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HIERARCHICAL ERROR ESTIMATES FOR THE ENERGY
FUNCTIONAL IN OBSTACLE PROBLEMS

QINGSONG ZOU, ANDREAS VEESER, RALF KORNHUBER, AND CARSTEN GRASER

ABSTRACT. We present a hierarchical a posteriori error analysis for the min-
imum value of the energy functional in symmetric obstacle problems. The
main result is that the error in the energy minimum is, up to oscillation terms,
equivalent to an appropriate hierarchical estimator. The proof does not invoke
any saturation assumption. We even show that small oscillation implies a re-
lated saturation assumption. In addition, we prove efficiency and reliability
of an a posteriori estimate of the discretization error to cast some light on
the theoretical understanding of previous hierarchical estimators. Finally, we
illustrate our theoretical results by numerical computations.

1. INTRODUCTION AND MAIN RESULTS

A posteriori error estimates are an important tool for the numerical solution of
boundary value problems. For example, they can be used to quantify the error of
a given approximate solution in a computable manner. Moreover, they often split
into local contributions, so-called indicators, and then these indicators may be used
to direct the mesh modifications in an adaptive algorithm.

The hierarchical approach to a posteriori error estimates (see [9, 23] or the mono-
graphs [1, 22]) is based upon a finite-dimensional extension of the given finite ele-
ment space S by a suitable incremental space V. The indicators are obtained from
local defect problems associated with low-dimensional subspaces of V, e.g., the one-
dimensional subspaces spanned by the nodal basis functions. Usually, these local
defect problems are solved explicitly, providing explicit a posteriori error estimates.

An attractive feature of the hierarchical approach is that lower bounds typi-
cally come without unknown constants. On the other hand, as V has only finite
dimension, upper bounds must involve additional terms (see [4, Proposition 2.2])
that measure oscillations beyond V. Ideally these terms are of higher order and
computable. For linear elliptic problems, upper bounds have been shown by local
equivalence to standard residual indicators [4] or with the help of the so-called sat-
uration assumption [2, 9]. The saturation assumption holds, if (data) oscillation
is relatively small [10]. A direct approach to upper bounds has been presented in
[20], where a suitable quasi-interpolation operator onto V is used. All these proofs
rely on the Galerkin orthogonality, or, equivalently, on the fact that the residual of
the finite element approximation is vanishing on S.

Hierarchical concepts have been applied successfully in numerical computations
for various non-smooth nonlinear problems [14], in particular for obstacle problems
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[12, 13], and two-body contact problems in linear elasticity [17]. In all these applica-
tions, hierarchical indicators provided satisfying effectivity rates and quasioptimal
convergence rates without any extra scaling of the various estimator contributions.
On the other hand, the theory of hierarchical error estimates for nonlinear prob-
lems still seems to be in its infancy. Only recently, lower and upper bounds for the
discretization error have been established in [15], based on a saturation assumption
and suitable regularity requirements on the mesh. The a posteriori analysis in [18]
avoids the saturation assumption. However, if no obstacle is present, then the up-
per bound does not reduce to well-known results in the unconstrained case. This
is because [18], whose main concern is the convergence of the adaptive algorithm,
does not fully exploit the cancellations of the finite element solution.

In this paper, we derive and analyze hierarchical error estimates for the following
symmetric, elliptic obstacle problem. Let @ C R? be a bounded polygonal Lipschitz
domain, 1 € C(Q) a lower obstacle satisfying ¢¥» < 0 on the boundary 92 and
f € L?(Q) aload term. Find

(1.1) ue K: J(u) < J(v) Yv e K,
where

K={veH;(Q)|v>1ae inQ}
and
(1.2) J(v) = za(v,v) = (f,v)

is the quadratic functional induced by the symmetric bilinear form with associated
energy norm
a(v,w) = (Vov, Vw), vl = a(v,v)"/?
and (-,-) denotes the L?(Q)-scalar product. Since K is a nonempty, closed, and
convex set, and a(-,-) is H} (Q)-coercive, (1.1) has a unique solution w.
A key feature of obstacle problems is that (1.1) is equivalent to the variational
inequality

(1.3) a(u,v —u) > (f,v—u) Vv e K

and not to an equality. This is related to the property that a perturbation of the
load f not necessarily affects the solution u. These two features imply that, in
general, the residual is no longer orthogonal to §. This complicates the a pos-
teriori error analysis. In particular, the sharpness of an upper bound cannot be
verified through the continuous dependence of the usual dual residual norm on the
approximate solution; cf. [3, 5, 6, 16, 19], where averaging or residual techniques
are considered. Insensitivity of estimators with respect to certain perturbations of
the load f has been established by means of the notion of full-contact introduced
in [11].

In what follows, we consider a piecewise affine finite element solution us to (1.1),
take V' as the span of the quadratic edge bubbles and assume that the obstacle
is continuous and piecewise affine. Our main result is the equivalence

(1.4) J(us) = J(u) = —Ig(ey)
up to constants depending only on the shape regularity of the mesh and oscillation
terms that are formally of higher order. Here Zg is a quadratic functional of the

form (1.2). The load is given by the residual of us, and the bilinear form is a
hierarchical preconditioner of a(-,-), such that the minimum ey of Zg on certain
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localized defect constraints is explicitly known. See Section 2 for precise definitions.
The hidden oscillation terms in (1.4) are computable once us is known. Moreover,
as a corollary, we bound the discretization error ||us —u|| in terms of a hierarchical
estimator similar to the one proposed in [12]. The equivalence (1.4) seems to be the
first theoretical validation of hierarchical a posteriori error estimates for variational
inequalities that reduces to well-known estimates in the unconstrained case [4] and
that does not rely on a saturation assumption. Moreover, in Section 4, we even
show that, provided the hidden oscillation terms are small, the upper bound in
(1.4) implies the saturation assumption

T (ug) — I (u) < (T (us) — T (u)),

where o € (0,1) and ug is the quadratic finite element solution of (1.1). In this
way, we generalize well-known results on the relation of error estimates, oscillation
and saturation assumptions from the linear, unconstrained case [4, 10] to obstacle
problems.

In order to prove (1.4) in Section 3, we apply techniques from [18, 20]. In par-
ticular, we handle the possible non-orthogonality of the residual as in [18]. Notice
that we improve and partially simplify arguments. Important novelties are Lemma
3.1 and a suitable generalization of the data oscillation in the linear case. Our
proof makes use of representation formulas involving local residuals on triangles
and jumps of the normal fluxes across their boundary. Such representations do not
extend to piecewise quadratic extensions in three space dimensions, because they
are associated with edges rather than faces. Face-oriented increments in three space
dimensions, like cubic bubble functions, would be covered by our theory, cf. [18].
However, in view of the results on the saturation assumption, we do not consider
the three-dimensional case here.

The paper concludes with a numerical example in Section 5 that corroborates
and complements the aforementioned theoretical results.

2. DISCRETIZATION AND HIERARCHICAL ERROR ESTIMATE

In this section, we introduce a finite element approximation of (1.1) and then
derive the hierarchical a posteriori error estimate Zg(ey).

Suppose 7 is a conforming triangulation of 2. Then S denotes the space of
continuous functions that are piecewise affine over 7 and vanish on 9. The space
S is spanned by the nodal basis {¢p | P € N N Q}, where N stands for the set of
vertices of T' € 7', and the continuous piecewise affine functions ¢p associated with
P € N are characterized by ¢p(P’) = dp p (Kronecker-§). The resulting finite
element approximation of (1.1) is given by

us € Kg : J(ug) < J(v) VYveKs
or, equivalently,
(2.1) us € Ks : alus,v —us) > (f,v —us) Vv e Kg.
The closed, convex, and non-empty set

Ks={veS|v(P)>u(P) VP e NNQ}
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is the discrete counterpart of . As in the continuous case, existence and uniqueness
follow from the coercivity of of a(-,-) on S C HJ(2). We assume that

(2.2) 1 is continuous and piecewise affine over 7.

As a consequence, Ks C K so that (2.1) is a conforming method. It is worth
mentioning that the continuity in (2.2) may be dropped and is assumed here only
for simplicity [18]. The errors arising from the approximation of non-conforming
obstacles are not considered here.

We are interested in the a posteriori control of the error
(2.3) J(us) —T(u) >0

between the exact and the approximate energy minimum. If no obstacle is present
or, formally, if ¥ = —o0, then the energy error (2.3) corresponds to the discretiza-
1

tion error measured in the energy norm, ie., J(us) — J(u) = 3llus — u/[?>. In

presence of an obstacle, however, we only have ‘>’ instead of ‘=’ in general.

We start to derive a hierarchical a posteriori error estimate for the energy error
(2.3), by introducing the error function e = u — us. Let

(24)  I(v) = %a(v»v) —ps(v), ps(v) =(fv) —alus,v),  veH;(Q),

and
A={ve H}(Q) |v>1—us}=—us+ K.
Note that (2.2) implies 0 € A. Then, the error function e solves the defect problem
ecA: I(e) <ZI(v) YveA

or, equivalently,

(2.5) ec A: ale,v—e) > ps(v—e) YveA
and there holds
(2.6) J(us) — T (u) = —Z(e).

Note that the right hand side ps is a key quantity to determine e. It depends only
on the load f and on the approximate solution us. In the context of variational
equations, ps is called the residual of us. In view of the relationship (2.6), we
will derive the a posteriori estimate Zg(gy) occurring in (1.4) in two steps. First,
the defect problem (2.5) is discretized with respect to an extension of S that is
rich enough to extract enough information from pg or, equivalently, to provide a
sufficiently accurate approximation of e. In the second step, the resulting discrete
problem is decomposed into local defect problems that can be solved explicitly.

Piecewise quadratic finite elements provide approximations of higher order [§],
and, therefore, are natural candidates for the discretization of (2.5) (see [4, 9, 10]
for the unconstrained case). Let Q denote the space of continuous functions that
are piecewise quadratic over 7 and vanish on 0f2. Each function v € Q is uniquely
determined by its values in Ng = N U{zg | E € £}. Here, £ stands for the set of
interior edges of T' € 7 and xg denotes the midpoint of E € £. The approximation
eo of e in Q is the unique solution of the discrete defect problem

(2.7) eg € Ag: aleg,v —eg) > ps(v —eg) Yv e Ag,
where the closed, convex, and non-empty set
Ao ={ve Q| u(P) = ¥(P) — us(P) ¥P € No N Q)



HIERARCHICAL ERROR ESTIMATES FOR THE ENERGY FUNCTIONAL 5

is the discrete counterpart of the defect constraints A. Note that, in general,
Ao ¢ A.

In order to localize (2.7), we modify the bilinear form a(-,-) and the constraints
Ag. To this end, we introduce the hierarchical splitting

Q=8+V, VY =span {¢g | E € £},

involving the quadratic bubble functions ¢ € Q characterized by ¢g(P) = 0, p
for all P € Ng (Kronecker-9). Since S NV = {0}, the decomposition v = vs + vy
of each v € Q into the contributions vs € & and vy € V is uniquely determined.
Therefore, using this notation, the bilinear form

aQ(va) = (I,(’US, 'UJS) + Z UV(:EE)wV(xE)a(d)Ea ¢E)7 v, W € Q»
Ec&

is well-defined. Note that ag(-,-) results from decoupling of S and V and subse-
quent diagonalization of a(-,-) on the incremental space V. It provides an optimal
preconditioner of a(-,-) in the sense that the associated energy norm

lolle = ag(v,v)'/?,  weQ,
is equivalent to || - || with constants depending only on the shape regularity of
7T [4, 9]. The bilinear form ag(-,-) gives rise to the approximate energy
To(v) = yag(v,v) ~ pslv),  vEQ
However, in contrast to the unconstrained case, the minimization problem
cg € Ag: To(eg) <Zo(v) Yve Ag
or, equivalently, the preconditioned defect problem
(2.8) cg € Ag: ag(eg,v —eg) > ps(v—eg) Vv e Ag

cannot be solved explicitly, because the contributions from S and V are still coupled
through the constraints Ag. As a remedy, we suppress the contributions from S
by introducing

Ay ={veV|v(xg) > Y(rr) —us(zr) VE € £},

which is a proper subset of Ag. Note that (2.2) implies 0 € Ay,. We finally arrive
at the localized discrete defect problem

ey € Ay : IQ(&‘V) < IQ(U) Yo € Ay,
or, equivalently,
(2.9) ey € Ay : ag(ey,v—ey) > ps(v—ey) Vv e Ay.

Observe that (2.9) is completely decoupled into local defect problems associated
with the edges E € £. Their solution is explicitly given by

_ wax{—dp, pp}
= ) = gl
where
(2.11) ds = (us(oe) ~ v(ae) ol 20, pp = LS0F)

léEll
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The quantity

1/2
(2.12) levile = (Z 77%) . ne=lev(ze)llloel,

Eecg

has been proposed in [12] as an a posteriori error estimator for ||u — ug|| (see also
[13]). Here we propose

(2.13) ~To(ev) = —5ag(ev,ev) + ps(ev)

as an a posteriori error estimator for (2.3). Corresponding local indicators will be
derived in Section 3.1. We will show in Section 3 that —Zg(ey) is equivalent to
J(us) — J(u) up to oscillation terms that are formally of higher order, in spite of
the above discretization and localization.

3. A POSTERIORI ERROR ANALYSIS

In this section we prove our main result (1.4) stating that —Zg(ey) defined in
(2.13) is a reliable and efficient a posteriori error estimator for the energy error
J(us) — J(u). In particular, we specify and discuss the hidden terms in (1.4). In
what follows, we write ‘<’ instead of ‘< C” where the constant C' depends only on
the shape regularity of 7. The notation ‘A ~ B’ stands for A < B and B < A.

3.1. Error, residual and local indicators. As the starting point of our a pos-
teriori error analysis, we collect some basic properties of the error e = v — us and
its various approximations.

Lemma 3.1. The error e = u — us satisfies the inequalities
(3.1) Lell? < Lps(e) < —Z(e) < ps(e)

Proof. As a consequence of (2.2), the function v = 0 is contained in A. Inserting
v = 0 into (2.5), we obtain the first inequality of (3.1). From this inequality, we
immediately get

3ps(e) < —glell” + ps(e) < ps(e).
In view of the definition (2.4) of Z, this concludes the proof. O
As the approximations eg, €g, and ey of e solve the variational inequalities

(2.7), (2.8), and (2.9), respectively, the arguments in the proof of Lemma 3.1 can
be literally repeated to show the related estimates

(3.2) slleall® < 3psleg) < —I(eg) < ps(eq),
(3.3) sllealld < 3ps(ee) < —To(eg) < ps(ea),
(3.4) sllevia < 3ps(ev) < —ZIolev) < ps(ev).

As a first application, we derive local indicators for our approximate energy
error —Zg(ey). As —Zg(ey) and ps(ey) are equivalent up to the constant 1/2,
local contributions to ps(ey) can be used as indicators for —Zg(ey). Utilizing the
definitions (2.10), (2.11), and (2.12), ps(ey) can be decomposed according to

(3.5) ps(ev) =Y ev(zp)ps(dr) = Y nelpsl,

Ee& Eecé&
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where ey (zg)ps(dr) = nelpr| > 0. This suggests the local indicators ng|pgl,
E € &, for —Ig(ey). These indicators have been already used in [18], but they
were collected in a different way.

In view of the identity (2.6) and Lemma 3.1, the energy error J(us) — J(u) is
equivalent to the quantity ps(e). Therefore, it is useful to provide some further
properties of ps. As in the unconstrained case, ps depends only on the load f
and on the discrete solution ug. More precisely, after integration by parts on each
T € T, the identity Aug = 0 on each T yields the representation

ps(v) = / fo+ Z / JEV,  jE = OnUs|r, — Onus|t, .
0 B

EcE

Here, n denotes the unit normal vector on the common edge £ = T1 N T, of two
triangles Ty, T> € 7 pointing from 77 to 15, and jg € R represents the jump of the
normal flux associated with ugs across E.

In contrast to the unconstrained case, the equivalence ps = 0 <= e = 0in
general does not hold for variational inequalities. However, Lemma 3.1 implies

(3.6) (ps(v) <0 YoeA) = e=0

which is an extension of ps =0 = e = 0. As ugs solves the discrete problem (2.1),
we can insert v = us + ¢p € Kg to obtain ps(¢p) < 0 for all P € N NQ, which
means that the approximation of e in S is just zero. If us(P) > ¢(P), we can even
insert v, = us — a¢pp € Ks with sufficiently small o > 0 to obtain ps(¢p) = 0.
Combining our observations, we obtain the discrete complementarity properties

(3.7) ps(op) <0, ¥(P)—us(P)<0, ps(¢p)(v(P)—us(P))=0

for all P € NN Q. Note that ps(¢p) < 0 might occur for certain P so that, in
contrast to the unconstrained case, ps in general does not vanish on . The discrete
complementarity properties (3.7) are compatible with the following localization of
ps. Invoking the partition of unity

(3.8) Y ¢p=1 inQ,
PeN
we decompose

(3.9) ps= Y pp

PeN
into the local contributions

pp(v) = ps(vép) = / Foor +

Z /EJEU¢P, ve H (Q),

Ee€p

where
wp = supp ¢p, Ep={F €& |E> P},

denote the support of ¢p and the internal edges emanating from P, respectively.
Then, (3.7) takes the form

(3.10a) pp(1) <0,

(3.10b) us(P) > $(P) = pp(1) =0,

for all P € N'NQ. These complementarity properties suggest to introduce the sets
N ={PeNNQ|us(P)=%(P)}, NT={PecNNQ|us(P)>¢(P)}
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of interior contact and non-contact nodes, respectively.

3.2. Oscillation terms. As the extension V has finite dimension, the correspond-
ing approximation —Zg(ey) can only provide upper bounds of —Z(e) up to ad-
ditional terms (see [4, Proposition 2.2]) measuring oscillation beyond V. In this
subsection, we introduce the additional terms that appear in the upper bound of
—Z(e) in Section 3.3 below and formally explain their oscillation and higher order
character. For the the latter, we consider global refinements of a triangulation

with (2.2) and with the expected order h of ||u — us|| or (J(us) — J(u))%. Rig-
orous proofs would go beyond the scope of this article. Our heuristic reasoning is
supported by the numerical example in Section 5.

The oscillation osc(us, ¥, f) consists of two different terms

(3.11) osc(us, ¥, [) = osci(us, ) + osca(us, ¥, f),

depending on the data of the given problem (1.3) and its discretization (2.1). Note
the dependence on the discrete solution us, which is a novelty with respect to the
unconstrained case and the reason why we use only the term ‘oscillation’ instead
of ‘data oscillation’.

The first term oscy (us, 1) measures a kind of obstacle oscillation. It is given by

1/2
(3.12) 0801(16371/}):( > IIV(w—US)II%,wP> ;

PeNO+

where
N ={PeN’|us > inwp\{P}}

denotes the set of isolated contact nodes and ||+ /o, stands for the norm of L?(wp).
Isolated contact nodes are discrete counterparts of isolated contact points, which are
strict minima x € Q of v — ¢ with u(x) = ¢(x). If isolated contact nodes persist
under refinement, then, under certain regularity conditions, the exact solution wu
should have corresponding isolated contact points. In this case, the set Upepo+wp
shrinks towards these isolated contact points of w. This entails that oscy(us, )
has at least the order of the error. Higher order should arise if v is smooth in the
isolated contact points. In fact, assuming also that wu is also smooth enough, we
get (Vu — V’(/J> (x) = 0 for all isolated contact points z. One thus expects that
osci(us, 1) is vanishing with higher order. A similar argument applies if ¢ is the
nodal interpolation of some smooth obstacle ¥y to S, which however is outside
the conforming framework considered here. It is worth mentioning that the set
N can be made smaller, at the expense of a slightly more complicated notion of
isolated contact nodes [18].

To define osca(us, ¥, f), we introduce the set
(3.13) N++={PEN+|pE2—dEVE€SP}

of non-contact nodes where the approximate error ey, solving (2.9) is not in contact
and the set

NO—:{PGNO\u5:¢,f§01nwpandjESOVEeé'p}

of full-contact nodes with certain monotonicity properties. The latter are equivalent
to f+ Av < 0 in the interior of wp (in distributional sense), which in turn is
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necessary for u = ¢ in wp. Then, we define

(3.14)
1/2

osca(us, ¥, f)=| > hplf = felfe, + > ol fllgwr |

PeEN++ PEN\(NO-UN++)

where, for any P € N, hp = maxgee, |F| is a measure for the diameter of wp, and

fp:@/wpf

is the mean value of f on wp. Notice that osca(us, ), f) essentially depends on the
load term f and the contact set, which in turn depends also on us and v; the used
notation stresses that also this oscillation is computable in terms of the data and
the discrete solution and, thus, can be part of the a posteriori estimator.

The term osca(us, ), f) is a generalization of well-known data oscillation from
the unconstrained case [1, 22] to obstacle problems. In fact, if no obstacle is present,
then the definition (3.14) reduces to

1/2
2
O,wp
PeNNQ PeNNOQ

(3.15) 0502(U571/J,f)=< S onplf—Felde, + > hplf]

Observe that unconstrained data oscillation (3.15) has two types of indicators:
the indicators associated with non-Dirichlet nodes involve local means, while the
indicators associated with Dirichlet nodes do not (because the corresponding hat
functions are not in §). In view of the approximation properties of local means and
since Upennoowp shrinks to the Dirichlet boundary under refinement, the data
oscillation (3.15) is of higher order for sufficiently smooth loads f.

The oscillation term osca(us, ), f) has only contributions from outside of the
full-contact region. These contributions have a similar structure as the data oscil-
lation for unconstrained problems: indicators that are sufficiently far away from
the discrete free boundary involve local means, while indicators in the vincinity of
the discrete free boundary do not. If the discrete free boundary converges under
refinement (see, e.g., [7]), then the set Upcpn (vo-un++)wp shrinks towards the
exact free boundary, in addition to 9. Hence, osca(us, ¥, f) is expected to be of
higher order. The analogy between generalized oscillation oscs(us, ), f) defined in
(3.14) and its unconstrained counterpart (3.15) reflects that the obstacle problem
(1.3) reduces to an unconstrained Dirichlet problem on a reduced computational
domain, once the exact free boundary is known.

3.3. Reliability. In this subsection, we derive an upper bound for the energy error
J(us)—J(u) = —Z(e) consisting of the hierarchical estimate —Zg(ey), introduced
in (2.13), and an additional oscillation term osc(us, ), f), defined in (3.11).

The reduction of the continuous error e = u — us € Hg (), solving the infinite-
dimensional defect problem (2.5), to its approximation £y € V), obtained from the
localized discrete defect problem (2.9), will be performed by local projections

Op: HY(Q) — Qp =span{¢p} UVp, Vp =span {¢r|E € Ep}, PeN.
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For given v € H(Q), the value Ilpv € Qp is uniquely defined by the conditions

pv = if Pe NTT,
(316) / IIpv :/ v VE € &p and pr PU fup v o1 .
E E IIpv € Vp otherwise.

In contrast to similar projections [18], IIp also preserves the mean value in wp
for all P € N*t+. This property prepares the ground for an upper bound with
oscillation term osc(us, ¥, f) defined in (3.11). It can be verified by straightforward
calculations that the coefficients in the hierarchical basis representation

(3.17) Opv=ap()dp+ > ap(v)de
Eeép

are given by

celv) if p e N+t _
(318)  ap() = {en LPENTL Ly Jpvmor(®) ]poe
0 otherwise, Ii e
where
-1
CP(U):/ v /U /¢E /¢E :
s () o)
In particular, cp(¢p) = —g|wp|. The following lemma collects some essential

properties of the projections Ilp.
Lemma 3.2. The coefficients in (3.17) satisfy

3.19 < h5t hp|V
(3.19) oA laq ()] S hp' ([vllows + keI VUllows)

and Ilp is stable in the sense that

(3.20) Mpvllo.we S vllows + hp[[Vollows-

Moreover, if P & N+, then the coefficients ag(v) = ([, v)([5 ¢p)~" have the
property

(3.21) /Ev > é(w —us) = ap(v) > (en) —us(zs)  VE € Ep.

Proof. In order to show (3.19) and (3.20), we start with

’/ v |0,WP7 ’/ v
wp E

where we have used the Cauchy-Schwarz inequality, the ‘scaled’ trace theorem, and
hg = |E| < hp for E € Ep. Inserting these estimates and straightforward bounds
of the integrals of ¢ and ¢p in terms of hp into (3.18), we obtain (3.19). Then
(3.20) follows from the triangle inequality, ||¢p|lowp =~ hp, and ||¢gllow, = hp.

If P ¢ Nt then ap(v) = 0 so that (3.18) provides the coefficients ag(v) =
(Jp0)(J5 ¢E)~". Moreover, we have [,(¢ — us) = |E|(¢(zg) — us(zg)) by
condition (2.2) and the midpoint rule. Thus (3.21) follows from the identity

Utilizing the projections Ip, we derive an upper bound for ps(e). In light of
Lemma 3.1, this is the crucial step towards an upper bound for the energy error

I (us) = T (u) = =Z(e).

1 —
< hillvllo.s < he(hp' [vllows + IVVllows),

< hellv
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Proposition 3.3. Assume that the obstacle satisfies (2.2). Then

(3.22) ps(e) Y Ipene + osc(us, ¥, f)?
pee

with pg defined in (2.11), ng defined in (2.12), and osc(us,, f) defined in (3.11).

Proof. Using the decomposition (3.9) we write ps(e) = > pcpr pp(e). The deriva-
tion of suitable upper bounds for the local contributions pp(e) hinges on an appli-
cation of a Poincaré-type inequality. The way how such inequality can be invoked
depends on the type of the node P, e.g., if the discrete solution touches the obstacle
in P, if P belongs to the boundary, and others. More precisely, we distinguish six
cases corresponding to the splitting

N =NTTUWNT\NTFT)UWNNIQU N\ (VT UNOT) UNT UNOT,
which will be addressed in the given order, starting with a ‘completely free’ node
and ending with a full-contact node.

Case 1: P € NTT. We claim that

(3.23) pr(e) S (Y losl+hellf = Fellows ) Vello.wr
Ee&S

with €5 = {E € €p | pp > —dg}. Note that £} = Ep, because P € N**. In
order to prove (3.23), we set

w = (e—c)pp, c ! / e.

 wpl

Then, we derive

pr(e) = prle—c)= [ fut

Z/EJE”W

Ecép

:/ Jpw + Z /EjEHPwJF f(w—Tpw)

(3.24) Ecép
— ps(Tpw) + / (f - Fr)(w — TIpw)
< Y an@)pslépl + 1f — Fellowsllw - Tpwlow,

Ee€ép

from NTT C Nt NQ, (3.10b) and thus pp(1) = ps(¢p) = 0, the definition (3.16)
of I p, the fact that jr € R is constant, the definition (2.11) of pg, and the Cauchy-
Schwarz inequality. Notice that, thanks to the choice of ¢ in the definition of w and
P € Q, we have

(3.25) lwllowe < lle—¢]

owr S hplIVellows

by a Poincaré inequality, cf., e.g., [21]. Utilizing (3.19), ||¢pr|lco.wr < 1, |VOP|lco,wp S
h;l, and (3.25), we obtain

lap(w)| < hp {l[wlows +hplVwllows }
(3.26) S hpH{lte = 9pllowr + hrllV (e = or) lows |
S IVellowr = llos] Ve

O,UJP
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for all £ € Ep. In a similar way, we get
(3.27) lw =Tpwlows S wllows + hrlVwlows < hplVelows

using (3.20). The desired estimate (3.23) follows by inserting these two inequalities
and Ep = £} into (3.24).
Case 2: P € NT\N*TT. We claim

(3.28) pr(©) S (D2 losl +hellf

Ee&)

0ur )| Vello.on-

To show (3.28), we first proceed as in the proof of (3.24), to derive the inequality

(3.29) pr(e) < > ap(w)psllés] + || fllows v = Tpwllow,,
Eecép

w = (e — c)pp, c_min{(/Eeqsp)(/Eqsp)_l|Eesp}.

This particular choice of ¢ implies that we have ag(w) = ([, w)([, ¢p)~" > 0 for
all E € Ep and that the inequalities (3.26) and (3.27) follow from the generalized
Poincaré-Friedrichs inequality in [18, Lemma 3.4]. Hence, inserting (3.26) and
(3.27) into (3.29), we can exploit ag(w)pr < 0 whenever pg < —dg < 0, to obtain
the desired inequality (3.28).

Case 3: P € N'NoN. We claim
(330)  pp(e) S Y loslde+ (Y losl+ el flow, ) IVelo,

Ee&Y EcES

where

with Ep = Ep \ Ef = {E € Ep | pr < —dg}. To prove (3.30), we again start from
the inequality

(3.31) pr(e) < D ap()ppllésll + 1 flows v —Tpwlow,,
Ee€ép

where this time we set
w=(e—c)op, c=0.
There is no freedom in the choice of ¢, since P ¢ ) so that we cannot invoke (3.10).
However, e vanishes at least on one edge of dwp, because P € 9f2. Hence, the
generalized Poincaré-Friedrichs inequality [18, Lemma 3.4] can be applied again to
obtain (3.26) and (3.27). Inserting these inequalities into (3.31), we get the desired
bound for the contributions from E € 8;5. In view of us+w = (1—¢p)us+opu > 1,
(3.21) implies ag(w) 2 Y(zp) — us(zr) = —dg||¢g|~t. Using this inequality, we
get the desired bound for the remaining contributions from E € £3.
Case 4: P € NO\ (N°~ UNOT). We claim

(3.32) pr(e) S Y Ipslds+ (Y lpel+hellf

Ee&y, Eegf

O,UJP> Hve”OMP .

In order to show (3.32), we write pp(e) = pp(e™) + pp(e™) with e™ = max(e, 0),
e~ = min(e,0) and prove the desired bound seperately for pp(e™) and pp(e™).



HIERARCHICAL ERROR ESTIMATES FOR THE ENERGY FUNCTIONAL 13

Let us start with pp(e™). Utilizing (3.10a), we proceed as in the Case 2, to
derive the usual upper bound

pr(e™) <pplet —c) < Y ap(w)psldsl + I fllows lw — Tpwlow,,
Ecép

where

w= (et — )ép, c:min{(/Ee+¢p)(/E¢p)1|Eegp}zo.

Then, we continue literally as in the Case 2 and use |[Ve™| < |Vel, to obtain the
desired bound

(3.33) pr(e) S (3 lpel+ helflows )IVelown:
Eeg}
Next we consider pp(e™). As in the Case 3 we get the upper bound
(3.34) pr(e”) < Y ap(w)pslés] + | flowe v —Lpw|ow,
Eeép

where
w= (e~ —c)pp, c=0.
Since w = e ¢p > e~ > 1) —us, (3.21) provides for all E € Ep,

(3.35) 0> ap(w) 2 Y(zp) —us(zp) = —dg|dp| ™
and therefore
(3.36) ap(w)pplloell S lpelds  VE € Ep.

It remains to bound |ag(w)| for E € £} and ||w — Hpwl|o, appropriately. To
this end, we exploit that P & N° providing that there is at least one edge E € Ep
such that e~ = 0 on E. As in Case 3, we can therefore apply the generalized
Poincaré-Friedrichs inequality [18, Lemma 3.4] and |Ve~| < |Ve| to show (3.26)
and (3.27). In combination with (3.36), this leads to

630 o) S Y loelds+ (X loel 4l o ) Vel
Ee&) Ecef
We sum the two estimates (3.33) and (3.37), to obtain the desired bound (3.32).
Case 5: P € N°F. We claim

(338) pp(e) S Y lpplde
Ee&l

+ (X lesl+hellf

EeE}

0cr ) (IVello.or + IV (6 = us)llows )

As in Case 4, we use the splitting pp(e) = pp(et) + pp(e™) and proceed literally
as above, to show that pp(e™) satisfies an inequality of the form (3.33), and that
pp(e™) satisfies

(3.39) pr(e”) < > ap)pelloel + | fllows v —TTpwlow,
Ee€€p

where
w= (e —c)pp, c=0.
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As the estimate
(3.40) ap(w)pe|ésll < |pplde  VE € &p

can be also shown as in Case 4, it remains to bound |ap(w)| for E € &} and
lw — Ipw|ow, appropriately. As a first step, we derive the following substitute
for (3.26)

(341) |ap(w)||dg] < o - us)lléz] S hp* [ — uslor < IV — us)owr

by using ¥ — us < e~ < w < 0, the monotonicity of the integral in ag(w) =
([ w)([, ¢p)~ " and a ’scaled’ Poincaré-Friedrichs inequality based on (¢p—us)(P)
0 and ¢ — us € S, which in turn holds thanks to (2.2). Similarly, ¢ —us < e™ <
w < 0 implies ||w]o,wy < [|¥ — usllowp, and, in view of (¢ —us)(P) = 0, a ’scaled’
Poincaré-Friedrichs inequality provides

owp <Y —usllows S hPIV(Y —us)llowp-

As consequence of (3.41), we immediately get

Mpwlow, < Y lap@)ldellows < hpIV(E —us)lows-
Ecép

]

Combining these two estimates we obtain the following substitute for (3.27)
(3.42) lw = Tpwlo.wp S hplIV (Y —us)llows-
We insert the bounds (3.40) for E € €%, (3.41) for E € £ and (3.42) into (3.39),

to obtain

(3.43)  pr(e) S Y loslde+ (D losl + el fllows ) IV = us)low-

Ee&l EecE}

Finally, we sum up the two estimates (3.33) and (3.43), to obtain the desired bound
(3.38).

Case 6: P € N°~. In this case, we have by definition that e = u —¢ >0, f <0
in wp, and jg <0 for all ¥ € Ep. Hence

pP(e)=/ feep+ > /EjEesbpgo.
wp Eecép

To conclude the proof, we sum the estimates for the six cases, invoke the defini-
tion of the oscillation term, and apply the Cauchy-Schwarz inequality, to obtain

Cpsle) < 3 Ipeldut( D lpel+oscalus, v, /)?) (IVellf g+oser(us,)?)

Ecé&l Eecegt

1
2

The constant C' > 0 depends only on the shape regularity of 7 and we have set
EY = Upen€f, Y = Upen€Y. Then, using Young’s inequality and inserting the
definition (2.12) of ng, we get

Ops(e) < 3 (IVelq +osea(us 1)) + (14 52) (3 loshns + oses(us, v, )?)
Eeg

for arbitrary 6 > 0. In view of the first inequality in (3.1) and a binomial formula,
we can chose 0§ < C, to finally prove the assertion (3.22). O

Combining Lemma 3.1 and Proposition 3.3 yields our main result.
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Theorem 3.4. Assume that the obstacle v satisfies condition (2.2). Then the
hierarchical a posteriori error estimate Ig(ey) defined in (2.10) provides the upper
bound for the energy error

(3.44) T (us) = T (u) € ~Talev) + osc(us, ¥, f)?

up to the oscillation term defined in (3.11) and a constant depending only on the
shape regularity of T .

Proof. We estimate

J(us) = T (u) = =Z(e) < ps(e) S > lpplne + osc(us, v, )?

Ee&
= ps(ev) + osc(us, ¥, [)* < —2Tg(ev) + osc(us, ¥, f)*
with the help of (2.6), Lemma 3.1, Proposition 3.3, (3.5), and (3.4). O

In light of the discussion in Section 3.2, the oscillation term osc(us,, f) is
expected to be of higher order for suitable data so that —Zg(ey) is asymptotically
reliable. Moreover, if no obstacle is present, then the upper bound (3.44) reduces
to well-known hierarchical a posterior error estimates and data oscillation for linear
elliptic problems [4]. In this case, the above derivation provides a direct proof which
does not invoke other a posteriori error estimates.

We conclude this subsection by an a posteriori estimate of the discretization
error which is closely related to the estimator (2.12) proposed in [12].

Theorem 3.5. Assume that the obstacle 1 satisfies condition (2.2). Then the
localized discrete defect problem (2.9) provides the upper bound for the discretization
error

/
(3.45) lu—usl < (X lolns) " +ose(us, v, f)

EcE

up to the oscillation term defined in (3.11) and a constant depending only on the
shape regularity of T .

Proof. We estimate

Hlu = us|® < psle) £ Y lpelne + osc(us, ¥, f)?
EcE

by means of Lemma 3.1 and Proposition 3.3. (]

Note that the corresponding error estimate ) ... |pe|ne differs from the hi-
erarchical error estimate (2.12) only for internal edges E € & with the property
pe < —dg < 0. These edges are contained in the set Upepr+\n++wp, which, ac-
cording to the discussion in Section 3.2, is expected to shrink to the exact free
boundary under refinement. Therefore, Theorem 3.5 provides theoretical support
for the numerical evidence that the estimator (2.12) is asymptotically reliable.

3.4. Efficiency. In this subsection, it is shown that —Zg(ey) provides a lower
bound for J(us) — J(u) up to a constant that is explicitly known. To this end, we
combine (3.4) with results from [18, 20], which rely on the convexity of J.
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Theorem 3.6. Assume that the obstacle v satisfies condition (2.2). Then the
hierarchical a posteriori error estimate Zg(ey) defined in (2.10) provides the lower
bound for the energy error

—Zg(ev) < 6(T (us) — T (u)).
Proof. Combining (3.4) and (3.5), we get
—Ig(ey) < ps(ey) = Z nelpel.
Eec&

By a variant of [18, Theorem 3.2] (slightly modify the end of the proof to avoid the
sums in the claim therein), we have

Z nelpe| < 6(J(us) — T (u)).

Ee&

4. VERIFICATION OF A SATURATION ASSUMPTION

The purpose of this section is to prove the following variant of the saturation
assumption. The quadratic finite element approximation ug, determined by

(4.1) ug € Ko : alug,v —ug) > (f,v—ug) Yve Kg
with
Kog=us+Ag ={veQ|v(P)>v¢(P) VP e Ng NQ},

satisfies the inequality
(4.2) T(ug) = J(u) < (T (us) — I (u))

with some « € (0,1), provided that the oscillation term osc(us, f, 1) is relatively
small. Recall that we have J(ug) — J(u) = 3|lug — ul[* and J(us) — T (u) =
{lus — ul|?, if no obstacle is present. Hence, (4.2) can be regarded as a general-
ization of related results for variational equalities [10]. However, in contrast to the
unconstrained case, J(ug) — J(u) might be negative, because, in general, Ko is
not contained in K. Hence, for obstacle problems (4.2) does not imply that J(ug)
is more accurate than J(ugs).

The proof of the saturation assumption will be based on the following simple
observation.

Lemma 4.1. Let o € (0,1). Then the saturation assumption (4.2) holds, if and
only if —ZI(eg) is reliable in the sense that

—Z(eq)
11—«

(4.3) J(us) = T (u) <

Proof. As eg and ug solve (2.7) and (4.1), respectively, we have ug = us + eo.
The resulting identity

T (us) = T (u) = ~I(eg) + (I (uq) — I (u)).

implies the assertion. O

As a consequence of Lemma 4.1, we may prove (4.2) by verifying (4.3). To this
end, we note a useful relation between —Z(eg) and —Zg(ey).
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Lemma 4.2. There holds
Z(eg) S To(eg) < Zoley) <0.

Proof. The inequalities Zg(eg) < Zg(ey) < 0 follow directly from 0 € Ay, C Ag,
respectively. Using (3.2) and (3.3), we get

I(eq) < —3ps(ea),  —pslea) < Zolea),
so that Z(eg) < Zgo(eg) follows from ps(eg) < ps(eg).

In order to show ps(eg) < ps(eg), we proceed similarly as in the proof of [13,
Theorem 4.1]. Choosing v = eg € Ag in (2.7) and utilizing (3.2), we get

(4.4) ps(eo —eo) < aleg,c0 — o) < |lealllea — eall < ps(eo)'/?|eq — eall.

To bound ||leg — eg|| we combine the first inequality in (4.4) and (2.8) with v =
eg € Ag to obtain

—a(eg,eg — eg) < ps(eg —co) < ag(eg,eq —€9)-
In combination with the equivalence of the energy norms || - || and || - || g, see, e.g.,
[4, 9], we derive

leg—eoll* = aleg,c0 —eg) —aleg,c0—€g) < aleg,c0—€g)+ag(co,e0 —£0)
<lleallllee —eall + lleallallee —ealle < llecllallee — eoll-
In light of (3.3), we have shown

lea —eall S llealle < ps(ea)™/?.

Inserting this bound into (4.4), we get

)1/2 )1/2

ps(ea) = ps(eq) + ps(eq — eg) < ps(eq) + Cpsleq) “ps(eg
with a constant C' > 0 depending only on the shape regularity of 7. Invoking
Young’s inequality, we finally obtain

2
ps(ee) < (14 5 )ps(ea) + 3ps(c0)
which proves the assertion. O
After these preparations we are ready to prove the main result of this section.

Theorem 4.3. There are constants C' > 0 and « € (0,1) depending only on the
shape regularity of T, such that relatively small oscillation

(4.5) osc(us, f,9)* < C(J (us) — T (u))
implies the saturation assumption
(4.6) T (ug) = I (u) < a(J (us) = T (u)).

Proof. Theorem 3.4 and Lemma 4.2 yield
J(us) = T (u) < =C1Z(eq) + Cy 0sc(us, f,v)?,
where C7 and C5 are constants depending only on the shape regularity of 7, and
we may assume C7 > 1. Hence, selecting
1-Ci(1—a) C—1
O - 5, S I 1 ’
02 “ Cl

the assertion is a consequence of Lemma 4.1. In particular, one might chose oo =

(2C, = 1)/(2Ch). O
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In view of the discussion in Section 3.2, condition (4.5) is expected to hold for
sufficiently smooth data and sufficiently fine global refinements of a triangulation

with (2.2).
Utilizing Theorem 3.6, the condition (4.5) follows from
c
(47) Osc(u87f7¢)2 S _gIQ(SV)y

with the same constant C. Apart from the constant C', which, in turn, depends on
C4, Cs from Theorem 3.4 and Lemma 4.2, all quantities in (4.7) are computable.
Thus, for given upper bounds for C4, the condition (4.5) can be verified in practice.

5. NUMERICAL EXAMPLE
Following [16], we consider the piecewise affine, concave obstacle
Y(x) = dist(z,090) — L,
the domain Q = {(z1,22) € R | |21]| + |x2| < 1}, and the constant load f = —5.

The triangulations 7;, j = 1,...,9, are obtained by uniform refinement of an initial
triangulation 7y, consisting of four congruent triangles. Observe that 1) is piecewise
affine over 7; for all j = 1,...,9. As the exact solution u is not explicitly known,

we use the finite element approximation @ on level 77, as a substitute. The left
picture in Figure 1 shows the ’exact’ energy error J(us;) — J(%) in comparison
with our hierarchical a posteriori error estimate Zg(ey,;) and the oscillation term
osc(us;, v, f) over the number of unknowns. Both the exact error and the estimator
are proportional to h. More precisely, the ’exact’ error is asymptotically overesti-
mated by a factor of about 1.5. Similar to the unconstrained case, the oscillation
term initially dominates, but vanishes with higher (second) order under refinement.
For an explanation, first note that the set N°F of isolated contact nodes is empty in
this example. Hence, osc(us,, 1, f) = osca(us;, 1, f). The set U(M\(N]qfw\/;ﬁ) wp,
whose contributions to osca(us;, ¥, f) do not involve local means is depicted in the
right picture of Figure 1 for the final level j = 9. Obviously, it concentrates at 02
and at the free boundary, confirming nicely our heuristic reasoning in Section 3.2.

o -6-estimated error
10 0 -*-exact error
o ¢ oscillation terms

10 10 10 10°

FIGURE 1. Comparison of the hierarchical error estimator
—Zo(ey) with the exact error J(us) — J(u) and the oscillation

term osc(us,, ¥, f) (left). The set U\ no-y\pr+wp, J = 9,

whose contributions to osca(us;, v, f) do not involve local means
(right).
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