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Abstract 

 

Abstract 

Epigenetic control of developmental genes has emerged as a key mechanism in the 

acquisition of developmental competence. In particular, patterns of methylation at lysine 4 

and 27 of histone H3 have been associated, respectively, with states of gene activation and 

repression that are developmentally regulated and are thought to underlie the establishment 

of lineage specific gene expression programs. Recent studies have provided fundamental 

insight into the problem of lineage specification by comparing global changes in chromatin 

and transcription between embryonic stem cells (ESCs) and neural stems cells (NSCs), 

points of departure and arrival for neural commitment, respectively. With these maps of 

the differentiated state in place, a central task is now to unravel the chromatin dynamics 

that enable these differentiation transitions between pluripotent ESCs and multipotent 

NSCs. In particular, the observation that lineage-specific genes repressed in ESCs by 

Polycomb-mediated histone H3 lysine 27 trimethylation (H3K27me3) are demethylated 

and derepressed in differentiated cells posited the existence of a H3K27-specific 

demethylase. In order to gain insight into the epigenetic mechanisms that enable lineage 

specification, we investigated in the first part of this work the early stages of neural 

commitment using as a model system the neural differentiation of mouse ESCs. Using a 

comprehensive expression analysis of JmjC genes, we identified Jmjd3 as a H3K27me3 

demethylase that is specifically upregulated at the onset of neural differentiation. This 

study revealed that Jmjd3 controls the expression of key regulators and markers of 

neurogenesis and is required for commitment to the neural lineage. In the second part of 

this work, we have used a genetic loss-of-function approach to characterise the role of 

Jmjd3 in vivo. Mice lacking Jmjd3 die at birth from respiratory failure. A detailed 

characterisation of this neurodevelopmental phenotype demonstrated that the defect in 

respiratory rhythmogenesis upon loss of Jmjd3 is due to an abnormal maturation of the 
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preBötzinger complex (preBötC), one of the two principal sites generating respiratory 

rhythm in mammals. 

 



 

 

Some of the results presented in this thesis appear in the following publication: 

 

Burgold T, Spreafico F, De Santa F, Totaro MG, Prosperini E, et al. (2008) The histone H3 

lysine 27-specific demethylase Jmjd3 is required for neural commitment. PLoS One 3: 

e3034. 
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Introduction 

1 The role of epigenetics in the specification and maintenance 

of cell identity 

1.1 Epigenetics 

One of the intriguing questions that have fascinated scientists since decades is how in a 

complex multicellular organism a plethora of functionally distinct cell types can be 

determined by an invariant DNA sequence. During development, cell fate decisions are 

orchestrated by the integration of extracellular signals arriving to the cell and intrinsic 

programs unfolding within the cell. The regulation of this process is not yet fully 

understood. Recent studies on neocortical neurogenesis have shed some light on the 

importance of cell-intrinsic programs over cell-extrinsic cues in determining cell fate [1]. 

Isolated mouse cortical stem cells grown in clonal cultures were able to sequentially 

generate the main neuronal subtypes of the cortex, recapitulating to a significant extent the 

timing and sequence observed during cortical neurogenesis in vivo. Even the exposure of 

the developing clones to putative extrinsic cues such as secreted molecules did not have 

significant effects on the range of cell types that individual clones could generate, 

indicating that extrinsic cues could not override the intrinsic program. Therefore, it is 

believed that intrinsic mechanisms may control the responsiveness of cells to fate-

regulating extracellular signals. One of the major players in the establishment of intrinsic 

programs underlying cell fate determination and maintenance is the epigenetic regulation 

of gene expression. The term “epigenetics” was first introduced by the embryologist and 

geneticist C. H. Waddington in 1942 to define all the causal processes during development 

by which a genotype gives rise to a phenotype [2]. Over time the meaning of epigenetics 

was refined in accordance with new findings and today the most rigorous flavour of 
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epigenetics includes all those phenomena, including changes in gene expression, that are 

inherited across generations independent of the underlying DNA sequence. 

In mammals, epigenetic control of gene expression is mainly mediated through DNA 

methylation, posttranslational histone modifications, nucleosomal remodelling and small 

noncoding RNAs. These mechanisms are thought to establish signatures of gene 

expression states that can be propagated through cell division, thus contributing to the 

epigenetic inheritance of cellular states. However, the molecular processes that regulate the 

transmission of epigenetic marks are not entirely understood yet and to date only DNA 

methylation can be considered as a bona fide epigenetic mark since it has been 

demonstrated to be stably inherited during cell division from one generation to the next [3]. 

Recently, several findings have suggested models for the propagation of posttranslational 

histone modifications in proliferating cells that ensures the preservation of transcriptional 

programs and cellular identity [4-5]. In fact, these covalent modifications of the 

nucleosomal core histones H2A, H2B, H3 and H4 have been shown to be implicated in 

establishing, maintaining and propagating different gene expression patterns throughout 

developmental processes. 

 

1.2 Histone lysine methylation 

Histones, initially regarded as merely architectural components of chromatin, undergo a 

variety of posttranslational modifications and depending on the type and the site of the 

covalent mark, these modifications determine distinct biological outcomes by affecting 

processes such as chromatin organisation, transcriptional regulation, DNA repair and 

replication [6-9]. In particular, the amino-terminal tails of the histones are subject to a wide 

range of covalent modifications including acetylation, methylation, phosphorylation and 

ubiquitination as well as other modifications whose functional role is less well 

characterised (Figure 1). 
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Figure 1. Posttranslational modifications of nucleosomal histones. Histones are subjected to a variety of 

covalent modifications, such as acetylation (ac), methylation (me), phosphorylation (ph) and ubiquitination 

(ub1). Most of the known modifications occur on residues in the amino-terminal tail. From [10]. 

 

Among the histone modifications, the methylation of histone lysine residues has been of 

special interest for many years, as studies have revealed that it is a key player in the 

maintenance of active and silent states of gene expression during development. So far, six 

lysine residues in histones H3 and H4 have been described to be sites of methylation, 

lysine (K) residues 4, 9, 27, 36 and 79 in histone H3 and lysine 20 in histone H4. Each of 

these lysine residues is present in one of four distinct states: un-, mono- (me1), di- (me2) or 

trimethylated (me3), which confers an additional layer of complexity and potential for the 

diversification of biological outputs. These methylation states result from the activity of 

histone lysine methyltransferases and are differentially recognised by effector proteins and 

chromatin modifiers that mediate a variety of functional outcomes such as transcriptional 

activation and repression [11-14]. In general, methylation of H3K4, H3K36 and H3K79 is 

linked to transcriptionally active regions of chromatin, whereas H3K9, H3K27 and H4K20 

are found in transcriptionally repressed regions. There is, however, increasing evidence 

that a single modification does not dictate a single outcome with respect to the 

transcriptional state. For example, methyl marks such as H3K4me2/3 and H3K9me2/3, 

although enriched on active and silenced genes, respectively, are also found to be present 
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in the reciprocal state [15-16]. Therefore, it now seems that these modifications act rather 

in combination to determine specific transcriptional outputs. 

Historically, histone methylation has been considered as a stable and irreversible 

epigenetic mark. This prevailing view was based on biochemical evidence indicating that 

the turnover rate of the histone methyl groups was comparable to that of histones 

themselves [17]. In turn, this stability led to posit a central role for histone lysine 

methylation in the establishment and maintenance of lineage-specific gene expression. 

However, a static methyl mark was not compatible with developmental and physiological 

processes in which rapid changes in gene expression occur in response to differentiation 

cues and environmental signals. 

 

1.3 Histone lysine demethylation 

The first demonstration that histone methylation is dynamic was obtained in human 

dendritic cells, in which specific tightly regulated and inducible inflammatory genes 

underwent a rapid loss of H3K9 methylation [18]. Yet, the underlying mechanism of 

demethylation was unclear and in absence of evidence for an active enzymatic 

demethylation, the removal of histone methyl marks was explained by several alternative 

mechanisms, including replacement of methylated histones by unmodified histones or 

cleavage of methylated histone tails [19-22]. This common view changed only in 2004 

with the identification of lysine-specific demethylase 1 (LSD1, also known as Kdm1) as 

the first histone lysine demethylase [23]. LSD1 is an amine oxidase that catalyses the 

oxidative demethylation of mono- and dimethylated lysine residues 4 and 9 on histone H3 

(H3K4me2/1 and H3K9me2/1) using flavin adenine dinucleotide (FAD) as cofactor [23-

24]. Because this reaction mechanism requires a protonated nitrogen as hydrogen donor the 

trimethylated lysine cannot be demethylated by LSD1. Given the large number of known 

histone lysine methylation sites and the inability of LSD1 to demethylate trimethylated 
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lysine, it was hypothesised that other enzymes capable of catalysing histone lysine 

demethylation might exist [25]. 

 

1.4 Jumonji C (JmjC) domain-containing histone demethylases 

The identification of the bacterial DNA repair demethylase AlkB showed that DNA could 

be demethylated in an iron- and α-ketoglutarate-dependent hydroxylation reaction [26-27]. 

Similarities between the catalytic domain of AlkB and the Jumonji C (JmjC) domain in 

eukaryotes led to the hypothesis that JmjC domain-containing proteins might be involved 

in the demethylation of modified lysine residues within histones by using the same 

oxidative demethylation mechanism, thus representing a second class of histone lysine 

demethylases. To isolate proteins with potential histone demethylase activity, Tsukada and 

colleagues designed a biochemical assay based on the reaction mechanism of AlkB-

mediated demethylation [28]. In 2006 the same group reported the purification of a novel 

histone lysine demethylase from human cells, named JmjC domain-containing histone 

demethylase 1 (JHDM1a, also known as Fbxl11 and Kdm2a). JHDM1a was shown to 

possess substrate specificity towards H3K36me2/1 and it was further proven that its JmjC 

domain was critical for the enzymatic activity. This finding defined the JmjC domain as a 

signature motif for histone demethylases and over the next years several other JmjC 

domain-containing proteins with histone lysine demethylase activity were identified, each 

with a distinct specificity for methylated lysine residues in the amino-terminal tail of 

histone H3. JmjC domain-containing histone demethylases can demethylate all three 

histone lysine methylation states through an oxidative demethylation reaction that requires 

iron and α-ketoglutarate as cofactors. The cofactor-bound JmjC domain catalyses the direct 

hydroxylation of the methyl group, producing succinate and carbon dioxide as reaction 

products (Figure 2). The unstable hydroxymethyl group is then spontaneously released as 

formaldehyde. 
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Figure 2. Reaction mechanism of histone lysine demethylation catalysed by JmjC domain-containing 

proteins. The reaction mechanism shows the removal of a methyl group from a monomethylated lysine 

residue catalysed by a JmjC domain-containing histone demethylase (JHDM). The JmjC domain requires 

Fe(II) and α -ketoglutarate as cofactors in an oxidative demethylation reaction that hydroxylates the methyl 

group. The unstable hydroxymethyl group is then spontaneously released as formaldehyde. JHDMs can 

demethylate mono-, di- and trimethylated lysine. 

 

The discovery of histone lysine demethylases challenged the notion of the inherent stability 

of histone lysine methylation and therefore imposed a revision of the functional role of 

histone lysine methylation. Indeed, the reversibility of histone lysine methyl marks is 

consistent with the observation that histone lysine methylation at specific loci is responsive 

to environmental cues and is regulated during differentiation [18,29-30]. In fact, the 

combination of the tightly regulated process of addition and removal of the methyl mark 

with the stability it imparts ensures the integration of lineage-specific and environmental 

cues, suggesting a crucial role for histone lysine demethylation in lineage commitment. 

 

1.5 Polycomb proteins and H3K27 methylation during differentiation 

Regulation by Polycomb group (PcG) proteins has been shown to constitute one of the 

molecular mechanisms that are central to the epigenetic inheritance of cellular memory. 

First identified in Drosophila melanogaster through their function in stabilising 

transcriptional repression of homeotic (Hox) genes [31-33], PcG proteins belong to the key 

regulators of proper embryonic development and the maintenance of cell identity [34-36]. 

The demonstration that enhancer of zeste homolog 2 (Ezh2), a member of the PcG protein 
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family, has histone lysine methyltransferase activity for H3K27, suggested a central role 

for this histone methyl mark in the process of gene silencing that accompanies cell 

differentiation [37-40]. Indeed, H3K27 methylation and binding of PcG proteins are 

dynamically regulated during differentiation, and two main patterns have emerged from 

recent genome-wide studies in Drosophila [41-43] and mammals [44-47]. In both ESCs 

and neural progenitors several genes bound by PcG proteins and marked by H3K27me3 

are transcriptionally repressed but become activated during differentiation. As many of 

these genes are key developmental regulators, the current model holds that PcG protein-

mediated repression of these genes prevents inappropriate differentiation. Another group of 

PcG protein target genes however, appears to be actively expressed despite PcG protein 

binding and presence of the H3K27me3 mark [44-45]. This observation indicates that, as 

with many other posttranslational histone modifications, also the H3K27me3 mark needs 

to be ‘read’ and ‘translated’ into to the appropriate functional output and posits a more 

complex and nuanced set of functions for PcG proteins. 

 

1.6 Bivalent chromatin domains 

Furthermore, recent studies showed that several loci in both ESCs and adult stem cells, 

including those encoding key developmental regulators and components of critical 

signalling pathways, are characterised by the simultaneous presence of the activating 

H3K4me3 mark and the repressive H3K27me3 mark, a chromatin configuration that has 

been termed ‘bivalent domain’ [29-30,48]. In undifferentiated ESCs this unusual 

combination of opposing chromatin marks is thought to keep genes repressed or expressed 

at very low level but poised for later activation. Upon ESC differentiation, a large fraction 

of these bivalent domains appears to be resolved in a lineage-specific manner into 

transcriptionally active (H3K4me3) or transcriptionally silent (H3K27me3) chromatin 

regions. Thus, the observation that during differentiation of ESCs into neural stem cells 
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(NSCs) the resolution of the bivalent to the active state entails the removal of the 

repressive H3K27me3 mark from promoters of many neural determinant genes, implied 

the existence of a H3K27me3-specific histone lysine demethylase [48]. This assumption 

prompted us to investigate whether any of the JmjC domain-containing proteins is capable 

of catalysing the demethylation of H3K27me3 and to explore the relevance of histone 

lysine demethylation during the commitment of ESCs to the neural lineage. 
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2 Manipulating the mouse genome 

2.1 Functional genomics in the mouse 

The physiological and genetic similarities between mice and men make the laboratory 

mouse (Mus musculus) the premier model organism for studying embryonic development 

and behaviour, elucidating gene function and modelling human diseases. In the past few 

years, especially with the completion of the mouse genome sequence [49], the efforts to 

develop new efficient strategies that enable the analysis of gene function have made 

enormous progress. Currently, the most common approaches to manipulate and mutagenize 

the mouse genome are gene trapping, gene targeting, transgenesis and gene silencing by 

RNA-mediated interference (RNAi). 

Gene trap mutagenesis belongs to the genotype-driven genetic techniques and is used to 

introduce randomly insertional mutations across the genome in mouse embryonic stem 

cells (ESCs) [50]. In general, gene trap vectors consist of a promoterless lacZ reporter gene 

and a selectable marker gene, such as neomycin phosphotransferase. The lacZ reporter is 

immediately flanked by an upstream splice acceptor site and the selectable marker is 

followed by a polyadenylation signal that truncates the nascent transcript. Upon 

transcriptional activation of the trapped gene, a fusion transcript is generated from the 

upstream coding sequence and the reporter gene, simultaneously mutating the trapped gene 

and reporting its expression pattern. Furthermore the inserted trap sequence acts as a tag 

from which the disrupted gene can be cloned and identified. 

An alternative to random mutagenesis for pursuing functional genomics in the mouse is 

targeted mutagenesis by homologous recombination in ESCs, allowing the efficient 

alteration of genes in a specific and precise manner [51-52]. In the standard targeted 

mutation, homologous recombination is used to delete essential parts of the gene to 

generate a null allele. These knockouts establish a complete loss of function and provide 

therefore valuable information about the earliest essential role of the gene during 
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development. However, many genes have multiple roles at different stages of development 

in different tissues and therefore a null allele may cause early embryonic lethality, 

precluding the study of gene function at later stages of development or in the adult. To 

bypass these limitations, strategies for conditional mutagenesis based on site-specific 

recombination have been developed, which allow gene expression to be abrogated in a 

temporally and spatially controlled manner. The combined use of site-specific recombinase 

systems, such as the Cre/loxP system and the FLP/FRT system with traditional 

homologous recombination strategies has become the standard method to generate 

conditional knockout or knockin alleles [53-55]. The ‘knockout-first’ strategy represents 

an elegant and efficient way to create a multipurpose allele [56-57]. This strategy allows, 

in a single ESC targeting step, to generate both a constitutive and a conditional knockout. 

This allele is a null allele and a reporter for gene expression in its original configuration. 

By the combined use of FLP and Cre recombinases the constitutive knockout allele is 

converted into a conditional allele. 

A third possibility to analyse the function of a specific gene is provided by means of RNA-

mediated interference (RNAi) [58]. RNAi, first discovered in the nematode worm 

Caenorhabditis elegans [59], is an evolutionary conserved mechanism, whereby double-

stranded RNA (dsRNA) acts as sequence-specific inducer of mRNA degradation [60-63]. 

RNA silencing mechanisms were initially recognized as cellular defense processes that 

protect organisms from RNA viruses or which prevent the propagation of transposable 

elements [64-67]. But further studies have revealed the importance of endogenous small 

noncoding RNAs, among which microRNAs (miRNAs) are the best characterised, that are 

processed in a pathway that converges on the same components of the RNAi machinery 

and that play a key role in the posttranscriptional regulation of gene expression. Nowadays, 

different strategies are used in order to exploit RNAi in mammalian cells. Transfection of 

short interfering RNAs (siRNAs) results only in a transient knockdown of gene expression 
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[68], whereas stable silencing is achieved by transcription of short hairpin RNAs 

(shRNAs) or, more recently, microRNA-adapted short hairpin RNAs (shRNAmir) from 

stably integrated vectors [69-73]. Despite the power of the RNAi technology, a pitfall is 

that it almost never fully depletes the target mRNA, which makes the selection and design 

of highly effective shRNAs for a target gene the crucial steps in RNAi-based functional 

genomics. Moreover, RNAi-based approaches can result in off-target effects, due to the 

possibility that the shRNA may cross-react with transcripts of partial sequence similarity, 

causing the unintentional silencing of nontargeted genes [74]. Therefore some changes in 

gene expression patterns are specific for the shRNA sequence used for silencing rather 

than for the suppression of the intended target. 

 

2.2 Recombinogenic DNA engineering in E. coli 

Engineering versatile targeting constructs for mouse functional genomics, including 

multipurpose alleles described above, requires the assembly of several functional elements 

into very large DNA molecules. For this task conventional cloning methods, that rely on 

the presence of suitable restriction sites, PCR amplification and DNA purification steps, 

present major limitations. Novel DNA engineering strategies based on homologous 

recombination in vivo in E. coli have overcome these constraints and allow complete 

freedom in DNA design without the size and site limitations imposed by conventional 

cloning techniques. Homologous recombination occurs through DNA stretches of sequence 

homology, which are common between the two molecules that recombine. Because, the 

sequence of the homology regions can be chosen freely, any position on the target 

molecule can be specifically altered and practically any DNA modification is possible. 

Red/ET recombination, a strategy to accomplish recombinogenic engineering, is mediated 

by phage-derived protein pairs, either RecE/RecT from the Rac prophage or Redα/Redβ 

from λ phage [75]. The RecE/RecT and Redα/Redβ protein pairs are operationally and 
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functionally equivalent. RecE and Redα are 5’-3’ exonucleases, which digest the 5’ ends of 

double-stranded DNA to leave 3’ single-stranded overhangs. RecT and Redβ are DNA 

annealing proteins that bind to these overhangs and anneal them to complementary single-

strand DNA in the cell. The recombination is further assisted by the λ phage-encoded 

protein Redγ, which inhibits the endogenous E. coli exonuclease RecBCD in order to 

protect introduced linear DNA molecules from digestion by RecBCD. The functional unit 

comprising all three λ phage proteins can be applied to and induced in any E. coli host by 

transient transformation of an expression plasmid [76]. Using Red/ET recombination, a 

linear DNA fragment carrying short homology regions flanking a selectable marker gene 

can be integrated into a circular target DNA (Figure 3a). The length of the homologous 

regions required for efficient recombination is only 40-60 nucleotides, and thus short 

enough to be generated by oligonucleotide synthesis. In a very convenient application, the 

selectable marker is PCR-amplified using oligonucleotides that contain besides the primer 

sequence the homology regions. In another application, the linear targeting molecule is a 

PCR-amplified plasmid backbone containing a selectable marker and an origin of 

replication (Figure 3b). The oligonucleotides used for the PCR reaction contain homology 

regions that are chosen to define the exact boundaries of the DNA region to be cloned or 

subcloned. The advantage of this strategy is that the subcloned DNA is not PCR-amplified, 

thus excluding the risk of PCR-generated mutations and allowing the manipulation of 

DNA fragments of up to 40 kb. This approach is particularly useful for the assembly of 

gene targeting constructs as it enables the subcloning of large fragments of genomic DNA, 

such as those carried on bacterial artificial chromosomes (BACs) [77]. 
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Figure 3. Applications of Red/ET recombination. (a) A linear DNA fragment is generated by PCR 

reaction, which contains two regions homologous to the regions in the targeting vector (hm1, hm2) and a 

selectable marker gene (sm). The PCR product and the targeting vector are electroporated into Red/ET 

competent E. coli to allow homologous recombination. The recombined vector contains the selectable 

marker. (b) A genomic DNA sequence is subcloned from a donor molecule (e.g. BAC) into a linear vector 

backbone using Red/ET recombination. The linear minimal vector is generated by PCR amplification and 

contains flanking homology arms (hm1, hm2), an origin of replication (ori) and a selectable marker (sm). 

Importantly, the subcloned DNA fragment is not amplified by PCR, excluding the risk of extraneous changes 

in the DNA sequence. 
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3 Aim of the thesis 

The work presented in this thesis was initiated in 2006, at a time when several independent 

lines of evidence were suggesting a new view of chromatin regulation by challenging the 

dogma of the irreversibility of histone lysine methylation. Two years after the discovery of 

the first histone lysine demethylase LSD1, the JmjC domain was identified as a signature 

motif for a new family of histone demethylases. Furthermore, studies at the genome-wide 

level revealed that in undifferentiated ESCs many developmental regulators are repressed 

by PcG complexes but poised to be activated by a bivalent chromatin signature, containing 

both activating H3K4me3 and repressive H3K27me3 modifications. In line with this 

observation, the comparison of global changes in chromatin between ESCs and NSCs 

showed that upon differentiation, many of these bivalent domains are resolved 

differentially leading to transcriptional activation of neural-specific genes and silencing of 

loci associated with alternative cell lineages. These findings prompted us to explore the 

relevance of histone lysine demethylation during the early stages of lineage specification 

using as a model system the monolayer differentiation of ESCs to NSCs. This protocol is a 

versatile tool that by recapitulating neural specification during development, allowed us to 

dissect the chromatin dynamics underlying early cell fate transitions. Following our 

identification of Jmjd3 as a H3K27me3-specific demethylase, we demonstrated its 

requirement in the commitment of ESCs to the neural lineage. In order to investigate the 

biological function of Jmjd3 in the context of an animal model and to gain insight into the 

role of histone lysine methylation during the development of multicellular organisms we 

used a loss-of-function approach in the mouse. 
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Materials and Methods 

1 Cell culture methods 

1.1 Preparation of mouse embryonic fibroblasts (MEFs) for feeder layer 

Pregnant mice were sacrificed between embryonic days (E) 11.5 and 13.5 following 

standard procedures. The intact uterus was carefully extracted and transferred to a 10 cm 

dish containing sterile phosphate buffered saline (PBS). The uterus was sectioned to 

release the embryos and each one was placed in a 6 cm dish with PBS. The fetal 

membranes, umbilical cord, head and organs were removed and the remaining tissues were 

collectively transferred to a 10 cm dish containing 5 ml trypsin-EDTA (Lonza) and were 

further dissociated with forceps and scissors and incubated at 37 °C for 5 to 10 min. The 

cells and tissue pieces were triturated by pipetting up and down and collected in MEF 

medium which consists of Dulbecco’s Modified Eagle’s Medium (DMEM with high 

glucose, with sodium pyruvate and without L-glutamine; Lonza), 10% North American 

foetal bovine serum (FBS; Gibco), 2 mM L-glutamine (Gibco), 0.1 mM non-essential 

amino acids (NEAA; Gibco), 50 U/ml penicillin and 50 µg/ml streptomycin (Lonza) and 

0.1 mM 2-mercaptoethanol (Gibco). The digested tissue was centrifuged at 280 × g for 5 

min. The cells were resuspended in MEF medium, plated into several 10 cm culture dishes 

and incubated in a humidified incubator at 37 °C with 5% CO2. Cells were passaged every 

two days at a 1 to 4 ratio. When cells reached confluency, some 10 cm dishes were frozen 

in 90% FBS with 10% dimethylsulfoxide (DMSO) to prepare stocks of MEFs. For the 

preparation of feeder layers, MEFs at a maximum of passage three after isolation were 

used. Confluent MEFs were mitotically inactivated in MEF medium containing 10 µg/ml 

mitomycin C (Sigma) for 4 h in a humidified incubator at 37 °C with 5% CO2. Cells were 

then washed with PBS, trypsinized and seeded at a density of 6 ×  104 cells/cm2 onto 
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culture dishes. MEF medium was replaced with embryonic stem cell (ESC) medium at 

least 2 h before using them for ESC culture. 

 

1.2 Culturing mouse embryonic stem cells (ESCs) 

1.2.1 Passaging mouse ESCs 

The mouse ESCs lines E14Tg2α, 46C [78] and XB814 were routinely propagated in 

feeder-free conditions. C57BL/6 ESCs, used for the targeting of Jmjd3, were cultured on 

mitotically inactivated mouse embryonic fibroblast cells. ESCs were incubated at 37 °C, 

5% CO2 in a humidified atmosphere and medium was changed daily. Standard ESC 

medium consists of Dulbecco’s Modified Eagle’s Medium (DMEM, with high glucose, 

with sodium pyruvate, without L-glutamine; Lonza) supplemented with 1000 U/ml 

leukaemia inhibitory factor (LIF; Chemicon or as 500× prepared by the transgenic facility), 

15% foetal bovine serum (FBS, tested for ESC culture; Gibco or PAN), 2 mM L-glutamine 

(Gibco), 0.1 mM non-essential amino acids (NEAA; Gibco), 25 mM HEPES and 0.1 mM 

2-mercaptoethanol (Gibco). Cells were passaged every two days at 70-80% confluency. 

The cells were rinsed with phosphate buffered saline (PBS, without Ca2+ and Mg2+) and 

were detached in trypsin-EDTA (Lonza) at 37 °C for 5 min. The detached cells were 

dispersed into single cells by gentle pipetting. Trypsin was inactivated by adding ESC 

medium and the cells were collected by centrifugation at 280 × g for 5 min. The cell pellet 

was resuspended in fresh ESC medium and cells were plated at the density needed. For the 

maintenance of ESCs in culture cells were usually splitted at a ratio of 1:10, corresponding 

to 1-2 × 106 cells seeded on a 10 cm dish. 

Alternatively to the standard ESC culture conditions, ESCs can also be efficiently 

maintained in culture under defined culture conditions containing small molecule inhibitors 

that block extrinsic differentiation inducing signals, the mitogen-activated protein kinase 

(MAPK/ERK1/2) and glycogen synthase kinase 3 (GSK3), in the presence of LIF [79]. 
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This medium is called 2i/LIF culture medium and comprises N2B27 medium [DMEM/F-

12 (with GlutaMax™; Gibco) and Neurobasal™ medium (Gibco) in a 1:1 mixture, with 

N2 (Gibco), B27 (Gibco), 2 mM L-glutamine (Gibco), 15 mM HEPES and 0.1 mM 

2-mercaptoethanol (Gibco)] supplemented with 1 µM of MEK inhibitor PD0325901 

(ABCR), 3 µM of GSK3 inhibitor CT99021 (ABCR) and LIF. Under these culture 

conditions cells were passaged every three days by detaching them with Accutase® 

(Sigma) and replating on gelatinized plates at a density of 2 × 104 cells/cm2. 

 

1.2.2 Freezing and thawing of mouse ESCs 

For the cryopreservation of ESCs the confluent cells were harvested and collected as 

written above. Cells grown in standard ESC medium were resuspended in freezing medium 

consisting of 25% FBS, 10% dimethylsulfoxide (DMSO) in ESC medium. ESCs cultured 

in 2i/LIF medium were resuspended in 2i/LIF medium with 20% Knockout™ Serum 

Replacement (KSR; Gibco) and 10% DMSO. Cells were distributed into cryovials at a 

density of 5 × 106 cells/ml freezing medium and frozen at -80 °C. The next day tubes were 

transferred to liquid nitrogen for long-term storage. 

The frozen cells were quickly thawed in a 37 °C water bath, transferred to a tube 

containing prewarmed medium and centrifuged at 280 × g for 5 min. The cells were 

resuspended in the respective ESC medium and plated. The next day medium was replaced 

with fresh culture medium. 

 

1.3 Derivation of ESCs 

To derive ESCs homozygous for the Jmjd3 trap allele, timed matings between 

heterozygous XB814 mice were set up. Plugged females were sacrificed at 3.5 days 

postcoitus (dpc) and uteri were flushed to collect the embryos at the morula stage. They 

were cultured in vitro in drop cultures of KSOM medium (95 mM NaCl, 2.5 mM KCl, 0.35 
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mM KH2PO4, 0.20 mM MgSO4·7H20, 0.20 mM glucose, 10 mM sodium lactate, 25 mM 

NaHCO3 phenol red, 0.2 mM sodium pyruvate, 1.71 mM CaCl2·2H20, 0.01 mM EDTA, 1 

mM L-glutamine and 1 mg/ml BSA) covered in embryo-tested mineral oil (Sigma) for 24 h 

in a humidified atmosphere of 5% CO2 at 37 °C. The blastocysts were transferred 

individually to a 48-well plate containing mitotically inactivated MEFs. The medium for 

ESC derivation consists of standard ESC medium supplemented with 50 µM mitogen-

activated protein kinase/extracellular signal-regulated kinase (MEK1) inhibitor PD98059 

(Cell Signaling) to facilitate the derivation process by suppressing differentiation cues and 

enhancing the effect of LIF on self-renewal [80-81]. After five to six days, blastocyst 

outgrowths were disaggregated into small clumps in trypsin-EDTA complemented with 

1% chicken serum (Gibco). Cells were replated onto a 24-well plate with inactivated MEFs 

and allowed to grow for three to five days. After this period, the cells were no longer 

cultured in the presence of the MEK inhibitor. For the expansion of the ESC population the 

growing cultures were passaged onto progressively larger areas with feeder. Medium was 

replaced daily and cultures were monitored for the appearance of distinct ESC colonies. 

Usually by the 12-well format, emerging ESC-colonies could be seen. When cells reached 

80 to 90% confluency, they were trypsinized and transferred into 6-well plates with feeder 

for three to four days. Each well was then trypsinized and 75% of the cell population was 

frozen in freezing medium to prepare stocks of the newly established ESC line. The 

derived ESCs were grown on MEFs for two more passages and then adapted to feeder-free 

conditions. 

 

1.4 Derivation of neural stem cells (NSCs) from mouse ESCs 

Mouse ESCs were differentiated to NSCs in adherent monolayer culture as described [82-

83]. In brief, ESCs were trypsinized and plated onto 0.1% gelatine-coated cell culture 

dishes at a density of 0.7-1 × 104 cells/cm2 in N2B27 medium. Medium was renewed every 
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day. At day eight of differentiation cultures were dissociated using Accutase® and replated 

into an uncoated T25-flask in NSC expansion medium, which is composed of Euromed-N 

medium (Euroclone) supplemented with N2, 2 mM L-glutamine and 20 ng/ml of both 

murine epidermal growth factor (EGF; Peprotech) and murine fibroblast growth factor 2 

(FGF-2; Peprotech). Typically, cells from one 10 cm dish were replated into two T25-

flasks. Within 2-3 days cells formed floating aggregates, which were harvested by mild 

centrifugation and replated onto a new T25-flask. After 3-4 days cell aggregates attached, 

followed by the outgrowth of bipolar NSCs. Within several passages differentiated cells 

were eliminated and the culture was enriched for NSCs, which were then routinely splitted 

every 2-3 days at a ratio of 1:4. For cryopreservation cells were frozen in NSC expansion 

medium plus 10% DMSO. 

 

1.5 Electroporation of ESCs 

The targeting of Jmjd3 was done in C57BL/6 ESCs, growing on feeders. ESCs were 

trypsinized as described above and 10 ×  106 cells were resuspended in 800 µl of ESC 

medium containing 25 mM NaCl. 30 µg of linearized and purified targeting construct were 

added and after incubating for 5 min the cell suspension was transferred to an 

electroporation cuvette (0.4 cm gap; Bio-Rad). Cells were electroporated using a Bio-Rad 

Gene Pulser electroporation system set to the following parameters: exponential waveform, 

250 V, 500 µF, ∞ Ω. After incubating for 5 min, the electroporated cells were transferred 

into ESC medium and plated onto three 10 cm dishes. 36–48 h after the electroporation the 

selection with G418 (Geneticin®; Gibco) at a concentration of 150 µg/ml was started. The 

cells were grown in selection medium for 8-10 days with occasional medium change. 

Drug-resistant ESC colonies were picked onto a 96-well plate and when grown to 60-80% 

confluency, clones were splitted at a ratio of 1:3 into three 96-well plates. For each clone 
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two replica plates were frozen for storage and one plate was expanded onto a gelatinized 

48-well plate for DNA extraction and screening by Southern blot analysis. 

Blastocyst injections of targeted ESCs were performed by the transgenic facility (IFOM-

IEO Campus, Milano). 

 

1.6 Viral infection of ESCs 

Viruses for viral-mediated RNA interference (RNAi) were generated essentially as 

described [72,84]. In brief, the packaging cell lines for virus production, 293T cells for 

lentiviruses and the retrovirus producer line Phoenix-Eco, respectively, were plated one 

day before transfection on a 10 cm dish. 20 µg of lentiviral vector pSicoR PGK Puro 

encoding short hairpin RNAs (shRNAs) [85] and 10 µg of each packaging vector, namely 

pMDLg/pRRE, RSV-Rev and VSVG [86] were cotransfected in 293T cells by calcium-

phosphate precipitation. Phoenix-Eco cells were transfected with 16 µg of retroviral vector 

LMP expressing microRNA-based shRNA (shRNAmir) [73] and 4 µg of pCL-Eco 

following the same procedure. Supernatants were collected 36-48 h after transfection, 

filtered through a 0.45 µm filter and used directly to infect ESCs. ESCs were trypsinized as 

described. 3-5 × 104 ESCs were resuspended in 10 ml viral supernatant, supplemented with 

24 mM HEPES, 12 µg/ml Polybrene® (Sigma-Aldrich) and LIF, and were immediately 

plated onto a 10 cm dish. 6 h after plating infection medium was aspirated and replaced 

with fresh ESC medium. The following day selection with puromycin (Sigma-Aldrich) at 1 

µg/ml was started. After 8-10 days of selection drug-resistant ESC colonies were picked 

onto a 96-well plate. Clones were gradually expanded by replating into bigger wells in 

order to freeze for storage and to extract RNA for assessing the knockdown efficiency by 

real-time RT-PCR. 
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1.7 Treatment of targeted ESCs with recombinant Cre-recombinase 

To induce Cre-mediated recombination in targeted ESCs, the cells were treated with the 

cell-permeable TAT-Cre fusion protein [87]. ESCs were trypsinized as described above 

and 2 ×  105 cells were plated on a 6-well tissue culture plate in ESC medium. After 6 h 

cells attached and were washed five times with a 1:1 mixture of PBS and DMEM. For 

transduction ESCs were incubated with 5 µM of TAT-Cre protein diluted in a 1:1 mixture 

of PBS and DMEM for 16-18 h. Cells were washed with PBS and cultured in standard 

ESC medium for further 1-2 days. To confirm that Cre recombination had occurred, 

genomic DNA was extracted from cells and subjected to PCR reaction. 

 

1.8 Karyotyping 

ESCs plated on 0.1% gelatine at 70% of confluency were cultured in the presence of 0.1 

µg/ml KaryoMAX® colcemid (Gibco) for 1 h, to block the metaphases. Cells were then 

trypsinized, collected and centrifuged at 520 × g for 10 min. After discarding the 

supernatant, hypotonic solution (0.075 M KCl  in water) was added drop by drop to the 

pellet while gently flicking the tube and the resulting suspension was incubated at 37 °C 

for 30 min. For pre-fixation, four to five drops of fixative consisting of three parts 

methanol and one part acetic acid, were added to the solution, followed by centrifugation at 

520 × g for 10 min. Afterwards 10 ml of fixative were added dropwise, while gently 

vortexing to resuspend cells. Following centrifugation at 520 × g for 10 min, the pellet was 

resuspended in 1 ml fixative and 60 µl of the solution were dropped onto each slide pre-

warmed at 57 °C from about 30 cm in height. The drop was allowed to spread over the 

surface and left to dry. Metaphases and nuclei were stained in 1 µg/ml DAPI in saline 

sodium citrate (SSC) for 5 min and dried upright overnight in the dark. The next day, the 

slides were mounted in mowiol. For each slide, ten metaphases were randomly picked and 
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those that were well spread and intact were counted and scored for the number of 

chromosomes. 
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2 DNA methods 

2.1 DNA extraction 

2.1.1 Isolation of genomic DNA from ESCs 

Confluent ESCs were lysed in lysis buffer, consisting of 100 mM Tris-HCl pH 8.5, 5 mM 

EDTA, 0.2% sodium dodecyl sulphate (SDS), 200 mM NaCl and 100 µg/ml proteinase K. 

Cell lysate was transferred to a 1.5 ml tube and incubated at 55 °C overnight. DNA was 

precipitated by adding two volumes of cold NaCl/ethanol mix (15 µl of 5 M NaCl per 1 ml 

of cold 100% ethanol) and incubating at -20 °C for ≥30 min. After centrifugation at 16000 

× g for 20 min the DNA pellet was washed with 70% ethanol and centrifuged again. 

Finally, the dried DNA pellet was resuspended in an appropriate volume of water or TE 

buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA), repectively. 

 

2.1.2 Isolation of genomic DNA from mouse tails 

Tail biopsies were routinely collected by the animal facility. Tail tips were incubated in 

500 µl of lysis buffer (100 mM Tris-HCl pH 8.5, 5 mM EDTA, 0.2% SDS, 200 mM NaCl 

and 100 µg/ml proteinase K) at 55 °C overnight. Proteinase K was heat-inactivated at 94 

°C for 5 min and lysate was centrifuged at 16000 × g in order to remove non-digested 

tissue. 5 µl of DNA lysate were diluted in 45 µl of water and 1 µl of DNA dilution was 

directly used for genotyping by polymerase chain reaction (PCR). 

 

2.2 DNA purification using phenol-chloroform extraction 

To remove protein contaminants, DNA samples were purified by means of phenol-

chloroform extraction. An equal volume of phenol was added and the phases were mixed 

by vortexing. Following a centrifugation step at 16000 × g for 1 min to separate the phases, 

the aqueous top layer containing the DNA was transferred to a new tube. The extraction 
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step was repeated by adding an equal volume of phenol:chloroform (1:1) to the aqueous 

layer. To remove traces of phenol a final extraction step was performed with one volume 

of chloroform. The DNA-containing aqueous phase was transferred to a new tube and 

DNA was precipitated by ethanol precipitation. 

 

2.3 DNA precipitation 

DNA was recovered from aqueous solutions using standard ethanol precipitation. In brief, 

the salt concentration of the solution was adjusted with sodium acetate pH 5.2 at a final 

concentration of 0.3 M. Then three volumes of cold 100% ethanol were added and DNA 

was precipitated by incubating at -20 °C for ≥30 min. After centrifugation at 16000 × g for 

20 min the DNA pellet was washed with 70% ethanol and centrifuged again. Finally, the 

dried DNA pellet was resuspended in an appropriate volume of water or TE buffer (10 mM 

Tris-HCl pH 8.0, 1 mM EDTA), repectively. 

 

2.4 Polymerase chain reaction (PCR) 

PCR reactions were usually carried out in a total volume of 20 µl with 0.2 mM dNTPs, 0.5 

mM primers, DNA template (in various amounts depending on the source), 0.01 U/µl 

Phusion® DNA polymerase (Finnzymes) and the appropriate buffer provided by the 

supplier. The reaction conditions varied among different experiments, but generally 

conformed to the following cycling parameters: 30 s initial denaturation at 98 °C, 35 cycles 

consisting of 10 s denaturation at 98 °C, 15 s of annealing at the for each primer 

combination optimized temperature and variable times of extension depending on 

amplicon length and complexity at 72 °C. The last cycle was followed by a final extension 

step for 10 min at 72 °C. 

PCR reaction was run on an agarose gel in presence of 1× Tris-acetate-EDTA buffer 

(TAE) and 0.5 µg/ml ethidium bromide. For downstream applications the PCR product 
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was purified using the QIAquick PCR purification kit or QIAquick Gel Extraction kit (both 

purchased from Qiagen). 

 

2.5 Plasmid preparation 

After 37 °C overnight incubation plasmids were isolated and purified with the Qiagen 

Plasmid Mini or Maxi kits (Qiagen), respectively. The alkaline lysis based purification 

procedure was performed according to the manufacturer’s protocol. 

 

2.6 Restriction enzyme digestions 

DNA digests were carried out with commercially available restriction enzymes following 

the instructions of the supplier. In general 5-10 units of enzyme were used per 1 µg DNA 

and the incubation was at least 3 h. 

 

2.7 Ligation 

Ligations were set up by mixing vector and insert DNA, at a insert:vector molar ratio of 

three, in a volume of 15 µl with 1 unit of T4 DNA ligase and the buffer provided by the 

supplier. The reaction was incubated at 16 °C overnight. 

TOPO® Cloning reactions (Invitrogen) of Taq polymerase-amplified PCR products were 

set up according to the manufacturer’s protocol. 

 

2.8 Bacterial transformation 

2.8.1 Plasmid transformation by heat shock 

Chemically competent bacteria were thawed on ice. DNA was added and tubes were left 

for another 30 min on ice. Tubes were put in 42 °C water bath for 45 s to heat-shock cells. 

In order to reduce damage of the cells, tubes were put back on ice for 2 min. Then 900 µl 
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LB-medium without antibiotics were added and bacteria were incubated with shaking for 1 

h at 37 °C. About 100 µl of culture were plated on LB plates containing the appropriate 

antibiotic and incubated at 37 °C overnight (Table 1). 

 

2.8.2 Plasmid transformation by electroporation 

To make cells competent for electroporation the following procedure was used. 1.4 ml LB 

medium were inoculated with 30 µl of fresh overnight culture and incubated with shaking 

for 2 h at 37 °C. The culture was centrifuged at 11500 × g for 30 s at 4 °C and after 

discarding the supernatant the tube was placed on ice. The cells were resuspended in 1 ml 

chilled water and centrifuged again. This step was repeated once and the supernatant was 

discarded, leaving 20-30 µl which were used to resuspend the pellet. For transformation the 

competent cells were mixed immediately with 1-2 µl DNA and transferred to a precooled 1 

mm electroporation cuvette. The cells were electroporated using an Eppendorf 

Electroporator 2510 at 1350 V. The electroporated cells were resuspended in 1 ml LB 

medium without antibiotics and transferred to a fresh tube. After incubation with shaking 

for 1 h at 37 °C, about 100 µl of culture were plated on LB plates containing the 

appropriate antibiotic and incubated at 37 °C overnight (Table 1). 

 
Table 1. Antibiotic concentrations for E. coli selection. 

Antibiotic Working concentration [µg/ml] 
Ampicillin 100 
Chloramphenicol 15 
Kanamycin 30 
Tetracycline 3 
 

2.9 Preparation of bacteria for Red/ET cloning 

The DNA engineering method Red/ET recombination was used to assemble the targeting 

vector for the conditional inactivation of Jmjd3 [56-57,76,88]. In a first step, E. coli cells 

were transformed with the Red/ET expression plasmid pSC101-BAD-gbaA-tet by 

electroporation according to the procedure described above (Figure 4). Since the Red/ET 
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expression plasmid contains the temperature-sensitive replication origin oriR101, which 

allows plasmid propagation only at 30 °C, the electroporated cells were incubated in LB 

medium without antibiotics at 30 °C. After 70 min incubation, 100 µl of culture were 

plated on LB plates containing 3 µg/ml tetracycline and incubated at 30 °C overnight. 

Single colonies were picked and grown in LB medium plus tetracycline overnight at 30 °C. 

The next day, 1.4 ml LB medium containing tetracycline were inoculated with 30 µl of 

fresh overnight culture and incubated with shaking at 30 °C. When the cells reached an 

OD600 of 0.2 after about 2 h incubation, 10% L-arabinose was added at a final 

concentration of 0.1-0.2% to induce expression of Red/ET recombination proteins. 

Following the induction with arabinose, the cells were incubated at 37 °C for a further 1 h 

until they reached an OD600 of 0.3-0.4. The ET-competent cells were harvested, prepared 

for electroporation and directly used for ET-cloning. 

 

Figure 4. Map of the Red/ET expression plasmid pSC101-BAD-gbaA-tet. The plasmid carries the redα, 

β, γ genes from the λ  phage together with the recA gene in a polycistronic operon under the control of the 

arabinose-inducible pBAD promoter and confers tetracycline resistance. The origin oriR101 requires 

expression of the temperature-sensitive RepA protein for plasmid replication. 

 

2.10 Generation of shRNA expression vectors for viral-mediated RNAi 

2.10.1  Cloning of shRNA into pSicoR PGK Puro 

shRNAs designated for the stable expression in the lentivirus-based vector pSicoR PGK 

Puro (provided by A. Ventura) were designed using the pSicoOligomaker v1.5 software 
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(developed by A. Ventura), which is freely available at http://web.mit.edu/jacks-

lab/protocols/pSico.html [85]. The synthesised oligonucleotides were 5’-phosphorylated 

and HPLC-purified. For each shRNA the sense and antisense oligonucleotides were 

annealed and ligated into HpaI-XhoI digested pSicoR PGK Puro. The insertion of the 

shRNA was confirmed by PstI/XhoI double restriction digest and positive clones were 

sequence-verified (Figure 5a). 

 

2.10.2 Cloning of shRNAmir into MSCV/LTRmiR30-PIG (LMP) 

shRNAs embedded in the miR-30 context (shRNAmir) were expressed from the 

microRNA (miRNA)-adapted retroviral vector LMP (Open Biosystems) [73]. Sequences 

of shRNAs were selected using the shRNA retriever function on the online resource RNAi 

Central at http://katahdin.cshl.edu/siRNA/RNAi.cgi?type=shRNA. The synthetic single-

stranded oligonucleotides were composed of the sense and antisense target sequence, miR-

30 miRNA flanking sequences and the miR-30 loop sequence. The miR-30-styled shRNAs 

were PCR-amplified, digested with EcoRI and XhoI and cloned into the EcoRI and XhoI 

sites of LMP. All clones that were positive by SacII/XhoI restriction digest analysis were 

sequence-verified (Figure 5b). 

 

Figure 5. shRNA expression constructs for viral-mediated RNAi. Schematic representations of the 

shRNA expressing lentiviral vector pSicoR PGK Puro (a) and the retroviral-based shRNAmir delivery 

system LMP (b). Active promoters are shown as arrows. SIN-LTR: self-inactivating long terminal repeats, ψ: 

packaging signal, cPPT: central polypurine tract, U6: U6 promoter (RNA polymerase III promoter), PGK: 

phosphoglycerate kinase promoter, Puro: puromycin resistance as mammalian selection marker, WRE: 

woodchuck hepatitis virus posttranscriptional regulatory element, LTR: LTR promoter (RNA polymerase II 
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promoter), miR30: 5’ and 3’-flanking sequences derived from the endogenous miR-30 primary transcript, 

IRES: internal ribosomal entry site, GFP: green fluorescent protein. 

 

2.11 Southern blotting 

10-20 µg of genomic DNA were digested with the relevant enzyme at 37 °C overnight. The 

entire digest was run on an 1× TAE agarose gel containing 0.5 µg/ml ethidium bromide. 

Following electrophoresis DNA gel was incubated with gentle shaking in 0.25 N HCl for 

10 min resulting in depurination and thus facilitating the transfer of high molecular weight 

DNA fragments. The gel was then transferred to denaturing solution (1.5 M NaCl, 0.5 N 

NaOH) for 30 min to denature the DNA. After rinsing with water, gel was equilibrated in 

transfer buffer (1.5 M NaCl, 0.25 N NaOH) for 30 min. Blot apparatus for upward 

capillary transfer was assembled and DNA was transferred onto a Hybond-N+ nylon 

membrane (GE Healthcare) in alkaline transfer buffer overnight. The Membrane was 

washed in 6× saline sodium citrate (SSC) for 30 min and baked in an oven at 80 °C for 2 h 

to crosslink the DNA to the membrane.  

Hybridisation was performed in a glass tube in a hybridisation oven equipped with a 

rotating wheel. Filter was first prehybridised in modified Church and Gilbert buffer (0.5 M 

sodium phosphate buffer pH 7.2, 7% SDS, 1 mM EDTA) for at least 30 min at 65 °C and 

then hybridised in the same buffer upon addition of the relevant DNA probe at 65 °C 

overnight. DNA probes were prepared by random primed labelling with the Ladderman™ 

Labeling kit (Takara), according to the manufacturer’s instructions. After incorporation of 

[α-32P]-labelled dCTP, unincorporated labelled nucleotides were removed by gel filtration 

using illustra™ ProbeQuant™ G-50 Micro Columns (GE Healthcare). 

After hybridisation the filter was rinsed with washing buffer (40 mM sodium phosphate 

buffer ph 7.2, 0.1% SDS) at room temperature (RT), followed by one wash of 45 min at 65 

°C. Autoradiography was performed by exposing the filter to a storage phosphor screen 

and subsequent signal detection using a Typhoon™ scanner system (GE Healthcare). 
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2.12 DNA sequencing 

Sequence analysis was carried out by the DNA sequencing facility using the Big Dye™ 

Terminator Cycle sequencing method (Applied Biosystems) with the relevant primers. 
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3 RNA methods 

3.1 RNA extraction 

Total RNA was isolated from confluent cells with TRIZOL® Reagent (Invitrogen) 

according to the instructions of the manufacturer. Finally, RNA was resuspended in 

RNAse-free water and quantified with the NanoDrop ND-1000 Spectrophotometer 

(Thermo Fisher Scientific). 

 

3.2 cDNA synthesis 

cDNA synthesis was carried out with the SuperScript™ III First-Strand Synthesis System 

(Invitrogen) following the instructions of the supplier. In general, 1 µg of total RNA was 

reverse transcribed using SuperScript III Reverse Transcriptase (Invitrogen) with 250 ng/µl 

random primers (Invitrogen) and 10 mM dNTPs (Invitrogen) in 20 µL of reaction volume, 

in the presence of 2 U/µl of RNase inhibitor RNase OUT™ (Invitrogen). Samples were 

incubated at 25 °C for 5 min, 50 °C for 1 h and 70 °C for 15 min. 

 

3.3 quantitative real-time PCR (qRT-PCR) 

qRT-PCR was performed on 7900HT Fast Real-Time PCR system (Applied Biosystems) 

using Fast SYBR® Green PCR Master Mix or TaqMan® Gene expression assays (Applied 

Biosystems, Table 2). Correct PCR products were confirmed by melting curve analysis. 

Each sample was analysed in triplicates and normalised to TATA-Binding Protein (TBP) 

representing the endogenous control. Normalisation was used to correct sample-to-sample 

variations in RNA concentration and integrity. Relative mRNA amounts were calculated 

by the comparative cycle threshold (Ct) method using the formula 2-ΔCt. 
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Table 2. Primers and assays used for expression analysis with qRT-PCR. 

Gene Primer sequence (5’-3’) Application 

Fbxl10 F: GAGGTGTGGATGGCAGTCTT 
R: CCAACTGAGGTCAAGGGAGA SYBR® Green assay 

Fbxl11 F: CAGGTTGGATTCATGCTGTG 
R: GGATCGGTTGGTTATGCAGT SYBR® Green assay 

Hr F: TGTCAGGCATCCAGAAGACA 
R: GTTCGGTGTAGCAGGAGGAC SYBR® Green assay 

Hspbap1 F: GGTGGCATTACGTGGAGTCT 
R: CAGCTGTTGACCTCGTGAGA SYBR® Green assay 

Hif1an F: TCATTGGCATGGAAGGAAAT 
R: GAAATTGGGGAACCTCTCGT SYBR® Green assay 

Jmjd1a F: CACATTTAGGTTCCCAGTCACA 
R: GCCACGATGTTAACACAGGA SYBR® Green assay 

Jmjd1b F: TTCTGCTGGAAGGCTCACTT 
R: GATGCATCCCATTAGCATCC SYBR® Green assay 

Jmjd1c F: AGAAGAGGAAAGGCGAGGTC 
R: TTGGGACCTATCTCACAGCA SYBR® Green assay 

Jmjd2a F: GACCACACTCTGCCCACAC 
R: TCCTGGGGTATTTCCAGACA SYBR® Green assay 

Jmjd2b F: GGCTTTAACTGCGCTGAGTC 
R: GTGTGGTCCAGCACTGTGAG SYBR® Green assay 

Jmjd2c F: CACGGAGGACATGGATCTCT 
R: CGAAGGGAATGCCATACTTC SYBR® Green assay 

Jmjd2d F: GTCTTGGTCGTCGTCCTTGT 
R: AATCCCCCTTCAGAAGCTGT SYBR® Green assay 

Jmjd3 F: CCCCCATTTCAGCTGACTAA 
R: CTGGACCAAGGGGTGTGTT SYBR® Green assay 

Jmjd4 F: CTCAAGGACTGGCATCTGTG 
R: CTGAAGGAGCGGAAGATGTC SYBR® Green assay 

Jmjd5 F: TGTCATGTTAGAGCGGATGG 
R: TGTACCTTGAGCCCACTTCC SYBR® Green assay 

Jarid1a F: CCTCCATTTGCCTGTGAAGT 
R: CCTTTGCTGGCAACAATCTT SYBR® Green assay 

Jarid1c F: GGTGAGCCAAAAACCTGGTA 
R: CAAATTCTCCTGCACACTGG SYBR® Green assay 

Jarid1d F: CCCCAAGGGAGTATGGAGAT 
R: GCCTCCAGAATTCCTTTTCC SYBR® Green assay 

Jarid2 F: GGTCTGCTCAGGACTTACGG 
R: TTGGGTTTGGTTTCCTTGAC SYBR® Green assay 

Mina F: GCAAAGGAAGATGTGGCATT 
R: CCTCGAAGAAAGGAGGGAGT SYBR® Green assay 

Nanog assay ID: Mm02384862_g1 TaqMan® assay 
Nestin assay ID: Mm00450205_m1 TaqMan® assay 
Oct-3/4 assay ID: Mm00658129_gH TaqMan® assay 
Pax6 assay ID: Mm00443072_m1 TaqMan® assay 

Phf2 F: GCCAAAGAGATCAGGCTCAG 
R: TGGGCATCTTCACAGTCTTG SYBR® Green assay 

Phf8 F: CGCCCAACAAATGCTAATCT 
R: AGAAGTTCCCTCCGAATGCT SYBR® Green assay 

Ptdsr F: AAGGAGGGAACCAACAGGAT 
R: CTGGCAAAGTTCTGGGTGAT SYBR® Green assay 

F: AGATGCACAACTCGGAGATCAG 
R: GAGTACTTGTCCTTCTTGAGCAGC SYBR® Green assay Sox1 
assay ID: Mm01281943_s1 TaqMan® assay 
F: CTGGAATTGTACCGCAGCTT 
R: TCCTGTGCACACCATTTTTC SYBR® Green assay 

TBP 
assay ID: Mm00446973_m1 TaqMan® assay 

Utx F: ATCCCAGCTCAGCAGAAGTT 
R: GGAGGAAAGAAAGCATCACG SYBR® Green assay 
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3.4 In situ hybridisation 

3.4.1 Preparation of digoxigenin (DIG)-labelled RNA probe for in situ hybridisation 

First, 12 µg of pCDNA3-FLAG-Jmjd3 plasmid, containing the Jmjd3 cDNA sequence as 

template, were linearized with the restriction enzyme SspI (Figure 6). 

 

Figure 6. Map of the plasmid containing the Jmjd3 cDNA used as template to synthesize the anti-sense 

probe for in situ hybridisation. The plasmid was linearized with SspI and probe was in vitro transcribed by 

SP6 RNA polymerase. 

 

The digested DNA was cleaned up by phenol-chloroform extraction and standard ethanol 

precipitation. Next, 1 µg of linearized plasmid DNA were used to set up the in vitro 

transcription reaction, during which the anti-sense probe was synthesized by 20 units of 

SP6 RNA polymerase (NEB) using the DIG RNA Labeling Mix (Roche). After the 

reaction, template DNA was removed by DNase treatment. The labelled RNA probe was 

precipitated with ethanol and resuspended in 50 µl of RNase-free water. To estimate the 

efficiency of the reaction, 2 µl of probe were run on a 1.6% agarose gel and RNA 

concentration was measured with the NanoDrop (Thermo Fisher Scientific). The generated 

RNA probe had a size of 590 bp and hybridised to the 3’ end of the Jmjd3 mRNA. 
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3.4.2 In situ hybridisation 

Until the hybridisation step all solutions for washing or incubating the specimens were 

prepared with diethyl pyrocarbonate (DEPC)-treated water or PBS. DEPC was added to a 

final concentration of 0.1% and solutions were autoclaved to hydrolyze any remaining 

DEPC. 

Brains were dissected in a physiological solution of 0.9% (w/v) NaCl and 0.6% (w/v) 

glucose and fixed overnight in 4% (w/v) paraformaldehyde (PFA) at 4 °C. Fixed brains 

were washed three times with PBS and cryoprotected in 30% (w/v) sucrose overnight at 4 

°C. The following day brains were transferred into 5 ml tubes and incubated in a 1:1 

mixture of cryostat freezing medium (Bio-Optica) and 30% (w/v) sucrose rotating for 30 

min at RT. Brains were frozen in embedding medium on dry-ice and stored at -80°C until 

further processed. Brains were cut at 10 µm with a Leica cryostat and placed as serial 

sections onto SuperFrost Ultra Plus® glass slides (Thermo Fisher Scientific). Sections were 

post-fixed for 10 min in 4% (w/v) PFA, washed three times in PBS and permeabilized with 

1 µg/ml proteinase K for 5 min at RT for better probe penetration. Tissue sections were 

refixed in 4% (w/v) PFA for 5 min, washed thoroughly in PBS and acetylated for 10 min 

[100 ml acetylation solution were made of 1.3 ml triethanolamine (Sigma-Aldrich), 250 µl 

37% HCl and 250 µl acetic anhydride in 98.2 ml water] in order to prevent nonspecific 

binding of the probe. After three washes in PBS 0.5 ml of warm hybridisation buffer [50% 

deionized formamide, 5× SSC, 5× Denhardt’s Solution (Sigma-Aldrich), 100 µg/ml yeast 

tRNA, 100 µg/ml denatured salmon sperm DNA] were placed onto slides and incubated 

for 2 h at RT in a 5× SSC humidified chamber. Prehybridisation solution was removed and 

replaced with 150 µl of hybridisation buffer containing 500-700 ng/ml of digoxigenin 

(DIG)-labelled RNA probe (Roche), which has been denatured at 80 °C for 5 min before. 

Slides were covered with Hybri-slips (Sigma-Aldrich), placed in a chamber humidified 

with 5× SSC, 50% formamide and incubated at 68 °C overnight. After hybridisation probe 
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was removed and slides were washed in 0.2× SSC at 68 °C for 1 h, followed by a quick 

wash in 0.2× SSC for 5 min at RT. Slides were then transferred to B1-buffer (100 mM 

Tris-HCl pH 7.6, 150 mM NaCl in water) for 15 min at RT. In order to prevent nonspecific 

antibody binding sections were incubated in B1-buffer supplemented with 5% goat serum 

(EuroClone) and 2% (w/v) Blocking Reagent (Roche) for 1 h at RT. For the 

immunological detection of the probe sections were incubated with a sheep polyclonal 

anti-digoxigenin antibody conjugated to alkaline phosphatase (1:2000, Roche 

#11093274910) at 4 °C overnight. The following day slides were transferred to B1-buffer 

for four 30 min washes at RT and then washed twice for 15 min in Alkaline Phosphatase 

buffer [100 mM Tris-HCl pH 9.5, 100 mM NaCl, 50 mM MgCl2, 0.1% Tween-20, 1 mM 

Levamisole (Sigma-Aldrich) in water] in order to inhibit endogenous phosphatases. The 

colorimetric staining was carried out by adding BM Purple (Roche), supplemented with 2 

mM Levamisole to each slide and incubation at RT until the desired level of staining 

developed. Specimens were washed three times in PBS to stop the staining reaction. Slides 

were briefly rinsed with water, mounted with VectaMount AQ aqueous mounting medium 

(Vector Laboratories) and staining was examined on an Olympus microscope equipped 

with a Nikon colour camera. 
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4 Protein methods 

4.1 Immunocytochemistry 

Cells, grown on glass coverslips or on µ-Dish 35 mm (Ibidi), were fixed in 4% (w/v) PFA 

for 15 min at RT, washed in PBS and incubated in permeabilization/blocking buffer: 2% 

(w/v) BSA, 0.1% Triton X-100 in PBS. Primary antibodies were diluted in PBS containing 

2% (w/v) BSA and incubated in a humidified chamber at 4 °C overnight (Table 3). Cells 

were washed three times in PBS and incubated with species specific secondary antibodies 

conjugated to FITC and Cy3 (Jackson ImmunoResearch) and Dapi (Sigma-Aldrich). Slides 

were mounted with Mowiol (Calbiochem). Images were acquired with an Olympus 

fluorescence microscope equipped with a CoolSNAP EZ CCD camera (Photometrics). For 

clarity, images were adjusted for contrast and brightness using Adobe Photoshop. The 

automated image acquisition was controlled by the scan^R screening-station (Olympus) 

and image analysis was performed with ImageJ software. 

 
Table 3. Antibodies used in immunocytochemistry. 

Antibody Working dilution Supplier 
β-III tubulin (TuJ1) 1:2000 Covance #MRB-435P 
Cytokeratin 5/8 1:100 BD #550505 
GFAP 1:500 Millipore #MAB3402 
Nestin 1:500 Millipore #MAB353 
Sox2 1:100 Abcam #15830 
 

4.2 Immunohistochemistry 

Brains were dissected in a physiological solution of 0.9% (w/v) NaCl and 0.6% (w/v) 

glucose and fixed overnight in 4% (w/v) PFA at 4 °C. The next day fixed brains were 

washed three times with PBS and cryoprotected in 30% (w/v) sucrose overnight at 4 °C. 

Brains were transferred into 5 ml tubes and incubated in a 1:1 mixture of cryostat freezing 

medium (Bio-Optica) and 30% (w/v) sucrose rotating for 30 min at RT. Brains were frozen 

in embedding medium on dry-ice and stored at -80 °C until further processed. Brains were 
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cut at 10 µm with a Leica cryostat and placed as serial sections onto SuperFrost Ultra Plus® 

glass slides (Thermo Fisher Scientific), as illustrated in Figure 7. Sections were post-fixed 

for 10 min with 4% (w/v) PFA followed by three washes with PBS. For the detection of 

nuclear antigens an antigen enhancement step was performed by briefly boiling the slides 

in 10 mM sodium citrate pH 6.0 using a microwave. Sections were then incubated in 

permeabilization/blocking solution: 0.2% Triton X-100, 1% (w/v) BSA in PBS for 30 min 

at RT. Primary antibodies were diluted in PBS plus 2% goat serum (EuroClone), 0.05% 

Triton X-100 and incubated in a humidified chamber at 4 °C overnight. The antibodies and 

their dilutions used in this study are listed in Table 4. After three washes in PBS specimens 

were incubated with species specific secondary antibodies conjugated to FITC (1:50) and 

Cy3 (1:400; Jackson ImmunoResearch) and Dapi (Sigma-Aldrich).  

Specimens were coverslipped with VectaMount AQ aqueous mounting medium (Vector 

Laboratories). 

 

Figure 7. Cutting scheme for serial brain sections. Shown is an example for a series consisting of five 

slides each with eight brain sections. Brains were cut at 10 µm and consecutive sections were placed in the 

same position on the following slide. 

 

Table 4. Antibodies used in immunohistochemistry. 

Antibody Working dilution Supplier 
Phox2b 1:500 gift of C. Goridis 
Serotonin (5-HT) 1:1000 Sigma-Aldrich #5545 
Substance P Receptor (Nk1R) 1:5000 Sigma-Aldrich #S8305 
Tyrosine Hydroxylase (TH) 1:500 Inst. Biotech. Jacques Boy #208020234 
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4.3 FACS sorting 

Neural precursors derived from 46C ESCs were trypsinized and sorted in FACS buffer 

(PBS plus 1% FBS). 

 

4.4 Western blotting 

4.4.1 Lysate preparation 

Cells were washed in PBS and collected by centrifugation. Cell pellets were flash frozen in 

liquid nitrogen and stored at -80 °C until use. Cell lysates were prepared on ice in protein 

extraction buffer (50 mM Tris-HCl pH 7.6, 0.15 M NaCl, 5 mM EDTA, 1% Triton X-100), 

freshly supplemented with 1× protease inhibitor cocktail (Roche). Samples were sonicated 

with a Diagenode Bioruptor® sonicator (high power, three cycles of 30 s pulse and 45 s 

pause each) to lyse cells and to shear genomic DNA. Following centrifugation at maximum 

speed (16060 × g) for 5 min at 4 °C to pellet cell debris, the clear supernatant was collected 

and transferred to a new tube. Protein concentration was determined by the Bradford assay 

using BSA (Sigma) as a protein standard. Absorbance was measured at 595 nm with the 

spectrophotometer. 

 

4.4.2 Gel electrophoresis 

Proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis 

(SDS-PAGE). To denature proteins, 5× loading buffer [250 mM Tris-HCl pH 6.8, 10% 

SDS, 30% glycerol, 100 mM DTT, 0.01% (w/v) bromophenol blue] was added to protein 

lysates and samples were boiled for 5 min at 95 °C. For the detection of Jmjd3, 100 µg of 

total protein were loaded on a 5% polyacrylamide gel and run at 110 V for 2 h. 
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4.4.3 Immunoblotting 

Proteins were transferred onto a PVDF (polyvinylidene fluoride) Immobilon™-P 

membrane (Millipore) in semi-dry conditions using a Trans-Blot SD Semi-Dry Transfer 

Cell (BioRad) at 90 mA for 2 h. The efficiency of protein transfer and even loading 

between the samples were checked by incubating the membrane for 5 min in Ponceau Red. 

Membranes were blocked in 5% (w/v) skimmed milk powder in Tris-buffered saline with 

0.1% Tween 20 (TBST) for 1 h at RT. Primary antibodies were diluted in blocking 

solution and membranes were incubated at 4°C overnight with rocking. The homemade 

polyclonal anti-Jmjd3 antibody was used at a dilution of 1:500 and the monoclonal anti-

vinculin was diluted 1:10000. The next day, blots were washed in TBST for 5 min at least 

three times and then incubated with secondary antibodies goat-anti-mouse IgG or goat anti-

rabbit IgG conjugated with horseradish peroxidase (Bio-Rad) diluted at 1:15000 in 

blocking solution for 30 min at RT. Membranes were washed three times for 10 min each 

in TSBT and bands were detected using Amersham ECL Western Blotting Detection 

Reagents (GE Healthcare) following the manufacturer’s instructions. 

 

4.5 Chromatin immunoprecipitation (ChIP) 

Adherent cells were cross-linked by adding formaldehyde to the culture medium at a final 

concentration of 1%. After 5 min fixation the reaction was quenched by adding Tris-HCl 

pH 7.6 to a final concentration of 125 mM, cells were thoroughly washed in PBS and 

harvested by scraping. Cell membranes were disrupted in L1 swelling buffer [50 mM Tris-

HCl pH 8.0, 2 mM EDTA, 0,1% NP-40, 10% Glycerol, 1× protease inhibitor cocktail 

(Roche)], 900 µl for a 10 cm dish. Nuclei precipitated and resuspended in 600 µl of nuclear 

lysis buffer (50 mM Tris-HCl pH 8.0, 5 mM EDTA, 1% SDS, 1× protease inhibitor 

cocktail). Shearing of genomic chromatin was performed with a Diagenode Bioruptor® 

sonicator (high power, four cycles of 30 s pulse and 30 s pause each) yielding DNA with 
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an average fragment size from 200 to 1000 bp. DNA concentration was measured with 

NanoDrop (Thermo Fisher Scientific) and DNA of different samples was employed in 

equal quantities for the immunoprecipitation. Salt and detergent concentrations in the 

immunoprecipitation were adjusted for an optimal antibody performance by diluting the 

sonicated lysate with nine volumes of dilution buffer (50 mM Tris-HCl pH 8.0, 5 mM 

EDTA, 200 mM NaCl, 0.5% NP-40) for ChIP assays on Jmjd3 and total histone H3 or by 

adding 1/10 volume of 10% Triton X-100 for the immunoprecipitation of histone H3 

trimethyl-lysine 27 (H3K24me3). Lysate was precleared with 50 µl slurry of salmon sperm 

DNA saturated protein A sepharose beads (GE Healthcare), rotating for 1 h at 4 °C. Beads 

were pelleted by centrifugation and antibody was added to precleared extract (Table 5). 

Immunoprecipitation was carried out a 4 °C overnight. ChIP complexes were collected by 

incubating with 20 µl of salmon sperm DNA/protein A sepharose beads for 30 min at 4°C. 

ChIP-beads complexes were washed four times in washing buffer (20 mM Tris-HCl pH 

8.0, 2 mM EDTA, 0.1% SDS, 1% NP-40, 500 mM NaCl) and three times in 1× TE. ChIP 

complexes were eluted in 120 µl of 1× TE containing 2% SDS at 65 °C for 15 min and the 

crosslink of proteins to DNA was reversed at 65 °C overnight. DNA was purified with the 

QIAquick PCR Purification Kit (Qiagen), following the manufacturer’s instructions and 

eluted in 100 µl of provided buffer EB. 5 µl of DNA were used in a 25 µl qRT-PCR 

reaction using the primers listed in Table 6. The abundance of target genome DNA was 

normalised relative to that of input. 

 

Table 5. Antibodies used in ChIP assays. 

Antibody Amount per ChIP reaction Supplier 
Jmjd3 3 µg homemade 
H3K27me3 2 µg Upstate #07-449 
Histone H3 1 µg Abcam #ab1791 
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Table 6. Primers used for qRT-PCR after ChIP. 

Gene Primer name Primer sequence (5’-3’) 

Pax6 Px6TS1 F: GGAGGACAATACCAGCCAGA 
R: GGTTCAGCTCGGCAGATTAG 

Pax6 Px6TS2 F: AAGCGAACCGTGGCTCGG 
R: ATTAGCGAAGCCTGACCTCTG 

Pax6 Px6B1 F: AGGCAGAGGGGTCTAGCTTC 
R: CAAGCAAGTGGGAAGGTGAT 

Nestin Nes F: TTCTTCGGGCAGTGTTTCTT 
R: GACGGTGCAGTGTTTTGTGT 

Sox1 Sox F: CACAGTTCAGCCCTGAGTGA 
R: CACAAACCACTTGCCAAAGA 

Prolactin Prl F: CCTTCATTTCTGGCCAATGT 
R: GCCTGAGAGAACCACAGCTT 

 

4.6 In vivo demethylation assay 

HEK 293 cells were transfected with pcDNA3-FLAG expressing FLAG-tagged Jmjd3 or 

the FLAG-tagged mutated version carrying an amino acid substitution in the catalytic site, 

along with the empty pcDNA3-FLAG vector as control. Proteins were extracted with 

Laemmli sample buffer [62.5 mM Tris-HCl pH 6.8, 2% SDS, 10% glycerol, 100 mM DTT, 

0.01% (w/v) bromophenol blue]. Subsequently protein extracts were immunoblotted and 

assessed with antibodies specific for the various methylated lysine residues (Table 7). 

 

4.7  In vitro demethylation assay 

The C-terminus of murine Jmjd3, comprising residues 1141 through 1641 was cloned into 

the pETM14 expression vector in frame with a 6× His-tag, expressed in bacteria and 

purified from the soluble fraction. The demethylation assay was carried out by incubating 

10 µg of recombinant Jmjd3 and 5 µg of calf thymus histone H3 for 4 h in a reaction buffer 

containing 50 mM Tris pH 8.0, 10% glycerol, 1 mM α-ketoglutarate, 80 µM FeSO4 and 2 

mM ascorbic acid. The reaction mixtures were analysed by western blotting using specific 

antibodies (Table 7). 
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Table 7. Antibodies used for in vivo and in vitro demethylation assays. 

Antibody Supplier 
H3K4me1 Abcam #ab8895 
H3K4me2 Abcam #ab7766 
H3K4me3 Abcam #ab8580 
H3K9me1 Upstate #07-450 
H3K9me2 Upstate #07-441 
H3K9me3 Upstate #07-442 
H3K27me1 Upstate #07-448 
H3K27me2 Upstate #07-452 
H3K27me3 Upstate #07-449 
H3K36me3 Abcam #ab9050 
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5 Physiological and electrophysiological analyses 

All experiments were carried out in accordance with European guidelines for the care and 

use of laboratory animals (86/609/EEC). All efforts were made to minimise the number of 

animals used and their suffering. 

 

5.1  Measuring blood glucose level of newborn mice 

The neonates were decapitated and 5 µl of blood were analysed using the test strip-based 

Accu-Chek Active® blood glucose testing system (Roche). 

 

5.2 In vivo breathing studies 

Breathing movements of surgically delivered E18.5 embryos were recorded for 3-5 min by 

the whole-body plethysmography technique in a thermostated chamber equipped with a 

differential pressure transducer (EMKA Technologies). The technical set-up is illustrated 

in Figure 8. 

 

Figure 8. Experimental set-up for in vivo breathing studies. A differential pressure transducer was placed 

between the animal chamber (20 ml) and the reference chamber. The pressure difference between the two 

chambers was measured to obtain an index of the respiratory activity. Calibrations (10 µl) were made at the 

beginning and at the end of each recording session by injecting air in the animal chamber with a Hamilton 

syringe. 

 

For in utero recordings, pregnant females were deeply anaesthetised with isoflurane (3% at 

the beginning and later 2.2%). A median incision was made along the white line to access 

the uterine horns and a given embryo was isolated with preserved umbilical irrigation. 
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Chest muscle electromyograms and cardiac pulses were recorded with thin copper wires 

inserted in the chest muscle. Signals were filtered, amplified (Neurolog System; Digitimer) 

and visualised on memory scope or stored on PC. 

 

5.3 In vitro preparations 

Pregnant mice were sacrificed by cervical dislocation at the desired developmental stage 

(E16.5 or E18.5). Embryos were removed form the uterine horns and placed in oxygenated 

artificial cerebrospinal fluid (aCSF), composed of 129 mM NaCl, 3 mM KCl, 1.26 mM 

CaCl2, 1.15 mM MgCl2, 21 mM NaHCO3, 0.58 mM NaH2PO4, 30 mM glucose, pH 7.4 

and saturated with carbogene (95% O2, 5% CO2). Embryos were kept in aCSF at RT until 

used in electrophysiological recording sessions. En bloc brainstem preparations were 

isolated by an anterior section performed at the level of the isthmus and a posterior section 

performed caudal to the fourth cervical root (C4). Isolated brainstem preparations were 

then transferred into the recording chamber ventral side up. C4 phrenic root activity was 

recorded with suction electrodes, filtered, amplified and integrated (Figure 9). 

 

Figure 9. Schematic representation of the en bloc brainstem preparation. The in vitro activity of the 

isolated respiratory rhythm generator (RRG) is recorded at the C4 ventral root. Shown is an example of raw 

and integrated phrenic bursts (bottom and top traces, respectively). 

 

At E16.5, the brainstem and spinal cord were isolated with the ribcage remaining attached 

and rhythmic diaphragmatic electromyogram discharges were recorded in vitro.



Results 

 45   

Results 

The objective of this thesis was to study the role of histone lysine demethylation in the 

establishment and maintenance of cell identity. To this end I focused on one of the best 

described in vitro differentiation systems, the neural induction of mouse embryonic stem 

cells (ESCs) in adherent monolayer conditions [82]. This protocol accurately mirrors 

cellular events and signalling pathways involved in neural specification during 

development, therefore providing a tool for dissecting molecular mechanisms of neural 

commitment [89]. The expression analysis of 24 JmjC genes during the derivation of 

neural stem cells (NSCs) from ESCs in adherent monolayer culture revealed that Jmjd3 

was highly upregulated during the initial stages of neurulation and was then downregulated 

once the NSC state had been achieved. This expression pattern suggested a potential 

function of Jmjd3 during the early stages of neural commitment. The functional relevance 

of Jmjd3 during neural differentiation in vitro was assessed by RNA interference (RNAi)-

mediated gene silencing. To study the role of Jmjd3 in vivo we pursued two 

complementary approaches: i) the constitutive inactivation based on a random gene trap 

integration and ii) the conditional inactivation by gene targeting through homologous 

recombination. 

 

1 Functional characterisation of Jmjd3 in vitro 

1.1 Jmjd3 is specifically upregulated at the outset of neural commitment 

In order to explore the relevance of histone demethylation to lineage commitment the 

differentiation of ESCs into neural stem cells (NSCs) in adherent monolayer culture was 

used as experimental system [82-83]. This protocol enables the derivation of a 

homogenous population of NSC capable of continuous self-renewal and multipotent 
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differentiation into the three main cell types of the central nervous system (CNS) – 

neurons, astrocytes and oligodendrocytes [90]. By avoiding the heterogeneity associated 

with standard procedures of ESC differentiation, this experimental system allowed to 

specifically trace the importance of putative histone demethylases for the commitment to 

the neural lineage. Thus, homogeneous cultures of NSCs were generated and characterised 

by immunocytochemistry. NSCs expressed uniformly neural precursor markers like the 

intermediate filament protein Nestin and SRY-related transcription factor Sox2 and lacked 

the expression of terminal differentiation markers such as the astrocytic marker glial 

fibrillary acidic protein (GFAP) and neuronal marker β III-tubulin (Figure 10). 
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Figure 10. Generation of NSCs from ESCs. ESC-derived NSCs constitute a homogeneous population of 

neural precursors. They show uniform expression of neural precursor markers Nestin and Sox2 and virtually 

no immunoreactivity for neuronal (β III-tubulin) or astrocyte (GFAP) antigens. 

 

With the in vitro differentiation system in place the role of JmjC domain-containing 

proteins during neural differentiation was investigated. The expression of 24 JmjC genes 

was analysed at the mRNA level by quantitative real-time PCR (qRT-PCR) at day 8 and 

day 26 of NSC derivation (Figure 11). By day 8 of differentiation, cells have irreversibly 

committed to neural fate and about 70% of the population consists of neural precursors 

[78]. Neural precursors were replated in the presence of epidermal growth factor (EGF) 

and fibroblast growth factor 2 (FGF-2). These conditions progressively enriched the 

culture for bipolar cells that were passaged regularly until a homogenous culture of NSCs 

was obtained (corresponding to the day 26 sample). The results revealed distinct patterns 

of expression for individual JmjC genes. Several genes were expressed at stable levels, 

such as Jmjd1b, Jmjd5 and Utx, whereas others increased or decreased steadily during the 

course of differentiation. On the contrary, five JmjC genes (Jmjd2b, Jmjd3, Jarid1a, 

Jarid1c and Phf8) were first upregulated at day eight (early neural precursors) and then 

downregulated at day 26 (established and self-renewing NSCs) suggesting, that they could 

be involved in the epigenetic transition underlying the outset of neural commitment. 

Among these genes, Jmjd3 showed the greatest upregulation at day eight (sixfold increase) 

with a decrease to near ESC-level at day 26. This data suggested a role for certain JmjC 

domain-containing proteins, in particular Jmjd3, in the earliest phase of the commitment of 

ESCs to the neural lineage. Hence, the focus of the present study became the elucidation of 

the functional relevance of Jmjd3 during the early stages of neural commitment. 
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Figure 11. Expression profiling of JmjC genes during NSC derivation. mRNA levels were quantified by 

qRT-PCR at day eight and day 26 of differentiation. The bars represent the means ± S.D. of qRT-PCR 

triplicates normalised to TBP and undifferentiated ESC. For each gene the transcript level in wild-type ESCs 

was set as 100%. 

 

To analyse the expression of Jmjd3 on the protein level a polyclonal antibody was raised in 

collaboration with Abgent (Figure 12). The antibody recognized the C-terminus of Jmjd3, 

encompassing the JmjC domain (amino acids 1141 – 1641). 

 

Figure 12. Specificity of the anti-Jmjd3 polyclonal antibody. Upper panel: western blot with anti-Jmjd3 

antibody on untransfected 293 cells (lane 1) and 293 cells overexpressing the full-length Jmjd3 protein (lane 

2). Lower panel: the same samples probed with anti-vinculin as loading control. 

 

Western blot analysis during the derivation of NSCs from ESCs in adherent monoculture 

revealed that Jmjd3 protein expression peaks already at day four of neural differentiation 

and is downregulated in established self-renewing NSC cultures (Figure 13). In contrast to 
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the mRNA level, the protein level in NSCs is even lower compared to ESCs, suggesting 

the possibility of posttranscriptional regulatory mechanisms. 

 

Figure 13. Protein expression levels of Jmjd3 during the ESC to NSC transition. Levels of Jmjd3 peak at 

day four to eight and are greatly reduced in established NSC cultures. Protein extract from cells 

overexpressing Jmjd3 was used to localise the Jmjd3 band (WB-control). Vinculin served as loading control. 

 

1.2 Jmjd3 is a demethylase specific for histone H3 trimethyl-lysine 27 (H3K27me3) 

For the biochemical characterisation of Jmjd3 a collaboration was started with Gioacchino 

Natoli, from the European Institute of Oncology (IEO, Milano, Italy), whose group had 

just begun to study the function of Jmjd3 during the differentiation of macrophages. They 

had observed that Jmjd3 is rapidly induced in macrophages upon activation by 

inflammatory stimuli. This result together with our observation showed that Jmjd3 is 

highly upregulated in two different cell systems that both entail processes of cell fate 

specification, the differentiation of macrophages and the differentiation of ESCs to NSCs. 

In order to assess the ability of Jmjd3 to catalyse histone demethylation, full-length Jmjd3 

and a mutant version, carrying a H1388A mutation in the iron-binding centre of the 

catalytic site of the JmjC domain, were overexpressed in HEK 293 cells as FLAG-tagged 

fusion proteins. Protein extracts were subjected to western blot analysis and the 

methylation state of various histone lysine residues was evaluated with specific antibodies 

(Figure 14a). Ectopic expression of wild-type Jmjd3 resulted in a decrease of H3K27me3 

level, whereas no reduction was observed for any other of the tested methylated lysine 

marks. H3K27me3 level in cells overexpressing the mutant form was unaffected, 

demonstrating that loss of H3K27me3 in Jmjd3-overexpressing cells is due to the 
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enzymatic activity of Jmjd3 and that the demethylating activity of Jmjd3 is dependent on a 

catalytically active JmjC domain. 

Next, it was tested whether Jmjd3 could demethylate H3K27me3 in vitro (Figure 14b). The 

C-terminal part of Jmjd3 (amino acids 1141 – 1641) was fused to a polyhistidine tag and 

overexpressed in bacteria. In an in vitro demethylation reaction using histone H3 as 

substrate purified recombinant Jmjd3 demethylated efficiently H3K27me3 and with lower 

activity H3K27me2, whereas no reactivity was observed for H3K27me1. Furthermore it 

was demonstrated that this demethylase activity depends on the presence of iron Fe(II), 

confirming that Jmjd3 uses an oxidative demethylation mechanism, which had been shown 

to require Fe(II) and α-ketoglutarate as cofactors [28]. 
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Figure 14. Jmjd3 is a H3K27me3-specific demethylase. (a) Effect of Jmjd3 overexpression in 293 cells on 

histone lysine methylation. FLAG-tagged wild-type Jmjd3 (w.t.) and an iron-binding deficient mutant 

version were overexpressed in 293 cells. Lysate from cells transfected with the empty expression vector is 

shown in the first lane (mock). Histone methylation was assessed by western blot using the indicated 

antibodies. (b) Recombinant Jmjd3 demethylates H3K27me3 in vitro in an iron-dependent manner. The 

C-terminus of Jmjd3, encompassing the JmjC domain and fused to a 6× His-tag was expressed in bacteria. 

The in vitro demethylation activity of recombinant Jmjd3 using histone H3 as substrate was analysed by 

immunoblotting with antibodies specific for mono-, di- and trimethyl H3K27. The effect of Fe(II) removal 

from the reaction is shown. 

 

In summary, the above results indicated that Jmjd3 selectively demethylates H3K27 with a 

strong preference for the trimethylated form. The observation that a histone H3K27 

demethylase is specifically upregulated at the initial phase of ESC differentiation 

suggested that its activity may be functionally involved in the dynamic regulation of the 

H3K27me3 mark which accompanies differentiation. 

 

1.3 Jmjd3 is required for neural commitment 

The functional relevance of Jmjd3 during neural commitment was assessed by RNA 

interference (RNAi)-mediated gene knockdown. To enable sustained gene silencing, we 

employed two different short hairpin RNAs (shRNAs), stably expressed from two different 

viral-based systems, lentiviruses and retroviruses. The lentiviral vector pSicoR PGK Puro 

expresses RNAi-inducing shRNAs under the control of the U6 RNA polymerase III 

promoter [85]. For this system, one shRNA targeting Jmjd3 was designed (shJd3-1) and 

one non-silencing control shRNA against firefly luciferase (shLuc), lacking sequence 

homology to the mouse genome. A second Jmjd3-specific shRNA design (shJd3-2) 

targeting a different region of Jmjd3 mRNA was cloned into the mircoRNA (miRNA)-

adapted retroviral expression system LMP. The constitutive expression of this shRNAmir 

is driven by a RNA polymerase II promoter [73]. The target sequences of the shRNAs are 
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listed in Table 8 and the positions of the shRNAs targeting Jmjd3 are depicted in Figure 

15. 

Table 8. Target sequences of shRNAs used for RNAi. 

shRNA name Target sequence (5’-3’) Position on mRNA Expression vector 

shJd3-1 ACACCACCATCGCTAAATA 4225 pSicoR PGK Puro 

shJd3-2 GCACTCGATGCCTCATTCATA 1334 LMP 

shLuc GAGCTGTTTCTGAGGAGCC  pSicoR PGK Puro 

 

 

Figure 15. Localisation of shRNAs targeting Jmjd3. Scheme of the mouse Jmjd3 locus showing exons and 

the target sites of the shRNAs (shJd3-1 and shJd3-2) relative to the genomic sequence. 

 

ESCs were infected with shRNA-expressing viruses and selected in puromycin to isolate 

and establish several ESC clones that stably expressed the shRNA constructs. ESC clones 

were analysed for Jmjd3 expression levels by qRT-PCR. For further characterisation the 

clone with the highest knockdown efficiency was selected for each Jmjd3 hairpin design, 

clone Jmjd3-kd1 for shJd3-1 and Jmjd3-kd2 for shJd3-2, as well as one control clone 

expressing shRNA against luciferase (Luc). The choice of two clones expressing two 

independent shRNAs against Jmjd3 aimed at minimising potential off-target effects. qRT-

PCR analysis revealed for Jmjd3-kd1 more than 90% reduction in Jmjd3 mRNA level and 

slightly higher Jmjd3 residual levels for Jmjd-kd2. The specificity of Jmjd3 knockdown 

was confirmed by immunoblotting (Figure 16). 

 

Figure 16. Protein levels of Jmjd3 in RNAi knockdown ESC clones. Western blot analysis for Jmjd3 

expression confirmed efficient knockdown of Jmjd3 in ESC clones Jmjd3-kd1 and Jmjd3-kd2. No reduction 



Results 

 53   

of Jmjd3 was observed in cells expressing the control Luc shRNA (Luc). Protein extract from cells 

overexpressing Jmjd3 was used to localise the Jmjd3 band (WB-control). Vinculin served as loading control. 

 

Both Jmjd3-kd clones had markedly reduced Jmjd3 protein levels, whereas levels of Jmjd3 

in the Luc control clone were not affected, thus indicating that Jmjd3 is not required for the 

maintenance of ESC. Expression analysis by qRT-PCR showed that the pluripotency 

markers Oct4 and Nanog were overall unaffected by Jmjd3 depletion (Figure 17). The 

slight increase of Oct4 expression in Jmjd3-kd2 ESCs could be explained by the fact that a 

population of ESCs, cultured under standard conditions with leukaemia inhibitory factor 

(LIF) and serum, represents a dynamic distribution of states with varying degrees of 

pluripotency that are accompanied, and most likely caused, by fluctuations in the 

expression of pluripotency-associated transcription factors [91-92]. Moreover, unlike what 

has been described for ESCs having elevated Oct4 levels [93], Jmjd3-kd2 ESCs did not 

show an increased spontaneous differentiation into primitive endoderm-like cells. 

 

Figure 17. Expression of Oct4 and Nanog in undifferentiated Jmjd3-kd ESC clones. qRT-PCR analysis 

of Oct4 and Nanog mRNA levels in wild-type (w.t.) and Jmjd3-kd ESC clones. Bars represent the means ± 

S.D. of qRT-PCR triplicates normalised to TBP. 

 

To examine whether the loss of Jmjd3 influences the ability of ESCs to differentiate into 

NSCs, the Jmjd3-kd ESCs were subjected to the adherent monolayer differentiation 

protocol described above. Whereas wild-type cells and cells expressing the control Luc 

shRNA formed neurulating rosettes which developed into dense clusters with intricate 

outgrowth of elongated bi- or tripolar neural precursors, Jmjd3-kd cells formed these 
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structures at much lower frequency, with the majority of cells flattening out and acquiring 

a polygonal shape. Cultures of differentiating wild-type and Luc-control cells showed by 

day seven of the differentiation protocol the typical pattern of neurulating clusters from 

which tightly juxtaposed neural precursors protrude. These outgrowing cells with 

characteristic palisade-like shape stained intensely positive for Nestin (Figure 18a, b upper 

panels). Both Jmjd3-kd clones had a markedly different morphology, with much fewer 

Nestin expressing clusters, in which the signal intensity was anyway lower than in the 

control cells. Moreover, the signal pattern of these Nestin-immunopositive clusters 

appeared diffuse and less structured, with only sporadic cases of radial growth of tightly 

packed precursors. Instead these abnormal clusters were surrounded by extensive sheets of 

flat cells, which stained positive for the epithelial cell marker Cytokeratin and comprised 

the majority of cells in Jmjd3-kd cultures (Figure 18a, b lower panels). In the control 

cultures the immunostaining for Cytokeratin was observed only in sporadic patches, as 

expected under these differentiation conditions. 
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Figure 18. Jmjd3 is required for neural commitment. (a) Immunostainings for Nestin (upper panel, 

second row) and Cytokeratin (lower panel, second row) and phase-contrast images (first rows of both panels) 

of wild-type cells (w.t.), control cells expressing Luc shRNA and Jmjd3-kd cells, acquired at day seven of 

monolayer differentiation protocol. (b) Immunostainings for Nestin (upper panel, second row) and 

Cytokeratin (lower panel, second row) and phase-contrast images (first rows of both panels) of wild-type 

(w.t.) and Jmjd3-kd cells, at day seven of differentiation in adherent monolayer. Sixteen contiguous images, 

providing a representative coverage of the culture dish, were automatically acquired. After background 

correction mean grey values were calculated using ImageJ software. Bars represent the means ± S.D. of the 

single images. Asterisks indicate statistically significant differences as compared to wild-type cells, p<0.01 

(Student’s t-test). 

 

Based on these observations we next asked, whether the few Nestin-positive cells in the 

Jmjd3-kd cultures eventually managed to form NSCs. To this end, the Jmjd3-kd cells were 

replated in the presence of EGF and FGF-2 at day eight and further processed according to 

the monolayer differentiation protocol. Eventually after several passages the Jmjd3-kd 

cells managed to generate a homogeneous population of self-renewing NSCs, which were 

morphologically indistinguishable from NSCs derived from control cells. Yet, for Jmjd3-

depleted cells it required more time until a stable NSC culture was established compared to 

control cells. As the process of NSC derivation entails a strong selection, progressively 

enriching the culture for neural precursors the hypothesis was that the few Jmjd3-kd cells 

that eventually managed to neurulate may have been those with residual levels of Jmjd3, 

which would enable them to undertake differentiation. Consistently with this prediction, at 

day seven of neural differentiation both Jmjd3-kd clones showed a significant upregulation 

of Jmjd3 on the mRNA level, with higher levels in Jmjd3-kd2 as expected on the basis of 

the lower knockdown efficiency already observed for this hairpin in the undifferentiated 

state (Figure 19a). 
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Figure 19. Jmjd3 expression in Jmjd3 knockdown cells during differentiation. (a) qRT-PCR analysis of 

Jmjd3 mRNA levels in wild-type (w.t.) and Jmjd3-kd clones at day seven of differentiation. Bars represent 

the means ± S.D. of qRT-PCR triplicates normalised to TBP. (b) Levels of Jmjd3 protein in NSCs derived 

from wild-type (w.t.) and Jmjd3-kd cells were assessed by western blot. Protein extract from cells 

overexpressing Jmjd3 was used to localise the Jmjd3 band (WB-control). Vinculin served as loading control. 

 

As the RNAi machinery is active during differentiation, the upregulation of Jmjd3 in 

Jmjd3-kd cells reflects most likely the selection pressure that enriches the culture for those 

cells with less efficient knockdown and therefore higher levels of Jmjd3. In agreement with 

this assumption, the NSCs derived from the few Jmjd3-kd cells that started neurulation had 

indeed reacquired normal Jmjd3 protein levels (Figure 19b), suggesting that the ESC to 

NSC transition depends on the presence of Jmjd3. 

 

1.4 Jmjd3 regulates neural markers 

To investigate the molecular mechanism through which Jmjd3 is involved in ESC neural 

commitment, the expression of key developmental regulators and marker, such as Sox1, 

Pax6 and Nestin was analysed by qRT-PCR. Pax6, a homeodomain transcription factor, 

controls in the developing brain the differentiation of the radial glia, the source of neural 

progenitors for both neuronal and glial lineage and its expression profile is recapitulated in 

ESC-derived NSCs [94]. Nestin is a neurofilament protein specifically upregulated during 

neural differentiation and widely used as NSC marker [95]. The transcription factor Sox1 
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is one of the earliest known markers of neuroectodermal precursors in the mouse embryo 

with a key role in early neural specification [96]. During adherent monolayer 

differentiation Sox1 expression starts to be transiently upregulated at day three, peaks 

between days six to eight and is completely lost in NSCs [78]. 

As shown in (Figure 20) Jmjd3-kd ESCs started off with lower levels of Pax6, Nestin and 

Sox1 and failed to appropriately upregulate all the three markers by day seven when neural 

commitment peaked. The reductions of the mRNA levels were less severe in Jmjd3-kd2, 

likely due to the lower knockdown efficiency and the greater residual upregulation of 

Jmjd3. 

 

Figure 20. Loss of Jmjd3 impairs upregulation of the neural markers Pax6, Nestin and Sox1 during 

differentiation. mRNA levels of Pax6, Nestin and Sox1 in wild-type (w.t.) and Jmjd3 knockdown (Jmjd3-

kd) cells were quantified by qRT-PCR at the undifferentiated ESC state and at day seven of monolayer 

differentiation. Bars represent the means ± S.D. of qRT-PCR triplicates normalised to TBP. 

 

The reduced upregulation of Pax6, Nestin and Sox1 correlated with the partial upregulation 

of Jmjd3 in Jmjd3-kd clones at day seven of differentiation, suggesting that these genes 

could be direct targets of Jmjd3 and exquisitely sensitive to the dynamics of its protein 

levels. 

In order to investigate whether Jmjd3 physically binds to the promoters of these genes 

chromatin immunoprecipitation (ChIP) experiments were performed. For Pax6 both 

annotated transcription start sites (TS1 and TS2) were probed with three PCR primer sets, 

one located 200 bp upstream of TS1 and two located 900 bp upstream and 1.4 kb 

downstream, respectively of TS2 (Figure 21). The primers for Nestin and Sox1 annealed in 
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regions 450 bp and 300 bp, respectively upstream of their transcription start sites. All the 

corresponding amplicons were located within the previously defined bivalent domains. 

 

Figure 21. Scheme of the genomic regions analysed with ChIP assay. The Pax6 (upper panel), Nestin 

(middle panel) and Sox1 (lower panel) loci are drawn to scale, showing exon - intron structure, the 

transcription start sites (TSS), the regions covered by the so-called bivalent domains and the location of the 

amplicons analysed by qRT-PCR after immunoprecipitation. 

 

Jmjd3 binding was assessed in undifferentiated wild-type ESCs and at day four and eight 

of neural differentiation. Jmdj3 was found to be recruited to the regulatory regions of both 

Pax6 and Sox1 already at day four with a substantial increase at day eight (Figure 22a). On 

the Nestin promoter region binding of Jmjd3 was only detected at day eight. 

Together with the differentiation impairment of Jmjd3-kd cells, these findings are 

consistent with the role of Jmjd3 as an activator of the neural specification program in 

ESCs. Thereby Jmjd3 acts directly both on genes that orchestrate this program, like for 

instance Pax6 and Sox1 and on genes encoding for structural components of neural 

precursors, like Nestin. 

Although on day seven of differentiation the majority of the cells has acquired neural 

identity the culture is still heterogeneous with persisting undifferentiated ESCs and 

differentiated non-neural cell types [78]. In order to confirm the specificity of Jmjd3 
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involvement in the induction of neural differentiation a systems that allows to purify neural 

precursors to homogeneity, the Sox1-GFP knockin ESC line (46C), was used [78]. In 46C 

ESCs the coding sequence for green fluorescent protein (GFP) is targeted to the 

endogenous Sox1 locus, which drives expression of the GFP reporter only upon neural 

induction and permits the isolation of GFP-positive neural precursors by FACS sorting. 

Using this reporter system, about 56% of GFP-positive neural precursors were recovered at 

day seven of monolayer differentiation (Figure 22b). ChIP assay on this highly 

homogeneous cell population confirmed the specific recruitment of Jmjd3 to the 

transcription start sites of Pax6, Nestin and Sox1, whereas no binding was detected to the 

promoter of the negative control Prolactin (Figure 22c). 

 

Figure 22. Jmjd3 is recruited to the promoter regions of Pax6, Nestin and Sox1 during neural 

differentiation. (a) ChIP analysis showing levels of Jmjd3 occupancy at the genomic regions of Pax6, Nestin 
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and Sox1 outlined in Figure 21 in differentiating wild-type ESCs. Levels of enrichment are shown as 

percentage of input chromatin. Error bars represent standard deviation of qRT-PCR triplicates. undiff.: 

undifferentiated ESCs, day 4 and day8: time points of differentiation protocol (b) FACS scan of Sox1-GFP 

ESCs at day 7 of monolayer differentiation. The background threshold was set with undifferentiated Sox1-

GFP ESCs. (c) ChIP assay showing Jmjd3 recruitment to Pax6, Nestin and Sox1 in sorted GFP-positive 

neural precursors. The Prolactin gene promoter does not show any enrichment for Jmjd3. Levels of 

enrichment are shown as percentage of input chromatin. Bars represent the mean ± S.E.M. of three 

independent immunoprecipitations. 

 

1.5 Jmjd3 targets show distinct patterns of H3K27 methylation and expression 

In ESCs Pax6, Nestin and Sox1 are marked by H3K4me3/H3K27me3 bivalent domains 

[30,48], a chromatin signature that is dynamically regulated during differentiation. Hence, 

the observation that Jmjd3 is recruited to their promoters led to the prediction that Jmjd3 

controls the H3K27 methylation state of these genes during differentiation. To this end, 

H3K27me3 levels at the transcription start sites (TSS) of Pax6, Nestin and Sox1 were 

assessed by ChIP analysis in undifferentiated ESCs, at day eight of monolayer 

differentiation and in NSCs. This detailed analysis confirmed the finding [30,48] that in 

NSCs the bivalent domains of Pax6 and Nestin are resolved by loss of H3K27me3, 

whereas Sox1 retained the H3K27me3 mark (Figure 23). 

 

Figure 23. Analysis of H3K27me3 at the Pax6, Nestin and Sox1 genes during neural differentiation. 

ChIP analysis showing levels of H3K27me3 enrichment at the genomic regions of Pax6, Nestin and Sox1 
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outlined in Figure 21 in differentiating wild-type ESCs. Levels of enrichment are shown as percentage of 

input chromatin. Bars represent the mean ± S.E.M. of three independent immunoprecipitations. Asterisks 

indicate statistically significant differences as compared to undifferentiated cells, p<0.01 (ANOVA). undiff.: 

undifferentiated ESCs, day8: eight days after the beginning of the differentiation protocol, NSC: neural stem 

cells. 

 

For Pax6 H3K27me3 levels showed a significant increase both upstream of the first 

transcription start site (TS1) and downstream of the second transcription start site (B1), 

whereas the basal levels of H3K27me3 upstream of the second transcription start site 

(TS2) did not change during the first eight days of differentiation. It is noteworthy that all 

three regions showed a bivalent domain dynamics with selective loss of H3K27me3 in 

NSCs and progressive recruitment of Jmjd3. Apparently in the case of Pax6 initial Jmjd3 

binding is without consequences on H3K27me3 levels and complete demethylation is 

observed only in NSCs, possibly to stabilise and sustain its expression. This suggests either 

the existence of mechanisms responsible for a late activation of the demethylation activity 

of Jmjd3, for instance the binding of additional transcription factors and cofactors or the 

involvement of another H3K27me3 demethylase, a possibility which cannot formally be 

ruled out at this stage. 

In the case of Sox1, whose expression is highest at days six to eight and is absent in NSCs, 

the ChIP results showed a small but significant increase in H3K27me3 levels already at 

day eight and a much greater increase in NSCs. These data suggest that high levels of 

H3K27me3 may lock Sox1 expression in the repressed state in NSCs, while lower levels 

may still allow its upregulation at day eight, indicating that H3K27me3 by itself might not 

correlate directly with the transcriptional state. This finding provides support for the 

assumption that the H3K27me3 status contributes to transcriptional output in combination 

with other histone modifications and regulatory signals. Moreover, the observation that the 

progressive upregulation of Pax6 and Sox1 expression coincides with an increase in 

H3K27me3 levels at their regulatory regions reveals that the presence of H3K27me3 is 
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compatible not simply with basal transcription but also with increases in transcriptional 

activity, suggesting that the H3K27 methylation status may fulfil different regulatory 

functions at different genes and in different cellular contexts. 

Finally, at the Nestin transcription start site the progressive reduction of H3K27me3 during 

differentiation coincides with Jmjd3 occupancy suggesting a direct and causal link between 

Jmjd3 recruitment and H3K27me3 demethylation. In order to prove this hypothesis, the 

H3K27me3 status at the Nestin transcription start site was probed in Jmjd3-depleted cells. 

As shown in Figure 24, whereas in wild-type cells H3K27me3 decreased by about 60% at 

day seven of differentiation, in Jmjd3-kd clones it remained at the same level observed in 

undifferentiated ESCs. Normalisation of H3K27me3 levels to total histone H3 confirmed 

the higher levels of H3K27me3 on the Nestin promoter at day seven of differentiation in 

the absence of Jmjd3 compared to wild-type cells (Figure 24b), thus excluding that the 

differences in the H3K27me3 level are caused by variations in the nucleosome density. 

 

Figure 24. Jmjd3-kd cells fail to demethylate H3K27me3 on the Nestin promoter during neural 

differentiation. (a) ChIP analysis showing levels of H3K27me3 on the Nestin promoter in wild-type (w.t.) 

and Jmjd3 knockdown cells in the undifferentiated state (undiff.) and at day seven of monolayer 

differentiation. Levels of enrichment are shown as percentage of input chromatin. Bars represent the mean ± 

S.E.M. of three independent immunoprecipitations. (b) Levels of H3K27me3 enrichment at the Nestin 

promoter on day seven of differentiation (shown in Figure 24a) normalised to total histone H3. 

 

This result provides a functional demonstration that Jmjd3 demethylates H3K27me3 at the 

Nestin promoter during the neural specification process in ESCs. 
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In conclusion, these studies establish Jmjd3 as H3K27me3 demethylase required for neural 

commitment. The dynamics of H3K27 demethylation and its correlation to transcriptional 

activity appear to follow distinct gene-specific patterns and prompt further investigations 

into the changes of this chromatin mark at the onset of differentiation. 
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2 Functional characterisation of Jmjd3 in vivo 

2.1 Constitutive inactivation of Jmjd3 in vivo based on a gene trap approach 

To investigate the role of Jmjd3 in vivo we inactivated it in the mouse through a 

constitutive knockout allele generated by gene trap mutagenesis. This technique generates 

randomly loss-of-function mutations and can often report at the same time the expression 

pattern of the mutated gene. Gene trap ESC lines are freely available through the 

International Gene Trap Consortium (IGTC, http://www.genetrap.org/). We identified in 

the public database an ESC line in which according to the posted sequence tag the gene 

trap insertion had occurred in the first intron of Jmjd3. The line with the name XB814 had 

been generated by introducing the pGT0pfs gene trap vector into E14Tg2α ESCs derived 

from the 129/Ola strain. The pGT0pfs vector contains a splice acceptor site from mouse 

engrailed-2 (sA) and a promoterless lacZ-neomycin phosphotransferase fusion (βgeo) 

followed downstream by a simian virus-40 polyadenylation signal [97-99]. Since Jmjd3 is 

expressed in ESCs, integration of this cassette into the first intron is expected to produce a 

fusion transcript between the first exon of Jmjd3 and the βgeo cassette, resulting in 

truncation of the nascent transcript and hence in a loss of the functional allele (Figure 25). 

 

 

Figure 25. Scheme of the trapped Jmjd3 locus. Shown are exons and the trap cassette, which comprises a 

splice acceptor (sA), a lacZ-neo fusion and a polyadenylation signal (pA). Jmjd3 expression was assessed by 

RNA in situ hybridisation. The probe hybridised to the mRNA sequence corresponding to exons 19 to 23. 

Exons 17 to 20 encode for the JmjC protein domain. 
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2.1.1 Mapping the integration site of the gene trap vector 

The feeder-independent XB814 ESCs were grown in standard ESC culture conditions in 

the presence of LIF and serum. To confirm Jmjd3 as the trapped gene and to identify the 

exact insertion point of the gene trap vector a PCR strategy was set up. The PCR was based 

on a reverse primer located in the trap cassette and four forward primers annealing at 

different sites within intron one of Jmjd3 (Table 9). 

 
Table 9. PCR primers used to map the gene trap insertion site. 

Name Sequence (5’-3’) 

J3GTi-1 TCTGCTGTAACCCACTGCTG 

J3GTi-2 GGAATGTCATGCTTCACTGCCAAG 

J3GTi-3 GTCTGGTGTCTTTGGTCGTCCAG 

J3GTi-4 GCACTTGACCACAGTTTAGCGT 

GTbgeo AGTATCGGCCTCAGGAAGATCG 

 

All four primer pair combinations yielded a PCR product, which was progressively shorter 

the closer the forward primer was located with respect to the trap cassette, thus confirming 

that the insertion had indeed occurred in Jmjd3 and indicating that the insertion point is in 

the 3’ region of intron one (Figure 26). The shortest amplicon was cloned into a TOPO® 

vector and subsequent sequence analysis identified the insertion point of the gene trap 

vector at bp position 4187 of intron one. 

 

Figure 26. Identification of the insertion site of the gene trap vector by PCR. Four forward primers, 

annealing to different regions in exon one and intron one, respectively, were used in combination with a 

reverse primer located in the trap cassette. All PCR reactions yielded a product, which was progressively 
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shorter the further downstream the forward primer annealed in intron one, demonstrating that the insertion of 

the trap cassette had occurred in the 3’ region of intron one. 

 

2.1.2 Setting up the genotyping strategy for the trapped Jmjd3 allele 

Having identified the insertion point of the trap cassette in intron one of Jmjd3, a triplex 

PCR-based strategy was designed to distinguish the trapped from the wild-type allele using 

the primers listed in Table 10. 

 
Table 10. Primers for genotyping the Jmjd3 trap allele by PCR. 

Name Sequence (5’-3’) 

JBaygd AGGATACAGGAGCCACGCG 

JBaygr TGACTCTCCACTCGATCACCC 

GTrev TCCGGAGCGGATCTCAAAC 

 

The forward and the first reverse primer, both located in intron one flanking the insertion 

site, amplify a PCR product of 282 bp for the wild-type allele. Under the PCR conditions 

we set up, these primers do not yield the amplification of the 11.7 kb product from the 

trapped allele (Figure 27). The second reverse primer in the PCR reaction is located in the 

trap cassette and therefore only the trapped allele yields a PCR product, which is 259 bp 

and can be easily distinguished from the wild-type amplicon on a 3% agarose gel. 

 

Figure 27. Genotyping of the Jmjd3 gene trap allele. (a) A triplex PCR-based strategy was used to identify 

the Jmjd3 gene trap allele. The scheme shows the position of the three primers. (b) The primer pair 

JBaygd/JBaygr amplified from the wild-type allele a 282 bp product, whereas the theoretical product of 11.7 
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kb from the trapped allele was not amplified. The primer pair JBaygd/GTrev yielded only from the trapped 

allele a product, which was 259 bp. 

 

2.1.3 Generation of the XB814 mouse line 

The XB814 mouse line was generated by injecting XB814 gene trap ESCs into C57BL/6 

blastocycts. One male coat colour chimera was obtained and crossed to wild-type C57BL/6 

females to transmit the trapped Jmjd3 allele through the germline. Germline transmission 

was confirmed by PCR analysis on genomic DNA extracted from tail biopsies. 

 

2.1.4 Jmjd3-/- ESCs as tool to validate the Jmjd3 trap allele 

We then sought to derive Jmjd3 ESCs homozygous for the trap allele as a valuable system 

that would allow us to dissect the function of Jmjd3 during neural commitment in greater 

detail. Furthermore, it would enable us to avoid the intrinsic limitations of RNAi, such as 

the incomplete knockdown of expression which resulted in the selection of cells with 

residual levels of Jmjd3 during the derivation of NSCs in monolayer conditions. XB814 

mice, heterozygous for the trap allele, were intercrossed to obtain blastocysts which were 

used to derive stable ESC lines. From 16 blastocycts five ESC lines were established, of 

which two were wild-type, two were heterozygous and one was homozygous for the trap 

allele (Figure 28). 

 

Figure 28. Genotyping of derived ESC lines. Five ESC lines were established from intercrosses of 

heterozygous XB814 mice. Genotyping analysis revealed that out of these five lines two were wild-type, two 

were heterozygous and one was homozygous for the trap allele. 

 

Surprisingly, western blot analysis on ESC lysates revealed only a slight reduction in 

Jmjd3 protein level for the homozygous line compared to wild-type cells (Figure 29). 
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Figure 29. Protein level of Jmjd3 in ESC homozygous for the Jmjd3 gene trap allele. Western blot 

analysis for Jmjd3 expression shows only a mild decrease in homozygous Jmjd3 mutant ESCs (-/-) compared 

to the wild-type ESC clone (+/+). Vinculin served as loading control. 

 

This result could be explained either by a non-functioning gene trap vector, by the 

existence of an additional transcription start site downstream of the inserted trap cassette or 

by skipping of the cassette through alternative splicing. The original XB814 gene trap 

ESCs proved to be, as expected, G418 resistant, and the resistance was further confirmed 

by the growth of the homozygous ESCs we established in ESC medium containing G418 

(175 µg/ml). This observation allowed us to exclude the possibility that the trap cassette 

was non-functional, leading us to examine the potential existence of an alternative 

transcription start site within the 5’-untranslated region. Since the translation initiation 

codon (ATG) is mapped to exon four, the transcriptional status of the first five exons was 

analysed at the mRNA level using reverse transcription polymerase chain reaction (RT-

PCR). For each of the four primer pairs the forward and reverse primer annealed in 

neighbouring exons, thus yielding a product only if the exons have been spliced together. 

A fifth primer pair located in the 3’ region of the Jmjd3 mRNA spanning exons 14 to 16 

served as internal control for the protein coding transcript (Table 11). 

 
Table 11. RT-PCR primers to identify Jmjd3 transcript variants. 

Localisation Sequence (5’-3’) 

exons 1-2 F: AGGTTCCCCCAGGCACCATG 
R: GACTTCTCTATCCACAGAAA 

exons 2-3 F: TTACTGAGGCGGAGACAAGG 
R: TGACAGTCTCTGGCCTTCTG 

exons 3-4 F: AGAAGGCCAGAGACTGTCAC 
R: AAAGGCTTCCCGTGCAGAG 

exons 4-5 F: TCTGCACGGGAAGCCTTTG 
R: TTAGGGTGCCCGGAGCTAC 

exons 14-16 F: ACCACCATCGCTAAATACGC 
R: ACCTCTTGGCATCAGACAGG 
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The primer pair annealing to the transcript in which exon one is spliced to exon two 

yielded a product for wild-type cells, whereas no amplification was detected for 

homozygous ESCs (Figure 30). This result indicated that the transcription starting from 

exon one was efficiently disrupted by the trap cassette. The RT-PCR for the downstream 

exon combinations yielded products in the wild-type as well as in the homozygous ESCs, 

confirming the presence of an additional transcription starting site downstream of the trap 

cassette in intron one. In general the Jmjd3 mRNA level was slightly lower in homozygous 

cells compared to wild-type cells, which was in accordance with the reduced Jmjd3 protein 

level observed for the homozygous cells. 

 

Figure 30. Identification of Jmjd3 transcript variants by RT-PCR. In Jmjd3-/- ESC no product was 

detected for the primer pair spanning exons one and two, thus indicating that the trap cassette efficiently traps 

the Jmjd3 transcript after exon one. All other primer combinations yielded a product in Jmjd3 mutant ESCs, 

demonstrating the presence of a second transcription start site downstream of the trap cassette in intron one. 

TBP served as housekeeping control. 

 

Since overall the Jmjd3 protein level was similar between wild-type and homozygous 

ESCs we could not use the homozygous Jmjd3 gene trap ESCs as an experimental system 

to study the role of Jmjd3 in the context of differentiation. 

Taken together, these findings show that this insertion of the gene trap vector in the Jmdj3 

locus, at least at the onset of embryogenesis, did not generate a null mutation, but more 

likely resulted in a hypomorphic allele. 
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2.1.5 Jmjd3 mutants die at birth 

When we intercrossed XB814 mice heterozygous for the trap allele we failed to obtain 

Jmjd3-/- pups at weaning age, i.e. three weeks after birth. We therefore hypothesised that 

homozygous mutants die either during embryonic development or sometime between birth 

and weaning. In order to assess whether this Jmjd3 allele was embryonic lethal, embryos 

from heterozygous intercrosses were dissected at different developmental stages between 

embryonic day (E) 10.5 and 18.5. Embryos homozygous for the trap allele were recovered 

at a normal Mendelian ratio for all time points up to E18.5, just before birth, suggesting 

that the lethality occurs at birth or during the first three weeks postnatally (Table 12). 

 

Table 12. Distribution of genotypes between E10.5 and P0. Table showing the number of wild-type, 

heterozygous and homozygous genotypes of embryos at the indicated stage of development (E10.5-E18.5) 

and of neonates at P0. Out of 37 homozygous mutants genotyped at P0, 25 were born dead or died 

immediately after birth and 12 were initially alive but died within 24 h. 

 

 

To determine the exact time point at which homozygous mice were dying, timed matings 

between heterozygotes were set up and neonates were thoroughly monitored from the 

moment they were born. Thereby special care was taken to disturb the delivery process as 

little as possible and to avoid any additional stress for the mother. Immediately after the 

female had given birth, neonates were briefly separated from the mother to take a small tail 

biopsy for genotyping and to mark them by injecting subcutaneously a drop of India ink. 

This strategy enabled us to genotype each newborn pup and to monitor it starting at birth. 
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The analysis revealed that about 70% of all homozygous mutants genotyped at P0 were 

born dead or died within minutes of delivery and only 30% of the mutants survived the 

first few hours (Table 12). Out of 12 mutants being followed, two were alive for about 24 h 

which was the longest survival time ever observed. The perinatal lethality was limited to 

the homozygous mutant genotype, as the dead pups were all homozygous mutants with the 

exception of one heterozygote found among the dead. Homozygous mutants started to 

appear paler in their skin colour immediately after birth and were less reactive upon light 

stimulation than their wild-type and heterozygous littermates. They were hunched and 

displayed sudden bouts of cramped movements, including gasping behaviour like efforts to 

breathe. The heart beat was irregular and none of the mutant pups showed an apparent milk 

spot, indicating the lack of feeding (Figure 31). Importantly, the mother showed normal 

nursing behaviour, including grooming and breastfeeding the pups, demonstrating that the 

monitoring procedure did not cause any distress to the mother and the neonates. 
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Figure 31. Jmjd3-/- mutants have a perinatal lethal phenotype. A litter of nine newborn pups was closely 

observed for one day starting at birth. Two homozygous mutants were found dead one hour after delivery, a 

third mutant survived for about 20 h (black arrows). Wild-type and heterozygous littermates had milk in the 

stomach (white arrow heads), a clear sign of nursing, whereas the mutant has not fed. The mutant neonate 

suffered of gasping behaviour and became cyanotic with time as evident in the fourth panel (17 h after 

delivery). 

 

Together, these results demonstrate that mice homozygous for the Jmjd3 gene trap allele 

die perinatally. 

 

2.1.6 Jmjd3 is expressed in the developing brain during embryogenesis 

To identify the cause of the perinatal lethality of Jmjd3 mutant mice we first analysed the 

expression pattern of Jmjd3 during late foetal stages. Since none of the available antibodies 

against Jmjd3 worked convincingly in immunohistochemistry the expression of Jmd3 was 

assessed at the transcript level using radioactive in situ hybridisation (in collaboration with 

Antonio Simeone, CEINGE, Napoli, Italy). In situ hybridisation was performed on sagittal 

and coronal embryo sections of developmental stages between E9.75 and E16 (Figure 32). 

Jmjd3 transcripts were detected by an anti-sense probe which hybridised to the 3’ region of 

the Jmjd3 locus spanning exons 19-23. At E9.75 Jmjd3 expression was evident in all three 

primary brain vesicles of the neural tube, namely the hindbrain (Hb), the midbrain (Mb) 

and the forebrain (Fb). Signal was also detected in the spinal cord (Sc), the dorsal root 

ganglia (drg) and the ear vesicle (ev). One day later, the expression pattern remained 

unaltered with notable expression in the developing central nervous system (CNS) in 

particular the mesencephalon (Mes), the diencephalon (Di) and the telencephalon (Te). 

Furthermore, Jmjd3 transcripts were observed in the developing olfactory system 

comprising the olfactory epithelium (oe) and the nasal pit (np). From E12.5 to E16, the 

time of cortical neurogenesis, Jmjd3 expression was maintained in the CNS with the 

highest levels in the cerebral cortex (cx), basal ganglia (Bag), dorsal midbrain and 
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cerebellum (cb). At E16 Jmjd3 was present also throughout other organs such as kidney 

(ki), lung (lu) and stomach (st). 

 

Figure 32. Radioactive in situ hybridisation for Jmjd3 in mouse embryos at different developmental 

stages. For each embryonic stage, the panel consists of two rows representing sagittal and coronal sections, 

respectively. In summary, Jmjd3 expression was predominantly detected in structures of the developing CNS. 
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Regions of specific signal are indicated by the following abbreviations: ba: branchial arch, Bag: basal 

ganglia, cb: cerebellum, cbp: cerebellar primordium, cx: cortex, dc: digit cartilage, Di: diencephalon, drg: 

dorsal root ganglia, ev: ear vesicle, Fb: forebrain, fv: follicle of vibrissa, Hb: hindbrain, hf: hair follicle, ki: 

kidney, lb: limb bud, lu: lung, Mb: midbrain, MHB: midbrain-hindbrain border, Mes: mesencephalon, np: 

nasal pit (olfactory placode), ob: olfactory bulb, oe: olfactory epithelium, re: neural retina, Sc: spinal cord, 

sg: salivary gland, st: stomach, Te: telencephalon. 

 

In summary, this analysis showed that Jmjd3 was predominantly expressed in the 

developing CNS of late-stage embryos. Specifically, Jmjd3 expression was substantially 

upregulated between E10.5 and E16.5 and displayed at E16.5, at the peak of neurogenesis, 

a specific pattern in the cortex and the dorsal midbrain. 

 

2.1.7 Jmjd3 expression is absent in homozygous mutant embryos at E16.5 

To assess Jmjd3 expression in mutant animals we dissected embryos at E16.5 and 

performed in situ hybridisation on wild-type and homozygous mutant littermates. Wild-

type embryos displayed the expression pattern described above, with the strongest signal in 

the cortex, basal ganglia, midbrain and cerebellum and organs such as liver, lung and 

kidney, whereas on sections of Jmjd3-/- foetuses the overall signal was drastically reduced 

and almost undetectable, evidencing the absence of the Jmjd3 transcript, in particular the 

sequence region encoding for the JmjC domain (Figure 25Figure 33). This observation was 

the formal proof that the trap cassette was functional in vivo by efficiently trapping and 

truncating the endogenous Jmjd3 transcript, suggesting that the Jmjd3 trap allele is a strong 

hypomorphic allele in vivo. 
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Figure 33. Jmjd3 transcript is absent in homozygous mutant foetuses at E16.5. RNA in situ 

hybridisation showing Jmjd3 expression on serial sagittal sections of wild-type (Jmjd3+/+) and homozygous 

mutant (Jmjd3-/-) embryos at E16.5 of embryogenesis. (a) Jmjd3+/+ embryos (upper row) showed Jmjd3 

expression in regions of the brain, like for instance cortex, cerebellum, midbrain and the olfactory system and 

in organs such as liver, lung and kidney. In Jmjd3-/- mutants (lower row) almost no signal was detected, 

indicating the absence of the Jmjd3 transcript. (b) Close-ups of (a) showing the head (A, B, A’, B’) and the 

organs of the abdominal cavity (C, C’). Regions of specific signal are indicated by the following 

abbreviations: ag: adrenal glands, Bag: basal ganglia, cb: cerebellum, cx: cortex, Di: diencephalon, gut: gut, 

hf: hair follicle, ki: kidney, li: liver, lu: lung, Mes: mesencephalon, ob: olfactory bulb, oe: olfactory 

epithelium, pi: pineal gland, sg: salivary gland, spinal ganglia, thy: thymus, to: tongue. 

 

2.1.8 Histological analysis of Jmjd3 mutants 

To investigate the cause of the perinatal lethality of homozygous mutants we carried out a 

thorough histological examination of the main vital organ systems. Wild-type and 



Results 

 78   

homozygous mutant neonates were fixed in 4% formaldehyde immediately after birth and 

further processed for hematoxylin and eosin (H&E) staining on serial sections. The skin 

was well developed and displayed normal keratinocyte differentiation. We therefore 

excluded that defects in skin barrier function could cause perinatal lethality through 

transepidermal water loss. Further, there were no malformations or abnormalities in the 

entire gastrointestinal tract that could lead to feeding, digestion or absorption difficulties. 

The musculoskeletal system and the peripheral respiratory apparatus, including lungs, 

ribcage and diaphragm were also free from alterations in morphology or architecture. Liver 

and the hematopoietic organs bone marrow, spleen and thymus appeared also to be 

normally developed. 

Histological analysis of the brain revealed instead that the cerebellar cortex of Jmjd3-/- 

newborn mice had a moderate decrease in foliation in comparison to wild-type littermates 

(Figure 34). This mutant phenotype was exhibited with a variable penetrance and could 

however not explain the neonatal lethality of the homozygous mutant mice, as the cellular 

organization and neural circuit of the mouse cerebellum develop mostly postnatally. 

 

Figure 34. Jmjd3-/- mutants exhibit a moderate cerebellar afolia. H&E staining of a section of the 

cerebellum of newborn mice with wild-type (Jmjd3+/+) and homozygous mutant (Jmjd3-/-) genotype, 

respectively. 

 

Taken together, this analysis showed that in Jmjd3-/- mice the vital organs were 

histologically normal with no gross abnormalities in structure and morphology. 
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We therefore undertook a systematic analysis of other possible causes of perinatal lethality. 

After birth, newborns must adapt quickly to new metabolic requirements and regulate their 

own energy homeostasis. Studies have shown that defects in glucose homeostasis can 

cause symptoms such as severe hypoglycemia that are associated with low survival of 

newborn mice [100-101]. In order to examine whether Jmjd3-/- mice die of hypoglycaemia, 

we measured the blood glucose level of neonates immediately after birth. To make sure 

that for all mice the blood glucose was measured under nonfeeding conditions, the 

newborns were separated from the mother as soon as she completed delivery. The animals 

were then decapitated and the blood glucose level was measured for each pup with no 

knowledge of the genotype, using a standard strip-based glucometer assay. The average 

blood glucose level of Jmjd3 mutants (43 mg/dl, n = 6) was similar to that of wild-type 

littermates (50 mg/dl, n = 12) and to values published in the literature, thus excluding 

hypoglycaemia as the cause of the perinatal lethality. 

 

2.1.9 Jmjd3-/- mutants fail to breathe during the perinatal period 

Respiratory failure is another common cause of perinatal lethality and could explain our 

observations that at birth Jmjd3 mutants showed few and irregular breathing movements, 

turned cyanotic and died within minutes after delivery. Moreover, the only two neonates 

that survived long enough to be followed also showed evident defects in breathing 

behaviour. 

Breathing is a vital and complex motor behaviour in mammals that regulates gas exchange 

in the lungs to maintain metabolic processes and control pH. Shaped through evolution by 

the constrain to be fully functional at birth, development of the respiratory network is 

completed during embryogenesis with the first signs of organised activity detected at late 

prenatal stages [102-106]. From the moment of birth, the correct function of the neural 

network generating rhythmic respiratory movements is crucial to ensure neonatal survival 
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by regulating airflow into and out of the lungs and maintaining constant blood 

oxygenation. Physiological and anatomical studies revealed that respiratory 

rhythmogenesis relies on the activity of a brainstem respiratory rhythm generator (RRG) 

Figure 35). In fetal and neonatal rodents, the RRG is composed of two distinct, but 

functionally coupled oscillators located in the ventrolateral part of the rostral medulla: the 

preBötzinger complex (preBötC) [107] and the retrotrapezoid nucleus/parafacial 

respiratory group (RTN/pFRG) [108-110]. The RTN/pFRG is a small region near the 

medullary surface ventral to the facial motor nucleus (nVII) and contains chemosensitive 

neurons that respond to CO2 through the detection of changes in pH [111-112]. Recent 

studies in mice showed that the embryonic parafacial (e-pF) oscillator (the embryonic 

forerunner of the RTN/pFRG) displays spontaneous rhythmic activity starting from 

embryonic day (E) 14.5 [113]. The preBötC is anatomically characterised as a 

heterogeneous population of glutamatergic interneurons in the ventral respiratory column, 

located beneath the nucleus ambiguus (Amb) [107,114-115]. The current view is that 

neurokinin-1 receptor (NK1R)-expressing rhythmic pacemaker neurons within the preBötC 

network form the cellular kernel for generating the respiratory rhythm required for driving 

inspiratory muscle activity [116-121]. The preBötC emerges independently of the e-pF and 

becomes active at E15.5, with the e-pF coupling to it [113,122]. A variety of additional 

neuronal groups in the hindbrain, including serotonergic and catecholaminergic brainstem 

neurons, neurons in the nucleus of the solitary tract (NTS) and the dorsal respiratory group 

and neurons of the pontine respiratory group, have been described to coordinate respiratory 

activity by processing information from peripheral and central sensory afferents and 

modulating neuronal input [123-126]. 
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Figure 35. Neuroanatomy of the respiratory network in the rodent brainstem. Schematic drawings of 

the main groups of respiratory neurons in horizontal (a) and sagittal (b) views of the brainstem. 7n: facial 

nerve, Amb: nucleus ambiguus, BC: Bötzinger complex, cVRG: caudal ventral respiratory group, K-F: 

Kölliker-Fuse nucleus, LC: locus coeruleus, LRt: lateral reticular nucleus, Mo5: motor nucleus of the 

trigeminal nerv, NTS: nucleus of the solitary tract, PB: parabrachial nucleus, PBC: preBötzinger complex, 

RTN/pFRG: retrotrapezoid nucleus and parafacial respiratory group, rVRG: rostral ventral respiratory group, 

VII: facial motor nucleus. From [127]. 

 

To investigate whether the perinatal phenotype of Jmjd3-/- mutants is due to breathing 

anomalies we performed physiological and histological analyses in collaboration with 

Gérard Hilaire (CRN2M, Marseille, France). 

Embryos were exteriorised from uterine horns at E18.5 and assessed for their respiratory 

activity by recording in vivo breathing-associated pressure changes (plethysmography). 

Wild-type and heterozygous mice initiated, immediately upon exteriorization, breathing 

that consisted in a gasping-like behaviour for 2-5 min and was characterised by deep 

respiratory movements at a low frequency (about 2-5 c·min-1) involving the entire body 

muscles and including wide mouth opening. Thereafter, they produced normal robust 

respiratory cycles at a faster rhythm (Jmjd3+/+: 46 ± 7 c·min-1, n = 10; Jmjd3+/-: 45 ± 30 

c·min-1, n = 2). In contrast, all mutant neonates (n = 8) failed to show any signs of 

ventilation or respiratory efforts (Figure 36), like gasping, and died shortly after 

exteriorization. 
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Figure 36. Jmjd3 mutants do not breathe in vivo. (a) Plethysmographic recordings of breathing activity in 

vivo from surgically delivered wild-type (Jmjd3+/+) and mutant (Jmjd3-/-) E18.5 embryos after caesarean 

section. All wild-type mice initiated respiratory cycles of inspirations (upward deflections) and expirations 

(downward deflections), whereas none of the Jmjd3-/- mice showed any sign of ventilation. (b) Quantification 

of breathing frequency in breaths per minute. Bars represent the mean ± S.E.M.of n mice. 

 

To exclude that the primary cause for perinatal death could have been a heart failure which 

in turn could have determined respiratory fatigue, we then recorded electrocardiograms of 

embryos in utero. As shown in Figure 37, at E18.5, the heart was beating in both Jmjd3+/+ 

(61 ± 9 c·min-1, n = 6) and Jmjd3-/- (102 ± 17 c·min-1, n = 5) embryos, thus excluding heart 

failure as a determinant of the perinatal phenotype of our mutants. 

 

Figure 37. Jmjd3 mutants have normal cardiac activity. Heart rate of E18.5 embryos was monitored in 

utero by electrocardiography. Bars represent the mean ± S.E.M.of n mice. 

 

Next, we assessed whether muscular or neuromuscular dysfunctions could cause the lack 

of ventilation in Jmjd3 mutants. Single electrical shocks were applied to the diaphragm or 

the phrenic nerve of either exteriorised or in utero embryos at E18.5. Electrical 

stimulations of the diaphragm or the phrenic nerve induced diaphragmatic contractions in 
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both wild-type and mutant embryos (data not shown), demonstrating that the contractile 

properties of the respiratory muscles were preserved in the mutants. 

 

2.1.10 The respiratory rhythm generator is not functioning in Jmjd3-/- mice at E18.5 

The absence of functional anomalies in the peripheral respiratory and cardiac systems in 

Jmjd3 mutants, pointed to a central respiratory defect. We therefore examined the 

respiratory rhythmic activity generated in vitro by the central respiratory network isolated 

in en bloc brainstem preparations at E18.5 [128]. Experiments were done in medullary-

spinal cord preparations which produce rhythmic bursts of potentials in the fourth cervical 

root (C4), where the phrenic nerve exits to innervate the diaphragm. In preparations of 

wild-type (n = 6) and heterozygous (n = 14) embryos, rhythmic bursts of potentials were 

detected from the cervical phrenic roots at a phrenic burst frequency of 12 ± 4 c·min-1 and 

8 ± 1 c·min-1, respectively. Recordings performed on Jmjd3 mutant preparations (n = 8) 

revealed the absence of any rhythmic or tonic phrenic nerve activity (Figure 38). 

 

Figure 38. Jmjd3-/- brainstem preparations lack respiratory rhythmic activity in vitro. (a) 

Electrophysiological recordings of the phrenic burst activity in vitro in medullary-spinal cord preparations 

isolated from wild-type (Jmjd3+/+) and mutant (Jmjd3-/-) E18.5 embryos. Wild-type preparations showed a 

respiratory rhythmic activity, whereas mutant preparations failed to produce any phrenic nerve activity. 

Shown are the integrated (top traces) and raw (bottom traces) phrenic burst discharges. (b) Quantification of 

phrenic burst frequency. Bars represent the mean ± S.E.M.of n mice. 

 

The lack of rhythmic phrenic bursts in Jmjd3-/- embryonic preparations could be the 

consequence of a defect either in respiratory rhythmogenesis or in synaptic transmission of 
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the medullary respiratory drive to the cervical phrenic motoneurons or of a combination of 

both defects. Therefore, we first analysed whether the phrenic motoneurons were able to 

respond to spinal synaptic inputs in vitro. The respiratory output pathways running from 

the medulla towards the phrenic motoneurons were activated by applying single electrical 

shocks to the spinal cord within the ventromedial and the ventrolateral spinal columns at 

the level of the second cervical segment. Each electrical shock induced a short latency 

response of the C4 phrenic motoneurons in both wild-type and mutant preparations. This 

analysis demonstrated that the C2-C4 pathway was functional and phrenic motoneurons 

were able to respond to spinal synaptic excitation in Jmjd3-/- mutants. 

Second, to assess whether the phrenic motoneurons were responsive to synaptic inputs 

from the medulla, we applied single electrical shocks to the medulla at the level of the 

ventral respiratory column (VRC). In brainstem preparations, the synchronous activation of 

rhythmogenic neurons by single-shock electrical stimulation applied in the VRC during 

expiration shortens the expiratory period, triggers a phrenic inspiratory burst and resets the 

phase of bursts [129]. A response to electrical stimulation in the controlateral medulla was 

consistently observed in wild-type preparations (Figure 39a). By contrast, in mutant 

preparations single-shock electrical stimulation of the VRC did not induce a phrenic burst 

(Figure 39a). However, single-shock electrical stimulations in the contro- and ipsilateral 

medulla induced brief responses of phrenic motoneurons in mutant samples (Figure 39b, 

c). Repetitive stimulation (100 Hz for 3 s) of the VRC induced a long-lasting non-rhythmic 

discharge on the otherwise silent phrenic roots, which persisted for about 20 s (Figure 

39d). Similarly, long-lasting phrenic discharges were induced by applying repetitive 

stimulation to the median raphe area of wild-type and mutant preparations. 
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Figure 39. Phrenic motoneurons of Jmjd3-/- embryonic preparations were silent but could be activated 

by electrical stimulation of the medulla. Schematic drawing of the en bloc preparation showing 

controlateral (St1) and ipsilateral (St2) stimulation sites of the medulla and the C4 phrenic nerve recording. 

(a) Upper and lower traces show the presence and absence of rhythmic phrenic bursts (integrated discharges) 

in en bloc preparations from wild-type and Jmjd3-/- embryos, respectively, at E18.5. Applying a single-shock 

electrical stimulation (1 ms, 2 V; black triangle) in the controlateral medulla during expiration (silent phrenic 

interval) triggered a premature phrenic burst in wild-type but did not induce a phrenic burst in Jmjd3-/- 

preparations. (b,c) In Jmjd3-/- preparations, brief responses of phrenic motoneurons could be induced by 

single-shock of stimulation applied to the controlateral (b) and ipsilateral (c) medulla. Note that the 

amplitude of the phrenic responses was dependent on the stimulus strength (from top to bottom: 3, 1.5 and 1 

V; pulse duration 1 ms) and the latency was longer for controlateral than ipsilateral sites (about 18 ms and 10 

ms, respectively). (d) In Jmjd3-/- preparations, applying repetitive stimulation (100 Hz for 3 s; black bar) to 

the same site of the controlateral medulla induced long-lasting discharges (20 s) of the otherwise silent 

phrenic motoneurons, but no rhythmic phrenic bursts. The amplitude and the duration of the induced 

discharges was dependent on the stimulus strength (from top to bottom: 3, 1.5 and 1 V; pulse duration 1 ms). 

 

Together these results showed that the VRC, when activated, could induce sustained 

discharges of the phrenic motoneurons, indicating that the synapses and the pathway 

between the medullary respiratory centres and the phrenic motoneurons were functional in 

Jmjd3-/- preparations. Given the ability of phrenic motoneurons to be activated by spinal as 

well as medullary synaptic inputs, the lack of C4 rhythmic bursting activity in Jmjd3 

mutant mice was an indication for a silent or defective respiratory rhythm generator 

(RRG). The fact that no rhythmic respiratory phrenic bursts were detected during and after 

the long-lasting discharge induced by repetitive electrical shocks applied to the rostral 

ventrolateral medulla or the raphe area, suggested a defective rather than quiescent RRG in 

Jmjd3-/- neonates. 
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2.1.11 Jmjd3 is expressed in the respiratory network of the ventrolateral medulla 

We next investigated whether Jmjd3 was expressed in the regions of the brainstem 

presiding over breathing regulation. To this end we performed in-situ hybridisation on 

sagittal wild-type E18.5 brain sections using a non-radioactive DIG-labelled probe. Jmjd3 

expression was evident throughout the brainstem with the highest levels in the ventrolateral 

medulla. In order to localise the two main neuronal groups involved in respiratory 

rhythmogenesis, the preBötzinger complex (preBötC) and the retrotrapezoid 

nucleus/parafacial respiratory group (RTN/pFRG) we used immunohistochemical staining 

for neurokinin-1 receptor (NK1R). The comparison of the in situ hybridisation pattern of 

Jmjd3 with that of the NK1R staining by overlapping aligned images of adjacent sections 

identified Jmjd3-positive cells predominantly in the pontine nuclei, superior olive, facial 

motor nucleus (nVII) and the area of the preBötC (Figure 40). 

 

Figure 40. Jmjd3 is expressed in the preBötC. (a) Schematic drawing of the anatomic organization of the 

murine E18.5 brainstem in a sagittal view. Amb: nucleus ambiguus, preBötC: preBötzinger complex, PN: 

basilar pontine nuclei, RTN/pFRG: retrotrapezoid nucleus and parafacial respiratory group, SO: superior 

olive, VII: facial motor nucleus. (b) Immunohistochemistry for NK1R on 10 µm sagittal frozen section from 

wild-type E18.5 brainstem. (c) Jmjd3 in situ hybridisation on 10 µm sagittal frozen section from wild-type 

E18.5 brainstem, adjacent to the section used for NK1R staining in b and showing the same area. (d) Overlap 
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of b and c to reveal areas of Jmjd3 expression. Images were aligned with respect to the ventral limit of the 

medulla. 

 

We then analysed Jmjd3 expression in brainstem sections of mutant E18.5 embryos by in 

situ hybridisation. Wild-type embryos (n = 2) displayed the expression pattern described 

above with notable expression in the ventral respiratory column, including the neural 

network of the preBötC, whereas in brainstems of mutant littermates (n = 3) the overall 

signal was almost undetectable (Figure 41). The lack of the Jmdj3 transcript in mutant 

brains, also in regions with high levels of Jmjd3 expression, such as the cerebral cortex, 

was in agreement with the observations described above on sections of E16.5 embryos 

which demonstrated the overall absence of Jmjd3 expression in mutant embryos. 

 

Figure 41. Jmjd3 transcript is absent in the brain of Jmjd3-/- embryos at E18.5. Jmjd3 in situ 

hybridisation on 10 µm sagittal frozen brain sections from wild-type (upper row) and mutant (lower row) 

E18.5 embryos. Jmjd3+/+ embryos displayed Jmjd3 expression in the ventral respiratory column, including 

the VII motor nucleus and the preBötC (A). In comparison, the strongest signal was detected in the cerebral 

cortex (B). In Jmjd3-/- mutants the signal was almost undetectable in both, the rostral ventrolateral medulla 

(A’) and the cerebral cortex (B’), indicating the absence of the Jmjd3 transcript. 

 

In summary, these results showed that cells of the RRG, in particular the preBötC express 

Jmjd3 and that in Jmjd3-/- embryos the respiratory network is deprived of a Jmjd3 

transcript encoding the catalytic JmjC domain. 
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2.1.12 The preBötC of Jmjd3-/- embryos shows neuro-anatomical anomalies at E18.5 

Given the expression of Jmjd3 in the preBötC and the finding that Jmjd3-/- embryos lack 

respiratory rhythmogenesis at E18.5 we examined whether changes in neuronal 

architecture of the preBötC could explain the functional defect of the RRG in mutants. To 

this end, we performed immunohistochemical analysis of E18.5 embryos for the two 

markers that are commonly used and widely recognized to define the neural networks that 

are crucial for respiratory rhythm generation. The retrotrapezoid nucleus/parafacial 

respiratory group (RTN/pFRG) lays ventrally to the VII motor nucleus and is 

immunoreactive for the transcription factor Phox2b [113,130]. As shown in Figure 42 

immunohistological staining for Phox2b on sagittal sections revealed a clearly identifiable 

group of Phox2b expressing neurons below the VII motor nucleus, corresponding to the 

RTN/pFRG area, in both wild-type and mutant E18.5 embryos. 

 

Figure 42. Jmjd3-/- mutants show normal Phox2b expression in the RTN/pFRG at E18.5. 

Immunohistochemical stainings for Phox2b on 10 µm sagittal frozen sections from wild-type and mutant 

E18.5 brainstems. Jmjd3+/+ and Jmjd3-/-embryos displayed immunoreactivity for Phox2b in the RTN/pFRG 

and the VII motor nucleus (dashed line). 

 

The observation that Phox2b expression was not affected by the absence of Jmjd3 

suggested that Jmjd3 was not required for normal development of Phox2b-expressing 

neurons in the RTN/pFRG group. The embryonic preBötC has been previously defined as 
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a diffuse group of NK1R expressing neurons extending below the nucleus ambiguus 

towards the ventral surface of the medulla, at the level of the inferior olive [116,122]. 

Immunostaining for NK1R on coronal sections confirmed this distribution of NK1R-

expressing neurons in the preBötC of wild-type embryos (n = 7), whereas the 

corresponding area in Jmjd3-/- brainstems (n = 10) did not display the normal structure. As 

shown in Figure 43, a NK1R signal was detected below the nucleus ambiguus in mutant 

samples, but the intensity of the signal was weaker and the network was smaller with a 

distribution of NK1R-expressing neurons more diffuse and less structured than in wild-

type samples. 

 

Figure 43. Abnormal preBötC structure in Jmjd3-/- mutants at E18.5. Immunohistochemical stainings for 

NK1R on 10 µm coronal frozen sections from wild-type (upper row) and mutant (lower row) E18.5 

brainstems. A, B, C and D are representative images with A’, B’, C’ and D’ showing at higher magnification 

the area highlighted with the white rectangle. In sections from Jmjd3+/+ embryos, strong immunoreactivity for 

NK1R was detected in the nucleus ambiguus (Amb) and the preBötC, extending towards the ventral surface 

of the medulla. Jmjd3-/- brainstems displayed fewer, more dispersed NK1R-positive neurons in the preBötC 

region. 

 

We next examined whether the major hindbrain neuromodulatory groups involved in 

respiratory control have anatomical defects in Jmjd3 mutant embryos. Using 

immunohistochemistry for the neurotransmitter serotonin, we did not detect any 

differences between Jmjd3+/+ and Jmjd3-/- samples in the presence of serotonergic neurons 

in the nucleus raphe (Figure 44). Furthermore, staining for tyrosine hydroxylase did not 

show apparent abnormalities in the catecholaminergic neurons of the locus coeruleus in the 
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pons (Figure 44). These results showed that the main neuronal groups of both 

monoaminergic systems were present, thus indicating that the neuromodulatory groups 

were not affected in Jmjd3-/- mice. 

 

Figure 44. Normal anatomy of neuromodulatory groups in Jmjd3-/- brainstems. The main neuronal 

groups of the monoaminergic systems did not have apparent defects in Jmjd3 mutants. Analysis of the 

nucleus raphe in Jmjd3+/+ (A) and Jmjd3-/- (A’) brainstems by immunostaining for serotonin (5-HT) on 

coronal sections. Analysis of the catecholaminergic neurons of the locus coeruleus (dashed line) in sagittal 

Jmjd3+/+ (B) and Jmjd3-/- (B’) brainstem sections by immunostaining for tyrosine hydroxylase (TH). 

 

In conclusion, this detailed histological analysis, together with the electrophysiological 

data presented above, demonstrated that Jmjd3 contributes to the embryonic formation of 

the preBötC and that loss of Jmjd3 leads to a non-functional RRG at E18.5. 

 

2.1.13 The RRG of Jmjd3-/- embryos is functional at E16.5 

The maturation of the mouse respiratory network has been shown to occur sequentially, 

with the RTN/pFRG group being functionally mature first, as early as E14.5 and the 

preBötC maturing one day later at E15.5. As our immunohistological data showed altered 

preBötC but normal RTN/pFRG areas in the absence of Jmjd3 at E18.5, we next 

investigated whether Jmjd3 is involved in the initial phase of preBötC formation or rather 

in the functional maturation, which is crucial for the preBötC to be active at birth. To this 

end, we analysed embryos at E16.5 at the electrophysiological level. Foetuses were 
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exteriorised and immediately placed in artificial cerebrospinal fluid (aCSF) containing KCl 

and bubbled with carbogene. In general, most embryos survive under these conditions and 

produce breathing movements in vivo at a low frequency with wide mouth opening. 

Rhythmic chest respiratory movements were observed in most wild-type (around 90%) and 

about half of the mutant embryos (Figure 45a). The visual observation of these chest 

respiratory movements was confirmed by recording of rhythmic chest electromyograms 

using a suction electrode that touched the ribcage muscles. In addition, the brainstem was 

isolated with the ribcage remaining attached to the spinal cord and rhythmic diaphragmatic 

electromyogram discharges were recorded in vitro (Figure 45b). Rhythmic contractions 

occurred in seven out of eight wild-type samples and in half of the Jmjd3 mutants (Figure 

45b). 

 

Figure 45. The RRG is functioning in some Jmjd3-/- mutants at E16.5. (a) E16.5 foetuses were 

exteriorised and monitored for the occurrence of breathing movements in vivo. Half of the mutant embryos 

produced breathing movements in vivo. (b) Schematic drawing of the experimental set-up to record 

electromyograms of diaphragmatic contractions in vitro. After dissection of the brainstem with the ribcage 

remaining attached to the spinal cord, the diaphragm rhythmically contracts in vitro. Rhythmic diaphragmatic 

bursts were detected in five out of ten mutant preparations. 

 

These results showed that at E16.5 the RRG of at least some Jmjd3 mutant embryos was 

functioning and able to produce a central rhythmic respiratory drive in vitro and breathing 

movements in vivo. 

In summary, we have shown that Jmjd3 is expressed in the preBötC, the principal site of 

respiratory rhythmogenesis. Our findings show that Jmjd3-/- embryos, when exteriorised at 

E18.5, fail to produce breathing movements in vivo and to generate in vitro respiratory 
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activity. However, the silent respiratory motoneurons can be activated by spinal cord and 

brainstem stimulations, demonstrating that the output pathways from the medullary 

respiratory centres are functional in mutants and therefore suggesting that the 

rhythmogenic mechanisms in the RRG are defective. Furthermore, our results provide 

evidence that the preBötC respiratory oscillator is developed and is active at E16.5 despite 

the absence of Jmjd3. This implies that the loss of Jmjd3 impairs the late maturation of the 

preBötC and prevents its functionality at E18.5, leading to perinatal death of all Jmjd3-/- 

mutants. 
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2.2 Generation of a conditional knockout mouse model for Jmjd3 by gene targeting 

In order to circumvent the developmental lethal phenotype caused by constitutive ablation 

of Jmjd3, the generation of a conditional knockout allele for Jmjd3 was pursued in parallel. 

To this end, a Jmjd3 multipurpose allele based on the ‘knockout-first’ approach was 

created [57]. This strategy allows in a single ESC targeting step to generate both a 

constitutive and a conditional knockout. In its original configuration the resulting allele 

creates a null mutation at the RNA processing level and a reporter for Jmjd3 expression 

through the lacZ marker (Figure 46). The endogenous RNA transcript is captured and 

truncated by a splice acceptor (sA) and a polyadenylation signal (pA), respectively, so that 

the exons downstream of the cassette are not transcribed into mRNA, hence producing a 

knockout based on RNA processing. By the combined use of FLP and Cre recombinases 

the constitutive knockout allele is converted into a conditional allele, which permits 

studying the loss-of-function phenotype in a spatially and temporally controlled manner. 

 

Figure 46. The Jmjd3 multipurpose allele. The Jmjd3 multipurpose allele is created by insertion of a FRT 

flanked reporter cassette, comprising a splice acceptor (sA), an internal ribosomal entry site (IRES), a lacZ-

neo fusion and a polyadenylation signal into the first intron of Jmjd3 and the additional insertion of two loxP 

sites to flank exons two to four. After homologous recombination in ESCs the targeted allele constitutes both, 

a null allele based on trapping and truncation of the endogenous mRNA and a reporter for Jmjd3 expression. 

FLP-mediated recombination is used to restore gene function and to establish the conditional allele. 

Subsequent Cre recombination deletes exons two to four, resulting in the loss of the translation initiation 

codon ATG. Only the first five exons of the Jmjd3 gene are shown. 
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2.2.1 Cloning of the Jmjd3 targeting construct 

The annotated mouse Jmjd3 gene spans approximately 15.2 kb of genomic sequence on 

chromosome 11 and is comprised of 23 exons, of which the first three are noncoding exons 

and exon four contains the translation initiation codon (ATG). Transcription analysis has 

demonstrated that in ESCs the first exon constitutes a functional transcription start site, 

which is in accordance with ChIP studies showing that the 5’-untranslated region 

preceding exon one is associated with a broad peak of histone H3 trimethyl-lysine 4 

(H3K4me3), a mark selectively enriched at active promoters. Since the targeting cassette is 

promoterless it had to be inserted downstream of a transcribed exon in order to be 

functional in ESCs. Given the genomic structure of Jmjd3 with most of the intronic regions 

being very small, we therefore decided to target the first intron of Jmjd3. In this 

configuration the cassette prevents transcription of the protein-coding exons, thus 

generating a null allele. The strategy for the conditional allele was based on the insertion of 

two loxP sites flanking exons two to four, such that upon Cre recombination, the 

translation initiation site is lost. 

The targeting vector for the conditional inactivation of Jmjd3 was assembled using Red/ET 

recombination [76,88], as schematically summarised in Figure 47. This DNA engineering 

method is based on homologous recombination in E. coli mediated by phage proteins and 

allows to efficiently modify large fragments of chromosomal and plasmid DNA without 

using restriction endonucleases and DNA ligase. 
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Figure 47. Strategy to engineer the multipurpose targeting construct for Jmjd3. Step one involves 

cloning of a loxP flanked selectable marker cassette into intron four of the Jmjd3 gene, using Red/ET 

recombination. Next, the selectable marker is excised by transient expression of Cre recombinase, leaving 

behind a single loxP site in intron four. In the final step, the βgeok cassette including two flanking FRT sites 

and a single loxP site is placed into intron one by Red/ET recombination. All steps are performed in E. coli.. 

The backbone of the targeting vector is not shown. ex.: exon, EM7: prokaryotic promoter, FRT: target site 

for FLP recombinase, IRES: internal ribosomal entry site, lacZ: reporter gene encoding β -galactosidase, 

loxP: target site for Cre recombinase, neo: selection marker neomycin phosphotransferase, PGK: eukaryotic 

promoter, pA: SV40 polyadenylation signal, sA: splice acceptor element from engrailed-2. 

 

To engineer the backbone for the targeting construct, a 10.5 kb fragment of the mouse 

Jmjd3 locus comprising the genomic region between intron one and intron 13 was 

subcloned from a BAC into the pACYC177 plasmid by Red/ET recombination. This step 

allows to subclone the genomic fragment based on the Southern strategy designed 

beforehand. First the pACYC177 plasmid was PCR amplified with the oligonucleotides 

listed in Table 13, generating a linear minimal vector flanked by stretches homologous to 

the BAC sequence immediately flanking the region to be subcloned (Figure 48a). 
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Table 13. Oligonucleotides used generate a linear minimal vector with flanking homology arms by 

PCR reaction. The homology regions to Jmjd3 are indicated in bold. The inserted I-SceI recognition sites 

are indicated in italics and the PCR primer sequences which anneal to the template pACYC177 are shown in 

regular font. 

Name Sequence (5’-3’) 

SubJmjd3-5’ TGAGAGGTTTTCAGGTGGTAGAGAGGCAAGTGAAGTACAGGGATAAACCAT
TAGGGATAACAGGGTAATTCACGAGGCAGACCTCAGCGCTAGCGG 

SubJmjd3-3’ TAGGGCTGGCACACACCATTAATCCCAGCAGTGAGGCAGAGGCAGGTAGAT
TAGGGATAACAGGGTAATTGAAGACGAAAGGGCCTCGTGATACGCC 

 

Each oligonucleotide contained 51 nucleotides of homology to the Jmjd3 BAC at its 5’ 

end, the restriction site for the homing endonuclease I-SceI and the PCR primer sequence 

annealing to the pACYC177 template in the 3’ region. The rare I-SceI sites were included 

to linearize the targeting construct before ESC electroporation. After transformation of the 

E. coli BAC host with the Red/ET expression plasmid pSC101-BAD-gbaA-tet, the linear 

vector fragment with homology arms (PCR product) was electroporated into the cells and 

recombination took place. Recombinant colonies harbouring the subcloned fragment 

(pACYC177-Jmjd3) were identified by selection for ampicillin (Figure 48b). 

 

 

Figure 48. Plasmids used to subclone Jmjd3 from a BAC by Red/ET recombination. (a) A linear 

minimal vector with flanking regions homologous to the genomic sequence of Jmjd3 was constructed by 

PCR amplification of plasmid pACYC177 using the oligonucleotides SubJmjd3-5’ and SubJmjd3-3’. (b) In 

the next step, the PCR product was used to subclone a 10.5 kb fragment of the mouse Jmjd3 locus by Red/ET 

recombination. Recombinant clones were identified by selection for ampicillin resistance. 
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In the next step, the first loxP site was inserted into intron four of Jmjd3 by Red/ET 

recombination. To this end, a loxP flanked PGK-neo cassette was amplified from the 

pR6K-PGK-EM7-neo plasmid by PCR using the oligonucleotides listed in Table 14. 

 
Table 14. Oligonucleotides used to amplify the loxP flanked selectable marker cassette by PCR. The 

homology arms to the fourth intron of Jmjd3 are indicated in bold. The loxP sites are shown in blue and the 

inserted EcoRI recognition site is indicated in italics. The residues which anneal in the PCR reaction to the 

template pR6K-PGK-EM7-neo are shown in regular font. 

Name Sequence (5’-3’) 

2loxP-F GCATTTCTCTCCCAGTCTTCTCTGTCCATTGCTGTCATTTTCCACGAGTTATAAC
TTCGTATAATGTATGCTATACGAAGTTATCCGCATTCTACCGGGTAGGGG 

2loxP-R 
TCAGAGGGAAGAGCAGATGAGACTGGCATCTGGACCCACAACAGAACAGAGAA
TTCATAACTTCGTATAGCATACATTATACGAAGTTATACGGCGCGCCGCACACAAAA
AC 

 

Each oligonucleotide consisted of 50 bp of homology to intron four of Jmjd3, followed on 

the 3’ by the loxP site and the sequence which anneals to the PCR template pR6K-PGK-

EM7-neo (Figure 49). Thus, the resulting PCR product was flanked by the homology arms 

to intron four plus the loxP sites and contained the selectable marker neomycin 

phosphotransferase (neo) under the control of the prokaryotic promoter EM7, thus 

conferring kanamycin resistance to recombinant E. coli cells. 

 

Figure 49. PCR template for the floxed PGK-EM7-neo cassette. The plasmid pR6K-PGK-EM7-neo 

served as template to generate the loxP flanked PGK-EM7-neo cassette with homology arms using the 

oligonucleotides 2loxP-F and 2loxP-R. 
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A key advantage of the pR6K-PGK-EM7-neo plasmid is its R6K origin, which requires for 

replication the initiator protein π, encoded by the pir gene. Since this Red/ET cloning step 

was performed in E. coli lacking the pir gene the plasmid, used as template during the PCR 

reaction, could not be propagated and therefore one possible source of background was 

drastically reduced. The purified and concentrated PCR product was directly 

electroporated into E. coli carrying the targeting plasmid pACYC177-Jmjd3 and the 

Red/ET expression plasmid pSC101-BAD-gbaA-tet. After transformation cells were 

incubated on LB plates containing ampicillin and kanamycin. Six colonies were picked, of 

which all showed the correct KpnI digestion pattern for the recombined plasmid 

(pACYC177-Jmjd3flox-neo), consisting of two bands of 10253 bp and 3940 bp, 

respectively (Figure 50). 

 

Figure 50. Insertion of the floxed selectable marker cassette into intron four of Jmjd3 using Red/ET 

recombination. (a) Digestion with KpnI shows for all six colonies the correct restriction pattern with two 

fragments of 10253 bp and 3940 bp, respectively. (b) Map of the recombined targeting vector containing the 

loxP flanked selectable marker cassette in intron four of Jmjd3. E. coli cells carrying the recombined plasmid 

were identified by double selection for kanamycin and ampicillin resistance. 

 

Removal of the selection marker was achieved through Cre-mediated recombination using 

a well established construct driving Cre expression in E. coli [131] (Figure 51). The 705-

Cre plasmid has a temperature-sensitive pSC101 origin that permits replication only at 30 

°C. The expression of Cre recombinase is driven by the thermosensitive promoter cI857, 

which induces Cre expression between 37-42 °C. 
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Figure 51. Map of the 705-Cre expression plasmid. Expression of the Cre recombinase is regulated by the 

cI857 temperature-sensitive λ -repressor, which induces expression between 37-42 °C. The pSC101 origin 

allows replication only at 30 °C. The plasmid confers chloramphenicol resistance. 

 

The Cre expression plasmid was transformed into E. coli cells containing the target 

plasmid pACYC177-Jmjd3flox-neo with the loxP flanked selection marker. After 

electroporation, cells were incubated on plates containing chloramphenicol and ampicillin 

for 24 h at 30 °C. Eight single colonies were picked, grown in LB ampicillin selective 

medium at 30 °C for 3 h, and then incubated at 37 °C overnight to induce transient Cre 

expression. Plasmid DNA was isolated and retransformed to eliminate the unrecombined 

plasmid. Restriction digest with SacI on two colonies verified the Cre-mediated excision of 

the selection marker, yielding four fragments with sizes of 5835 bp, 2442 bp, 2198 bp and 

2160 bp (pACYC177-Jmjd3loxP, Figure 52). The two smallest fragments were not clearly 

separated by gel electrophoresis, because the difference between their sizes was too small. 
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Figure 52. Cre-mediated removal of the selection marker leaving behind the loxP site. (a) Digestion 

with SacI shows that the two colonies are mixed before retransformation, whereas they contain the pure 

recombined plasmid after retransformation (retr.). The correct restriction pattern for the recombined plasmid 

consists of four fragments (5835 bp, 2442 bp, 2198 bp, 2160 bp). (b) Map of the recombined targeting vector 

containing a single loxP site in intron four of Jmjd3. 

 

The last step involved the placement of the βgeok cassette in the first intron of Jmjd3 by 

Red/ET recombination. The βgeok cassette, flanked by FRT sites and a single loxP site on 

the 3’ end, comprised a splice acceptor site from engrailed-2 (sA), an internal ribosomal 

entry site (IRES) and the lacZ-neomycin phosphotransferase fusion (βgeok) followed by 

the simian virus-40 polyadenylation signal (pA). The splice acceptor and the 

polyadenylation signal serve to trap and truncate, respectively, the nascent Jmjd3 transcript 

in targeted ESCs. The IRES enables translation of the lacZ-neo fusion for selection and 

reporting gene expression. Thereby, the dual selectable marker neo allows, in E. coli 

selection for kanamycin resistance to identify integrations of the βgeok cassette in the 

targeting vector, and in ESCs selection for G418 resistance to identify homologous 

recombinant clones. The expression of neo in E. coli is driven by the prokaryotic promoter 

Tn903, which was integrated into the linker region in frame between the lacZ and neo 

genes [57]. Before the βgeok cassette could be placed in the targeting construct, two 

homology arms plus the FRT and loxP sites had to be inserted upstream and downstream 

of the cassette. The 3’ and 5’ homology arms with sequence identity to the intended 
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insertion site in the targeting vector pACYC177-Jmjd3loxP were generated by PCR using 

the oligonucleotides listed in Table 15. 

 
Table 15. Oligonucleotides used for PCR amplification of the homology arms. Primer pair HA3 was used 

to generate the 3’ homology and primer pair HA5 was used to amplify the 5’ homology arm. The loxP site is 

shown in blue and the FRT sites are shown in red. The inserted restriction sites are indicated in italics: PmeI 

in HA3-F, NotI in HA3-R, AscI in HA5-F and PacI in HA5-R. The residues which anneal in the PCR 

reaction to the template are shown in bold. 

Name Sequence (5’-3’) 

F: 
CCCTATCGTTTAAACGAAGTTCCTATTCTCTAGAAAGTATAGGAACTTCCTCGAG
TGCGTATAACTTCGTATAATGTATGCTATACGAAGTTATGGCCGGCCATGGCG
GGAGGGCCTGGGTGCTGG HA3 

R: AAATTAAGCGGCCGCCATCCACCGAACTGGCAATGGT 

F: TTTGTTTGGCGCGCCGCACAGAGGATACAGGAGCCAC 

HA5 

R: CCCTGAGTTAATTAAGTGCACGAAGTTCCTATACTTTCTAGAGAATAGGAACTTC
CTGCAGGCGCCTCTATCAGAATGCTCCAC 

 

The two PCR products carried, besides the respective ~200 bp homology regions to intron 

one, the relevant site-specific recombination target sites (FRT and loxP) and unique 

restriction sites for further cloning. Following digestion with PmeI/NotI for the 3’ 

homology arm and with AscI/PacI for the 5’ homology arm, the PCR products were 

inserted by ligation into the plasmid pPUX4-βgeok upstream and downstream of the βgeok 

cassette (Figure 53). Correct insertions were verified by restriction analysis and 

sequencing. 
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Figure 53. Insertion of the homology arms upstream and downstream, respectively of the βgeok 

cassette. The 221 bp 5’ homology arm including one FRT site was cloned upstream of the splice acceptor 

(sA) and the 206 bp 3’ homology arm containing a loxP and FRT site was inserted downstream of the 

polyadenylation signal (pA). 

 

Next, the βgeok cassette flanked by an FRT site on the 5’ end and by an FRT and a loxP 

site on the 3’ end, was excised from the plasmid with AscI/NotI and cloned into the 

targeting vector by Red/ET recombination. Recombinant colonies were identified by 

kanamycin selection. Ten colonies were picked and digested with AccI to confirm the 

presence of the recombined targeting vector (pACYC177-Jmjd3-FRTbgeok-flox). As 

shown for three representative colonies in Figure 54a, all colonies yielded the correct 

restriction pattern, consisting of seven fragments with sizes of 6539 bp, 5441 bp, 2590 bp, 

2460 bp, 1361 bp, 1200 bp and 99 bp. The smallest fragment was not visible for technical 

limitations. Moreover, the absence of the unrecombined plasmid indicated a very high 

recombination efficiency. 
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Figure 54. Insertion of the βgeok cassette in the final targeting vector by ET cloning. (a) AccI digest 

shows for all colonies the correct restriction pattern. The targeting vector before the recombination step 

served as control for the unrecombined plasmid (neg.). (b) The correct structure of the targeting vector is 

verified by additional analytical digests with various restriction enzymes. (c) Plasmid map of the final 

targeting vector. 

 

Finally, colony number one was chosen for a more detailed restriction analysis using 

BamHI, EcoRI, NcoI and PstI in order to confirm that the targeting construct had been 

correctly assembled (Figure 54b, c). The loxP sites, the FRT sites and the structure of the 

βgeok cassette were further verified by sequencing. 
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The final linearized targeting construct had a size of 17.6 kb and was flanked by a 5’ 

homology arm of 4.1 kb and a 3’ homology arm of 5.1 kb, respectively. 

 

2.2.2 Targeting of ESCs by homologous recombination 

The targeting vector was cut with I-SceI and the linearized construct purified. C57BL/6 

ESCs were electroporated with the targeting construct and two days later the selection with 

G418 was started. After eight days of selection, massive cell death had occurred and drug-

resistant ESCs had formed fully grown colonies, which were picked and expanded. Seven 

electroporations yielded 765 picked colonies of which 295 could be expanded and 

maintained for extraction of genomic DNA. These clones were screened for homologous 

recombination on the 5’ side of the Jmjd3 locus by Southern blot with a probe external to 

the targeting construct (Figure 55a). Upon EcoRI digestion, the 5’ probe hybridised to a 

wild-type fragment of 10 kb. In case of correct integration of the targeting construct in the 

endogenous Jmjd3 locus the probe recognized a 7.6 kb fragment (Figure 55b). The results 

showed that 24 clones had the correct integration pattern on the 5’ side, corresponding to a 

targeting efficiency of 8% for the Jmjd3 locus with this promoter trap approach. This is a 

very high targeting frequency, similar to what is reported for most targeting experiments 

with promoterless trap constructs. 

These positively identified clones were then analysed for the correct integration of the 3’ 

homology arm. This Southern strategy was based on DraI digest and an external probe 

which hybridised to 13.5 kb and 10.4 kb restriction fragments generated from the wild-type 

and the targeted allele, respectively (Figure 55c). 

Furthermore, a probe internal to the targeting construct was used, resulting upon SspI 

digest in an 11.4 kb band that detected correct genome integration by homologous 

recombination (Figure 55d). This strategy enabled to distinguish single-copy from multi-



Results 

 105   

copy integrants, since it has been shown that multiple-copy integration of loxP sites and 

the presence of Cre recombinase can lead to chromosome loss [132]. 

 

Figure 55. Genetic inactivation of Jmjd3. (a) Schematic structure of the gene targeting strategy, showing 

the mouse Jmjd3 wild-type locus, the targeting construct and the recombined allele. Exons are depicted along 

with the positions of the relevant restriction sites and the probes used to identify homologous recombined 

ESC clones by Southern blot analysis. (b) Correct integration of the 5’ side was assessed by hybridisation of 

the 5’ flanking probe to EcoRI digested genomic DNA, yielding a 10 kb band for the wild-type allele and a 

7.6 kb fragment for the targeted allele. (c) Homologous recombination at the 3’ end was confirmed by DraI 

digest hybridised with the 3’ flanking probe, showing restriction fragments of 13.5 kb and 10.4 kb for the 

wild-type and the targeted allele, respectively. (d) Single integration of the targeting construct was confirmed 

on SspI digest with an internal probe hybridising to the neo gene. The targeted allele shows a band of 11.4 

kb, whereas the probe does not hybridise to the wild-type allele. 

 

As the targeting construct contains between the βgeok cassette and the second loxP site 

about 1.3 kb of homology to the endogenous Jmjd3 locus, which could cause improper 

recombination and rupture of the construct, it was important to confirm that the entire 3’ 

homology arm including the second loxP site had been inserted in the targeted allele. First, 
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the presence of the second loxP site was confirmed by PCR with primers annealing to the 

endogenous region flanking the loxP site (Table 16). 

 
Table 16. PCR primers to confirm the presence of the second loxP site. 

Name Sequence (5’-3’) 

loxP-F AGGCAGGTGAGAATGTGGC 

loxP-R GGAGCTACTGCCATGAGATG 

 

The resulting wild-type PCR product was 264 bp long and the amplicon containing the 

loxP site was 298 bp long (Figure 56). 

 

Figure 56. PCR-based strategy to confirm the presence of the second loxP site. (a) Scheme illustrating 

the PCR strategy used to confirm the presence of the second loxP site. The primer pair annealed in intron 

four of the endogenous Jmjd3 locus and flanked in the targeted allele the loxP site. The amplified PCR 

product for the wild-type allele was 264 bp and could be distinguished from the 298 bp amplicon for the 

targeted allele. (b) The presence of the second loxP site in homologous recombined ESC clones was 

confirmed by PCR. 

 

In order to verify that both loxP sites had been integrated in the same endogenous Jmjd3 

allele and to demonstrate their functionality, the targeted ESC clones were treated with 

Tat-Cre. The Cre recombinase-mediated deletion of the floxed region comprising exons 

two to four of the targeted allele was assessed by PCR using the primers indicated in Table 

17. 
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Table 17. PCR primers to confirm Cre-mediated recombination of loxP sites flanking exons two to four 

of the targeted Jmjd3 allele. 

Name Sequence (5’-3’) 

polyA-F TCTTATCATGTCTGGATCCGG 

loxP-R2 GGAAGAGCAGATGAGACTGG 

 

Successful site-specific recombination of the loxP sites resulted in a PCR product of 182 

bp, whereas the unrecombined allele yielded a product of 1.5 kb, confirming the proper 

insertion of both loxP sites and their functionality (Figure 57). 

 

Figure 57. TAT-Cre experiment to confirm the functionality of the two loxP sites. (a) Scheme 

illustrating the PCR strategy used to detect site-specific Cre recombination. (b) The amplified PCR product 

of the recombined allele after TAT-Cre treatment (+ Cre) was 182 bp and could be distinguished from the 1.5 

kb product of the unrecombined allele in non-treated cells (- Cre). The faint band at the height of the 

unrecombined allele in the treated cells indicates that transfection and recombination efficiencies were not 

100%. 

 

The final characterisation step before injection of the targeted clones into mouse 

blastocysts was the analysis of the karyotype to exclude chromosomal abnormalities 

(Figure 58). Studies have shown that aneuploidy affects the ability of ESCs to contribute to 

chimeras and to colonise the germline [133-134]. 
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Figure 58. Targeted ESCs have normal karyotype. Reverted image of Dapi banded karyotype with 2n=40. 

 

On the basis of above results two targeted ESC clones were injected into C57BL/6 mouse 

blastocysts. 11 male chimeras were obtained, which are currently being crossed to 

C57BL/6 females to transmit the targeted Jmjd3 allele through the germline. 
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Discussion 

The work presented in this thesis shows that Jmjd3 is required for the differentiation of 

embryonic stem cells (ESCs) into neural stem cells (NSCs) in vitro and provides the 

molecular context for starting to unravel its function. H3K27me3 is the defining mark of 

Polycomb group (PcG)-mediated epigenetic regulation. Historically, PcG proteins were 

identified as transcriptional repressors in maintaining the spatial and temporal pattern of 

homeotic (Hox) gene expression in Drosophila and mammals [32,135]. This Hox 

paradigm has been applied more recently to the issue of stem cell pluripotency, leading to 

an attractive simple model in which PcG proteins keep ESCs undifferentiated by silencing 

lineage-specific genes. Genome-wide profiling of PcG protein binding has revealed that 

indeed many developmental regulators are PcG protein targets and are repressed in ESCs, 

with many of them ‘held-in-check’ by H3K4me3/H3K27me3 bivalent chromatin domains 

that are resolved during differentiation in a lineage-specific manner. But these genome-

wide studies have also uncovered a more complex system of regulation, in which a 

significant number of genes, including those associated with key stem cell pathways like 

Wnt, Fgf and Hedgehog, are expressed despite being bound by PcG proteins [44-45,47]. 

And from detailed studies of PcG target sites in both Drosophila and mammalian cells it 

has become clear that the presence of the H3K27me3 mark at promoters is certainly 

compatible with transcriptional activity [42,45,136-138]. Hence, these divergent 

observations have led to hypothesise that in stem cells PcG proteins act as a common 

platform that can prime genes for later activation as well as for later repression. Each mode 

of PcG regulation clearly requires additional gene- and lineage-specific signals, which may 

include binding of transcriptional activators or repressors, posttranslational modifications 

of PcG proteins and DNA methylation when differentiation unfolds [45]. This model 
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captures the functional nature of histone marks as molecular signals that need not only to 

be ‘written’ but also to be ‘read’ by the appropriate machinery. 

Our characterisation of Jmjd3 activity at the onset of neural commitment reflects the 

complexity of this regulation. It is noteworthy that at the time this thesis work was started 

current knowledge of global changes in chromatin signatures and gene transcription 

resulted from a comparison between ESCs and NSCs, which are points of departure and 

arrival for neural commitment, respectively. In order to assess the mechanisms regulating 

the dynamic modulation of histone lysine methylation during cell lineage specification it 

was necessary to look at the intermediate stages about which nothing was known. 

Therefore we chose to differentiate ESCs into NSCs using the adherent monolayer protocol 

which is the best characterised system to study neural lineage specification in vitro [78,89]. 

Our focus on the early stages of neural commitment, well before the stable NSC state has 

been achieved, allowed us to identify Jmjd3 as a gene that is specifically upregulated at the 

outset of differentiation. 

The defect of Jmjd3 knockdown ESCs in neural commitment is reflected at the molecular 

level in the impaired upregulation of key inducers and markers of neurogenesis, like Pax6, 

Sox1 and Nestin. The progressive recruitment of Jmjd3 to their promoters indicates that 

Jmjd3 directly regulates the neurogenic program of gene expression. 

Interestingly, the correlation between H3K27me3 and Jmjd3 binding at its target genes 

points to distinct modes of action that set the stage for further investigations. For some 

bivalent domain genes, exemplified here by Nestin, loss of H3K27me3 coincides with 

Jmjd3 occupancy and correlates with transcriptional upregulation. This observation is in 

agreement with the current paradigm of PcG-mediated silencing of lineage-specific genes. 

Loss of Jmjd3 resulted in failure of H3K27me3 demethylation, providing evidence for its 

physiologic role in demethylating this promoter. In agreement with previous reports we 

noted a modest increase of Nestin expression already at day four of differentiation (data 
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not shown) [78], when Jmjd3 is not yet detectable at the Nestin promoter. Although a 

trivial explanation is that the low sensitivity of the Jmjd3 ChIP hinders the detection of low 

levels of Jmjd3 in the initial phase of Nestin activation. An alternative possibility is that 

gene expression is induced by other mechanisms, for example recruitment of H3K4 

methyltransferases of the Trithorax group (TrxG) protein family or displacement of PcG 

proteins from their binding site, with H3K27me3 demethylation following to either 

potentiate or maintain the induction. 

For other bivalent domain genes, exemplified by Pax6, Jmjd3 binding correlates with 

transcriptional upregulation but apparently its H3K27me3 demethylation activity sets in 

only later, likely to enable stable activation in NSCs. Our results show that the 

upregulation of Pax6 expression is severely impaired in Jmjd3 knockdown cells at day 

seven of differentiation when demethylation has not yet occurred but Jmjd3 is already 

recruited to Pax6. Possible explanations are that either Jmjd3 first contributes to Pax6 

activation through mechanisms that are independent of its H3K27me3 demethylase activity 

or that the initial effects of Jmjd3 knockdown on Pax6 expression are mediated by indirect 

mechanisms. The observation that the upregulation of Pax6 coincides with an increase in 

H3K27me3 at its regulatory regions expands previous findings from both flies and 

mammals [136,138]. It further reveals that the presence or even an increase in H3K27me3 

is compatible not simply with basal transcription but also with upregulation of 

transcriptional activity, suggesting that the H3K27 methylation status may fulfil different 

regulatory functions at different genes and in different cellular contexts. In addition, it 

would be certainly worth investigating the status of other histone modifications as it has 

been proposed that they can cross-talk and function cooperatively to regulate gene 

expression [139]. 

Finally, Jmjd3 is also recruited to developmental regulators that retain bivalent domains, 

like Sox1. Also in this case, the presence of the H3K27me3 mark at the promoter region is 
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compatible with a pronounced transcriptional upregulation. As Sox1 is repressed in NSCs, 

when its H3K27me3 levels peak, it is possible that Jmj3 binding at day eight of 

differentiation may prevent or alleviate an increase in H3K27me3 thereby allowing 

unrestrained activation mediated by other cofactors. Interestingly, also other histone lysine 

demethylases localise at promoters enriched in the methylation mark that they are 

competent to erase, as in the case of Utx and Jarid1a (also known as Rbp2 and Kdm5a) that 

occupy a subset of H3K27me3 and H3K4me3-enriched promoters, respectively [140-141]. 

Hence, our data on Jmjd3 expand the findings of these studies and further strengthen the 

model in which histone lysine demethylases operate also, if not primarily, in the 

modulation rather than the simple removal of histone lysine methylation marks. 

Furthermore, the notion that Jmjd3 contributes in activated macrophages to the 

transcriptional control of target gene expression in an H3K27me3 demethylation-

independent manner encourages to consider the possibility that histone demethylases may 

demethylate non-histone substrates and/or may catalyse other biochemical reactions than 

the demethylation of histones or may even have alternative functions besides their 

enzymatic activity [142-143]. Current knowledge of the substrate specificity of JmjC 

proteins is biased toward methylated histones, however, JmjC proteins are members of the 

Fe(II)- and α -ketoglutarate-dependent family of dioxygenases, which have generally low 

substrate specificity and catalyse a number of oxidation reactions. In fact, the Jumonji 

domain-2 (Jmjd2) family has been shown to demethylate non-histone proteins in addition 

to its known substrate H3K9me3 [144] and Jmjd6 has been demonstrated to hydroxylate 

lysine residues on U2AF65, a splicing factor [145]. In addition, the histone demethylase 

LSD1 has been shown to demethylate non-histone proteins such as p53 and DNA 

methyltransferase 1 (DNMT1) [146-147]. 

Our findings showed for the first time that Jmjd3 regulates key neural genes at the onset of 

neural differentiation of ESCs, by binding to their promoters and resolving their bivalent 
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states. Interestingly, it has been reported that the developmental potential of multipotent 

neural progenitors is defined, similar to that of pluripotent ESCs, by the establishment of 

PcG-mediated poised states of developmental genes [46]. Using a cellular differentiation 

model that progresses from ESCs to neural progenitors to terminally differentiated neurons 

this study showed that PcG-mediated H3K27me3 is highly dynamic and stage specific. In 

contrast, DNA methylation occurs primarily during the transition from ESCs to lineage-

committed progenitors thereby contributing to their fate restriction through silencing of 

pluripotency-related genes. Strikingly, a subset of neuron-specific genes that function in 

terminally differentiated neurons becomes poised for expression only in neural progenitors 

by acquiring a de novo bivalent domain signature. Upon terminal differentiation, these 

genes lose the H3K27me3 mark and thus become activated, a process that strongly speaks 

for a possible functional involvement of Jmjd3. In line with this observation, Jmjd3 was 

identified also as a target of SMRT-mediated repression in neural stem cells, and its 

overexpression in transformed human embryonic kidney cells (HEK cells) resulted in the 

upregulation of neural genes, suggesting a possible function in the retinoic acid (RA)-

dependent neural differentiation [148]. Our findings expand this model and suggest that 

Jmjd3 fulfils a biphasic role in neurogenesis, regulating the neurogenic program both in the 

transition from ESCs to NSCs and in the further differentiation of NSCs down the neuronal 

lineage. Further evidence for the importance of Jmjd3 in neural development is provided 

by our in vivo expression analysis, revealing a strong increase in Jmjd3 expression during 

the development of the central nervous system, and our loss-of-function study in the 

mouse. 

Although Jmjd3 has been reported to play a key role in several cellular processes, such as 

neuronal differentiation [148], differentiation of macrophages in response to inflammatory 

stimuli [149], epidermal differentiation of human keratinocytes [150] and cellular 

senescence [151-152] its biological function in the context of an animal model, was still 
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lacking. In the present work we have described the first mutant mouse model for Jmjd3 and 

demonstrated that Jmjd3 is crucial for the late maturation of the neural network generating 

respiratory rhythm. In order to dissect the role of Jmjd3 in vivo we inactivated Jmjd3 

genetically by gene trap mutagenesis. Based on our in vitro data demonstrating that Jmjd3 

is required for early cell fate decisions and studies by others that implicate the dynamic 

regulation of the H3K27me3 mark during early embryonic processes, such as initial cell 

lineage segregation in the blastocyst [153], X-inactivation [154] and gastrulation [155] we 

assumed that the disruption of Jmjd3 would severely impair embryonic development at 

early stages. Surprisingly, mice homozygous for the Jmjd3 trap allele did not display any 

apparent morphological abnormalities during embryonic development, but died perinatally 

due to the inability to breathe. The detailed characterisation of the Jmjd3 trap allele 

revealed that the insertion of the trap cassette did not result in a null allele, but rather in a 

strong hypomorphic allele. In fact, in Jmjd3-/- ESCs we derived from this mutant line, we 

found only a moderate decrease in the Jmjd3 protein level. We therefore performed a 

systematic analysis at the transcript level and demonstrated the existence of an alternative 

transcription start site which is downstream of the inserted trap cassette and retains Jmjd3 

expression in Jmjd3-/- ESCs, although at a reduced level. It would certainly be important to 

investigate the expression of Jmjd3 during early embryonic development, such as the 

blastocyst stage, in the mutant to assess whether residual levels of Jmjd3 can also be 

observed in vivo. At later stages of development starting from E16.5 however, expression 

analysis in mutant embryos by RNA in situ hybridisation revealed that Jmjd3 expression 

was overall drastically reduced and almost undetectable, even in regions in which we 

observed the highest expression of Jmjd3, such as the developing cortex. In macrophages 

obtained from fetal livers of Jmjd3-/- mice the trap allele behaves like a null allele, as they 

are completely devoid of Jmjd3 mRNA and protein [142]. Taken together, these findings 

suggest that Jmjd3 expression is differentially and tightly regulated, most likely by the 
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action of different transcription start sites, in a cell type-specific manner. In agreement 

with this view, Jmjd3 has been shown to be the target gene of a range of transcriptional 

regulators depending on the cellular context: SMAD in ESCs [156], NF-κB in 

macrophages [149] and SMRT in NSCs [148]. This hypomorph enabled us to begin to 

unravel the intricate and complex mechanisms regulating the expression of Jmjd3. 

In order to determine the cause of the perinatal lethal phenotype we carried out a 

systematic histological and physiological analysis. When exteriorised at E18.5, Jmjd3-/- 

embryos did not produce breathing movements in vivo and the central respiratory network 

isolated in en bloc brainstem preparations did not show any respiratory activity in vitro. 

Our findings suggest that the failure of mutant mice to breathe is due to the specific 

inability of the respiratory network of the preBötC to generate a rhythmic respiratory drive, 

as we show that, 1) the synapses of the output pathways from the medullary respiratory 

centres to the phrenic motoneurons are functional, 2) chest muscles are able to contract and 

3) mutant mice have normal cardiac activity in utero, thereby excluding peripheral causes 

of the perinatal lethality. However, the observation that at E16.5, one day after the preBötC 

initiates its activity, some of the Jmjd3 mutants produce breathing movements in vivo and 

show rhythmic respiratory activity in vitro, leads us to conclude that the loss of Jmjd3 does 

not impair the early formation and initial activity of the preBötC but is mainly required for 

its maturation and ongoing function. These electrophysiological results are supported by 

the histological analysis we performed of the neural respiratory network in the 

ventrolateral medulla. This demonstrated that Jmjd3 is normally expressed in the preBötC 

and that in Jmjd3 mutants the preBötC presents anatomical alterations with a partial loss of 

neurons expressing the marker NK1R. PreBötC neurons expressing NK1R are functionally 

heterogeneous and NK1R per se is not critical for breathing, since mice lacking NK1R 

continue to breathe [157-158], rather NK1R marks preBötC neurons that are necessary for 

normal rhythm generation. Since other NK1R-expressing regions do not seem to be 
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affected in mutant brainstems we do not expect NK1R to be a direct target of Jmjd3 and 

thus the loss of NK1R expression can be attributed with confidence to the absence of a 

specific subpopulation of neurons rather than to the downregulation of NK1R per se. It is 

remarkable, that the almost complete loss of Jmjd3, in particular the absence of detectable 

levels of mRNA comprising the coding region for the functional JmjC domain, does not 

lead to apparent morphological abnormalities in the development of the embryo but rather 

perturbs a specific neuronal circuit that becomes functionally relevant only at birth. The 

most trivial explanation is that the overall residual levels of Jmjd3 in Jmjd3-/- mice are still 

compatible with normal embryonic development, but that the expression of Jmjd3 in the 

neurons of the preBötC depends exclusively on the trapped transcript. However, the only 

way to address this issue is by analysing Jmjd3 expression at the protein level, which could 

not be done during the present study due to the lack of an antibody working in 

immunohistochemistry. Taken together, these findings implicate a role for Jmjd3 in the 

functional maturation of the preBötC during late gestational stages. Recent advances in 

mouse genetics enabled to gain insight into the cellular and molecular mechanisms 

involved in the development and specification of neuronal populations constituting the 

respiratory rhythm-generating circuits. Loss-of-function studies in mutant mice have 

identified several developmental genes encoding transcription factors that are required for 

normal maturation and/or function of the respiratory network. For instance, MafB is crucial 

for normal rhythm generation by the preBötC oscillator [159], Dbx1 for the coupling 

between RTN/pFRG and preBötC [160], Phox2b for the CO2 chemosensitivity of the 

RTN/pFRG region [130,161] and Tshz3 plays an important role in the development of 

upper airway motoneurons as well as the functional emergence of the embryonic parafacial 

respiratory group (e-pF) [162]. Mutations of these transcription factors resulted in 

abnormal respiratory rhythmogenesis, impaired normal lung ventilation and compromised 

survival at birth. However, the deletion of none of these genes completely abolished the 
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RRG function as observed for Jmjd3 mutants, indicating the complexity that underlies the 

functional respiratory network in the hindbrain. 

Despite the fact that several characteristics of the respiratory neural network are already 

established at E16.5, it is believed that this network undergoes additional changes, for 

instance in synaptic interactions and voltage-dependent membrane properties, at late fetal 

stages which are required for the network to become functionally mature and 

developmentally comparable with that of neonates [122,163]. Our results suggest strongly 

that Jmjd3 is required in this terminal maturation of respiratory neurons and it is tempting 

to speculate that Jmjd3, in this context, operates by removing the repressive H3K27me3 

mark and thereby activating genes that are involved in neuronal maturation and/or 

function, such as those encoding neurotransmitters or ion-channels. The next step, which is 

already part of the ongoing work, will be the identification of theses target genes in order 

to dissect the molecular mechanisms underlying the establishment and function of the 

respiratory neural network. These findings will provide valuable information about the 

general principles of the vital motor behaviour of breathing and enable to gain insight into 

the pathogenesis of respiratory disorders, such as congenital central hypoventilation 

syndrome (CCHS) and sudden infant death syndrome (SIDS). 

Moreover, our results indicate a possible involvement of Jmjd3 in the formation and 

functional maturation of other neuronal networks. The observation that Jmjd3 is highly 

expressed in the developing cortex suggests a role for Jmjd3 during cortical neurogenesis. 

In line with this hypothesis, it has been reported that PcG proteins restrict the neurogenic 

potential of neural precursors in the late stage of neocortical development and promote the 

fate switch in neural precursor differentiation from neurogenic to astrogenic [164]. This 

model has been expanded recently, by showing that Ezh2 controls the balance between 

self-renewal and differentiation in cortical progenitor cells even before the onset of 

neurogenesis [165]. These rapid changes in the H3K27me3 methylation state posit the 
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dynamic involvement of an antagonist of PcG-mediated methylation of H3K27, and Jmjd3 

is a good candidate. As the respiratory network is the first one that needs to be active at 

birth, possible functional defects in other neuronal circuits could not be revealed with this 

mouse model. Thus, a detailed analysis of the cortex in Jmjd3-/- embryos will be object of 

further investigations with the Jmjd3 conditional knockout allele we generated. This is a 

versatile tool to further characterise the role of Jmjd3 at each stage of neural development 

and to dissect the epigenetic mechanisms that underlie the establishment and regulation of 

developmental competence during neurogenesis. 

In conclusion, our findings establish Jmjd3 as a H3K27me3 demethylase required for 

neural commitment. The dynamics of H3K27me3 demethylation and its correlation to 

transcriptional output appear to follow distinct gene-specific patterns and prompt further 

investigations into the changes of this chromatin mark at the onset of differentiation. 

Furthermore, we have shown in this study that the expression of Jmjd3 is regulated during 

neurogenesis in vivo and its loss of function results in a complex lethal 

neurodevelopmental phenotype. Hence, we propose that Jmjd3 is not only involved in the 

major developmental transitions in neural progenitor cells, but it is likely to be important 

also in the terminal differentiation leading to neural cell type specification.
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