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The notion of biextension of two abelian groups by another abelian group is a
classical one coming from [SGA7, VII], later extended by Deligne in [D, 10.2] to
the case where K0 and K1 are two complexes of abelian sheaves and H is another
abelian sheaf. His result Biext1(K1,K2;H) ∼= Ext1(K1 ⊗L K2, H) suggests that
the biextension of two 1-motives is related to their tensor product, which is outside
the category of 1-motives for trivial reasons.

Cristiana Bertolin futher extended Deligne’s work by defining the biextensions
of two 1-motives (M1 and M2) by another 1-motive (M3) and proved in [B] that

Biext1(M1,M2;M3) ∼= Ext1(M1 ⊗L M2,M3).

It was stated by Voevodsky, later proved by Orgogozo in [O], and generalized
by Barbieri Viale and Kahn in [BVK], that there is a fully faithfull embedding
Tot of the category of 1-motives into the category DM . Cristiana Bertolin and
I proved in [BM] that, after tensoring with Q, that the embedding realizes the
connection between biextension and the tensor product of two 1-motives, i.e.,

Biext1(M1,M2;M3) ⊗Q ∼= HomDM(Q)(Tot(M1) ⊗ Tot(M2),M3).

This also answers a question in [BVK] becuse applying LAlb on the right gives

Biext1(M1,M2;M3) ⊗Q ∼= Hom1-isoMot(M1 ⊗1 M2,M3).

Here is a sketch of our proof: taking into account the different degree conventions
by Deligne and Voevodsky, by [B] we get

Biext1(M1,M2;M3) ⊗Q ∼= Ext1(M1[1] ⊗L M2[1],M3[1]) ⊗Q,

and by simple homological algebra we have

Ext1(M1[1] ⊗L M2[1],M3[1]) ⊗Q ∼= HomD(Sh)⊗Q(M1 ⊗L M2,M3),

where D(Sh) is the derived category of abelian sheaves. By [BVK, 4.4.1]:

HomD(Sh)⊗Q(M1 ⊗L M2,M3) ∼= HomDM(Q)(Tot(M1) ⊗ Tot(M2),M3).
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