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1 Introduction

Runtime software monitoring has been used for software fault-detection and recovery, as well
as for profiling, optimization, performance analysis. Software fault detection provides evidence
that program behavior conforms or does not conform with its desired or specified behavior during
program execution. While other formal verification techniques, such as model checking and theorem
proving, aim to ensure universal correctness of programs, the intention of runtime software-fault
monitoring is to determine whether the current execution behaves correctly; thus, monitoring aims
to be a lightweight verification technique that can be used to provide additional defense against
failures and confidence of the system correctness.

Runtime monitoring should be considered when you cannot execute an exhaustive verification of
your system (in most of the cases); for example, proving a security property that your system never
reaches a dangerous state could require too much time depending on the size of your system. On
the contrary, testing could be considered not enough trustworthy, in particular in critical systems.
Moreover there could be some information that are available only at run-time, or the behaviour of
the system could depend on the (not reproducible) environment where the system runs. Finally it
could also be possible that, nevertheless the system has been tested and maybe also proved correct,
the developer wants to be sure that the system does not violate some given properties during its
execution. Extending the thought of Ed Brinksma, expressed during the 2009 keynote at the Dutch
Testing Day and Testcom/FATES, on the relationship between verification and testing1, we could
ask:

Who would want to fly in an airplane with software proved correct, hardly tested, but not
monitored at run-time?

In most approaches dealing with run time monitoring of software, the required behavior of the
system is formalized by means of correctness properties [8] (often given as temporal logic formulae)
which are then translated into monitors. The monitor is then used to check the execution of a
system if the properties are violated. The properties specify all admissible individual executions
of a system and may be expressed using a great variety of different formalisms. These range from,
for example, language oriented formalisms like extended regular expressions or tracematches by
the AspectJ team. Temporal logic-based formalisms, which are well-known from model checking,
are also very popular in runtime verification, especially variants of linear temporal logic, such as
LTL, as seen for example in [10, 3]. For an overview about runtime verification techniques and
tools, please refer to [14, 8, 7].

1Who would want to fly in an airplane with software proved correct, but not tested?

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187851606?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:paolo.arcaini@unimi.it
mailto:angelo.gargantini@unibg.it
mailto:elvinia.riccobene@unimi.it


In this paper, we assume that the desired behavior of the system is given by means of Abstract
State Machines (ASMs) which specify the behavior of the system in an operational way: they
describe the desired changes of the system state when some particular input conditions occur. A
similar approach is taken also in [15], where the specification is given in the Z language, which de-
scribes the system states and the ways in which the states can be changed. Note that our approach
requires a shift from a declarative style of monitoring (based on properties) to an operational style,
based on ASMs. An operational specification describes the desired behavior by providing a model
implementation or model program of the system, generally executable. Examples of operational
specifications are abstract automata and state machines. Another different specification style is
through descriptive specifications, which are used to state the desired properties of a software
component by using a declarative language. Examples of such notations are logic formulae, JML
[13] or the LTL temporal logic. Different specification styles (and languages) may differ in their
expressiveness and very often their use depends on the preference and taste of the specifier, the
availability of support tools, etc. Up to now, descriptive languages have been preferred for run
time software monitoring, while the use of operational languages has not been investigated with
the same strength.

In this paper we assume that the implementation is a Java program, while the specification is an
Abstract State Machine (ASM), whose notation is presented in section 2. In section 3 we present out
theoretical framework, in which we explain the relationship between the Java implementation and
the ASM specification. This relationship defines syntactical links or mappings between Java and
ASM elements and a semantical relation which represents the conformance. The important issue
of non-determinism is tackled in section 4. In section 5 we introduce the actual implementation of
our monitoring approach which is based on Java annotations and AspectJ. In section 6 we show
how our monitoring system can be used in practice through the illustration of some examples.

2 Abstract State Machines

Abstract State Machines (ASMs), whose complete presentation can be found in [5], are an exten-
sion of FSMs [4]. Machine states are multi-sorted first-order structures, i.e. domains of objects
with functions and predicates (boolean functions) defined on them, and the transition relation is
specified by “rules” describing how functions change from one state to the next.

Basically, a transition rule has the form of guarded update “if Condition then Updates” where
Updates are a set of function updates of the form f(t1, . . . , tn) := t which are simultaneously
executed when Condition is true. f is an arbitrary n-ary function and t1, . . . , tn, t are first-order
terms.

To fire this rule in a state si, i ≥ 0, all terms t1, . . . , tn, t are evaluated at si to their values,
say v1, . . . , vn, v, then the value of f(v1, . . . , vn) is updated to v, which represents the value of
f(v1, . . . , vn) in the next state si+1. Such pairs of a function name f , which is fixed by the
signature, and an optional argument (v1, . . . , vn), which is formed by a list of dynamic parameter
values vi of whatever type, are called locations. They represent the abstract ASM concept of basic
object containers (memory units), which abstracts from particular memory addressing and object
referencing mechanisms. Location-value pairs (loc, v) are called updates and represent the basic
units of state change.

There is a limited but powerful set of rule constructors that allow to express simultaneous
parallel actions (par) or sequential actions (seq). Appropriate rule constructors also allow non-
determinism (existential quantification choose) and unrestricted synchronous parallelism (univer-
sal quantification forall).

A computation of an ASM is a finite or infinite sequence s0, s1, . . . , sn, . . . of states of the
machine, where s0 is an initial state and each sn+1 is obtained from sn by firing simultaneously
all of the transition rules which are enabled in sn. The (unique) main rule is a transition rule and
represents the starting point of the computation. An ASM can have more than one initial state.
A state s which belongs to a computation starting from an initial state s0, is said to be reachable
from s0.
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Figure 1: A runtime monitor for Java

For our purposes, it is important to recall how functions are classified in an ASM model. A
first distinction is between basic functions which can be static (never change during any run of the
machine) or dynamic (may be changed by the environment or by machine updates), and derived
functions, i.e. those coming with a specification or computation mechanism given in terms of other
functions. Dynamic functions are further classified into: monitored (only read, as events provided
by the environment), controlled (read and write (i.e. updated by transaction rules)), shared and
output (only write) functions.

The ASMETA tool set [1] is a set of tools around the ASMs. Among them, the tools involved
in our monitoring process are: the textual notation AsmetaL, used to encode fragments of ASM
models, and the simulator AsmetaS, used to execute ASM models.

3 Runtime monitoring based on ASM specifications

A runtime software-fault monitor, or simply a monitor, is a system that observes and analyzes the
states of an executing software system. The monitor checks correctness of the system behavior
by comparing an observed state of the system with an expected state. The expected behavior is
generally provided in term of a formal specification. In this paper, we intend runtime monitoring
as conformance analysis at runtime.

Depending if the monitor is designed to consider executions in an incremental fashion or to work
on a (finite set of) recorded execution(s), a monitor allows online monitoring or offline monitoring,
respectively [14].

The monitor we propose, which allows online monitoring, takes in input an executing Java
software system and an ASM formal model written in AsmetaL. The monitor observes the behavior
of the Java system and determines its correctness w.r.t. the ASM specification working as an oracle
of the expected behavior. While the software system is executing, the monitor checks conformance
between the observed state and the expected state.

As shown in Fig. 1, the monitor is, therefore, composed of: an observer that evaluates when the
Java (observed) state is changed, and leads the abstract ASM to perform a machine step, and an
analyzer that evaluates the step conformance between the Java execution and the ASM behavior.
When a violation of conformance is detected, it quits the monitoring upon the user request.

We here focus only on monitors that are used to detect faults, which occur during the execution
of software and results in an incorrect state. Other monitoring systems extend this capability by
diagnosing faults, i.e., providing information to the user that will aid the user in understanding
the cause of the fault and assist the system in recovering from faults by directing the system to a
correct state (forward recovery) or by reverting to a state known to be correct (backward recovery).

In the following sections, we pose the theoretical bases of our monitoring system. We, therefore,
formally define what is an observed Java state, how to establish a conformance relation between
Java and ASM states, and, therefore, step conformance and runtime conformance between Java
and ASM executions. Initially, we assume that either the Java program and the ASM model are
deterministic. Non-determinism is dealt in section 4.
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3.1 Observable Java elements and their link with ASM entities

In order to mathematically represent a Java class and the state of its objects, we introduce the
following definitions.

Definition 1. Class A class C is a tuple 〈c, f,m〉 where c denotes the non-empty set of construc-
tors, f is the set of all the fields, m is the set of methods.

We denote the public fields of C as fpub while the public methods are denoted as mpub . Among
the methods of a class, we distinguish also the pure methods (as in JML [13]):

Definition 2. Pure method Pure methods are side effect free, with respect to the object/program
state. They return a value but do not assign values to member variables. mpub

pure denote the set of
all pure public methods in m.

Definition 3. Virtual State Given a class C = 〈c, f,m〉, the virtual state, VS (C), is given by
VS (C) = fpub ∪mpub

pure .

Definition 4. Observed State We define observed state, OS(C) ⊆ V S(C), as the subset of the
virtual state consisting of all public fields, and pure public methods of the class C the user wants
to observe.

Therefore, OS(C) is the set of Java elements monitored at runtime. For convenience, we can
see OS(C) = OF (C) ∪ OM(C) to distinguish between the subset observed fields OF (C) and the
subset of observed methods OM(C) of OS(C). Note that OF (C) ⊆ fpub and OM(C) ⊆ mpub

pure .
Elements of OS(C) can change by effect of the class method computation. Only methods in m¬pure
may change the program state.

Definition 5. Changing Method Given a Java class C, we define changing methods,
changingMethods(C) ⊆ m¬pure , all methods of C whose execution is responsible of changing OS(C)
and that the user wants to observe.

3.1.1 Linking observable Java elements to ASM entities

In order to be run-time monitored, a Java class C = 〈c, f,m〉 should have a corresponding ASM
model, ASM C , abstractly specifying the behavior of an instance of the class C.

Observable elements of a class C must be linked to the dynamic functions Funcs ASM C of the
ASM model ASM C . The function

link : OS (C )→ Funcs ASM C (1)

yields the set of the ASM dynamic functions linked to the observable Java elements of C. The
function link is not surjective because there are ASM dynamic functions that are not used in the
conformance analysis. Moreover, the function is not injective, because more than one Java field or
method can be linked to the same ASM function.

3.2 Common representation of Java and ASM values

In order to be compared, Java values and ASM values must be translated into a common format.
Let us consider a Java class C and the corresponding model ASM (C). The following functions,
cfJ and cfA, provide string representations of, respectively, Java and ASM values, in a given state.

cfJ :OS(C)× SJava → String

cfA :ASM (C)× SASM → String

The first function cfJ exploits the built-in Java function toString of the class Object. A similar
function is provided by the ASMETA simulator to convert type values into strings for ASM models.
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cfJ function Let e be a Java field or non-void method whose type is t. Let vJavaj be the value
of e in state sj

Java.
The behaviour of the cfJ function depends on the type t; if t is

• a primitive type, an array, a String, a List, or a Set, its string representation in state sj
Java

is
cfJ (e, sj

Java) = vj
Java

• a Map < T, E > type2, we can identify with {k1
Javaj , . . . , km

Javaj} the keys (of type T )
of the map in the state sj

Java, and {v1
Javaj , . . . , vm

Javaj} their corresponding values. The
representation of the map in state sj

Java is

cfJ (e, sj
Java) = {k1

Javaj → v1
Javaj , . . . , km

Javaj → vm
Javaj}

where parentheses, commas and arrows must be interpreted as strings.

cfA function Let f be a function name and {(v1
1 , . . . , v1

n)sk
ASM

, . . . , (vm
1 , . . . , vm

n )sk
ASM
} the list of

arguments values which identify the defined locations (that is the locations whose value is different
from undef ) in state sk

ASM ; moreover let {v1
sk

ASM
, . . . , vm

sk
ASM
} the values in the current state

sk
ASM of the locations {f(v1

1 , . . . , v1
n)sk

ASM
, . . . , f(vm

1 , . . . , vm
n )sk

ASM
}. The string representation of

the n-ary function f in state sk
ASM is

cfA(f, sk
ASM ) = {(v1

1 , . . . , v1
n)sk

ASM
→ v1

sk
ASM

, . . . , (vm
1 , . . . , vm

n )sk
ASM

→ vm
sk

ASM
}

where parentheses, commas and arrows must be interpreted as strings.
If f is a 0-ary function, it has just one location (if defined). The value of the location in the

state sk is vsk
. The string representation of the 0-ary function f in state sk is

cfA(f, sk) = vsk

3.3 Execution step in Java and ASM

In order to define a step of a Java class execution, we heavily rely on the concept of machine step
and last state of execution sequence defined in the Unifying Theories of Programming (UTP) [11].

The step is defined as a relation between the virtual state before the step and the virtual state
after. In the case of an execution of a Java method, the state can be analyzed as a pair (s; m),
where s is the data part (actual values of the variables), and m is a representation of the rest of
the method code that remains to be executed. When this is Π, there is no more method code to be
executed; the state (t; Π) is the last state of any execution sequence that contains it, and t defines
the final values of the variables.

Definition 6. Java Step Let m be a method of a Java class. A Java step is defined as the relation
(s, m)

Jstep→ (s′, Π), where s is the starting state of the execution of m and s′ the last state of this
execution.

In the sequel, we abbreviate (s, m)
Jstep→ (s′, Π) with (s, m, s′).

Definition 7. Change Step Let C be a Java class. A change step is defined as Java step for
m ∈ changingMethods(C).

ASM state and ASM computation step have been defined in section 2.
2T and E must be one of the following type: a primitive type, an array, a String, a List, or a Set.
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ASMC
init // S0

+3 Sj
step // Sj+1

step //

C
inst // s0

OO

+3 sk

OO

notCM///o/o/o s′k

__

CM // sk+1

OO

Figure 3: Runtime conformance

3.4 State Conformance, Step Conformance and Run Conformance

We have formally related a Java class and its execution(s) with the corresponding abstract ASM
model and relative execution(s). In the following definitions, let C be a Java class and ASMC its
corresponding ASM abstract model.

Definition 8. State Conformance We say that a state s of C conforms to a state S of ASMC

if all observed elements of C have value string representation equal to the string representation of
the values of the locations in ASMC linked to them; i.e.

conf (s, S) ≡ ∀e ∈ OS(C) : cfJ (e, s) = cfA(link(e), S) (2)

Definition 9. Step Conformance We say that a change step (s, m, s′) of C, with m a method
of C, conforms with a step (S, S′) of ASMC if conf (s, S ) ∧ conf (s ′, S ′).

Definition 10. Run time conformance Given an observed computation of a Java class C, we
say that C is run time conforming to its specification ASMC if the following conditions hold:

• the initial state s0 of the computation of C conforms to the initial state S0 of the computation
of ASMC , i.e. it yields conf (s0, S0);

• every observed change step (s, m, s′) with s the current state of C, conforms with the step
(S, S′) of ASMC with S the current state of ASMC .

ASM: ASMC S
step // S′

Java class: C s

OO

m // s′

OO

Figure 2: Step conformance

This definition presumes there exists a com-
putation of the class C one can observe. Fur-
thermore, it assumes that the next state of C
and of its specification ASMC are unique, thus
it assumes determinism of the system under
monitoring. Non-deterministic computations
are considered in the next section.

Due to the run-time conformance definition
between a Java class and its ASM specification,
the final state of a Java change step and the initial state of the subsequent change step are both
state conforming to the same abstract state of the ASM (see Fig.3).

4 Dealing with Non-determinism

Definition 10 assumes that, in any computation, the next state of a Java class C and of its spec-
ification ASMC are unique. Thus, the definition is adequate for deterministic systems: non-
determinism is limited to monitored quantities, which, once non deterministically fixed by the
environment, make the evolution of the system deterministic. In this section, we extend our con-
ceptual framework to deal with non-determinism also inside the system (in the class C and/or in
the specification ASMC). We have identified the following non-deterministic situations:

• Non-deterministic Java class and non-deterministic ASM specification. This situation can be
due to one of the following scenarios:
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– a class changing method has non-deterministic behavior, and so, therefore, the abstract
specification. For instance, it contains a call to a method in the java.util.Random class;

– the Java class has more then one changing method, each of which may be deterministic;
however, it is non-deterministic the choice of the changing method that causes a change
step. The abstract ASM model should capture this non-determinism and assure that
the behavior of the methods is correct and that calling sequences are those permitted.

• Deterministic Java class and non-deterministic ASM specification. This situation can be
due to an underspecification of the ASM model which may result more abstract (with less
implementation details) than the corresponding Java code and possibly non-deterministic.

In case C or ASMC are non-deterministic, the next computational state of C or ASMC is not
always uniquely determined, and, therefore, their conformance, according to definition 10, may fail
not because of a wrong behavior of the implementation, but because C and ASMC may choose a
different non-conformant next state. We here refine definition 10 of step conformance and run-time
conformance in case of non-determinism, distinguishing between weak and strong conformance.

4.1 Weak and strong conformance

For the weak conformance, we require that the next step of C is state-conforming with at least
one of the next states of the specification ASMC . For the strong conformance, we require that the
next step of C is state-conforming with one and only one of the next states of the specification.
Formally:

Weak run time conformance We say that C is weakly run time conforming to its specification
ASMC if the following conditions hold:

• the initial state s0 of the computation of C conforms to at least one initial state S0 of the
computation of ASMC , i.e. ∃S0 initial state of ASMC such that conf (s0, S0);

• for every change step (s, m, s′) with s the current state of C, ∃ (S, S′) step of ASMC with S
the current state of ASMC , such that (s, m, s′) is step conforming (S, S′).

Strong run time conformance We say that C is strongly run time conforming to its specifi-
cation ASMC if the following conditions hold:

• the initial state s0 of the computation of C conforms to one and only one initial state S0 of
the computation of ASMC , i.e. ∃! S0 initial state of ASMC such that conf (s0, S0);

• for every change step (s, m, s′) with s the current state of C, ∃! (S, S′) step of ASMC with S
the current state of ASMC , such that (s, m, s′) is step conforming (S, S′).

Currently, our monitoring system can only deal with strong conformance. In case of nonde-
terministic ASM, during the runtime monitoring our system chooses, among the next states of
the ASM, the state that is compliant with the Java state. If there is more than one state (weak
conformance), the system does not know which one to choose. The feature of weak conformance
is not supported for the moment, and a violation is risen since we require that C must be strong
conformant with ASMC . Weak conformance will be considered for future work.

5 Monitor Implementation

We here describe how our system works for the ASM-based runtime monitoring of Java programs.
We provide technical details on how the observer and the analyzer have been implemented by
exploiting the mechanism of the Java annotations to link observable Java elements to corresponding
ASM entities, and the support of external tools as AspectJ to establish the conformance relation.
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5.1 Using Java Annotations

Annotations are meta-data tags that can be used to add some information to code elements as class
declarations, field declarations, etc. Each annotation have a RetentionPolicy that signals how and
when the annotation can be accessed; Runtime policy, for example, signals that the annotation
can be read by the compiler and can also be read reflectively at run-time.

In addition to the standard ones, annotations can be defined by the user similarly as classes.
For our purposes we have defined a set of annotations in order to link the Java code to its abstract
specification. The retention policy of all of our annotations is runtime since we need to read them
reflectively while the program is running.

5.1.1 Our annotations

Our use of the annotation mechanism requires a very limited code modification and differs from
that usually exploited in other approaches for system monitoring. Usually annotations are used
to enrich the code with extra formal specification to obtain dynamic information about the target
program [6, 12]. This leads to the lack of separation between the implementation of the system and
its high-level requirements specification. In our approach, the few annotations are only used to link
the code to its specification, but keeping them separately. This allows the reuse of a highly abstract
formal requirement specification when changes happen to the implementation of the target system.
Furthermore, annotations are statically type checked and since the annotations are read reflectively
at run time, the monitoring setup can be carried out very easily. We found this approach much
more convenient than inserting special comments (like JML) and writing our own parser for them.

Let’s see in details each annotation.

@Asm In order to link a Java class C with its corresponding ASM model ASMC , the Java
class must be annotated with the @Asm annotation having the path of the ASM model as string
attribute. The Java class EuclidGCD (see code 1) specifies, as its ASM specification, the model
shown in code 2.

package e u c l i d ;

import org . asmeta . monitor ing .Asm;
import org . asmeta . monitor ing . FieldToFunction ;
import org . asmeta . monitor ing . I n i t ;
import org . asmeta . monitor ing . RunStep ;
import org . asmeta . monitor ing . StartMonitor ing ;

@Asm( asmFile=”models /euclidGCD . asm” )
public class EuclidGCD {

@FieldToFunction ( func=”numA” )
public int numA;
@FieldToFunction ( func=”numB” )
public int numB;

@StartMonitoring
public EuclidGCD ( @Init ( func=”initNumA” ) int a ,

@Init ( func=”initNumB” ) int b) {
numA = a ;
numB = b ;

}

public int getGCD ( ) {
while (numA != numB) {

euclideGCDstep ( ) ;
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}
return numA;

}

@RunStep
private void euclidGCDstep ( ) {

i f (numA > numB) {
numA = numA − numB;

}
else {

numB = numB − numA;
}

}
}

Code 1: GCD Java code

asm euclidGCD

import . . / . . / . . / . . / asm examples/STDL/ StandardLibrary

signature :
dynamic controlled numA: I n t e g e r
dynamic controlled numB: I n t e g e r
dynamic monitored initNumA : I n t e g e r
dynamic monitored initNumB : I n t e g e r

definit ions :

main rule r Main =
i f (numA != numB) then

i f (numA > numB) then
numA := numA − numB

else
numB := numB − numA

endif
endif

default in i t s0 :
function numA = initNumA
function numB = initNumB

Code 2: GCD ASM model

@FieldToFunction and @MethodToFunction To establish the mapping defined by the func-
tion link we must annotate each observed field f ∈ OF (C) and each observed method m ∈ OM(C).
The fields that are linked to controlled functions are annotated by @FieldToFunction, while the
observed methods by @MethodToFunction; both these annotations have a string attribute yielding
the name of the corresponding ASM controlled function.
In code 1 a Java code that computes the greatest common divisor (GCD) through the Euclidean
algorithm is shown; an equivalent ASM model is shown in code 2. We can see that the Java fields
numA and numB are linked with two homonymous ASM controlled functions.
Both @FieldToFunction and @MethodToFunction annotations are used to indicate some con-
trolled functions of the ASM specification. The @FieldToFunction creates a direct connection
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between a field and a function. The @MethodToFunction annotation, instead, permits to create
more complicated links: the comparison is made between the value returned by the annotated
method and the value of the referenced function. In this way we can link an ASM function with
any computation of the Java code (operations between fields, method calls, . . . ).
The linking between the Java state and the ASM state can be made:

• using only @FieldToFunction annotations,

• using only @MethodToFunction annotations,

• or using both together3.

Moreover there are no restrictions on the number of variables and methods by which an ASM
function is referenced.

It’s important to notice that, if it’s not possible to establish a link between a field and a
function (with the @FieldToFunction annotation)4, we can establish the link through a getter
method (annotated with the @MethodToFunction annotation) whose return value is compatible
with the intermediate format of the ASM location values. Let’s see, as an example, the Java
code shown in code 3 and the ASM model shown in code 4. They both model a door which is,
alternatively, open or closed.

package org . asmeta . monitor ing ;

@Asm( asmFile=” examples / door . asm” )
public class Door {

boolean doorIsOpen ;

Door ( ) {
doorIsOpen = fa l se ;

}

@RunStep
public void s tep ( ) {

doorIsOpen = ! doorIsOpen ;
}

@MethodToFunction ( func=” doorStatus ” , args = {})
S t r ing getDoorIsOpen ( ) {

i f ( doorIsOpen ) {
return ”OPEN” ;

}
else {

return ”CLOSED” ;
}

}
}

Code 3: Door Java code

3We can notice that all the links made with the @FieldToFunction annotation can also be made with the
@MethodToFunction annotation: we just have to create a getter method for the variable annotated with the
@FieldToFunction annotation and annotate it with the @MethodToFunction annotation (using the same values
of the @FieldToFunction annotation, that is referencing the same function).

4It’s not possible to establish a link between a field and a function when the intermediate representations of their
values are not compatible.
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asm door

import . . / . . / . . / . . / asm examples/STDL/ StandardLibrary

signature :
enum domain DoorStatusDomain = {OPEN | CLOSED}
dynamic controlled doorStatus : DoorStatusDomain

definit ions :

main rule r Main =
i f ( doorStatus = CLOSED) then

doorStatus := OPEN
else

doorStatus := CLOSED
endif

default in i t s0 :
function doorStatus = CLOSED

Code 4: Door ASM model

The Java code represents the door status with the boolean variable isOpen. The ASM model,
instead, uses the function doorStatus, which takes values in the enum domain {OPEN, CLOSED},
to indicate if the door is open or not. We can observe that the Java code and the ASM model do the
same thing, but the intermediate representations of the Java variable isOpen and of the function
doorStatus values are not compatible. So we have written the method getIsOpen (annotated
with the @MethodToFunction annotation) which returns the string “OPEN” when isOpen is true,
“CLOSED” otherwise.

@Monitored The fields whose values are determined at run time by the environment (e.g.
values received by any kind of input stream) are linked to monitored ASM functions and they
are annotated with @Monitored. These fields are used to give values to the corresponding ASM
monitored functions before executing a changing method, as explained later in section 5.2.
Let’s see, as an example, the Java code shown in code 5 and the ASM model shown in code 6. They
both model an air conditioner that can be used with three speeds: 0 (turned off), 1 and 2. The
speed depends on the temperature of the room. In the Java code the temperature is represented by
the integer variable roomTemperature. This variable is monitored because its value is determined
by the environment, i.e. a sensor controlled by an object of the class TemperatureSensor.
In the ASM model the temperature is modeled through the monitored function temperature that
can assume the values 0, 1 and 2.
The Java variable roomTemperature is linked with the monitored function temperature of the ASM
model.

package c o n d i t i o n e r ;

import org . asmeta . monitor ing .Asm;
import org . asmeta . monitor ing . FieldToFunction ;
import org . asmeta . monitor ing . Monitored ;
import org . asmeta . monitor ing . RunStep ;
import org . asmeta . monitor ing . StartMonitor ing ;

@Asm( asmFile=”models / a i rCond i t i one r . asm” )
public class AirCondit ionerWithSensor {

11



@Monitored ( func=” temperature ” , args ={})
public int roomTemperature ;
@FieldToFunction ( func=” ai rSpeed ” )
public int a i r I n t e n s i t y ;
private TemperatureSensor t s ;

@StartMonitoring
public AirCondit ionerWithSensor ( ) {

a i r I n t e n s i t y = 0 ;
t s = new TemperatureSensor ( ) ;

}

public void check ( ) {
readRoomTemperature ( ) ;
s e t A i r I n t e n s i t y ( ) ;

}

@RunStep
private void s e t A i r I n t e n s i t y ( ) {

i f ( roomTemperature < 20) {
a i r I n t e n s i t y = 0 ;

}
else i f ( roomTemperature < 25) {

a i r I n t e n s i t y = 1 ;
}
else {

a i r I n t e n s i t y = 2 ;
}

}

private void readRoomTemperature ( ) {
this . roomTemperature = t s . readRoomTemperature ( ) ;

}
}

Code 5: Air conditioner Java code

asm a i rCond i t i one r

import . . / . . / . . / . . / asm examples/STDL/ StandardLibrary

signature :
domain AirSpeedDomain subsetof I n t e g e r
dynamic controlled a i rSpeed : AirSpeedDomain
dynamic monitored temperature : I n t e g e r

definit ions :
domain AirSpeedDomain = {0 . . 2}

main rule r Main =
i f ( temperature >= 25) then

a i rSpeed := 2
else

i f ( temperature < 20) then
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a i rSpeed := 0
else

a i rSpeed := 1
endif

endif

default in i t s0 :
function a i rSpeed = 0

Code 6: Air conditioner ASM model

@RunStep All methods of changingMethods(C) are annotated with the @RunStep annotation.
In the Euclidean algorithm example (code 1), the changing method is euclidGCDstep() that exe-
cutes a single step of the algorithm. In the air conditioner example (code 5), the changing method
is setAirIntensity().

@StartMonitoring and @Init Finally, the user have to decide the starting point of the mon-
itoring. The annotation @StartMonitoring is used to select a proper (not empty) subset of
constructors5.

All or some constructor parameters (if any) can be annotated with the @Init annotation that
permits to link a parameter with a monitored function (i.e. only read, as events provided by the
environment) of the ASM model. This allows initializing the ASM model with the same values
used to create the Java instance.
In the Java code of the Euclidean algorithm example (see code 1), in the constructor, the formal
parameter a is annotated with the @Init annotation that contains a reference to the monitored
function initNumA of the ASM model; in the same way the formal parameter b is linked to the
monitored function initNumB. We can notice, indeed, that in the ASM model 2 the controlled
functions numA and numB are initialized through the monitored functions initNumA and init-
NumB : in this way the ASM model can be executed several times to compute the GCD of different
couples of numbers.

5.2 Observer implementation through AspectJ

The observer is implemented through the facilities of AspectJ that permits to observe easily the
execution of Java objects. AspectJ allows to specify different pointcuts, that are points of the
program execution we want to capture; for each pointcut it is possible to specify an advice, that is
the actions that must be executed when a pointcut is reached. AspectJ permits to specify when
to execute the advice: before or after the execution of the code specified by the pointcut.

In the definitions of AspectJ pointcuts, it is possible to add method annotations: this feature
has permitted us to define easily the points of a program execution where our monitoring system
must perform some given jobs.

For our purposes, we have defined the following two pointcuts:

pointcut objCreated(): call(@StartMonitoring ∗.new(..));
pointcut runStepCalled(): call(@RunStep ∗ ∗.∗(..))

&& !cflowbelow(call(@RunStep ∗ ∗.∗(..)));

The objCreated pointcut captures the creation of an instance of a class that must be monitored;
runStepCalled captures the execution of a changing method (we do not consider changing methods
that are executed in the scope of other changing methods).

In particular, after a joint point that belongs to objCreated, the monitor executes an advice
that initializes a simulator for the corresponding ASM machine. Before the execution of a join

5We do not consider the default constructor. If the class does not have any constructor, the user have to specify
an empty constructor and annotate it with @StartMonitoring.
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point that satisfies runStepCalled, an advice is executed that records the values of the monitored
fields and executes a state conformance check. After this joint point, another advice is executed
that sets the ASM monitored functions, simulates a step of the ASM and forces the analyzer to
check again the state conformance.

5.3 Analyzer

The analyzer must execute the comparison between the Java and the ASM state. The values of
the ASM functions are obtained through the facilities of the AsmetaS simulator (a simulator for
ASMs [9]). The values of the Java fields and methods are obtained through reflection. This is
the reason why we require that the methods in OM(C) must be side-effect free: these methods
are called through reflection by our monitoring system and we do not want that their execution
influence (change) the Java state.

The Java and the ASM values are both transformed in a String representation through the
functions cfJ and cfA (see section 3.2); so the conformance check is simply a string comparison.

6 Monitoring settings by examples

In the previous section we have described how it is possible to bind a Java class together with an
ASM specification, how their runs are related and how (and when) the conformance analysis is
executed.

In this section we want to show, by means of some examples, how the monitoring system can
be used in practice. Indeed, based on the kind of Java class we want to monitor and on the kind
of the ASM model we use as formal specification, we can identify different kinds of monitoring.

First of all, starting from the definitions given in section 4, we classify the Java classes and the
ASM specifications according to their determinism/non-determinism.

Deterministic ASM specification A deterministic ASM specification is a specification that
does not contain any choose rule. At each step there is just one possible update set and so just
one possible next state.

Non-deterministic ASM specification A non-deterministic ASM specification is a specifica-
tion that contains at least a choose rule. At each step there could be more than one possible
update set and so more than one possible next state.

Internally non-deterministic/deterministic Java class Given a class C, let m be the set
of its methods. We say that the class is internally non-deterministic if ∃mi ∈ m that contains
non-deterministic statements (e.g. a method call on an object of the java.util.Random class). Oth-
erwise, if !∃mi ∈ m that contains non-deterministic statements, we say that the class is internally
deterministic.

Externally non-deterministic/deterministic Java class Given a class C, let mpub
¬pure be

the public methods that can change the object state. We say that the class is externally non-
deterministic if |mpub

¬pure | > 1. Indeed, if there is just one method in mpub
¬pure , at each step just one

method of C can change the object state6. Otherwise, if there is more than a method in mpub
¬pure ,

at each step more than a method that change the object state can be executed. If |mpub
¬pure | ≤ 1,

we say that the class is externally deterministic.

Fully deterministic Java class A class C is fully deterministic if it is either internally and
externally deterministic.

6Also some methods in mpub
pure could be called, but these methods does not change the object state.
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6.1 Monitoring a fully deterministic Java code with a deterministic
ASM model

An example of deterministic Java class monitored by a deterministic ASM model is the EuclidGCD
class shown in code 1. The class contains just one public method, getGCD(), that calls the change
method method euclidGCDstep() until the condition numA != numB is satisfied. The Java code
is fully deterministic:

• externally deterministic: there is just one change method that can be called; the method can
be called several times, but just the first execution modifies the Java state;

• internally deterministic: the methods do not contain any non-deterministic statements.

The corresponding ASM model is deterministic as well.

6.2 Monitoring a fully deterministic Java code with a non-deterministic
ASM model

In this section we show how it is possible to use a non-deterministic ASM model to monitor
a deterministic Java class and when this approach is suggested. We will use, as example, the
selection sort algorithm.

6.2.1 Selection sort

In code 7 the ASM model of a very trivial sorting algorithm is shown: at each step two non sorted
elements are chosen and swapped. It is important to notice that is also possible that an element
is swapped with itself (in this case the machine does nothing.)

asm randomSort

import . . / . . / . . / . . / . . / asm examples/STDL/ StandardLibrary

signature :
domain IndexDomain subsetof Natural
dynamic controlled l i s t : Seq ( I n t e g e r )
dynamic monitored i n i t L i s t : Seq ( I n t e g e r )

definit ions :
domain IndexDomain = {0n . . 4 n}

main rule r Main =
choose $x in IndexDomain , $y in IndexDomain with $x <= $y and

at ( l i s t , $x ) >= at ( l i s t , $y ) do
i f ( $x != $y and at ( l i s t , $x ) > at ( l i s t , $y ) ) then

let ( $valAtX = at ( l i s t , $x ) , $valAtY = at ( l i s t , $y ) ,
$ l i s t 1 = subSequence ( l i s t , 0n , $x ) ,

$ l i s t 2 = subSequence ( l i s t , $x + 1n , $y ) ,
$ l i s t 3 = subSequence ( l i s t , $y + 1n , 5n ) ) in

l i s t := union (
union (

append ( $ l i s t 1 , $valAtY ) ,
append ( $ l i s t 2 , $valAtX )

) ,
$ l i s t 3

)
endlet
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endif

default in i t s0 :
function l i s t = i n i t L i s t

Code 7: Random sort ASM model

We can notice that the ASM model is nondeterministic; indeed, usually, at each step more than
a step can be executed (more than a couple of elements can be swapped).
It is easy to understand that this ASM machine can model a wide range of sorting algorithms.
Let’s see, as an example, the selection sort algorithm shown in code 8.

package s o r t ;

import org . asmeta . monitor ing .Asm;
import org . asmeta . monitor ing . FieldToFunction ;
import org . asmeta . monitor ing . I n i t ;
import org . asmeta . monitor ing . RunStep ;
import org . asmeta . monitor ing . StartMonitor ing ;

@Asm( asmFile=”models / s o r t /randomSort . asm” )
public class S e l e c t i o n S o r t {

@FieldToFunction ( func=” l i s t ” )
public int [ ] a r r ;

@StartMonitoring
S e l e c t i o n S o r t ( @Init ( func=” i n i t L i s t ” , args ={}) int [ ] i n i t A r r ) {

ar r = i n i t A r r ;
}

public void s o r t ( ) {
for ( int i = 0 ; i < ar r . l ength − 1 ; i++) {

swapMin ( i ) ;
}

}

@RunStep
private void swapMin ( int i ) {

int minIndex = i ;
//minimum search
for ( int j = i + 1 ; j < ar r . l ength ; j++) {

i f ( a r r [ j ] < ar r [ minIndex ] ) {
minIndex = j ;

}
}
//swap
i f ( minIndex != i ) {

int temp = arr [ i ] ;
a r r [ i ] = ar r [ minIndex ] ;
a r r [ minIndex ] = temp ;

}
}

}

Code 8: Selection sort Java code
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The sorting algorithm is implemented by the sort() method. This method iterates over the
elements of the array to be sorted: for each element it calls the swapMin(int i) method which
swaps the ith element of the array with the minimum element of the sub-array identified by the
indexes [i, n− 1].
The comparison between the Java execution and the ASM execution is made after each execution
of the swapMin(int i) method. It is clear that the step executed by the Java machine (a particular
swapping which is deterministically identified) can also be executed by the ASM machine (it is one
of the possible steps of the ASM machine).

Let’s see, as an example, how the array {2, 3, 1, 5, 4} is sorted in the Java code and how the
execution of the ASM model is influenced. Table 1 shows, for each iteration i of the selection sort
algorithm, the obtained Java state and the ASM states which can be obtained starting from the
(i − 1)th ASM state. The state which is conformant with the Java state is shown in red. During
the monitoring, the state shown in red is the state that is taken.

Iteration Java state Possible next ASM states (in red the compliant state)
1 {1, 3, 2, 5, 4} {2, 3, 1, 5, 4}, {1, 3, 2, 5, 4}, {2, 1, 3, 5, 4}, {2, 3, 1, 5, 4}, {2, 3, 1, 4, 5}
2 {1, 2, 3, 5, 4} {1, 3, 2, 5, 4}, {1, 2, 3, 5, 4}, {1, 3, 2, 4, 5}
3 {1, 2, 3, 5, 4} {1, 2, 3, 5, 4}, {1, 2, 3, 4, 5}
4 {1, 2, 3, 4, 5} {1, 2, 3, 5, 4}, {1, 2, 3, 4, 5}

Table 1: Java and ASM execution of the selection sort algorithm

6.3 Monitoring an externally non-deterministic Java code with a non-
deterministic ASM model

In this section we show how our monitoring approach can be used to check that, not only that the
implementation of the methods is correct, but also that the order in which the methods are called
is correct. Sometimes, indeed, it’s possible that, on a given object, methods can be called only
following some particular orders.

Let’s see, as an example, the railroad gate problem [7].

6.3.1 Railroad gate

A railroad gate is composed of a gate and a light. The light can be turned off or can flash. The
gate can be in four states: opened, closing, closed, opening. Some states are forbidden; for example
it’s not possible that the gate is closed when the light is off.

In code 9 a code that implements an interface of the railroad gate is shown. At the beginning
the gate is opened with the light off. The class exposes several methods; each method permits to
handle a particular signal: for example the method opening() is used to change the status of the
gate in opening.

In a real system, an instance of this class should be accessed by other different objects (or also
threads) of the program, that should call the different methods it exposes. For example, in the real
system, there should be a sensor on the gate which indicates that the gate is closed. A thread reads
the value of this sensor and, when needed, calls some methods on the RailroadGate instance: when
it intercepts a change in the sensor signal, from not closed to closed, it calls the method closed().
In the same way, the thread which knows that the gate must start closing (maybe because a train
is coming), should call the method closing().

package r a i l r o a d ;

import org . asmeta . monitor ing .Asm;
import org . asmeta . monitor ing . FieldToFunction ;
import org . asmeta . monitor ing . RunStep ;
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import org . asmeta . monitor ing . StartMonitor ing ;

@Asm( asmFile = ”models / ra i l r oadGate . asm” )
public class RailroadGate {

@FieldToFunction ( func = ” l i g h t ” )
public LightState l i g h t ;
@FieldToFunction ( func = ” gate ” )
public GateState gate ;

@StartMonitoring
public RailroadGate ( ) {

l i g h t = LightState .OFF;
gate = GateState .OPENED;

}

/∗∗
∗ Executed by the o b j e c t which knows t h a t the ga te must be c l o s e d .
∗/

@RunStep
public void c l o s i n g ( ) {

gate = GateState .CLOSING;
}

/∗∗
∗ Executed by the o b j e c t ( sensor ) which knows t h a t the g a t e has
∗ reached the c l o s e d p o s i t i o n .
∗/

@RunStep
public void c l o s e d ( ) {

gate = GateState .CLOSED;
}

/∗∗
∗ Executed by the o b j e c t which knows t h a t the ga te must be opened .
∗/

@RunStep
public void opening ( ) {

gate = GateState .OPENING;
}

/∗∗
∗ Executed by the o b j e c t ( sensor ) which knows t h a t the g a t e has
∗ reached the opened p o s i t i o n .
∗/

@RunStep
public void opened ( ) {

gate = GateState .OPENED;
}

/∗∗
∗ Executed by the o b j e c t which knows t h a t the l i g h t must be
∗ turned o f f .
∗/
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@RunStep
public void o f f ( ) {

l i g h t = LightState .OFF;
}

/∗∗
∗ Executed by the o b j e c t which knows t h a t the l i g h t must be
∗ turned on .
∗/

@RunStep
public void f l a s h i n g ( ) {

l i g h t = LightState .FLASH;
}

}

Code 9: Railroad gate Java code

It is easy to see that the Java code does not execute any check in order to verify that its
methods are used correctly. For example, the method off() that turns off the light could be called
also if the gate is closed ; in this situation there will be a dangerous state with the gate closed and
the light off.

In order to monitor that the methods of the class are called in a correct way, we have written the
ASM model of the railroad. This model is a non-deterministic model that, at each step, randomly
moves to a valid next state. It is important to notice that any step of the ASM machine satisfies
the requirements of the problem. For example, if the gate is CLOSING there are two possible
next states: in the first one the gate remains CLOSING, and in the second one the gate becomes
CLOSED. So, all the runs of this ASM model satisfy the requirements.

asm ra i l r oadGate

import . . / . . / . . / . . / asm examples/STDL/ StandardLibrary

signature :
enum domain LightState = {FLASH | OFF}
enum domain GateState = {CLOSED | OPENED | CLOSING | OPENING}
dynamic controlled l i g h t : L ightState
dynamic controlled gate : GateState

definit ions :

rule r l i g h t O f f =
choose $ l in LightState with t rue do

l i g h t := $ l

rule r ga t eC lo s ed =
i f ( gate = CLOSED) then

choose $g in GateState with $g = CLOSED or $g = OPENING do
gate := $g

endif

rule r g a t e C l o s i n g =
i f ( gate = CLOSING) then

choose $g1 in GateState with $g1 = CLOSING or $g1 = CLOSED do
gate := $g1

endif
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rule r gateOpening =
i f ( gate = OPENING) then

choose $g2 in GateState with $g2 = OPENING or $g2 = OPENED do
gate := $g2

endif

rule r gateOpened =
i f ( gate = OPENED) then

choose $ i in {1 . . 3} with t rue do
switch $ i

case 1 : l i g h t := OFF
case 2 : gate := CLOSING
case 3 : gate := OPENED

endswitch
endif

main rule r Main =
i f ( l i g h t = OFF) then

r l i g h t O f f [ ]
else

par
r ga t eC lo s ed [ ]
r g a t e C l o s i n g [ ]
r gateOpening [ ]
r gateOpened [ ]

endpar
endif

default in i t s0 :
function gate = OPENED
function l i g h t = OFF

Code 10: Railroad gate ASM model

We have linked the Java class shown in code 9 with the ASM model shown in code 10. The
Java fields light and gate correspond to the homonymous 0-ary ASM functions. All the changing
methods of the class are annotated with the @RunStep annotation: this means that each execution
of a method of the Java class corresponds to a step of simulation of the ASM machine.

Let’s see in code 11 a main method which creates an instance of RailroadGate and calls some
of its methods in a correct order.

package org . asmeta . programMonitoring ;

import r a i l r o a d . Rai lroadGate ;

public class RailroadGateTest {
public stat ic void main ( St r ing [ ] a rgs ) {

RailroadGate r = new RailroadGate ( ) ;
r . f l a s h i n g ( ) ;
r . c l o s i n g ( ) ;
r . c l o s e d ( ) ;
r . opening ( ) ;
r . opened ( ) ;
r . o f f ( ) ;
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}
}

Code 11: Railroad gate correct execution

The program monitor, at each step (after the execution of a change method annotated with
@RunStep), can find, between the possible next states of the ASM model, one (and only one) state
which is compliant with the Java state.

In code 12, instead, the calling sequence is not correct because the light is switched off while
the gate is closing.

package org . asmeta . programMonitoring ;

import r a i l r o a d . Rai lroadGate ;

public class RailroadGateTest {
public stat ic void main ( St r ing [ ] a rgs ) {

RailroadGate r = new RailroadGate ( ) ;
r . f l a s h i n g ( ) ;
r . c l o s i n g ( ) ;
r . o f f ( ) ; // Error

}
}

Code 12: Railroad gate wrong execution

We can see that, after executing the method closing(), the gate is CLOSING with the light
FLASH ; there is just one next ASM state compliant with the Java state and so the program can
continue. After executing the off() method, instead, the program monitor is not able to find any
next ASM state compliant with the Java state. Indeed the Java state obtained after the execution
of the method is {gate = CLOSING, light = OFF}, whereas the possible next ASM states are
{gate = CLOSING, light = FLASH} and {gate = CLOSED, light = FLASH}. See table 2 for
the complete description.

Method call Java state
Possible next ASM states
(in red the conformant state)

r.flashing();
gate = GateState.OPENED,
light = LightState.FLASH

{gate = OPENED, light = OFF},
{gate = OPENED, light = FLASH}

r.closing();
gate = GateState.CLOSING,
light = LightState.FLASH

{gate = OPENED, light = FLASH},
{gate = CLOSING, light = FLASH}

r.off();
gate = GateState.CLOSING,
light = LightState.OFF

{gate = CLOSING, light = FLASH},
{gate = CLOSED, light = FLASH}

Table 2: Railroad gate - Java and ASM execution

In code 13 the class RailroadGateSmart is shown, a more secure solution for the railroad gate
problem. The class contains just one change method, the method exec which accepts as input a
variable of type Command, an enumerative that identifies the signals that the class can receive in
order to modify its state. Depending on the command received and the current state, the method
exec executes the command if it is permitted in the state, otherwise it ignores it.

package r a i l r o a d ;

import org . asmeta . monitor ing .Asm;
import org . asmeta . monitor ing . FieldToFunction ;
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import org . asmeta . monitor ing . RunStep ;
import org . asmeta . monitor ing . StartMonitor ing ;

@Asm( asmFile = ”models / ra i l r oadGate . asm” )
public class RailroadGateSmart {

@FieldToFunction ( func = ” l i g h t ” )
public LightState l i g h t ;
@FieldToFunction ( func = ” gate ” )
public GateState gate ;

@StartMonitoring
public RailroadGateSmart ( ) {

l i g h t = LightState .OFF;
gate = GateState .OPENED;

}

@RunStep
public void exec (Command command) {

switch (command) {
case FLASH:

l i g h t = LightState .FLASH;
break ;

case OFF:
i f ( gate == GateState .OPENED) {

l i g h t = LightState .OFF;
}
break ;

case CLOSED:
i f ( gate == GateState .CLOSING | | gate == GateState .CLOSED) {

gate = GateState .CLOSED;
}
break ;

case OPENED:
i f ( gate == GateState .OPENING | | gate == GateState .OPENED) {

gate = GateState .OPENED;
}
break ;

case CLOSING:
i f ( l i g h t == LightState .FLASH &&

( gate == GateState .OPENED | | gate == GateState .CLOSING) ) {
gate = GateState .CLOSING;

}
break ;

case OPENING:
i f ( gate == GateState .CLOSED | | gate == GateState .OPENING) {

gate = GateState .OPENING;
}
break ;

}
}

}

Code 13: Railroad gate smart Java code

The Java code is still bound with the ASM model shown in code 10. Unlike the Java code
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shown in code 9, in this case any calling sequence is permitted7. We can run the Java code with
any sequence of commands; the Java execution will be always compliant with the ASM simulation
because if there is a valid command the Java code reacts in a correct way, and if there is a non
correct command the Java code does not change its state. As we have previously seen, if the Java
program moves to a valid state also the ASM machine can move to a valid state; if the Java program
does not change its state (because it has received a wrong command), also the ASM machine can
keep the state unchanged8.

6.4 Monitoring an internally non-deterministic Java code with a non-
deterministic ASM model

Let’s see how it is possible to monitor an internally non-deterministic Java code with a non-
deterministic ASM machine. We will see, as an example, the Knight’s Tour problem [16].

6.4.1 Knight’s tour

A knight is placed on the empty board; moving according to the rules of chess, it must reach each
square of the board just once. The tour is closed if the last square visited by the knight is the
square from which it began, otherwise is open (our model looks for open tours).
Table 3 shows in green the squares of the board that can be reached by the knight placed in h6.

a b c d e f g h

8 2 5

7 × 3

6 1 4

5 ×

4 ×

3

2

1

Table 3: Possible moves of knight placed in h6

We can see that the knight has started his tour in e6 and, after 5 moves, he has arrived in h6
(e6 - f8 - h7 - f6 - g8 - h6). From there he can go in f7, f5 or g4, but not in g8, because
he has already visited it.

It is possible that a tour, nevertheless there are squares not yet visited, can not be completed
because the knight is blocked in a square from which it can not execute any valid move. Table 4
shows a tour that can not be completed; the knight has continued the tour shown in table 3 with
4 more moves (h6 - f7 - e5 - g6 - h8) arriving in h8: from there he can not execute any valid move
because all the squares that are reachable with the knight move (f7 and g6) have already been
visited.

Let’s see the formal specification of the problem in code 14.

asm KnightTour

7A sequence of method calls is also identified by the current values of the method parameters. For this reason
we can talk of different sequences of call methods also in this example in which there is just one method.

8It’s more correct to say that the ASM machine executes an empty update set that leaves the state unchanged.
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a b c d e f g h

8 2 5

7 7 3

6 1 4 9 6

5 8

4

3

2

1

Table 4: Knight blocked in h8

import . . / . . / . . / . . / . . / asm examples/STDL/ StandardLibrary

signature :
enum domain Status = {VISITED | EMPTY}
domain Rows subsetof I n t e g e r
domain Columns subsetof I n t e g e r
dynamic controlled posX : Rows
dynamic controlled posY : Columns
dynamic monitored in i tX : Rows
dynamic monitored in i tY : Columns
dynamic controlled board : Prod (Rows , Columns ) −> Status

definit ions :
domain Rows = {0 . . 7}
domain Columns = {0 . . 7}

main rule r Main =
choose $x in Rows , $y in Columns with

board ( $x , $y ) = EMPTY and
( ( abs ( posX − $x ) = 1 and abs ( posY − $y ) = 2) or

( abs ( posX − $x ) = 2 and abs ( posY − $y ) = 1) ) do
par

posX := $x
posY := $y
board ( $x , $y ) := VISITED

endpar

default in i t s0 :
function posX = in i tX
function posY = in i tY
function board ( $x in Rows , $y in Columns ) =

i f ( $x = in i tX and $y = in i tY ) then
VISITED

else
EMPTY

endif
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Code 14: Knight’s tour ASM model

The ASM model, at each step, chooses non-deterministically a square of the board between
those that are associated with a legal move and marks it as VISITED. The ASM model stops its
execution when the update set is empty, that is when it can not find any legal move; a legal move
can not be find because the knight is blocked or because he has finished the tour.

In code 15 we can see a non-deterministic Java code. The non-determinism is internal because
the behavior of the method execMove() is non-deterministic.

package knightTour ;

import java . u t i l . ArrayList ;
import java . u t i l . Random ;

import org . asmeta . monitor ing .Asm;
import org . asmeta . monitor ing . FieldToFunction ;
import org . asmeta . monitor ing . I n i t ;
import org . asmeta . monitor ing . RunStep ;
import org . asmeta . monitor ing . StartMonitor ing ;

@Asm( asmFile = ”models /nonDetModels/KnightTour . asm” )
public class KnightTour {

@FieldToFunction ( func = ”posX” )
public int x ;
@FieldToFunction ( func = ”posY” )
public int y ;
private Status [ ] [ ] board ;

@StartMonitoring
public KnightTour ( @Init ( func = ” in i tX ” , args = {}) int x ,

@Init ( func = ” in i tY ” , args = {}) int y ) {
this . x = x ;
this . y = y ;
board = new Status [ 8 ] [ 8 ] ;
for ( int i = 0 ; i < board . l ength ; i++) {

for ( int j = 0 ; j < board [ i ] . l ength ; j++) {
board [ i ] [ j ] = Status .EMPTY;

}
}
board [ x ] [ y ] = Status . VISITED ;

}

public void f indTour ( ) {
while ( execMove ( ) ) ;

}

@RunStep
private boolean execMove ( ) {

ArrayList<int [ ] > p o s s i b l e C h o i c e s = getPoss ib leMoves ( ) ;
int numOfMoves = p o s s i b l e C h o i c e s . s i z e ( ) ;
i f (numOfMoves > 0) {

int [ ] cho i c e = p o s s i b l e C h o i c e s . get (
new Random ( ) . next Int (numOfMoves ) ) ;
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x = cho i c e [ 0 ] ;
y = cho i c e [ 1 ] ;
board [ x ] [ y ] = Status . VISITED ;
return true ;

}
return fa l se ;

}

private boolean avai lableMove ( int newX, int newY) {
return ( (newX >= 0 && newX < 8) && (newY >= 0 && newY < 8) ) &&

board [ newX ] [ newY]==Status .EMPTY;
}

private ArrayList<int [ ] > getPoss ib leMoves ( ) {
ArrayList<int [ ] > p o s s i b l e C h o i c e s = new ArrayList<int [ ] > ( ) ;
int [ ] cho i c e = new int [ 2 ] ;
cho i c e [ 0 ] = x + 1 ;
cho i c e [ 1 ] = y + 2 ;
i f ( avai lableMove ( cho i c e [ 0 ] , cho i c e [ 1 ] ) ) {

p o s s i b l e C h o i c e s . add ( cho i c e . c l one ( ) ) ;
}
cho i c e [ 1 ] = y − 2 ;
i f ( avai lableMove ( cho i c e [ 0 ] , cho i c e [ 1 ] ) ) {

p o s s i b l e C h o i c e s . add ( cho i c e . c l one ( ) ) ;
}
cho i c e [ 0 ] = x − 1 ;
i f ( avai lableMove ( cho i c e [ 0 ] , cho i c e [ 1 ] ) ) {

p o s s i b l e C h o i c e s . add ( cho i c e . c l one ( ) ) ;
}
cho i c e [ 1 ] = y + 2 ;
i f ( avai lableMove ( cho i c e [ 0 ] , cho i c e [ 1 ] ) ) {

p o s s i b l e C h o i c e s . add ( cho i c e . c l one ( ) ) ;
}
cho i c e [ 0 ] = x − 2 ;
cho i c e [ 1 ] = y − 1 ;
i f ( avai lableMove ( cho i c e [ 0 ] , cho i c e [ 1 ] ) ) {

p o s s i b l e C h o i c e s . add ( cho i c e . c l one ( ) ) ;
}
cho i c e [ 0 ] = x + 2 ;
i f ( avai lableMove ( cho i c e [ 0 ] , cho i c e [ 1 ] ) ) {

p o s s i b l e C h o i c e s . add ( cho i c e . c l one ( ) ) ;
}
cho i c e [ 1 ] = y + 1 ;
i f ( avai lableMove ( cho i c e [ 0 ] , cho i c e [ 1 ] ) ) {

p o s s i b l e C h o i c e s . add ( cho i c e . c l one ( ) ) ;
}
cho i c e [ 0 ] = x − 2 ;
i f ( avai lableMove ( cho i c e [ 0 ] , cho i c e [ 1 ] ) ) {

p o s s i b l e C h o i c e s . add ( cho i c e . c l one ( ) ) ;
}
return p o s s i b l e C h o i c e s ;

}

26



private enum Status {
VISITED , EMPTY;

}
}

Code 15: Knight’s tour Java code

As the ASM model, also the Java code chooses non-deterministically one move between those
valid (let’s see the change method execMove()).

Deterministic version of the knight’s tour problem As we have seen in section 6.2 it is
possible that the Java code is deterministic, nevertheless the corresponding ASM model is non-
deterministic. Code 16 shows a modified version of code 15, in which a resolution strategy is
implemented9. The code chooses, between the legal moves, the move which gets the knight closer
to the middle of the board. We can notice that the Java code is fully deterministic:

• internally deterministic: the bodies of the methods do not contain any non-deterministic
statements;

• externally deterministic: there is only one change method findTour(), that is the user of the
class can interact with the object in just one way. So, we do not have to monitor the way
the object is used.

The corresponding ASM model is the same as before. So, if the Java code is compliant, the
Java run (given an initial state there is just one run) corresponds to one of the several ASM runs.

package knightTour ;

import java . u t i l . ArrayList ;
import java . u t i l . C o l l e c t i o n s ;

import org . asmeta . monitor ing .Asm;
import org . asmeta . monitor ing . FieldToFunction ;
import org . asmeta . monitor ing . I n i t ;
import org . asmeta . monitor ing . RunStep ;
import org . asmeta . monitor ing . StartMonitor ing ;

@Asm( asmFile = ”models /nonDetModels/KnightTour . asm” )
public class KnightTourMiddleStrategy {

@FieldToFunction ( func = ”posX” )
public int x ;
@FieldToFunction ( func = ”posY” )
public int y ;
private Status [ ] [ ] board ;

@StartMonitoring
public KnightTourMiddleStrategy (

@Init ( func = ” in i tX ” , args = {}) int x ,
@Init ( func = ” in i tY ” , args = {}) int y ) {

this . x = x ;
this . y = y ;
board = new Status [ 8 ] [ 8 ] ;
for ( int i = 0 ; i < board . l ength ; i++) {

for ( int j = 0 ; j < board [ i ] . l ength ; j++) {
9This code never reaches a complete tour from any initial state.
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board [ i ] [ j ] = Status .EMPTY;
}

}
board [ x ] [ y ] = Status . VISITED ;

}

public void f indTour ( ) {
while ( execMove ( ) ) ;

}

@RunStep
private boolean execMove ( ) {

ArrayList<Square> p o s s i b l e C h o i c e s = getPoss ib leMoves ( ) ;
int numOfMoves = p o s s i b l e C h o i c e s . s i z e ( ) ;
i f (numOfMoves > 0) {

C o l l e c t i o n s . s o r t ( p o s s i b l e C h o i c e s ) ;
Square cho i c e = p o s s i b l e C h o i c e s . get ( 0 ) ;
x = cho i c e . x ;
y = cho i c e . y ;
board [ x ] [ y ] = Status . VISITED ;
return true ;

}
return fa l se ;

}

private boolean avai lableMove ( int newX, int newY) {
return ( (newX >= 0 && newX < 8) && (newY >= 0 && newY < 8) ) &&

board [ newX ] [ newY]==Status .EMPTY;
}

private ArrayList<Square> getPoss ib leMoves ( ) {
ArrayList<Square> p o s s i b l e C h o i c e s = new ArrayList<Square >() ;
int tempX = x + 1 ;
int tempY = y + 2 ;
i f ( avai lableMove (tempX , tempY ) ) {

p o s s i b l e C h o i c e s . add (new Square (tempX , tempY ) ) ;
}
tempY = y − 2 ;
i f ( avai lableMove (tempX , tempY ) ) {

p o s s i b l e C h o i c e s . add (new Square (tempX , tempY ) ) ;
}
tempX = x − 1 ;
i f ( avai lableMove (tempX , tempY ) ) {

p o s s i b l e C h o i c e s . add (new Square (tempX , tempY ) ) ;
}
tempY = y + 2 ;
i f ( avai lableMove (tempX , tempY ) ) {

p o s s i b l e C h o i c e s . add (new Square (tempX , tempY ) ) ;
}
tempX = x − 2 ;
tempY = y − 1 ;
i f ( avai lableMove (tempX , tempY ) ) {

p o s s i b l e C h o i c e s . add (new Square (tempX , tempY ) ) ;
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}
tempX = x + 2 ;
i f ( avai lableMove (tempX , tempY ) ) {

p o s s i b l e C h o i c e s . add (new Square (tempX , tempY ) ) ;
}
tempY = y + 1 ;
i f ( avai lableMove (tempX , tempY ) ) {

p o s s i b l e C h o i c e s . add (new Square (tempX , tempY ) ) ;
}
tempX = x − 2 ;
i f ( avai lableMove (tempX , tempY ) ) {

p o s s i b l e C h o i c e s . add (new Square (tempX , tempY ) ) ;
}
return p o s s i b l e C h o i c e s ;

}

private enum Status {
VISITED , EMPTY;

}
}

class Square implements Comparable<Square> {
int x ;
int y ;

public Square ( int x , int y ) {
this . x = x ;
this . y = y ;

}

@Override
public int compareTo ( Square o ) {

double thisDistanceFromMiddle = Math . pow( x − 3 . 5 , 2) +
Math . pow( y − 3 . 5 , 2 ) ;

double oDistanceFromMiddle = Math . pow( o . x − 3 . 5 , 2) +
Math . pow( o . y − 3 . 5 , 2 ) ;

i f ( thisDistanceFromMiddle > oDistanceFromMiddle ) {
return 1 ;

}
else i f ( thisDistanceFromMiddle == oDistanceFromMiddle ) {

return 0 ;
}
else {

return −1;
}

}

}

Code 16: Knight’s tour Java code - Middle strategy
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7 Related work

Complete surveys about runtime verification can be found in [7, 14, 8].
Our work has been inspired by the work presented in [15], in which the authors describe a formal

specification-based software monitoring system. In their system they check that the behavior of a
concrete implementation (a Java code) complies its formal specification (a Z model). We share
with their work the fact that the concrete implementation is separated from the specification. In
their monitoring system, a user of the Java program must use a specific tool where to specify the
sequence of methods one wants to execute. Therefore, their monitoring system is useful at testing
and debugging time, but can not be used in the deployed system in which the monitoring system
should be hidden to the final user. The final user, indeed, could be different from the developer
of the code: he could be a normal user who wants to execute the code or another developer who
wants to reuse the code. In both cases the user should be unaware of the formal specification; he
could only be aware that some kind of monitoring is performed. In our system, instead, a developer
can deploy a Java code linked with its formal specification. The final user can use the monitored
code without knowing anything about the formal specification; the only thing that he must know
is that, if he wants to enable the monitoring to the code, he must execute it with AspectJ.

Monitored-oriented programming (MOP) [6] permits to execute runtime monitoring by means
of annotating the code with formal property specifications. The specifications can be written in
any formalism for which a logic plug-in has been developed (LTL, ERE, JML, . . . ). The formal
specifications are translated (in two steps) in the target programming language. The obtained
monitoring code can be used in an in-line mode, in which the monitoring code is placed in the
monitored program, and in an out-line mode in which it is used to check traces recorded by adequate
probes. As we do, they use AspectJ to insert the monitoring code into the monitored code; in
particular AspectJ gives them the ability to place the monitoring code before or after some methods
invocations. Another tool that, like MOP and our system, uses AspectJ to weave the monitoring
code into the monitored code is Lime [12]. The tool permits to monitor the invocations of the
methods of an interface by defining pre and post conditions, called call specifications (CS) and
return specifications (RS). Specifications can be written as past/future LTL formulas, as regular
expressions and as non-deterministic finite automata. For each call/return specification they build
an AspectJ advice. This approach is different from ours, since we do not need to build an advice
for each specification: our ASM specifications are simulated by an ASM simulator. We have a
fixed number of advices that coordinate the monitoring jobs, as for example, building the ASM
simulators and executing the conformance checking.

Another approach that uses the ASMs as formal specification for system monitoring purpose
is presented in [2]. That approach shares with ours many common features: the use of operational
specifications (called model programs), and dealing with non-determinism and method calls order-
ing. However, the approach is mainly applied to specify all of the traditional design-by-contract
concepts of pre- and post-conditions and invariants. The technological framework is completely
different, since .NET components are considered.

Different approaches exist for system monitoring that are based on runtime verification of
temporal properties. In [3] an approach is presented in which traces of programs are examined in
order to check if they satisfy some temporal properties expressed in LTL3, a linear-time temporal
logic designed for runtime verification.

8 Discussion and Conclusions

We wanted to assess the viability of our approach by taking several examples in literature and (1)
check whether we were able to apply our approach to existing runtime case studies and (2) compare
with them in terms of usability. We have gathered several examples, including the Railroad Gate [7],
the Initialization Fiasco problem [3], a robotic assembly system [15], the Knight’s Tour problem [16],
and we have written the Java code if not available and their ASM specification. Several cases were
non-deterministic. To avoid the abstract implementation to be biased by its implementation, one
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@Asm( asmFile = ”models /mod2 . asm” )
public c lass IncrDecr {

@FieldToFunction ( func=” foo ” )
public int f oo ;

@StartMonitoring
public IncrDecr ( ) {

f oo = 1 ;
}

@RunStep
public void i n c r ( ) {

f oo++;
}

@RunStep
public void decr ( ) {

foo−−;
}

}

Code 17: Increment/decrement Java code

asm mod2
import StandardLibrary

signature :
controlled f oo : In t eg e r

def init ions :
main rule r Main =

foo := ( foo + 1) mod 2

default in i t s0 :
function f oo = 1

Code 18: Increment/decrement ASM model

of us wrote the ASM specifications while the others wrote the Java implementation. Of course,
the ASM specifications and their implementations were similar, but we found also that we gave
different interpretations to the requirements which could be easily detected by runtime monitoring.
Overall we found our approach applicable to all the case studies we found.

Comparing our approach with others based on the use of properties in terms of usability is
more difficult. In this paper, we assume that the specification is given in operational style instead
of the more classical declarative style. There has been an endless debate about which style fits
better the designer needs: some argue that with an operational style the designers tend to insert
implementation details in the abstract specifications, others observed that practitioners feel un-
comfortable with declarative notations like temporal logics. The scope of this paper is to provide
evidence that also operational notation can be efficiently used for run time monitoring. Sometimes,
operational specifications are easy to write and understand. Consider for example the following
requirement about the gate [7]: “always in the future whenever the light is off, then the gate
will not be closing until the light will be flashing”, which can be formalized by the LTL formula:
�(is off → ¬is closing U is flashing). In ASM, this requirement is easily translated in the follow-
ing two rules:

// only i f the l i g h t i s OFF, i t can s t a r t f l a s h i n g
i f l i g h t = OFF then choose $ l in {FLASH | OFF} do l i g h t := $ l endif
// the gate can s t a r t s c l o s i n g only i f i t i s open and the l i g h t i s f l a s h i n g
i f l i g h t = FLASH and gate = OPENED then

choose $g in {OPENED | CLOSING} do gate := $g endif

It is also possible to specify correct sequences of method calls by using LTL too. For instance, the
program reported in code 17 requires that foo is alternatively updated to 0 and 1. An LTL formula
capturing this behavior would be (foo = 0∧�(foo = 0→©(foo = 1)∧ foo = 1→©(foo = 0)).
Although LTL notation is more compact, we believe that it may be more difficult to understand
than a simple assignment instruction shown in code 18.

Although it is difficult to give a definitive evaluation, we believe that an operational style
may be more easy to write and understand. Moreover, there are some advantages non related to
run time verification in using executable specifications (as also discussed in [2]), including that
specifications can be executed in isolation, even before the implementation exists.

Our approach has some limits. The use of an operational specification can prone the designer
to insert implementation details in the specification. Other limits derive from the use of Asmeta.
In Asmeta, non-determinism is restricted: the choose rule works only over bounded set (as in [2]).
Dealing with metric time seems problematic: we believe that a time monitored function may model
the real time and would allow its measurement, but further experiences are needed.
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Despite these limits, we believe that our approach presents a viable technique for checking con-
formance of an implementation (as Java program) with respect its formal and abstract operational
specification (as ASM). The operational style should be appealing for those preferring executable
models instead of properties. In our approach, specifications are developed independent from the
implementations and they are linked by Java annotations which however contain minimal behav-
ioral information. We are able to deal with non-deterministic systems and this allows furthermore
to check sequences of method calls and to write more abstract specifications.
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