
A Framework for Designing
3D Virtual Environments

Salvatore Catanese1, Emilio Ferrara2, Giacomo Fiumara1, and
Francesco Pagano3

1 Dept. of Physics, Informatics Section, University of Messina, Italy
2 Dept. of Mathematics, University of Messina, Italy

3 Dept. of Information Technology, University of Milan, Italy

Abstract. The process of design and development of virtual environ-
ments can be supported by tools and frameworks, to save time in tech-
nical aspects and focusing on the content. In this paper we present an
academic framework which provides several levels of abstraction to ease
this work. It includes state-of-the-art components we devised or inte-
grated adopting open-source solutions in order to face specific problems.
Its architecture is modular and customizable, the code is open-source.

Key words: Virtual Environments, Games

1 Introduction

Commercial games reach production costs up to millions dollars. During the
process of development, teams spend a lot of time in prototyping of particular
features, and, commonly, building technical frameworks to design the game on
top of them. Designing a game from scratch requires a lot of time, fund invest-
ments, skills and resources. This process could be shortened by adopting existing
platforms. In this paper we describe a fully developed framework, thought to ease
the development of 3D virtual worlds, supporting state-of-the-art techniques. It
could be adopted if programmers and artists would prefer to focus on aspects
of the design process (e.g., gameplay, game mechanics, etc.), instead of techni-
cal aspects. In academia, exploiting an existing solution could ease researchers
to carry out specific experimentations ignoring other aspects of the develop-
ment of a platform. In fact, the source code of our framework has been released
open-source1. This represents a great advantage w.r.t. using different solutions,
also freely available on the Web, whose code is closed, architecture is fixed and
components are not replaceable, differently from our framework. Moreover, its
functionality and potential have already been exploited: demonstrative virtual
environments, designed using our platform, have already been presented to the
scientific community [2].

1 http://informatica.unime.it/velab

ar
X

iv
:1

10
7.

06
90

v1
 [

cs
.G

R
]

 4
 J

ul
 2

01
1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187856278?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 S. Catanese, E. Ferrara, G. Fiumara, F. Pagano

2 Related work

Literature and academic interest in supporting videogames development is grow-
ing. There are some works sharing similarities with ours, e.g., Liu et al. [6]
developed a Virtual Reality platform, designing server and client applications,
including a rendering engine based on OGRE, combined with RakNet for net-
working features, and finally they developed an example application. Also Braun
et al. [1] recently presented a platform, for simulating virtual environments where
users communicate and interact each other, using avatars with facial expressions
and body motions. Some interesting techniques of computer vision and physics
effects have been implemented to increase the realism of the simulation. In a
broader panorama, Hu-xiong et al. [5] discussed the design and implementation
of a game platform capable of running online games, both from client and server
perspective. Concluding, Graham and Roberts [4] analyzed the videogame de-
velopment process from a qualitative perspective, trying to define attributes of
3D games and adopting interesting criteria to help achieving desired standards
of quality during the design of academic and commercial products.

3 Architecture of the Framework

In this section we briefly illustrate the components usually integrated in those
frameworks supporting the design of virtual environments. An important feature
typically provided is the capability of rendering and managing 3D scenes, as 3D
environments are usually enriched by a realistic behavior of elements populating
them, by reproducing physics and detecting collisions. Input/output manage-
ment includes, among others, reproducing music and sound, handling devices
like keyboard and mouse, pads, etc. Characters populating 3D virtual worlds
could be driven by artificial intelligence (another aspect optionally supported),
by other humans (requiring networking features for multi-player aspects), or
both. In this project we developed components, interfaces and plug-in for the
integration of some existing open-source solutions. We devised a framework able
of supporting teams in the process of design and development of virtual envi-
ronments. Its modular nature ensures the possibility of integrating additional
components to tackle specific requirements.

Rendering Engine Our framework integrates an open-source rendering en-
gine, namely OGRE. The rendering is the process of generation of an image
from a model. A model is a description of a three-dimensional object defined
by data structures containing geometry, textures, lighting, materials, etc. The
rendering can be in real-time or not: the first approach is adopted for example
in developing videogames, while the latter is typically used in those applications
where the primary requirement is photorealism rather than performance (e.g.,
post-production effects in movies, medical image analysis, etc.). Rendering algo-
rithms usually try to simulate optic phenomena to reproduce 3D environments.
These techniques rely on rendering primitives (e.g., triangles and polygons for

Designing 3D Virtual Environments 3

three-dimensional scenes), and not pixels. The process of transforming 3D scenes
into 2D images is implemented by rendering pipelines, supported by graphics
hardware. A typical input for a graphics pipeline is a model of scene and its out-
put represents a bi-dimensional raster. OpenGL and Direct3D are two examples
of graphics pipeline implementations. The interaction between graphics pipeline
and hardware is possible via direct access to resources or graphics libraries. Usu-
ally, rendering engines exploit existing graphics libraries to ease the process of
development. Our platform supports both Direct3D and OpenGL.

Scene Manager A scene manager is included in our framework to manage
scenes representing 3D environments. This component organizes the objects on
the scene and the relationships among them, in a hierarchical way. A scene
manager could be designed in different ways and its implementation could affect
the overall performance. Our scene manager adopts a “scene graph” whose nodes
represent entities or objects on the scene and edges represent relations among
them. Moreover, it manages bounding volume hierarchies (BVHs), trees adopted
to represent bounding volumes (e.g., spheres, bounding boxes, etc.) containing
objects. BVHs are also adopted for speeding up the collision detection among
objects on the scene. In order to increase performance, minimizing the number
of rendered elements, our framework supports techniques of spatial partitioning,
such as the Binary Space Partitioning (BSP) [3] and octrees [7]. Some areas
are not always visible in the frustum (i.e., the region of space visible from the
character point of view), thus the scene manager, exploiting spatial relations
among nodes, disregards their rendering.

Physics Engine A valid framework should allow the simulation of the physics
on the reproduced virtual environment. Several physics engines have been devel-
oped during last years to improve the degree of realism of videogames. Havok and
PhysX are two examples. The latter is a robust solution; we integrated it inside
our framework, developing an interface to introduce a good level of abstraction.

Collision Detection The problem of detecting collisions among objects on the
scene is complex and involves several aspects of the simulation of a virtual world.
PhysX provides advanced directives for detecting collisions of characters with
obstacles, to simulate the impact of objects with other elements on the scene
and so on. PhysX adopts bounding volumes to surround objects inside shapes
and checks for interactions among bounding volumes; it additionally exploits the
ragdoll model for collision detection of characters. After detecting a collision, the
physics engine simulates effects on involved objects.

Character Controller One important aspect of the gameplay in a videogame
is the strategy of control of the character. Players interact with the virtual world
using their avatars. It is fundamental to reproduce a realistic behavior in order to
avoid frustration during the game experience. Moreover, the character is central
in the perception of the player, thus all the imperfections are extremely visible.
An important aspect to be considered is the shape adopted for detecting the
collisions. A simple choise is a “capsule”, embedding the character; this because,

4 S. Catanese, E. Ferrara, G. Fiumara, F. Pagano

i) the shape is smooth, so the character could run on irregular terrains without
getting stuck; ii) its symmetry ensures the character could turn around itself
without hitting obstacles; iii) no rough-edges could obstacle the character when
going through narrow passages. Collateral effects are related to its simplicity.
More complex models, such as the ragdoll [8], have been proposed. This technique
produces procedural animations, instead of static ones. A ragdoll model is a
collection of constrained-rigid-bodies (usually representing bones and joints of
characters) adopted as a skeletal animation system. Animations are generated in
real-time, without adopting predetermined ones, increasing the degree of realism.
Moreover, the rigid-body system is subjected to rules of the physics engine; thus,
the interaction between the character and the environment is more accurate. Our
framework supports both these two control strategies.

4 Design and Characteristics of our Platform

Our goal was to design a framework solution to support design and develop-
ment of virtual environments, providing the following features: 3D rendering
capabilities, physics simulation, collision management and character controller,
I/O management, scene and camera management (i.e., loading and saving scenes
representing virtual environments, with graphics and physics characteristics, de-
signed with a specific application).

4.1 Adopted Tools

There are several open-source solutions which provide state-of-the-art features
for many of the required tasks. Thus, the most of the time has been spent for the
integration of these components together, in order to obtain a unique framework.
All the components, interfaced each other, work as a substrate for developing an
application on top of them. A short description of the chosen tools follows.

OGRE It is a cross-platform 3D rendering engine. This engine is scene-oriented
and allows the graphical representation of 3D virtual environments, providing
state-of-the-art techniques for visual effects, texturing and lighting. A key as-
pect is its modular nature. It is possible to extend the provided features by the
inclusion of new components. We exploited both these aspects to extend and im-
prove the engine itself. Its architecture supports both the Direct3D and OpenGL
graphics pipelines. OGRE is constituted by a collection of classes and libraries.
Three main classes (scene manager, resources manager and render) do the most
of the work. It is possible to inherit and extend the default scene manager to
implement new or different features; for example the “BSPSceneManager” is
optimized to represent in-door environments, while the “TerrainSceneManager”
better works with out-door scenes; finally, the “OctreeSceneManager” is a good
compromise for general purposes.

Designing 3D Virtual Environments 5

OGREOggSound We integrated this component in the framework; it is an
audio library which acts as a wrapper for the OpenAL API. Its adoption allows
to automatize the inclusion of audio features, e.g., to support wave and “Ogg
Vorbis” audio sources, static and dynamic environmental sounds, 2D/3D audio,
etc. Sound elements can be included inside the scenes as positional audio sources
to reproduce more realistic environments.

PhysX and NxOGRE PhysX is part of our framework. It is in charge of the
simulation of physics laws to increase the degree of realism of the reproduced vir-
tual environments. Some key aspects managed by the engine involve a rigid-body
and soft-body system simulation, an advanced character controller supporting
different shapes (e.g., capsules, boxes, triangular and convex meshes, etc.), sim-
ulation of fluid dynamics, field strength, collisions, etc. PhysX is integrated via
the NxOGRE class wrappers, which introduces a useful level of abstraction to
ease the access to functionalities provided by the library.

Blender Blender is a cross-platform open-source 3D graphics and modeling
application. We adopted Blender because of the possibility of customizing this
tool to include new features. Blender can manage multiple scenes. Each scene is
represented by its structure, objects, textures, materials, sound sources, etc. We
extended it to support also physics; some physical properties can be defined for
each object, in order to better reflect its behavior in the virtual world and the
type of interaction between the character and objects.

4.2 The Framework

The basic idea is to use Blender to design the scene and then pass its output
to the appropriate manager. Blender originally deals just with graphics, but we
extended and improved its open and powerful architecture. Using our frame-
work, it is possible to add to each component of the scene a set of user-defined
attributes and their values. This way, designers can specify values describing
the physical properties of characters and objects on the scene. To represent this
combination of graphical and physical attributes, we defined a novel XML file
format via a DTD (Document Type Definition). Thus, we devised a new Blender
exporter plug-in. The next step was to import these scenes into the framework.
This task is delegated to the loader module which analyzes the imported file.
It sends graphical information to OGRE, physical information to PhysX and
sounds to OGREOggSound. OGRE is responsible to manage the scene and to
collect user input from devices. Thus, input is passed to PhysX, which manages
the movement of characters, determines possible collisions and sends back to
OGRE the response, in order to update the graphical representation. Another
task was the camera management. The final touch was sound management, to
add soundtracks and dynamic sounds.

ExDotScene The first step, adopting our framework, is to create the virtual
environment, which could be designed by using Blender. Graphics are stored as

6 S. Catanese, E. Ferrara, G. Fiumara, F. Pagano

meshes, scenes are represented adopting the designed scene graph, and physics is
additionally included. The standard DotScene format does not contain meshes
or textures, but just an XML description of elements on the scene. Our frame-
work supports: i) the creation of physical objects with a graphical representation
(bodies) and without (actors); ii) static and dynamic objects instantiation; iii)
serialization of multiple 3D scenes. Actually, the last point was not natively sup-
ported by the built-in DotSceneInterface library. We developed an improved ver-
sion, namely ExDotSceneInterface, to allow loading and saving multiple scenes
supporting the following elements: i) nodes of the scene graph; ii) graphical
entities (i.e., meshes, textures and materials); iii) lighting (i.e., lights on the
scene with properties like positioning, direction, brightness, etc.); iv) camera
(i.e., source node and target node pointed by the camera, its positioning and
orientation); v) scene attributes (e.g., in/out-door, type of shading, clipping dis-
tance, etc.); vi) representation of the physics of the scene (e.g., serialization of
static and dynamic actors and bodies, models of physics, etc.). According to
requirements of the scene loader, which should support the physics, a DTD has
been defined, namely ExDotScene, which extends the official DotScene DTD.
A body element contains a shape element and an “actorParam” element. The
shape element must contain one and only one element chosen among a list com-
prising cube, capsule, sphere, convex and triangular meshes. These elements are
described by typical attributes like dimensions, etc. Moreover, it is possible to
specify additional parameters for the shapes, using a “shapeParam” tag.

Blender Exporter Plug-in This component recursively analyzes each node of
the graph scene, considering information relative to its position, orientation and
scale. Also specific elements, such as lights, cameras or meshes are taken into
account during this process. Moreover, the framework gives the possibility to
export only the properties of objects that satisfy some specific conditions. This
way, designers can choose to export physical properties related to the entire
scene, or not. Acting on the “Logic Properties” panel of Blender, they can set
the following values in order to define physical properties of each object: i) body,
if set to false the object is an actor; ii) shape, suggests the type of shape to
use for the object; iii) static, sets if the physical object is static or dynamic; iv)
mass, sets the mass -only for dynamic objects-; v) skin, suggests the value of
the skin width that the physics engine will use during the simulation; vi) file,
determines the .nxs file to be adopted as a physical representation of the convex
or triangular shapes. At the end of the export phase, the scene is stored as an
XML file, using the previously discussed ExDotScene DTD, which includes the
physics.

Scene Importer The core of the scene importer with physics support is com-
posed of the DotSceneProcessor class, plus a number of other node processor
classes. DotSceneProcessor contains a list of objects and allows several scenes
to be loaded. Formats different from the DotScene are supported, albeit over-
riding the correct methods for loading the scene. Our extension supports the
ExDotScene format.

Designing 3D Virtual Environments 7

Character Controller This component, which was designed exploiting some
key aspects of the physics engine, includes the following features: i) creation
of the principal and secondary characters (i.e., creating and tracking these in-
stances, managing the interaction among them and between characters and the
environment); ii) update of the character status (i.e., managing movements and
actions, at each frame, and synchronizing the graphical mesh of the character
w.r.t. the actual status); iii) character auto-stepping (to avoid characters get
stuck in minor terrain bumps); iv) character walkable parts (i.e., definition of
those areas of the environment that are not accessible to characters, acting like
boundaries); v) modifiable bounding volumes (to simulate the crouching or grov-
eling of the character); vi) character callback (i.e., response to collisions). The
control system of the character is composed of three main classes: GameCharac-
ter, GameCharacterController and GameCharacterHitReport. By using PhysX,
it is possible to divide actors by groups, so as to manage and set different be-
haviors during the collision detection and response, accordingly.

Game Character Controller The GameCharacterController implements the
Singleton pattern so to ensure that only one instance of the class may exist inside
the application. This class is interfaced with the PhysX library and deals with
the instantiation and the management of the character. During the render loop
of OGRE, the GameFrameListener class invokes a function of the GameCharac-
terController in order to execute the “simulate” and “render” methods over all
characters recorded in the controller.

Game Character The GameCharacter class represents the player inside the
physical scene. It is possible to set the associated graphical mesh and the scene
node in order to synchronize the visual and the physical representation. A specific
method deals with setting a new movement direction: a vector representing the
three-dimensional components of the velocity of the character is used. At a given
moment the position of the character depends not only on the user input, but
also on the velocity. During the simulation cycle, the “simulate” method is used
to update the physical shape and the “render” method to update the visual
representation of the character by setting the position of the mesh according to
the position, expressed in global coordinates, of the physical shape.

Character Hit Report As a consequence of a collision, PhysX generates a
HitReport event. The GameCharacterHitReport class allows the setting of cus-
tomized callback actions as a consequence of the occurrence of a collision, de-
termining the actor with which the collision occurred and the group the actor
belongs to. If the actor is a dynamic object and belongs to a group the character
may interact with, the impulse that must be applied to the actor is calculated.

Camera Once a 3D virtual scene is designed and imported inside the framework,
developers define the way users, using their characters, explore this world, the
so called camera system. In general, the core of the camera system is composed
of two scene nodes acting as point of view and target point of the camera. We
suppose that the node connected to the camera always points to the target

8 S. Catanese, E. Ferrara, G. Fiumara, F. Pagano

node. This way, the movement of the target node produces the movement of
the camera node. Moreover, it is possible to move the camera around the target
object directly moving the camera node, thus obtaining particular cameraworks.
This simple system allows three cameras, namely chasing, fixed and first-person.
In the chasing camera, the target node is associated to the point the character is
looking at. A more distant view node makes the character as appearing displaced
w.r.t. the center of the scene. This way, the character is still visible but we
obtain the effect of a side view of the scene. The fixed camera is similar. The
target node is the point the character is observing, but the camera is fixed and
cannot be moved. This system is used in several videogames (e.g., third-person
games). In first-person camera, the scene node of the character is the camera
node. The camera is independent from any other object on the scene, thus the
scene coordinates are used to update the position of camera and target nodes.

4.3 Modular structure

The framework has a modular structure, being composed of a series of packages
each dealing with a certain functionality, as shown in Figure 1. The binding
process is obtained developing the required interface classes. Sometimes, this
introduces a useful level of abstraction in the implementation of the functional-
ities provided by each component. Each package could be replaced with other
components to satisfy particular requirements. In other words, the framework
can be customized without re-implementing all the functionalities, if the exposed
interface of the replaced package is properly refactored. This is one of the advan-
tages while using our framework w.r.t. other common frameworks (e.g., Unity).
A brief description of the main packages follows.

GameSystem It contains a series of classes dealing with the management of
the rendering cycle. Within OGRE, it is possible to define some classes which
detect changes before and after a frame has been rendered on the screen. To
exploit this feature, it is necessary to register the various frame listeners in the
object of OGRE. The class GameFrameListener controls the order of execution
of frame listeners, stored as an ordered list. An instance of GameFrameListener
is then registered in the root object, thus ensuring that each frame listener is
executed in the correct order.

GameIO It manages I/O devices using the Object-Oriented Input System
(OIS) library. OIS provides two modes to manage the input, namely unbuffered
and buffered. The latter input mode is safer, because the former could not reveal
an event. GameIO implements the buffered mode using the GameInputManager
class. GameKeyListener and GameMouseListener implement the OGRE corre-
sponding interfaces and define the actions executed as a consequence of events
produced by the input device(s).

GameAudio It is developed as an interface with the OpenAL library in order to
manage audio. To do so, we developed a wrapper class using OGREOggSound,
which provides methods to integrate OpenAL features (see Section 4.1).

Designing 3D Virtual Environments 9

Fig. 1. The modular structure of the framework

GameSceneLoader It provides those methods needed to load and save a scene.
It could be adopted to load ExDotScene based scenes, or, eventually, methods
could be overloaded to manage different formats (see Section 4.2).

GameCharacterController It is the interface with the control system of the
character developed with PhysX. It adopts a wrapper class to reproduce physics
effects via PhysX and to manage the character controller (see Section 4.2).

RakNet We integrated a cross-platform library for networking, which provides
support for TCP and UDP communications. It also includes RakVoice, a toolkit
for VoIP support and for real-time communications during game sessions which
relies on the sound engine to reproduce sounds.

4.4 The Final Touch

The virtual world we earlier described still lacks of some features: first of all, logic
has to be completely defined. The framework does not substitute developers in
this aspect; this because we believe that a valid product should be designed even
in details and the game logic can not be a surrogate of preset patterns. Moreover,
the artificial intelligence of not-playing characters must be defined from scratch.
The framework supports AI scripts coded in Python. The framework provides
default implementation for the management of I/O devices but is not necessar-
ily the optimal solution for any requirement. Similar arguments hold for other
aspects, like the character control system or the camera system. Concluding, the
strength of our platform is its modular nature, which ensures that developers
could take the best from each component, but could also replace functions using
other components, providing better, or simply different functionalities.

10 S. Catanese, E. Ferrara, G. Fiumara, F. Pagano

5 Conclusions

In this paper we presented the design and implementation of an academic frame-
work to support the development of 3D virtual environments, helpful in those
cases in which teams would like to save time in technical aspects, to focus on
the contents. Our contribution can be summarized as follows: we presented a
novel approach to create 3D virtual worlds enriched by physics effects. Our solu-
tion introduces the definition of physical properties of elements appearing on the
scene, within the scene itself. These directives are interpreted by the physics en-
gine, which is strictly interfaced with the rendering engine, reproducing physics
effects. We additionally defined an extension of DTD for the DotScene format,
introducing the support for the physics definition. This work represents the basis
for future extensions and has already been adopted to show some techniques of
design of virtual environments [2], e.g. the inclusion of environmental effects such
as weather, day/night simulation and particle effects, exploiting techniques for
terrain generation, realistic management of the water and fluid dynamics and the
adoption of new rendering algorithms. Future work includes its adoption in dif-
ferent fields of application such as i) virtual/augmented reality; ii) virtual tours,
reconstructions and museums; iii) engineering and architectural simulations.

References

1. Braun, H., Hocevar, R., Queiroz, R., Cohen, M., Moreira, J., Jacques, J., Braun, A.,
Musse, S., Samadani, R.: VhCVE: A Collaborative Virtual Environment Including
Facial Animation and Computer Vision. In: Games and Digital Entertainment. pp.
207–213 (2010)

2. Catanese, S., Ferrara, E., Fiumara, G., Pagano, F.: Rendering of 3d dynamic vir-
tual environments. In: Proceedings of the 4th International ICST Conference on
Simulation Tools and Techniques (2011)

3. Fuchs, H., Kedem, Z.M., Naylor, B.F.: On visible surface generation by a priori tree
structures. In: Computer Graphics. pp. 124–133 (1980)

4. Graham, T., Roberts, W.: Toward quality-driven development of 3D computer
games. In: Proceedings of the 13th international conference on Interactive systems:
Design, specification, and verification. pp. 248–261. Springer-Verlag (2006)

5. Hu-xiong, L., Guan-dong, X., Zhang, Y.: Solution for developing data communica-
tion module on networking game platform. Comp. Eng. and Design 11 (2005)

6. Liu, X., Du, H., Wang, H., Yang, G.: Design and development of a distributed
Virtual Reality system. In: International Conference on Machine Learning and Cy-
bernetics. vol. 2, pp. 889–894 (2009)

7. Meagher, D.: Geometric modeling using octree encoding. Computer Graphics and
Image Processing 19(2), 129–147 (1982)

8. Witkin, A.: Physically Based Modeling: Principles and Practice Particle System
Dynamics. SIGGRAPH Course notes (1997)

	A Framework for Designing3D Virtual Environments
	Salvatore Catanese, Emilio Ferrara, Giacomo Fiumara, Francesco Pagano

