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Abstract Human activity recognition is a challenging
problem for context-aware systems and applications.
Research in this field has mainly adopted techniques
based on supervised learning algorithms, but these sys-
tems suffer from scalability issues with respect to the
number of considered activities and contextual data. In
this paper, we propose a solution based on the use of on-
tologies and ontological reasoning combined with statis-
tical inferencing. Structured symbolic knowledge about
the environment surrounding the user allows the rec-
ognition system to infer which activities among the can-
didates identified by statistical methods are more likely
to be the actual activity that the user is performing.
Ontological reasoning is also integrated with statistical
methods to recognize complex activities that cannot be
derived by statistical methods alone. The effectiveness
of the proposed technique is supported by experiments
with a complete implementation of the system using
commercially available sensors and an Android-based
handheld device as the host for the main activity rec-
ognition module.

1 Introduction

There is a general consensus on the need for effective
automatic recognition of user activities to enhance the
ability of a pervasive system to properly react and adapt
to the circumstances. Among many applications of ac-
tivity recognition, a special interest is in the pervasive
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e-Health domain where automatic activity recognition
is used in rehabilitation systems, chronic disease man-
agement, monitoring of the elderly, as well as in per-
sonal well being applications (see, e.g., [6, 26, 2]).

Example 1 Consider the case of Alice, an elderly per-
son undergoing rehabilitation after having been hospi-
talized for a minor heart attack. In order to help Al-
ice in correctly following the practitioners’ prescriptions
about the physical activities to perform during rehabili-
tation, the hospital center provides her with a monitor-
ing system that continuously keeps track of her physi-
ological data as well as of her activities. In particular,
physiological data (e.g., heart rate and blood pressure)
are acquired by wearable sensors that transmit them
through a wireless link to the monitoring application
hosted on her mobile phone. Similarly, accelerometer
data provided by a fitness watch are transmitted to the
monitoring application and merged with those provided
by the accelerometer integrated in her mobile phone
to automatically infer her current physical activity. On
the basis of physiological data and performed activities,
the monitoring application provides Alice with alerts
and suggestions to better follow her rehabilitation plan
(e.g., “please consider to take a walk this morning”,
or “take some rest now”). Moreover, those data are re-
ported to the medical center on a daily basis for further
processing.

Of course, for such a system to be effective, the ac-
tivity recognition module must provide very accurate
results. In fact, if activities are wrongly recognized,
the monitoring system may draw erroneous conclusions
about the actual adherence of the patient to the prac-
titioners’ prescriptions, as well as provide error-prone
statistics about the health status of the patient.
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A huge amount of research work has been done on
techniques for activity recognition, and the prominent
approaches in context-awareness are briefly presented
in Section 2. We note that the most effective of these
systems currently rely on the application of supervised
learning algorithms. In order to provide good perfor-
mance, these algorithms need to be trained with a suf-
ficiently large amount of labeled data. Indeed, the use
of a small set of training data, in presence of a wide set
of context data, would be ineffective, if not counterpro-
ductive, since the classifier could draw erroneous pre-
dictions due to the problem of overfitting. For instance,
in [17] some available context data are discarded in or-
der to avoid this problem, that turns out to be one of the
main reasons why activity recognition systems do not
perform well out of the laboratory. Since training data
are very hard to acquire, systems relying on supervised
learning are prone to serious scalability issues the more
activities and the more context data are considered. For
example, suppose to consider as the only context data
the user’s current symbolic location (e.g., kitchen, din-
ing room, mall, park, etc). Even in this simple case, in
order to gain good recognition results a sufficiently large
set of training data should be acquired for each activ-
ity in any considered location. Of course, such a large
set of training data is very hard to obtain. Moreover,
when we consider as context not only location but also
environmental conditions and surrounding objects, the
task of collecting a sufficient amount of training data
is very likely to become unmanageable, since training
data should be acquired in any possible contextual con-
dition.

In this paper we investigate the use of ontological
reasoning coupled with statistical reasoning in order to
address the above-mentioned problem. The intuition
behind our solution is the following. Statistical infer-
encing is performed based on raw data retrieved from
body-worn sensors (e.g., accelerometers) to predict the
most probable activities. Then, symbolic reasoning is
applied to refine the results of statistical inferencing by
selecting the set of possible activities performed by a
user based on her current context. For a large class of
simple activities, the influence of context on the raw
data gathered from sensors is minimal; hence, the same
statistical model can be applied. Only when context
strongly affects the data values from sensors, it is nec-
essary to acquire training data under different context
conditions. Hence, context information is mostly ex-
ploited by the ontological reasoner, and only in lim-
ited cases by the statistical reasoner. By decoupling
the use of context information, statistical inferencing
becomes more manageable in terms of necessary train-
ing data, while symbolic reasoning can more effectively

select candidate activities taking into account context-
dependent ontological relationships. In order to perform
context-based symbolic reasoning, we have defined an
ontology that models activities, artifacts, persons, com-
munication routes, and symbolic locations, and that ex-
presses relations and constraints among these entities.
The same ontology is used to describe and recognize
complex social activities that would be hardly identi-
fiable by a purely statistical technique. To the best of
our knowledge this is the first work (except our pre-
liminary results presented in [23]) that systematically
investigates the integration of statistical and ontologi-
cal reasoning for activity recognition.

In summary, these are the main contributions of this
paper:

– We define an architecture for a mobile context-aware
activity recognition system (COSAR) supporting hy-
brid statistical and ontological reasoning; The archi-
tecture includes an ontology of human activities.

– We propose a new variant of multiclass logistic re-
gression as the statistical recognition method, and
we design an algorithm to integrate this method
with ontological reasoning.

– We illustrate a complete implementation of the core
modules of the architecture, including the ones for
sensors and mobile devices; We show the effective-
ness of the COSAR system and its superiority with
respect to a purely statistical method by testing the
implementation on a (publicly available) set of data
collected from real users.

The rest of the paper is organized as follows: Sec-
tion 2 discusses related work; Section 3 presents the ar-
chitecture of the COSAR activity recognition system;
Section 4 presents the basic techniques used in COSAR
for statistical and ontological reasoning, while Section 5
technically describes how they are combined in the over-
all recognition algorithm; Section 6 explains how the
main modules have been implemented and Section 7
presents the experimental results; Section 8 concludes
the paper.

2 Related work

Many techniques have been proposed to automatically
recognize human activities based on different kinds of
data. The main approaches consist in the use of either
statistical or symbolic reasoning. However, up to the
time of writing, these approaches have mainly been con-
sidered separately.

Proposed statistical activity recognition techniques
differ on the kind and number of used sensors, consid-
ered activities, adopted learning algorithms, and many



3

other parameters. A research direction consists in the
use of cameras with the help of sound, image and scene
recognition software (see, e.g., [21, 5, 28]). While these
techniques can be profitably exploited in particular sce-
narios (surveillance systems, smart-room and smart-
office applications, . . . ), in general their applicability
is limited to confined environments, and they are often
subject to serious privacy concerns, clearly perceived
by the monitored users.

Alternative activity recognition techniques are based
on data acquired from body-worn sensors (e.g., mo-
tion tracking and inertial sensors, cardiofrequencime-
ters, . . . ) and on the application of statistical learn-
ing methods. Early attempts in this sense were mainly
based on the use of data acquired from multiple body-
worn accelerometers (e.g., [8, 15]). One of the main lim-
itations of these early systems relied on the fact that
they did not consider contextual information (such as
current location, environmental conditions, surround-
ing objects) that could be usefully exploited to derive
the user’s activity. As a consequence, later approaches
were aimed at devising activity recognition systems tak-
ing into account the user’s context. For instance, in [17]
a method is proposed to classify physical activities by
considering not only data retrieved from a body-worn
accelerometer, but also environmental data acquired
from several other sensors (sound, humidity, acceler-
ation, orientation, barometric pressure, . . . ). Spatio-
temporal traces are used in [18] to derive high-level
activities such as shopping or dining out. Observations
regarding the user’s surrounding environment (in par-
ticular, objects’ use), possibly coupled with body-worn
sensor data, are the basis of many other activity rec-
ognition systems (e.g., [27, 25, 10, 12]). However, as an-
ticipated in the introduction, these systems suffer from
serious scalability issues with respect to the number of
considered context data. This challenging problem has
been addressed (e.g., in [14]) by means of a combination
of supervised and unsupervised learning techniques. We
argue that, while similar techniques can be adopted to
mitigate the problem, it is unlikely that they can pro-
vide a definitive solution.

On the other hand, the recognition of complex activ-
ities like social ones (e.g., work meeting, friendly chat)
is particularly challenging, and it is hard to be achieved
by the use of solely statistical methods. Indeed, com-
plex activities can be better recognized by considering
constraints and relationships among context data that
neither can be directly acquired from sensors, nor can
be derived through statistical reasoning alone. For in-
stance, one possible condition to recognize the activity
giving a class is the case in which the actor is a teacher,
the actor’s current location is a classroom, some stu-

dents are in the classroom, and the actor is writing on
a blackboard. For this reason, some researchers have
investigated the use of ontologies to represent complex
activities (e.g., the ontologies SOUPA [7], CONON [9],
and the one of CARE [1]). In order to avoid the limi-
tations of solely ontological reasoning, such techniques
adopt a combination of ontological reasoning and logic
programming. However, the recognition of complex ac-
tivities through ontological reasoning has to start from
some basic observations (e.g., the user is in a given
building, he is standing, etc...) and the purely ontology-
based approaches do not deeply investigate how this
data can be acquired and transformed into the ontology
representation. Our proposed technique integrates the
recognition of these basic observations through statis-
tical analysis of sensor data with ontological reasoning.

3 COSAR system architecture

The proposed activity recognition system is graphically
depicted in Figure 1. The lower layer (sensors) in-
cludes body-worn sensors (providing data such as ac-
celerometer readings and physiological parameters) and
sensors spread in the environment.

Data provided by environmental and body-worn sen-
sors are communicated through a wireless connection
to the user mobile device, and merged with sen-
sor data retrieved by the device itself (e.g., data pro-
vided by an embedded accelerometer) to build a fea-
ture vector that will be used to predict the user’s ac-
tivity. The device also continuously keeps track of the
current physical location provided by a GPS receiver.
When the GPS reading is not available or not suffi-
ciently accurate (e.g., indoor), localization is performed
by an external location server (e.g., a GSM triangu-
lation system provided by the network operator, or an
RFID system). The gis module is in charge of mapping
the physical location reading to the most specific sym-
bolic location that correspond to that physical location.
This information will be used by the Combined Onto-

logical/Statistical Activity Recognition mod-
ule (cosar) to refine the statistical predictions (Sec-
tion 5.4).

The infrastructure layer includes a pattern rec-

ognition module that is in charge of deriving a statis-
tical model of the considered activities (Section 4.1),
which is communicated offline to the cosar module.
This layer is also in charge of performing ontological
reasoning to calculate the set of activities that can be
potentially performed in a given context (Section 4.2).
This set is also communicated offline to the cosar mod-
ule. Contextual information such as environmental data
and basic activities recognized by the cosar module
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Fig. 1 The COSAR system

are communicated on a per-request basis to the on-
tological reasoner to possibly recognize more complex
activities (Section 5.3). In order to cope with the re-
quirements of services needing very fast response times,
ontological reasoning to derive complex activities is per-
formed in a best-effort fashion; for instance, reasoning
is terminated when a predefined time-to-live expires.
In addition, the infrastructure layer includes a network
provider offering the connectivity necessary to exchange
data between modules at different layers, and, in par-
ticular, to communicate activity information to remote
data centers or context-aware service providers.

With respect to efficiency issues, we point out that
the most computationally expensive tasks (i.e., onto-
logical reasoning and pattern recognition to build a
statistical model of activities) are executed by servers
in the infrastructure domain. Note that privacy issues
are of paramount importance in this domain; however,
their treatment is outside the scope of this paper. Tech-
niques to integrate privacy preservation in a context-
aware middleware can be found in [22] and in [24].

4 Reasoning modules

In this section we present the statistical and symbol-
ical reasoning modules of COSAR. The technique to
integrate these modules will be presented in Section 5.

4.1 Statistical classification of activities with a
historical variant

As illustrated in the introduction, the most common ap-
proach to activity recognition is to make use of super-
vised statistical learning methods. Roughly speaking,
these methods rely on a set of preclassified activity in-
stances that are used in a training phase to learn a sta-
tistical model of a given set of activities. The obtained
model is then used to automatically classify new activ-
ity instances. Each activity instance is represented by
means of a feature vector, in which each feature corre-
sponds to a given measure (typically, a statistics about
some measurements retrieved from a set of sensors).

Even if significant exceptions exist (e.g., Hidden Mar-
kov Models and Linear Dynamical Systems [4]), it is
worth to note that most models adopted by statistical
learning algorithms implicitly assume independence be-
tween each pair of instances to be classified. As a conse-
quence, the prediction of an instance i2 does not depend
on the prediction of another instance i1. However, when
considering activity instances the above-mentioned as-
sumption does not hold. In fact, persons do not contin-
uously switch among different activities; instead, they
tend to perform the same activity for a certain lapse of
time before changing activity.

In our technique, we exploit this characteristic to
improve the activity recognition rates of statistical learn-
ing algorithms by means of a novel historical variant.
We call duration the temporal resolution at which ac-
tivity instances are considered. The following example
explains the rationale of our variant.
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Example 2 Let
−→
f = 〈f1, f2, f3, f4, f5〉 be a vector of

feature vectors corresponding to five activity instances
〈i1, i2, i3, i4, i5〉 consecutively performed by a user, each
instance having a short duration (e.g., a time window of
a few seconds). Suppose

−→
f is the input for the baseline

(not historical) classifier, and its computed prediction
is:

−→p = 〈p1=jogging , p2=jogging , p3=brushingTeeth,

p4=jogging , p5=jogging〉,

meaning that the algorithm predicted that the user was
jogging for the first two time windows, then brushing
teeth for one, and then jogging again for other two time
windows.

From this output it is easy to guess that the predic-
tion for the third activity instance was wrong, and that
the correct prediction for that instance was jogging.

Errors similar to the one highlighted by Example 2
often occur in real-world situations, because, e.g., it
may happen that a person performing a given activity
abruptly performs some movement that diverges from
the normal activity pattern, thus “confusing” the clas-
sifier.

In order to address this problems, our historical
variant consists in classifying each activity instance ij
based not only on the prediction pj of the baseline
classifier for ij , but also on its predictions for k ac-
tivity instances consecutively performed before ij (i.e.,
ij−1, ij−2, . . . , ij−k). Using a metaphor, if we call “votes
for ij” the elements in −→pj = 〈pj , pj−1, pj−2, . . . , pj−k〉
(i.e., predictions of the baseline classifier), our variant
consists in choosing as the predicted activity for ij the
one having the highest number of votes in −→pj . In the
case in which this activity is not unique, one at random
is chosen among the ones having the maximum number
of votes.

In the rest of this paper we call statistical-hist tech-
nique the historical variant of a statistical activity rec-
ognition algorithm, and we represent with p′j the predic-
tion for activity instance ij computed by the statistical-
hist technique.

Example 3 Continuing Example 2, suppose to apply
the statistical-hist technique to the prediction of ac-
tivity instance i3 using k = 2. Since the votes for i3 are
〈p1=jogging , p2=jogging , p3=brushingTeeth〉, the predic-
ted activity p′3 is jogging.

It is worth to note that, despite the use of a simi-
lar vote metaphor, our technique is different from en-
sembles (or classifier committees). Indeed, while in en-
sembles the single predictions of multiple algorithms

are combined to classify a given instance, in our tech-
nique we consider multiple predictions of a single classi-
fier. Our technique is also different from boosting, since
boosting is applied on the training phase, while our
variant is applied only during classification.

Note that the value of the parameter k, as well as
the duration of activity instances, must be carefully
chosen based on the considered activities. In general,
large values of k are well suited to activities that tend
to last long, while if the user changes activities more
frequently, smaller values of k are more appropriate.
For the sake of this paper, we assume the use of a fixed
value of k, because we mainly consider physical activi-
ties having homogeneous durations. However, our tech-
nique can be easily extended by dynamically adapting
the value of k to the set of candidate activities. While
the variant explained above can apply to a large class
of statistical learning techniques, in the experiments de-
scribed in Section 7 we applied it to a specific technique:
multiclass logistic regression.

Finally, we should mention that there are cases in
which raw data from sensors are strongly influenced by
context. This occurs, for example, when a medical con-
dition of the user influences her movements, and we are
using inertial sensors. In these cases, it is necessary to
perform statistical inferencing with an appropriate sta-
tistical model, which of course requires the acquisition
of a dedicated training set. Based on our experiments
with accelerometers and with context limited to loca-
tion, we obtained satisfactory results without the need
of considering different statistical models.

4.2 Reasoning with the ActivO ontology

Even if ontological reasoning can be applied to any kind
of context data, in the rest of this paper we concen-
trate on location information. Indeed, location is an
important case of context information, and the current
symbolic location of a user can give useful hints about
which activities she can or cannot perform. Moreover,
from a practical perspective, localization technologies
are more and more integrated in mobile devices and
buildings; hence, differently from other context data,
location information is available in many situations.

4.2.1 The ActivO ontology

We have defined an OWL-DL [13] ontology (named Ac-
tivO) for the activity recognition domain. The ontology
models a set of activities, as well as context data that
can be useful to recognize them. The main classes and
properties of the ontology are graphically depicted in
Figure 2. The main classes of ActivO are Activity,
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Fig. 2 The core of the COSAR-ONT ontology

Class Descendants

Activity 35

Artifact 43

CommunicationRoute 14

Person 4

SymbolicLocation 30

TimeExtent 11

Table 1 Number of class descendants

SymbolicLocation, CommunicationRoute, Artifact,
Person, and TimeExtent. Properties relate instances
of those classes. For instance, each activity is isPer-
formedBy some persons; it is PerformedIn a symbolic
location; and it is isPerformedDuring a time extent.
The set of activities and context data defined in our on-
tology is obviously non exhaustive; however, we believe
that this ontology can be profitably used to model many
pervasive computing scenarios. Moreover, the ontology
is easily extensible to address additional application do-
mains.

Figure 3 shows part of the activities modeled by our
ontology. Each activity can be either an:

IndividualActivity v Activity u = 1 hasActor

(individual activities have exactly one actor), or a

SocialActivity v Activity u ≥ 2 hasActor

(social activities have at least 2 actors). Social activi-
ties are further classified as Play or Communication. A
communication can be either a FaceToFaceMeeting or
a CommunicationThroughDevice, and so on.

Individual activities include:

– PersonalActivity, such as BrushingTeeth, Bath-
ing, Eating. These and other activities of daily liv-
ing are very important in the health care domain,
for instance to monitoring the elderly at home;

– Traveling, such as RidingBicycle, MovingByCar,
and other activities useful to characterize the situ-
ation of people on the move;

– PhysicalActivity (Jogging, Strolling, Hiking,
. . . ). Monitoring these activities has important ap-
plications in the health care and well being domains;

– ProfessionalActivity, having applications in sys-
tems for workers support; and

– UsingDevice (UsingPersonalComputer, Writing-
OnBlackboard, . . . ). Recognition of these simple ac-
tivities can be profitably exploited to recognize more
complex activities, as illustrated in Section 5.3.

Since location is very important to recognize activ-
ities, particular efforts have been made to model the
part of the ontology representing symbolic locations
(shown in Figure 4). Each location can be either an In-
doorLocation or an OutdoorLocation. Outdoor loca-
tions are classified as NonPedestrianOutdoorLocation
or PedestrianOutdoorLocation (e.g., Garden, Outdoor-
SportCenter, UrbanArea, . . . ). Several classes have been
defined to classify indoor locations. In particular, Ac-
tivO models both Buildings (like Hospital, Mall, Cam-
pusBuilding), and Rooms (like ConferenceRoom, Of-
fice, Laboratory, HospitalRoom, LivingRoom).

Class definitions are characterized according to their
relations to other classes of the ontology. For exam-
ple, locations are characterized according to the kind
of Artifact they contain. As it will be shown in Sec-
tion 4.2.2, this aspect will be exploited to identify po-
tential activities based on the user’s current context.
For instance, with:

ConferenceRoom v Room u
∃ hasArtifact.(Projector t Blackboard t . . .)

(1)

we state that instances of class ConferenceRoom must
contain a device such as a Projector or a Blackboard;
while, with:

HospitalRoom v Room u
∃ isInside.HospitalBuilding (2)

we state that hospital rooms are necessarily located in-
side a hospital.

4.2.2 Identification of potential activities

Even if in theory the set of possible activities that can
be performed in a given symbolic location could be
manually specified by a domain expert, this method
would be clearly impractical. Indeed, even consider-
ing a few tens of activities and symbolic locations, the
number of their combinations would quickly render this
task unmanageable. Moreover, this task should be re-
peated each time the characteristics of a symbolic lo-
cation change (e.g., when an artifact is added to or
removed from a room).
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Fig. 3 Part of the ontology of activities

In order to illustrate our technique we introduce the
following example.

Example 4 Consider the activity BrushingTeeth, and
the task of automatically inferring the set of symbolic
locations in which such activity can reasonably be per-
formed. One possible definition of the considered activ-
ity is the following:

BrushingTeeth v PersonalActivity u
∀ performedIn. ( ∃ hasArtifact.Sink ) u . . .

According to the above definition, BrushingTeeth is a
subclass of PersonalActivity that can be performed
only in locations that contain a Sink (that is defined
as a subclass of WaterFixture); other restrictions may
follow, but they are not considered here for simplicity.
Now consider two symbolic locations, namely RestRoom
and LivingRoom, defined as follows:

RestRoom v Room u
∃ hasArtifact.Sink u . . .
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Fig. 4 Part of the ontology of symbolic locations

LivingRoom v Room u
¬∃ hasArtifact.WaterFixture u . . .

According to the above definitions, RestRoom is a Room
that contains a sink, while LivingRoom is a Room that
does not contain any WaterFixture (once again, other
details about the definition of these classes are omit-
ted)1. Given those ontological definitions it is possi-
ble to automatically derive through ontological reason-

1 Note that, due to the open-world assumption of description

logic systems [3] and, consequently, of OWL-DL, it is necessary

ing the set of symbolic locations in which the activ-
ity BrushingTeeth can be performed. To this aim, the
following assertions are stated and added to the asser-

to explicitly state those artifacts that are not present in a given
location. This is simplified by considering in the definition of

symbolic locations only artifacts that characterize the activities

to be discriminated and using the artifact ontology to exclude
whole classes of artifacts, as done in the LivingRoom example

with WaterFixture.
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tional part of the ontology (called ABox ):

BrushingTeeth(CURR ACT);

RestRoom(CURR LOC 1);

LivingRoom(CURR LOC 2).

The above assertions create an instance of activity Brush-
ingTeeth identified as CURR ACT, an instance of loca-
tion RestRoom identified as CURR LOC 1, and an instance
of location LivingRoom identified as CURR LOC 2. Then,
in order to understand if a given activity instance a can
be performed in a given location l it is sufficient to add
an assertion to the ABox stating that activity a is per-
formed in location l, and then to check if the ABox is
consistent with respect to the terminological part of the
ontology by performing a consistency checking reason-
ing task:

performedIn(CURR ACT,CURR LOC 1);

isABoxConsistent().

The above statements are used to verify if activity Brush-
ingTeeth can be performed in location RestRoom. In
this case the consistency check succeeds, since the de-
clared constraints on the execution of BrushingTeeth
(i.e., the presence of a sink) are satisfied by the consid-
ered location. The same statements, substituting CURR -
LOC 1 with CURR LOC 2 verify if activity BrushingTeeth
can be performed in location LivingRoom. In this case
the consistency check does not succeed, since the def-
inition of LivingRoom states that no WaterFixture is
present in that location. As a consequence, since Sink
has been defined as a subclass of WaterFixture, the
ontological reasoner infers that no sink is present in
LivingRoom, thus violating the constraints for the exe-
cution of activity BrushingTeeth.

4.2.3 DPA algorithm

Figure 5 shows the algorithm for the Derivation of Pos-
sible Activities (named DPA algorithm). This algorithm
is executed by the offline ontological reasoning module.
The algorithm takes as input an empty ABox and the
terminological part of the ontology (called TBox) that
describes classes and their properties. The output of
the algorithm is a matrix M whose rows correspond to
symbolic locations in the TBox, columns correspond to
activities in the TBox, and Mi,j equals to 1 if activity
corresponding to column j is a possible activity in lo-
cation corresponding to row i according to the TBox;
Mi,j equals to 0 otherwise.

As a first step (line 2) the terminological part of
the ontology is classified to compute the hierarchy of
the concepts of the TBox. Then for each pair 〈li, aj〉,

DPA Algorithm

Input: TBox is the terminological part of the ontology (i.e.,
containing classes descriptions). In particular, Activities is the

set of descendants of Activity, and Locations is the set of descen-

dants of SymbolicLocation; ABox is the assertional part of the
ontology (i.e., containing individuals and their relationships).

Output: the matrix of potential activities M

1: DPA(TBox,ABox):

2: ClassifyTBox(TBox)
3: for all aj ∈ Activities do

4: for all li ∈ Locations do

5: s1 := Assertion(“aj(curr act)”)
6: s2 := Assertion(“li(curr loc)”)

7: s3 := Assertion(“performedIn(curr act, curr loc)”)

8: ABox.addAssertions(s1, s2, s3)
9: Mi,j := ABox.isConsistent()

10: ABox.retractAssertions(s1, s2, s3)

11: end for
12: end for

13: Return(M)

Fig. 5 Algorithm for the derivation of potential activities (DPA).

1 2 3 4 5 6 7 8 9 10

Garden 0 0 0 1 1 1 1 0 0 0
HospitalBuilding 1 0 0 0 0 1 0 1 1 1
Kitchen 1 0 0 0 0 1 0 0 0 1
Laboratory 0 0 0 0 0 1 0 0 0 1
LivingRoom 0 0 0 0 0 1 0 0 0 0
Meadow 0 0 0 1 1 1 1 0 0 0
RestRoom 1 0 0 0 0 1 0 0 0 0
UrbanArea 0 0 0 1 1 1 1 1 1 0
Wood 0 1 1 1 1 1 1 0 0 0

Columns: 1=brushingTeeth; 2=hikingUp; 3=hikingDown;

4=ridingBycicle; 5=jogging; 6=standingStill; 7=strolling;

8=walkingDownstairs; 9=walkingUpstairs;

10=writingOnBlackboard

Table 2 Part of the M matrix of potential activities

where li is a symbolic location and aj is an activity in
TBox, the algorithm creates three assertions s1, s2 and
s3(lines 5 to 7) to state that activity aj is performed in
location li, and adds them to the ABox (line 8). Then
(line 9), the ABox is checked for consistency, and Mi,j

is set with the result of the test (1 if the check succeeds,
0 otherwise). Finally (line 10) assertions s1, s2 and s3

are retracted from the ABox in order to remove the
possible inconsistency that would affect the result of
future consistency checks.

An example of the output of the DPA algorithm
with a subset of locations and activities modeled by
COSAR-ONT is given in Table 2.

5 Hybrid statistical-ontological reasoning

In this section we illustrate the hybrid technique to cou-
ple statistical and ontological reasoning.
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5.1 Ontological refinement of statistical predictions

We illustrate our technique by means of an example.

Example 5 Suppose that user Alice is taking a stroll
on a path that goes across the wood near home wear-
ing the sensor equipment of the monitoring system. As
explained before, the system (deployed on her mobile
phone) continuously keeps track of her current activ-
ity, as well as of her current symbolic location (that in
this case is Wood). The system also knows the matrix
M that was calculated offline by the DPA algorithm.

Considering a single activity instance i and the sta-
tistical model of m different activities a1, . . . , am, the
statistical classifier of the system returns a m-length
confidence vector −→s i in which the jth element −→s (j)

i

corresponds to activity aj and its value corresponds to
the confidence of the classifier regarding the association
of i to aj , such that:

0 ≤ −→s (j)
i ≤ 1,

and:
m∑

j=1

(−→s (j)) = 1.

For instance, suppose that the considered activities are
those shown in Table 2 (the jth column of the table
corresponds to activity aj), and that:

−→s i = 〈0, 0, 0.16, 0, 0, 0, 0.39, 0.45, 0, 0〉.

In this case, the maximum confidence value (0.45) cor-
responds to activity WalkingDownstairs, followed by
Strolling (0.39) and hikingDown (0.16). The confi-
dence value corresponding to the other seven activities
is 0. Hence, considering the statistical prediction alone,
the classifier would erroneously conclude that user Alice
is walking downstairs.

However, looking at matrix M one can note that
WalkingDownstairs is not a feasible activity in the
current location of Alice. The rationale of the COSAR
technique is to discard those elements of −→s i that cor-
respond to unfeasible activities according to M , and to
choose the activity having maximum confidence among
the remaining elements (or one such activity at random
if the maximum confidence corresponds to more than
one activity). In this case, the COSAR technique con-
sists in discarding activities BrushingTeeth, Walking-
Downstairs, WalkingUpstairs and WritingOnBlack-
board, and in choosing activity Strolling, since it is
the one that corresponds to the maximum confidence
among the remaining activities. Hence, in this case the
COSAR technique correctly recognizes Alice’s activity.

5.2 Handling location uncertainty

Every localization technology is characterized by a cer-
tain level of inaccuracy. As a consequence, the mapping
of a physical location reading to a symbolic location is
prone to uncertainty. For instance, if the physical loca-
tion is retrieved from a GSM cell identification system,
the area including the user may correspond to different
symbolic locations, such as a HomeBuilding, a Hospi-
talBuilding and a Park.

Uncertainty in location is taken into account by our
system. In particular, if the user’s physical location cor-
responds to n possible symbolic locations l1, . . . , ln, the
possible activities that can be performed by the user
are calculated as those that can be performed in at
least one location belonging to {l1, . . . , ln}.

Example 6 Suppose that Alice forgot her GPS receiver
at home. Consequently she relies on a GSM cell identi-
fication service, which provides coarse-grained location
information. In particular, the service localizes Alice
within an area that includes both a Wood and a Ur-
banArea. Hence, our system calculates the set of Alice’s
possible activities as the union of the set of activities
that can be performed in woods and the set of activi-
ties that can be performed in urban areas. Considering
matrix M derived by the DPA algorithm and shown in
Table 2, possible activities for Alice are those that cor-
respond to columns 2 to 9, included. Therefore, with re-
spect to the scenario depicted in Example 5, in this case
WalkingDownstairs and WalkingUpstairs are possi-
ble activities (since urban areas may include steps).

5.3 Recognition of complex activities

As illustrated in Section 2, effective recognition of com-
plex activities like social ones can be hardly achieved by
using solely statistical methods. Indeed, symbolic tech-
niques should be used to state the conditions that deter-
mine the recognition of a given activity. For instance,
possible conditions to recognize the activity giving a
class are: “the actor is a teacher, the actor’s current
location is a classroom, some students are in the class-
room, and the actor is writing on a blackboard or using
a projector”.

From this example, it is evident that recognizing
this and similar activities relies not only on a symbolic
representation of the considered activities, but also on
methods to acquire and transform basic observations
(e.g., users’ presence, simple human activities) into the
symbolic representation. Our proposed technique in-
tegrates ontological reasoning with the recognition of
these basic observations through statistical analysis of
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sensor data. As explained in Section 3, this technique
is executed by the online ontological reasoner in a best-
effort fashion.

In particular, in order to recognize complex activ-
ities, we define them in the terminological part of the
ontology, possibly referring to simpler activities that
can be recognized through statistical reasoning. For in-
stance, the activity giving a class is represented in the
ActivO ontology as follows:

GivingClass ≡ ProfessionalActivity u

∀ hasActor.
(
Teacher u

hasCurrentLocation.
(
Classroom u

≥ 2 isInside.Student
)
u

hasCurrentActivity.
(
WritingOnBlackboard t

UsingProjector
))

.

Activity business meeting is represented by the fol-
lowing axiom:

BusinessMeeting v SocialActivity u
∀ hasActor.

(
Employee u

∃ hasCurrentLocation.(ConferenceRoom u
CompanyBuilding)

)
,

stating that a social activity in which every actor is an
employee whose current location is a company’s confer-
ence room, is a business meeting.

In order to recognize such activities, basic observa-
tions from sensors are mapped into the assertional part
of the ontology. For instance, if an indoor positioning
system is available, the ontology is kept up-to-date with
instances representing people in the smart space; e.g.,
“the current location of students Alice and Bob and of
teacher Carl is classroom C1”). Similarly, upon recogni-
tion of basic observations through statistical inferenc-
ing, the mobile device layer updates the assertional
part of the ontology; e.g., “the current activity of Carl
is writing on a blackboard”). When new information
is available, a new instance of class Activity is created
having as actor the current user, and ontological rea-
soning is activated to derive the most specific class that
is instantiated by the user’s activity. Continuing the ex-
ample, if the above conditions are met, the ontological
reasoner derives that the most specific activity of Carl is
giving a class. Then, this information is communicated
to the mobile device layer.

5.4 The COSAR module

COSAR-hist Algorithm

Input: τ is the time duration of the activity instances to be
classified; n is the number of sensors readings to be acquired

during τ ; LS is a location server mapping physical locations to

symbolic locations; S is a set of sensors; SDF is the sensor data
fusion module; M is the matrix of potential activities obtained

by the DPA algorithm; model is the statistical model of consid-

ered activities produced by the pattern recognition module; k is
the length of the time window used by the historical algorithm.

Output:
−→
C ′ = 〈c′1, c′2, . . . , c′n〉 is the vector of predictions,

where prediction c′i refers to the prediction regarding the i-th

activity instance.

1: COSAR-hist(τ, n, LS, S, SDF, M , model, k):

2:
−→
C ′ := 〈〉

3: i := 0
4: repeat

5: i := i+ 1

6:
−→
l i := LS.getPossibleCurrentLocations()

7: Ri := {}
8: for all s ∈ S do

9: Ri := Ri ∪ s.takeSamples(τ, n)
10: end for

11: fi := SDF.buildFeatureVector(Ri)

12: −→s i := statisticalClassification(fi, model)

13: ci := COSARPrediction(−→s i,
−→
l i,M)

14: c′i := COSAR-histPrediction({ci, ci−1, . . . , ci−k+1})
15:

−→
C ′.append(c′i)

16: until (interruptReceived)

17: Return(
−→
C ′)

18:
19: COSARPrediction(−→s ,

−→
l ,M):

20: −→a :=
−→
l ×M

21: COSAR-p := j s.t. s(j) = max{s(h)|a(h) 6= 0}
22: Return(COSAR-p)
23:

24: COSAR-histPrediction({ci, ci−1, . . . , ci−k+1}):

25: (A,m) := multiset({ci, ci−1, . . . , ci−k+1})
26: COSARhist-p := j s.t. m(j) = max{m(i)}, i ∈ A
27: Return(COSARhist-p)

Fig. 6 Historical algorithm for combined ontological-statistical

activity recognition (COSAR-hist algorithm).

This module is in charge of executing the histori-
cal variant of the algorithm for combined ontological-
statistical activity recognition shown in Figure 6. At
first, the algorithm initializes the vector of predictions−→
C ′ (line 2). Then, the process of actual activity recogni-
tion starts, and continues until an interrupt is received
(lines 4 to 16). For each activity instance to be recog-
nized, the location server is queried to obtain the
symbolic location corresponding to the current physical
location of the user (line 6). Note that more than one
symbolic location can correspond to the user’s physi-
cal location; for instance, if the location server provides
location information at a coarse grain. Then, raw data
are retrieved from sensors (lines 8 to 10) and a feature
vector fi is built by the sensor data fusion module
(line 11). The feature vector is used to classify the cor-
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responding activity instance according to the statistical
model provided offline by the pattern recognition

module, obtaining a confidence vector −→s i (line 12). Ac-
cording to −→s i, to the possible symbolic locations

−→
l i,

and to the matrix M obtained by the DPA algorithm,
the combined ontological-statistical prediction ci is cal-
culated by the COSARPrediction procedure (lines 19
to 22). As explained before, ci is the potential activity
having highest confidence in −→s i. Finally, the historical
variant is applied to obtain the COSAR-hist prediction
c′i (lines 24 to 27) considering the given time window.
As explained in Section 4.1, c′i is calculated considering
the predictions {ci, ci−1, . . . , ci−k} of the statistical-hist
classifier (in line 26, with m(j) we denote the multiplic-
ity of element j in the multiset of predictions). Then,
prediction c′i is added to the vector of predictions

−→
C ′

(line 15).

6 Implementation

In order to experiment our technique we have developed
a prototype implementation of the COSAR system for
commercially available sensor systems and mobile de-
vices. In our prototype implementation, we reproduce
the situation in which data are acquired from an ac-
celerometer embedded in a fitness watch, an accelerom-
eter embedded in a mobile phone, and a localization
technology providing the user’s current symbolic loca-
tion. Such data are sufficient to recognize different phys-
ical activities, as well as some activities of daily living.
We have also developed a prototype application that
takes advantage of COSAR to automatically adjust the
input/output modalities of a smart phone based on the
current activity; in Figure 7, the user interface shows
the current recognized activity (standing still).

6.1 Sensor layer

The sensor layer of our architecture has been imple-
mented on a smart phone running the Android2 plat-
form, and on Small Programmable Object Technology
(SPOT3) sensors by Sun R© Microsystems.

The Android device we used is a HTC Magic de-
vice, having a 528MHz processor, 288MB RAM/512MB
ROM memory, integrated 3-axis accelerometer and dig-
ital compass. We developed a simple Java application to
provide the upper layer with data about accelerations
of the hip (we assume that the user holds the device in
her pocket).

2 http://www.android.com
3 http://www.sunspotworld.com

Fig. 7 The Android smart phone and Sun SPOT sensor used for

the experiments

Sun SPOTs are sensor devices programmable in Java
Micro Edition; they are equipped with a 180 MHz 32
bit processor, 512K RAM/4M Flash memory, and IEEE
802.15.4 radio with integrated antenna. They mount a
3-axis accelerometer, and sensors for light intensity and
temperature. SPOT sensors include a prototype of fit-
ness watch (shown in Figure 7) that provides accelera-
tion of the right wrist through the 3-axis accelerometer
of the SPOT, and a SPOT widget to provide the cur-
rent symbolic location.

The sensor layer is in charge of communicating sen-
sor data to the COSAR module; it does not perform
any intensive computation such as feature calculation
or reasoning. In the current implementation, accelerom-
eters take samples at 16Hz frequency, and communi-
cate them to the mobile device layer. Moreover, upon
changes of the user’s symbolic location, the SPOT wid-
get communicates the new location to the upper layer.

6.2 Mobile device layer

The mobile device layer has been implemented in
Java for the Android platform. It is in charge of building
feature vectors based on sensor data, and to execute the
COSAR-hist algorithm shown in Figure 6 to recognize
simple activities at run time. In particular, the statis-
tical classifier that has been adopted is the multiclass
logistic regression algorithm, which has been chosen for
its efficiency and good recognition rates (see Section 7.2
for more details).
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6.3 Infrastructure layer

The main components of the infrastructure layer are
the module for pattern recognition and the ontological
reasoner.

The pattern recognition module is in charge of de-
riving the statistical model of considered activities based
on acquired training data. To this aim, we have used
Weka4, a Java-based toolkit that provides APIs for
implementing several machine learning algorithms. We
have performed extensive experiments (reported in Sec-
tion 7.2) with different algorithms, and finally we have
chosen multiclass logistic regression to derive the model
of activities. This model is communicated offline to the
mobile device layer.

The AttivO ontology was developed using Protégé5,
a graphical tool for ontology development that simpli-
fies design and testing. Ontological reasoning is per-
formed on a two-processor Xeon 2.4GHz workstation
with 1.5GB of RAM, using a Linux operating system,
the RacerPro6 reasoner, and its APIs for the Java pro-
gramming language. In particular, the DPA algorithm
(Figure 5) has been developed in Java, and the ma-
trix of potential activities is communicated offline to
the mobile device layer. Similarly, we developed the
module for recognition of complex activities in Java,
applying the optimizations for online ontological rea-
soning presented in [1].

Since SPOT sensors lacked a Bluetooth interface we
could not establish a direct connection between the mo-

bile device and the sensor layer. For this reason,
the infrastructure layer includes a simple Java ap-
plication to forward packets from the SPOTs to the
Android device, and vice-versa. This application com-
municates with remote SPOTs through a dedicated Sun
SPOT basestation using the IEEE 802.15.4 wireless net-
work protocol. Communication between the infras-

tructure and mobile device layer relies on WiFi
and Bluetooth interfaces.

6.4 Services layer

Even if the development of activity-aware applications
is out of the scope of this paper, we mention that, in or-
der to evaluate the effectiveness of our solution in real-
life situations, at the time of writing we are developing
some prototype services for different scenarios, includ-
ing well-being, context-aware retrieval of georeferenced
resources, and adapted interaction. One of them, devel-

4 http://www.cs.waikato.ac.nz/ml/weka/
5 http://protege.stanford.edu/
6 http://www.racer-systems.com/

(a) Current activity: driving (b) Current activity: business

meeting

Fig. 8 Android implementation

oped for the Android platform and shown in Figure 8, is
in charge of automatically setting the input and output
modalities of the smart phone based on user’s prefer-
ences and current activity. Decisions about the chosen
modality can be applied both to local applications (for
instance, the phone is muted if the user is in a business
meeting), and to Web applications, e.g., using the tech-
niques proposed in [20]. For instance, if the user is driv-
ing, text-to-speech can be automatically activated, and
image size, color, contrast and lightness can be modified
by a transcoding intermediary to improve readability.

7 Experimental evaluation

In order to validate our solution we performed an exten-
sive experimental evaluation comparing our technique
with a purely statistical one. We point out that the
symbolic location is used as a feature only in the exper-
iments performed with the purely statistical technique
(named statistical and statistical-hist in the following).
In the experiments with the COSAR technique (named
COSAR and COSAR-hist) location is not used as a fea-
ture by the statistical classifier; instead, it is used by
the ontological module only.

7.1 Experimental setup

The experiments concerned the recognition of 10 differ-
ent activities performed both indoor and outdoor by 6
volunteers (3 men and 3 women, ages ranging from 30 to
60) having different attitude to physical activities. Each
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(a) Evaluation of statistical classifiers

Classifier Accuracy

Bayesian Network 72.95%
C4.5 Decision Tree 66.23%
Multiclass Logistic Regression 80.21%
Naive Bayes 68.55%
SVM 71.81%

(b) Overall accuracy

Classifier Accuracy

statistical 80.21%
statistical-hist 84.72%
COSAR 89.20%
COSAR-hist 93.44%

(c) Error reduction

versus → statistical statistical-hist COSAR

statistical-hist 22.79%
COSAR 45.43% 29.32%

COSAR-hist 66.85% 57.07% 39.26%

Table 3 Summary of experimental results

activity was performed by 4 different volunteers for 450
seconds each. While performing activities, volunteers
wore one sensor on their left pocket and one sensor on
their right wrist to collect accelerometer data, plus a
GPS receiver to track their current physical location,
which was later mapped to the corresponding symbolic
location. Overall, each activity was performed for 30
minutes; hence, the dataset is composed of 5 hours of
activity data. The dataset is published on the web site
of our project7 and can be freely used to reproduce the
experiments, or as a testbed for evaluating other tech-
niques.

Samples from accelerometers were taken at 16Hz,
and the time extent of each activity instance was 1 sec-
ond; hence, the dataset is composed of 18, 000 activ-
ity instances. For each activity instance, accelerometer
readings were merged to build a feature vector com-
posed of 148 features, including means, variances, cor-
relations, kurtosis, and other statistical measures.

In order to evaluate recognition rates we performed
4-folds cross validation, dividing the dataset in 4 sub-
samples such that each subsample contains 450 instances
for each activity. Ideally, an out-of-the-box activity rec-
ognition system should be able to recognize one person’s
activities without the need of being trained on that per-
son. Hence, in order to avoid the use of activity data of
the same user for both training and testing we ensured
that activity instances regarding a given volunteer did
not appear in more than one subsample.

7 http://everywarelab.dico.unimi.it/palspot

7.2 Accuracy

Exp. 1) Statistical classification algorithms: The first
set of experiments was only aimed at choosing a sta-
tistical classification algorithm to be used in the sub-
sequent experiments. In general, since in many appli-
cations activity recognition must be performed on-line,
the choice of a classification algorithm should privilege
not only good recognition performance, but also very ef-
ficient classification procedures. Indeed, in many cases,
the activity recognition algorithm must be executed on
a resource-constrained mobile device.

In this first experiment we compared classification
techniques belonging to different classes of pattern rec-
ognition algorithms (i.e., Bayesian approaches, decision
trees, probabilistic discriminative models and kernel ma-
chines). Experimental results on our data (shown in Ta-
ble 2(a)) show that, among the considered techniques,
Multiclass Logistic Regression with a ridge estimator
(MLR), outperform the other techniques, gaining rec-
ognition rates higher than 80%. Hence, our choice for
the statistical classification algorithm was to use MLR [16],
a classification technique belonging to the class of prob-
abilistic discriminative models [4], having the advantage
of being particularly computationally efficient at clas-
sification time.

Exp. 2) Statistical technique: Table 4 shows the
confusion matrix and precision/recall measures for the
statistical technique evaluated in the first set of exper-
iments. As expected, when data from accelerometers
are used and the symbolic location is used as a fea-
ture, many misclassifications occur between activities
that involve similar body movements; e.g., instances
of strolling are often classified as instances of walking
downstairs; instances of brushing teeth are often classi-
fied as instances of writing on blackboard.

Exp. 3) Statistical-hist technique: We evaluated the
historical variant of the statistical classification algo-
rithm by simulating the case in which a user performs
each activity for 7.5 minutes before changing activity.
With this technique, the accuracy of activity recogni-
tion is 84.72% (see Table 2(b)), which results in an error
reduction rate of 22.79% with respect to the statistical
technique (see Table 2(c)). Observing the confusion ma-
trix and precision/recall measures shown in Table 5, it
can be noted that this technique does not significantly
reduce the number of misclassifications between activ-
ities involving similar movements.

Exp. 4) COSAR technique: The use of the COSAR
technique considerably improves the recognition rate
with respect to the solely statistical techniques. In par-
ticular, the recognition rate of COSAR is 89.2%, which
results in an error reduction of 45.43% with respect to
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(a) Confusion matrix

classified as → 1 2 3 4 5 6 7 8 9 10

brushingTeeth 1336 4 1 11 8 304 0 33 2 101
hikingUp 4 1551 219 5 14 0 1 1 5 0

hikingDown 0 382 1376 4 3 1 31 2 1 0
ridingBycicle 1 5 10 1738 23 0 0 23 0 0

jogging 13 3 17 21 1664 1 7 73 1 0
standingStill 32 5 3 0 290 1254 17 34 126 39

strolling 0 0 78 0 304 3 917 383 115 0
walkingDownstairs 0 0 1 0 0 0 2 1762 35 0

walkingUpstairs 0 5 0 4 0 1 16 144 1629 1
writingOnBlackboard 14 61 1 16 7 485 0 1 5 1210

(b) Precision / recall

prec. recall

95,43% 74,22%
76,93% 86,17%
80,66% 76,44%
96,61% 96,56%
71,94% 92,44%
61,20% 69,67%
92,53% 50,94%
71,74% 97,89%
84,89% 90,50%
89,56% 67,22%

Columns: 1=brushingTeeth; 2=hikingUp; 3=hikingDown; 4=ridingBycicle; 5=jogging; 6=standingStill; 7=strolling; 8=walkingDownstairs;

9=walkingUpstairs; 10=writingOnBlackboard

Table 4 Results for the statistical classifier

(a) Confusion matrix

classified as → 1 2 3 4 5 6 7 8 9 10

brushingTeeth 1344 0 0 8 3 375 0 8 0 62
hikingUp 3 1613 170 0 13 0 1 0 0 0

hikingDown 8 252 1525 1 0 1 13 0 0 0
ridingBycicle 0 7 5 1784 2 0 0 2 0 0

jogging 4 0 1 18 1764 0 0 13 0 0
standingStill 4 2 0 0 302 1357 1 5 97 32

strolling 0 0 70 0 252 0 1067 355 56 0
walkingDownstairs 0 0 0 0 2 7 0 1784 7 0

walkingUpstairs 0 0 0 0 0 0 0 49 1751 0
writingOnBlackboard 3 40 0 16 10 464 6 0 0 1261

(b) Precision / recall

prec. recall

98.39% 74.67%
84.27% 89.61%
86.11% 84.72%
97.65% 99.11%
75.13% 98.00%
61.57% 75.39%
98.07% 59.28%
80.51% 99.11%
91.63% 97.28%
93.06% 70.06%

Columns: 1=brushingTeeth; 2=hikingUp; 3=hikingDown; 4=ridingBycicle; 5=jogging; 6=standingStill; 7=strolling; 8=walkingDownstairs;

9=walkingUpstairs; 10=writingOnBlackboard

Table 5 Results for the statistical-hist classifier

(a) Confusion matrix

classified as → 1 2 3 4 5 6 7 8 9 10

brushingTeeth 1622 0 0 0 0 178 0 0 0 0
hikingUp 0 1443 171 19 34 14 119 0 0 0

hikingDown 0 268 1284 22 2 13 211 0 0 0
ridingBycicle 0 4 7 1787 1 1 0 0 0 0

jogging 0 0 0 134 1640 9 6 8 3 0
standingStill 0 3 0 26 9 1738 21 1 2 0

strolling 0 0 0 69 9 54 1597 67 4 0
walkingDownstairs 4 0 0 0 0 1 0 1753 42 0

walkingUpstairs 24 0 0 0 0 26 0 107 1643 0
writingOnBlackboard 0 0 0 0 0 251 0 0 0 1549

(b) Precision / recall

prec. recall

98,30% 90,11%
83,99% 80,17%
87,82% 71,33%
86,87% 99,28%
96,76% 91,11%
76,06% 96,56%
81,73% 88,72%
90,55% 97,39%
96,99% 91,28%
100,00% 86,06%

Columns: 1=brushingTeeth; 2=hikingUp; 3=hikingDown; 4=ridingBycicle; 5=jogging; 6=standingStill; 7=strolling; 8=walkingDownstairs;

9=walkingUpstairs; 10=writingOnBlackboard

Table 6 Results for the COSAR classifier

(a) Confusion matrix

classified as → 1 2 3 4 5 6 7 8 9 10

brushingTeeth 1716 0 0 0 0 80 0 0 0 4
hikingUp 0 1604 116 10 16 1 53 0 0 0

hikingDown 11 235 1439 11 0 4 100 0 0 0
ridingBycicle 0 4 3 1792 0 0 1 0 0 0

jogging 0 0 0 91 1708 0 0 1 0 0
standingStill 0 0 0 17 12 1748 23 0 0 0

strolling 0 0 0 26 0 27 1698 40 9 0
walkingDownstairs 0 0 0 0 0 9 0 1790 1 0

walkingUpstairs 0 0 0 0 0 9 0 18 1773 0
writingOnBlackboard 0 0 0 0 0 240 8 0 0 1552

(b) Precision / recall

prec. recall

99.36% 95.33%
87.03% 89.11%
92.36% 79.94%
92.04% 99.56%
98.39% 94.89%
82.53% 97.11%
90.18% 94.33%
96.81% 99.44%
99.44% 98.50%
99.74% 86.22%

Columns: 1=brushingTeeth; 2=hikingUp; 3=hikingDown; 4=ridingBycicle; 5=jogging; 6=standingStill; 7=strolling; 8=walkingDownstairs;

9=walkingUpstairs; 10=writingOnBlackboard

Table 7 Results for the COSAR-hist classifier
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Fig. 9 Computational cost on the mobile device

the statistical technique, and of 29.32% with respect
to the statistical-hist technique. Looking at the con-
fusion matrix (Table 6), we note that COSAR avoids
many misclassifications between activities characterized
by similar body movements but different contexts (e.g.,
location) in which they are typically performed.

Exp. 5) COSAR-hist technique: Finally, the histori-
cal variant of COSAR (evaluated with the same setup as
in Exp. 3 ) further improves classification results, gain-
ing a recognition rate of 93.44%, an error reduction of
39.26% with respect to the COSAR technique, and of
66.85% with respect to the statistical technique. Con-
fusion matrix and precision/recall measures are shown
in Table 7.

7.3 Computational cost

Consumption of computational resources is a funda-
mental aspect to be considered, especially when activity
recognition is performed using mobile devices. In order
to assess the feasibility of our approach, we have con-
ducted experiments regarding the online execution of
the COSAR-hist algorithm on an Android smart phone,
whose capabilities have been reported in Section 6.1.

As explained in Section 3, the mobile device is
not in charge of very computationally expensive tasks
such as ontological reasoning; however, it is in charge
of building feature vectors from sensor data streams,
and of performing statistical classification using those
vectors. Note that computational cost depends not only
on the used algorithm, but also on the size of feature
vectors. Indeed, in general the more features are consid-
ered, the more expensive is to perform classification. For
this reason, we have conducted experiments with differ-
ent numbers of features; i.e., ranging from 15 to 150.
The considered features size is reasonable, as shown

in research studying the role of feature selection [11]
for activity recognition (see, e.g., [17]). Features were
selected from the initial corpus using the well-known
chi-square [19] method.

With each considered number of features, we have
executed the COSAR-hist algorithm on the smart phone
for 30 minutes, with samples gathered from the em-
bedded accelerometer at 16Hz, and time extent of ac-
tivity instances of 1 second (i.e., a classification was
performed every one second). For each number of fea-
tures we have measured the average execution time of
COSAR-hist; hence, results are average of 1, 800 runs
of the COSAR-hist algorithm. Results (also showing
standard deviation) are reported in Figure 9. It can
be observed that the execution time of the algorithm
grows linearly with the number of features. This is due
to the fact that execution times are dominated by the
statistical learning algorithm MLR, whose complexity
is linear with respect to the number of features. Ex-
ecution times range from less than 20ms when using
15 features to less then 50ms when using 150 features.
Hence, we can conclude that our algorithm can be ex-
ecuted on currently available mobile devices with very
limited interference on their normal operations.

8 Conclusions and future work

In this paper we illustrated COSAR, a system for au-
tomatic activity recognition based on the integration
of statistical and ontological reasoning. While the main
contribution is the design of the hybrid reasoning algo-
rithm running on the mobile device (including the pro-
posal of a novel variant of statistical methods), our work
includes an innovative architecture and its complete im-
plementation. Results from extensive experiments with
real data confirm the superiority of our approach with
respect to purely statistical methods and the possibility
of running the core COSAR system modules on mobile
devices.

We are considering several extensions of COSAR.
Currently, location is the only data used to enact on-
tological reasoning, but our technique can be easily ex-
tended to consider a wider class of context data. In
particular, we plan to extend our technique to consider
the temporal characterization of activities (e.g., dura-
tion), as well as their temporal relationships (i.e., the
probability that a given activity ai is followed by an
activity aj). To this aim, we should design a temporal
extension of our ontology, and investigate the use of a
probabilistic framework such as Hidden Markov Models
as an evolution of our historical prediction procedure.
Another interesting extension would be the design of
more expressive activity ontologies using the OWL 2
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language instead of OWL-DL, and the substitution of
the ontological reasoner used in COSAR with one sup-
porting OWL 2.
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