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Abstract 

Objectives: Plasma membrane disruptions (PMD) are caused by excessive mechanical stress 

and thought to be involved in inflammatory mediator upregulation. Presently, PMD formation 

has been studied only during mechanical ventilation (MV) with large tidal volumes (VT), and 

limitedly to subpleural alveoli. No information is available concerning the distribution of 

PMD within the lung or the development of PMD during another modality of injurious MV, 

i.e. MV with eupneic VT (7 ml·kg-1) at low end-expiratory lung volume (EELV). The aim of 

this study is to assess whether a) MV with eupneic VT at low EELV causes PMD; and b) the 

distribution of PMD differs from that of MV with large VT at normal EELV. 

Design: Experimental animal model. 

Subjects: Sprague Dawley rats. 

Interventions: PMD have been detected as red spots in gelatin included slices of rat lungs 

stained with ethidium homodimer-1 shortly after anesthesia (control), after prolonged MV 

with eupneic VT at low EELV followed or not by the restoration of physiological EELV, and 

after prolonged MV with large tidal volumes and normal EELV. 

Measurements and Main Results: PMD increased during MV at low EELV, mainly at 

bronchiolar level. Resealing of most PMD occurred on restoration of normal EELV. MV with 

large VT caused the appearance of PMD both bronchiolar and parenchymal, the latter to a 

much greater extent than with MV at low EELV. The increase of PMD correlated with the 

concomitant increase of airway resistance with both modes of MV. 

Conclusions: Amount and distribution of PMD between small airways and lung parenchyma 

depends on the type of injurious MV. This could be relevant to the release of inflammatory 

mediators. 
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Introduction 

Ventilator-induced lung injury (VILI) is an important contributor to morbity and 

mortality in acute lung injury and acute respiratory distress syndrome (1), and can be induced 

even in normal lungs, provided large tidal volumes (VT) are used (2). Indeed, the main 

mechanism which is thought to explain VILI is “volutrauma”, basically the consequence of an 

excessive strain of lung parenchyma resulting in damage of the alveolar-capillary barrier and 

edema formation (2). Among the ultrastructural defects revealed by electron microscopy in 

animal models of volutrauma (3), plasma membrane disruption, i.e. cell membrane wounding 

due to excessive strain, has received particular attention (4). Instead of using electron 

microscopy, a technique limited by finite sampling and thus unsuited to quantify the overall 

damage, Gajic (5) and Doerr (6) assessed plasma membrane disruption by perfusing isolated 

lungs with propidium iodide, a substance which enters the cells only in presence of membrane 

discontinuities, binds to nucleic acids, and undergoes red fluorescence enhancement. Using 

this technique, these investigators demonstrated that mechanical ventilation with large VT 

leads to an increase of plasma membrane disruption in subpleural alveoli (5, 6). 

In addition of being an indicator of excessive strain due to mechanical ventilation, 

plasma membrane disruption could contribute to the upregulation of inflammatory mediators, 

leading eventually to “biotrauma” (1, 4). Indeed, plasma membrane disruption can induce the 

synthesis of Fos (7), a transcription factor whose mRNA is increased by injurious ventilatory 

strategies in isolated rat lungs (8), and nuclear translocation of NF-kB (7), a transcription 

factor essential for the expression of several inflammatory cytokines (9). 

Apart from mechanical ventilation with large VT, lung injury can be produced by 

mechanical ventilation at low-expiratory lung volumes (EELV) in spite of eupneic VT, i.e. 

that of room air breathing at rest. Indeed, this mode of mechanical ventilation causes 

epithelial damage of the small airways and rupture of alveolar-bronchiolar attachments in 
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normal rabbits (10) and rats (11), alterations attributed to abnormal stresses related to cyclic 

opening and closing of the small airways. Although theoretically plasma membrane disruption 

could occur during low EELV ventilation, this has not been demonstrated in vivo. 

The aims of the present study are to assess in the normal animal whether a) plasma 

membrane disruption of bronchiolar and/or parenchymal structures occur during mechanical 

ventilation at low EELV with eupneic VT; and b) amount, distribution, and reversibility of 

plasma membrane disruption differ from those caused by volutrauma. For these purposes, 

however, the technique described by Gajic (5) is unsuitable, because a) it requires the 

isolation of the lungs, thus preventing an in vivo investigation; and b) only subpleural alveoli 

can be observed, thus preventing the observation of the small airways. The present study has, 

therefore, required the development of an alternative technique, that overcomes the limitations 

above. 

 

Material and Methods 

Animal preparation 

Thirty-one, male Sprague-Dawley rats (weight range 0.38-0.47 kg), premedicated with 

diazepam (4 mg·kg-1), were anesthetized with intraperitoneal injection of pentobarbital 

sodium (40 mg·kg-1) and chloral hydrate (170 mg·kg-1). A metal cannula and a polyethylene 

catheter were inserted into the trachea and carotid artery, respectively. 

Airflow (V’) was measured with a heated Fleisch pneumotachograph (no.0000; HS 

Electronics, March-Hugstetten, Germany) connected to the tracheal cannula and a differential 

pressure transducer (Validyne MP45, ±2 cmH2O; Northridge, CA). Tracheal pressure (Ptr) 

and esophageal pressure (Pes) were measured with pressure transducers (8507C-2 Endevco, 

San Juan Capistrano, CA; Statham P23Gb, HS Electronics, March-Hugstetten, Germany) 

connected to the side arm of the tracheal cannula, and to a balloon-tipped polyethylene 
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catheter positioned in the esophagus. Transpulmonary pressure (PL) was obtained as Ptr-Pes. 

The signals from the transducers were amplified (RS3800; Gould Electronics, Valley View, 

OH), sampled at 200 Hz by a 12-bit A/D converter (AT MIO 16L-9; National Instruments, 

Austin, TX), and stored on a desk computer. Volume changes were obtained by numerical 

integration of the airflow signal. Arterial blood PO2, PCO2 and pH were measured by means of 

a blood gas analyzer (Gem Premier 3000; Instrumentation Laboratory, Milan, Italy) on 

samples drawn at the end of each test session. 

The animals were paralyzed with pancuronium bromide (2 mg·kg-1) and ventilated 

with a specially designed, computer-controlled ventilator (11), delivering water-saturated air 

or oxygen from a high pressure source (4 atm) at constant flow of different selected 

magnitudes and durations. A three way stopcock allowed the connection of the expiratory 

valve of the ventilator to a drum in which the pressure was set at 1.1 (PEEP) or –6 cmH2O 

(NEEP) by means of a flow-through system. Baseline ventilation consisted of eupneic VT (7 

ml·kg-1), fixed inspiratory (0.22 s) and expiratory duration (0.40 s; I/E=0.55), and frequency 

(97 min-1). 

Procedure and data analysis 

 Ethidium homodimer-1 (E1903, Sigma-Aldrich, St. Louis, MO), which exhibits the 

same basic properties as propidium iodide (12), and calcein AM (C1359, Sigma-Aldrich), 

were used as marker of plasma membrane disruption and indicator of cell viability, 

respectively, having been repeatedly validated in vitro (13, 14, 15, 16). 

Fig. 1 provides a time line representation of the main procedures. The ethidium 

homodimer-1 (0.5 M) and calcein AM (2.0 M) saline solution (32 ml·kg-1) was instilled 

intratracheally a) in 6 rats after 5 min of baseline ventilation on PEEP (CT group); b) in 8 rats 

after baseline mechanical ventilation on PEEP for 12 min and NEEP for 120 min (NP group); 

c) in 6 rats after mechanical ventilation with baseline settings on PEEP for 12 min, NEEP for 
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120 min, and PEEP again for 30 min (NP-PP group); and d) in 6 rats after mechanical 

ventilation on PEEP for 100 min with large VT (~39 ml·kg-1), high peak Ptr (40 cmH2O), and 

low frequency (~18 min-1) (LV-PP group). These settings were chosen to reproduce the 

operational lung volumes of a previous study (11), in which respiratory mechanics, histology 

and inflammatory response were assessed both during low volume ventilation with eupneic 

VT and ventilation with large VT at physiological EELV. On NEEP or with large VT on 

PEEP, the animals were ventilated with water-saturated oxygen, except during the assessment 

of lung mechanics and arterial blood gasses and pH, when they were ventilated with water-

saturated air (Fig. 1). 

In order to assess the effect of prolonged ventilation on the formation of plasma 

membrane disruption, in an additional group of 5 animals ethidium homodimer-1 and calcein 

AM saline solution was instilled intratracheally after 120 min of baseline ventilation with 

water-saturated oxygen on PEEP, water-saturated air being administered during the 

assessment of lung mechanics, and arterial blood gasses and pH. 

After withdrawal of most of the label solution, mechanical ventilation was continued 

for 5 min. The animals were heparinized and killed by exanguination, mechanical ventilation 

was stopped, the label solution re-instilled, left for 10 min, and then withdrawn. The chest 

was widely opened, and 32 ml·kg-1 of a 12% gelatin (G2500, Sigma-Aldrich) solution were 

instilled intratracheally, thus expanding the isolated lungs to almost total capacity (17). 

Thereafter, the lungs were stored at 4°C for further processing. 

The animals were handled according to the guiding principles published by the 

National Institutes of Health and the study was approved by Ministero della Salute, Rome, 

Italy. 

Microscopy 
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Two blocks were obtained from the left lower lobe, and one from each of the other 

four lobes. From each block, kept immersed in cold saline (~5°C), a 150 μm thick slice was 

cut with a vibratome (752 Vibroslice, Campden Instruments Ltd, Loughborough, UK). Slices 

were examined at a magnification of 100X with an Axioskop 40 FL (Carl Zeiss, Germany), 

equipped with a camera (Axiocam MRc 5, Carl Zeiss) and two filter sets (00 and 09; Carl 

Zeiss) suited for ethidium homodimer-1 (excitation 495 nm, emission 635 nm) and calcein 

AM (excitation 495 nm, emission 515 nm). Images, digitized at 8-bit resolution, were 870 x 

652 m, subtending a volume of 0.085 mm3. Representative images from the NP and NP-PP 

groups are shown in Fig. 2. 

To avoid any arbitrary choice of the operator, the following procedure was adopted. In 

bright field, the slice was inspected until a bronchiolus, cut nearly normal to its axis, was 

found, and photographs were taken in bright field, with the filter block for calcein and 

ethidium homodimer-1. Hence, each image was chosen independent of ethidium homodimer-

1 and calcein labeling. At least 5 bronchioli were photographed per slice, giving more than 30 

bronchioli per animal. 

On each field a 3 step analysis was performed in a blind fashion using a custom made 

LabView program (LabView and IMAQ Vision for LabView; National Instruments, Austin, 

TX): a) on the image obtained with the filter block for ethidium homodimer-1, all the red 

spots, i.e. labeled nuclei, were marked; b) the marked red spots, superimposed on the same 

image in bright field, were classified either bronchiolar or non-bronchiolar; and c) after 

elimination of the markers and superimposition of a lattice, the relative surface occupied by 

bronchiolar and non-bronchiolar structures, and hence the density of bronchiolar, non-

bronchiolar, and total red spots was assessed by point counting. Finally, the overall viability 

of lung parenchyma was qualitatively assessed by inspecting the image obtained with the 

filter block for calcein AM. 
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To quantify the precision and the reproducibility of bronchiolar and non-bronchiolar 

red spot counts, 10 images were analyzed by six operators two times. The results are shown in 

Table 1. 

Respiratory system mechanics 

Lung mechanics and blood gases were assessed while breathing room air during the 

initial (PEEP1) and final period (PEEP2) of baseline ventilation on PEEP (NP-PP and LV-PP 

groups) and at the beginning (NEEP1) and end (NEEP2) of the prolonged period of baseline 

ventilation on NEEP (NP and NP-PP groups) (Fig. 1). On PEEP, the lungs were inflated 3-4 

times to a Ptr of ~25 cmH2O before all measurements. Pulmonary quasi static elastance (Est), 

interrupter resistance (Rint), which reflects airway resistance, viscoelastic resistance (Rvisc) 

and time constant (τvisc) were assessed according to the rapid airway occlusion method, as 

previously described (11). On completion of the measures, the expiratory valve was switched 

to -10 cmH2O in order to assess the difference between end-expiratory and residual volume 

(EELV-RV). 

Statistics 

Analyses were performed using SPSS 17.0 (SPSS Inc., Chicago, IL). Results are 

presented as mean±SEM. Comparisons among experimental conditions were performed using 

mixed between within groups factorial ANOVA for repeated measurements. When an 

interaction was present, the Bonferroni post-hoc test was performed. Linear regressions were 

assessed using the least square method. The level for statistical significance was taken at 

P<0.05. 

 

Results 

Microscopy 
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Tissue viability, as evaluated from calcein staining, was preserved in all groups. No 

difference in the representation of bronchiolar and non-bronchiolar structures occurred among 

groups, the bronchiolar surface averaging ~30% of the field area in all groups, nor in the 

distribution of red spots among lobes. 

Relative to the CT group, mechanical ventilation with eupneic VT at low EELV 

increased the density of both bronchiolar and non-bronchiolar red spots (Fig. 3). The increase 

of the density of non-bronchiolar red spots, though substantial (608%), was markedly lower 

than that of bronchiolar red spots (1796%); as a consequence, the ratio between the density of 

bronchiolar and non-bronchiolar red spots increased from 1.8±0.24 in the CT group to 5.4±0.7 

in the NP group. In contrast, the densities of both bronchiolar and non-bronchiolar red spots 

of the NP-PP group, though increased, were not significantly different from corresponding CT 

values (Fig. 3). 

Mechanical ventilation with large VT on PEEP increased the density of both 

bronchiolar and non-bronchiolar red spots, which became significantly greater than that of the 

CT and NP-PP group (Fig. 3). The ratio between the density of bronchiolar and non-

bronchiolar red spots (2.6±0.37) was, however, not statistically different from that of the CT 

and NP-PP groups. While the density of non-bronchiolar red spots was significantly larger in 

the LV-PP than NP group, that of bronchiolar red spots was similar in both groups (Fig. 3); 

the ratio between the density of bronchiolar and non-bronchiolar red spots was therefore 

significantly higher in the NP group. 

Respiratory gases 

The behavior of PaO2, PaCO2, and pHa is shown in Fig. 4. No significant differences 

occurred among groups at PEEP1, nor between NP and NP-PP group at NEEP1 and NEEP2. 
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Mechanical ventilation with eupneic VT at low EELV decreased PaO2 and pHa, and 

increased PaCO2. On restoration of PEEP, PaO2 and PaCO2 of the NP-PP group returned to the 

initial (PEEP1) values, while pHa remained low. 

Mechanical ventilation with large VT on PEEP decreased PaO2 and pHa, and increased 

PaCO2; all changes being significantly larger than those observed with mechanical ventilation 

at low EELV. 

Mechanics 

No significant differences in mechanical parameters occurred among groups at PEEP1, 

nor between NP and NP-PP group at NEEP1 and NEEP2. 

Relative to PEEP1, EELV-RV at NEEP1 decreased by 85±2%, while Est (208±25%), 

Rint (62±8%), Rvisc (152±28%) and τvisc (37±14%) increased (Fig. 5). At NEEP2, EELV-

RV decreased moderately (-8±1%), while Est (100±20%), Rint (86±8%), and Rvisc 

(189±36%) increased markedly. In the NP-PP group, restoration of the EELV-RV with PEEP 

was incomplete (-16±2%), Est (21±5%) and Rint (29±5%) remained elevated, while Rvisc 

and τvisc resumed their initial values. 

Mechanical ventilation with large VT on PEEP caused pulmonary edema in all rats. 

Relative to PEEP1, EELV-RV decreased (-77±3%), and Est (315±25%), Rint (72±10%), 

Rvisc (310±44%) and τvisc (25±10%) increased (Fig. 5). 

A significant linear relationship was found between the density of bronchiolar red 

spots and the increase of Rint in the NP group from PEEP1 to NEEP2. This occurred also in 

the LV-PP group from PEEP1 to PEEP2 in spite of an unfavorable grouping of the data (Fig. 

6). 

Effect of prolonged baseline ventilation 

While pHa decreased significantly (ΔpHa=-0.07±0.02; P<0.001), neither PaO2 

(ΔPaO2=-3.6±6 mmHg) nor PaCO2 (ΔPaCO2 =2.6±3.4 mmHg) changed significantly after 120 
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min of mechanical ventilation with eupneic VT at normal EELV. Relative to the CT group, no 

significant changes occurred in the density of both bronchiolar (60.8±10.1 mm-3 vs 49.7±9.9 

mm-3; P=0.239) and non-bronchiolar red spots (33.4±5.4 mm-3 vs 26.5±3.4 mm-3; P=0.46). 

Furthermore, the changes in EELV-RV (-1±3%), Est (0±3%), Rint (-15±8%), Rvisc (-2±6%) 

and τvisc (-10±6%) between PEEP1 and PEEP2 were not significant (P>0.2 in all cases). 

 

Discussion 

The procedure described herein has proven effective in assessing the distribution of 

plasma membrane disruptions throughout the lung in vivo. In the attempt to reach this goal, 

Gajic et al. (5) cut propidium iodide perfused lungs, but most of the cells were damaged and 

the nuclei stained with propidium iodide. This artifact should have, however, affected our 

technique marginally. Firstly, the density of both bronchiolar and non-bronchiolar red spots 

was markedly higher in the NP and LV-PP groups than in the CT and NP-PP groups, in spite 

of the same procedure being used in all groups. Furthermore, because of dilution with gelatin 

solution and circulating saline used to keep the gelatin solid, the concentration of ethidium 

homodimer-1 at the time of cutting should have been substantially lower than the lowermost 

value needed to stain the cells damaged by the blade (Fig. 7). Finally, confocal microscopy 

performed on a limited number of specimens showed that the red spots were very rarely 

positioned on the cutting surfaces. 

A limitation of the technique is that staining gives no information about the cell type 

affected by plasma membrane disruption. During mechanical ventilation with eupneic VT, 

alveolar granulocytes or macrophages are absent at normal EELV and uncommon at low 

EELV (11). Thus, in CT, NP and NP-PP groups, parenchymal red spots can be nuclei of 

epithelial, mesenchymal, and/or endothelial cells, whereas, given the lack of a dense 
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peribronchiolar capillary network, bronchiolar red spots should be nuclei of epithelial cells. In 

contrast, some red spots in LV-PP group could have been inflammatory cells (2, 11). 

In the CT group, the label solution was instilled shortly after anesthesia and surgical 

preparation, while the fall of EELV was prevented by the application of PEEP (18). Hence the 

density of bronchiolar and non-bronchiolar red spots of the CT group (Fig. 3) should be 

representative of the amount of pulmonary cells with plasma membrane disruption present 

under normal conditions, or it could be an overestimate, if labeling and inclusion procedures 

were causing additional lesions. It has been reported that plasma membrane disruption occurs 

in ~20% of rat cardiac cells, a percentage that increases about three fold with isoproterenol 

administration (19). A large percentage of plasma membrane disruptions is also found in 

skeletal muscles, especially during eccentric contractions (20). In contrast, the results of the 

CT group indicate that plasma membrane disruption is uncommon in normal lungs if EELV 

and VT are kept in the eupneic range, in line with Gajic et al. suggestion (5). 

Relative to control animals, ventilated for a few minutes with water saturated room air, 

mechanical ventilation both at low EELV with eupneic VT and at physiological EELV with 

large VT increased the density of bronchial and non-bronchiolar red spots markedly (Fig. 3). 

This cannot be attributed to the administration of water saturated oxygen in the NP and LV-

PP group, nor to the prolonged period of mechanical ventilation, because in animals 

ventilated for two hours with water saturated oxygen and eupneic VT at normal EELV, the 

density of both bronchiolar and non-bronchiolar red spots was similar to that of the CT group, 

while Rint did not differ between PEEP1 and PEEP2, as observed in rats ventilated with water 

saturated room air and eupneic VT on PEEP (11).  

The increased density of bronchiolar red spots of the NP group can be attributed to 

cyclic opening and closing of peripheral airways, as supported by in vitro studies (15, 16). 

Opening and closing of peripheral airways can occur because of a) a substantial increase of 
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the thickness of the fluid lining the airways; b) a loss of the tethering action of the 

surrounding parenchyma with the fall of EELV; and c) an increase of surface tension beyond 

critical values. Although the lung wet-to-dry ratio could not be assessed in the present rats, 

condition a) seems an unlikely occurrence in NP and NP-PP groups, because no edema fluid 

nor secretions were seen in the trachea and the normal relation between EELV-RV and PL 

was maintained upon PEEP application. Moreover, only a slight elevation of the wet-to-dry 

ratio has been previously observed in closed-chest rabbits during mechanical ventilation at 

low EELV with eupneic VT (21). In contrast, condition b) and c) were met during mechanical 

ventilation at low EELV, because NEEP application caused both an immediate (from PEEP1 

to NEEP1) and a progressive (from NEEP1 to NEEP2) reduction of EELV-RV (Fig. 5). While 

the immediate increase of pulmonary Est, Rint, and Rvisc was due to the fall of EELV with 

NEEP (10, 11, 21), the further, substantial increase mainly reflected the increase of surface 

tension due to surfactant depletion or inactivation (22, 23, 24), because the concomitant 

decrease of EELV-RV was small (Fig. 5). Surfactant activity is of paramount importance to 

minimize the shear stress related damage of epithelial cells in vitro (16); indeed, during 

mechanical ventilation at low EELV in vivo, instillation of exogenous surfactant decreases 

whilst inactivation of endogenous surfactant enhances bronchiolar epithelial injury (10). 

Direct mechanical damage to small airway epithelium is likely the main cause of the 

progressive increase of Rint during this mode of mechanical ventilation, because in the NP 

group there was a significant relationship between the increase of Rint and density of 

bronchiolar red spots (Fig.6). 

In the NP group, the density of non-bronchiolar red spots was also increased relative 

to CT values, though less than that of bronchiolar red spots (Fig. 3). This is relevant in 

connection with pulmonary interdependence (25). Because of cyclic opening and closing or 

steady collapse of the small airways, during volume changes abnormal stresses affect the 
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alveoli surrounding non-ventilated parenchyma, thus causing plasma membrane disruption 

and eventually ruptures of alveolar septa. The increase of the density of non-bronchiolar red 

spots in the NP group is therefore consistent with the finding of an increased percentage of 

broken bronchiolar-alveolar attachments in animals ventilated at low versus normal EELV 

(10, 11). 

The absence of a significant difference in the density of both bronchiolar and non-

bronchiolar red spots between the NP-PP and CT group (Fig. 3) suggests that the great 

majority of the cells which are damaged during mechanical ventilation at low EELV reseals 

once the normal EELV is restored. This is in line with the concept of resealing via a calcium-

dependent lipid trafficking mechanism (4), and agrees with the finding in isolated rat lungs of 

a markedly decreased plasma membrane disruption if a period of mechanical ventilation with 

eupneic VT is made to follow that with injurious VT (5). 

The largest increase in the density of non-bronchiolar red spots occurred in the LV-PP 

group (Fig. 3), in line with the notion that during mechanical ventilation with large VT on 

PEEP, the primary injury is due to overstrain of lung parenchyma. Assuming a spherical 

alveolar shape and a mean alveolar diameter of 80 m (26), the mean number of red spots per 

alveolus computed from the individual values of non-bronchiolar red spot density amounts to 

0.013±0.002. In spite of major differences in the experimental settings, this value is close to 

that (0.018) found in subpleural alveoli of isolated lungs ventilated with large VT (40 ml·kg-1) 

on PEEP (5). This, together with the absence of significant differences in the density of the 

red spots among lobes, suggests that distribution of strain related plasma membrane 

disruption is grossly uniform throughout the lungs, although many more slices per lobe should 

have been analyzed in order to reach this conclusion. 

In the LV-PP group, the density of bronchiolar red spots, higher than that of the CT 

group, was similar to that of the NP group (Fig. 3), and significantly related to the increase of 
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Rint between PEEP1 and PEEP2, in spite of  an unfavorable distribution of data points along 

the x-axis (Fig. 6). This suggests that cyclic opening and closing of small airways was 

occurring also during mechanical ventilation with large VT on PEEP. Indeed, EELV-RV, 

though still higher than that of the NP group, was markedly decreased (-77±3%) during 

mechanical ventilation with large VT (Fig. 5). Moreover, marked parenchymal heterogeneity 

was occurring in the LV-PP group, as suggested by the increased visc and the presence of 

lung edema, that favors local airway closure and parenchymal inhomogeneity by flooding the 

airways and the alveoli and increasing the surface tension (27). Indeed, edema fluid was 

present in the trachea of all animals ventilated with large VT.  

At present, no studies exist that directly relate plasma membrane disruption to 

cytokine release in vivo. Although the study was not aimed to investigate the role of plasma 

membrane disruption in the upregulation of inflammatory mediators, the results could be 

relevant to this topic. In normal rabbits and rats the release of inflammatory mediators during 

mechanical ventilation with eupneic VT at low EELV is marginal, if any (11, 21), whereas a 

substantial increase of cytokines concentration in serum and/or broncho-alveolar lavage fluid 

during mechanical ventilation with sufficiently large VT is usually found in normal animals 

(8, 11, 28). This would fit with the suggestion of a pro-inflammatory role for plasma 

membrane disruption (1, 4, 7), because the density of the red spots was markedly higher 

(62%) in the LV-PP than NP group (Fig. 3). One could also hypothesize that parenchymal 

lesions are more important in inducing inflammatory upregulation, because the difference in 

density of the red spots between the LV-PP and NP group was accounted for by the density of 

non-bronchiolar red spots alone (Fig. 3). Further studies are needed to support these 

suggestions. 

 

Conclusions 
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The technique presented herein has allowed in vivo detection and quantification of 

plasma membrane disruption that affect lung tissues. Using this technique, it has been 

assessed that mechanical ventilation at low EELV with eupneic VT or at normal EELV with 

large VT induces plasma membrane disruption in normal lungs, the former type of mechanical 

ventilation mainly at bronchiolar level, the latter at both bronchiolar and parenchymal level, 

and to a greater cumulative extent. This may be relevant to the different inflammatory 

response that occurs with these two types of mechanical ventilation. 
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Table 1. Precision and reproducibility of red spot counts 

 

  SD CV (%) 

    Precision NBRS 2.6 11.5 

 BRS 2.3 8.8 

 NBRS+BRS 1.5 3.1 

    
Reproducibility NBRS 2.1 9.5 

 BRS 3.5 13.8 

 NBRS+BRS 3.6 7.4 

     

SD and CV: standard deviation and variation coefficient expressing intra-observer 

(precision) or inter-observer (reproducibility) variability. NBRS and BRS: non-bronchiolar and 

bronchiolar red spots. 
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Figure Legends 

Figure 1. Time line representation of the main procedures used in rats mechanically 

ventilated with eupneic VT (7 ml·kg-1) on PEEP for 5 min (CT group), on NEEP (NP group), 

on NEEP and then on PEEP (NP-PP group), and with large VT (39 ml·kg-1). Lines indicate 

the period of mechanical ventilation: thin and thick line correspond to VT of 7 and 39 ml·kg-1, 

respectively. Hatched bars indicate when lung mechanics, arterial blood gasses and pH were 

assessed. Crossed bars correspond to the periods in which water saturated air was replaced by 

water saturated oxygen. Arrows indicate timing of intratracheal injection of ethidium 

homodimer-1 and calcein AM solution (EC) and gelatin (G). 

Figure 2. Bronchioli and surrounding lung parenchyma from a rat of the NP (A and C) 

and NP-PP (B and D) group. The red spots are ethidium homodimer-1 stained nuclei of cells 

with plasma membrane disruptions. Diffuse calcein AM staining (green) indicates tissue 

viability. 

Figure 3. Mean density of non-bronchiolar [NBRS] and bronchiolar red spots [BRS] in 

the CT, NP, NP-PP and LV-PP groups. Bars: SEM. Significantly different from CT group: * 

P<0.05, ** P<0.01; significant difference between [NBRS] and [BRS] in the same group: ° 

P<0.05, °° P<0.01; significantly different from corresponding value of NP group: †† P<0.01. 

Figure 4. Mean values of arterial PO2, PCO2, and pH in NP, NP-PP and LV-PP groups 

at various times during the experimental procedure. Bars: SEM. Significantly different from 

corresponding values on PEEP1: * P<0.05, ** P<0.01; significant difference between NEEP1 

and NEEP2 in the same group: ° P<0.05, °° P<0.01; significantly different from 

corresponding value of NP-PP group: † P<0.05, †† P<0.01. 

Figure 5. Mean values of the difference between end-expiratory and residual volume 

(EELV-RV), lung interrupter resistance (Rint), quasi-static elastance (Est), viscoelastic 
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resistance (Rvisc), and time constant (τvisc) in NP, NP-PP and LV-PP groups at various times 

during the experimental procedure. Bars: SEM. Values significantly different from 

corresponding ones on PEEP1: * P<0.05, ** P<0.01; significant difference between NEEP1 

and NEEP2 in the same group: ° P<0.05, °° P<0.01; significantly different from 

corresponding value of NP-PP group: † P<0.05, †† P<0.01. 

Figure 6. Relationship between density of bronchiolar red spots [BRS] and increase of 

interrupter resistance (ΔRint) from PEEP1 to NEEP2 in the NP group (squares), and from 

PEEP1 to PEEP2 in the LV-PP group (triangles). Numbers are slope (±SEM) of the 

relationship. 

Figure 7. Relation between density of red spots in the lung tissue ([RS]) and ethidium 

homodimer-1 concentration in the solution in which unstained gelatin-included slices 

obtained from normal lungs were incubated for 15 minutes at room temperature immediately 

after cutting. The dashed line indicates the ethidium homodimer-1 concentration that should 

have occurred in the lungs during inclusion, on the assumption of complete mixing between 

label solution and gelatin. Dilution with the circulating saline, used to keep the gelatin solid 

during the cut, should have caused a further decrease of that concentration. 
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