,

but when anOut channel is capped, either a point or a ring defect
This journal is ª The Royal Society of Chemistry 2011
with +1 charge is necessarily created. Hence, the capping brings

about an additional topological charge of m ¼ +1 for each of the

Out channels (Fig. 3b). The ‘‘node + channels’’ structure, when

capped, must also have total topological charge M ¼ +1, being

topologically equivalent to a sphere. Thus, in order to determine

the topological charge contained inside the open node, one must

subtract the charge carried away by the channels with an Out

escape, and eqn (1) follows.

To approach the analysis of the 3D network shown in Fig. 1a,

it is useful to show in a simpler structure that the topology of the

systems plays an important role in determining the topological

charge. We observed the arrangement of NLCs in a 2D

‘‘roundabout’’-type structure, shown in Fig. 3d. Here we only

show two configurations where all defects are localised in the

channels of the circuit, and not in the nodes, so that they are very

easily visible. If one assumes that nOut only refers to the external

channels, i.e. channels connecting the network to the outer space,

it would be tempting to think that the whole structure will behave

as a 4-arm node. This is contradicted by the experimental

observation, reported in the last column of Table 1, which shows

thatM ¼ �nOut. The presence of a hole in the middle of the node

is therefore relevant for the topological charge. A successful

approach to circumvent this problem is to consider the whole

structure as four 3-arm nodes joined together and to add up the

charge of the single nodes.
Soft Matter, 2011, 7, 10945–10950 | 10947

https://cuvpn.colorado.edu/10.1039/,DanaInfo=dx.doi.org+c1sm05813d


Table 2 Unit cell types (C: cubic; BCC: body-centered cubic; FCC: face-
centered cubic; P: porous medium), with the valence v of the nodes and
the topological charge per cell Mc.

Unit cell C BCC FCC P

v 6 4 12 3
Mc. �2 �2 �5 �1
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We counted and added up the point defects in the 3D network

in Fig. 1a. A fraction of them are along the channels and they are

clearly detectable through the birefringence pattern, while some

of them, located in the nodes, are not. However, by observing

each node separately and counting, for each node, the number of

In and Out channels, it is possible to assign every node a charge,

by using eqn (1). Four different observations in the network

shown in Fig. 1 (obtained by heating to isotropic and cooling

into the nematic phase and corresponding to different arrange-

ments of the topological defects) gave a computed total topo-

logical charge M ¼ �95 � 1. The uncertainty is inevitable in this

case, as it is not possible to determine, in this system, the In or

Out direction of the external channels connecting the network to

the glass surface.

We highlight that in these simple interconnected systems, like

the 3D structure and the roundabout, the configurations can be

stable over several days. These systems already show multi-

stability: by applying an electric field or a mechanical stress (as

a gentle pressure on the external holes of the microchannels)

some defects change their position and move about the structure,

while the In and Out escape can be permanently changed (an

example is shown in Supplementary Materials, Section 3†).

In many cases, it is not possible to determine the ER direction

for each node as we have just done: for example, porous

networks can be opaque and not accessible to the observation. A

simpler method to evaluate the topological charge of a network,

which does not require a detailed observation of each node, relies

on eqn (1). To this aim, we use the basic jigsaw rule that

a defectless channel connecting two nodes is necessarily In for

a node and Out for the adjacent node, as shown in Fig. 3c. If

a channel contains a point defect, the defect can be effectively

assigned to one node or to the adjacent one, the ER direction

after the defect being the only relevant information. With these

considerations, it is clear that, where v is the valence of the nodes,

the average number of channels escaping Out from each node is

v/2. Then, eqn (1) can be applied and the total topological charge

is given by the sum of the topological charges of all the nodes. A

general expression for the topological charge becomes:

M ¼
XN

i¼1

ð1� ni=2Þ � Ds ¼ Nð1�\n.=2Þ � Ds: (2)

Here N is the total number of nodes, and <v> is the average

valence of the nodes. Ds is a term that takes into account the

escape of the external channels, i.e. channels that do not connect

nodes: Ds ¼ nOut � Next/2 where Next is the number of external

channels, among which nOut escape outwards. While Ds is crucial

in determining the topological charge of small structures, it

becomes negligible in large systems, or in simulated systems

having periodic boundary conditions. Eqn (2) accounts for the

topological charge of the roundabout shown in Fig. 3d; it also

provides an estimation of the topological charge of the 3D

network in Fig. 1, calculating M ¼ �95, in agreement with the

observation.

Eqn (2) allows estimating the amount of topological charge

that must be present in networks of various symmetry. The

results are reported in Table 2. A periodic bicontinuous medium

can be thought of as a lattice made of intersecting channels,

organised in repeated unit cells with known symmetry.
10948 | Soft Matter, 2011, 7, 10945–10950
Considering a system of packed spheres, the interstices, or pores,

between spheres can be filled with NLCs, thus forming a bicon-

tinuous medium.

The simplest example is the cubic lattice. The unit cell is

formed by one sphere, or, equivalently, by one pore. The topo-

logical charge per pore (or node) m is equal to m ¼ (1 � v/2). In

a cubic lattice, v ¼ 6, therefore the topological charge per cell

(Mc) is Mc ¼ �2.

In a body centered cubic (bcc) lattice, every sphere touches 8

other spheres. Every pore connects 4 other pores (v ¼ 4) and

there are 2 pores per unit cell. Thus Mc ¼ 2(1 � 4/2) ¼ �2.

The interstitial sites of am fcc lattice of close packed spheres

have the peculiar shape of a cuboctahedron joined with two

octahedra (a clear view of the geometry of the interstitial site is

shown in ref. 21). The number of ‘‘escapes’’ from such an inter-

stitial site, corresponding to the number of arms of the node, is

12, and thus: Mc ¼ (1 � 12/2) ¼ �5.

Many of the porous matrices experimentally considered as

incorporating hosts for NLCs have irregular geometries, thus

making it impossible to give a general role for their topological

charge. However, a large number of them, such as the membrane

filters, are obtained by spinodal decomposition, a process whose

topology has been investigated.22 In this case, the average

number of nodes per domain (a sort of repeated unit) is 2 and the

average valence is v ¼ 3, thereforeMc ¼ �1. This agrees with the

notion that the porous surface obtained from the spinodal

decomposition is similar, to a certain extent, to a Schoen’s

gyroid, which has the same topological features.

So far, we have restricted our attention to point defects or

reducible loops. In porous materials where the size of the chan-

nels is smaller or the ratio between the mean pore length and

mean solid length is larger, irreducible loops (ILs) normally

appear, as reported in ref. 8. ILs embrace the solid portions of the

bicontinuous matrices and carry topological charge, a situation

very far away from the range of validity of the SG theorem.

Among the geometries studied in ref. 8, nematics with homeo-

tropic anchoring in a cubic bicontinuous network (the one

exhibiting more memory) display alternating parallel planes of

ILs and RLs. In a uniform strong field, the topological charge of

each loop, irreducible or not, is �1 (in analogy with Saturn-rings

around spherical particles23). Thus, eqn (2) agrees with the

computer simulations in ref. 8, which show one IL and one RL

per node. This successful comparison suggests that eqn (2)

accounts for the total number of defects in a system with ILs,

where the SG theorem could not make predictions.

We want to suggest a possible, intuitive explanation of why in

this case ILs contribute equally toRLs to the total charge. For this

we rely on theworks byRavnik et al.24 and by �Copar and �Zumer,25

which show and classify all variety of loops entangling spherical

colloids immersed inNLCs.What is most relevant for our work is

that they prove that the Saturn rings surrounding two colloids can
This journal is ª The Royal Society of Chemistry 2011
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also form a so-called ‘‘entangled hyperbolic defect’’, or q-struc-

ture: a big loop encircles the two colloids forming a smaller

reducible loop in between. This can be extended to a case of an

array of pillars: the configurationwith one IL per pillar is replaced

by a condition where only one IL is left (less and less relevant for

large systems) while the others are turned into RLs, thus recov-

ering the conditions where eqn (2) is valid.

It is worth noticing that the spatial arrangement of ILs within

a porous network has to obey topological constraints. In Fig. 4a

a bicontinuous structure is sketched. The aperture area between

adjacent pillars (such as the pink shadowed region in Fig. 4) can

be regarded as a short channel. In every such channel, either none

or two disclination lines can be found, corresponding to the ER

or the planar polar configuration, respectively. Hence, as one

encircles a pillar of the structure with an IL (green line), this

needs to be bordered by one other IL in every channel it runs

through, while a third IL – dashed red line – is inadmissible. As

a consequence, ILs in 3D bicontinuous networks are arranged so

to define self-avoiding surfaces made of loops paired through

channels. In the cubic lattice, there are no possible ways of

placing enough ILs to reach the topological charge calculated

with eqn (2), equivalent to two ILs per node: this is a simple

explanation of why in the computer simulations8 half the topo-

logical charge is carried by the RLs. The arrangement of ILs in

self-avoiding surfaces and of RLs enables us to appreciate the

large degeneracy that characterises nematics in bicontinuous

networks: the possible distributions of ILs and point defects are

numerous, and their estimation is a challenging task.26 This

concept lays at the basis of the multistability.

In conclusion, on the basis of experimental observation and

theoretical arguments we have developed a tool to compute the

total topological charge in an open network with arbitrary

connectivity, where the classic Stein–Gauss theorem is not

applicable. We tested this method on simple experimentally

accessible networks made of laser microfabricated glass channels

and we found that our predictions were verified in simulated

systems containing irreducible loops.

The authors would like to thank Cariplo foundation (grant

2008-2413) and T. Araki, F. Bisi, S. �Copar, F. Giavazzi, H.

Tanaka, E. Terentjev, E. Virga for useful discussion.
3 Experimental

The fabrication of microchannels by femtosecond laser irradia-

tion followed by chemical etching (FLICE) is a powerful
Fig. 4 ILs in bicontinuous cubic: (a) a portion of a bicontinuous cubic

lattice and (b) its schematic structure with interconnected channels.While

the highlighted ILs (thick lines, green online) are allowed, the IL in

dashed line (red online) cannot be placed as in the figure, because there

would be two channels with three defect lines (red shading online).
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technique that has the following main advantages: (a) it is

a maskless technique and hence allows rapid prototyping of

novel configurations; (b) it creates directly buried microchannels,

without the need for sealing with a cover glass; and (c) it is

a three-dimensional technology, thus allowing arbitrary designs

to be fabricated in 3-D (see online Supplementary Materials,

Section 1, for further details†). The FLICE technique applied to

fused silica consists of two steps: (1) irradiation of the sample

with focussed femtosecond laser pulses; and (2) etching of the

laser modified zone by a hydrofluoric acid (HF) solution in

water. For the irradiation of the material we use the second

harmonic (515 nm) of a home built, cavity-dumped Yb:KYW

oscillator providing 350-fs laser pulses at repetition rates up to 1

MHz.13 The irradiated patterns are produced using 300–350 nJ

pulse energy, circular polarization, 1 MHz repetition rate, 0.6

NAmicroscope objective (focussing to a beam diameter of about

1 mm at a depth of 400 mm below the surface) and 1 mm s�1

translation speed. The subsequent chemical etching is performed

by immersing the irradiated sample in an ultrasonic bath of 20%

HF solution in water for 4 h.12 The chemical etching selectively

removes the irradiated paths creating directly buried micro-

channels with circular cross-section. In order to start the chem-

ical etching of the buried structure, the irradiated path has 90�

bends at the end of each channel thus reaching the top surface,

where the acid can start to attack. After the etching process, the

portions of microchannels connecting the buried structure to the

top surface act as access holes and allow the filling of the

microfluidic network with liquid crystals. Different geometries of

the channel network have been explored in the experiments

presented in this paper; several junctions have been fabricated

with a different number of crossing arms, i.e. 6, 5 and 3. The

microchannel shape is not cylindrical but conical. This is a well

known feature of microchannels fabricated by the FLICE tech-

nique,12 which can be compensated if needed.13 However, in the

present application this feature is advantageous since we wanted

small channels in the junction (in the order of 30–50 mm diam-

eter) to easily localise the defects, but reasonably large access

holes (about 300 mm diameter) to easily fill them and reduce the

risk of clogging the channels. The 3D tapering of the channel to

satisfy these two requirements was automatically achieved with

the FLICE technique. We also exploited the capability of the

FLICE technique of creating structures in 3D. The structure we

built is a skewed cube: it consists of 3 layers in depth, each

separated from the other by 200 mm and the shallowest one

buried 200 mm below the top surface of the sample. Each layer

consists of a square grid with 200 mm � 200 mm openings. In

order to improve the visualization of the structure when looking

for point defects along the channels we decided to skew the cube

horizontally by 250 mm along the diagonal of the cube base. Each

node of the grid is then connected to the corresponding one in the

layer above/below by a tilted microchannel, which can be

inspected from a top view. The fabrication of the 3D structures is

performed with the same technology used for the 2D structures

discussed above. In particular, to facilitate the uniform HF

etching of the irradiated 3D structure, the bottom layer of the

structure is connected by 16 access holes to the top surface, where

the acid can start to penetrate. The structure is etched for 45 min

and this creates microchannels of�40 mm diameter. More details

and pictures can be found in the Supplementary Material.†
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The channels were filled with the thermotropic LC 40-trans-

butyl-4-cyano-4-heptyl bicyclohexane (CCN47) purchased from

Merck. CCN47 was chosen as the NLC because of its low

birefringence, about 1/10th of that of cyanobiphenyl

compounds, commonly used in display applications; in fact,

a high birefringence LC is difficult to observe if the channel

radius is larger than a few microns. CCN47 has a nematic–

isotropic (NI) phase transition at TNI ¼ 59 �C, a smectic–

nematic phase transition at TSN ¼ 30 �C. Below this temperature

the material is solid-like.

LC samples were observed with a Nikon Optifot2-pol polar-

ising microscope equipped with a Nikon DS-5M CCD camera.

Objectives had a magnification of �10, �20 or �40. The polar-

iser was fixed while the analyser could be rotated up to 180�. The
sample was mounted on a custom-made, computer-controlled

heater, and the heater was placed on a rotating stage equipped

with a goniometer with a precision of 1�. For the observation of

liquid crystals, we chose to use green light, filtered between 530

and 570 nm. In fact, on the one hand, using monochromatic light

is useful for the interpretation of data and quantitative analysis;

on the other hand, the human eye is more sensitive to green light

and the sample features could be better distinguished.

As many NLCs, CCN47 spontaneously adopts a planar

alignment on glass, i.e. with the nematic director randomly

oriented in directions parallel to the glass wall. In order to avoid

this alignment in the channels and to have instead normal

(homeotropic) anchoring at the channel walls, the surfactant

DDAB (didodecyldimethylammonium bromide, purchased from

Sigma-Aldrich) was dissolved in CCN47. As such, the CCN47–

DDAB mixture is placed in contact with the glass wall, the

hydrophilic head of DDAB adheres to the glass walls, thus

forming a surfactant monolayer which provides homeotropic

anchoring. Various tests were conducted at different concentra-

tions of DDAB and the best anchoring was obtained for a weight

concentration of 0.1%. Channels were filled by bringing the

CCN47–DDAB mixture to temperatures above the NI transi-

tion, and then by placing a drop close to one channel pit. The

NLC filled the channel spontaneously. In case bubbles appeared

in the channels, the samples were kept under vacuum for a few

hours. Samples were left to anneal above the nematic–isotropic

transition for several minutes, then cooled down to about 55 �C
with a cooling rate ranging from 0.2 to 5 �C min�1.

Several measurements were thus performed on each of the

microstructures, either by annealing and cooling down several

times or by washing away the liquid crystal and re-filling. Three
10950 | Soft Matter, 2011, 7, 10945–10950
samples with a 3-arm node were fabricated. The samples did not

show any significant difference from the point of view of the

NLC behaviour. Sixteen measurements were performed and the

variety of behaviours could be classified in a few configurations,

as described in the paper. Analogously, 25 measurements were

performed on 4-arm nodes (two different samples), 13

measurements on 5-arm nodes (two different samples) and 19

measurements on 6-arm nodes (three different samples). In the

latter two cases, not all the possible combinations of In and Out

channels were observed. On the single roundabout sample, we

performed 31 observations.
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