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Effects of tensor correlations on low-lying collective states in finite nuclei
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We present a systematic analysis of the effects induced by tensor correlations on low-lying collective states
of magic nuclei, by using the fully self-consistent random phase approximation (RPA) model with Skyrme
interactions. The role of the tensor correlations is analyzed in detail in the case of quadrupole (2+) and octupole
(3−) low-lying collective states in 208Pb. The example of 40Ca is also discussed, as well as the case of magnetic
dipole states (1+).
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I. INTRODUCTION

The nuclear effective interactions such as the zero-range
Skyrme forces have been quite successful in describing
different nuclear phenomena, and their performance is still
improving due to changes in their form and their parameters.
The Skyrme forces contain typically 10 free parameters that are
fitted to reproduce empirical bulk properties of uniform nuclear
matter and masses and radii of a few magic nuclei. These forces
describe in a reasonable way the global features of the ground-
state properties in a wide range of the nuclear chart (i.e.,
binding energies, radii, deformations). Properties of excited
states (vibrations, rotations) have also been studied using the
Skyrme interactions, allowing much physical insight [1].

Most of the Skyrme sets that have been widely used are
purely central. Many groups have recently devoted much
attention to the role played by the zero-range tensor terms that
can be added to the standard Skyrme terms (see Refs. [2–9]).
Many of these theoretical studies have followed the claim that
the tensor force is crucial for the understanding of the evolution
of the single-particle energies in exotic nuclei [4,10]. While the
mentioned studies have elucidated that the tensor force does
play a role on single-particle states, these are probably not the
right observables on which to constrain an effective force or
an effective functional, since other correlations beyond mean
field are expected to manifest themselves.

The study of nuclear collective vibrations, within self-
consistent random phase approximation (RPA) on top of
Hartree-Fock (HF), is a well-defined framework that has
allowed testing the effective Skyrme sets for many years.
Recently, fully self-consistent RPA as well as quasiparticle
RPA [11] schemes have been developed including the two-
body spin-orbit and Coulomb interactions (whose contribution
to the residual interaction had been previously been dropped).
In Ref. [12] we extended the fully self-consistent RPA by
also including tensor terms both in HF and in RPA, and we
analyzed the results in the case of the multipole response of
magic nuclei.

In this paper we study systematically the effect of the
tensor interactions on the low-lying collective states in 208Pb
by employing a very wide range of Skyrme interactions with
tensor terms. We carefully check the interaction dependence
of the excitation energies and the transition strengths. Our
goal is to elucidate how realistic is the description of these
important nuclear properties, and if we can get some kind of
improvement by adding tensor terms on top of the standard
central Skyrme interactions. Proper descriptions of collective
excitations are quite important for further applications of the
microscopic particle-vibration coupling models [13].

The outline of the present paper is the following. We will
survey very briefly our model in Sec. II. The discussion of the
results for quadrupole, octupole, and magnetic dipole states is
given in Sec. III. A summary, together with some perspectives
for future work on the tensor force and on possible constraints
on its parameters, is given in Sec. IV.

II. FORMALISM

We employ the triplet-even and triplet-odd zero-range
tensor force, which originated from the form given by T. H. R.
Skyrme [14] and read

V T = T

2

{[
(σ 1 · k′)(σ 2 · k′) − 1

3
(σ1 · σ2)k′2

]
δ(r1 − r2)

+ δ(r1 − r2)

[
(σ 1 · k)(σ 2 · k) − 1

3
(σ1 · σ2)k2

] }

+ U

2

{
(σ1 · k′)δ(r1 − r2)(σ2 · k) + (σ2 · k′)δ(r1 − r2)

× (σ1 · k) − 2

3
[(σ 1 · σ 2)k′ · δ(r1 − r2)k]

}
. (1)

In the above expression, the operator k = (∇1 − ∇2)/2i acts
on the right, and k′ = −(∇′

1 − ∇′
2)/2i acts on the left. The

coupling constants T and U denote the strengths of the
triplet-even and triplet-odd tensor interactions, respectively.

034324-10556-2813/2011/83(3)/034324(11) ©2011 American Physical Society

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187854603?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevC.83.034324
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The central exchange and tensor contributions to the energy
density H (r) are

�H = 1
2α

(
J 2

n + J 2
p

) + βJnJp, (2)

where Jn and Jp are spin-orbit densities for neutrons and
protons, respectively, defined by

Jq(r) = 1

4πr3

∑
i

(2ji + 1)

[
ji(ji +1) − li(li +1)− 3

4

]
R2

i (r).

(3)

In Eq. (3), the isospin quantum number q = n(p) labels
neutrons (protons), whereas the index i = n, l, j runs over
all occupied states having the given q, and Ri(r) ≡ ui(r)/r is
the radial part of the wavefunction. The spin-orbit potential is
given by

U (q)
so = W0

2r

(
2
dρq

dr
+ dρq′

dr

)
+

(
α

Jq

r
+ β

Jq′
r

)
, (4)

where the first term comes from the Skyrme two-body spin-
orbit interaction, whereas the second term includes both the
central exchange and the tensor contributions, that is,

α = αC + αT , β = βC + βT (5)

with

αC = 1
8 (t1 − t2) − 1

8 (t1x1 − t2x2), βC = − 1
8 (t1x1 + t2x2),

(6)

αT = 5
12U, βT = 5

24 (T + U ). (7)

It should be noted that Jq gives essentially no contribution
in the spin-orbit saturated (l · s closed) nuclei in which the
two spin-orbit partners are both occupied or unoccupied.
Therefore, the tensor force gives a negligible contribution to
the energy density in nuclei that are spin-orbit saturated for
both neutrons and protons. We choose 40Ca as an example
of such nuclei. 208Pb is chosen as a complementary example
since both protons and neutrons are spin-orbit unsaturated.

We adopt two different kinds of available parameter sets
among the existing Skyrme interactions with tensor terms for
the calculations presented below. On the one hand, we have
chosen the sets SGII, SIII, and SLy5 and supplemented them
with tensor terms characterized by the parameter values given
in Refs. [4,5]. The second kind of choice is associated with the
forces having all parameters (those characterizing the central
terms as well as those associated with the tensor terms) fitted on
an equal footing: In particular, we have performed calculations
with all the sets of the TIJ families introduced in Ref. [6] and
the parameter sets SKXTA and SKXTB in Ref. [2]. These TIJ

interactions are defined by the fact that the parameters shown
in Eq. (5) are fixed to be α = 60 (J-2) MeV·fm5 and β = 60
(I-2) MeV·fm5, respectively. The values of the parameters
defining the tensor terms in all sets we have employed
are given in Table I in order to make our later discussion
easier.

As mentioned in Sec. I, Skyrme-RPA theory has been well
known for many years, especially in its matrix formulation.
We have been using for several applications a scheme that is
fully self-consistent (see, e.g., Refs. [15,16]), that is, where

TABLE I. Parameters of the tensor terms in units of MeV·fm5.
The T and U values are taken from Refs. [2,4–6], while the values α

and β are obtained by means of Eq. (5).

T U α β

SLy5 888.0 −408.0 −89.8 51.1
SGII 1008.0 −432.0 −122.3 130.0
SIII 1008.0 −432.0 −118.7 120.0
SKXTA 384.0 144.0 93.6 94.2
SKXTB 811.2 −283.2 −83.9 96.1
T11 258.9 −342.8 −60.0 −60.0
T12 116.4 −198.2 0.0 −60.0
T13 −20.8 −51.7 60.0 −60.0
T14 −165.4 92.5 120.0 −60.0
T15 −500.9 173.3 180.0 −60.0
T16 −646.2 314.7 240.0 −60.0
T21 476.9 −369.4 −60.0 0.0
T22 356.1 −217.5 0.0 0.0
T23 183.9 −82.7 60.0 0.0
T24 33.7 59.2 120.0 0.0
T25 −69.4 216.0 180.0 0.0
T26 −209.7 362.1 240.0 0.0
T31 738.6 −382.5 −60.0 60.0
T32 613.1 −231.5 0.0 60.0
T33 439.3 −97.9 60.0 60.0
T34 246.6 30.8 120.0 60.0
T35 125.5 180.9 180.0 60.0
T36 27.2 341.8 240.0 60.0
T41 884.9 −433.6 −60.0 120.0
T42 730.7 −292.9 0.0 120.0
T43 590.6 −147.5 60.0 120.0
T44 520.9 21.5 120.0 120.0
T45 346.9 156.9 180.0 120.0
T46 249.6 314.6 240.0 120.0
T51 1179.9 −435.7 −60.0 180.0
T52 918.2 −329.9 0.0 180.0
T53 974.9 −119.1 60.0 180.0
T54 727.3 −8.4 120.0 180.0
T55 564.6 129.3 180.0 180.0
T56 448.3 282.9 240.0 180.0
T61 1335.5 −480.4 −60.0 240.0
T62 1256.5 −313.9 0.0 240.0
T63 1043.8 −193.3 60.0 240.0
T64 1046.8 −0.6 120.0 240.0
T65 823.2 119.7 180.0 240.0
T66 708.5 270.9 240.0 240.0

there is no approximation in the residual interaction since
all its terms are taken into account including the two-body
spin-orbit and the two-body Coulomb interactions. In the
present case, we also include the tensor terms consistently
in HF and in the residual interaction. The matrix elements
of the tensor residual interaction, which are quite involved,
have been given in detail in the appendix of Ref. [12]. In our
scheme we use box boundary conditions. In other words, the
continuum is discretized. In the present case the box radius is
set at 15 fm for 40Ca and at 20 fm for 208Pb. The radial step
is 0.1 fm.
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After solving the HF equations in coordinate space and
determining, together with the mean field, the unoccupied
states as eigenstates of this mean field in the mentioned
large box, we build up a model space of particle-hole (p-h)
configurations with given multipolarity Jπ , and we solve the
RPA matrix equation in that space; basic formulas for RPA
calculations are presented in the appendix. The model space
includes the configurations built up with all hole states, and
with the particle states labeled by np, lp, and jp (number
of radial nodes and spatial and total angular momentum): lp
and jp take all possible values that are allowed by selection
rules, while np varies between nmax + 1 (nmax is the number
of nodes of the last occupied state) and nmax + �n. The
convergence of the RPA solutions is checked in two ways.
First, the convergence of the values for the excitation energy
and the electromagnetic transition strength B(Eλ) of the 2+
and 3− states, as a function of �n, is assessed. This is shown
in Fig. 1.

As one can see in Fig. 1, the convergence is quite reasonable
after �n = 8, both for the excitation energies and for the tran-
sition strengths. We have also checked that the value of �n = 8
is large enough so that the isoscalar (IS) energy-weighted sum
rule for the multipoles 2+, 3− exhausts practically all (namely,
≈97–99%) the double commutator value. We take hereafter
the value of �n = 8 for all calculations. In the case of the
T46 parameter set, the number of p-h configurations for the
multipoles 2+ and 3− are 1184 and 1416, respectively; the
corresponding maximum excitation energies are 109.9 and
116.0 MeV, respectively.

The eigenvalues En and eigenvectors |n〉 of the RPA
equations allow calculating the response function to different
operators. We shall use electric quadrupole and octupole
operators,

F̂L =
Z∑

i=1

e rL
i YLM (r̂i) (8)

FIG. 1. (Color online) The convergence of the values of B(Eλ)
and of the excitation energies of the lowest collective states in 208Pb.
The HF and RPA calculations are performed with and without tensor
interactions, using the T46 parameter set. The horizontal axis shows
the value of �n (defined in the main text), so that the size of the
model space increases from left to right.

with L = 2 and 3, respectively. We will also focus our study on
the 1+ states as well. In this case the magnetic dipole transition
operator is used, namely,

F̂M1 =
A∑

i=1

{
gs

i �σi + gl
i
�l} eh̄

2mc
, (9)

where gs
p = 5.586 and gs

n = −3.826, respectively, and gl
p =

1.0 and gl
n = 0.0 (in units of the nuclear magneton µN =

eh̄/2mc).

III. RESULTS

A. Quadrupole response

Figure 2 displays the results for the low-lying 2+ state in
208Pb. Even in the case of the TIJ forces, the tensor terms are
switched on and off artificially to see how much they affect
these collective vibrations. In the ground state, the tensor terms
change the values of the spin-orbit splittings depending on the

FIG. 2. (Color online) The HF + RPA results for the excitation
energy and the B(E2) strength of the lowest quadrupole state in 208Pb.
The calculations are performed with and without tensor terms, and the
results are denoted by the open and the filled symbols, respectively.
The vertical and horizontal lines mark the experimental values with
their errors. These experimental data are taken from Ref. [17].
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spin-orbit densities (3). For the low-lying 2+ state in 208Pb,
the main p-h configurations are 1h11/2 → 2f7/2 for protons
and 1i13/2 → 2g9/2 for neutrons. The unperturbed excitation
energies depend strongly on the spin-orbit splittings of these
configurations. As we can see from Eq. (4), the negative values
for α and β increase the spin-orbit splitting (since in this case
the sign of the second term on the right-hand side is the same as
that of the first term in which the derivatives of the densities are
negative), while the positive values decrease the splittings. For
the TIJ families, the effect of tensor terms on the spin-orbit
splittings is quite obvious: If the values of I and J are larger
than 2, the spin-orbit splittings are decreased, while they tend
to increase for I = 1 (or J = 1) with smaller J (I ) values.
There are no effects of the tensor terms for I = 2 and J = 2 at
the mean-field level. In the upper panels of Fig. 2, for the case
of T1J and T2J interactions having β either negative or zero,
the spin-orbit splittings are increased so that the excitation
energy of the 2+ state is also increased. This effect is very
clearly seen in the case of T11. For larger J values and I = 1,
the positive value of α cancels the effect of negative β, and
eventually in the case of J = 6, the large contribution from the
term with α decreases the excitation energy of the 2+ state. As
a general trend, in the cases with I > 2 the excitation energy
is pushed down by the tensor effect; the energy is lower for
larger J values. This effect is maximum in the case of the
T6J family. In the bottom panel, where the results using the
interactions in which the tensor terms are added perturbatively
are displayed, the tensor effect can be understood essentially

by the same argument as that for the TIJ family. For example,
the tensor effect within SKXTA is similar to the case of T44,
and the effect for SKXTB looks like that for T31.

Compared with experimental data marked by the solid
lines in Fig. 2, none of the parameter sets give predictions
for both the excitation energy and B(E2) value with 10%
accuracies. The T5J parameter sets give quite reasonable
results for the empirical excitation energy, while T12, T13,
and T21 give values close to the empirical one for the
B(E2). If we consider accuracies of the order of 20% to
be still reasonable in comparison with experimental data,
several parameter sets satisfy this requirement for both the
excitation energy and B(E2) value, namely, T14, T15, T16,
T2J , T3J , T41, T43, T44, T45, T53, and SGII. Some
parameter sets in the bottom panel of Fig. 2 show reasonable
results for the B(E2), but the tensor correlations do not
improve the agreement. The p-h matrix elements are shown
for two typical configurations contributing to the low-lying
2+ state, namely, (2f7/21h11/2

−1)π and (2g9/21i13/2
−1)ν . The

tensor matrix elements are relatively small in comparison with
the central part of the Skyrme interactions, since they are at
most 200 keV. Thus, the effect of the tensor interaction in
the RPA matrix is small. For reference, the values of the
two-body spin-orbit and Coulomb matrix elements are also
shown in Table II. These are even smaller than the tensor matrix
elements.

In summary for this section, the behavior of the energy of
the low-lying 2+ state can be fairly well understood. As was

TABLE II. The p-h RPA matrix elements A (B) of Eq. (A6) for two typical configurations coupled to 2+ in 208Pb. The p-h energy difference
εp − εh is not included in the A matrix here. The symbols Mcentral, Mso, MCoul, and Mtensor denote the central part (proportional to t0, t1, t2, and
t3), the two-body spin-orbit, the Coulomb part, and the tensor parts (triplet-even and triplet-odd), respectively.

〈 f7/2h11/2
−1|V| f7/2h11/2

−1〉 〈 g9/2i13/2
−1|V| g9/2i13/2

−1 〉
T41 Mcentral = 0.423 (0.529) 0.209 (0.459)

Mso = 0.024 (−0.027) 0.013 (−0.032)
MCoul = 0.023 (0.023)
Mtensor = −0.158 (−0.152) −0.185 (−0.220)

T42 Mcentral = 0.424 (0.532) 0.209 (0.462)
Mso = 0.025 (−0.028) 0.014 (−0.034)
MCoul = 0.023 (0.023)
Mtensor = −0.106 (−0.102) −0.124 (−0.148)

T43 Mcentral = 0.420 (0.526) 0.205 (0.454)
Mso = 0.026 (−0.029) 0.014 (−0.036)
MCoul = 0.024 (0.024)
Mtensor = −0.053 (−0.051) −0.062 (−0.075)

T44 Mcentral = 0.397 (0.466) 0.178 (0.386)
Mso = 0.027 (−0.031) 0.015 (−0.038)
MCoul = 0.024 (0.024)
Mtensor = 0.008 (0.007) 0.009 (0.011)

T45 Mcentral = 0.406 (0.488) 0.185 (0.408)
Mso = 0.028 (−0.032) 0.015 (−0.039)
MCoul = 0.024 (0.024)
Mtensor = 0.056 (0.054) 0.065 (0.079)

T46 Mcentral = 0.389 (0.449) 0.167 (0.365)
Mso = 0.028 (−0.034) 0.015 (−0.041)
MCoul = 0.024 (0.024)
Mtensor = 0.110 (0.107) 0.129 (0.159)
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already noticed in Ref. [12], tensor effects are mainly related
to the mean field since the residual tensor interaction matrix
elements are either tiny or not very large, as shown here in
Table II.

B. Octupole response

In a similar style as for the quadrupole case, the results
for the lowest octupole state of 208Pb are displayed in Fig. 3.
At variance with the quadrupole case, several configurations
in addition to the two major configurations, (1h9/22d3/2

−1)π
and (1g9/23p3/2

−1)ν , contribute to the collective low-lying 3−
1

state. This collectivity is enough, so that the effects coming
from unperturbed configurations that are pushed upward or
downward by the tensor terms, together with the effect of the
tensor residual interaction, tend to cancel one another. The p-h
tensor matrix elements Mtensor displayed in Table III (which
is analogous to Table II, which has been discussed above)
are much smaller than those of central part of the Skyrme

FIG. 3. (Color online) The HF + RPA results for the excitation
energy and the B(E3) strength of the lowest octupole state in 208Pb.
The calculations are performed with and without tensor terms, and the
results are denoted by the open and the filled symbols, respectively.
The vertical and horizontal lines mark the experimental values with
their errors. These experimental data are taken from Ref. [18].

interaction Mcentral and are typically less than 100 keV: It
should be noted that the tensor matrix elements in the 3−
case are even smaller (by a factor 2∼3) than those displayed
in Table II for the 2+ case. From Fig. 3 one can see in general
that the energies and B(E3) values in 208Pb are not affected
significantly when a tensor is included, in the case of the TIJ

sets with I � 4 and J � 4. The tensor effect is larger for larger
I, J values. However, the effect of tensor correlations is not
straightforward compared with the case of the 2+ state, since
not only the spin-orbit splittings but also the shell spacing
between the even parity and the odd parity states around the
Fermi energy change the excitation energy and the collectivity.
In comparison with experiment, the T55 and T56 sets give
quite reasonable results in terms of both the excitation energy
and the B(E3) value. Among the interactions with tensor terms
in the bottom panel, SGII and SIII give predictions close to
the experimental data. Putting together the quadrupole and
octupole results, we note that the T36, T44, T45, T46, and
SGII parameter sets provide accuracies on the order of 20% in
both cases.

The low-lying 3− state also exists in 40Ca. In order to check
how the shell spacing around the Fermi surface is relevant in
this case, we study the octupole vibration in 40Ca and report
our results in Fig. 4. For this specific aim, we focus on the
parameter sets T4J (because some of them have been shown
to perform well for quadrupole and octupole in 208Pb) and on
the interactions with perturbative tensor terms. In Table IV, the
HF energy differences between the occupied positive parity
states 1d3/2 and 2s1/2, and the unoccupied negative parity
state 1f7/2 state, are shown with and without the contribution
from the tensor terms. Notice that the tensor interactions have
essentially a negligible effect on the single-particle energies
in the spin-orbit saturated nucleus 40Ca. One can see that,
because of the significantly low (high) energies of the j> (j<)
orbitals, some parameter sets are characterized by an energy
gap around the Fermi surface that is too small. This tendency
is clear for SKXTB and for T4J sets with large J , in particular
T46. Because of these small energy gaps, the lowest 3− state
is almost degenerate with the ground state in the case of T46,
and RPA is unstable (the lowest state has an associated solution
with nonzero imaginary part) in the case of SKXTB. We have
noticed that this anomaly for the excitation energy of the lowest
3− state shows up for other members such as the T1J and T2J

families, although the behavior of the tensor force differs in
detail. On the other hand, some members of TIJ family give
reasonable results for B(E3) and the excitation energies of
3− in 40Ca as can be seen in the upper panels in Fig. 4. In
particular, T33, T34, T35,T43, T44, and T45, together with
SGII and SLy5, give results that agree within a 20% accuracy
with the experimental data.

The shell gaps in 40Ca produced by some of the TIJ

interactions (such as SKTB or T4J with large J ) turn out
to be much smaller (1∼3 MeV) than those associated with
standard Skyrme forces such as SGII and SIII, which are fitted
without tensor terms. This explains the small excitation energy
of the low-lying 3− in 40Ca. This decrease of the energy gaps
associated with some sets of the TIJ family with respect to
other forces does not appear in the case of 208Pb because of the
effect of the RPA tensor correlations. Thus, this shell-spacing
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TABLE III. The same as Table II for two typical configurations coupled to 3− in 208Pb.

〈 h9/2d3/2
−1|V| h9/2d3/2

−1〉 〈 g9/2p3/2
−1|V| g9/2p3/2

−1〉
T41 Mcentral = 0.266 (0.248) 0.142 (0.197)

Mso = 0.006 (0.032) 0.026 (−0.007)
MCoul = 0.012 (0.012)
Mtensor = −0.079 (−0.119) −0.067 (−0.029)

T42 Mcentral = 0.268 (0.257) 0.143 (0.203)
Mso = 0.006 (0.033) 0.027 (−0.007)
MCoul = 0.011 (0.011)
Mtensor = −0.054 (−0.082) −0.046 (−0.020)

T43 Mcentral = 0.268 (0.259) 0.142 (0.202)
Mso = 0.006 (0.036) 0.029 (−0.008)
MCoul = 0.011 (0.011)
Mtensor = −0.028 (−0.041) −0.023 (−0.010)

T44 Mcentral = 0.254 (0.229) 0.127 (0.164)
Mso = 0.006 (0.038) 0.031 (−0.008)
MCoul = 0.011 (0.011)
Mtensor = 0.004 (0.006) 0.003 (0.001)

T45 Mcentral = 0.260 (0.247) 0.131 (0.179)
Mso = 0.006 (0.039) 0.032 (−0.008)
MCoul = 0.011 (0.011)
Mtensor = 0.030 (0.044) 0.025 (0.011)

T46 Mcentral = 0.251 (0.228) 0.121 (0.155)
Mso = 0.007 (0.042) 0.033 (0.009)
MCoul = 0.011 (0.011)
Mtensor = 0.061 (0.089) 0.049 (0.022)

problem in the Ca region remains an open issue for future
fittings of the Skyrme parameters including tensor terms.

C. Magnetic dipole response

On quite general grounds, it can be expected that the
effects of the tensor force are larger for spin (or for spin-
isospin) states, both at the mean-field level, since unperturbed
configurations are sensitive to the spin-orbit splittings, and

FIG. 4. (Color online) The same as Fig. 3 for the 3-state in 40Ca.
Shown are selected results of T3J , T4J , T6J , SGII, SIII, and SLy5
interactions. Experimental data are taken from Ref. [18].

also as far as RPA correlations are concerned [19]. We analyze
in this subsection the results for the 1+ magnetic dipole
excitations in 208Pb, which are reported in Fig. 5. In the
unperturbed spectrum, the main role is played by the proton
1h11/2 → 1h9/2 and neutron 1i13/2 → 1i11/2 configurations.
In general, the proton configuration has lower energy (by
about 2 MeV) than the neutron configuration due to a smaller
angular momentum. As discussed for the low quadrupole state,
when tensor terms are introduced, the spin-orbit splittings
are increased in the case of sets of the TIJ family when
J � 3 (negative α or small β values), while the spin-orbit
splittings are decreased in the case of sets with J � 3 (positive
α and β values). This feature is enhanced for larger I

cases (positive β). All this can be easily understood from
Eq. (4).

The values of the excitation energies in Fig. 5 reflect this
behavior of the spin-orbit splittings. Concerning the transition
strengths, we notice that for large J (i.e., J � 5) combined
with I � 2, the high-energy 1+ state has larger B(M1) strength
than that of the low-energy state. This fact is known empirically
as the isovector dominance in the magnetic transitions [21,22],
and those interactions show properly this specific feature of
those transitions. On the other hand, the parameter sets with
J � 3 fail to provide the isovector dominance feature. Among
the parameter sets in the last panels of Fig. 5, SKXTA and
SKXTB show the isovector dominance feature, while the other
three parameter sets fail to reproduce this property. It can be
noticed that SGII and SIII give quite reasonable descriptions
of 1+ states without the tensor terms, even quantitatively in the
case of the excitation energies; however, the good properties
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TABLE IV. The energy difference between the HF states, ε1f7/2 − ε2s1/2 and ε1f7/2 − ε1d3/2 , in the nucleus of 40Ca (in MeV).

Neutrons Protons

Without tensor With tensor Without tensor With tensor

SGII ε1f7/2 -ε2s1/2 7.224 7.200 6.906 6.877
ε1f7/2 -ε1d3/2 5.933 5.928 5.788 5.840

SIII ε1f7/2 -ε2s1/2 6.053 6.026 5.748 5.717
ε1f7/2 -ε1d3/2 5.612 5.626 5.471 5.453

SLy5 ε1f7/2 -ε2s1/2 7.591 7.566 7.270 7.239
ε1f7/2 -ε1d3/2 5.513 5.482 5.343 5.288

SKXTA ε1f7/2 -ε2s1/2 2.346 2.661 2.279 2.583
ε1f7/2 -ε1d3/2 9.133 9.177 8.996 9.070

SKXTB ε1f7/2 -ε2s1/2 3.507 3.495 3.393 3.379
ε1f7/2 -ε1d3/2 0.904 0.928 0.943 0.920

T41 ε1f7/2 -ε2s1/2 7.255 7.226 6.965 6.929
ε1f7/2 -ε1d3/2 4.690 4.643 4.565 4.494

T42 ε1f7/2 -ε2s1/2 7.041 7.032 6.760 6.744
ε1f7/2 -ε1d3/2 4.275 4.264 4.164 4.131

T43 ε1f7/2 -ε2s1/2 6.794 6.810 6.521 6.531
ε1f7/2 -ε1d3/2 3.795 3.827 3.699 3.714

T44 ε1f7/2 -ε2s1/2 6.530 6.589 6.263 6.314
ε1f7/2 -ε1d3/2 3.294 3.399 3.213 3.302

T45 ε1f7/2 -ε2s1/2 6.307 6.390 6.049 6.125
ε1f7/2 -ε1d3/2 2.859 3.005 2.794 2.930

T46 ε1f7/2 -ε2s1/2 6.057 6.183 5.805 5.924
ε1f7/2 -ε1d3/2 2.399 2.615 2.347 2.556

of the B(M1) values are destroyed by the inclusion of tensor
terms in the case of both SGII and SIII.

Since the values of α and β have different sign and
similar magnitude in both the SGII and SIII cases, the tensor
effects are largely canceled at the mean-field level so that
the RPA energies have also not been shifted significantly.
However, the B(M1) values are drastically changed by the
tensor correlations, and the low-energy 1+ state has much
larger strength than that of the high-energy 1+ state. The same
features can be seen in the B(M1) values obtained with the
parameter sets T51, T52, and T61, which have values of T

and U close to those of SGII (in both sign and magnitude).
The p-h two-body matrix elements A and B in Eq. (A6) for
the T4J interactions are given in Table V for the central
terms, two-body spin-orbit, and tensor terms, respectively.
As was shown in Ref. [20], the antisymmetrized tensor p-h
matrix elements are proportional to T and U parameters and
read

V λ
T,AS = (

1
2aλT + 3

2bλU
) + ( − 1

2aλT + 1
2bλU

)〈τz1 · τz2〉.
(10)

The matrix elements (10) are different according to the values
of (ph, q) and (p′h′, q ′): If q = q ′, namely, for proton-
proton or neutron-neutron p-h interaction, the matrix elements
become

V λ
T,AS = 2bλU, (11)

while Eq. (10) becomes

V λ
T,AS = aλT + bλU (12)

in the case q 	= q ′, namely, between proton (ph) and neutron
(p′h′) excitations. The first two matrix elements reported in
Table V correspond to Eq. (11), whereas the last column of the
same table can be interpreted by means of Eq. (12). The signs
of aλ and bλ should be negative for 1+ excitations [as in Eq. (5)
of Ref. [20], with appropriate quantum numbers λ = λ′ = 1].

As is expected from the values of T and U in Table I,
the diagonal A and B matrix elements for the h9/2h11/2

−1 and
i11/2i13/2

−1 configurations even change drastically their sign,
while the off-diagonal one between these two configurations
changes only modestly, since the sum of T and U is rather
slowly varying, as can be seen in Table I. Negative matrix
elements enhance the isovector (IV) dominance of the higher
excited 1+ state and at the same time the IS dominance of
the lower excited 1+ state (cf. the example of T45 and T46 in
Table VI). Alternatively, positive matrix elements decrease
the isovector character of the higher excited 1+ state and
decrease its B(M1) strength (cf. the example of T41 and T42
in Table VI). Since the T and U values associated with SGII,
SIII, and SLy5 in Table I are almost of the same magnitude as
those of T61 and T62, the same features appear in the results
for the B(M1) values in the bottom panels of Fig. 5.

In the case of SLy5 plus the tensor parameters of Ref. [4],
the spin-orbit splittings are increased when the tensor terms
are taken into account. In RPA, without tensor, we have found
two peaks at 7.39 and 9.14 MeV. The low- (high-) energy state
has more IV (IS) character. Since experimentally one finds
the isovector dominance mentioned above, namely, the low-
(high-) energy 1+ state has more IS (IV) character, there is an
inversion that is related to the values of the Landau parameters
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TABLE V. The same as Tables II and III for three typical configurations coupled to 1+ in 208Pb. The h9/2h11/2
−1 (i11/2i13/2

−1) is a proton
(neutron) configuration.

〈 h9/2h11/2
−1|V| h9/2h11/2

−1〉 〈 i11/2i13/2
−1|V| i11/2i13/2

−1 〉 〈 h9/2h11/2
−1|V| i11/2i13/2

−1 〉
T41 Mcentral = 1.574 (−0.029) 1.549 (0.559) −0.136 (0.519)

Mso = 0.022 (−0.022) 0.021 (−0.021) 0.011 (−0.011)
Mtensor = 0.504 (0.591) 0.693 (0.799) −0.014 (−0.642)

T42 Mcentral = 1.571 (−0.005) 1.547 (0.594) −0.147 (0.573)
Mso = 0.023 (−0.023) 0.023 (−0.023) 0.011 (−0.011)
Mtensor = 0.336 (0.399) 0.466 (0.542) −0.051 (−0.584)

T43 Mcentral = 1.581 (−0.018) 1.559 (0.582) −0.137 (0.548)
Mso = 0.024 (−0.024) 0.024 (−0.024) 0.012 (−0.012)
Mtensor = 0.168 (0.202) 0.234 (0.274) −0.097 (−0.545)

T44 Mcentral = 1.659 (−0.226) 1.654 (0.316) −0.018 (0.122)
Mso = 0.025 (−0.025) 0.025 (−0.025) 0.013 (−0.013)
Mtensor = −0.024 (−0.029) −0.034 (−0.040) −0.182 (−0.604)

T45 Mcentral = 1.633 (−0.147) 1.623 (0.423) −0.064 (0.289)
Mso = 0.027 (−0.027) 0.026 (−0.026) 0.013 (−0.013)
Mtensor = −0.175 (−0.216) −0.248 (−0.295) −0.212 (−0.518)

T46 Mcentral = 1.686 (−0.276) 1.687 (0.255) 0.015 (0.021)
Mso = 0.028 (−0.028) 0.028 (−0.028) 0.014 (−0.014)
Mtensor = −0.347 (−0.431) −0.494 (−0.591) −0.280 (−0.533)

G0 and G′
0, or ultimately to the unconstrained and not fully

satisfactory spin properties of the SLy5 interaction. We notice
that inversions of IS and IV spin doublet have also emerged
from the self-consistent Gogny calculations of Ref. [23]. It was
noticed in our previous work [12] that the matrix elements of

the residual tensor force are rather small (≈ −250 keV) in
the case of SLy5 plus perturbative tensor terms. The results
in 208Pb obtained here by using the TIJ sets with I � 4 and
J � 4 seem better. In particular, we can notice that in this case
one has the correct ordering in the spin doublet, the IS (IV)

TABLE VI. The RPA amplitudes X and Y for the main 1+ states in 208Pb.

Without tensor With tensor

(MeV) Conf. X Y (MeV) Conf. X Y

T41 Ex = 6.37 h9/2h11/2 −0.996 0.004 Ex = 6.61 h9/2h11/2 −0.964 0.037
i11/2i13/2 −0.086 0.037 i11/2i13/2 0.169 −0.001

Ex = 8.03 h9/2h11/2 −0.085 −0.034 Ex = 9.10 h9/2h11/2 0.163 −0.017
i11/2i13/2 0.996 −0.033 i11/2i13/2 0.865 −0.063

T42 Ex = 6.63 h9/2h11/2 −0.996 0.006 Ex = 6.44 h9/2h11/2 −0.952 0.035
i11/2i13/2 −0.091 0.039 i11/2i13/2 0.052 0.013

Ex = 8.43 h9/2h11/2 0.090 0.036 Ex = 8.89 h9/2h11/2 0.108 −0.013
i11/2i13/2 −0.995 0.033 i11/2i13/2 0.948 −0.059

T43 Ex = 7.09 h9/2h11/2 −0.9967 0.004 Ex = 6.36 h9/2h11/2 0.994 −0.015
i11/2i13/2 −0.077 0.035 i11/2i13/2 −0.021 −0.003

Ex = 9.03 h9/2h11/2 −0.076 −0.032 Ex = 8.67 h9/2h11/2 0.031 −0.004
i11/2i13/2 0.995 −0.031 i11/2i13/2 0.991 −0.046

T44 Ex = 8.05 h9/2h11/2 0.999 0.011 Ex = 5.92 h9/2h11/2 −0.992 −0.032
i11/2i13/2 0.002 −0.006 i11/2i13/2 −0.088 −0.039

Ex = 10.19 h9/2h11/2 −0.002 −0.006 Ex = 8.18 h9/2h11/2 0.087 −0.038
i11/2i13/2 0.985 −0.017 i11/2i13/2 −0.999 0.011

T45 Ex = 8.24 h9/2h11/2 0.998 0.006 Ex = 5.16 h9/2h11/2 −0.950 −0.062
i11/2i13/2 0.024 −0.015 i11/2i13/2 −0.285 −0.038

Ex = 10.47 h9/2h11/2 −0.021 −0.019 Ex = 7.47 h9/2h11/2 −0.298 0.022
i11/2i13/2 0.839 −0.018 i11/2i13/2 0.946 −0.003

T46 Ex = 8.94 h9/2h11/2 0.994 0.011 Ex = 2.66 h9/2h11/2 0.854 0.296
i11/2i13/2 −0.012 −0.000 i11/2i13/2 0.563 0.230

Ex = 11.37 h9/2h11/2 0.012 −0.000 Ex = 6.61 h9/2h11/2 0.566 −0.026
i11/2i13/2 0.994 −0.013 i11/2i13/2 −0.817 −0.018
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FIG. 5. (Color online) The HF + RPA results for the excitation
energy and the B(M1) strength of the low (left panels) and high (right
panels) 1+ state in 208Pb. The calculations are performed with and
without tensor terms, and the results are denoted by the open and the
filled symbols, respectively. The vertical and horizontal lines mark
the experimental values with their errors. These experimental data
are taken from Ref. [22].

state being the low- (high) energy state. In fact, with the values
of the parameter sets T and U associated with the interactions
with I � 4 and J � 4, namely, with positive and large T and
positive or almost zero U values, the IS and IV characters of
the states are more pronounced due to a larger positive value
of the matrix element mixing neutrons and protons. Thus the
drastic changes of the B(M1) strength in Fig. 5 are caused by
the nature of the p-h matrix elements in the RPA equation.

IV. SUMMARY

In this paper we deal with the effects produced by the
tensor terms on the multipole response of finite nuclei 208Pb
and 40Ca. We have attempted to disentangle the effects due to
the modifications of the static mean field, and those due to the
residual interaction, by analyzing the results of HF plus RPA
calculations performed in the case of quadrupole, octupole, and
magnetic dipole channels. In particular, we have analyzed in a
systematic and careful way the performance of the interactions
of the TIJ family. Our HF-RPA scheme includes all terms
self-consistently, in particular the tensor-even and tensor-odd
terms, and the calculations have been performed in large model
spaces.

The modifications of the static mean field had been already
understood by means of our previous work. The dominant char-
acter (attractive or repulsive) of the residual interaction matrix
elements has been extracted from the numerical calculations
and understood on the basis of a separable approximation for
the tensor p-h force. Then, it has become evident that since
these two effects are governed by different combinations of
the parameters of the tensor force, the effects that are visible
in the final results are ruled by a delicate interplay and are
nontrivial. This is one of the main findings of the present
work.

We found out that 2+ and 3− states are better described by
some Skyrme parameter sets with tensor terms such as T36,
T44, T45, T46, and SGII interactions in terms of both the
excitation energies and the transition strength. The parameter
sets T44, T45, and SGII also give reasonable results for
3− in 40Ca. This provides us with a promising background
for further applications of the particle-vibration coupling
model.

The excitation energies of magnetic dipole states are
much affected by the inclusion of the tensor terms at the
mean-field level, since unperturbed configurations correspond
exactly to transition energies between spin-orbit partners. The
inclusion of the tensor residual interaction is demanded by
self-consistency: For its matrix elements we have extracted
typically values around a few or several hundreds of keV, but
these values depend, of course, on the values of the tensor
force parameters T and U . It is noticed that the p-h residual
interactions can change drastically the isospin properties of
the two 1+ states. Namely, a larger positive U value enhances
the IV (IS) character of the high- (low-) energy 1+ state. On
the other hand, a combination of positive large value of T and
a negative value of U decreases the IV character of the high
excited state and increases that of the low excited state.
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To fit an ultimate Skyrme set including the tensor terms,
one should ask the question whether the Skyrme ansatz is
general enough for the spin-isospin channels. Some of the
most modern, and most widely used, sets such as the Lyon
parametrizations have somewhat unsatisfactory values of the
spin and spin-isospin Landau parameters, and this anomaly
should be cured. Improved Skyrme sets fitted with the tensor
terms can provide some possibility of curing this drawback, as
far as their performance for excited states is concerned. We feel
the need that Skyrme parameter sets are fitted with protocols
that do include not only the ground-state properties but also the
excited-state properties (for instance, through constraints on
the Landau parameters). This is one of the main perspectives
opened by our present work, which goes together with other
efforts aimed at fixing the appropriate tensor terms of zero-
range forces such as those of Refs. [6,24].
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APPENDIX: BASIC FORMULAS
FOR RPA CALCULATIONS

We summarize the basic formulas of the RPA calculations
in this appendix. The particle-hole (p-h) state with angular

momentum λ,µ is defined by

A
†
ph,α(λ,µ) =

∑
mp,mh

(jhjpmhmp|λ,µ)a†
jp,mp

ajh,mh
, (A1)

where α = ν, π denotes neutrons and protons and ajh,mh
=

(−)jh−mhajh,−mh
, respectively. The RPA phonon operator of

nth excited state is defined by

Q†
n(λ,µ) =

∑
p,h,α=µ,π

Xn
ph,αA

†
ph,α(λ,µ)+Yn

ph,αAph,α(λ,−µ).

(A2)

This definition of phonon operator leads to the transition
amplitudes

〈n : λ,µ|F̂λ,ν |0〉 = 1√
2λ + 1

∑
p,h,α

〈p||F̂λ||h〉α

× (
Xn

ph,α − cY n
ph,α

)
, (A3)

where 〈p||F̂λ||h〉 is the reduced matrix element and c is the
phase factor for p-h conjugation [25],

c =
{

1 for sf (r), lf (r), p

−1 for f (r), (l · s)f (r),
(A4)

where f (r) is any function of the position r. The RPA matrix
equations are given by(

A B

B∗ A∗

) (
Xn

Yn

)
= h̄ωn

(
1 0

0 −1

) (
Xn

Yn

)
, (A5)

where h̄ωn is the excitation energy of the nth excited state.
Thematrix elements A and B read

Aph,α;p′h′,α′ = (εp − εh)δp,p′δh,h′δα,α′

+ 〈(ph)λµ, α|V |(p′h′)λµ, α′〉, (A6)

Bph,α;p′h′,α′ = 〈(ph)λµ, α; (p′h′)λµ, α′|V |0〉.
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[16] L. Trippa, G. Colò, and E. Vigezzi, Phys. Rev. C 77, 061304(R)

(2008).
[17] S. Raman et al., Atom. Data Nucl. Data Tables 78, 1

(2001).
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