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Abstract— Traditional fingerprint biometric systems capture

the user fingerprint images by a contact-based sensor. Differ-
ently, contactless systems aim to capture the fingerprint images
by an approach based on a vision system without the need
of any contact of the user with the sensor. The user finger is
placed in front of a special CCD-based system that captures the
pattern of ridges and valleys of the fingertips. This approach is
less constrained by the point of view of the user, but it requires
much more capability of the system to deal with the focus of the
moving target, the illumination problems and the complexity of
the background in the captured image. During the acquisition
procedure, the quality of each frame must be carefully evaluated
in order to extract only the correct frames with valuable
biometric information from the sequence. In this paper, we
present a neural-based approach for the quality estimation of
the contactless fingertips images. The application of the neural
classification models allowed for a relevant reduction of the
computational complexity permitting the application in real-
time. Experimental results show that the proposed method has
an adequate accuracy, and it can capture fingerprints at a
distance up to 0.2 meters.

I. INTRODUCTION

Contactless fingerprint biometric systems (CFBS) capture

the singular pattern of ridges and valleys of the user fingertips

by a CCD-based vision system. Differently from contact-

based dedicated sensors, a contactless system based on a

CCD camera can work in a less constrained manner since the

user only need to position the fingertips in front of optics.

As a main drawback, the captured images are not ready to be

directly processed by a classical biometric fingerprint system,

but it is needed a complex sequence of processing steps to

allow the extraction of salient biometric information from

the input image.

The possibility to adopt fingerprint biometric system with

less constrained procedures and with no contact-based ded-

icated sensor has a great value since it allows for the

deployment of the biometric technologies in a wider range of

applications, especially in the emerging applicative field of

the biometric privacy protection of user personal and sensible

information [1, 2].

The goal of a CFBS is to capture and process the ridge

pattern composed by the shades and the color changes on

the fingertip surface in order to reconstruct the real finger-

print. Unfortunately, this task is very complex. The images
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Fig. 1. A contactless fingertip system working in ambient light at high
resolution: (a) the acquisition system; (b) a captured image. Only the ridge
pattern in the fingertip region contains valuable biometric information.
Reflections, and blurred region can occur in every frame. The proposed
system can capture fingerprints at a distance up to 0.2 meters.

captured with CFBS are very different from the images

captured via contact-based dedicated sensors. The camera-

based systems tend to acquire images with a poor contrast

in the fingertip area and with a complex image background,

while the dedicated sensors typically produce fingerprint

images with high contrast and superimposed on flat and well

separable backgrounds. More in detail, the background in

the CFBS images is composed by two main components:

the image of the surrounding environment captured around

the fingertip region, and the finger itself. Notably, a large

portion of the finger image can be considered as background

since the real biometric information is only related to the

ridge structures lying on the surface of the fingertip, and not

to the colors and the fingerprint itself (Fig. 1). In addition,

the presence of strong reflections on the skin due to the

illumination/environmental light is capable to hide the real

fingerprint pattern.

Considered as noise effects, the environmental light can pro-

duce different shades along the fingertip due to its intrinsic

convex shape. Also, blurring effects can be present due to

errors in the focus of the lenses and the relative movements

of the subject in front of the camera. Moreover, the electronic

noise of the CCD sensor used in the camera is always present

and superimposed in the captured image.

Unfortunately, during one single fingertip capture, starting

from hundreds available image frames, only a limited number

of images have sufficient quality to be effectively used in a

biometric system. That is due to the peculiar unconstrained

setup and all the negative factors previously cited that are

typically present in a CFBS application. The estimation of the

image quality is crucial in the final accuracy and reliability

of the whole biometric system.

Moreover, the quality of the images is related to the applica-
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tive contests and the ability of the users. Each fingerprint

recognition systems, in fact, can use different kinds of

cameras, can work in different environmental conditions and

can be projected for working with different illumination

conditions.

This paper deals with the problem of the image quality

assessment in CFBS. The contribute is twofold: we propose

a general set of features specifically designed to represent the

quality of the fingertip images in CFBS and a neural-based

approach capable to extract from complex image sequences

of fingertips the best frames to be used in the final biometric

system. The proposed approach allows for a wider working

distance of the biometric system with respect to the proposed

approaches in the literature.

The performance of the proposed approach are compared

with the results obtained by a well-known method in litera-

ture for the classification of the quality of fingerprint images

captured with touch-based sensors released by the NIST. The

execution of this method on our images requires an image

preprocessing step.

The paper is structured as follows. Section II presents the

state of the art of fingerprint quality identification, while

section III presents the proposed methods for the feature

extraction and the neural image classification. In Section IV,

the proposed methods are applied to different applicative

conditions, and the obtained results are then discussed and

compared.

II. RELATED WORKS

In the literature, there are few studies focused on contact-

less systems [3 - 7]. Most systems require the placement

of the finger on predisposed guides in order to simplify the

image acquisition step [3 - 5]. Other proposed systems do

not require a specific placement of the finger [6 - 8] but

the input image must have an high quality level. In this

case, the acquisition step is difficult for untrained users and

the presence of a supervisor is necessary for evaluating the

correctness of the acquired images. For example, in [6] is

presented a fingerprint recognition system that can effectively

work with low-cost CCD systems such as webcams and

commercial compact cameras. Even in this case, the input

image had been manually selected by a human operator

during the acquisition procedure, considering the contrast

level of the ridges in the input image. Such systems can work

in a distance ranging from few millimeters to centimeters.

A correct placement of the finger is crucial for all the biomet-

ric recognition systems. Bad quality biometric acquisitions

can generate false positives (an impostor is considered as

a genuine) and false negatives (a genuine is considered as

an impostor). An automatic quality control can discard the

acquired images with bad quality, reducing the probability

of error of the system. For example, in [9] the effect of the

image quality on traditional fingerprint recognition systems is

studied. The estimation of fingerprint image quality is also

useful for implementing the fusion level of a monomodal

multialgorithm fingerprint recognition environment [10].

In literature, there are many studies on methods for evalu-

ating the quality of traditional fingerprint images. In [11],

features related to the frequency domain (a ring structure

of DFT magnitude and directional Gabor features) and to

the spatial domain (black pixel ratio of the central area)

are extracted and the quality is estimated by a statistical

fusion criterion. The majority of the methods presented in

the literature, in fact, are based on the evaluation of the

intensity of small local regions of the images. In [12] a

method estimate the quality of the fingerprint image by the

evaluation of the probability density function (PDF) of the

local regions of the fingerprint images. The method proposed

in [13] is also based on the computation of local features.

This features are obtained by applying Gabor filters with

different orientations.

The FBI minutiae reader [14] binarizes the images through a

composite approach based on a local threshold computed by

evaluating the intensity of the profile in 8 directions, using

9 × 9 local areas. Also the fingerprint recognition systems

proposed by NIST [15] are based on the computation of

the mean intensity of small local regions for obtaining the

threshold values used for the image binarization. The method

in [16] is based on the computation of the orientation of

the ridges by evaluating the intensity projection at different

angles in 16 × 16 regions.

At the best of our knowledge, there are not available in the

literature any specific studies on the quality of CFBS images.

III. THE PROPOSED METHOD

The CFS images can contain four main sources of non-

ideality:

• the finger is too far from the capture system and

the resulting ridge pattern is not clear or sufficiently

detailed;

• the finger is too close to the capture system and the

obtained image is blurred since the finger is out the

focus range;

• the finger is placed in skewed position with respect to

the field of view of the capture system, hence and the

most important characteristics of the fingerprint are not

visible;

• the finger is moving too fast with respect to the exposure

time of the CCD, hence motion-blurred images are

produced.

The goal of the proposed method is to process in real time

each frame from the capture system (Fig. 1) and to produce

in output a reliable estimation of the frame quality, hence

permitting to the complete biometric system to select the

best frame/frames from the input sequence. The quality of

fingerprint images can be expressed with continuous values

(e.g., ranging from 0 to 1) or with a set of discrete values

that represent classes of quality. The latter approach has

been proposed by the NIST [17] and encompasses 5 level

of quality, from poor to excellent. In this work we adopt a

similar approach by considering an integer classification of

the quality.



The methods that we propose in this paper are outlined in

Fig. 2. The input image is processed by a method based

on the local variance of the input image for detecting the

presence of the ridges in a Region of Interest (ROI) of

the input image. The method based on the local variance

of the image divides the input image in M squared blocks

Sm(xs, ys) with fixed size. Then, the output image IA(x, y)
is obtained applying for all the M blocks the following

method

IA (x, y) |xs,ys
=

{

Sb, if var(S (xs, ys) ≤ t1),
0, otherwise.

(1)

where t1 is a fixed threshold value and xs,ys the pixel

coordinates in the selected block. In the following we refer

to ROI A as the binary image that describes IA (x, y) > 0.

As a second step, the ROI A is regularizated by the flood-fill

and open morphological operators obtaining the binary image

IM (x, y). The image IB (x, y) is computed by applying

IB (x, y) = IM (x, y) > 0 (2)

The ROI B is equal to IM . Fig. 2 shows in the third subplot

an example of the effect of this operator. Once the filled ROI

is available, we propose two different approaches. The first

approach (Fig. 2, Method A) extracts from the ROI a set of

features that are processed by a trained neural classifier in

order to estimate the quality of the input frame.

As further discussed in the experimental result section, a

direct application of the NFIQ NIST algorithm [14] to the

contact-less images in not effective. Hence, we proposed a

second approach (Method B in Fig. 2) capable to exploit

a specific band-pass filter in order to modify that modifies

the gray level intensities of the frame in order to be more

similar to the patter present in a contact-based sensor. As a

consequence, it is possible to adopt the NFIQ to classify the

quality of the input frame. In the result section we compare

and discuss the two different approach.

A. Method A

Method A is based on the extraction of a set of features

from the input frames in the extracted ROI, and the sub-

sequent classification performed by a neural classification

system. As a first step, we computed 45 different features

for each frame, then we applied a feature selection scheme

in order to estimate the best subset of features that maximize

the classification accuracy. We report a short description of

the initial feature vector F ():

• F (1):area of the ROI A;

• F (2):area of the ROI B;

• F (3): F (1) /F (2);
• F (4): standard deviation of IA (x, y);
• F (5): standard deviation of IB (x, y);
• F (6): standard deviation of gradient phase of IA (x, y);
• F (7): standard deviation of gradient module of

IA (x, y);

• F (8): standard deviation of gradient phase of IB (x, y);
• F (9): standard deviation of gradient module of

IB (x, y);

Computation

of the ROI A

Computation

of the ROI B

Method A Method B

Feature

extraction

Frequency

filter

M values

Neural

Network

NIST

NFIQ

QNN QNFIQ

Fig. 2. Scheme of the proposed methods: the left branch of the scheme
describes the Method A, the right branch of the scheme describes the Method
B.

• F (10)-F (11): coefficients of the first order polynomial

that approximates the focus function ff (). The focus

function ff () estimate the focus level by observing

the local gray-level gradient on set of candidate points

placed on the edges or the ridge points in the ROI B as

follow:

– the gradient module GM (x, y) and the gradient

phase GP (x, y) of IB (x, y) are computed;

– the histogram HGM of GM is computed;

– the cumulative frequency fcum of HGM is obtained

by the formula

f (j) = HGM (j) /

(

255
∑

i=0

HGM (i)

)

, (3)

fcum =
i
∑

j=0

f (j) ; (4)



– the threshold intensity t is computed as

t = argmax
0≤i≤255

(fcum (i)) ; (5)

– the set of candidate points CM (x, y) is created as

CM (x, y) = GM (x, y) ≥ t; (6)

– a random subset RCM (x, y) of the set CM (x, y)
is computed;

– for each point (x, y) of RCM (x, y) a segment s (i)
is computed with center in (x, y), fixed length and

angle normal to the value of the coordinates (x, y)
in GP (x, y);

– the histogram Hs (j) of the intensity of the seg-

ments s (i) in the image GM (x, y) is computed;

– the focus function ff () is estimated as

ff () =
255
∑

j=0

f (H (j)) ; (7)

• F (12)-F (14): coefficients of the second order poly-

nomial that approximates the focus function ff (). The

function ff () is computed in equal fashion to compu-

tation of the features F (10) and F (11);
• F (15)-F (24): values obtained computing the Fourier

Discrete Transform of IA (x, y). The computation of the

Fourier feature can be divided in the sequent steps:

– all the rows of IA (x, y) are concatenated in order

to produce a the linear vector VC (i);
– the discrete Fourier transformation VF (j) of VC (i)

is computed;

– the vector VS (j) is computed by shifting the zero-

frequency component of VF (j) in the central po-

sition of the vector. The number of elements in

VF (j) is called NF ;

–

Fourier feature =

NF −1
∑

j=NF −N

|VS (j + 1) − VS (j)|

(8)

where N is the number of the considered frequen-

cies.

The features are computed using N equal to

[50, 100, 150, 200, 250, 300, 350, 400, 450, 500] respec-

tively.

• F (25)-F (34): values obtained computing the

Fourier feature of IB (x, y), using N equal to

[50, 100, 150, 200, 250, 300, 350, 400, 450, 500]
respectively. The Fourier feature is computed in

equal fashion to computation of the features from

F (15) to F (24);
• F (35) normalized gray level differences in image

I (x, y), computed as follows

∆ = (max (I) − min (I)) / (max (I) + min (I)) ; (9)

• F (36): modulation of the IB (x, y);

• F (37): Signal to Noise Ratio (SNR) of IA (x, y) com-

puted as µ/σ, where µ and σ are the mean and the

standard deviation of the image;

• F (38): SNR of IB (x, y);
• F (39): Gabor feature of the IA (x, y). Gabor filters with

different angles can enhance the ridges that have similar

angulations in the fingerprint images. When the ridges

are not sufficiently visible, the response of the Gabor

filters in the output image is lower. The Gabor feature

is computed as the mean of the standard deviation of the

images obtained applying 8 different Gabor filters (with

angles [0, π/8, 1/4?, 3/8π, 1/2π, 5/8π, 3/2π, 7/8π]) to

the ROI.

• F (40): Gabor feature of IB (x, y). The Gabor feature is

computed in equal fashion to computation of the feature

F (39);
• F (41): mean of the local entropy of IA (x, y). For each

pixel of an image I (x, y) is computed the entropy in a

9 × 9 neighborhood, obtaining the local entropy image

LE (x, y). The local entropy is computed starting by the

histogram H(x,y) (i) of the local area centered in (x, y)
as

LE (x, y) = −

255
∑

i=0

H(x,y) × log2

(

H(x,y) (i)
)

; (10)

• F (42): mean of the local entropy LE (x, y) of

IB (x, y);
• F (43): standard deviation the local entropy LE (x, y)

of IA (x, y);
• F (44): standard deviation the local entropy LE (x, y)

of IB (x, y);
• F (45): global entropy of the normalized image

Inorm (x, y) obtained by remapping the intinsity values

of Inorm (x, y) from 0 to 1.

The feature extraction step of the presented work aims to

show different parameters that can be used to estimate the

focus in the image. Depending on the available data/setup,

different subsets of the proposed parameters will produce

the best performance of the system in term of accuracy and

computational complexity.

As a second step, we discuss the methods to automatically

search for the best subset of features with respect to the

available data. In this paper we considered the approach

based on the wrappers algorithms [18 - 19]. We applied both

classical greedy feature selection algorithm like Sequential

Forward Selection, Sequential Backward Selection and a

custom wrappers presented in [20], showing that remarkable

improvements in the accuracy and the reduction of the

complexity of the feature set are possible. Further details

will be given in the experimental section.

The exact relationship between the extracted features and the

frame quality is not well known, hence it is not possible to

directly produce an algorithm for a classification system. The

capability of the neural classifiers to learn complex input-

output relationships from examples can be here exploited

to create an estimation of the frame quality. In this study,



we considered feed-forward artificial neural networks to

estimate frame quality in comparison with some classical

classification systems such as the k-Nearest-Neighbor (kNN)

classifiers and linear/quadratic discriminant classifiers. Fur-

ther details will be given in the experimental section.

B. Method B

This method aims to produce a “touch equivalent” image

E (x, y) starting from the input frame I (x, y) and then it

evaluates the quality of the original transformed image by

executing the NIST NFIQ algorithm [14]. The output image

E (x, y) is obtained by inverse Fourier transform of the

product of the transformed image I and the frequency mask

M (u, v) as follows

E = F
−1 (F (IA (x, y) · M)) . (11)

The mask M (u, v) is computed as

M (u, v) = exp
{(

u2 + v2
)

/r
}

− exp
{(

u2 + v2
)

/αr
}

,
(12)

where u and v are the x and y image spatial frequencies in

the frequency spectrum, the parameter r is set according to

the mean spatial frequency of the ridges in the images, and

the parameter α is the spatial frequency bandwidth of the

filter.

The final estimation of the frame quality is then given by

applying the NIST NFIQ algorithm on the transformed image

E (x, y) as follows

QNFIQ = NIST NFIQ (E (x, y)) (13)

The filter in (11), (12) produces images where only spatial

wavelength related to the ridge pattern are enhanced (Fig. 2,

right branch). Such filtered images are compatible with the

classical approach used to estimate the fingerprint quality.

We adopted the NFIQ method since it is a standard reference

algorithm in the literature. This software returns five integer

different quality classes.

IV. EXPERIMENTAL RESULTS

A. Creation of the training and test datasets

At the best of our knowledge, there are not available

any public datasets collecting touch-less fingerprint images

acquired in unconstrained conditions. For this reason, we

created four different dataset to test the proposed method

in different operative conditions. The first dataset (Dataset

A) is composed by 79 grayscale sequences with different

fingers, captured with a Sony XCD-V90 camera. The frame

rate is 30 fps, the size of each frame is 1920×1024 pixels, the

duration of each sequence is 6s, the illumination is controlled

by a led and the used focal is 25mm. For each sequences,

an user brings a finger near to the camera. The range of

the movement is 20mm. Each frame of the dataset had been

evaluated by an experienced supervisor and labeled with its

qualitative estimation in five different categories:

• Q = 5 (Poor): the ridges are not visible or the ROI is

not present in the frame;

(a) (b) (c)

(d) (e) (f)

Fig. 3. Method B: Frame prefiltering. Subplots (a), (b) and (c) show
examples of frames with different quality levels, while subplots (d), (e)
and (f) show the output of the filter in the ROI region. The proposed
filtering algorithm tends to enhance only the ridges portion in focus and
it produces random-like patterns in the blurred regions. This behavior helps
the subsequent NFIQ algorithm to properly estimate the quality of the frame.

• Q = 4 (Fair): the visibility of the ridges is bad because

the frame is blurred;

• Q = 3 (Good): the ridges are visible but some regions

of the ROI are blurred;

• Q = 2 (Very good): the ridges are well visible;

• Q = 1 (Excellent): the ridges are clearly marked.

This task is not simple due to fact that the defocusing effect is

not linear with the finger distance to the optics, and because

the speed and the direction of the finger movements are not

constants.

We produced other three datasets by sub-sampling the

Dataset A: the first (Dataset B) is composed by 5 acquistions

of the same individual (993 frames), and the second (Dataset

C) is composed by 5 frame sequences related to 5 different

individuals (997 frames). The Dataset D is composed by 360

random frames captured with all operative condition. Each

dataset has been created in a version with 5 quality levels

and in a version with two quality level (Good: quality level

≤ 1; Bad: quality level > 1). The rationale behind the two-

classes datasets is to produce a simplified classifier capable

to directly identify the correct frames in the sequences. In

the following we refer to these dataset with the names B-5,

B-2, C-5, C-2, D-5 and D-2, respectively.

B. Application of the proposed Method B

The results achievable with the proposed Method B are

strictly related to the quality of the input images and to

the capability of the filter (11) (12) to enhance only the

ridge pattern in the image and to minimize all remaining

image components. Using the proposed setup (Fig. 1) we

qualitatively tuned the α filter parameter to a value equal to

10 and r equal to the height in pixel of the frame. Examples

of the results of the proposed filter method are plotted in

Fig. 3, where three frames with different quality are shown.

The proposed filtering algorithm tends to enhance only the

ridges portion in focus and it produces random-like patterns

in the blurred regions. This behavior helps the subsequent



(a) (b) (c)

(d)

Fig. 4. Examples of the frame quality of a frame sequence. In (a), (b)
and (c) are shown a poor, a good and an excellent frame, respectively; in
(d) are plotted, for a complete input sequence, the quality level selected
by the supervisor (dashed line), the pattern of the feature F7 of Method A
(continuous line) and the quality levels produced by Method B (dotted line).

algorithms to properly estimate the quality of the frame.

As a preliminary step, in this work considered the appli-

cation of the five-level approach proposed by the NIST in

contactless fingerprints images. Fig. 4 plots three examples

of different quality frames extracted from one sequence of

Dataset A. Subplots (a), (b) and (c) show one far images, a

good quality image and a out of focus image respectively.

The subplot (d) shows the output of the NFIQ algorithm

applied in Method B (dots) compared with supervisor eval-

uation (dashed line) and the output of the processed Feature

7 in the proposed Method A.

The experiments show that Method B is less robust to

estimate the frame with the highest available quality esti-

mated by the supervisor. Notably, the proposed feature F (7)
shows a smooth pattern and it properly follows the real image

quality during the sequence. This behavior is present in all

acquired sequences. The complete report of experimental

results of Method B is discussed in the last subsection of

the paragraph.

C. Application of the proposed Method A

In this work, we adopted the following parameters’ config-

uration for Method A: the size of the squares Sm (xs, ys) in

(1) is 20× 20 pixel, the threshold value t1 in (1) is 0.05 and

the erosion structuring element S in (2) is fixed to a squared

30 × 30 matrix. These parameters was tuned by empirical

tests on the available images.

After the parameters setting step, the proposed method

encompasses the features selection step. The produced main

Dataset A has 14220 frames, hence it is almost impossible

to manage such quantity of features vectors with the best

wrapper algorithms available in the literature (subsection

III-A). For this reason we used three different subsampled

dataset that containing different operative condition of the

setup. Experiments showed that the most effective feature

selection method for our dataset is the forward selection

technique [21]. The feature selection phase produced the

estimated best features set for each of the dataset B-5, B-

2, C-5, C-2, D-5 and D-2. Further details are available in the

next subsection.

In our experiments we tested different classification

paradigms in order to better study the complexity of the

learning problem embedded in the six datasets. In particular,

we adopted the following classifier families:

• the Linear Bayes Normal Classifier (LDC);

• the Quadratic Bayes Normal Classifier (QDC);

• the k-Nearest Neighbor classifier with odd values of the

parameter k (1, 3, 5);
• feed forward neural networks with different number of

neurons in the hidden layer.

In order to effectively estimate the generalization error of the

trained neural networks, we adopted a simple N-fold cross

validation technique with N = 10 [22]. The topology of

the neural networks has been designed as follows: we used

a linear node as output layer for the neural networks and

we tested different number of nodes in the hidden layer. The

selected topology for the nodes of this layer is log-sigmoidal.

The algorithm used for train the neural networks is the back-

propagation algorithm.

D. Final results and discussion

Table I reports the best subsets of features related to the

six datasets obtained by the forward selection technique.

Table II resumes the obtained results of the neural-based

classification system compared with the classical inductive

classification methods for all datasets, and with respect

to the performance of Method B. In particular, Table II

reports only the best configuration found during the analysis

(Number of hidden layer for the neural networks, the

k-parameter for the kNN classifier and the best feature sets

selected by the Sequential Forward Selection algorithm).

Table II shows that Method A offers a remarkable accuracy

compared with Method B in all datasets. In addition, the

neural-based classifier shows a very good accuracy compared

with other classical inductive classification system. The only

classification family showing a similar accuracy (on the

considered datasets) are the kNN classifiers, but the neural

network approach offers a relevant gain in the computational

complexity. Table III shows the computational gain of the

neural networks compared by kNN classifier. This gain

depends on the number of sample stored in the k-NN

classifier, compared to the number of neurons in the neural

networks. Considering the datasets B-5, B-2, C-5, C-2,

D-5 and D-2, the minimum gain factor found is equal to

36. Experiments showed that the Method A applied with

the neural-based quality classification system is the most

suitable for the real-time applications.

All presented methods have been written in Matlab lan-

guage (Version 7.6) exploiting the available toolboxes on

Intel Centrino 2.0Ghz working with Windows XP.



TABLE II

FEATURE SUBSETS

Method A Method B
Dataset Linear NN-3 NN-5 kNN

mean std mean std mean std mean std mean

B-5 0.191 0.002 0.046 0.004 0.065 0.004 0.042 0.004 0.478
B-2 0.083 0.000 0.013 0.000 0.017 0.004 0.011 0.001 0.140
C-5 0.239 0.004 0.066 0.008 0.065 0.001 0.068 0.000 0.358
C-2 0.049 0.001 0.013 0.002 0.016 0.001 0.015 0.003 0.150
D-5 0.354 0.006 0.275 0.008 0.286 0.012 0.278 0.016 0.469
D-2 0.047 0.000 0.064 0.024 0.047 0.000 0.050 0.000 0.180

Notes. Classification methods of Method A: Linear Classifier (Linear); Feed-Foreword Neural Network with one hidden layer composed by 3 nodes (NN-3);
Feed-Foreword Neural Network with one hidden layer composed by 5 nodes (NN-5); kNN with k=1 (kNN). The datasets B-5, C-5 and D-5 are classified
in five different classes. The datasets B-2, C-2 and D-2 are classified in two different classes.

TABLE I

FEATURE SUBSETS

Dataset Feature Subset

B-5 [1, 2, 6, 7, 35, 40, 41, 45]
B-2 [1, 3, 6, 7, 8, 31, 37, 38, 42]
C-5 [1, 6, 7, 41, 42, 43, 45]
C-2 [2, 3, 6, 7, 29, 31, 36, 45]
D-5 [6, 8, 35, 45]
D-2 [4, 6, 10, 11, 12, 13, 16, 27, 33, 44]

Notes. The datasets B-5, C-5 and D-5 are classified in five different classes.
The datasets B-2, C-2 and D-2 are classified in two different classes.

The computational time of the Method A is different for each

dataset/classifier.

TABLE III

COMPUTATIONAL GAIN

Dataset Computational Gain

B-5 201.459
B-2 205.527
C-5 121.756
C-2 539.839
D-5 159.852
D-2 46.456

The computational gain is processed by the ratio of the computational time
required by the most accurate traditional classifier to the computational time
of the most accurate neural network. Accuracy are reported in Table II.

The total computational time is also related to the feature

extraction. The computation of the majority of the features

requires less than 0.05 s. The features F (39) and F (40)
require about 2.3 s and the feature F (41), F (42), F (43) and

F (44) require about 4 s. The features F (10) and F (11) are

computed at the same time and this step requires about 1.2 s.

In a similar fashion, the computation of the features F (12),
F (13) and F (14) requires about 1.2 s. The feature selection

step showed that these computational-heavy features are not

strictly needed to guarantee the best accuracy of the system,

and they can be replaced by subsets of relatively simple

features.

The bottleneck of the Method A consists in the estimation

of the ROIs. Implementation of the ROI A and ROI B that

are not suitably optimized can require up to 1.5s and 3.7s,

respectively. On the contrary, optimized versions reduced

the computational complexity by two orders of magnitude

solving this crucial issue to achieve the real-time goal.

V. CONCLUSIONS

This paper presented an approach for the quality measure-

ment of contactless fingerprint images based on a neural

classification system. Classical quality assessment systems

present in the literature designed for contact-based fingerprint

sensors are not adequate for contactless fingerprint images.

The paper presented an alternative set of features capable

to deal with the contactless setups and it describes the

designing and training and the final neural classification

system. Experimental results show that the presented method

is achievable and it offers suitable accuracy in a working

distance range up to of 0.2 m. Further studies will be

focused on the optimization of the computational complexity

of the method as well as on the study of effect of different

environmental conditions.
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