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Abstract A major feature of the emerging geo-social

networks is the ability to notify a user when one of his

friends (also called buddies) happens to be geographi-

cally in proximity with the user. This proximity service

is usually offered by the network itself or by a third

party service provider (SP) using location data acquired

from the users. This paper provides a rigorous theoret-

ical and experimental analysis of the existing solutions

for the location privacy problem in proximity services.

This is a serious problem for users who do not trust

the SP to handle their location data, and would only

like to release their location information in a general-

ized form to participating buddies. The paper presents

two new protocols providing complete privacy with re-

spect to the SP, and controllable privacy with respect

to the buddies. The analytical and experimental anal-

ysis of the protocols takes into account privacy, service

precision, and computation and communication costs,

showing the superiority of the new protocols compared

to those appeared in the literature to date. The pro-

posed protocols have also been tested in a full system

implementation of the proximity service.
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1 Introduction

A geo-social network is an extension of a social network

in which the geographical positions of participants and

of relevant resources are used to enable new informa-

tion services. These networks are mostly motivated by

the increased availability of GPS-enabled mobile de-

vices that support both location-based services, and

easy access to the current social networks.

As in most social networks, each user has a contact

list of friends, also called buddies. A basic service in geo-

social networks is the proximity service that alerts the

user when any of her buddies is in the vicinity, possibly

enacting other activities like visualizing the buddy’s po-

sition on a map, or activating a communication session

with the buddy. Such proximity services, often called
friend finder, are already available as part of geo-social

networks (e.g., Brightkite1), as part of a suite of map

and navigation services (e.g., Google Latitude2), or as

an independent service that can be integrated with so-

cial networks (e.g., Loopt3).

From a data management point of view, a proxim-

ity service involves the computation of a range query

over a set of moving entities issued by a moving user,

where the range is a distance threshold value decided

by the user. All existing services are based on a central-

ized architecture in which location updates, issued from

mobile devices4, are acquired by the SP, and proximity

is computed based on the acquired locations.

1 http://brightkite.com
2 http://www.google.com/latitude
3 http://www.loopt.com
4 While a variety of positioning technologies and communica-

tion infrastructure can be used, here we assume GPS-enabled

devices with always-on 3G data connection.
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The privacy problem

While proximity services are very attractive for many

social network users, they also raise severe privacy con-

cerns: a) the users may not fully trust the service provider

that will handle their location data, b) the users would

like to have better control on the precision of location

data released to their buddies. For the purpose of al-

leviating these concerns, in this paper we address the

problem of protecting users’ location privacy in the con-

text of proximity services, considering different possible

adversaries, including the SP and, to a different extent,

the buddies.

Existing proximity services do not offer any pro-

tection regarding point a) above other than legal pri-

vacy policy statements, and they offer a very limited

control regarding point b); for example, some solutions

allow the user to limit the location released to the bud-

dies to the precision level of city. Point a) above has

been addressed as part of a recent research effort on

this topic by proposing a decentralized (peer-to-peer)

architecture, and a number of protocols that compute

proximity without the intervention of the SP [19].

Despite the smart protocols being proposed, we ar-

gue that a centralized or SP-mediated architecture, in

addition to support current business models, may be

more appropriate for a proximity service than a de-

centralized architecture, since reducing the communi-

cation and computation costs on the clients is often

a primary goal. A centralized architecture imposes ei-

ther a complete trust of the user on the central entity,
i.e., the SP, or the need for a protocol that is proved to

limit the location knowledge released to the SP. The nu-

merous approaches proposed for privacy preservation in

location-based services [2] are not directly applicable; in

some cases this is because they try to enforce anonymity

while users are often explicitly or implicitly identified in

social networks, and in other cases because they focus

on queries different from the ones needed to compute

the proximity service. Section 2 will present in more de-

tail the limitations of these approaches as well as of the

recent research efforts that specifically address privacy

in proximity-based services. In summary, among the so-

lutions that do take advantage of the SP as a mediator

to reduce computation and communications costs, all

exhibit one or more of the following problems: i) they

do not provide formal guarantees that the information

released to the SP, as part of the protocol, cannot be

used to violate privacy, ii) they do not consider curious

buddies as possible adversaries, and iii) the proposed

protocols lead to a significant loss of service precision.

Contribution

Considering this scenario, the main contributions of this

paper are the following.

a) This is the first comprehensive rigorous study of lo-

cation privacy in proximity services, explicitly taking

into account privacy control with respect to buddies,

providing a way to separate the specification of the dis-

tance threshold from the users’ privacy requirements.

b) Two new protocols are designed, formally analyzed,

and empirically tested, showing their superiority with

respect to existing solutions.

The new protocols are proved to guarantee two proper-

ties: first, no location information is acquired by the SP,

not even in presence of a-priori probabilistic knowledge

of users’ location; second, for each user, her buddies

cannot acquire her location information with a level of

precision higher than the one specified by the user. In-

deed, each user is allowed to specify her privacy require-

ments in terms of arbitrary regions of the geographical

space: given a specific geographic position of the user,

the region including the position defines the highest

location precision exposed to her buddies. Differently

from other proposals that limit these regions to equally

sized cells of a grid, our framework considers arbitrary

regions modeled as granules of a spatial granularity.

The first protocol, called C-Hide&Seek5, is shown to

provide complete protection with respect to the SP, and

to satisfy the privacy requirements of each user with re-

spect to her buddies. Its efficiency is comparable with

the simplistic solution adopted in current services for

proximity computation that provides no privacy pro-

tection. The second protocol, called C-Hide&Hash, of-

fers the same guarantees, but provides an even higher

level of privacy with respect to the buddies at the cost

of higher communication and computation costs. Our

solutions are based on the use of well-founded cryptog-

raphy and secure computation techniques, and require

buddies to share a secret. A theoretical analysis of the

protocols formally supports the privacy guarantees and

evaluates the achieved service precision, as well as the

involved computation and communication costs. The

practicality of our approach is illustrated by a complete

implementation of the techniques in a system, includ-

ing client applications for mobile phones. Our exten-

sive experimental work reveals the specific behavior of

the system in terms of achieved privacy, communica-

tion and computation costs, as well as service preci-

sion. These statistics indicate that both of our proto-

cols offer significantly better service precision and lower

5 C stands for centralized
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costs than existing solutions while offering comparable

or better privacy. Each of the proposed protocols has its

own advantages over the other. C-Hide&Seek has very

low communication and computation costs leading to

high scalability, and it can be used for buddies local-

ization in addition to proximity alerting. C-Hide&Hash

is a purely proximity alerting protocol, providing a sig-

nificantly higher privacy than C-Hide&Seek at extra

communication and computation costs; However, these

system costs are still sustainable in practice for reason-

ably large sets of online buddies, especially when the

service is automatically run in background on the mo-

bile device.

The rest of the paper is organized as follows. In Sec-

tion 2 we discuss related work. In Section 3 we describe

more formally the problem we are addressing in terms of

privacy concerns, privacy requirements, and adversary

models. In Section 4 we illustrate the two proposed pro-

tocols, and in Section 5 we study their formal proper-

ties, including the satisfaction of privacy requirements,

the computational and communication costs, and the

service precision. In Section 6 we describe the system

implementation, and in Section 7 we report experimen-

tal results. Section 8 concludes the paper with a discus-

sion of possible extensions.

2 Related Work

Computing proximity involves the continuous evalua-

tion of spatial range queries over a set of moving enti-

ties, with the radius range possibly changing [5,16]. The

literature on this problem is both from the database,

and the mobile computing community; recent contri-

butions are briefly surveyed in [1], where an efficient

algorithm for proximity detection named Strips is pre-

sented. The goal of this and similar approaches is the

efficiency in terms of computation and communication

complexity, while privacy issues are mostly ignored.

Proximity services are a special category of loca-

tion based services (LBS), and several LBS privacy pre-

serving techniques have been recently proposed (see [2]

for an extensive survey). So called anonymity-based ap-

proaches (e.g., [9,10]) consider the possible use of lo-

cation information contained in anonymous LBS re-

quests coupled with background knowledge to discover

the identity of the issuers; in this case, the specific ser-

vice being requested is often considered private, and

privacy is violated when the issuer is identified. Differ-

ent spatial generalization functions and strategies are

proposed to guarantee a given level of anonymity of the

users. An anonymized request may contain a quite pre-

cise location, since a generalization is considered satis-

factory whenever the region contains a sufficiently large

number of potential issuers, independently from the ac-

tual size of the region. While effective in other scenar-

ios, these techniques are less useful in the proximity

services we are considering, since in these services lo-

cation is considered private information and we don’t

want to exclude that the identity of buddies may be

discovered in other ways. On the contrary, obfuscation-

based techniques (e.g., [18]) apply transformations on

private information, often identified with user location,

so that even if the issuer is identified, her location re-

mains protected. These techniques have been applied

mostly for LBS performing k-NN spatial queries, and do

not apply to proximity detection. Finally, encryption-

based approaches are inspired to private information

retrieval (PIR) methods. The idea of these approaches

is to encrypt the information exchanged with the ser-

vice provider, and to process the corresponding query

in an encrypted form, so that no location information

is revealed to the SP. The technique proposed in [8] is

specifically designed for NN queries, while [11] consid-

ers range queries over static resources, which is still not

the proper setting for proximity detection, but is indeed

a promising approach.

Ruppel et al. [14] propose a technique for privacy

preserving proximity computation based on the appli-

cation of a distance preserving transformation on the

location of the users. However, the SP is able to obtain

the exact distances between users, and this can lead

to a privacy violation. For example, having this knowl-

edge, it is possible to construct a weighted graph of all

the users, assigning to each edge connecting two users

their exact distance. It is easily seen that a “relative”

distribution of the user locations can be extracted from

this graph. If the SP has a-priori knowledge about the

distribution of the users (as considered in our paper),

it is possible to merge the distribution resulting from

the graph with the a-priori one, thus revealing some lo-

cation information about the individuals. In addition,

there is no privacy guarantee with respect to the other

users participating in the service. The solutions we pro-

pose in this paper do not reveal to the SP any infor-

mation about the distance between users, and let users

define the privacy requirement about the location in-

formation that buddies can acquire.

Zhong et al. propose three different techniques for

privacy preservation in proximity-based services called

Louis, Lester and Pierre [19]. These techniques are de-

centralized secure computation protocols based on public-

key cryptography. Louis is a three-parties secure com-

putation protocol. By running this protocol, a user A

gets to know whether another user B is in proximity

without disclosing any other location information to B

or to the third party T involved in the protocol. T only
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helps A and B compute their proximity, and it is as-

sumed to follow the protocol and not to collude with A

or B. However, T learns whether A and B are in prox-

imity. Considering our adversary model, which will be

explained in detail in Section 3.3, this third party can-

not be the SP that may use proximity information to

violate location privacy, and it is unlikely to be played

by a third buddy since it would involve significant re-

sources. The Lester protocol allows a user A to compute

the exact distance from a user B only if the distance be-

tween the two users is under a certain threshold chosen

by B. The main advantage of these two techniques is

that they protect a user’s privacy without introducing

any approximation in the computation of the proxim-

ity. However, Louis incurs in significant communication

overheads, and Lester in high computational costs. In

addition, the only form of supported privacy protec-

tion with respect to the buddies is the possibility for

a user to refuse to participate in the protocol initiated

by a buddy if she considers the requested proximity

threshold too small. The Pierre protocol partitions the

plane where the service is provided into a grid, with

each cell having edge equal to the requested distance

threshold. The locations of the users are then general-

ized to the corresponding cell, and two users are con-

sidered in proximity if they are located in the same cell

or in two adjacent cells. The achieved quality of service

decreases as the requested proximity threshold grows.

We will explain in more detail the actual impact on

service precision in Section 7. Finally, it should be ob-

served that Lester and Pierre protocols are based on a

buddy-to-buddy communication, and although this can

guarantee total privacy with respect to the SP (as no

SP is involved in the computation), scalability issues

may arise since each time a user moves she needs to

communicate her new position to each of her buddies.

Another solution for privacy preserving computa-

tion of proximity, called FriendLocator, has been pro-

posed by Šikšnys et al. [17]. Similarly to Pierre, two

users are considered in proximity when they are located

in the same cell or two adjacent cells of the grid con-

structed considering the proximity threshold shared by

the users. An interesting aspect of the proposed solu-

tion is the location update strategy, which is designed

to reduce the total number of location updates to be

sent by the users, hence reducing communication costs.

Two users share a hierarchy of grids, where each grid

is identified by a level. The larger the value of the level

is, the finer the grid. The highest level grid is the one

in which the edge of a cell is equal to the proximity

threshold. The detection of proximity is then incremen-

tal, i.e. if two users are in adjacent cells at the level n

grid, then their respective cells in the grid of level n+1

are checked, until they are detected either not to be in

proximity, or to be in proximity considering the high-

est level grid. With this solution, when two users are

detected not to be in proximity at a certain level l,

there is no need for them to check again the proxim-

ity until one of them moves to a different cell of the

level l grid. As a consequence, less location updates

are needed, and this is experimentally shown to signifi-

cantly reduce the total number of messages exchanged.

However, the FriendLocator protocol reveals some ap-

proximate information about the distance of users to

the SP (e.g. the level in which the incremental prox-

imity detection protocol terminates and whether the

buddies are in proximity at that level). As already ob-

served for the Louis protocol, in our adversary model

this information can lead to a privacy violation. Fur-

thermore, the impact on the quality of service of using

a large proximity threshold is identical to the Pierre

protocol discussed above.

In previous works [12,13], we proposed different pro-

tocols for preserving privacy in proximity services. The

Longitude solution [12] translates the considered space

to a toroid, and a distance preserving transformation is

applied to the locations of users. The SP participates in

a form of three party secure computation of proximity,

leading to an approximate but quite accurate service

precision, guaranteeing privacy requirements with re-

spect to buddies similar to the ones presented in this

paper. Longitude also guarantees complete privacy with

respect to the SP under the assumption that he has

no a-priori knowledge on the distribution of users, i.e.,

when a uniform distribution is assumed. In this paper

we defend also against SP having arbitrary a-priori dis-

tributions, showing that by running our protocols they

don’t acquire any additional location information. The

Hide&Seek and Hide&Crypt protocols [13] are hybrid

techniques in which an initial computation of the prox-

imity condition is done by the SP. In some cases, the

SP is not able to decide the proximity condition, and

a buddy-to-buddy protocol is triggered. An important

difference with respect to the protocols we are present-

ing here is that the SP is not totally untrusted: users

can specify a level of location precision to be released to

the SP and (a different one) for buddies. This hybrid ap-

proach significantly reduces communication costs with

respect to decentralized solutions when privacy require-

ments with respect to the SP are not too strict.

3 Problem formalization

In this section we formally define the service we are con-

sidering, the users’ privacy concerns and requirements,
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the adversary model, and the occurrence of a privacy

violation.

3.1 The proximity service

By issuing a proximity request, user A is interested to

know, for each of her buddies B, if the following condi-

tion is satisfied:

d(locA, locB) ≤ δA (1)

where d(locA, locB) denotes the Euclidean distance be-

tween the reported locations of A and B and δA is a

threshold value given by A. When (1) is true, we say

that B is in the proximity of A. The proximity relation

is not symmetric, since δB may be different from δA,

In this paper we consider services in which the bud-

dies of a user are pre-determined. We call these services

“contact-list-based”, since buddies are explicitly added

as “friends”, like in most social networks and instant

messaging applications. This is in contrast to “query-

driven” proximity services, in which buddies can be re-

trieved through a query based, for example, on the in-

terests of the buddies. Technically, the main difference

is that in the “contact-list-based” service it is reason-

able to assume that each user can share a secret with

each of her buddies, as we do in our proposed tech-

niques. On the contrary, in the case of “query-driven”

services, the set of buddies may change dynamically,

and the number of buddies can be potentially very large.

In this situation, it may not be practical to share a se-

cret with each buddy.

With the presence of a service provider (SP), and in

absence of privacy concerns, a simple protocol can be

devised to implement the proximity service: The SP re-

ceives location updates from each user and stores their

last known positions, as well as the distance threshold

δA for each user A. While in theory each user can define

different threshold values for different buddies, in this

paper, for simplicity, we consider the case in which each

user A defines a single value δA for detecting the prox-

imity of all of her buddies. When the SP receives a loca-

tion update, it can recompute the distance between A

and each buddy (possibly with some filtering/indexing

strategy for efficiency) and communicate the result to

A. In a typical scenario, if B is in proximity, A may

contact him directly or through the SP; however, for

the purpose of this paper, we do not concern ourselves

as what A will do once notified. In the following of this

paper we refer to the above protocol as the Naive pro-

tocol.

3.2 Privacy concerns and privacy requirements

The privacy we are considering in this paper is location

privacy : we assume that a user is concerned about the

uncontrolled disclosure of her location information at

specific times.

Considering the Naive protocol, it is easily seen that

the SP obtains the exact location of a user each time she

issues a location update. Furthermore, a user’s location

information is also disclosed to her buddies. If Alice is

in the proximity of Bob (one of her buddies), then Bob

discovers that Alice is located in the circle centered in

his location with radius δBob. Since δBob is chosen by

Bob and can be set arbitrarily without consent from

Alice, Alice has no control on the location information

disclosed to Bob.

Our definition of location privacy is based on the

idea that the users should be able to control the location

information to be disclosed. In the considered services,

a user may prefer the service provider to have as lit-

tle information about her location as possible, and the

buddies not to know her exact position, even when the

proximity is known to them. Moreover, the exchanged

information should be protected from any eavesdrop-

per.

In general, the level of location privacy can be rep-

resented by the uncertainty that an external entity has

about the position of the user. This uncertainty is a

geographic region, called minimal uncertainty region

(MUR), and its intuitive semantics is the following: the

user accepts that the adversary knows she is located

in a MUR R, but no information should be disclosed

about her position within R.

In the solution proposed in this paper, each user can
express her privacy preferences by specifying a parti-

tion of the geographical space defining the MURs that

she wants guaranteed. For example, Alice specifies that

her buddies should never be able to find out the spe-

cific campus building where Alice currently is; in this

case, the entire campus area is the minimal uncertainty

region. The totality of these uncertainty regions for a

user can be formally captured with the notion of spatial

granularity.

While there does not exist a formal definition of

spatial granularity that is widely accepted by the re-

search community, the idea behind this concept is sim-

ple. Similar to a temporal granularity [3], a spatial gran-

ularity can be considered a subdivision of the spatial

domain into a discrete number of non-overlapping re-

gions, called granules. In this paper, for simplicity, we

consider only granularities6 that partition the spatial

6 Here and in the following, when no confusion arises, we use

the term “granularity” to mean “spatial granularity”.
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domain, i.e., the granules of a granularity do not inter-

sect and the union of all the granules in a granularity

yields exactly the whole spatial domain. Each granule

of a granularity G is identified by an index (or a label).

We denote with G(i) the granule of the granularity G

with index i.

Users specify their privacy requirements via spatial

granularities, with each granule being a MUR. The two

extreme cases in which a user requires no privacy pro-

tection and maximum privacy protection, respectively,

can be naturally modeled. In one extreme case, if a

user A does not want her privacy to be protected then

A sets her privacy preference to the bottom granularity

⊥ (a granularity that contains a granule for each basic

element, or pixel, of the spatial domain). In the other

extreme, if user A wants complete location privacy then

she sets her privacy preference to the top granularity >,

i.e., the granularity that has a single granule covering

the entire spatial domain. In this case, A wants the en-

tire spatial domain as MUR.

In the following of this paper, we assume that each

user A specifies a granularity GA defining her location

privacy requirements with respect to all buddies. Our

approach can be easily extended to model the case in

which a user specifies a different granularity for a dif-

ferent buddy or for a different group of buddies, as dis-

cussed in Section 8. We also assume that each user’s

privacy requirement with respect to the SP is the entire

spatial domain, i.e., the user does not want to disclose

any location information to the SP.

3.3 Adversary model and privacy preservation

We consider two adversary models, for the SP and the

buddies, respectively. Assuming the SP and the bud-

dies as potential adversaries, also models other types of

adversaries. Firstly, it models the case of an external

entity taking control of the SP system or of a buddy’s

system. Secondly, it models the case of an external en-

tity eavesdropping one or more communication chan-

nels between users and the SP. Note that, in the worst

case, the eavesdropper can observe all the messages that

are exchanged in the protocol. Since the same holds for

the SP, the eavesdropper can learn at most what the SP

learns. Since in this paper we prove that the SP does

not acquire any location information, then the same

holds for an eavesdropping adversary.

The techniques we present in this paper not only

guarantee each user’s privacy requirement against these

two adversary models, but also in the case of a set of

colluding buddies. In Section 5.1.2 we also discuss which

privacy guarantees are provided by our techniques in

case one or more buddies collude with the SP.

In both adversary models we assume that the ad-

versary knows:

– the protocol,

– the spatial granularities adopted by each user, and

– an a-priori probabilistic distribution of the locations

of the users.

The two models differ in the sets of messages received

during a protocol run, and in their ability (defined by

the protocol in terms of availability of cryptographic

keys) to decrypt the content of the messages.

The a-priori knowledge of the location of a user A

is given by a location random variable priA with the

probability mass distribution denoted P (priA). In other

words, as prior knowledge we assume that the location

of a user A follows a known distribution given by the

distribution of the random variable priA. Note that in

this paper we assume the spatial domain is discrete, i.e.,

a countable set of “pixels”.

Let M be the set of messages exchanged between

the entities involved in the service. The adversary can

compute the a-posteriori probability distribution of the

location random variable postA as the distribution of

the location of A under the given messages M and the

prior knowledge priA:

P (postA) = P (locA|M,priA)

Technically, we may view locA as a uniform random

variable over the spatial domain, i.e., the possible loca-

tion of A when no knowledge is available.

The condition for privacy preservation is formally

captured by Definition 1.

Definition 1 Given a user A with privacy requirement

GA, and M the set of messages exchanged by the prox-

imity service protocol in which A is participating, A’s

privacy requirement is said to be satisfied if

P (locA|M,priA, locA ∈ gA) = P (locA|priA, locA ∈ gA)

for all a-priori knowledge priA and all granule gA of

GA.

The above definition requires that the location dis-

tribution of user A does not change due to the messages

M , given the a-priori knowledge and the fact that A is

located in gA. Hence, a privacy violation occurs when

the adversary acquires, through the analysis of the pro-

tocol messages, more information about the location of

A than allowed by her privacy requirements, i.e., when

the probability distribution of the position of A within

the region defined by granule gA changes with respect

to priA.

Since we aim at complete location privacy with re-

spect to the SP, we use gA to be the entire spatial do-

main in the above definition when the SP is concerned.
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In this case, the definition requires P (locA|M,priA) =

P (locA|priA), i.e., P (postA) = P (priA) or no new loca-

tion information for each user A. In this case, we also

say that A’s privacy requirement is satisfied with respect

to the SP. For the buddies, user A uses a granularity

GA, which may not be >. In this case, the definition

requires that with the additional knowledge of A being

in a granule, the buddies cannot derive anything more

(e.g., where within the granule) from the messages ex-

changed. In this case, we also say that A’s privacy re-

quirement is satisfied with respect to the buddies.

4 Defense techniques

In this section we present two protocols to preserve

location privacy in proximity-based services. The pro-

tocols are called C-Hide&Seek and C-Hide&Hash and

they guarantee privacy protection of a user A with re-

spect to both the SP and the buddies of A.

In order to ensure user’s privacy, the two protocols

adopt symmetric encryption techniques. In the follow-

ing, we assume that each user A has a key KA that is

shared with all of her buddies and is kept secret to ev-

erybody else. Hence, each user A knows her own key KA

and one key KB for each buddy B. Since we are con-

sidering a contact-list-based service, this key exchange

is assumed to be performed with any secure method

before running our protocols.

For the sake of presentation, we decompose each

protocol into two parts: the location update sub-protocol

is used by a user to provide her location information,

while the proximity request sub-protocol is used by a

user to compute the proximity of her buddies. The lo-

cation update sub-protocol is almost the same in both

of our proposed solutions, and it is presented in Sec-

tion 4.1. What really distinguishes C-Hide&Seek and C-

Hide&Hash is the proximity request sub-protocol, and

this is described in Sections 4.2 and 4.3, respectively.

We conclude this section with a discussion about pos-

sible technical extensions.

4.1 The location update sub-protocol

The location update sub-protocol is run by a user to

provide location information to the SP. In particular, it

defines how a user A provides to the SP the encrypted

index of the granule of GA where she is located.

Before describing the sub-protocol, we first discuss

when it should be run. Consider the following naive pol-

icy: a user A updates her location only when she crosses

the boundary between two granules of GA, reporting

the index of the new granule. It is easily seen that, inde-

pendently from how the location update is performed,

each time this message is received, the adversary learns

that A is very close to the border between two gran-

ules, excluding many other locations, and hence violat-

ing the privacy requirements. Intuitively, the problem

of the above policy is that the probability that a loca-

tion update is performed at a given time depends on

the location from where the message is sent.

The solution we propose is the following: time is

partitioned into update intervals and an approximate

synchronization on these intervals among the partici-

pating nodes is assumed.7 Each update interval has the

same duration T and is identified by an index. Each

user has a value t in [0, T ) and sends exactly one lo-

cation update during each update interval after that

time t elapses from the beginning of the interval (see

Figure 1). It is easily seen that, by using this update

policy, the location updates are issued independently

from the location of the users.

Fig. 1 Location update policy and generation of single-use keys.

We now describe how the location update sub-protocol

works. User A first computes the index i of the gran-

ule of GA where she is located. Then, A encrypts i

using a slightly different technique in the two proposed

solutions. In the C-Hide&Seek protocol a symmetric en-

cryption function E is applied, while in the C-Hide&Hash

protocol a hashing function H is used. When applying

the hashing function H, in order to prevent brute-force

attacks, a secret key is used as a “salt”, i.e., a secret key

is concatenated to i, and the resulting value is given as

input to H. In the following, we refer to this salt as the

“key” used to hash i, and we denote with HK(i) the

hashing of the value i with key K.

The safety of the protocols depends on the fact that

the key used to encrypt or hash i is changed at every

use. At the same time, we need the key to be shared by a

7 In our current implementation, all the messages sent from the
SP to the users contain the timestamp of the SP, allowing clients

to synchronize their clocks using a Lamport-style algorithm. The

overhead due to this solution is negligible. Other forms of global
clock synchronization could also be used as, e.g., using GPS de-

vices.
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user with all of her buddies. While other techniques can

be adopted to achieve this result, our solution is the fol-

lowing: the key KA that A shares with all of her buddies

is used to initialize a keystream. When user A issues a

location update, she computes the key Kui as the ui-th

value of this keystream, where ui is the index of the cur-

rent update interval (see Figure 1). Since each user is-

sues a single location update during each time interval,

this solution ensures that every message is encrypted or

hashed with a different key. Finally, A sends to the SP

the message 〈A, ui, EKui(i)〉 if running C-Hide&Seek ,

and 〈A, ui,HKui(i)〉 if running C-Hide&Hash. The SP

stores this information as the last known encrypted lo-

cation for A. Figure 2 shows the message sent from A

to the SP by the C-Hide&Seek protocol.

Fig. 2 Location update sub-protocol in C-Hide&Seek .

4.2 Proximity request with C-Hide&Seek

The proximity request sub-protocol is run by a user that

wants to discover which of her buddies are in proximity.

In the C-Hide&Seek protocol, this sub-protocol works

as follows: When A wants to discover which buddies

are in proximity, she sends a request to the SP. The SP

replies with a message containing the last known en-

crypted location of each buddy of A. That is, for each

buddy B, A receives a tuple 〈B, ui, EKui(i)〉. Since A

knows KB and the index ui is in the message, she can

compute the value Kui used by B to encrypt his loca-

tion, and hence she can decrypt EKui(i). Finally, since

A also knows GB , by using i, she obtains the granule

gB = GB(i) where B is located. A can then compute

the distance between her exact location and gB , and

compare it with δA, finally determining the proximity.

Figure 3 shows a graphical representation of the sub-

protocol.

Note that we are now considering the proximity be-

tween a point and a region. In this section, we consider

that a point and a region are in proximity, with respect

to a distance threshold, if the minimum distance be-

tween the two objects is less than the threshold. Since,

in our protocol, the region represents the area where a

user B is possibly located, this interpretation of proxim-

ity means that there is a possibility for users A and B to

Fig. 3 Proximity request sub-protocol in C-Hide&Seek .

actually be in proximity. The same minimum distance

interpretation has been used in related work on privacy-

aware proximity computation. Alternative interpreta-

tions and their effects are discussed in Section 5.2.

The C-Hide&Seek protocol provides a simple and

efficient solution that, as will be shown in Section 5,

completely hides the location of the users to the SP,

and that also guarantees the privacy requirements with

respect to the buddies. However, it reveals exactly the

maximum tolerable amount of location information (gB
for user B) to any buddy issuing a proximity request.

Even if their privacy requirements are guaranteed, users

would probably prefer to disclose as little information as

possible about their location when not strictly needed.

For example, is there an alternative solution that does

not reveal to a user A the granule information of a

buddy B if he is not in proximity?

In the next section we present the C-Hide&Hash

protocol that provide such a solution and, in general,

ensures a higher level of privacy. This is achieved at the

cost of higher computation and communication costs,

as explained in Section 5.4.

4.3 Proximity request in C-Hide&Hash

The C-Hide&Hash protocol has two main differences

with respect to C-Hide&Seek . The first difference is

that a hash function H is used during the location up-

date, instead of the encryption function. This is due to

the requirement in this protocol to avoid revealing the

relationship between two plaintext values (the granule

indexes) by observing the relationship among the cor-

responding encrypted values (see Section 5 for a more

detailed explanation). Since in this protocol we do not

need to decrypt the result of the function, but we only

need to check for equality of encrypted values, hashing

can be used. As specified in Section 4.1, each location

update in C-Hide&Hash from user A to the SP is a

message containing the tuple 〈A, ui,HKui(i)〉.
The second and main difference with respect to C-

Hide&Seek is the computation of the proximity request

sub-protocol. The intuition is that when A issues a

proximity request, she computes, for each of her bud-

dies B, the set of indexes of granules of GB such that, if
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Fig. 4 Computation of granules of GB considered in proximity
by A

B is located in any granule of the set, then B is in prox-

imity (see Figure 4). Then, if B provides the granule in

which he is located, it is possible to reduce the proxim-

ity problem to the set-inclusion problem, by checking

if that granule is included in the set computed by A.

We want to do this set inclusion without revealing to A

which of the candidate granules actually matched the

granule of B.

More precisely, the computation of a proximity re-

quest in the C-Hide&Hash protocol works as follows.

When a user A issues a proximity request, she starts

a two-party set inclusion protocol with the SP. The

protocol is a secure computation, and consequently the

SP does not learn whether A is in proximity with her

buddies, and A only learns, for each of her buddies B,

whether B is in proximity or not, without learning in

which granule B is located. The secure computation

exploits a commutative encryption function C. In addi-

tion to the keys used in the C-Hide&Seek protocol, at

each proximity request, the requesting user and the SP

each generates a random key that is not shared with

anyone else. We denote these keys K1 for user A and

K2 for the SP.

The proximity request sub-protocol is divided into

three steps, whose pseudo-code is illustrated in Proto-

col 1. In Step (i), user A computes, for each buddy B,

the set S′ of indexes of granules of GB such that, if B is

located in one of these granules, then B is in proximity.

More formally, A computes the set of indexes i such

that the minimum distance minDist between the loca-

tion of A and GB(i) is less than or equal to δA. Then,

in order to hide the cardinality of S′, A creates a new

set S by adding to S′ some non-valid randomly chosen

indexes (e.g., negative numbers). This is done to in-

crease the cardinality of S without affecting the result

of the computation. The cardinality of S is increased

so that it is as large as the number sMax(GB , δA)

Protocol 1 C-Hide&Hash: proximity request
Input: User A knows, the last completed update interval, and the

proximity threshold δA. Also, for each of her buddy B, A knows

the granularity GB , the key KB and the value of sMax(GB , δA).
Protocol:

(i) Client request from A

1: proxReq = ∅
2: generate a random key K1

3: for each buddy B of A do
4: S′ = {j ∈ N s.t. minDist(locA, GB(j)) ≤ δA}
5: S′′ = a set of sMax(GB , δA) − |S′| non-valid random in-

dexes.
6: S = S′ ∪ S′′

7: Kui is the ui-th value of the keystream initialized with
KB

8: ES =
⋃

i∈S CK1
(HKui (i))

9: insert 〈B, ui, ES〉 in proxReq
10: end for

11: A sends proxReq to the SP

(ii) SP response

1: proxResp = ∅
2: generate a random key K2

3: for each 〈B, ui, ES〉 in proxReq do

4: ES′ =
⋃

e∈ES CK2 (e)
5: retrieve 〈B, ui, hB〉 updated by B at update interval ui

6: h′ = CK2
(hB)

7: insert 〈B,ES′, h′〉 in proxResp
8: end for

9: SP sends proxResp to A

(iii) Client result computation

1: for each 〈B,ES′, h′〉 in proxResp do

2: h′′ = CK1
(h′)

3: if h′′ ∈ ES′ then
4: A returns “B is in proximity”

5: else

6: A returns “B is not in proximity”
7: end if

8: end for

that represents the maximum number of granules of GB

that intersect with any circle with radius δA. Note that

sMax(GB , δA) can be computed off-line since its values

depend only on GB and δA. In the following, when no

confusion arises, we use sMax as a short notation for

sMax(GB , δA).

In Line 8, each element of S is first hashed using the

key Kui, which is obtained as the ui-th value generated

by the keystream initialized with KB . In this case ui is

the index of the update interval preceding the current

one. Then, the result is encrypted, using the commuta-

tive encryption function C and key K1 that is randomly

generated. The element composed by the set ES com-

puted in Line 8, B, and ui is then added to the set

proxReq.

Once the operations in Lines 4 to 9 are executed for

each buddy B, the set proxReq is sent to the SP.

Upon receiving proxReq, the SP starts Step (ii). For

each tuple 〈B, ui, ES〉 in proxReq, the SP encrypts with

the C function each element of ES using key K2, which
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is randomly generated. The result is the set ES′. Then,

it retrieves the tuple 〈B, ui, hB〉 updated by B at the

update interval ui. In this tuple, hB is the value of the

index of the granule of GB where B is located, hashed

with the key Kui. Since ui is the update interval preced-

ing the current one, our location update policy assures

that a location update with update interval ui has al-

ready been issued by every buddy B. Finally, the SP

encrypts hB with the commutative encryption function

C using key K2. The resulting value h′ is added, to-

gether with B and ES′, to the set proxResp.

Once the computations at Lines 4 to 7 are executed

for each buddy B, the set proxResp is sent to A.

In Step (iii), given the message proxResp received

from the SP, A computes the proximity of her bud-

dies. For each tuple 〈B,ES′, h′〉, A obtains h′′ as the

encryption of h′ with C and the key K1 and checks if

the result is in ES′. If this is the case, then B is in

proximity, otherwise he is not.

More formally, h′′ ∈ ES′ if and only if the granule of

GB with index i containing B is in S′, that is equivalent

to B being in proximity. Indeed, for each buddy B, we

recall that:

h′′ = CK1(CK2(hB))

and

ES′ =
⋃
i∈S

(CK2
(CK1

(HKui(i)))

Consequently, due to the commutative property of the

encryption function, h′′ ∈ ES′ if and only if

hB ∈
⋃
i∈S

HKui(i)

Since hB and the elements of the set are hashed using

the same key Kui, hB is in the set if and only if i ∈ S.

Since S = S′ ∪ S′′ and i 6∈ S′′ (because S′′ contains

invalid integers only while i is a valid integer) then i ∈ S
if and only if i ∈ S′. By definition of S′, this implies

that B is in proximity.

Figure 5 shows the messages exchanged during the

proximity request sub-protocol of C-Hide&Hash.

4.4 Contrasting velocity attacks and other background

knowledge

It is easily seen that our location update policy, based

on fixed length update intervals, makes the probabil-

ity that a location update is issued independent from

the location from where it is issued. This is an impor-

tant property used in Section 5, together with others,

to prove the safety of our solutions under the adversary

models we consider.

Fig. 5 Proximity request sub-protocol in C-Hide&Hash.

Clearly, if the adversary had arbitrary background

knowledge, there would not be any technique that could

guarantee privacy. However, it is interesting to con-

sider some other forms of knowledge that the adversary

could use. With respect to previous proposals, our de-

fenses are resistant to an important type of background

knowledge: a-priori distribution of the users’ locations.

There are, however, other types of knowledge that may

be interesting to consider as, for example, the time-

dependent a-priori location knowledge. This includes

knowledge on the relative position of users at a certain

time, as well as a-priori probability of user movements.

With this kind of knowledge it is also possible to per-

form attacks based on the velocity of users. Consider

Example 1.

Example 1 User A sends two location updates in two

consecutive update intervals i and j from granule g1 and

g2, respectively. Her buddy B issues a proximity request

in each update interval and discovers the granule where

A is located. So far, no privacy violation occurred for

A. However, if B knows that A moves at most with

velocity v, then he can exclude that A is located in

some locations l of g2. Indeed, B knows that the tem-

poral distance between the two location updates of A is

equal to the length T of the update period. Now B can

exclude that A is located in any location l of g2 such

that the time required to move from any point of g1 to

l with velocity v is larger than T . Hence B violates the

privacy requirement of A.

The problem in Example 1 arises when the adver-

sary knows the maximum velocity of a user. Velocity-

based attacks have been recently considered indepen-

dently from proximity services [7], but the application
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of those solutions in our framework would lead to the re-

lease of some location information to the SP. In the fol-

lowing we show how to adapt our location update policy

to provide protection preserving our privacy properties

in the specific case in which the adversary knows the

maximum velocity v of a user.

Let tMax(g1, g2) be the maximum time required to

move at velocity v from each point of granule g1 to each

point of granule g2. The problem of Example 1 arises

when the temporal distance between two location up-

dates issued from two different granules g1 and g2 is

less then tMax(g1, g2). The problem can be solved by

imposing that A, after entering g2, randomly reports

g1 or g2 as the granule where she is located until time

tMax(g1, g2) elapses from the last location update in

g1. This solution is a form of temporal generalization

as it adds uncertainty to the adversary, about when the

user crosses the border between g1 and g2. More specif-

ically, the adversary is unable to identify the exact in-

stant in which the user crossed the border in a time

interval of length at least tMax(g1, g2). Consequently,

by definition of tMax(g1, g2), the adversary cannot ex-

clude that A moved from any point of g1 to any point

of g2.

The extension of our defense techniques to other

forms of background knowledge is one of the subjects

for future work.

5 Analysis of the protocols

The main goal of our techniques is to guarantee the sat-

isfaction of users’ privacy requirements under the given

adversary models. In Section 5.1 we prove that our two

protocols have this property.

However, there are other important parameters to

be considered in an evaluation and comparison among

protocols that satisfy the privacy requirements. In gen-

eral, the higher the privacy provided by the protocol,

the better is for the users; since location privacy in our

model is captured by the size of the uncertainty region,

in Section 5.3 we consider this parameter.

A second parameter to be considered is service pre-

cision. The percentage of false positives and false neg-

atives introduced by a specific protocol must be evalu-

ated. This is considered in Subsection 5.2.

Last but not least, it is important to evaluate the

overall system cost, including computation and commu-

nication, with a particular attention to client-side costs.

This is considered in Subsection 5.4.

The proofs of the formal results presented in this

section are in Appendix A.

5.1 Privacy

We first analyze the privacy provided by C-Hide&Seek

and C-Hide&Hash in Section 5.1.1 considering the ad-

versary models presented in Section 3 under the no-

collusion assumption, i.e., assuming that the SP does

not collude with the buddies and that the buddies do

not collude among themselves. Then, in Section 5.1.2

we show the privacy guarantees provided by the two al-

gorithms in the more general case of possibly colluding

adversaries.

5.1.1 Satisfaction of privacy requirements

We first analyze the C-Hide&Seek protocol. Since the

private key KA is only known to A and to the buddies of

A, the SP is not able to decrypt the index of the granule

where A is located. Analogously, the SP is not able to

obtain location information about A’s buddies and, in

particular, does not obtain any information about the

distance between A and her buddies.

We now state a formal property of the C-Hide&Seek

that is used in the formal proof of the above observa-

tions.

Lemma 1 The C-Hide&Seek protocol ensures that un-

der any a-priori knowledge priA, the following two ran-

dom variables are probabilistically independent: (1) The

binary random variable ur(A): an update/request is sent

by user A, and (2) random variable locA, i.e., the loca-

tion of A, of any distribution. Formally, we have

P (ur(A)|locA, priA) = P (ur(A)|priA),

for any a-priori location knowledge priA and location

random variable locA for user A.

Note that we are assuming discrete time and dis-

crete location. A continuous case can be formalized and

proved equally easily. Also, this lemma does not concern

the type or content of a message sent by A, but just the

fact that a message is sent by A.

Another property we use to prove our safety result

is provided by the encryption algorithms, via the infor-

mation theoretical notion of “perfect secrecy” [4]. In-

tuitively, perfect secrecy for an encryption algorithm

means that given ciphertext c, each plaintext p has the

same probability to be encrypted to c (posterior), with

a randomly chosen key, as the probability of p to be

used in the first place (prior). That is, P (p|c) = P (p).

Equivalently, given plaintext p, each ciphertext c has

the same probability to be the encryption of p (poste-

rior), with a randomly chosen key, as the probability of

c to appear in the first place as ciphertext (prior). That

is, P (c|p) = P (c). Applied to our situation, when SP
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receives a message 〈A, ui, EKui(l)〉, since Kui is hidden

from the SP and can be chosen arbitrarily, the proba-

bility that SP receives any other message of the form

〈A, ui, EKui(l′)〉 is the same.

Most of practical encryption algorithms do not have

the theoretical perfect secrecy, but use computational

hardness to achieve secrecy in the sense that it is com-

putationally very hard (or impractical) to derive the

plaintext from the ciphertext. Intuitively, P (p|c) = P (p)

holds because c does not yield any information about p.

Therefore, we use the simplifying, practical assumption

that the encryption methods we use do give us perfect

secrecy.

The above perfect secrecy discussion applies to sin-

gle messages. When dealing with multiple messages,

correlation between plaintexts may reveal secrets when

the same key is used. This is the classical scenario of

repeated key use problem, and one solution to this prob-

lem is to use so-called one-use-pad or keystreams as we

do in our proposed protocols. As each key is only used

once, encrypted messages are independent to each other

when perfect secrecy is assumed.

From the above discussion and assumptions, Lemma 2

follows. Since the lemma involves random variables on

messages, we need to specify the message space for these

variables. We consider the randomness of the messages

to be on the encrypted part, while other parts are fixed.

Formally, we call each sequence 〈B1, ui1〉, . . . , 〈Bn, uin〉,
where Bj is a user and uij is a time interval, a (mes-

sage set) type. (Recall that a message is of the form

〈B, ui, ES〉.) The messages of the same type differ on

the encrypted part of the messages and constitute a

message space. When a generic message M is men-

tioned, we assume it is a variable over all the messages
with a specific type.

Lemma 2 Given messages M = M1∪M2 issued in the

C-Hide&Seek protocol, where M1 ∩M2 = ∅, we have

P (M |locA, priA) = P (M1|locA, priA)∗P (M2|locA, priA),

for all a-priori knowledge priA and location locA for

user A.

With Lemma 1, perfect secrecy, and Lemma 2, we

now show a main result, namely, the SP does not ac-

quire any location information as a consequence of a

location update or a proximity request using the C-

Hide&Seek protocol. The following formal results im-

plicitly refer to our adversary models that, in particu-

lar, assume that the SP has no background knowledge

other than the protocol, the a-priori distribution, and

the granularities.

Theorem 1 Let A be a user issuing a sequence of lo-

cation updates and proximity requests following the C-

Hide&Seek protocol. Then, A’s privacy requirement is

satisfied with respect to the SP.

We now turn to the location information acquired

by the buddies. In the C-Hide&Seek protocol, a user

A issuing a proximity request does not send any lo-

cation information, hence her buddies, even if mali-

cious, cannot violate her privacy requirements. When

the same user runs the location update subprotocol in

C-Hide&Seek , her buddies can only obtain the granule

at the granularity GA in which A is located. As a con-

sequence, the privacy requirement of A is guaranteed.

This is formally stated in Theorem 2.

Theorem 2 Let A be a user issuing a sequence of lo-

cation updates and proximity requests following the C-

Hide&Seek protocol. Then, A’s privacy requirement is

satisfied with respect to each of A’s buddies.

We consider now the C-Hide&Hash protocol. Since

KA is only known to A and her buddies, the SP is not

able to acquire the location information provided by

A during a location update. This follows from Theo-

rem 1. The difference of the C-Hide&Hash from the C-

Hide&Seek is that when A issues a proximity request

in C-Hide&Hash, an encrypted message is sent to the

SP. However, due to the property of the secure compu-

tation protocol in C-Hide&Hash, the only information

that the SP acquires about the set provided by A is its

cardinality. Actually, the cardinality of this set is always

SMAX that, by definition, depends only on δA and GB ,

and not on the actual location of A or B. Consequently,

the SP does not acquire any information about the lo-

cation of A and B, including their distance. Theorem 3

formally states this property.

Theorem 3 Let A be a user issuing a sequence of lo-

cation updates and proximity requests following the C-

Hide&Hash protocol. Then A’s privacy requirement is

satisfied with respect to the SP.

Similarly to the C-Hide&Seek protocol, in C-Hide&Hash

each buddy of A can only obtain location information

derived from A’s location update. It is worth noting

that in the C-Hide&Seek protocol, each time B issues

a proximity request, he obtains the granule of GA where

his buddyA is located. Differently, using the C-Hide&Hash

protocol,B only gets to know whether the granule where

A is located is one of those in SA. This means that, if

A is not in proximity, then B only learns that A is

not in any of the granules of SA. Otherwise, if A is in

proximity, B learns that A is in one of the granules of

SA, without knowing exactly in which granule she is

located. This is formally stated in Theorem 4.
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Theorem 4 Let A be a user issuing a sequence of lo-

cation updates and proximity requests following the C-

Hide&Hash protocol. Then, A’s privacy requirement is

satisfied with respect to each of A’s buddies.

In Section 7 we show that, on average, C-Hide&Hash

provides more privacy with respect to the buddies than

C-Hide&Seek , but at extra costs, making each protocol

more adequate than the other based on user preferences

and deployment modalities.

5.1.2 Privacy in case of possibly colluding adversaries

We now consider the case in which our reference adver-

saries can collude, and we analyze the privacy guaran-

tees of the C-Hide&Hash and C-Hide&Seek protocols

in this scenario.

First, consider the case in which two buddies B and

C collude to violate the privacy of a user A. The prob-

lem can be easily extended to consider more buddies.

Let lB be the set of possible locations of A obtained

by B as a result of a proximity request. Let lC be the

analogous information acquired by C during the same

update interval. Since B and C collude, they can derive

that A is located in lB∩lC . However, due to Theorem 4,

given GA(i) the granule where A is located, it holds

that lB ⊇ GA(i) and lC ⊇ GA(i) (recall that GA is the

privacy requirement of A with respect to the buddies).

Consequently, lB ∩ lC ⊇ GA(i) and hence the privacy

requirement of A is guaranteed also in the case B and

C collude.

Now, consider the case in which the SP colludes

with one or more buddies. For example, if one of the

buddies shares the secret key KA with the SP, the SP

can learn the granule where A is located. In this case,

the privacy requirement of A with respect to the SP is

not guaranteed. Nevertheless, even if the SP knows KA,

he cannot discover the location of A within the granule

of GA(i) where A is located. This is because, by the

definition of the two protocols, every message issued by

A does not depend on the location of A within GA(i).

Consequently, the privacy requirement with respect to

the buddies is still guaranteed. This means that the

lowest privacy requirement of the two colluding entities

is preserved and this is the best that can be achieved

in case of collusion.

5.2 Service precision

The techniques proposed in the literature as well as the

techniques we propose in this paper, generalize the loca-

tion of one of the two users to an area. When proximity

is computed, the exact location of that user within the

area is not known. Hence, proximity is evaluated as the

distance between a point and a region8.

Consider how it is possible to compute the prox-

imity between a user A whose exact location is known

and a user B whose location is only known to be in

region. It is easily seen that if the maximum distance

between the point and the region is less than the prox-

imity threshold, then the two users are in proximity,

independently from where B is located within the re-

gion. Figure 6(a) shows an example of this situation. On

the contrary, if the minimum distance is larger than the

distance threshold, then the two users are not in prox-

imity. Figure 6(b) graphically shows that this happens

when no point of the region containing B is in proxim-

ity of A. If none of the two cases above happen (i.e., the

threshold distance is larger than the minimum distance

and less than the maximum distance), we are in pres-

ence of an uncertainty case, in which it is not possible to

compute whether the two users are in proximity with-

out introducing some approximation in the result. For

example, Figure 6(c) shows that if B is located close to

the bottom left corner of the region then B is in the

proximity of A, otherwise he is not.

(a) B is in proximity of A (b) B is not in proximity of

A

(c) B is possibly
in proximity of A

Fig. 6 Regions LA and LB

The choice we made in the presentation of our pro-

tocols is to consider two users as in proximity in the

uncertainty case. The rational is that in this case it is

not possible to exclude that the users are not in proxim-

ity. Previous approaches ([19,13]) facing a similar issue

have adopted the same semantics.

8 In previous work, the location of both users is generalized

and proximity is computed between two regions.
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One drawback of this minimum-distance semantics

is that it generates false positive results and this may

be undesirable in some applications. Indeed, if user B

is reported to be in proximity of A, then A may decide

to contact B (e.g., through IM). This may be annoying

for B, if he is not actually in proximity. Consider, for

example, the case in which the location of B is reported

at the granularity of a city: B is always reported as in

proximity of A when A is in the same city, indepen-

dently from the proximity threshold chosen by A.

An alternative semantics, that we name maximum-

distance semantics, solves this problem. The idea is to

consider two users as in proximity only when it is cer-

tain that they are actually in proximity. This happens

when the maximum distance between their areas is less

than the distance threshold. While this approach does

not generate any false-positive, it does produce false-

negatives. The two semantics above have a common

drawback: in certain cases it happens that the proba-

bility of providing a false result is larger than the prob-

ability of providing a correct result. Consider the exam-

ple depicted in Figure 7 in which the minimum-distance

semantics is considered. User B is considered in proxim-

ity but the answer is wrong if B is located in the region

colored in gray. Assuming a uniform distribution of B

inside gB , it is much more likely to have an incorrect

result, rather than a correct one. An analogous problem

can arise for the maximum-distance approach.

The percentage of false results can be minimized

by considering user B as in proximity only when at

least one half of the area is actually in proximity. The

drawback of this mostly-in-proximity semantics is that

it incurs in both false positive and false negative results.

Our protocols are designed so that it is very easy

to change the current proximity semantics. Since this

can be done client-side, without the need for changes

server-side nor in the code other peers are running, the

semantics can be potentially chosen through the user

interface at any time.

We analytically measured the impact of the different

semantics on the accuracy of our protocols by calculat-

ing the expected precision and the expected recall. The

expected precision is defined as the probability that a

buddy reported to be in proximity according to a given

semantic is actually in proximity. Vice versa, the ex-

pected recall is defined as the probability that a buddy

actually in proximity is reported to be in proximity ac-

cording to a given semantic.

Figures 8 and 9 show the minimum expected preci-

sion and recall for the minimum-distance and the maxi-

mum-distance semantics. Both measures depend on the

ratio between δ and the area of the granules in which

a user is considered in proximity. For this analysis we

Fig. 7 Approximation incurring with the minimum-distance se-
mantics
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Fig. 8 Expected precision
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Fig. 9 Expected recall

considered a grid-like granularity containing cells hav-

ing edge of size l and we assume users are uniformly

distributed. As can be observed in Figure 8, the max-

imum-distance semantic has always precision equal to

1. This is because all the buddies considered in prox-

imity are always actually in proximity. The minimum-

distance has precision of about 1/3 when the values of

δ and l are equal, and this value grows logarithmically

when δ is larger than l. The analysis of expected re-

call (Figure 9) shows that the minimum-distance has
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always recall equal to 1. This is because if a buddy is

actually in proximity, it is always reported in proximity

using this semantic. The maximum-distance semantic,

on the contrary, has a minimum expected recall equal

to 0 when δ and l are equal. This is because, with this

parameters, it can happen that no cells of size l are fully

contained in a circle having radius δ. However, the re-

call of the maximum-distance grows more rapidly than

the precision of the minimum-distance.

5.3 Size of uncertainty regions

As already discussed in Section 5.1, our protocols are

proven to always guarantee the privacy requirement

with respect to the buddies. However, the main dif-

ference between our two protocols consists in the fact

that C-Hide&Hash can provide additional privacy with

respect to one buddy. For example, if a user A issues

a proximity request using C-Hide&Hash, and a buddy

B is reported as being not in proximity, A only learns

that B is not located in any of the granules considered

in proximity (i.e., the ones included in S). The result-

ing uncertainty region of B, in this case, is equal to the

entire space domain minus the region identified by S.

When B is reported to be in proximity, A learns that

B is located in one of the granules of S, but not exactly

in which of those granules. Therefore, the uncertainty

region in this case is given by the region identified by

S. The size of this region depends on the value δA, on

the area of the granules in GB , and on the distance se-

mantics chosen by A. In order to show how the size of

the uncertainty region is affected by these parameters,

we simplify the analysis by considering grid-like gran-

ularities, similarly to Section 5.2. Each granularity is a

grid identified by the size l of the edge of its cells.

Figure 10 shows the additional privacy achieved by

C-Hide&Hash for different values of δ/l. The additional

privacy is measured as the lower bound of the number

of granules in S. As can be observed, using both seman-

tics, the additional privacy grows when δ is larger than

l. This means, for example, that if δ is 5 times larger

than l, then the actual size of the uncertainty region

of B is 60 (or 88) times larger than the minimum pri-

vacy requirement if A is using the maximum-distance

(or minimum-distance, resp.) semantics.

5.4 System costs

We separately evaluate the computation and commu-

nication costs involved in running the two proposed

protocols. The analytical evaluation reported here is

complemented with experimental results in Section 7.
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Fig. 10 Privacy with respect to a buddy

5.4.1 C-Hide&Seek

In order to perform a location update, a user needs to

compute the index of the granule where she is located.

The time complexity of this operation depends on the

data structure used to represent granularities. As we

shall show in Section 7, with our implementation of the

granularities this operation can be performed in con-

stant time. The complexity of the encryption operation

depends on the encryption function and on the length

of the encryption key. Considering a fixed key length,

the encryption of the index of the granule can be per-

formed in constant time. Since the SP only needs to

store the received information, the expected computa-

tional complexity is constant. The communication cost

is constant and consists in an encrypted integer value.

For what concerns the cost of a proximity request

on the client side, for each buddy the issuing user needs

to decrypt the index and to compute the distance of

the granule with that index from her location. In our

implementation these operations can be performed in

constant time and hence the time complexity of the

proximity request operation on the client side is linear

in the number of buddies. On the SP side, the compu-

tational cost to retrieve the last known locations of the

buddies is linear in the number of buddies. The com-

munication consists in one request message of constant

size from the user to the SP, and of one message from

the SP to the user with size linear in the number of

buddies.

5.4.2 C-Hide&Hash

The cost of a location update operation on the client

is similar to the cost of the same operation using C-

Hide&Seek , since the only difference is that a hashing

function, which can be computed in constant time, is

applied instead of the encryption function. Like in C-
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Hide&Seek , the SP only needs to store the received in-

formation. Hence, computational costs of a location up-

date are constant both for the client and for the SP. The

communication cost is constant, as the only exchanged

message consists in a hashed value.

On the client side, a proximity request from A re-

quires, for each buddy B, the computation of the gran-

ules of GB which are considered in proximity, the hash-

ing, and the encryption of a number of granule in-

dexes in the order of sMax(GB , δA). The value of sMax

can be pre-computed for a given granularity. The com-

putation of the granules considered in proximity can

be performed in constant time in our implementation,

using grids as granularities. The computation of the

hashing and the encryption functions can also be per-

formed in constant time, hence the time complexity of

a proximity request is linear in the number of buddies

times the maximum among the sMax values for the

involved granularities. When the client receives the re-

sponse from the SP, the result computation performed

by A for each buddy B requires the encryption of a

number (the encrypted value sent by the SP), and the

lookup of the encryption in a set of encrypted values

with cardinality sMax(GB , δA). As the lookup in the

set of hashes requires at most sMax operations, the

time complexity is then linear in the number of bud-

dies times the maximum value of sMax. Hence, this is

also the overall complexity on the client side. On the

SP side, the response to a proximity request from a user

A requires, for each buddy B, a) the retrieval and the

encryption of the hashed location of B, b) the encryp-

tion of the sMax(GB , δA) hashed granule indexes sent

by A. As the encryption runs in constant time, the time

complexity is linear in the number of buddies times the

maximum value of sMax.

Regarding the communication costs, both of the mes-

sages involved in the proximity request sub-protocol

contain the encryption of a set of a number of hashed

values linear in the number of buddies times the maxi-

mum value of sMax.

6 System implementation

We implemented the techniques presented in Section 4

in a system that provides proximity notification cou-

pled with typical instant messaging (IM) functionali-

ties. This implementation is the evolution of the sys-

tem developed for the Hide&Crypt protocol and it has

similar architecture, server and client applications [6].

The system is built as an extension of XMPP (Ex-

tensible Messaging and Presence Protocol), an open

standard protocol often used in commercial applica-

tions as a message oriented middleware [15]. The sys-

XMPP
server

…
 

…
 

…
 

…
 

Proximity
component

XMPP
server

Proximity
component

XMPP
server

Proximity
component

XMPP
server

Fig. 11 System architecture

tem architecture is shown in Figure 11. The choice of

extending XMPP is driven by the following considera-

tions. First, the XMPP protocol can be easily extended

to support custom services and messages, like the prox-

imity service, in our case. In particular, by extend-

ing XMPP messages, we designed a proper XML pro-

tocol for each of our technique. In addition, the SP

providing the proximity services is implemented as a

XMPP component i.e., a pluggable entity that extends

the default XMPP functionalities. A second advantage

is that the XMPP protocol already includes standard

sub-protocols for client-to-client communication and for

managing the list of buddies. We used these sub-protocols

as primitives in our implementation. Finally, since the

XMPP architecture is decentralized, clients running on

different servers can communicate with each other. In

our case, since a component acts as a special type of

client, this means that our proximity service is acces-

sible to a user registered to an existing XMPP service,
including popular IM services like Google Talk or Jab-

ber. This makes it possible to use, in the proximity ser-

vice, the same list of buddies used in those IM services.

Clearly, proximity can be computed only for those bud-

dies that are participating in the same proximity ser-

vice.

For what concerns the client, we developed a multi-

platform web application and an other application specif-

ically designed for Android based smartphones. In addi-

tion to the typical functionalities of an IM application,

the clients implement the proximity protocols described

in Section 4 and provide the typical functionalities of

a full-fledged proximity service, including the detection

of the client user’s location, the notification of any bud-

dies in proximity, and the graphical visualization of the

location uncertainty region for each buddy.

One of the issues emerged during the implementa-

tion of the C-Hide&Hash and C-Hide&Seek protocols

concerns key management. Indeed, both protocols re-
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quire that each user A has a key KA that is shared

with all of her buddies, and it is kept secret to every-

body else. A first problem is how A can share her key

with one buddy B in a secure manner. This operation

is required, for example, when the user accesses the

proximity service for the first time or a new buddy is

added to the buddy list. To address this problem, we

employ standard public key cryptography techniques to

encrypt, for each buddy of a user A, the key KA; After

being encrypted, the key can be safely transmitted over

an insecure channel. The second problem is how to re-

voke a secret key. For example, this is necessary when

a buddy is removed from the buddy list, or when the

key is compromised. In our implementation, in order to

revoke a key, it is sufficient to generate a new secret key

and to send it to the authorized buddies.

The cost of sending a key to all the buddies is clearly

linear in the number of buddies. In Section 7 we show

that the costs to perform this operation on a mobile de-

vice are sustainable. In addition, it should be observed

that the distribution of the key to all the buddies is

only needed when a user first subscribes to the proxim-

ity service or when a buddy is removed from the buddy

list. These are very sporadic events during a typical IM

service provisioning.

7 Experimental results

We conducted experiments to measure the performance

of our protocols and to compare them with the Pierre,

FriendLocator, Hide&Seek and Hide&Crypt protocols

[19,17,13]. We present the experimental setting in Sec-

tion 7.1. Then, in Sections 7.2, 7.3 and 7.4 we eval-

uate the protocols according to three evaluation crite-

ria: quality of service, privacy and system costs, respec-

tively.

7.1 The experimental setting

The experimental evaluation of the protocols presented

in this paper was performed on a survey-driven syn-

thetic dataset of user movements, which was obtained

using the MilanoByNight simulation9. We carefully tuned

the simulator in order to reflect a typical deployment

scenario of a proximity service for geo-social networks:

100, 000 potential users moving between their homes

and one or more entertainment places in the city of Mi-

lan during a weekend night. The simulation also models

the time spent at the entertainment places, i.e., when

no movement occurs, following probability distributions

9 http://everywarelab.dico.unimi.it/lbs-datasim

extracted from user surveys. All the test results shown

in this section are obtained as average values computed

over 1, 000 users, each of them using the service during

the 4 hours of the simulation. Locations are sampled

every 2 minutes. The total size of the map is 215 km2

and the average density is 465 users/km2. All the com-

ponents of the system are implemented in Java. Server-

side test were performed on a 64-bit Windows Server

2003 machine with 2.4Ghz Intel Core 2 Quad proces-

sor and 4GB of shared RAM. Client-side tests were run

on a HTC Magic mobile device, running Android as

operating system. We implemented the symmetric en-

cryption and the hashing functions using the RC4 and

MD5 algorithms, respectively, while the RSA public key

encryption algorithm was used for the key distribution.

In the experiments we used grid-based granularities.

Each granularity is identified by the size of the edge of

one cell of the grid. The location-to-granule conversion

operations required by our protocol can be performed

in constant time. For the sake of simplicity, in our tests

we assume that all the users share the same parame-

ters and that each user stays on-line during the entire

simulation. Table 1 shows the parameters used in our

experiments. Note that the “number of buddies” pa-

rameter refers to the number of on-line buddies that,

for the considered type of application, is usually signif-

icantly smaller than the total number of buddies.

Table 1 Parameter values

Parameter Values

δ 200m, 400m, 800m, 1600m

Edge of a cell of G 100m, 200m, 400m, 800m

Number 10, 20, 40,

of buddies 80

7.2 Evaluation of the quality of service

The first set of experiments evaluate the impact of the

techniques on the quality of service, by measuring the

exactness of the answers returned by each protocol. In-

deed, two forms of approximation are introduced by our

protocols. The granularity approximation is caused by

the fact that, when computing the proximity between

two users, the location of one of them is always gener-

alized to the corresponding granule of her privacy re-

quirement granularity. The other approximation, which

we call the time-dependent approximation, is due to the

fact that, when a user issues a proximity request with

C-Hide&Seek , proximity is computed with respect to

the last reported location of each buddy. The approx-
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(a) Pierre / FriendLocator (b) C-Hide&Seek/ C-Hide&Hash

Fig. 12 Examples of the granularity approximation

imation is introduced because the buddies have possi-

bly moved since their last location update. Similarly,

during the computation of a proximity request with C-

Hide&Hash, the location transmitted by each buddy

during the previous update interval is used.

For what concerns the granularity approximation, a

similar problem occurs with the Pierre and FriendLocator

protocols too. Indeed, both protocols, in order to de-

tect proximity between buddies, partition the domain

space into a grid, with each cell having edge l equal to

the distance threshold δ, that must be shared by the

users. Then, a buddy B is considered in proximity of A

whether B is located in the same cell as A or in one of

the 8 adjacent cells. The approximation introduced by

these techniques depends entirely on the chosen value

of δ. Differently, in our solutions, each user can choose

her privacy requirements independently from the value

of δ. For example, consider Figure 12. The black dot is

the actual location of user A. The dark gray circle with

radius δ is the area where the buddies of A are actually

in proximity of A. The light gray area is the region in

which buddies are erroneously reported to be in prox-

imity10. Considering Figure 12(a), as l is always equal

to δ when using Pierre or FriendLocator, the total

area of the 9 cells considered in proximity is 9δ2, while

the area of the circle is πδ2, which is almost 3 times

smaller. This means that, assuming a uniform distribu-

tion of the users, using Pierre or FriendLocator the

probability that a buddy reported as in proximity is

actually in proximity is about 1/3. On the contrary,

in the protocols presented in this paper the size of the

granules is independent from the chosen δ. In our ex-

ample, this means that when the value l is smaller than

δ, the region in which users are erroneously reported in

proximity becomes smaller (Figure 12(b)).

10 Here and in the following, we assume users of our protocols

are choosing the minimum-distance semantics

Figure 13(a) shows how the granularity approxima-

tion impacts on the service precision for different val-

ues of the edge of granularity cells. The metric we use

for the measurement is the information retrieval notion

of precision: the ratio between the number of correct

“in proximity” answers over the total number of “in

proximity” answers. Intuitively, the precision measures

the probability that a buddy reported “in proximity” is

actually in proximity. Note that the analysis would be

incomplete without considering the notion of recall : the

ratio between the number of correct “in proximity” an-

swers over the sum of correct “in proximity” and incor-

rect “not in proximity” answers. Intuitively, the recall

measures the probability that a buddy actually in prox-

imity is reported “in proximity”. In this case, since we

are considering the minimum-distance semantics (see

Section 5.2), the granularity approximation does not

produce any incorrect “not in proximity” answer, and

hence the recall is equal to 1. When conducting this ex-

periment, in order to exclude from the evaluation the

effects of the time-dependent approximation, for each

buddy we used his current location as the last reported

location. Since Pierre and FriendLocator do not con-

sider G, their precision is constant in the chart and, as

expected, is below 0.4. On the contrary, C-Hide&Seek

and C-Hide&Hash have a significantly better precision

when the edge of the cells of G is small. Intuitively,

this is because the area where a buddy is erroneously

reported as in proximity is smaller than δ (see Fig-

ure 12(b)). Figure 13(a) also shows the precision when

the edge of a cell of G is larger than δ; The values are

not reported for Pierre and FriendLocator since in this

case they do not guarantee the privacy requirements.

Figure 13(b) shows the impact of the time-dependent

approximation. The chart shows the results for our pro-

tocols only, as the other protocols proposed in the lit-

erature are not exposed to this kind of approximation.
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Fig. 13 Evaluation of the impact of the approximations
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Fig. 14 Evaluation of the quality of service (considering both approximations)

In order to exclude from this evaluation the effects of

the granularity approximation, we performed these tests

with the exact locations of the users, instead of the gen-

eralized ones. The chart shows, on the x axis, different

lengths of the update interval and, on the y axis, the

precision of the C-Hide&Seek and C-Hide&Hash pro-

tocols. It can be observed that C-Hide&Seek has better

precision. This is due to the fact that C-Hide&Hash

always uses the location reported during the previous

update interval, while Hide&Seek uses the last loca-

tion, that can be the one reported during the current

update interval or during the previous one. Since the

time-dependent approximation also introduces incorrect

“not in proximity” answers, we also measured the re-

call. The corresponding chart is omitted as it is almost

identical to the one in Figure 13(b). For example, using

C-Hide&Hash and an update interval of 4 minutes, the

value of the precision is 0.89 and the recall is 0.88.

The computation of the precision and recall under

the time-dependent approximation confirms the intu-

ition that using long update intervals negatively im-

pacts on the quality of service. The choice of a value

for the update interval should consider, in addition to

this approximation, the cost of performing a location

update. In general, the optimal value can be identified

based on specific deployment scenarios. Considering our

movement data, we chose 4 minutes as a trade off value

since it guarantees precision higher than 0.9 and sus-

tainable system costs as detailed in Section 7.3. Our

choice is consistent with similar proximity services like,

for example, Google Latitude that currently requires

location updates every 5 minutes.

Figure 14 shows the analysis of the quality of service

considering both the granularity and time-dependent

approximations. Figure 14(a) shows the precision of our

two protocols compared with the precision of Pierre

and FriendLocator. We represent the precision of C-

Hide&Seek and C-Hide&Hash with a single curve be-

cause the two protocols behave similarly. For example,

when the edge of a cell of G is 200m, the precision of

C-Hide&Seek and C-Hide&Hash is 0.59 and 0.57, re-

spectively, while it is 0.61 for both protocols when the

time-dependent approximation is not considered. This

shows that this second type of approximation does not

have a significant impact.

Figure 14(b) shows the recall of our protocols. Note

that Pierre and FriendLocator do not lead to incor-

rect “not in proximity” answers, and hence their recall

is equal to 1. On the contrary, our protocols can gen-

erate incorrect “not in proximity” answers due to the

time-dependent approximation. This chart shows that

the recall of C-Hide&Seek and C-Hide&Hash is always

above 0.95 and 0.9, respectively. From Figure 14(b) we

can also observe that the recall increases for coarser

granularities. This is due to the fact that less incorrect

“not in proximity” answers are returned if a coarser

granularity is used. While this may appear unreason-

able, the explanation is straightforward: there is an in-

correct “not in proximity” answer only when a buddy is

currently in proximity (considering Figure 12(b), his lo-
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cation is in the dark gray area) while the location used

in the computation of the proximity is outside the light

gray area. If a granularity is coarse, then the light gray

area is large and hence incorrect “not in proximity” are

less frequent.

Figure 14(c) shows the accuracy for each consid-

ered protocol, i.e., the percentage of correct answers.

Also in this case, the accuracy of C-Hide&Seek and C-

Hide&Hash is represented with a single curve, as the

two protocols behave similarly. Comparing this figure

with Figure 14(a), we can observe that the accuracy

achieved by all the protocols is much higher than the

precision. This is due to the fact that this metric also

considers the correct “not in proximity” answers that

are usually the most frequent answers, since the prox-

imity query area determined by the distance thresh-

old is usually much smaller than the entire space. Fig-

ure 14(c) shows that our protocols achieve better ac-

curacy than Pierre and FriendLocator when the value

of the edge of the granularity cells is smaller than δ. In

particular, for our default values, the accuracy of both

C-Hide&Seek and C-Hide&Hash is higher than 0.99.

7.3 Evaluation of the system costs

The second set of experiments evaluates the compu-

tation and communication costs of the different proto-

cols. For the analysis of the Pierre protocol, we used the

NearbyFriend11 application, developed by the same au-

thors, which integrates the Pierre protocol in a desktop

IM application.

First, we consider the costs related to the location

update sub-protocol. This analysis does not apply to

existing solutions as location updates are only required

by our centralized solutions. As analyzed in Section 5.4,

the temporal complexity of computing a location up-

date is constant in the number of buddies. In our im-

plementation, the computation of each location update

requires, on the client side, about half of a millisecond

for both the C-Hide&Seek and the C-Hide&Hash proto-

cols. Similarly, the communication cost is independent

from the number of buddies and the payload of each

location update message consists in few bytes. Consid-

ering the overhead caused by the XML encapsulation,

the dimension of each location update is in the order of

a few hundred bytes.

The computation time needed to run a proximity

request on the clients is shown in Figure 15(a). Note

that the values reported in this figure only consider

the computation time required by the issuing user. In-

deed, all the protocols require the SP (in case of cen-

11 http://crysp.uwaterloo.ca/software/nearbyfriend/

tralized services) or the other buddies (in case of dis-

tributed services) to participate in the protocol, and

hence to perform some computation. For example, in

the case of Hide&Crypt and Pierre, the total compu-

tation time of a user’s buddies to answer a proxim-

ity request issued by that user is about the same as

the computation time required to issue the request.

As observed in Section 5, the computation time of a

proximity request is linear in the number of buddies.

Figure 15(a) shows that C-Hide&Hash requires signif-

icantly more time with respect to C-Hide&Seek , espe-

cially when the number of buddies is large. For example,

the time needed to issue a proximity request for 40 bud-

dies is about 20 ms for C-Hide&Seek , while about 900

ms using C-Hide&Hash. The figure also shows that the

computation times of C-Hide&Hash and Hide&Crypt

are similar, with Hide&Crypt performing slightly bet-

ter. This is due to the fact that in Hide&Crypt each of

the sMax indexes only needs to be encrypted, while in

C-Hide&Hash it also needs to be hashed.

For what concerns other existing solutions, we did

not implement the Pierre protocol on our mobile de-

vice platform. However, considering the experimental

results presented by the authors (see [19]), the compu-

tation time of a single proximity request with a single

buddy is more than 350ms12. Since, for C-Hide&Hash,

the computation time on a mobile device of a proximity

request with a single buddy is about 22ms, according

to the data we have, our solution is at least one order

of magnitude more efficient than the Pierre solution.

Regarding the computation costs on the server side,

the complexity of a proximity request using C-Hide&Hash

on the server side is similar to the one on the client side.

However, in our experiments we observed that our high-

end desktop machine is about 500 times faster than the

mobile client to execute these operations. As a conse-

quence, the computation for a single user having 40

buddies requires less than 2ms. While we did not run

scalability tests on our server, this result suggests that,

from the computational point of view, even a single

desktop machine can provide the service to a large num-

ber of users.

Figures 15(b) and 15(c) show the system communi-

cation cost of a proximity request issued by a user. In

Figure 15(b) we measure the number of messages ex-

changed by the system for each proximity request. It

is easily seen that using a centralized protocol (i.e., C-

Hide&Seek and C-Hide&Hash), only two messages need

to be exchanged (one for the request and one for the re-

sponse) independently from the number of buddies the

issuer has. On the contrary, the decentralized protocols

12 It is unclear whether this result is obtained on a mobile de-

vice.
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Fig. 15 Evaluation of the system costs

requires at least two messages for each buddy. More-

over, in our implementation of the Hide&Crypt proto-

col, each communication between two users needs to

transit through the SP. The same applies to the Pierre

protocol, using the NearbyFriend implementation. Con-

sequently, at each location update, for each buddy, four

messages transit in the system: two between the issuer

and the SP and two between the SP and the buddy.

Figure 15(c) shows a comparison of the total amount

of data exchanged in the system for each proximity re-

quest. Consistently with our analysis, the communica-

tion cost grows linearly with the number of buddies for

both of our centralized protocols. It is easily seen that

this also applies to the other protocols. The chart shows

that NearbyFriend incurs in high communication costs.

The reason is that, each time a proximity request is is-

sued, a message of almost 3KB is sent from the user to

each of her buddies and a message having a similar size

is sent back in the reply. We believe that this overhead

is mostly given by the fact that NearbyFriend needs all

the communications between two users to be encapsu-

lated in a secure channel. This is required because the

Pierre protocol itself does not guarantee that any third

party acquiring the messages cannot derive location in-

formation about the users. Since each message between

two users transits through the server, the communica-

tion cost is almost 12KB for each buddy. The other

decentralized solution we compare with, Hide&Crypt ,

has better communication costs. Indeed, each message

is less than 1KB, and hence the cost is about 1/4 if

compared to Pierre.

Our centralized solutions are even more efficient.

This is due to the fact that only two messages need

to be exchanged between the user and the SP for each

proximity request. In case of C-Hide&Hash, each mes-

sage has the same dimension than in Hide&Crypt , and

hence, in this case, the communication cost is one half

with respect to Hide&Crypt , and about one order of

magnitude less with respect to Pierre. Finally, C-Hide&Seek ,

in addition to being a centralized solution, also bene-

fits from the fact that each message contains only a few

hundred of bytes. Consequently, this protocol is about

4 times more efficient than C-Hide&Hash.

In Figure 15(d) we evaluate the communication cost

of the continuous use of a proximity service with our

protocols. As mentioned in Section 7.2, we consider that

location updates are issued every 4 minutes. Consider-

ing the results of our user survey, we use 10 minutes as

the average frequency of proximity requests. The main

difference of this figure with respect to Figure 15(c) is

that it also considers the communication costs derived

by the location updates. However, since each location
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update costs less than 300 bytes, and 15 location up-

dates need to be issued in one hour, the total hourly cost

for this sub-protocol is about 4KB, which is negligible

with respect to the communication cost of the proxim-

ity requests. The figure also shows that the centralized

protocols require significantly less communication than

the decentralized ones. In particular, C-Hide&Seek for

one hour requires less than 100KB when the user has

40 online buddies. C-Hide&Hash, on the other side, re-

quires 400KB per hour for the same number of buddies.

We believe that this cost is largely sustainable on a

wireless broadband network (e.g., 3G), and that, given

the additional privacy with respect to curious buddies

achieved using C-Hide&Hash, privacy concerned users

may find this trade-off attractive.

Our experimental evaluation also included the mea-

surement of the cost to distribute the private key (see

Section 6). Both the computation and communication

costs are linear in the number of buddies that need to

receive the new key. For a single buddy, the computa-

tion time is about 7ms, measured on the mobile device,

while the communication cost is less than 200 bytes. An

experiment of key distribution to 40 buddies, resulted

in a computation time of 275 ms, and a communication

cost of 7KB.

7.4 Evaluation of the achieved privacy

In Section 5 we proved that both of our protocols guar-

antee the users’ privacy requirements. We also observed

that that C-Hide&Hash provides more privacy than

what would be strictly necessary to guarantee the re-

quirements. In this last set of experiments we eval-

uate how much additional privacy is provided by C-

Hide&Hash in terms of the size of the uncertainty re-

gion. We recall that this is the area where a user A is

possibly located as it can be computed by one of A’s

buddies after issuing a proximity request that returns

A as in proximity.

Figure 16 shows that the privacy provided by C-

Hide&Hash is always significantly larger than the pri-

vacy requirement, and it grows for coarser granularities

G. Intuitively, with C-Hide&Hash, the uncertainty re-

gion corresponds to the union of the light and dark gray

areas represented in Figure 12(b). Consequently, as the

size of the cells of G decreases, the size of the light gray

area tends to zero, and the uncertainty region becomes

closer and closer to the dark gray area only. This means

that the privacy provided by C-Hide&Hash is at least

πδ2 even when the user requires her location to be ob-

fuscated in a smaller area.
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8 Discussion and conclusions

We presented a comprehensive study of the location

privacy problem associated with the use of a proxim-

ity service as an important component of any geo-social

network. We illustrated two new protocols to compute

users’ proximity that take advantage of the presence of

a third party to reduce the computation and commu-

nication costs with respect to decentralized solutions.

We formally proved that the service provider acting as

the third party, by running the protocol, cannot acquire

any new location information about the users, not even

in presence of a-priori knowledge of users’ locations. We

also showed that each user can have full control of the

location information acquired by her buddies. Exten-

sive experimental work and a complete implementation

illustrate the benefits of the proposed solutions with

respect to existing ones, as well as their actual applica-

bility.

The two centralized solutions we propose require

each user to share keys with her buddies, and hence

are not the most appropriate to be used in a “query

driven” service (e.g., finding people meeting certain cri-

teria). The decentralized versions of the two presented

protocols are more suitable in this case [13].

An interesting direction we plan to investigate is

to extend the adversary models we considered in this

paper to include not only (atemporal) a-priori location

knowledge, but also time-dependent location knowledge.

This would model not only a-priori knowledge about

velocity, that our solutions can already deal with, but

also a-priori probabilistic proximity information. It is

still unclear if the proposed protocols, with appropriate

location update strategies, similar to those discussed in

Section 4.4, need to be modified in order to be proven

privacy-preserving according to our definitions.

An interesting extension of our protocols is to al-

low users to specify different privacy preferences with

respect to different groups of buddies. This is not dif-

ficult, but it exposes the users to dangerous collusion
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attacks if further constraints are not imposed. The pre-

sented protocols are not subject to buddies’ collusion

attacks since each user defines the same granularity as

privacy preference with respect to all of her buddies. If

this is not the case, a user A, by assigning two different

granularities with respect to buddies B and C to reflect

her different level of trust, would expect that if B and C

collude the lowest privacy requirement among the two

is preserved. However, an adversary could actually in-

tersect the uncertainty regions and potentially violate

both privacy requirements. In order for our protocols

to defend against such a collusion, some relationships

need to be imposed on the granularities used in the sys-

tem. While details are out of the scope of this paper,

intuitively, granules from different granularities should

never partially overlap. For example, using hierarchical

grids as granularities would be a sufficient condition.
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A Proofs of formal results

A.1 Proof of Lemma 1

Proof The sought after independence intuitively means that whether

an update/request is sent to SP by a user A is not related to

where the user is located. Formally, by the definition of condi-
tional probability, we have

P (ur(A)|locA, priA)

= P (ur(A), locA|priA)/P (locA|priA)

= (P (ur(A)|priA) ∗ P (locA|priA))/P (locA|priA)

= P (ur(A)|priA).

The second equality is due to the protocol, in which an up-

date/request is sent at fixed time intervals for each user inde-
pendent of the user’s location. Hence, the lemma follows.

A.2 Proof of Lemma 2

Proof All we need is

P (M1|M2, locA, priA) = P (M1|locA, priA),

i.e., the knowledge of the messages in M2 does not have any

impact on the probability of messages in M1. But this follows

the perfect secrecy assumption and the use of keystreams in our
protocol.

A.3 Proof of Theorem 1

Proof We prove the theorem by showing that for each set M

of messages exchanged during the protocol, we have P (postA) =
P (priA). That is, the messages M do not change the SP ’s knowl-

edge of A’s location. By assumption of the theorem, P (postA) =

P (locA|M,priA) as the only knowledge is M and priA. The
knowledge that locA ∈ gA is useless as we assume in this case

that gA is the whole spatial domain. By the definition of condi-

tional probability, we have
P (locA|M,priA) =

P (M |locA, priA) ∗ P (locA|priA)/P (M |priA).
It now suffices to show

P (M |locA, priA) = P (M |priA). (2)

Intuitively, Equation 2 says that the messages M are independent

of the location of A. This follows from two observations: the first
is that the issuance of messages does not depend on the location

of A by Lemma 1 and the second is that the (encrypted) messages

are independent of the content of the messages by Lemma 2. More
formally, assume

M = m1, . . . ,mn.

Let ur(M) be the messages of the form

ur(m1), . . . , ur(mn),

where ur(mi) is “an update/request is sent by user Bi”. That

is, ur(mi) disregards the encrypted part of the message but only
says that a message is sent and by whom. By perfect secrecy

assumption, the probability of a particular (single) message is
the same as any other (single) message that differs only in the
encrypted part, and hence the same as the probability of ur(mi).

Consider the case of two messages in M , i.e., n = 2. Now we
have:

P (M |locA, priA)

= P (m1,m2|locA, priA)

= P (m1|m2, locA, priA) ∗ P (m2|locA, priA)

= P (m1|locA, priA) ∗ P (m2|locA, priA) by Lemma 2

= P (ur(m1)|locA, priA) ∗ P (ur(m2)|locA, priA)

by the above discussion

= P (ur(m1), ur(m2)|locA, priA) by Lemma 2

= P (ur(M)|locA, priA)

The above can be extended to n messages in M and also to show
the equation P (M |priA) = P (ur(M)|priA). Hence,

P (M |locA, priA)

= P (ur(M)|locA, priA)

= P (ur(M)|priA) by Lemma 1

= P (M |priA)

and the thesis is established.

A.4 Proof of Theorem 2

Proof Given a buddy B, we prove the theorem by showing that
for each set M of messages exchanged during the protocol, we

have

P (locA|M,priA, locA ∈ gA) = P (locA|priA, locA ∈ gA),

where A is another user, and gA is the location information that

is encrypted in the messages of A with the key shared between A
and B. In other words, we want to show that B will not acquire

more location information about A through the messages other

than what B already knows. Intuitively, this is true since the
location information revealed by A is only at the granule level,

but not where within the granule.

The formal proof is the same as for Theorem 1 but with

the following two changes: (1) ur(m) represents that request was

sent from the granule included in the message if the message is
intended to B; otherwise, it is the same as before. (2) locA ∈ gA
is included in priA, or equivalently we replace each occurrence of

priA with “locA ∈ gA, priA”. Let us now examine the steps in
the proof of Theorem 1.

Lemma 1 still holds since updates/requests are sent regard-
less of locations if the user who sent the message is C 6= A. If

C = A, then the ur(A) gives the location (the granule) where the

message is sent. In this case, the location is totally dependent on
the given information of locA, locA ∈ gA and priA. Note that l

is an index of a granule, any information contained in locA and
priA below the granule level is not relevant to the probability of
a message.

For Lemma 2, the content in M2 still does not have any im-
pact on the content in M1 even when B can decrypt the messages
intended to him as there is no information (from priA, locA, and

locA ∈ gA) that restricts any possible content inM1, so the condi-
tional probability of M1 does not change regardless the existence

of M2.

For the discussion regarding the probability ofmi and ur(mi),

with the addition of locA ∈ gA, we still have that the conditional
probability of mi being the same as that of ur(mi). Indeed, as-
sume

mi = 〈C, ui, EKui (l)〉.
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If C 6= A, then all messages of the type have the same probability
with or without knowing A’s location since C’s location informa-

tion is not assumed in the conditional probability. This case is

exactly the same as for the SP and the conditional probability of
mi is the same as that of ur(mi). If C = A, since B can decrypt

the message, hence knowing the location l in the message, this
location l (an index value of a granule in GA) needs to be con-

sistent with the location knowledge in locA and priA: if it is not

consistent, then the probability of the message is zero; otherwise,
the probability is totally dependent on the probability of A being

in GA(l) given locA, locA ∈ gA, and priA. But the same can be

said about ur(mi) (which says that a message was sent at the
given location), i.e., the probability of ur(mi) depends totally on

locA, locA ∈ gA, and priA. Therefore, mi and ur(mi) have the

same conditional probability. By the same reasoning as in the
proof of Theorem 1, ur(M) has the same conditional probability

as M .

With all the above discussions, the theorem is established.

A.5 Proof of Theorem 3

Proof The proof follows the same style of that for Theorem 1.
That is, we show P (M |locA, priA) = P (M |priA), i.e., the loca-

tion of A does not change the probability of messages M condi-

tioned on priA. Like for Theorem 2, we examine the proof steps
of Theorem 1 for the purpose of the current thesis. Lemmas 1

and 2 both hold due to the use of hashing function that displays

stronger secrecy than encryption. The important difference is the
discussion of the conditional probabilities of m and ur(m). If m

is an update, then the same applies as in the proof of Theorem 1.

The difference is when m is a proximity request. In this case,
the message contains multiple components. The critical step is to

show that all such messages have the same conditional probability
(to the SP) and hence the same as the conditional probability of

ur(m). This is not difficult since the location information in the

condition is opaque to the SP. This opaqueness is given by two
facts. The first is that the number of components in the message

is the same regardless of the location information. The second is

that the indexes of the granules and the “padding” (S′′ in the
protocol) in the message components are hashed and hence to

the SP all possible granule indexes are equally possible in the en-

crypted (by K1 in the protocol) message. (Here, hashing before
encryption with K1 is important as the adversary cannot attack

using known pattern of the plaintext.) The above observations

lead to the thesis of this theorem.

A.6 Proof of Theorem 4

Proof Intuitively, to the buddies, the C-Hide&Hash is much stronger

than C-Hide&Seek since buddies only share a hashing function

and the buddies location information is encrypted by a random
key (generated by the SP) before sending to the requesting user

B. Formally, the proof follows the same style as that for Theo-
rem 2. The only difference is what it means when a message is
“consistent” with the location knowledge. In this case, from B’s

perspective, we need to define ur(m) to be the binary random
variable that “the user is in one of the requesting granules or

not” for the message sent back from the SP (as the reply to a

proximity request from B). After B requesting proximity, B will
receive a message from the SP with the encrypted hash value of

A’s location (in addition to the “kick back” from the SP in the

form of encrypted values that B sent to the SP). Even though B
and A shares the hash function, B does not know the encryption

key which is randomly generated by the SP (K2 in the proto-
col). Therefore, this value is probabilistically independent of the

location of A. In this case, based on the protocol, the only infor-

mation B obtains is whether A is in a granule among the ones
given by B. This needs to be consistent with the location infor-

mation contained in locA and priA. If not, then the probability

of this message is zero, and otherwise the probability is totally
dependent on locA and priA as no other information is available.

The thesis follows the above discussions in the same style as the

proof of Theorem 2.


