
PrimeLife Policy Language
Claudio A. Ardagna2, Laurent Bussard3, Sabrina De Capitani di

Vimercati2, Gregory Neven4, Stefano Paraboschi1, Eros Pedrini2, Franz-
Stefan Preiss4, Dave Raggett5, Pierangela Samarati2, Slim Trabelsi4,

Mario Verdicchio1

DIIMM - Università degli Studi di Bergamo, 24044 Dalmine, Italy1

DTI - Università degli Studi di Milano, 26013 Crema, Italy2

European Microsoft Innovation Center (EMIC), 52072 Aachen, Germany3

IBM Zurich Research Center, Zurich, Switzerland4

SAP Labs France, Sophia Antipolis, France4

W3C/ERCIM 5

Contact author: Slim Trabelsi (slim.trabelsi@sap.com)

Introduction

The sudden popularity of social networks and web 2.0 applications changed radically the
Internet landscape and the users’ behavior. Today’s young people are the first generation
with the ability to distribute information quickly, cheaply and to large groups of people.
The amount of personal and private information published and stored in the servers
becomes so huge that the traditional concepts of privacy were radically affected. To
appease such concerns, enterprises and service providers publish privacy statements
that promise fair information practices. Written in natural language or formalized using
languages like P3P [1], EPAL [2], XACML [3] etc… they are only promises but not
necessarily enforced by technical measures. These problems are amplified if personal
data is used not only by the enterprise that collected the data, but also by secondary
users such as partner organizations, or government agencies. These flows of data are
complex. Threats to data privacy can come from inside (accidental disclosure, insider
curiosity and subornation) as well as from the outside (uncontrolled secondary usage) of
each organization. Putting customer information online further increases the risk of
exposing private and sensitive information to outsiders. In this paper we propose a new
policy language handling access control and data usage at the same time. In the context
of the European ICT PrimeLife1 we propose an extension of the eXtensible access control
markup language (XACML 3.0) offering one of the most popular standardized policy
language. This extension suggests a new obligation handling mechanism taking into
account temporal constraints, pre-obligations, conditional obligations, and repeating
obligations together with a down-stream usage authorization system defining the access
control rules under which personal information collected by an entity can be forwarded to
a third party. Moreover, our language is based on the concept of trusted credentials.

1 http://www.primelife.eu/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187850087?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.primelife.eu/

PrimeLife Policy Language
As mentioned previously we extend XACML 3.0 with data handling and credential
capabilities. We maintain the overall structure of the XACML language, but we introduce a
number of new elements to support the advanced features that our language has to offer,
and we also modify the schema of a number of existing elements. Our language is
intended to be used by the Data Controller2 to specify the access restrictions to the
resources that he offers; by the Data Subject3 to specify access restrictions to her
personal information, and how she wants her information to be treated by the Data
Controller afterwards; by the Data Controller to specify how “implicitly” collected
personal information (such as IP address, connection time, etc.) will be treated; and by
the Data Subject to specify how it wants this implicit information to be treated. The
following sections describes how XACML is extended, what are the new elements that we
propose, and why is it essential to add such extensions.

a. Rules, policies, and policy sets
As in XACML, the main components of our language are rules, policies, and policy sets.
Each rule has an effect, either “Permit” or “Deny”, that indicates the consequence when
all conditions stated in the rule have been satisfied. Rules are grouped together in
policies. When a policy is evaluated, the rule combining algorithm of the policy (as stated
in an XML attribute of the policy) defines how the effects of the applicable rules are
combined to determine the effect of the policy. The main components of a rule are a
target, describing the resource, the subject, and the environment variables for which this
rule is applicable; credential requirements, describing the credentials that need to be
presented in order to be granted access to the resource; provisional actions, describing
which actions have to be performed by the requestor in order to be granted access; a
condition, specifying further restrictions on the applicability of the rule beyond those
specified in the target and the credential requirements; data handling policies, describing
how the information that needs to be revealed to satisfy this rule will be treated
afterwards; and data handling preferences, describing how the information contained in
the resource that is protected by this rule has to be treated.

b.Obligations

i. Introduction to Obligations
We define an obligation as: “A promise made by a data controller to a data subject in
relation to the handling of his/her personal data. The data controller is expected to fulfill
the promise by executing and/or preventing a specific action after a particular event, e.g.
time, and optionally under certain conditions". Obligations play an important role in daily
business. Most companies collect personally identifiable information (personal data) on
customers and employ ad-hoc mechanisms to keep track of associated authorizations
and obligations. State of the art mechanisms to handle collected personal data in
accordance with to a privacy policy are lacking expressiveness and/or support for cross-
domain definition of obligations.
2 A Data Controller is an entity that alone or jointly with others determines the purposes
and means of the processing of personal data. The processing of personal data may be
carried out by a Data Processor acting on behalf of the Data Controller.

3 A Data Subject is the person whose personal data are collected, held or processed by
the Data Controller.

ii. Why should we define an Obligation Language?
Most of the available policy languages, like XACML [3], EPAL [2], Ponder [4], Rei [5] and
PRIME-DHP [1], provide either only a placeholder or very limited obligation capability.
Moreover these languages do not provide any concrete model for obligation specification.
The work proposed in this paper incorporates some of the prior art and extends it toward
more expressiveness, extensibility, and interoperability. We identify four main challenges
related to obligations:

• Service providers must avoid committing to obligations that cannot be enforced.
For instance, it is not straightforward to delete data when backup copies do exist.
Tools to detect inconsistencies are necessary.

• Services should offer a way to take user's preferences4 into account. Preferences
may be expressed by ticking check boxes, by a full policy, or even be provided by
a trusted third party. Mechanisms to match user's privacy preferences and
service's privacy policies are necessary.

• Services need a way to communicate acceptable obligations to users, to link
obligations and personal data, and to enforce obligations.

• Finally, users need a way to evaluate the trustworthiness of service providers, i.e.
know whether the obligation will indeed be enforced. This could be achieved by
assuming that misbehavior impacts reputation, by audit and certification
mechanisms, and/or by relying on trusted computing.

c. Definition of an Obligation Language
An obligation is often defined as Event-Condition-Action [4]

On Event If Condition Do Action

For facilitating the comparison of obligations, we consider triggers as events filtered by
conditions. In other words, we replace the notions of events and conditions by trigger.
The triggers are events related to an obligation. These events result in actions that are
executed according to the obligation’s requirements. Additionally, in order to simplify
obligations management, we specify a validity period for each obligation:

Do Action when Trigger (from Start to End)

We use a common language for expressing obligations in data controller’s privacy policy,
in data subject’s privacy preferences, and in sticky policies.

• Data subject’s privacy preferences specify “required obligations”, i.e. what the
data subject requires in terms of obligation to provide a given piece of personal
data to a given data controller.

• Data controller’s privacy policy specifies “proposed obligations”, i.e. what the data
controller is willing (and able) to enforce in terms of obligation for a given
collected data.

Sticky policy specifies “committed obligations”, i.e. the obligations data subject and data
controller agreed upon and that must be enforced by the data controller.

4 The expectation of a data subject in terms of how his or her personal data should be
handled.

d.Specifying Authorizations
Data handling policies, preferences, and sticky policies contain, apart from the set of
obligations described above, also a set of authorizations. While obligations specify actions
that the Data Controller is required to perform on the transmitted information,
authorizations specify actions that it is allowed to perform. Similarly to what we did for
obligations, we recognize that it is impossible to define an exhaustive list of
authorizations that covers all needs that may ever arise in the real world. Rather, we
define a generic, user-extensible structure for authorizations so that new, possibly
industry-specific authorization vocabularies can be added later on. We do provide
however a basic authorization vocabulary for using data for certain purposes and for
downstream access control, and we describe how these authorizations can be efficiently
matched via a general strategy.

i. Authorization Purposes
The first concrete authorization type that we define is the authorization to use
information for a particular set of purposes. Purposes are referred to by standard URIs
specified in agreed-upon vocabularies of usage purposes. These vocabularies of URIs may
be organized as flat lists or as hierarchical ontologies.

ii. Authorization for downstream usage
The second concrete authorization type that we define is the authorization to forward the
information to third parties, so-called downstream data controllers. Optionally, this
authorization enables the data subject to specify the access control policy under which
the information will be made available, i.e., the minimal access control policy that the
(primary) data controller has to enforce when sharing the information with downstream
data controllers.

e. Credential requirements
The policy language that we present is geared towards enabling technology-independent
user-centric and privacy-friendly access control on the basis of certified credentials. By a
credential we mean an authenticated statement about attribute values made by an
Issuer, where the statement is independent from a concrete mechanism for ensuring
authenticity. The statement made by the issuer is meant to affirm qualification. As
credentials are not directly supported in the traditional policy languages, we extended
the XACML Rule element such that credentials are the basic unit for reasoning about
access control. In our language each rule can contain a Credential Requirements element
to specify the credentials that have to be presented in order to satisfy the rule. This
element contains a separate Credential element for each credential that needs to be
presented. The Credential element can contain restrictions that apply to the credential.

f. Provisional actions
A Provisional Action element is used to specify the provisional actions that a requestor
must perform before being granted access to the resource. Currently supported actions
include revealing of attributes (to the Data Controller or to a third party), signing a
statement, and so-called “spending” of credentials, which allows to put restrictions on the
number of times that the same credential is used to obtain access.

g.Data handling policies
Each rule, policy, or policy set can contain a number of data handling policies, each of
which is expressed within a Data Handling Policy element. A data handling policy can be
referred to from anywhere in the rule by its unique Policy identifier. The main purpose of
the data handling policies is for the Data Controller to express what will happen to the
information about the Data Subject that is collected during an access request. The
provisional action to reveal an attribute value therefore contains an optional reference to
the applicable data handling policy. A data handling policy consists of a set of
authorizations (described in section 3) that the Data Controller wants to obtain on the
collected information, and a set of obligations (described in section 2) that he promises to
adhere to. Before the Data Subject reveals her information, these authorizations and
obligations are matched against the Data Subject’s data handling preferences to see
whether a matching sticky policy can be agreed upon.

h.Data handling preferences
The data handling preferences of a rule specify how the information obtained from the
resource protected by this rule is to be treated after access is granted. The preferences
are expressed by means of a set of authorizations and obligations, just like data handling
policies. When access to the resource is requested, the data handling preferences have to
be matched against a proposed data handling policy to derive the applicable sticky policy
– if a match can be found. An important difference between data handling preferences
and data handling policies is the resource that they pertain to: data handling preferences
always describe how the resource protected by the rule itself has to be treated, while
data handling policies pertain to information that a requester will have to reveal in order
to be granted access to the resource. The main use of data handling preferences that we
envisage is for a Data Subject to specify how she wants her personal data to be treated
by a Data Controller, i.e., which authorizations she grants to the Data Controller with
respect to her personal data, and which obligations he will have to adhere to.

i. Sticky policies
The sticky policy associated to a resource, is the agreed-upon sets of granted
authorizations and promised obligations with respect to a resource. The sticky policy is
usually the result of an automated matching procedure between the Data Subject’s data
handling preferences and the Data Controller’s data handling policy. The main difference
between a sticky policy and data handling preferences is that the former contains the
authorizations and obligations that the policy-hosting entity itself has to adhere to, while
the latter contains authorizations and obligations that an eventual recipient has to adhere
to.

Conclusion
In this paper we provide an overview about the different extensions that we propose to
add to the standardized policy language XACML in order to enhance its privacy protection
capabilities. These improvements correspond to the privacy protection requirements
addressed in the PrimeLife project.

Bibliography
[1] L. Cranor, M. Langheinrich, M. Marchiori, M. Presler-Marshall, and J. Reagle. The

Platform for Privacy Preferences 1.0 (P3P1.0)

[2] IBM: Enterprise privacy authorization language (EPAL 1.2)

[3] Moses, T.: OASIS eXtensible Access Control Markup Language (XACML) Version
2.0. OASIS Standard oasis-access control-xacml-2.0-core-spec-os, OASIS (February
2005)

[4] Paschke, A.: ECA-RuleML/ECA-LP: A Homogeneous Event-Condition-Action Logic
Programming Language, Int. Conf. of Rule Markup Languages (RuleML'06), Athens,
Georgia, USA, 2006

	Introduction
	PrimeLife Policy Language
	a. Rules, policies, and policy sets
	b. Obligations
	i. Introduction to Obligations
	ii. Why should we define an Obligation Language?

	c. Definition of an Obligation Language
	d. Specifying Authorizations
	i. Authorization Purposes
	ii. Authorization for downstream usage

	e. Credential requirements
	f. Provisional actions
	g. Data handling policies
	h. Data handling preferences
	i. Sticky policies

	Conclusion
	Bibliography

