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ABSTRACT

Observational data and theoretical calculations show that significant small-scale substructures are present in dark molecular clouds.
These inhomogeneities can provide useful clues to the physical conditions inside the clouds, but can also severely bias extinction
measurements. We present nicest, a novel method to account and correct for inhomogeneities in molecular cloud extinction studies.
The method, tested against numerical simulations, removes almost completely the biases introduced by sub-pixel structures and by
the contamination of foreground stars. We applied nicest to 2MASS data of the Pipe molecular complex. The map thereby obtained
shows significantly higher (up to 0.41 mag in AK) extinction peaks than the standard nicer (Lombardi & Schneider 2001, A&A, 373,
359) map. This first application confirms that substructures in nearby molecular clouds, if not accounted for, can significantly bias
extinction measurements in regions with AK > 1 mag; the effect, moreover, is expected to increase in more distant molecular clouds,
because of the poorer physical resolution achievable.

Key words. dust, extinction – methods: statistical – ISM: clouds – infrared: ISM – ISM: structure –
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1. Introduction

Although the details of star and planet formation are little
known, there is a general consensus that these objects are created
inside dark molecular clouds from the contraction and fragmen-
tation of dense, cold cores. As a result, in the last decades molec-
ular clouds have been studied in detail using many different tech-
niques, from optical number counts (Wolf 1923; Bok 1937), to
radio observations of carbon monoxide (CO) molecules (Wilson
et al. 1970; Frerking et al. 1982), to near-infrared (NIR) extinc-
tion measurements (Lada et al. 1994).

Molecular hydrogen and helium represent approximately
99% of the mass of a cloud, but the absence of a dipole mo-
ment in these molecules makes them virtually undetectable at
the low temperatures (T ∼ 10 K) of these objects. Hence, the
(projected) mass distribution of dark clouds is usually inferred
from the distribution of relatively rare tracers (such as CO or
dust grains) under the assumption that these are uniformly dis-
tributed in the cloud.

As pointed out by Lada et al. (1994), the reddening of back-
ground stars in NIR bands is a simple and reliable method to
study the dust distribution and thus the hydrogen column den-
sity. Compared to optical bands, NIR bands are less affected by
extinction and are less sensitive to the physical properties of the
dust grains (Mathis 1990), and thus their color excess can be
directly translated into a hydrogen column density. In a series
of papers we reconsidered and improved the NIR color excess
(nice) technique, by generalizing it to use three or more bands
(nicer, see Lombardi & Alves 2001) and by taking a maximum-
likelihood approach (Lombardi 2005).

Although the nice and nicer techniques have been very suc-
cessful in studying molecular clouds (see, e.g. Alves et al. 2001),

they are plagued by two complications: small-scale inhomo-
geneities and contamination by foreground stars. NIR studies
typically assume a uniform extinction over (small) patches of
the sky; however, in the presence of substructures such as steep
gradients, unresolved filaments, or turbulence-induced inhomo-
geneities (Lada et al. 1994; Larson 1981; Heyer & Brunt 2004),
the background stars used to estimate the cloud extinction would
not be uniformly distributed in the patch, but would be preferen-
tially observed in low density regions. Similarly, in the presence
of foreground stars, their relative fraction increases with the dust
column density. Unfortunately, both effects will bias all color ex-
cess estimators toward low column densities; moreover, the bias
will be especially important in the dense regions of molecular
clouds, which is where the star formation takes place.

In this paper we describe in detail the repercussions of small
scale inhomogeneities and foreground stars in extinction mea-
surements, and propose a simple method to obtain estimates
of the column density in the presence of both effects that, un-
der simple working hypotheses, is asymptotically unbiased. Our
method does not rely on any (usually poorly verified) assump-
tion regarding the small scale structure of the cloud; moreover,
it can be applied to a general class of NIR extinction measure-
ments (marked spatial point processes).

The paper is organized as follows. In Sect. 2 we introduce a
general smoothing technique used in all cases to create smooth,
continuous maps from the discrete pencil-beam extinction mea-
surements carried out for each background star; we also show
that in two typical applications (moving average and nearest
neighbour smoothing) a bias is expected. In Sect. 3 we pro-
pose a new method that can correct this bias without making any
assumption on the underlying form of the cloud substructure.
This new method has been tested with numerical simulations, as
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described in Sect. 4, and with a real-case application, presented
in Sect. 5. We discuss and comment on the results obtained in
Sect. 6, and finally we briefly present our conclusions in Sect. 7.

2. Cloud substructure

Measurements of the reddening of stars observed through a
molecular cloud provide estimates of the cloud column densi-
ties in pencil beams characterized by a diameter of the order of
a fraction of milliarcsec. However, these high resolution mea-
surements are strongly undersampled and are affected by large
uncertainties due to the photometric errors and to the intrinsic
scatter of star colors in the NIR. Smooth and continuous extinc-
tion maps are normally obtained by interpolating and binning
the various pencil beams. Different authors use different recipes
to smooth the data (see, e.g. Lombardi 2002, for a description of
several interpolation techniques), but in most cases the interpola-
tion follows a standard scheme. Consider N K-band extinction1

measurements
{
Ân

}
obtained, for example, from the color excess

of the N background (see Lada et al. 1994 or Lombardi & Alves
2001). The extinction Â at any location in the sky is evaluated
using a weighted average

Â =
∑

n wnÂn∑
n wn

· (1)

The weights {wn} are usually chosen to be significantly differ-
ent from zero only for stars angularly close to the given location
of the map (for example, Cambrésy et al. 2002 assign a unity
weight to the N nearest neighbors). Clearly, Eq. (1) does not in-
clude slightly more complex situations where, for example, one
takes the median of the extinctions measured from objects near
a given position (e.g. Dobashi et al. 2008); however, most of the
discussion carried out for the weighted average actually applies
also to median or related estimators.

The binning in Eq. (1) washes out the cloud substructure on
scales smaller than the typical size where the {wn} are signifi-
cantly different from zero, but this is needed in order to have
smooth maps and to increase the signal-to-noise ratio. However,
Eq. (1) also introduces a significant bias on the estimated column
density. Suppose that, in the region of the sky that we are investi-
gating (i.e., in the area covered by the N stars used to estimate A)
the column density has significant variations. Because of this,
the local density ρ(x) of stars is not homogeneous throughout
the cloud, but rather follows the scheme

ρ(x) = ρ010−αkλA(x), (2)

where ρ0 is the density of stars where no extinction is present, α
is the slope of the number counts, and kλ = Aλ/A is the extinction
law in the band λ considered. This effect, which is at the origin of
the historical number count method to measure column densities
in molecular clouds (Wolf 1923; Bok 1937), also induces a bias
in Eq. (1), since regions with smaller extinctions and thus higher
density of background stars will, on average, contribute more to
the sum in Eq. (1) than regions with large extinctions. Note that
since the color excess method requires measurements in at least
two different bands, one should replace Eq. (2) with a version
that provides the expected density of stars observed in all bands
required for the application of the method (e.g., H and K). For

1 For simplicity, in this paper we drop the subscript K normally used
in the literature to denote the K-band extinction AK ; it is also obvious
that the same method applies to extinction measurements referred to
any band (e.g., the visual extinction AV ).

equally deep observations in all bands, the result has the same
form as Eq. (2), where kλ is the extinction law of the bluer band
considered (e.g., H).

The main issue considered in this paper is the bias intro-
duced by unresolved substructures in Eq. (1). In general, the bias
should be defined here as the difference between the expected,
mean value of 〈Â〉 and the true column density A at the same
position. However, clearly any smoothing technique introduces
a bias because of the smoothing itself, and this bias is normally
acceptable if it does not introduces a systematic effect on the
total column density. In other words, a required property is

∫
A(x) dx =

〈∫
Â(x) dx

〉
=

∫ 〈
Â(x)

〉
dx. (3)

Clearly, in order for Eq. (3) to hold, the difference 〈Â〉 − A must
be of alternating sign. For our purposes, thus, it is more useful
to define the bias as the difference between the expected mean
value 〈Â〉 and the same quantity that we would theoretically ex-
pect in the presence of a uniform density of stars, i.e. by ignoring
the dependence of the density of stars on the local extinction de-
scribed by Eq. (2) (see also below Eq. (7)). This definition is
useful, since it isolates the standard effects of a smoothing from
the effects introduced by the non-uniform sampling of the cloud
structure. In addition, a column density estimator Â(x) that is un-
biased according to this definition will also be unbiased accord-
ing to Eq. (3) (provided the weights wn are spatially invariant).
For, when the density of background stars is uniform,

〈
Â(x)

〉
can

always be written as a convolution of the true column density
map A(x) with some kernel K normalized to unity (Lombardi
2002).

In the following, we will calculate explicitly this bias in two
common smoothing schemes.

2.1. Moving average smoothing

In this section we will consider a simple weighting scheme in
Eq. (1) where each weight wn = w(xn; x) is a simple function of
the location xn of the nth star (typically, w(xn; xn) will depend
only on the modulus |xn − x|).

As discussed above, our aim is to compare the expected col-
umn density estimate with the one that we would obtain in the
absence of any selection effect in the number of background
stars. We need thus to evaluate two averages: (i)

〈
Â(x)

〉
, where

Â is calculated according to Eq. (1) and the ensemble average is
taken over all positions of stars with the density given by Eq. (2)
and over all individual column density measurements Ân; and (ii)
the average Ā(x), which is basically the same quantity evaluated
with a constant density of background stars ρ0.

In principle, both averages can be calculated analytically us-
ing the method described by Lombardi & Schneider (2001; see
below Sect. 3); in practice, for the purposes of this section a
simple approximation can be used provided that in the weighted
average of Eq. (1) a relatively large number of column densities
are used with weights significantly different from 0. In this case
we find for the first average

〈
Â(x)

〉
=

∫
A(x′)w(x′; x)ρ(x′) dx′∫
w(x′; x)ρ(x′) dx′

· (4)

As shown by Eq. (2), ρ(x′) is a simple function of A(x′). This
suggests that the equation can be recast in a simpler form by
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defining pA(A; x), the (weighted) probability that a point with
extinction A is used to evaluate Â(x), the column density at x:

pA(A; x) =

∫
w(x′; x)δ

(
A − A(x′)

)
dx′∫

w(x′; x) dx′
· (5)

By using Eq. (5) in Eq. (4) we find then

〈
Â(x)

〉
=

∫
ApA(A; x)ρ(A) dA∫
pA(A; x)ρ(A) dA

=

∫
ApA(A; x)10−αkλA dA∫
pA(A; x)10−αkλA dA

· (6)

In presence of a uniform distribution of stars, ρ(x) = ρ0, we
would instead obtain simply

Ā(x) =

∫
A(x′)w(x′; x) dx′∫
w(x′; x) dx′

=

∫
ApA(A; x) dA. (7)

The two values presented in Eqs. (6) and (7) do not differ signifi-
cantly provided the scatter of A in the patch considered around x
is much smaller than (αkλ ln 10)−1. For example, if we consider
the H band of a typical region close to the Galactic plane with
a standard reddening law (Rieke & Lebofsky 1985), we have
α � 0.34 mag−1 and kH � 1.55 (Indebetouw et al. 2005), so that
the maximum scatter allowed in AK to have a negligible bias is
�0.82 mag. Hence, clearly we need to be concerned by this bias
in regions from moderate to large extinction.

It is also interesting to evaluate the bias
〈
Â(x)

〉
− Ā(x) in the

presence of small variations of A within the region considered. In
this case, the probability distribution pA(A; x) is peaked around
the mean value of Eq. (7), and we can expand to second order
the two exponential functions present in the numerator and de-
nominator of Eq. (6). After a few manipulations we obtain then

〈
Â(x)

〉
− Ā(x) � −αkλ ln 10

∫
pA(A; x)

[
A − Ā(x)

]2
dA

= −β
∫
w(x′; x)Δ2(x′; x) dx′∫
w(x′; x) dx′

, (8)

where β ≡ αkλ ln 10 and Δ(x′; x) ≡ A(x′) − Ā(x). Hence, the
difference between the two values is proportional to a weighted
average of the scatter of A around its mean value Ā(x) at x, a
quantity that, as we will see below, can be directly estimated
from the data. Note that the bias is, to first order, quadratic on
Δ(x′; x) and thus will be particularly severe when steep gradients
are present in the underlying column density A(x).

2.2. Nearest neighbor(s)

Cambrésy et al. (2002) suggest using a different prescription to
make smooth extinction maps from the individual column den-
sity measurements. For each point in the map, they take the av-
erage extinction of the N angularly closest stars (nearest neigh-
bours interpolation). As argued by Cambrésy et al. (2005, 2006),
this method can potentially alleviate the bias introduced by the
varying background density of stars described by Eq. (2), be-
cause measurements from low density regions will mostly ap-
pear isolated and will thus be used for relatively large patches of
the sky.

Interestingly, using the technique described by Lombardi
(2002) it is possible to obtain an analytical estimate for the aver-
age of Â in the smoothing scheme proposed:

〈
Â(x)

〉
=

∫
A(x′)K(x′; x)ρ(x′) dx′ , (9)

where the linear kernel K(x′; x) is given by

K(x′; x) =
e−μ(x′;x)

N

N−1∑
n=0

[
μ(x′; x)

]n

n!
· (10)

In this equation, N is the number of stars used in the nearest
neighbors interpolation and μ(x′; x) is the average number of
stars observed in B(x′; x), the disk centered on x and of angular
radius |x − x′|:

μ(x′; x) =
∫

B(x′;x)
ρ(x′′)dx′′. (11)

As shown by Lombardi (2002), the kernel K(x′; x) is normal-
ized, i.e.
∫

K(x′; x)ρ(x′) dx′ = 1, (12)

an obvious result if one considers the measurement of the ex-
tinction in a uniform cloud where A(x) = const. In our case, this
property can also be proved directly from Eqs. (10) and (11).
First, note that μ(x′; x) = μ(r; x) depends only on x and on
r = |x − x′|, and thus the same applies to K(x′; x) = K(r; x).
This suggests that we can recast the integral of Eq. (12) as
∫ ∞

0
K(r; x)

∂μ(r; x)
∂r

dr

=

N−1∑
n=0

n!
N

∫ ∞

0
e−μ(r;x)

[
μ(r; x)

]n ∂μ(r; x)
∂r

dr = 1. (13)

The fact that K(x′; x) only depends on x and r = |x − x′| (and
not on the direction of the vector x − x′) also implies that the
nearest neighbors interpolation suffers from the bias discussed
in this paper. Indeed, in the integral of Eq. (9) the kernel K gives
the same “weight” to all points on circles centered on x, irre-
spective of the specific value of ρ on the various points of the
circles (what matters here is only the average value of ρ on a cir-
cle, and not the specific value at the various points). Hence, we
do not expect that this technique can solve the bias introduced
by the correlation between the extinction A and the density of
background stars ρ expressed in Eq. (2), especially if steep gra-
dients are present in the intrinsic cloud column density. We also
expect that the bias present in the nearest neighbours interpola-
tion increases with the number of neighbours N. Indeed, when
N increases, the “size” of the kernel K(r; x), i.e. the range in r
where the kernel is significantly different from 0, also increases
because of the effects of the polynomial terms in Eq. (10). This,
as shown by Eq. (9), implies that the kernel averages out more
distant regions in the sky, where differences among the local den-
sities can be significant.

In order to better understand the points mentioned in the
previous paragraph, it is useful to look at a simple example.
Consider a cloud characterized by a Heaviside column density:

A(x) =

{
A1 if x1 < 0,
A2 if x1 ≥ 0. (14)

In this case we can carry out all the calculations analytically,
and obtain for each value of x1 the expected average measured
extinction 〈Â〉. We do not report here the relevant equations, but
rather show the results obtained in a typical case in Fig. 1. As
shown by this plot, the nearest neighbours are clearly biased: for



738 M. Lombardi: nicest

-4 -2 0 2 4 6
x1

0.0

0.2

0.4

0.6

0.8

1.0

〈A
(x

)〉

N = 1
N = 3
N = 7
N = 15

Fig. 1. The bias of the nearest neighbors interpolation on a model where
the true extinction is A(x) = 0.1 mag for x1 < 0 and 0.9 mag for
x1 ≥ 0. The solid lines show the average measured extinction of the
nearest neighbours method, calculated using Eq. (9) for various num-
bers of neighbours N. The dashed lines show the extinction that one
would measure if the density of stars were uniform in the whole field.
Note that the solid lines are always below the dashed lines except at the
extremes of this plot (where all estimators agree with the true value of
A there). For this plot we set α = 0.34, k = 1.55, and ρ0 = 1.

example, the various curves are not symmetric around x1 = 0,
and in addition

〈Â〉 = A110αkλA1 + A210αkλA2

10αkλA1 + 10αkλA2
<

A1 + A2

2
· (15)

In order to better understand the bias, we also plot in Fig. 1 the
expected results in the case of a uniform density, obtained as-
suming α = 0 in Eq. (2) (dashed lines): in this case the curves
are perfectly symmetric around x1 = 0 and 〈Â〉 = (A1 + A2)/2.
A comparison of the solid and dashed lines also confirms that
curves with large N, being less steep, are biased over a larger
interval around x0 = 0. This is expected, since as shown by
Eq. (10) the intrinsic size of the smoothing kernel K increases
with N.

One might wonder whether the bias decreases by using a me-
dian estimator instead of a simple mean, as done by Cambrésy
et al. (2005, 2006). These authors still identify, for each sky posi-
tion x, the N nearest neighbour stars, and then evaluate a simple
median of the relative extinction measurements. Luckily, it is
possible to evaluate the exact statistical properties of the median
estimator (see Lombardi 2002, Appendix A). For this purpose,
it is useful to evaluate the probability distribution pN(A; x) that
one of the N neighbours around the position x has a column den-
sity A:

pN(A; x) =
∫

dμ e−μ
μN−2

N!

∫
B(μ;x)

dx′ ρ(x′)δ
(
A − A(x)

)
, (16)

where B(μ; x) is the disk centered at x and with radius r defined
by μ = μ(r; x) (note that since μ(r; x), for x fixed, is a mono-
tonic function of x′ this definition is unique). The cumulative
distribution associated with pN(A; x) is given by

PN(A; x) =
∫

dμ e−μ
μN−2

N!
ν(μ, A; x). (17)

In this equation, ν(μ, A; x) is the integral of ρ(x) carried out over
all points of B(μ; x) where A(x′) < A:

ν(μ, A; x) ≡
∫

B(μ;x)∩{x′ |A(x′)<A}
ρ(x′) dx′. (18)

-2 0 2 4
x1

0.0
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Fig. 2. Similarly to Fig. 1, but for the median-nearest neighbors inter-
polation. Again, the solid lines, representing the expected mean mea-
surements, are always below the dashed lines, representing the same
measurements in the ideal case where the density of background stars
is uniform within the whole field. Note that because of the properties of
the median, for large values of N the “transition” from A = 0.1 mag to
A = 0.9 mag is faster than in Fig. 1.

Note that ν(μ, A; x) → μ as A → ∞. Finally, the median of the
N = 2k−1 nearest neighbours is then provided by the expression

pm(A) = k

(
N
k

)
pN(A; x)

[
PN(A; x)

]k−1[
1 − PN(A; x)

]k−1
. (19)

Although it is difficult to obtain a general expression for the
bias introduced by the median-nearest neighbours estimator, it
is clear that to a first approximation the same arguments dis-
cussed above for the simple mean apply (note also that, trivially,
when N = 1 the two estimators are identical). However, for the
simple example considered above, we can actually carry out the
calculations using Eqs. (16–19) and show that the bias is still sig-
nificant. Figure 2 summarizes the results obtained in the model
described by Eq. (14), and proves that no real improvement is
obtained from the use of a median estimator (cf. Fig. 1). In par-
ticular, a severe bias is still present, and its amount increases
with N. For comparison, in Fig. 3 we also show the results ob-
tained from the simple moving average smoothing discussed in
Sect. 2.1: interestingly, the plot is very similar to the one for a the
simple average nearest neighbors interpolation (Fig. 1). This is
not surprising because the expected average values

〈
A(x)

〉
mea-

sured with these two techniques can be described in terms of a
simple convolution with some appropriate kernels (cf. Eqs. (4)
and (10); see also Lombardi 2002).

In summary, a careful analysis of the nearest neighbors
shows that this interpolation technique, for the specific case of
extinction measurements, is still affected by a significant bias.
At least for the case of a simple mean estimator, the origin of the
problem can be traced to the different behaviour of the kernel
K(x; x′) with respect to the density ρ(x′) in Eq. (9): in particu-
lar, the kernel K does not respond directly to variations of ρ, and
instead depends only μ(x′; x), i.e. on the total “mass” within a
disk of radius r = 〈x − x′〉.

3. nicest: over-weighting high column-density
measurements

As shown by Eq. (8), the bias discussed here strongly depends
on the small-scale structure of the molecular cloud through the

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810519&pdf_id=1
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810519&pdf_id=2
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Fig. 3. Similarly to Fig. 1, but for the moving average smoothing with
a Gaussian window function with different dispersion parameters σ. As
for Figs. 1 and 2, the solid lines, representing the expected mean mea-
surements, are always below the dashed lines, representing the same
measurements in the ideal case where the density of background stars
is uniform within the whole field.

probability distribution pA(A). Although on large scales many
models predict a log-normal distribution for pA, clearly we
should expect significant deviations from the theoretical expec-
tations on the small scales often investigated in NIR studies.
In addition, even at large scales the superposition of different
cloud complexes, or a significant “thickness” of a cloud along
the line of sight, can produce significant deviations from a log-
normal distribution (Vázquez-Semadeni & García 2001; see also
Lombardi et al. 2006, for a case where the log-normal distribu-
tion is not a good approximation). Hence, we need to be able to
correct for the substructure bias in a model independent way.

3.1. Statistical properties of the moving average smoothing

In order to better understand, and then fix, the bias present in
Eq. (1) in the case of the moving average smoothing, we use the
theory developed in Lombardi & Schneider (2001, 2002, 2003).
The key equations to obtain the ensemble average of Â(x) are
summarized below:

Q(s; x) =
∫ [

e−sw(x′;x) − 1
]
ρ(x′) dx′ (20)

Y(s; x) = exp
[
Q(s; x)

]
, (21)

C(w; x) =
1

1 − P(x)

∫ ∞

0
e−wsY(s; x) ds , (22)

〈
Â(x)

〉
=

∫
A(x′)w(x′; x)C

(
w(x′; x), x

)
ρ(x′) dx′. (23)

We briefly comment on this set of equations:

– The equations are invariant upon the transformation
w(x′; x) �→ qw(x′; x), with q a positive constant. This is ex-
pected, since an overall multiplicative constant in the weight
function does not effect Eq. (1). For simplicity, in the fol-
lowing we will assume, without loss of generality, that the
weight function is normalized according to∫
w(x′; x)ρ(x′) dx′ = 1. (24)

– The quantity Q(s; x) can be shown to be related to the
Laplace transform of pw(w; x), the probability distribution
for the values of the weight function w(x′; x) with x fixed.

– P(x) is the probability that no single star is present within the
support πw(x) of w(x′; x), defined as πw(x) ≡ {x′ |w(x′; x) >
0}. Hence, P(x) can be simply evaluated from

P(x) = exp

[
−

∫
πw(x)
ρ(x′)dx′

]
. (25)

Note that P(x) = 0 for weight functions with infinite support
(such as a Gaussian).

– C(w; x) is a simple Laplace transform of Y(s; x). This is the
key quantity that enters the final result (23) together with
the original smoothing function w(x′; x) and the star density
ρ(x′).

– A key parameter in the calculation of C(w), and thus in the
final result 〈Â(x)〉, is the so-called weight number of objects
N(x), defined as

N(x) ≡
[[

1 − P(x)
] ∫ [
w(x′; x)

]2
ρ(x′) dx′

]−1

, (26)

where as usual w(x′; x) is taken to be normalized according
to Eq. (24). Informally,N(x) counts the number of stars that
contribute (with a weight significantly different from zero)
to the average Â(x).

– In the limit N(x) � 1 it is possible to obtain a simple ex-
pression for C(w; x), which for P(x) = 0 takes the form

C(w; x) � 1
1 + w

+

[
N(x)

]−1

(1 + w)3
· (27)

This expression shows that to lowest order C � 1−w+N−1,
where both terms w and N−1 introduce a relative correction
of orderN−1 in the final result

〈
Â(x)

〉
.

The results summarized above rigorously prove the statements of
Sect. 2.1. In particular, in the limit of a large weight number of
objectsN(x), we have C(w) � 1, and thus Eq. (23) together with
the normalization (24) reduces to Eq. (4). In practice, numerical
simulations show that Eq. (4) is already accurate for relatively
small weight numbers (of the order of N ∼ 10; see Fig. 3 of
Lombardi & Schneider 2001).

3.2. A fix for the inhomogeneities bias

The bias of Eq. (1) is essentially due to a change in the density
of extinction measurements as a function of A (Eq. (2)). In the
framework of the moving average smoothing, it is thus reason-
able to try to “compensate” for this effect by including in the
weights of the estimator (1) a factor 10αkλA:

wn = w(xn; x)10αkλÂn . (28)

With this modification, we expect Â to be unbiased provided that
N is large (so that we can take C � 1) and that measurement
errors on Ân can be neglected. Instead, in the presence of sig-
nificant errors on the individual column density estimations, we
expected Â to be biased toward high extinctions. This happens
because of the non-linearity of the introduced factor in Ân: for
example, Ân is symmetrically distributed around An, 10αkλÂn Ân

will be skewed against values greater than 10αkλAn An. In sum-
mary, the modified weight of Eq. (28) removes (to a large degree)
the bias due to the cloud substructure, but introduces a new bias
related to the scatter of the individual extinction measurements.
While the former is unpredictable, the latter can be estimated
accurately provided we know the expected errors on Ân.
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In order to better understand the properties of the estima-
tor (1) with the new weight, we evaluate the average

〈
Â
〉
. For

simplicity, initially we will ignore measurement errors and focus
on the effects introduced by a non-uniform density. We first note
that Eq. (28) is equivalent to the use of a weight wn = w

′(xn; x),
where

w′(x′; x) ≡ w(x′; x)/ρ(x′). (29)

We require the new weight w′(x′; x) to be normalized according
to Eq. (24), which implies∫
w(x′; x) dx′ = 1. (30)

Interestingly, the normalization condition (30) for w does not de-
pend on the density ρ anymore, and it is thus possible to choose
for w a spatially invariant function w(x′; x) = w(x′ − x) (a typical
choice would be a Gaussian, w ∝ e−|x′−x|/2σ2

). We have then〈
Â(x)

〉
=

∫
A(x′)w′(x′; x)

[
1 − w′(x′; x) +N−1(x)

]
ρ(x′) dx′

=

∫
A(x′)w(x′; x)

[
1−w(x′; x)/ρ(x′)+N−1(x)

]
dx′. (31)

After a few manipulations we can rewrite this expression in the
form〈
Â(x)

〉
= Ā(x) − 1

ρ0

∫
w2(x′; x)10αkλA(x′)

[
A(x′) − Ā(x)

]
dx′

� Ā(x) − 10αkλĀ(x)

ρ0

∫
w2(x′; x)

[
Δ(x′; x)

+ βΔ2(x′; x)
]
dx, (32)

where in the second equality we have expanded the exponen-
tial term to first order using the definitions following Eq. (8).
In summary, the bias

〈
Â(x)

〉
–Ā(x) of the proposed estimator is

composed of two terms:

– a weighted average of Δ(x′; x). Since the weighted average
uses w2(x′; x) as the weight, this term is not expected to van-
ish identically unless the weight is a top-hat function [cf.
Eq. (8), where instead the weighted average involvesw(x′; x)
and therefore no linear contribution in Δ is present]. Still, we
do not expect any systematic bias related to this term, be-
cause on average Δ(x′; x) by construction has an alternating
sign;

– a weighted average of Δ2(x′; x). This term is manifestly neg-
ative and therefore introduces a bias in the result. The bias
is very similar to the original bias discussed in Eq. (8): it
is proportional to β ≡ αkλ ln 10, and depends on the scat-
ter Δ(x′; x) ≡ A(x′) − Ā(x) of the local column density with
respect to its average value. However, there is a significant
difference: the bias is inversely proportional to ρ010−αkλĀ(x),
i.e. to the local average density within the weight function;
moreover, the average is taken over w2 instead of w. These
two differences, together, indicate that the bias of Eq. (32),
compared to that of Eq. (8), is smaller by a factor ∼ N(x).

In other words, the modification of the weight operated by
Eq. (28) reduces the bias present in the original simple moving
weight average by a factor N(x), which in typical cases is sig-
nificantly greater than unity2. On the other hand, the fact that

2 In reality, a detailed calculation shows that the key parameter here
is Neff(x), which is defined analogously to N(x) but with w replaced by
weff ≡ wC(w). As shown in Lombardi (2002),Neff ≥ 1, so the bias never
increases.
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Fig. 4. Similar to Fig. 3, but for the nicest moving average smoothing
(see Sect. 3). In this case a significant bias is observed only for σ = 0.5,
which however corresponds to a very small weight number N � 2.

the method is ineffective when N is low is evident from the
definition of wn: in particular, as ρ → 0 we expect that only a
single star contributes to the averages of Eq. (1) with a weight
wn = w(xn; x)10αkλÂn significantly different from zero, but then
trivially Â = Ân and no correction is effectively performed3.

In Fig. 4 we show the effects of the proposed smoothing
technique on the model discussed in Sect. 2.2. A comparison
with Fig. 3 shows that the nicer interpolation is very effective
in reducing the bias of the simple moving average interpolation,
especially for relatively large values of the smoothing factor σ
(and thus of the weight number of objectsN).

We now consider the effects of measurement errors on the
modified estimator. For simplicity, we consider the limit of a
large number of stars (N � 1), so that C(w) � 1 (in any case, as
shown above, the technique proposed is inefficient whenN is of
the order of unity). In this case, a simple calculation shows that
measurement errors introduce a bias Berr of the order of

Berr � β
∑

n wnσ
2
n∑

n wn
, (33)

where {σ2
n} are the variances on {Ân}. In other words, the method

proposed in this paper introduces a small bias toward large ex-
tinction values. In order to estimate the order of magnitude of
Berr, we note that the median error in K band extinctions on
nicer column density estimates from the 2MASS catalog is
typically4 σ � 0.13 mag, and that less than 1% of stars have
σ > 0.2 mag. Taking σn = 0.13 mag for all stars in Eq. (33),
we find a bias 〈Â〉 − A � 0.02 mag (always in the K band).
Interestingly, although very small, this bias, in contrast to the
one described by Eq. (32), can be corrected to first order because
its expression involves only known quantities.

In summary, we propose to replace the estimator (1) with

Â =
∑

n wnÂn∑
n wn

− β
∑

n wnσ
2
n∑

n wn
, (34)

3 In this example N → 0 while Neff → 1, which agrees with the
previous footnote.
4 The expected error on Ân is calculated using the standard nicer tech-
niques, and thus includes both the typical 2MASS photometric uncer-
tainties and the star color scatters as measured in control fields where
the extinction is negligible. Hence, this error includes the effects of dif-
ferent stellar populations on the scatter in the intrinsic star colors, as
long as the various stellar populations are represented in the control
field.
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where wn ≡ w(x′; x)10αkλÂn . This new estimator, that we name
nicest, significantly reduces the bias due small-scale inhomo-
geneities in the extinction map and is (to first order) unbiased
with respect to uncertainties on Ân.

If one is ready to accept a small bias on Â for extinction mea-
surement uncertainties, it is also possible to use Eq. (34) without
the last term. In this respect, we also note that the correcting
factor present in Eq. (34) is independent of the local extinction,
and only depends on the individual errors on the measurements
(these typically are a combination of the photometric uncertain-
ties and of the intrinsic scatter of colors of the stellar population
considered). As a result, it is not unrealistic to expect that this
factor is approximately constant within the field of observation,
and that it is equally present in the control field used to fix the
zero of the extinction.

Finally, we note that in nicest a central role is played by
the slope of the number counts α, operationally defined through
Eq. (2). In reality, however, it clear that Eq. (2) cannot strictly
hold, because there is an upper limit on the (un-reddened) mag-
nitude of stars. Hence, depending on the limiting magnitude of
the observations, there is an upper limit to the measurable ex-
tinction of stars. As a result, in regions where the extinction is
greater than this limit, the density of background stars vanishes,
with the result that in these cases even nicest cannot be un-
biased. The exact value of the upper measurable extinction de-
pends on many factors, including the waveband λ and limiting
magnitude mmax of the observations, and the distance d of the
molecular cloud. An approximate relation for the maximum ex-
tinction Amax is

Amax ∼ 1
kλ

[
mmax − Mmax − 5 log10

(
d

10 pc

)]
, (35)

where Mmax is the maximum absolute magnitude of stars in the
band considered. The maximum extinction Amax should be eval-
uated in each specific case; for example, for typical 2MASS ob-
servations, using mmax � 15 mag, kH = 1.55 (Indebetouw et al.
2005), and Mmax � −5 mag we obtain Amax � 10 mag for a cloud
located at 100 pc.

3.3. Foreground stars

Foreground stars do not contribute to the extinction signal, but
do contribute to the noise of the estimators (1) and (34), and
thus whenever possible they should be excluded from the analy-
sis. Usually, foreground stars are easily identified in high (AK >
1 mag) column density regions, but are almost impossible to dis-
tinguish in low and mid extinction regions. So far we assumed
that all stars are background to the cloud, but clearly in real ob-
servations we should expect a fraction f of foreground objects.
In principle, if this fraction is known, we could correct the col-
umn density estimate Â into Â/(1 − f ): in this way, we would
obtain an unbiased estimator of the column density at the price
of increased noise (due to foreground objects). In practice, the
fraction of foreground stars is itself an increasing function of the
local column density, i.e. f = f (A), because of the decreased
density of background stars in highly extincted regions. Hence,
the simple scheme proposed above is not easily implemented.

Interestingly,nicest perfectly adapts to the presence of fore-
ground stars. Suppose that in regions with negligible extinction
a fraction f0 ≡ f (A = 0) < 1 of stars is foreground to the cloud:
then, in our notation, we can rephrase this by assigning a non-
vanishing probability to pA(A = 0), i.e. by treating foreground
stars as a special case of substructure (much like “holes” in the

cloud). As we consider higher density regions, the fraction f (A)
of foreground stars increases but, because of the correcting fac-
tor in wn, we still expect to measure (1 − f0)A: in other words,
the estimator Â/(1− f0), with Â given by Eq. (34) is expected to
be unbiased both for small-scale inhomogeneities and for fore-
ground contamination. Note that the correcting factor (1 − f0)−1

is usually very close to 1 for nearby molecular clouds, and can
be easily evaluated by comparing the density of foreground stars
(easily measured in highly extinguished regions) with the total
density of stars in regions free from extinction.

4. Simulations

In order to test the effects of substructures and the reliability of
the method proposed here in a real case scenario we performed
a series of simulations. We started from a 2MASS/nicer map
of the Pipe nebula (Lombardi et al. 2006), a nearby complex
of molecular clouds seen in projection to the Galactic bulge,
an ideal case for extinction studies (see also Alves et al. 2008;
Onishi et al. 1999). We took this map as the true dust column
density of a cloud complex, and simulated a set of background
stars. In order to show the effects of substructures, we used a very
low density of background stars (25 stars deg−2 instead of the
original ∼9.4 × 105 stars deg−2 used to build the 2MASS/nicer
map). This, effectively, corresponds to a linear downsizing of the
structures of the Pipe nebula by a factor of ∼60.

The simulations were carried out using the following simple
technique. We generated a set of background stars uniformly dis-
tributed on the field of view. The stars were characterized by ex-
ponential number counts with exponent α = 0.34 in the K band
and by intrinsic color and color scatters similar to the ones ob-
served in the 2MASS catalog (see Table 2 of Lombardi 2005,
for a complete list of the parameters used). We added to each
star magnitude the local value of the 2MASS/nicer extinction
and also some random measurement errors:

Ĵn = Jn + kK AK(xn) + ε(J)
n , (36)

Ĥn = Hn + kH AK(xn) + ε(H)
n , (37)

K̂n = Kn + Ak(xn) + ε(K)
n , (38)

where ε(J,H,K)
n denote random variables used to model the pho-

tometric errors of the stars, and where as usual we used the
hat to denote measured quantities. For simplicity, here, we took
the errors as normal distributed random variables with constant
variance 0.05 mag in all bands (the typical median variance of
2MASS magnitudes); moreover, we assumed a hard complete-
ness limit at 15mag in all bands (i.e. if a magnitude exceeded 15
we took the star as not detected in the corresponding band). We
then applied the nicer algorithm to these data, thus obtaining,
for each star, its measured extinction and related error. Finally,
we produced smooth extinction maps by interpolating the indi-
vidual extinction measurements with three different techniques:
(1) a simple moving average using Eq. (1); (2) a modified mov-
ing average using nicest (Eq. (34)); (3) a nearest neighbour in-
terpolation with a single star (N = 1).

We repeated the whole procedure 1 000 times, using each
time a different set of random background stars, and took the
average maps Â(x) obtained with the three techniques. We then
compared these average maps with similar maps obtained from
uniformly distributed stars (in order to produce such maps, we
applied the completeness limit to un-extinguished magnitudes).
Figures 5 and 6 show the results obtained, which supportnicest.
In particular, both the simple moving average and the nearest
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Fig. 5. Top left: the original 2MASS/nicer map of the Pipe nebula used in the simulations. Top right: the mean reconstructed map that one would
obtain if the density of background stars were uniform. This is basically a smoothed version of the original map on the left. Levels are spaced at
0.2 mag. Bottom left: the difference between the average reconstructed maps, calculated from background stars following the density of Eq. (2),
and the average map at top right. Levels are spaced at 0.02 mag. Bottom right: same map as bottom left, but using the improved method presented
in this paper. Levels are spaced at 0.0025 mag.
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Fig. 6. Left: average reconstructed map using a 1-star (N = 1) Voronoi method, assuming a uniform distribution of stars. Levels are spaced at
0.2 mag. Right: difference between the average reconstructed Voronoi map, obtained from background stars following the density of Eq. (2), and
the average true map to the left. Levels are spaced at 0.02 mag.

neighbor suffer from significant biases, up to AK � 0.1 mag or
above, particularly in the most dense regions of the Pipe nebula.
As shown in various papers (e.g. Lada et al. 1994; Lombardi
et al. 2006, 2008), the amount of small scale structure present
in dark molecular clouds increases with the column density, and
thus it is not surprising that larger biases are observed there. In
contrast, the method presented in this paper reduces the bias by
∼10, a factor comparable to the weight number of starsN (which
in our simulations is N � 10 in the higher column density re-
gions).

The simulation performed here allows us also to evaluate
the average quadratic difference between the extinction map

obtained for the various methods Â(x) and the true (smoothed)
map Ā(x), i.e. the quantity

〈[
Â(x) − Ā(x)

]2〉
= Var

[
Â(x)

]
+

[〈
Â(x) − Ā(x)x

〉]2
. (39)

As shown by the above equation, the quantity considered here
can be written as the sum of the variance and the square of the
bias of the extinction map. Our simulations show that, although
nicest, as expected, has a slightly greater variance than nicer,
there is still a gain by a factor of at least two in the squared
difference of Eq. (39). In other words, the significant reduction
in the bias performed by nicest largely compensates for the
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Fig. 7. Same as Fig. 5 (bottom), but with a fraction of f = 0.05 of foreground stars. The increases of relative number of foreground stars in the
denser regions of the cloud makes the bias more pronounced. Still, nicest performs very well. Contours levels are spaced at 0.02 mag in the
nicer plot (left) and at 0.005 mag in the nicest plot (right); contours at −0.1 mag or below are plotted in white.

increase in the scatter introduced by this method. A naive com-
parison between the results obtained from nicest and from the
Voronoi method would provide even larger differences in favour
of nicest, but we stress that since the Voronoi method inter-
polates the extinctions over a fixed number of stars (typically
smaller than the one employed by nicest in our simulations), a
direct comparison is not possible.

Figure 7 shows the result of simulation carried out with the
presence of foreground stars. In particular, we generated stars
following the same prescriptions described in the previous para-
graph, but allowing for a fraction f0 = 0.05 of foreground ob-
jects. Because of the effects of extinction, the effective fraction
of foreground objects increases in the most dense regions of the
cloud, which usually are also the ones with the larger substruc-
tures: the two biases thus add up and can be particularly severe.
As shown by Fig. 7, nicest is effectively able to cope with rel-
atively large fractions of foreground stars while still providing a
virtually unbiased column density estimate.

5. A sample application

The method presented in this paper was finally applied to the
whole 2MASS point source catalog for the Pipe nebula region.
We used the 4.5 million stars of the 2MASS catalog located in
the window

− 4◦ < l < 4◦, +2◦ < b < +8◦. (40)

The analysis was carried out following the prescriptions of
Lombardi & Alves (2001), but using the modified estimator (34)
to evaluate Â. In particular, we generated the final extinction
map, shown in Fig. 8, on a grid of about 1000 × 750 points,
with scale of 30 arcsec per pixel, and with a Gaussian smoothing
characterized by FWHM = 1 arcmin. The slope of the number
counts was estimated to be α = 0.32 ± 0.02 in the H band.

The final, effective density of stars of about 8 stars per pixel
guarantees that the approximation used to derive the unbiased es-
timator (34) is valid, and that a significant improvement over the
standard nicer method can be expected. The highest extinction
was measured close to Barnard 59, where Â � 2.68 mag (a value
that is 0.41 mag higher than what was obtained in Lombardi et al.
2006).

Figures 9 and 10 show a comparison between dense regions
mapped using nicer and nicest. We note that, as expected, the

two methods are equivalent in low-density regions, while the
new one consistently estimates higher column densities as A in-
creases. The same effect can be appreciated more quantitatively
from Fig. 11, where we plot the relationship between the average
estimates Â obtained in Lombardi et al. (2006) and here.

Finally, we argue that the plot of Fig. 11 is strongly related
to Fig. 9 of Lombardi et al. (2006) where we show the increase
in the scatter of Ân for the different stars used at each point of the
extinction map as a function of the average Â at the point. This
A-σ relation is most likely due to unresolved substructures in
the cloud that are expected to be more prominent in high-density
regions. Recently, we reconsidered the A-σ relation and defined
a quantity called Δ2(x) (Lombardi et al. 2008). This quantity is
simply related to the local scatter of measured extinctions, but
also properly takes into account the contribution of measurement
errors to the observed scatter. Interestingly, this quantity can be
defined in terms of simple observables, and can be shown to be
directly related to the local scatter of column densities:

Δ2(x) =

∑
n wnΔ

2
n∑

n wn
, (41)

where Δn ≡ A(xn) − Ā(x) is the difference between the column
extinction at the position of the n-th star and the local average
column extinction. A comparison of Eq. (41) with Eq. (8) clearly
shows that, except for a numerical factor β, the bias expected in
the standard nicer method is simply proportional to the Δ2(x)
of Lombardi et al. (2008).

6. Discussion

The numerical simulations and a first sample application of
nicest have shown that the method presented in this paper can
significantly alleviate the bias introduced by small-scale struc-
tures and by foreground stars in extinction studies. Of course,
nicest too has some limitations, which however are largely un-
avoidable (and thus inherent to any extinction-based method).

First, we note that in order for nicest to work effectively,
the weight number of background stars N must be significantly
greater than unity: as shown in Sect. 3.2, N is directly related
to the reduction in the bias provided by nicest with respect to
nicer, and thus having N ∼ 1 does not give any benefit. This
point is also important when correcting for foreground star con-
tamination. For example, if N ∼ 1 and the local fraction f of
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Fig. 8. The nicest extinction map of the Pipe nebula, using the modified estimator (28).
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Fig. 9. The difference between the modified extinction estimates
(Eq. (28)) and the standard ones [Eq. (1)] around Barnard 59. The con-
tour levels are at A = {0.5, 1.0, 1.5, 2.0} mag of the map of Fig. 8.

foreground stars is large (e.g., because we are in a particularly
dense core), on average we do not expect any background stars,
and we will thus consistently measure a vanishing extinction.
Hence, nicest, like any other extinction-based method, only
works if there are a sizable number of background stars that can
be used for reliable extinction measurements.

The above point might be interpreted as an exceedingly strin-
gent requirement for the smoothing window used in nicest. In
fact, if a weight function w(x′; x) = w(x′ − x) invariant upon
translation is used, this function should be taken broad enough
to guarantee that the weight number of background starsN(x) is
significantly larger than unity everywhere. This, in turn, would
imply thatN � 1 in the intermediate extinction regions, i.e. that
the extinction map in these regions has a poor resolution, well
below the limits imposed by the density of background stars. In
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Fig. 10. The difference between the modified extinction estimates
(Eq. (28)) and the standard ones (Eq. (1)) around the peak ID 3
of Lombardi et al. (2006). The contour levels are at A =
{0.5, 1.0, 1.5, 2.0} mag of the map of Fig. 8.

reality, the whole derivation of the statistical properties of the
nicest technique is still valid for weight functions which are
not spatially invariant. Hence, one does not need to use a fixed
window size for w(x′; x), but rather this function could be taken
to change shape for different locations x. For example, a simple
scheme could be the use of a Gaussian shape for w(x′; x) with
the typical scale chosen according to a local estimate of the den-
sity of background stars, in a way such that N(x) ∼ const ∼ 10.
This choice would guarantee an optimal resolution everywhere,
and would still allow one to make use of the nicer technique to
reduce the inhomogeneity bias.

Another point to keep in mind is that nicest gives a large
weight to red sources. This has two potential unwanted conse-
quences. First, it introduces a small bias, that has been corrected
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Fig. 11. The average difference ΔA between the estimators (28) and (1)
as a function of the estimated column density A. The lower, solid line
is relative to the Pipe nebula map at FWHM = 1 arcmin resolution; the
upper dashed line is at for a resolution FWHM = 1.5 arcmin. The latter
plot is essentially what we would obtain at a FWHM = 1 arcmin if the
distance of the Pipe nebula increases by a factor 1.5.

to first order in Eq. (34). Second, as shown also by the numerical
simulations described in Sect. 5, it slightly increases the noise in
the final map. Again, since the noise in final map Â(x) is pro-
portional to 1/N , the solution is to make sure that N is suffi-
ciently large. We believe that a small increase in the noise is a
fair price to pay for the significant reduction in the bias provided
by nicest over nicer (see also Eadie et al. 1971).

A potentially more severe problem can be young stellar ob-
jects (YSOs) with infrared excess. These sources can be present
in the most dense star-forming cores of molecular clouds, where
they can severely bias our method. We note, however, that since
these sources have peculiar colors and are not usually present in
the control field used for the calibration, they represent a prob-
lem for all extinction based methods, including nicer and the
nearest neighbour ones. A median estimator is in principle safer
to use in these cases, as long as the YSOs present in the core are a
minority of the total number of background stars observed in the
region; unfortunately, the tendency of YSOs to appear in clus-
ters does not help here (note also that a median is usually more
noisy than the simple average). The obvious solution is thus to
exclude as much as possible YSOs from the list of sources used
in the extinction maps.

Finally, let us briefly mention alternative possibilities to re-
duce the bias considered in this paper. Since the substructure
bias is due to a relationship between the local density ρ(x) and
the extinction map A(x) (Eq. (2)), one could try to use a tracer
of the local density to perform the correction. We already dis-
cussed a method based on this concept, the nearest neighbours
interpolation. However, as shown in Sect. 4, this method fails
(see also Sect. 2.2). In general, a problem with methods based
on the local estimate of the density of background stars is that
one needs to be able to obtain ρ(x) on scales smaller than the
ones that characterize the weight w(x′; x), or otherwise it is not
possible to give different weights to the different stars that con-
tribute significantly to the weighted average of Eq. (1). However,
if the density of background stars is large enough to allow accu-
rate measurements of the local density ρ(x), one can disregard
substructures, because it is always possible to make extinction
maps at the same resolution as the density map. Hence, the only
effective way to deal with substructures involves the use of the
local extinction measurements, as done in nicest. Note also that
any density-based correction will be completely ineffective with
foreground stars, in contrast to the method presented here.

7. Conclusions

The main results obtained in this paper can be summarized in the
following points:

– We discussed the effects of small scale inhomogeneities in
the NIR extinction maps based on color excess methods,
and showed that large inhomogeneities can significantly bias
standard extinction maps toward low column densities.

– We proposed a new estimator for Â, nicest, and we showed
that it is (i) equivalent to the usual estimator in low-density
regions; (ii) unbiased and robust for any value of A, i.e.
insensitive to the actual form and amount of substructure
present in the cloud.

– We showed that the new estimator is also suitable in the pres-
ence of contamination by foreground stars.

– We tested nicest against numerical simulations, and showed
that it effectively reduces by a large factor the biases due
to substructures and to foreground stars. We also tested an
alternative approach, the nearest neighbor, and showed that
the results obtained from this interpolation are still severely
biased.

– We applied nicest to the Pipe nebula and showed a few pre-
liminary properties of the resulting extinction map. We also
noted a direct connection between the bias of the nicer and
the Δ2 map defined by (Lombardi et al. 2008).
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