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Introduction

Immunological Modeling

Mathematical models of immunological phenomena have been around for
some time. For example, in 1925 McKendrick proposed a model for the
dynamics of a population with some individuals a�ected by a contagious
disease (M'Kendrick 1925). Albeit rather simple, the model proved to be
quite e�ective in explaining some characteristics of cholera epidemics.

Early modelers where limited by the available mathematical techniques
and limited computing power. Nevertheless, they were able to develop very
powerful models of many macroscopic phenomena. Nowadays, the advances
in various scienti�c �elds allow modelers to study much more complex models
(e.g., Marino & Kirschner 2004).

Ordinary di�erential equations are probably one of most used formalism
in the context of biological models (see for example Murray 2002). However,
the availability of powerful computers and the advances in mathematics have
allowed the building of models using more powerful techniques such as par-
tial di�erential equations (see Murray 2002 and Murray 2003) or stochastic
di�erential equations (see Vincenzo Capasso 2005).

Di�erential equation models (and di�erence equation models which are
their discrete counterpart) are very powerful at predicting the behavior of
populations of similar individuals, when we have a good knowledge of the
underlying processes. However, they are generally less e�ective when the
behavior of the individuals change greatly among the populations, or the
knowledge of the underlying processes is limited. When this is the case,
agent based models can be more e�ective.

Agent based models simulate the behavior of individuals rather than of
populations of individuals. Each individual is characterized by a, possibly
unique, set of rules and the evolution of the model is studied simulating the
evolution of a system composed of many individuals in a possibly changing
environment. They are generally built using dedicated modeling tools (e.g.
Mason (Luke et al. 2005)) or coded using general purpose programming
languages (e.g., Java, C++). While the idea of agent based models can
be dated back to the 1940s, their usage in the context of immunology is
quite recent as a large computing power is generally required to simulate a

xi
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meaningful number of entities.
Remarkably, di�erential equation and agent based modeling techniques

can coexist in the same model (see for example Gammack et al. 2005).
In addition to di�erential equation and agent based models, many for-

malisms have been used for immunological modeling over the years. Petri
nets are probably one of the most relevant examples (see for example Will &
Heiner 2002). The main advantages of Petri nets are the possibility of build-
ing the model visually and the ability to formally verify some properties.

While classical immunological models have been generally developed to
test the consequences of quite well-known processes, a more recent trend
in immunological modeling is to test the impact of di�erent hypotheses (or
feature) of cells on the outcome of a disease (see for example Ray et al. 2009).

Model Validation

A number of key immunological processes are quite well-understood. How-
ever, many immunological problems remain open. This limited immunolog-
ical knowledge generally results in models whose validity heavily reside on
the assumptions used during their development.

While many modeling communities share similar concerns, the large num-
ber of assumptions used and the complexity of many immunological models
call for a precise description of the building process and of a formal validation
of the model.

In the context of agent based models, the Uni�ed Modeling Language
(UML) has been shown to be helpful in describing the structure a model
(see for example Flugge et al. 2009), however, in its current state, it seems
to be unable to capture some biological aspects (see for example Read et al.
2009). Note that visual formalisms, such as Petri Nets, generally share with
UML similar descriptive features (see for example Heiner et al. 2004).

While di�erent validation techniques have been proposed for immuno-
logical models, the two principal means of validation are: comparison with
published data (or domain expert opinions) and sensitivity analysis. The
former is, obviously, largely used, and allows to understand to which extent
the model is able to reproduce reality, the latter is less widespread and allows
to assess the robustness of the model.

UML and Petri nets can be very useful in explaining the model to bio-
logical experts and thus provide a qualitative validation of the model. If a
more quantitative validation is required, sensitivity analysis can be used.

While sensitivity analysis techniques have been generally developed in
non-biological contexts, many of them have been shown to be quite successful
in dealing with both di�erential equation and agent based immunological
models (Marino et al. 2008).
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Visceral Leishmaniasis

Visceral leishmaniasis (also called �Kala-azar�) is a widespread disease, which
is usually fatal in the absence of treatment. Desjeux 2004 reports that
500,000 new cases per year are discovered and that 350 million people in
88 countries are at risk of infection. Characteristic of the liver immune
response to leishmaniasis is a type of in�ammation (granulomatous in�am-
mation) that leads to the formation of �granulomas�. Granulomas provide
a very interesting micro-environment, which is maintained by the coordina-
tion of many cells of the immune system (Phagocytes, NK cells, NKT cells,
and T cells). Some of these cells promote the infection, others control the
infections, and some others do both.

Only a limited amount of modeling works exists in the context of gran-
ulomatous infection. Tuberculosis leads to the formation of granuloma in
the lungs, and is probably the most studied disease (see Ray et al. 2009 and
references within). In the context of leishmaniasis the only notable work
up to date is Flugge et al. 2009. However, all the models presented so far
focus on the formation of the granuloma, but disregard the full dynamics of
the granuloma process. Therefore, we aimed at building a model that could
describe the full course of visceral leishmaniasis, from infection to resolution.

While a number of data on leishmaniasis have been published, at the
current stage of biological technology it is possible to track the evolution
of a single granuloma in a living organism only for a short period of time
(Beattie at al. 2010 (PLoS Pathog)). Moreover, it is currently impossible to
reproduce the formation of a granuloma in a controlled environment such as
a Petri dish.

The primary goal of this thesis is to gain insights into the process of
formation and development of a granuloma. To this end we built a model
of the granuloma formation and resolution in the liver, and validated the
model both qualitatively and quantitatively using both data and sensitivity
analysis.

Following some preliminary considerations, we opted for a stochastic
Petri net model. Stochastic Petri nets have a precise formalization (Marsan
et al. 1995) and fast simulation algorithm (Heiner, Richter, Schwarick &
Rohr 2008). Moreover, their visual structure greatly facilitates the interac-
tion with immunological experts.

Given the complicate nature of granuloma formation, we aimed at de-
scribing carefully the building process of our model. Speci�cally, for all the
cells involved, we provided a precise, albeit minimal, description. Moreover,
most of the information provided will be referenced by up to date articles on
the subject, to provide the reader with an overview of the current immuno-
logical open problems.

Some key mechanisms underlying the behavior of the cells of the immune
system contributing to the evolution of a granuloma are open research prob-
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lems (e.g., Trinchieri 2007 or Godfrey et al. 2010). Therefore, we will clearly
document all the biological assumptions that will be used in the model, and
will discuss to which extent these assumptions a�ect our results. Addition-
ally, whenever possible, we will analyze the e�ect of di�erent contrasting
assumptions on the outcome of the model. Moreover, all the important
simpli�cations introduced by the model will be described along with their
implications.

Since biological experiments can lead to di�erent quantitative results (e.g.
Amprey et al. 2004 and Stanley et al. 2008), we listed all the data source
used, and, whenever possible, we described alternatives outcomes present in
the literature. Biological data have been used both to parametrize the model
and to validate its results.

The behavior of the model has been qualitatively validated both in wild
type and gene knockout conditions (e.g., Murray et al. 2006 and Amprey
et al. 2004), and the results for the most relevant cells have been discussed.

Finally, we performed sensitivity analysis following the indication of
Marino et al. 2008 to assess the importance of the cells involved and of
the e�ect of our limited knowledge of certain biological parameters.

Secondary Goals

Besides the primary goal described above, we tried to achieve some important
secondary goals.

A second goal of this thesis is to help biologists in designing more focused
experiments and ultimately better, and cheaper, therapies to �ght visceral
leishmaniasis. To this end, we compared di�erent therapeutic options, with
the purpose of determining which mechanisms should be targeted by drugs.

As described above, the vertebrate immune system is far from being
completely understood, and many hypotheses on its behavior are currently
di�cult to test by biological experiments. Therefore, we used our model
of a granuloma as an advanced Petri dish to test hypotheses on immune
cells and their interactions. Hence, a third goal of this thesis is to build an
environment that can be used to test biological hypotheses.

In building our model we had to decide in favor of certain biological as-
sumptions and to introduce a number of simpli�cations. A fourth goal of
this thesis is to clearly document the modeling process, with the purpose of
documenting the building of a complex model from a complicated process by
explaining how we managed the available � and the unavailable � infor-
mation on the biology of leishmaniasis. To this end, we carefully described
all the fundamental modeling steps and the implications of our choices, with
the purpose of providing a template that can be used when facing similar
problems.
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Organization of the Thesis

The �rst part of the thesis (�Preliminaries�) brie�y introduces all the funda-
mental concepts used to build the model. Most notions are presented only
brie�y. However, the bibliography provides the references to more detailed
books or articles. Chapter 1 introduces some basics of biology and immunol-
ogy, Chapter 2 describes the biology of visceral leishmaniasis, Chapter 3 dis-
cusses some aspects of immunological modeling with a focus on granuloma
formation, and Chapter 4 presents some basics of Petri nets and sensitivity
analysis.

The second part of the thesis (�Model�) focuses on the actual model.
Chapter 5 describes the main assumptions used and simpli�cations intro-
duced, Chapter 6 presents the details of the Petri net model, Chapter 7
compares the outcomes of the model with biological experiments, Chapter 8
presents the main results of the experiments performed on our model, Chap-
ter 9 discusses the sensitivity analysis of the parameters used by the model,
and Chapter 10 presents some concluding remarks on the thesis.

The appendices presents few mathematical proofs and additional data.



xvi INTRODUCTION



Part I

Preliminaries

1





Chapter 1

Biological Preliminaries

This chapter presents a concise description of the basics of
the vertebrate immune system. The material presented is based
on Alberts et al. 2008 and Murphy & Kenneth 2007, which we
refer to for a more systematic discussion.

1.1 The Cell and Its Interactions: An Informal In-

troduction

1.1.1 Inside the Cell: DNA, RNA, and Proteins

The cellular biology of multicellular organisms is very complex. This com-
plexity arises from the many functions that the cells perform, and the mul-
titude of stimuli that the cells are expected to respond to.

The behavior of the cell is controlled, more or less directly, by its de-
oxyribonucleic acid (DNA). The DNA is a very large protein that resides
in the nucleus of the cell and encodes most of the information used by the
cell to survive. While it is not completely understood which percentage of
the DNA encodes actual information, it is well-known that some parts of it
contain the instructions to build speci�c proteins. These parts, are called
genes.

When the information contained in a gene is actively used, and therefore
when the cell is producing the protein encoded by the gene, the gene is said
to be active, or expressed. Otherwise, the gene is said to be inactive, or not
expressed.

When a gene is expressed, it is transcripted into a speci�c type of Ri-
bonucleic acid (RNA), called messenger RNA (mRNA). As suggested by the
term �transcription�, the gene and mRNA contain the same information. The
mRNA travels to a ribosome, where it is used to build proteins. Genes can
be expressed at di�erent levels, that is, di�erent quantities of mRNA � and
therefore proteins � per unit of time can be produced from the same gene.

3
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Albeit similar from an informational point of view, RNA and DNA are
functionally di�erent. The DNA is fundamental to the life of the cell, and
many error-correction mechanisms exist to ensure that the information is
preserved unaltered. The RNA, on the other hand, is only a temporary vec-
tor, and less safe, but faster, mechanisms are used during its manipulation.

Measuring the quantity of mRNA encoding a protein inside the cell is
a common way to estimate how much of such protein is being produced by
that cell (See for example Melby et al. 1998). However, the time required
for a speci�c concentration of mRNA to produce an e�ect outside the cell
� for example expelling the protein � can be quite long (e.g., Maroof et al.
2008 reports a high concentration of mRNA encoding the protein IL10 days
before the protein is actually detectable outside the cell).

The expression of a gene is controlled by speci�c proteins called �activa-
tors� and �repressors�. As suggested by their names, activators up-regulate,
while repressors down-regulate, gene expression. The DNA encodes di�erent
activators and repressors. Therefore the expression of a gene can result into
the activation or deactivation of other genes, leading to very complex net-
works of interdependencies among genes (usually called �gene regulatory net-
works�). Finally, �transcription factors� are proteins characterized by their
ability to regulate the expression of di�erent genes.

1.1.2 Beyond the Cell: Intracellular Communication

The interior of a cell (the �cytoplasm�) is separated from the environment
by a semi-permeable membrane (the �plasma or cell membrane�). A variable
number of proteins is attached to this membrane. Some of these proteins
allow the cell to interact with the environment: they are used the cell to
ingest the substances it needs to survive and to send (or receive) di�erent
signals.

Of particular interest for signaling are certain types of �transmembrane
proteins�. These proteins cross the membrane, and the binding of the exter-
nal part of the protein (the �external domain�) generally leads to a modi�ca-
tion of the structure of the internal part (the �internal domain�). This struc-
tural modi�cation generally results in the release proteins that will travel
to the nucleus, and ultimately to the activation of genes that manage the
binding. The external domain of these transmembrane proteins is usually
called �receptor�.

Two main strategies can be used by a cell to send a signal: producing
proteins that will be sent into the environment or displaying proteins on
the external surface of the membrane. Sending proteins allows the signal
to travel far away from the cell; however, the cell cannot directly determine
if the signal has been received. On the other hand, displaying proteins on
the surface of the membrane requires the direct contact with the cell that
receives the signal, but allows the cell to determine directly when the signal
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has been received. Similarly, a cell can receive a signal either by internalizing
signaling proteins, or by detecting the binding of surface receptors.

The transmission of a signal by direct contact is called �juxtacrine sig-
naling�, while the transmission of a signal by signaling proteins is called
�paracrine signaling� (if the signal reaches only the neighbor cells) or �enod-
crine signaling� (if the signal reaches distant cells).

Most signals do not have a direct e�ect on the nucleus of the cell, but
trigger a chain of reactions that will eventually act on the DNA (e.g., by the
synthesis of an activator). This sequence is called a pathway. Pathways allow
the cell to control, or even block, a signal if antagonist signals are received.

1.2 Experiments

Di�erent types of experimental models exist in biology. The most common
are in vivo, in vitro, and in silico.

In vivo experiments are performed on living organisms. Mice are com-
monly used nowadays in immunology, but many other animals have been
used in the past. These experiments are very important, as they allow the
study of a biological phenomenon in a systemic way. However, they usually
permit only a limited control on the experimental conditions.

In vitro experiments are performed on controlled environments, such as
Petri dishes. These experiments permit a tight control on the experimental
conditions. However, due to the di�culties of recreating the multitude of
stimuli of a living organism, they may lead to hard to interpret, or inconclu-
sive, results.

In silico experiments are relatively new in the �eld of biology. These ex-
periments are performed on a computer using a mathematical model of the
biological entities. Complex in silico experiments require a lot of computa-
tional resources, but they are generally easier to perform than their in vivo
counterpart. The validity of in silico experiments is limited by the ability
of the mathematical model to represent reality; however they allow a direct
control on all the experimental conditions.

1.3 The Vertebrate Immune System

This Section provides an introduction to the immune system. Unless speci-
�ed, the material presented is based on Murphy & Kenneth 2007, which we
refer to for a more extensive discussion.

Most multicellular organisms on Earth have a way to �ght infections.
However, the jawed vertebrate immune system is by far the most evolved1.

1The jaw-less vertebrate immune system is believed to be very similar to the jawed
vertebrate immune system (see for example Litman & Cannon 2009 or Boehm 2009).
However it is not completely clear if it shares the same complexity and power.
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Moreover, since humans are jawed vertebrates, it is by far the most studied.
Unless speci�ed, the following description pertains to the jawed vertebrate
immune system, therefore, to easy the reading, we will use the expression im-
mune system instead of jawed vertebrate immune system, when no ambiguity
arises.

The cells of the immune system are called �white blood cells� or �leuko-
cytes�. All these cells develop from �pluripotent hematopoietic stem cells�
that are found in the bone marrow.

The four main tasks of the immune system are:

1) detecting pathogens (immunological recognition)

2) containing and possibly overcoming the infection caused by pathogens
(immune e�ector function)

3) controlling the immune response to prevent damage to the organism
(immune regulation)

4) remembering the characteristics of pathogens so that they can be fought
more e�ciently if they are reencountered (immune memory).

The means used by the immune system to recognize a pathogen are a
debatable subject. Some immunologists believe that the leukocytes are able
to distinguish the substances and cells belonging to the organism (the �self�)
from the other substances and cells (the �non-self�); the former are ignored
while the latter are attacked (this is referred as the �self / non-self� model).
While other immunologists believe that leukocytes react to the substances
and cells that display a behavior dangerous to the organism (this is referred
as the �danger response� model).

No clear evidence in favor (or against) the above models exists, and
it is well-possible that both models coexist. However, the fact that some
commensal bacteria do not trigger an immune response when they are in the
intestine, but do when they enter the bloodstream, suggests that the danger
response model may be a better representation of the working of the immune
system.

The immune system is usually divided into two subsystems: the �innate�
and �adaptive� immune systems.

The innate immune system is non speci�c and responds very fast (be-
tween 0 to 4 hours) to conserved features common to many pathogens. The
adaptive immune system, on the other hand, is much slower to respond to an
infection (more than 96 hours); however, it is able to identify a larger class of
pathogens and to overcome infections that the innate immune system is not
able to control. As we will see later, the two systems are not independent,
and collaborate to overcome an infection.

Leukocytes make use of a large repertoire of signaling proteins. These
proteins are called �cytokines�. The cytokines most commonly produced
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by leukocytes are TNF (Tumor Necrosis Factor), IL (Interleukin) and INF
(Interferon). Section 1.4 presents a brief description of the main functions
of the cytokines that we will encounter in our discussion.

In the following, we will discuss the essential characteristics of the most
important cells of the immune system. We will preserve the standard division
of leukocytes between the innate and adaptive immune systems. That is,
macrophages, granulocytes, dendritic cells, natural killer cells, and natural
killer T cells belong to the innate immune system while T cells and B cells
belong to the adaptive immune system.

1.3.1 Innate Immune System

Dendritic Cells

Dendritic cells (DCs) are a �rst type of phagocytes. Two main subpopu-
lation of DCs exist: conventional or myeloid dendritic cells (cDCs, mDCs
or simply DCs) and plasmacytoid dendritic cells (pDCs). In the following,
unless speci�ed, we will refer to conventional dendritic cells.

The main role of DCs is to break up the proteins of the parasites they
ingest into fragments that are then displayed on the surface of the DC
complexed with �Major Histocompatibility Complex� (MHC) class I or II
molecules. This allows the activation of naïve T cells in the lymph nodes.
Therefore, DCs are a fundamental link between the innate and the adaptive
immune systems. Given their function, DCs are often called �professional
antigen presenting cells�.

After ingesting a pathogen, DCs generally migrate to the nearest lymph
node where they mature. During this maturation, di�erent genes are acti-
vated (Huang et al. 2001) and the morphology of the DCs visibly changes.
This allows the DCs to be very e�cient in priming T cells (the process of
priming will be brie�y described in Section 1.3.2).

No clear evidence on the lifespan of a mature dendritic cell exists; how-
ever, it is believed to be in the order of few days.

Macrophages

Macrophages (MΦs) are a second type of phagocytes. The main role of MΦs
is to phagocytose and possibly destroy both parasites and substances rec-
ognized as dangerous by the organism. However, from their original role of
professional eaters discovered by Elie Metchniko�, macrophages have been
showed to perform di�erent functions ranging from protection of the organ-
ism to tissue healing. A partial review of macrophage functions can be found
in Pollard 2009.

Di�erent macrophage subpopulations are present in di�erent organs. These
macrophages share common functions, but specialize to better respond to
the environment where they reside and can display di�erent responses to
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Figure 1.1: Monocyte heterogeneity (from Mosser & Edwards 2008)

pathogens and signals of other leukocytes. The mechanisms behind the dif-
ferentiation of macrophages is not completely understood, and, for example,
it is unclear if the specialization occurs before a resident macrophage reaches
its target organ, or after. Resident macrophages have di�erent names in re-
lation to the organ where they reside (see Figure 1.1). For reviews on the
di�erentiation and specialization of macrophages see Mosser & Edwards 2008
and Pollard 2009.

From the perspective of the immune response to parasites, one of the most
important feature of macrophages is their ability to change their behavior
according to the signals received from other leukocytes. Of particular interest
is the process of �activation�.

In the following we provide only a schematic description of macrophages
activation, a more detailed characterization can be found in Mantovani et al.
2004 and Mosser & Edwards 2008. Additionally, a, possibly incomplete,
diagram of the biological pathways involved in the activation of macrophages
can be found on GeneNET (Ananko et al. 2002).

�Classical activation� is triggered by the exposure of a macrophage to
INFγ and TNF. Note that TNF can be produced by the macrophage and
act in an autocrine way after the binding of its Toll Like Receptors (TLRs), or
by other cells such as Antigen Presenting Cells (APCs). These macrophages
are characterized by:

� an increased production of nitric oxides (NO) and reactive intermedi-
ates (ROI), which leads to an increased parasiticidal activity

� the production of pro-in�ammatory cytokines such as IL1, IL6, IL12,
IL23, and TNF

� an increased ability to present MHC class II peptides
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Figure 1.2: Di�erent macrophage activations (from Mantovani et al. 2004)

Classically activated macrophages are very e�ective in killing parasites. How-
ever, they can also damage the organism. These macrophages are sometimes
indicated by caMΦs or M1s to stress their relation with type I immune re-
sponse.

�Alternative activation� is triggered by the exposure to IL4 and IL13.
These macrophages are characterized by:

� the production of polyamines

� the production of low quantities of pro-in�ammatory cytokines, and
moderate quantities of the immunosuppressive cytokine IL10

� an increased ability to present MHC class II peptides

Alternatively activated macrophages contribute to the production of the ex-
tracellular matrix, hence they are called �wound-healing macrophages� by
Mosser & Edwards 2008. These macrophages are sometimes indicated by
aaMΦs, M2s or M2as to stress their relation with type II T cells.

A di�erent type of activation is triggered by exposure to IL10. These
macrophages are characterized by the production of high quantities of IL10
and TNF-β, low quantities of IL12, and are associated with an immunoregu-
latory activity. These macrophages are generally called deactivated (Manto-
vani et al. 2004) or regulatory (Mosser & Edwards 2008). They are sometimes
indicated by M2cs to stress their relation with type II immune response.

Additionally, the binding of the SIRP-α transmembrane protein on the
surface of macropahges with the ligand CD47 has been associated with de-
activation (Matozaki et al. 2009).

Activation is not an irreversible process: macrophages can change activa-
tion type or return to their inactivated state. Moreover, Mosser & Edwards
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2008 suggests that in each macrophage the di�erent activation types can co-
exist, with the role of a macrophage being determined by the predominance
of one activation type over the others. A schematic representation of the
activities of a macrophage in response to di�erent activations is depicted in
Figure 1.2.

Macrophages can join the forces and fuse, creating a so called �multin-
ucleated giant cell� (MGC). MGCs are generally found in granulomas. The
advantages and disadvantages of these cells are not completely clear, and
very large MGCs in a model of human tuberculosis appear to be �unable
to mediate any bacterial uptake Lay et al. 2007�. IL4 has been found to
promote the fusion of macrophages (Helminga & Gordon 2008).

To prevent two macrophage from phagocytosing each other during fusion,
their activities need to be down regulated (for example by deactivation). For
a review of macrophages fusion see Helminga & Gordon 2008.

Granulocytes

Lastly, Granulocytes or polymorphonuclear leukocytes, are phagocytes char-
acterized by the presence of granules in their cytoplasm. There are three
types of granulocytes: neutrophils, eosino�ls, and baso�ls. Their lifespan is
quite short and they live only few days. Granulocytes are recruited in large
numbers to the site of infection during an immune response.

The main function of neutrophils is to phagocyte and destroy pathogens.
However, they have been reported to perform immunoregulatory functions
(Bordon 2010). In contrast to macrophages, neutrophils usually do not sur-
vive the phagocytosis of a pathogen, and dying or dead neutrophils make up
a large part of the pus that forms in acutely infected wounds. The diversity
of macrophage population is not observed in neutrophils.

While neutrophils are generally believed to be part of the innate immune
system, it has been found out that some neutrophils display a T cell receptor
(a characteristic that is generally associated with the adaptive immune sys-
tem). This discovery suggests the possibility that neutrophils may be also
using pathogen recognition mechanisms typical of adaptive immunity (Leavy
2006). For a partial review of neutrophil functions see Nathan 2006.

The functions of eosinophils and basophils are less well understood. How-
ever, they are believed to be important in the defense against large parasites.

Natural Killer T cells

Natural Killer T (NKT) cells are a relatively new discovery, and have been
shown to both promote and suppress immune responses (see Bendelac et al.
2007 for a review of their functions and Godfrey et al. 2010 for a review
of their diversity). NKT cells express both the T cells receptor (TCR) and
the marker NK1.1. Some NKT cells express nor CD4 or CD8, while others
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Figure 1.3: iNKT cells cytokine production (A), interaction (B), and activa-
tion mechanism (C-F) (from Matsuda et al. 2008)

express CD4 or CD8 (Godfrey et al. 2010). Two major groups of natural
killer T cells exist: invariant natural killer T cells (also called iNKT cells or
NKT cells type I) and variant natural killer T cells (also called NKT cells type
II). In this section we will focus on iNKT cells, as they are more numerous
than variant NKT cells and they have been studied more extensively.

Di�erent mechanism of iNKT cell activation have been discovered (Mat-
suda et al. 2008 and Figure 1.3C-F). Once activated, iNKT cells interact
with many leukocytes (see Matsuda et al. 2008 and Figure 1.3B).

One of the main characteristic of iNKT cells is the sustained produc-
tion of IL4 and INFγ within minutes after activation. However, iNKT cells
have been shown to produce many other cytokines: IL2, IL5, IL6, IL10,
IL13, IL17, IL21, TNF-α, TNF-β, GM-CSF, and TGFβ. They also pro-
duce chemokines: CCL-3, CCL4, CCL5, CCL11. Figure 1.3A provides a
schematic representation of the cytokines produced by iNKT cells.

iNKT cells can bind their surface protein CD47 to the transmembrane
proteins SIRP-α displayed by macrophages (Matozaki et al. 2009). As
noted before, the ligation of SIRP-α to CD47 leads to the deactivation of
macrophages.

Activation of iNKT cells is reported to temporary down-regulate their
surface receptor (Parekh et al. 2004), making these cells harder to identify
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for some time after activation. As a consequence of that, it was thought
that these cells underwent activation-induced apoptosis (Eberl & MacDonald
2000).

Natural Killer Cells

The main role of Natural Killer (NK) cells seems to be the induction of
apoptosis in infected cells (see Yokoyama et al. 2004a for a review of NK
cells life). The mechanism used by NK cells to identify infected cells is not
completely characterized yet. However, the activation is inhibited by some
MHC class I peptides displayed by uninfected cells. Intracellular parasites
usually interfere with the production of these MHC I peptides, and there-
fore infected cells do not inhibit NK cells activation. It is, however, to be
noted that some parasites have evolved the ability to produce MHC class I
peptides that NK cells are not able to distinguish from the ones produced
by uninfected cells (Yang & Bjorkman 2008). The cytotoxic activity of NK
cells is increased by the exposure to INF-α and INF-β or IL12.

Besides their role of professional killer, NK cells produce a large number
of cytokine (Biron et al. 1999). This production is enhanced by IL12 (see
Maroof et al. 2008 and Mehrotra et al. 1998).

The activation of NK cells is sometimes ampli�ed by NKT cells, this
process is called by some authors �trans-activation�. Trans-activation is not
completely characterized yet. However, the results of Amprey et al. 2004
and Sullivan et al. 2010 suggest the importance of DCs in the process. More
precisely Fujii et al. 2004 and Sullivan et al. 2010 indicate the ligation of
CD40 on the surface of DCs as one of the mechanisms used by NKT cells
to activate NK cells. Moreover, Sullivan et al. 2010 reports that activations
of NKT cells performed by di�erent proteins lead to di�erent degrees of
trans-activations. Example of trans-activation of NK cells are reported by
Carnaud et al. 1999 and Paget et al. 2009.

1.3.2 Adaptive Immune System

T cells

T cells develop in the thymus (hence the �T� of their name) and are responsi-
ble for the so called �cell-mediated immune response�. Instead of targeting a
speci�c pathogen, they target cells that are infected by that pathogen. Each
T cell possesses a possibly unique TCR, that binds to a class of peptides
complexed with a MHC class I or II molecule. T cells that have not encoun-
tered their speci�c peptides are called �naïve T cells�, they have no e�ector
functions and circulate in the peripheral lymphoid tissues. Once the TCR
of a T cell binds to a peptide, the cell di�erentiates into an �e�ector T cells�
and undergoes clonal expansion. The process that gives e�ector functions to
T cells is called priming, and is generally coadjuvated by dendritic cells.
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Once it binds to a cell displaying the correct peptide, an e�ector T cell
activates and initiates the production of cytokines and chemokines that in-
�uence the local environment.

Naïve T cells mainly develop into two lineage, those expressing surface
protein CD4 � called CD4+ T cells � and those expressing surface protein
CD8 � called CD8+ T cells. CD8+ T cells develop into cytotoxic T cells,
whose main role is to kill infected cells. CD4+ T cells develop into helper
or regulatory T cells, whose role is to stimulate and control the immune
response.

While di�erent subpopulations of CD4+ T cells have been discovered,
helper T cells are probably the better characterized. After the acquisition
of e�ector functions, helper T cells are generally called TH0 cells. TH0 cells
move to the bloodstream in search of the source of the infection and can
di�erentiate into various types of mature helper T cells. Among the latter
TH1, TH2, and TH17 cells are the better characterized. This di�erentiation
is controlled by the signals that TH0 cells receive:

� TH0 cells exposed to INFγ or IL12 di�erentiate into TH1 cells

� TH0 cells exposed to IL4 and IL10 di�erentiate into TH2 cells

� TH0 cells exposed to IL6 (or IL21) and TGFβ di�erentiate into TH17
cells

Once activated, TH1 cells are characterized by the production of high
level of INFγ, IL2, and TNF-β. TH1 cells express CD40 and FAS. Addition-
ally, they can produce GM-CFS, TNF-α, IL3, and CXCL2. Experiments
indicate that IL18 enhances their production of INFγ. Their proliferation is
promoted by IL2 and INFγ, and antagonized by IL4. The main transcrip-
tion factor responsible for the di�erentiation of TH1 cells is believed to be
�T-bet�.

Due to the nature of cytokines they produce, the main role of TH1 cells is
to enhance the immune response by increasing the capability of macrophages
to kill parasites. Experiments (e.g., Cooper 2009 in the context of tuberculo-
sis) indicate that various populations of TH1 cells with di�erent phenotypes
exist. These populations range from early activated cells producing mainly
IL2, to cells producing mainly INFγ, to multifunctional cells producing sus-
tained level of both IL2 and INFγ. The latter are very important since they
are regarded as precursors of TH1 memory cells, that is, long lived cells that
allow to rapidly mount a response to a subsequent infection of the same type.

While both INFγ and IL12 promote the expression of T-bet, their e�ect is
remarkably di�erent. INFγ is an early promoter: it stimulates the expression
of T-bet 2-4 days after di�erentiation. IL12 is a late promoter: it promotes
the expression of T-bet 4-5 days after di�erentiation (Schulz et al. 2009).
This �two-step activation (Leavy 2009)� limits the activity of TH1 cells as
IL12 is not produced directly by them.
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Beside the one mentioned above, an additional mechanism that limits the
pro-in�ammatory activity of TH1 cells exists. Some of these cells produce
IL10 (Trinchieri 2007, and Rutz et al. 2008 for a possible explanation of the
causes). TH1 cells seem to initiate the production of IL10 after a prolonged
exposure to INFγ. However, the biological bases of this change in their
phenotype are still being studied.

Once activated, TH2 cells are characterized by the production of high
level of IL4 and IL5, and the expression of CD40. They also produce IL3, IL6,
IL9, IL10, IL13, TGFβ, GM-CFS, CCL11, and CCL17. Their proliferation is
promoted by IL2 and IL4 and antagonized by INFγ. The main transcription
factor responsible for the di�erentiation of TH2 cells is believed to be GATA-
4.

The role of TH2 cells is somewhat opposed to that of TH1 cells. TH2
cells are fundamental to the formation of certain types of granulomas (e.g.
Schistosome granulomas). The IL10 they produce deactivates macrophages,
decreasing their ability to kill parasite while allowing them to heal the extra-
cellular matrix. Since classical activation can lead to the damage of local tis-
sues, some authors believe that TH2 cells alternatively activate macrophages
to help the healing of the damage caused by classical activation.

TH17 cells are a relatively new discovery. Once activated, they are char-
acterized by the production of high level of IL17 and IL6. They also produce
IL21, IL22, TNF, and CXCL1. It has been also shown that they can produce
INFγ. IL23 supposedly supports their clonal expansion.

The role of TH17 cells is not fully understood, however �the primary
functions of TH17 appears to be the clearance of pathogens that are not
adequately handled by TH1 or TH2 cells (Korn et al. 2009)�.

Yang et al. 2008 suggests that TH17 cells and TREG cells antagonize each
other development, similarly to TH1 and TH2 cells. Moreover, TH17 cells are
generally the �rst type of CD4+ cells to get to the site of infection. The main
transcription factor responsible for the di�erentiation of TH17s is believed
to be RORγt.

The area of regulatory T cells is an active �eld of research (for a review
see Feuerer et al. 2009). In the following we will only outline CD4+CD25+

regulatory T or TREG cells. TREG cells develop from naïve T cells exposed to
TGFβ. Once activated, they produce IL10, TGFβ and GM-CSF. The main
transcription factor responsible for their di�erentiation is an active research
subject.

The role of TREG cells is to control the immune response. For example,
they reduce the in�ammation by dampening the proliferation of TH1 cells
and reducing the growth of TH2 cells. When TREG cells do not work properly
the organism is subject to autoimmune diseases.

CD8+ T cells are called cytotoxic T cells. Once activated, these T cells
have two main ways of killing a cell: either by releasing perforin, which dig
holes into the membrane of the target cell, or by binding to FAS transmem-
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Figure 1.4: Di�erent types of CD4+ T cells (from Zhu & Paul 2008)

brane proteins. This binding activates the �extrinsic apoptosis pathway�
resulting in the infected cells to undergo apoptosis.

Similarly to CD4+ cells, CD8+ cells have di�erent subpopulations. TC0,
TC1 and TC2 cells have almost the same dynamics of TH0, TH1 and TH2
cells, with the important di�erence that no IL10 production has been de-
tected in TC1 cells. The signals that promote the di�erentiation of TC0 cells
are the same as TH0 cells.

If TH1 and TC1 cells are predominant, the immune response is said to
be of type I, and if TH2 and TC2 are predominant, the immune response is
said to be of type II.

B cells

While very important for many diseases, B cells do not seem to have a
fundamental role in the immune response to leishmaniasis. Therefore, this
section only provide a brief description of their working.

B cells develop in the bone marrow (hence the �B� of their name) and
are responsible for the so called �antibody-mediated immunity�. Each B
cell possesses a possibly unique B cell receptor (BCR). When the BCR of a
mature B cell binds to an antigen, the B cell proliferates and di�erentiates
to a plasma cell. Plasma cells produce antibodies molecules, which are a free
form of the BCR and have the same speci�city. Antibodies molecules as a
class are known as �Immunoglobulins�.

Antibodies have three main functions:

� preventing pathogens from infecting cells by binding to them
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� marking the pathogens, so that they can be easily recognized by phago-
cytes

� triggering nonspeci�c immune responses, such as the �complement path-
way�

1.4 Cytokines and Chemokines

In the previous sections we mentioned a number of cytokines and chemokines.
These proteins have di�erent e�ects on cells. Moreover, some of them have
di�erent e�ects on the same cells depending to their concentration. Since the
number of cytokines and chemokines used by the immune system is rather
large, this section describes those that are more relevant to leishmaniasis.
Unless speci�ed, information is taken from Murphy & Kenneth 2007 and
COPE: Horst Ibelgaufts' Cytokines & Cells Online Path�nder Encyclopaedia
2010. Note that some of these proteins have many alternative names. These
names are not indicated here unless used in articles cited in the bibliogra-
phy, but can be found in COPE: Horst Ibelgaufts' Cytokines & Cells Online
Path�nder Encyclopaedia 2010.

� Interleukin 1 (IL1) is produced by classically activated macrophages.
IL1 stimulates the proliferation and activation of NK cells, and pro-
motes the adhesion of leukocytes, by stimulating the expression of ad-
hesion proteins like CAM-1.

� Interleukin 2 (IL2) is produced by TH0, TH1, TC0, and TC1 cells.
IL2 is a growth factor for all T cell subpopulations. IL2 also stimulates
the growth of activated B and NK cells.

� Interleukin 3 (IL3) is produced by TH1 cells, TH2 cells, and some
cytotoxic T cells. IL3 is a growth factor for hematopoietic cells, a type
of stem cells that are progenitors of all blood cells.

� Interleukin 4 (IL4) is produced by TH2 and TC2 cells. IL4 induces
the di�erentiation of TH0 cells to TH2 cells, and TC0 cells to TC2 cells.
Additionally, IL4 promotes the proliferation of activated T cells, and
up-regulates the expression of MHC class II molecules.

� Interleukin 5 (IL5) is produced by TH2, TC2 and activated NKT
cells. IL5 is a hematopoietic growth factor responsible for the growth
and di�erentiation of eosinophils and B cells. Moreover, IL5 promotes
the generation of cytotoxic T cells from thymocytes.

� Interleukin 6 (IL6) is produced by classically activated macrophages,
TC2, TH2, TH17, and activated NKT cells. In the presence of TGFβ,
IL6 induces the di�erentiation of TH0 cells to TH17 cells.
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Figure 1.5: The main T cells derived cytokines (from Murphy & Kenneth
2007)
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� Interleukin 9 (IL9) is produced by TH2 and TC2 cells. IL9 stimulates
the proliferation of a number of helper T cell clones in the absence of
antigens or antigen-presenting cells.

� Interleukin 10 (IL10) is produced by TH2, TC2, TREG and activated
NKT cells. TH1 cells also produce IL10 as a mean of self-regulation
(Trinchieri 2007). IL10 inhibits the di�erentiation of TH1 cells and
deactivate macrophages.

� Interleukin 12 (IL12) is produced by classically activated macrophages,
and, in low quantities, by alternatively activated macrophages. IL12
promotes the di�erentiation of TH0 into TH1 and the cytotoxic activity
of NK cells.

� Interleukin 13 (IL13) is produced by TH2, TC2 and NKT cells. In
conjunction with IL4, IL13 promotes alternative activation of macrophages.

� Interleukin 17 (IL17) is produced by TH17 and NKT cells. IL17
promotes angiogenesis.

� Interleukin 18 (IL18) is produced by TH1 and TC1 cells. IL18 is a
growth and di�erentiation factor for TH1 and TC1 cells. In presence
of IL12, IL18 increases the production of INFγ by TH1 and NK cells.

� Interleukin 21 (IL21) is produced by TH17 and NKT cells. In con-
junction with INFγ, IL21 promotes the di�erentiation of TH0 to TH1
cells.

� Interleukin 23 (IL23) is produced by classically activated macrophages.
IL23 supports the clonal expansion of TH17 cells.

� Interferon γ (INFγ) is produced by TH1, TC1, NKT, and some
TH17 and NK cells. INFγ induces the di�erentiation of TH0 and TC0
to TH1 and TC1 cells. In conjunction with TNF, INFγ classically
activates macrophages. INFγ promotes the clonal expansion of TH1
and TC1 cells while inhibiting TH2 and TC2 cells growth.

� Tumor necrosis factor α (TNFα), or simply Tumor Necrosis Fac-
tor (TNF) is produced by macrophages, TH1, TC1, TH17, and NKT
cells. TNFα increases the phagocytic activity of macrophages and, in
conjunction with INFγ, leads to their classical activation.

� Tumor necrosis factor β (TNFβ) � sometimes also called Lym-
photoxin α (LTα) or simply Lymphotoxin (LT) � is produced by reg-
ulatory macrophages, TH1 cells, and TC1 cells. TNFβ usually has the
same e�ector functions of TNF-α but is less e�ective.
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� Transforming growth factor β (TGFβ) is produced by TH2, TC2,
TREG, and NKT cells. TGFβ is fundamental in the di�erentiation of
TREG cells. TGFβ inhibits classical activation of macrophages.

� Granulocyte-macrophages colony-stimulating factor (GM-CSF)

is produced by TH1, some TH2, TREG and NKT cells. GM-CSF stim-
ulates the di�erentiation of hematopoietic cells into macrophages and
dendritic cells.

� Chemokine (C-X-C motif) ligand 1 (CXCL1) is produced by
TH17 cells and Chemokine (C-X-C motif) ligand 2 (CXCL2) is
produced by TH1 and TC1 cells. Both chemokines have an angiogenetic
fucntion and are chemoattractants for neutrophils.

� Chemokine (C-C motif) ligand 3 (CCL3) � also called MIP-1α
� is produced by macrophages and NKT cells. CCL3 attracts mono-
cytes, T, NK, and dendritic cells. Moreover, it stimulates dendritic
cells to produce IL12 and promotes type I immunity.

� Chemokine (C-C motif) ligand 4 (CCL4) � also called MIP-
1β � is produced by macrophages and iNKT cells. CCL4 attracts
monocytes, T, NK, and dendritic cells.

� Chemokine (C-C motif) ligand 5 (CCL5)� also called RANTES
� is produced by NKT cells and promotes the in�ltration into tissues
of a range of leukocytes, including e�ector T cells.

� Chemokine (C-C motif) ligand 11 (CCL11) � also called Eo-
taxin 1 � is produced by TH2, TC2 and NKT cells. CCL11 is a
chemoattractant and activator for eosinophils.

� Chemokine (C-C motif) ligand 17 (CCL17) is produced by TH2
and TC2 cells and is believed to induce the adhesion of lymphocytes
to the surface of blood vessels.
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Chapter 2

The Biology of Experimental

Visceral Leishmaniasis

This chapter presents the details of experimental visceral leish-
maniasis, focusing the parasites activity and the immune re-
sponse in the liver.

2.1 Leishmania Donovani

Leishmania donovani is an obligate intracellular protozoan of the genus
Leishmania that causes the human systemic disease visceral leishmaniasis.
The protozoan has two morphological stages: a �agellate stage called pro-
mastigote, and a �agellum-free stage called amastigote. When in promastig-
ote form, it can move freely inside the bloodstream. Both forms of the proto-
zoan are recognized and internalized by phagocytes; however, the amastigote
form is more resistant to killing. Speci�cally, macrophages are able to e�-
ciently kill the protozoan in promastigote form without the intervention of
other leukocytes. However, they need to be classically activated to be able
to kill the protozoan in amastigote form (see Section 1.3.1 for the description
of classical activation of macrophages).

When in amastigote form, leishmania donovani is able to replicate inside
macrophages, however �while their presence in dendritic cells, neutrophils,
and even �broblasts has been described, there is no evidence that amastigotes
can actively replicate in a cell other than a macrophage (Peters & Sacks
2006)�.

The mutation to the amastigote form is triggered by phagocytosis and
takes about 24 hours.

21
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2.2 Visceral Leishmaniasis

Leishmania donovani uses sand �ies as vectors for the infection. When
an infected sand �y bites a vertebrate, the parasite is transferred to the
vertebrate skin, and subsequently moves to a number of internal organs �
mainly spleen, liver and bone marrow �, hence the name visceral. The
mechanism that allows the protozoan in promastigote form to move from
the skin to the internal organs is still unclear. However, some time after the
infection, some resident macrophages of internal organs are infected by the
protozoa in amastigote form.

Experiments on murine models suggest the importance of neutrophils
for the migration of the parasites inside the body. Leishmania major has
been shown to use neutrophils to move from the skin to the internal organs
and Peters et al. 2008 indicates that depleting the neutrophils reduces the
ability of the parasite to establish an infection. Moreover, van Zandbergen
et al. 2004 suggests that macrophages are not able to promptly responds
to infection because, instead of consuming the parasite, they are consum-
ing infected apoptotic neutrophils. However, leishmania donovani seems to
act di�erently, and McFarlane et al. 2008 reports that depleting neutrophils
increases the number of parasite in the spleen and bone marrow, thus sug-
gesting that the course of infection di�ers in leishmania donovani and major.

Figure 2.1 gives a schematic representation of the mechanism used by
leishmania to spread leishmaniasis.

Once the parasite has infected the internal organs, three outcomes are
possible:

� healing: if the host is able to mount and adequate immune response
all the protozoa are killed and the infection is cleared

� death of the host: if the immune response is too weak (or too strong)
the parasite (or the infection) kills the host

� chronic infection: if the immune response is not strong enough to
completely clear the infection, but is able to control and stabilize the
number of parasite, leishmaniasis develops into a chronic disease.

In the following we will focus on the immune response in the liver. In this
organ, the outcome of the disease largely depends on the characteristics of a
localized immune response called �granuloma�. The granulomas are complex
multicellular structures that allow the immune system to build a controlled
environment to better respond to an infection. Besides being characteristic
of leishmaniasis, granulomas are important for the outcome of other diseases
such as tuberculosis.

Schematically, a granuloma is an agglomerate of resident and non-resident
macrophages, surrounded by di�erent types of cells � mainly T cells. The
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Figure 2.1: Life cycle of Leishmania (from http://www.dpd.cdc.gov/dpdx/
hTML/ImageLibrary/Leishmaniasis_il.htm)

roles of T cells are to control and regulate the activity of macrophages. TH1
and TC1 cells classically activate macrophages, allowing resident macrophages
to kill phagocytosed parasites more e�ciently. When classically activated,
macrophages can be dangerous for the organism, as they can harm the cells
of the blood vessels. Therefore, this activation needs to be controlled. A
healing infection is characteristic by a just right level of activation achieved
by a regulation of the in�ammatory response response possibly by TH2 and
TREG cells (see Choi & Kropf 2009 for some data on leishmania major in-
fection).

Due to the incomplete understanding of the initial stage of the infection,
many experiments consider �experimental visceral leishmaniasis�. Experi-
mental visceral leishmaniasis is a wet lab approximation of visceral leishma-
niasis: the infection is initiated by injecting leishmania protozoa in amastig-
ote form directly in the body of speci�c strains of mice (generally in the
tail).

2.3 Functions of the Immune Cells

The systemic activity associated with the formation, and maintenance, of a
granuloma in the liver is complex, and yet to be completely understood. In
this section we describe the leukocytes that are reported to play major roles
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in the process. We also present the details of the interactions between these
leukocytes and leishmania donovani when data are available.

Macrophages

Two types of macrophages form the main structure of a granuloma: resident
and non-resident macrophages. The former are called �Kup�er cells� (see
Figure 1.1). While both types of macrophages contribute to the outcome of
the disease, only Kup�er cells internalize the protozoa. Kup�er cells need
to be classically activated to be able to kill leishmania donovani, and exper-
iments suggest that the protozoa interfere with the biological pathway for
classical activation (see Ghosh et al. 2005, Ghosh et al. 2002 and Nandana &
Reiner 2005). Moreover, leishmania donovani has been reported to increase
the production of IL10 by macrophages (Bhattacharyya et al. 2001) and in-
duce a reduced secondary MCH I expression in macrophages (Reiner et al.
1987). These facts suggest that leishmania may deactivate Kup�er cells.

Note that, deactivated and alternatively activated macrophages are an
ideal environment for the amastigotes, as they both have a low parasitici-
dal activity. Additionally, alternatively activated macrophages provide the
protozoan with additional nutriments (polyamines).

T cells

Together with macrophages, type I T cells (both CD4+ and CD8+) are the
most important leukocytes for the formation and maintenance of granulomas,
as they are the main source of INFγ that drive macrophages towards a
sustained classical activation. Note that the cytotoxic activity of CD8+ T
cells seems to be not relevant for the immune response to leishmaniasis.

Dentritic Cells

DCs have an indirect role in granuloma formation in the liver, as they ingest
the parasite and migrate to the spleen to prime T cells. They have been
shown to have a direct role in granuloma formation in the spleen as infec-
tion from leishmania donovani amastigotes stimulate DCs to produce IL12
(Gorak et al. 1998), which may be responsible for the activation of NK cells
and the drift of T cells towards a type I phenotype.

Natural Killer Cells

Beige mice are reported to have defective NK cells. However, their NKT
cells activate correctly in response to α-galactosylceramide (Nakagawa et al.
2001). Since Kirkpatrick & Farrell 1982a reports that beige mice are unable
to control the growth of the parasites in the liver, NK cells seem to play a
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very important in the immune response to leishmania donovani. However,
their role is still being investigated.

NK cells react to leishmaniasis by the production of INFγ within the �rst
days after infection (Schleicher et al. 2007), and later initiate the production
of IL10 (Maroof et al. 2008). However, it must be pointed out that NK-
derived INFγ seems to be ine�ective in activating macrophages (Svensson
et al. 2005). IL12 has a role in NK activation (Amprey et al. 2004), and
dendritic cells may be an early source of IL12, while classically activated
macrophages are the main contributors at a later stage.

Natural Killer T cells

There is not a general consensus on the populations of NKT cells reacting
to leishmania -nfected macrophages. However, it is clear that iNKT cells
play a major role, since they contribute to the formation of granulomas as
an early source of INFγ (Amprey et al. 2004). Experiments indicate that
the immune system is able to mount an adequate response which ultimately
lead to healing even without iNKT (see Stanley et al. 2008 for C57BL/6 and
Amprey et al. 2004 for BALB/c mice).

Additionally, the data of Stanley et al. 2008 indicate that activation
of iNKTs by α-galactosylceramide 7 days after infection enhances parasite
growth. There is, however, a caveat in interpreting these data: iNKTs pro-
duce large quantities of both INFγ and IL4 after the stimulation with α-
galactosylceramide (Kawano et al. 1997). IL4 production peaks at around 2
hours after activation and then rapidly decreases, while INFγ production is
very low 2 hours after activation, but is sustained 4 hours later (Parekh et al.
2004). However, in experimental visceral leishmaniasis, iNKTs are reported
to produce sustained levels of INFγ but non detectable levels of IL4 2 hours
after infection (Amprey et al. 2004).

Therefore, while Stanley et al. 2008 indicates that α-galactosylceramide is
not an e�ective way of treating leishmania, it does not rule out the possibility
that activating iNKTs by other means can be bene�cial. Moreover, some
authors believe that di�erent populations of iNKT cells exists, each reacting
to di�erent stimuli (Godfrey et al. 2010).

2.4 The Time Line of a Granuloma

Schematically, the development of an e�ective granuloma in the liver during
experimental visceral leishmaniasis is characterized by the following time
line. Note that these values are derived from to the scienti�c literature
presented above, and large variabilities are to be expected when considering
di�erent experimental conditions.

hour 0 The parasites reach the liver.
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from hour 0 to hour 5 Kup�er cells phagocytose the parasite, produce
TNF, and initiate the display of leishmania-related MHC class I and II pep-
tides on their surface. Dendritic cells ingest the parasite and migrate to the
spleen to mature. The parasites initiate to replicate and to stimulate the
production of IL10 from Kup�er cells (Bhattacharyya et al. 2001).

from hour 5 to hour 96 (day 4) NKT cells activate and produce INFγ
(Amprey et al. 2004). The binding of SIRPα on the surface of Kup�er cells
deactivates them (Matozaki et al. 2009). NK cells activate and produce INFγ
(Schleicher et al. 2007). Chemokines produced by NKT cells, stimulate the
arrival of non-resident macrophages. The parasite burden increases (Murray
et al. 2006).

from hour 96 (day 4) to hour 336 (day 14) E�ector T cells get to the
liver and initiate to di�erentiate. The di�erentiation is driven toward a type
I immune response (Miralles et al. 1994). The cytokines produced by the T
cells classically activate macrophages. The chemokines produced by type I T
cells stimulate the arrival of non-resident macrophages. The parasite burden
increases (Murray et al. 2006).

from hour 336 (day 14) to hour 504 (day 21) The parasite burden
increases (Murray et al. 2006).

from hour 504 (day 21) to hour 672 (day 28) There is a detectable
presence of IL10-producing NK cells (Maroof et al. 2008). The parasite
burden reaches a maximum, and initiates to decrease (Murray et al. 2006).

from hour 672 (day 28) to hour 1344 (day 56) The parasite burden
decreases (Murray et al. 2006).

from hour 1344 (day 56) to hour 2016 (day 84) The parasite burden
is low, and reaches a non-detectable level by day 84 (Murray et al. 2006).



Chapter 3

Modeling preliminaries

This chapter discusses some aspects of immunological model-
ing, with a focus on previous works in the context of granuloma
modeling.

3.1 General Remarks on Biological Modeling

3.1.1 Problems and Challenges in Immunological Modeling

While a lot of progress has been made in understanding the working of the
vertebrate immune system, many details of its development and behavior
are still active areas of research. For example, the factors leading to the
lineage decision of many leukocytes are unknown, and even the roles of some
leukocytes are not well-understood.

Additionally, di�erent mice models can lead to di�erent behaviors, which
can be a problem because �in April 2006 [...] scientists at the US National
Institutes of Health found that nearly 4,000 unique mice strains had been
created (The sharing principle 2009)�.

Finally, performing experiments in vivo or in vitro can lead to results
very di�erent both quantitatively and qualitatively. This is a consequence
of the many interactions that take place in vivo which are not reproducible
in vitro.

In the context of leishmaniasis, iNKT cells are a good example of these
problems. Their activation mechanisms are not completely understood and
their lifespan is unknown; they seem to behave di�erently in C57BL/6 (Stan-
ley et al. 2008) and BALB/c (Amprey et al. 2004) mice; moreover, data sug-
gest the presence of di�erent numbers of liver iNKT cells in the two strain
of mice (Matsuda et al. 2000). Finally, liver iNKT cells react to leishmania
infected macrophages by producing INFγ (Amprey et al. 2004); however, ac-
tivation of iNKT cells by α-galactosylceramide, which is commonly used in
experiments, leads to a sustained production of both INFγ and IL4 (Kawano
et al. 1997 or Bendelac et al. 2007)

27
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Since these problems will likely be solved by the advances in technology,
why not just wait for the immunological research instead of building nu-
merical models to address them? To begin with, we do not know when the
required technology will be available, and how expensive it will be. Addi-
tionally, numerical models help immunologists in designing experiments that
can be used to increase their understanding with the current technology.

However, to achieve this goal, we must carefully describe the building
of the model. We need to explicitly document the assumptions and data
sources used, with the ultimate goal of understating how the outcomes of the
model are in�uenced by them. Moreover, when di�erent hypotheses exist,
the model should be able to test their consequences, trying to determine
which one �ts better the experiments.

3.1.2 Modeling Techniques: Population Dynamics VS Agent
Based

While many di�erent modeling techniques have been used over the years,
most of them can be categorized into two approaches: �population dynamics�
and �agent based�.

In population dynamics approaches, the behavior of the system is studied
at the population level. This means that all the individuals are equal, and
therefore assumed to behave in the same way. Many mathematical models
fall in this category.

Classical techniques to study population dynamics of systems are: real
valued di�erential equations (where the value of the functions indicates the
number of individual of a population), di�erence equations, or Petri nets
(where di�erent places indicate di�erent populations and the number of to-
kens in a place indicates the number of individual of the population repre-
sented by that place).

A detailed discussion of many di�erential equation models in biology can
be found in the two volume book by J. D. Murray �Mathematical Biology�
(Murray 2002 and Murray 2003). While many examples of the uses of dif-
ferent types of Petri nets in modeling biology can be found in Will & Heiner
2002. Classical examples of population dynamics models include Susceptible-
Infectious-Recovered (SIR) models for epidemics � originally proposed by
McKendrick in 1925 (M'Kendrick 1925) � and Lotka-Volterra models �
proposed independently by Lotka in 1925 (Lotka 1925) and Volterra in 1926
(Volterra 1927).

Population dynamics approaches are able to deal e�ciently with very
large populations, but assume homogeneous populations.

Agent based models describe the behavior of the system at the indi-
vidual level. This means that each individual of the population is dealt
with independently. Many computer science or engineering models belong
to this category. Each agent is associated with a behavior (usually prob-
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abilistic), which speci�es how it interacts with the environment and other
agents. Given the large number of cells involved in most biological process,
agent based models have been applied to biology only in recent years.

From a descriptive point of view, agent based system can be speci�ed
by UML diagrams such as activity and state machine diagrams. While ac-
tual simulations are generally performed using speci�c programming toolkits
such as MASON (Luke et al. 2005). Historically, the game of life by John
Conway is probably one of the �rst agent based models (Gardner 1970). Im-
portant contributions to the theory of agent based models (speci�cally on
�cellular automata�) have been provided by Stephen Wolfram (see for exam-
ple Wolfram 1994, which collects some of his most important papers on the
subject).

Agent based models are relatively slow, as the simulation of realistic mod-
els requires a lot of computing power. They rarely allow the precise analysis
that can be performed on mathematical population dynamics models, and
validation of agent-based models is a particularly active �eld of research (see
for example Klügl 2008).

3.2 Granuloma modeling so far

Modeling the formation and evolution of the granuloma, considered as gen-
eral immunological phenomenon is far from straightforward. This is due to
a number of reasons:

� Complexity. The process of formation and maintenance of a granu-
loma is achieved by the interaction of many types of cells.

� Diversity. While granuloma formation is quite ubiquitous in the
body, di�erent diseases have remarkably di�erent dynamics. Moreover,
even in the context of the same disease, the di�erences in the micro-
environments of the di�erent organs lead again to di�erent dynamics.
Finally, even for the same disease and organ, granulomas usually vary,
both in size and time of formation.

� Limited biological knowledge. Many important biological pro-
cesses behind the formation of granulomas are still incompletely char-
acterized.

� Experiments. It is di�cult to design experiments focusing on the
formation (and dissolution) of a single granuloma.

Therefore, even if some modeling attempts have been published, many
of them have severe limitations.
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3.2.1 Tuberculosis

In the context of tuberculosis (which causes the formation of granulomas in
the lungs), an important modeling e�ort is being carried out by the group
directed by Denise Kirschner. In the following we will describe how the
model evolved over the years. These models focus on the formation of the
granuloma, rather than on the full process, and do not attempt to model
healing infections.

In Wigginton & Kirschner 2001, the authors develop a deterministic pop-
ulation based model using ordinary di�erential equations. The model studies
the populations of entities that contribute locally to the formation of granu-
lomas: macrophages (resting, activated and chronically infected), cytokines
(INFγ, IL12, and IL10), helper T cells (TH0, TH1, and TH2), and bacteria
(intracellular and extracellular). The several parameter used by the model
are estimated using values obtained from experiments whenever possible.

In Marino & Kirschner 2004, the authors extend the previous model by
introducing the dynamics of dendritic cells and naïve T cells. Adding these
new populations has a deep impact on the model, as granuloma formation
can be studied from a systemic point of view. This allows, for example,
to study the impact of systemic processes (such as the decrease of T cells
diversity, which is believed to be a consequence of aging Naylor et al. 2005)
on granuloma formation.

In Gammack et al. 2004, the authors extend the model of Wigginton &
Kirschner 2001 by considering the space distribution of the cells. Granuloma
is studied locally (the dynamics of dendritic cells is not included) as a three-
dimensional process. This allows for a more direct control of cell-to-cell
interactions which are very important as T cells require direct contact to
activate. The space is introduced by the use of partial di�erential equations.
While partial di�erential equations give a clear representation of granuloma
formation, dealing with them is usually quite di�cult and to study the model
from a numerical point of view, the authors introduced many simpli�cations.

In Ganguli et al. 2005 the authors present a two-dimensional model using
multiple compartments ordinary di�erential equations (that is, a model in
which the space is divided into multiple zones and to each zone is associated
with a system of di�erential equations). This formalism does not require the
simpli�cation used in Wigginton & Kirschner 2001, and can be used to study
a broader parameter space.

In Gammack et al. 2005, the authors introduce a local agent based ap-
proach. While the details of the model are not presented, the authors discuss
the advantages and disadvantages of the developed model. This discussion
allows the reader to understand how some problems of granuloma formation
are better dealt with by di�erent simpler models, rather than by a single
complicated model, which would be hard both to understand and solve or
simulate.
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In Ray et al. 2009, the authors used an agent based model, based on
Gammack et al. 2005, to understand the role of TNF in the conformation
of granulomas. Besides the importance of the results from a biological point
of view � the shape of granuloma a�ects its e�ectiveness �, this article is
useful in understanding the evolution of the models and of their goals over
the years.

The agent based model described by Ray et al. 2009 is used just like a
murine model. The article even contains a �Materials and Methods� section.
This section is common in biological articles, and describes the fundamen-
tal biological information used to replicate the experiments (e.g., the mice
strain). This implies an important change in the role of the model. While
in Wigginton & Kirschner 2001 the mathematical model is used to describe
the results of biological experiments, in Ray et al. 2009 the computational
model is used to study the consequences of the biological assumptions used
to build the model.

The model has become a tool to test, and possibly increase, the biologi-
cal knowledge rather than a way to use the current biological knowledge to
predict the behavior of a phenomenon. This trend is not limited to leishma-
niasis, and the number of papers presenting qualitative mathematical and
computer science models are increasing in popular immunological journals
such as �The Journal of Immunology1� or �Nature Immunology2�.

The above modeling e�ort is also useful in understanding how the dif-
ferent modeling techniques provide di�erent insights into the biology of a
disease. A population dynamics model can provide important insights into
the global behavior of the disease. However, an agent based model can
provide important insights into the local behavior of the model. More im-
portantly, the two modeling techniques complement each other, and provide
important information that can be used both by modelers and biologists.

3.2.2 Leishmaniasis

In the context of leishmaniasis, an agent based model of the formation of
the granuloma is being developed by the group of Jon Timmis. Flugge et al.
2009 presents a qualitative model of the granuloma formation, and stresses
the importance of a precise characterization of the assumptions used. While
the model is quite limited from a global point of view, its focus on the
local interactions gives a good understanding of some mechanisms underlying
granuloma formation.

1http://www.jimmunol.org/
2http://www.nature.com/ni/
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Chapter 4

Some Fundamentals of Petri

Nets and Sensitivity Analysis

This chapter presents the rationale for our modeling decisions.
Additionally, the basics of stochastic Petri nets and some aspects
of sensitivity analysis are introduced. The material presented is
based on Marsan et al. 1995 (for stochastic Petri nets) and Saltelli
et al. 2000 (for sensitivity analysis), which we refer to for more
systematic discussions.

4.1 Modeling Decisions

4.1.1 Why Stochastic Petri Nets?

As discussed in Section 3.2.1, di�erent formalisms can be used for immuno-
logical modeling. However, the characteristics of liver granuloma and the
type of study that we wanted to perform, provided a number of indications
that suggested the use of stochastic Petri nets.

The number of certain cells contributing to the liver immune response
to leishmaniasis is very low. For example, direct observations of liver gran-
ulomas indicate that the number of NK cells is usually between 0 and 2.
Therefore, a formalism characterized by discrete entities (e.g., Petri nets,
di�erence equations) seemed preferable to a formalism characterized by con-
tinuous entities (e.g., continuous Petri nets, di�erential equations).

The population of liver granulomas is characterized by a large variabil-
ity in the size of the single granuloma. The source of this variability is not
evident, but is likely connected to di�erent initial conditions of the micro-
environment. Moreover, our preliminary tests indicated that using stochas-
ticity led to a parasite burden qualitatively very similar to the one observed
in experiments, suggesting that a stochastic model should be preferred.

Given the complexity of the phenomenon, and the relatively simple mod-
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els of liver granulomas developed so far, we decided to focus on the role of
whole population of cells. This approach allowed us to determine the role
of the di�erent leukocytes and to understand how a therapy should be de-
signed. Therefore, we preferred a population dynamics modeling which al-
lows a faster simulation and a focus on population-to-population rather than
cell-to-cell interaction.

The above observations, in conjunction with the advantages of a visual
modeling provided by Petri nets, persuaded us to use stochastic Petri nets.

4.1.2 Additional Remarks on Space

Our model disregarded two aspects of the immune response to leishmaniasis:

1. the spacial interaction of the cells in the local environment of a gran-
uloma

2. the interaction among the various granulomas (and thus the structure
of the network of granulomas)

Given their importance, we will provide a rationale for our choice.
Space plays a very important role in immunology: cells live in a complex

environment that restricts some of their movements while promoting oth-
ers. Moreover, leukocytes change in size during their life, and some immune
responses heavily rely on these changes (e.g., the priming of T cells). How-
ever, determining which aspects of spatial interactions are fundamental can
be di�cult in a complex environment such as a granuloma, and modeling all
the aspects of spatial interactions can lead to a model too complicated to
understand. Additionally, only few data exist on the dynamics of the spatial
interactions of cells at the level of a single granuloma (some data can be
found in Beattie at al. 2010 (EJI)), making the validation of a spatial-aware
model tricky.

The network of granulomas is another important aspect to be consid-
ered for the immune response, as some cells migrate from one granuloma
to another. However, the topology of the liver is complex, and additional
angiogenic processes may change it during the infection. Therefore, deter-
mining the topology to be used in the model, and its possible variation is
not an easy task.

A possible solution to the above problems is to build a space-less local
model. Such a model will likely be able to provide us with some important
insights of the fundamental characteristics of the immune response to leish-
maniasis, and can subsequently be used as touchstone to determine the role
of local, and global, spacial interactions.

Therefore, while we comprehend the importance of space in biological
modeling, we believe that such an aspect should be considered only after a
good understanding has been gained either by biological experiments, or by
space-less modeling.
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Figure 4.1: A very simple Petri Net

While our Petri net model can be extended to consider a �xed network of
granulomas, space-aware models are easier build using agent based models
(as in Flugge et al. 2009) or partial di�erential equations (as in Gammack
et al. 2004). However, the stochasticity of the process suggests that an agent
based model may be the preferable choice if spatial interactions are to be
analyzed.

4.2 Petri Nets

Petri nets are a formalism widely-used by many modeling communities. This
section presents only some fundamental de�nitions, focusing on stochastic
Petri nets, as that is the formalism that we used for our model. Some
important concepts (e.g., p-invariants and t-invariants) are not presented
because not relevant to our model.

4.2.1 General De�nitions

Figure 4.1 depicts a simple Petri net, which contains its three main parts:
places, transitions and arcs. Place are represented by circles, while transi-
tions are represented by squares. Places contain a variable number of tokens,
which are generally indicated by black dots or Arabic numbers. Tokens moves
from, or to, a place by means of transitions. The marking of the net is de-
�ned by the number of tokens in each place. Three fundamental types of arc
are possible:

� input arcs, represented by arrows-headed arcs connecting places to
transitions

� output arcs, represented by arrows-headed arcs connecting transitions
to places

� inhibitor arcs, represented by circle-headed arcs connecting places to
transitions

Each arc is associated with a multiplicity, which indicates the number of
tokens it acts on. A Petri net describes a system from a structural point of
view, and is formalized by De�nition 1.

De�nition 1 (Petri Net (Marsan et al. 1995, p. 33)). A Petri net is a
5-tuple N = {P,T, I,O,H} where
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� P is the set of places

� T is the set of transitions, T ∩ P = ∅

� I,O,H ∶ T → Bag(P ), are the input, output and inhibition functions,
respectively, where Bag(P ) is the multiset on P.

Over a Petri net, we can build a Petri net model by adding information
on the marking. De�nition 2 provides a formal characterization of a Petri
net model.

De�nition 2 (Petri Net Model (Marsan et al. 1995, p. 30)). A Petri net
model is an 8-tuple M = {P,T, I,O,H,PAR,PRED,MP} where

� P is the set of places

� T is the set of transitions, T ∩ P = ∅

� I,O,H ∶ T → Bag(P ), are the input, output and inhibition functions,
respectively, where Bag(P ) is the multiset on P

� PAR is a set of parameters

� PRED is a set of predicates restricting parameter ranges

� MP ∶ P → N ∪ PAR is the function that associates with each place
either a natural number or a parameter ranging on the set of natural,
and is the parametric initial marking.

Additionally, for a transition t ∈ T , we de�ne

�
●t = {p ∈ P ∶ I(t, p) > 0}, which represents the input sets of transition t

� t● = {p ∈ P ∶ O(t, p) > 0}, which represents the output sets of transition
t

�
○t = {p ∈ P ∶ H(t, p) > 0}, which represents the inhibition set of transi-
tion t

where I(t, p), O(t, p), and H(t, p) denote the multiplicity of element p in the
multisets I(t), O(t), and H(t).

A Petri net model describes a family of real systems. If we want to model
a speci�c system, we need to assign a value to each parameter used by MP .
A Petri net system is a Petri net model with an initial marking completely
speci�ed, and is formally described by De�nition 3.

De�nition 3 (Petri Net System (Marsan et al. 1995, p. 32)). A Petri net
system is the 6-tuple S = {P,T, I,O,H,M0} where

� P is the set of places
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� T is the set of transitions, T ∪ P = ∅

� I,O,H ∶ T → Bag(P ), are the input, output and inhibition functions,
respectively, where Bag(P ) is set of all possible multisets on P

� M0 ∶ P → N is the initial marking, that is, a function that associates
with each place a natural number.

So far, we described the statics of Petri net systems, now we will move
to the dynamics. To this end, we need to discuss how transitions change the
marking. When an enabled transition �res, it removes tokens from its input
place(s) and add tokens to its output place(s). Formal de�nitions of these
concepts are introduced by De�nitions 4 and 5

De�nition 4 (Enabling (Marsan et al. 1995, p. 34) ). Transition t is enabled
in marking M if and only if

� ∀p ∈ ●t,M(p) ≥ O(t, p) and

� ∀p ∈ ○t,M(p) <H(t, p)

De�nition 5 (Firing (Marsan et al. 1995, p. 34)). The �ring of transition
t, enabled in marking M , produces marking M ′ such that

M ′ =M +O(t) − I(t)

The rules describing the actual �ring of transitions vary among di�erent
Petri nets formalisms. Section 4.2.2 describes the �ring rules of stochastic
Petri nets. However other rules exist in the literature.

4.2.2 Stochastic Petri Nets

The original Petri net model does not include the notion of time. How-
ever, most real systems require a speci�c amount of time to change their
con�guration. To account for this fact, stochastic Petri nets associate each
transition with parameter that characterize the time elapsed between the
enabling and the actual �ring. The waiting time of a transition is exponen-
tially distributed, this choice has several advantages that will be described
later.

The de�nition and properties of exponentially distributed variables pre-
sented below can be found on any introductory book on statistic (e.g., Mood
et al. 1974).

De�nition 6 (Exponential distribution). A random variable X is said to be
(negative) exponentially distributed, if its probability density function is

fX(x,λ) =
⎧⎪⎪⎨⎪⎪⎩

λe−λx if x ≥ 0

0 if x < 0
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The cumulative density function of an exponentially distributed variable
X is

FX(x,λ) =
⎧⎪⎪⎨⎪⎪⎩

1 − λe−λx if x ≥ 0

0 if x < 0

its expected value is

E [X] = 1

λ
while its variance is

Var [X] = 1

λ2

An exponentially distributed variable X is memoryless, that is

P [X > x + k∣X > x] = P [X > k]

for all x, k ≥ 0 (see Section A.2 for the proof). As we will discuss later, this
property is very important for stochastic Petri nets.

Finally, given n independent exponentially distributed random variables
X1, . . .Xn with parameters λ1, . . . , λn, then

Xmin =min (X1, . . .Xn)

is exponentially distributed with parameter

λmin = λ1 +⋯ + λn

(see Section A.1 for the proof).
Assume now that we have a stochastic Petri net with marking Mj , the

generic transition ti is associated with a possibly marking-dependent pa-
rameter λi(Mj) which should be interpreted as the parameter of a negative
exponentially distributed random variable. Therefore, the expected waiting
time of ti is 1/λi.

Using the properties of exponentially distributed variables, we can easily
determine the expected �sojourn time� of the system in a marking Mj . Let
E (Mj) be the set of all enabled transitions in Mj , the sojourn time in
marking Mj is the minimum of the random variables associated with the
enabled transitions (Marsan 1990), and therefore a negative exponentially
distributed random variable τ(Mj) with mean

⎛
⎝ ∑
i∶ti∈E(Mj)

λi (Mj)
⎞
⎠

−1

(4.1)

Additionally, the probability that a given transition, say tk, samples the
minimum delay instance, and hence determines the change of marking by
�ring is (Marsan 1990):

P {tk∣Mj} =
λk (Mj)

∑i∶ti∈E(Mj) λi (Mj)
(4.2)
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Given a stochastic Petri net system with marking Mj , to simulate its
evolution we will sample from τ(Mj) to determine how long the system will
stay in that marking, and then we will use the probabilities of Formula 4.2
to determine the transition to be �red. This simplicity is largely due to the
memoryless property of negative exponentially distributed random variables.

Note that, since the probability that two negative exponentially dis-
tributed random variables samples a speci�c value x equals zero, the proba-
bility of two transitions �ring at the same time is zero.

A stochastic Petri net system with initial marking m0 and a simulation
interval [t0, tmax], can be simulated by Algorithm 4.1. The algorithm is an
adaptation of �Gillespie's algorithm� (Gillespie 1977) to stochastic Petri net
systems and is mainly from Heiner, Richter, Schwarick & Rohr 2008.

Algorithm 4.1 Simulation for SPNS
t← t0
m←m0

print (t,m)
while t < tmax do
determine duration τ until next �ring
t← t + τ
determine transition i �ring at time t
m← �re(m, i)
print (t,m)

end while

Notably, stochastic Petri net systems can be converted to other for-
malisms. More precisely, stochastic Petri net systems can be converted to
discrete Markov chains (see chapter 6 of Marsan et al. 1995), with di�erent
marking of the nets corresponding to di�erent states of the chain. However,
the state space can be very large (or even in�nite), making this conversion
meaningful only for certain net types. Additionally, stochastic Petri net sys-
tems can be approximated by continuous Petri net systems, which can then
be converted into systems of ordinary di�erential equations (see for example
Heiner, Gilbert & Donaldson 2008a).

4.2.3 Snoopy and Additional Remarks

The tool used during the designing and the simulation of our model is Snoopy
version 2 (build 0.9) (Heiner, Richter, Schwarick & Rohr 2008) on Windows®

7 Professional. The hardware used is a personal computer with an Intel®

Core� 2 Quad Processor Q9550 and 4 Gb of RAM.
The implementation of stochastic Petri net system of Snoopy include

some features which are not included in the classical model. Speci�cally, our
model used read and modi�er arcs, immediate transitions, and deterministic-
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corresponds to

Figure 4.2: Test Arcs

timed transitions.

Read (or test) arcs connect places to transitions. They check the number
of tokens in a place, but do not remove the tokens when the transition is �red.
A read arc r with cardinality c from place p to transition t corresponds to an
output arc o of cardinality c from p to t plus an input arc i of cardinality c
from t to p (See �gure 4.2). Modi�er arcs connect places to transitions, but
do not change the number of tokens of the places when they �re. They are
used to indicate that the number of tokens of one of more places is uses to
de�ne the parameter of that transition. Enforcing the use of modi�er arcs
leads to a more understandable net.

p t

1

Figure 4.3: A Petri net system modeling a decay process

Since they have been extensively used in our model, we will describe
how to parametrize a transition to model an entity with a speci�c half-life.
The half-life of a quantity is the expected time for that quantity to decrease
by half. Consider the Petri net system of Figure 4.3, if the parameter of
transition t is:

λ = np

t1/2
⋅ loge(2)

where np indicates the number of tokens of place p, then the number of
tokens of place p decreases with half-life t1/2 (see Section A.3 for the proof).

Figure 4.4 shows the evolution of the number of tokens in p averaged over
100 simulations, when t1/2 = 10.
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Figure 4.4: Number of tokens in p (See Figure 4.3). np indicates the number
of tokens at time 0.
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Figure 4.5: Con�icting transitions

The above result can be generalized to consider parameters of the form

λ = np

t1/2
⋅ loge(k)

which indicates that after t1/2 the experted number of times the transition t
has �red is

(1 − 1

k
)np

This generalization will not be proven.
Immediate transitions are a feature of the so called �generalized stochastic

Petri net models�. These transitions �re as soon as they are enabled and
do not consume any time. Note that immediate transitions introduce the
problem of �con�icts�.
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The formal de�nition of con�icting transition is not straightforward, and
will not be presented here (we refer the interested reader to Section 2.3.4
of Marsan et al. 1995), we will, however, outline the problem. Transitions
t1 and t2 of Figure 4.5 illustrate a simple example of con�ict: if t1 �res, t2
will be disabled, and if t2 �res, t1 will be disabled. This is not a problem
for stochastic Petri nets system, as the transition to �re is chosen by the
so called �race-policy�, which uses the probabilities de�ned in Formula 4.2.
For immediate transitions di�erent policies exist (e.g., choose at random,
or enforce the user to associate a priority with each transition), but they
depend on the speci�c situation.

The algorithm to simulate generalized stochastic Petri net systems di�ers
only slightly from Algorithm 4.1: all enabled immediate transition must be
�red using the chosen con�ict-resolution policy (without increasing the time)
before timed transitions are considered.

Deterministic-timed transitions �re after a deterministic, rather that
probabilistic, time after being enabled. It is easily guessed that they have the
same issues of immediate transitions when it comes to con�icts (Imagine t1
and t2 both �ring one second after being enabled). Again, it is quite easy to
think of modi�cations to 4.1 to account for deterministic-timed transitions.

While our model used both immediate and deterministic-timed transi-
tions, they are never con�icting. Immediate transitions have been used to
determine when a granuloma change its status from infected to healed and
to remove cytokines. Deterministic-timed transitions have been used to en-
able, or disable, other transitions (e.g., to account for the delayed T cells
response).

Petri net models have been extensively used in biology. Some notable
examples can be found in Heiner, Gilbert & Donaldson 2008b

4.3 Sensitivity Analysis

This section presents a brief introduction to sensitivity analysis. Unless
speci�ed, the material presented is based on Chapter 6 of Saltelli et al. 2000
(�Sampled-Based Methods� by J. Helton and F. Davis). Sensitivity analysis
can be applied to both physical and numerical experiments; however, we
will focus on the latter. Moreover, given the vastity of the �eld, only some
fundamentals, important for the understanding of the following chapters,
will be presented.

4.3.1 Why Sensitivity Analysis?

Saltelli de�nes sensitivity analysis (SA) as �the study of how the variation
in the output of a model [...] can be apportioned [...] to di�erent sources of
variation, and how the given model depends upon the information fed into
it (Saltelli et al. 2000, p. 3)�.
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In the context of complicated mathematical, or software, models, SA is a
way to determine the most in�uential parameters, and therefore to validate
the model when we know, at least roughly, which parameters are expected
to be the most in�uential.

This is especially important when we deal with models characterized by
strong simpli�cations, or uncertainty in the input parameters; and immuno-
logical models often display both characteristics.

As described in Section 1.3, the immune system is complicated, and many
important mechanisms are still being investigated. Moreover, even when a
mechanism is well-understood, it is usually quite complex and depends on
many stimuli often hard to measure. Therefore, especially when dealing
with leukocytes instead of proteins, many immunological models introduce
working assumptions and simpli�cations. Using SA we can determine the
impact of these simpli�cations. For example, simpli�cations pertaining cells
that are not fundamental for the outcome of the model, are probably not
worthy an extensive investigation.

Many biological quantities are di�cult to determine due to technical
problems (e.g., the concentration of cytokines in a speci�c point in space),
structural problems (e.g., the number of NKT cells is reported to largely
vary among individuals Godfrey et al. 2010), or di�erent results (e.g., the
large di�erence of LDU in infected C57BL/6 mice reported by Stanley et al.
2008 and Murray et al. 2006). Using SA, we can determine how much e�ect
the variability observed in experiments in�uences the model.

Recent examples of the use of SA in immunological modeling can be
found in Linderman et al. 2010 and Fallahi-Sichani et al. 2010. Finally, a
discussion on the advantages and disadvantages of some SA methodologies
when applied to immunological modeling can be found in Marino et al. 2008.

4.3.2 A Brief Introduction Sensitivity Analysis

The process of SA can be summarized by the following steps:

1. Determine a set of input con�gurations

2. Run the model on the chosen input con�gurations

3. Evaluate the impact of the variations of the input parameters on the
output of the model

The methodologies used for the �rst step are called �sampling proce-
dures�, while the metrics used in the last step are called �importance mea-
sures�. Some importance measures require a speci�c sampling procedure,
while others are more �exible. For example, extended Fourier amplitude
sensitivity test (eFAST) requires Fourier amplitude sensitivity test sampling
(Saltelli et al. 1999), while partial rank correlation coe�cients (PRCC) (Iman
& Conover 1979) works with any procedure that provides a good sample of
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the parameter space, such as random sampling, importance sampling, or
Latin hypercube sampling (LHS).

The number of experiments required to provide a valid importance mea-
sure varies with the number of parameters that are being studied: the number
of experiments increases with the number of parameters. Additionally, for a
�xed number of parameters, the number of experiments varies among various
importance measures. For example, eFAST requires many more experiments
than PRCC on the same model. The increased computational e�ort required
by eFAST is compensated by its ability to better deal with non-monotonic
models.

As suggested by the above discussion, each SA technique has strengths
and weaknesses that must be carefully considered when deciding the tech-
nique(s) to be used on a particular model. In the context of biological model-
ing, a comparative analysis of di�erent SA techniques is available in Marino
et al. 2008.

SA on our model was performed using two widely-used techniques: LHS
and PRCC. Since the motivations for our choice depends on the nature of
the model, they are presented later (see Section 9.1).

Before being able to introduce PRCC, we need to describe some method-
ologies: Regression Analysis, LHS, and Partial Correlation Coe�cient (PCC).
Note that, in the following, we will use the term �parameter� to designate
both the parameters and the inputs of a model.

4.3.3 A Few Notations

To present a precise and consistent description of SA, the following notations
will be used throughout this chapter:

� k is the number of parameter under consideration

� n is the number of experiments

� xi,j is the value of the parameter j for the i-th experiment

� xi,− is a row vector with the values of the parameters for the i-th
experiment

� x−,j is a column vector with the values of the j-th parameter for the
experiments. We will also use x−,j to name the j-th parameter.

� yi is the output of the model for the i-th experiment

Note that, for simplicity, we assume the xi,j and the yi to be real numbers.
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4.3.4 Latin Hypercube Sampling

Among the various sampling procedures, LHS is one of the most used when
the number of possible experiments is limited. LHS has been introduced by
McKay et al. 1979 for independent input parameters, and has subsequently
been extended to consider correlated parameters by Iman & Conover 1982.

LHS proceeds as follows: the range of each parameter x−,1, . . . x−,k is
divided into n intervals. For each interval a random value is selected with
uniform probability. Then, n k-uples are generated by assigning at random
one of these values to the i-th component (1 ≤ i ≤ k), in such a way that, for
each variable, each value is used only once. Note that the intervals can be
of di�erent size to account for possibly di�erent importance ranges for the
parameter.

4.3.5 Regression Analysis and Standardized Regression Co-
e�cients

Given a collection of n pairs

{yi , xi,−}i=1..n (4.3)

a linear regression model ŷ of the model y is de�ned as

ŷ = b0 +
k

∑
j=i
bjx−,j (4.4)

where the bj are coe�cients to be determined. Let ŷi = ŷ(xi,−), then for each
pair of the Formula 4.3, the error introduced by this regression is de�ned as

εi = yi − ŷi
More compactly, we can write:

y = xb + ε

where

y =
⎡⎢⎢⎢⎢⎢⎣

y1
⋮
yn

⎤⎥⎥⎥⎥⎥⎦
, x =

⎡⎢⎢⎢⎢⎢⎣

1 x1,1 ⋯ x1,k
⋮ ⋮ ⋮
1 xn,1 ⋯ xn,k

⎤⎥⎥⎥⎥⎥⎦
, b =

⎡⎢⎢⎢⎢⎢⎣

b0
⋮
bk

⎤⎥⎥⎥⎥⎥⎦
, ε =

⎡⎢⎢⎢⎢⎢⎣

ε1
⋮
εn

⎤⎥⎥⎥⎥⎥⎦
The bj are then calculated by minimizing the sum of the squared errors:

n

∑
i=1

ε2i

which corresponds to minimizing:

(y − xb)T(y − xb) =
n

∑
i=i

⎛
⎝
yi − b0 −

k

∑
j=1

bjxi,j
⎞
⎠

2
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which leads to the following matrix equation

xTxb = xTy

If xTx is invertible, b has a unique solution that can be calculated by

b = (xTx)−1xTy

Since the invertibility of xTx depends on n, this value should be carefully
chosen. When xTx is diagonal, the previous equation becomes:

bj =
n

∑
i=1
xi,jyi/

n

∑
i=1
x2i,j

The model of Formula 4.4, can be reformulated as

ŷ − y
ŝ

=
k

∑
i=1

biŝi
ŝ

xi − xi
ŝi

(4.5)

where

y =
k

∑
i=1

y(xi,−)
m

, ŝ = (
k

∑
i=1

(yi − y)2

m − 1
)
1/2

xj =
k

∑
i=1

xi,j

m
, ŝj = (

k

∑
i=1

(xi,j − xj)2

m − 1
)
1/2

The coe�cients biŝi/ŝ of Formula 4.5 are called standardized regression
coe�cients (SRCs), and provide an importance measure when the xi are
independent.

4.3.6 Correlation and Partial Correlation Coe�cients

If only one parameter is under consideration, and therefore if k = 1, the
sample or Pearson correlation between x−,1 and y, indicated by ryx−,1 , is
de�ned as

ryx−,1 =

n

∑
i=1

(xi,1 − x) (yi − y)

(
n

∑
i=1

(xi,1 − x)2)
1/2

(
n

∑
i=1

(yi − y)2)
1/2

where x and y are de�ned as in Formula 4.5. The correlation coe�cient (CC)
ryx−,1 provides a way to measure the linear relationship between x−,1 and y.
A large positive ryx−,1 indicates that a small increase of x−,1 leads to a large
increase of y.
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When two or more parameters are being analyzed (that is, k > 1), PCC
can be used. To compute the PCC between x−,j and y, we calculate the
following regression models:

x̂−,j = c0 +
k

∑
m=1
m≠j

cmx−,m, ŷ = b0 +
k

∑
m=1
m≠j

bmx−,m

and use them to de�ne the variables

x̃−,j = x−,j − x̂−,j
ỹ = y − ŷ

The PCC ryx−,j between y and x−,j is rỹx̃−,j . PCC provides a way to
measure the linear relationship between a parameter and the output, with
the linear e�ects of the other parameters removed.

4.3.7 P-Value

CC and PCC give an indication of the correlations between the input pa-
rameters and the output, but give no indication of the statistical signi�cance
of the results. Therefore, additional statistical test have been developed.
Under certain statistical assumptions, we can calculate �the probability of
observing a stronger correlation due to chance (Saltelli et al. 2000, p. 132)�.
This probability is called p-value. Therefore a small p-value � usually lower
than 0.01 � is an indication of the validity of the CC or PCC.

We will not present the details of the de�nition of p-value, as it would
require the introduction of many statistical concepts, and we refer the in-
terested reader to the references of chapter 6 of Saltelli et al. 2000. We
want however, to stress that the �the distributional assumptions that lead
to the p-values [...] are not satis�ed in sampling-based sensitivity studies.
However, these p-values still provide a useful criterion for assessing variable
importance, because they provide an indication of how viable the relation-
ship between input and output variables would appear to be in a study in
which the underlying distributional assumptions were satis�ed (Saltelli et al.
2000, p. 128).�

4.3.8 Ranking

SRC, CC and PCC generally perform poorly when the relation between the
parameters and the output is nonlinear. This problem can be mitigated by
using this importance measures on rank-transformed data. The concept of
rank transformation is quite simple: the values of the parameters and the
output are replaced by their �rank�. Therefore, the values of a parameter
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are replaced by the values 1, . . . , n, which indicate the rank (1 replacing the
smaller values, 2 the second smaller value, and so on). Consequently, �the
use of rank-transformed data results in an analysis based on the strength
of monotonic relationship rather than on the strength of linear relationships
(Saltelli et al. 2000, p. 139).� Rank-transformed SRC, CC and PCC are
referred as standardized rank regression coe�cient (SRRC), rank correlation
coe�cient (RCC), and partial rank correlation coe�cient (PRCC).
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Chapter 5

Working Assumptions

Modeling a physical phenomenon requires the introduction of
a number of assumptions and simpli�cations. This is especially
true when dealing with complex biological processes such as a
granuloma. This chapter explicitly documents the most impor-
tant assumptions pertinent to the biology of the granuloma that
have been used. Moreover, the most signi�cant simpli�cations
introduced by our model are discussed.

5.1 Biology: Qualitative Assumptions

The biological knowledge of the immune system is steadily growing. Some-
times this knowledge converges, and all the data point to a speci�c explana-
tion of a phenomenon. For example, we have a good understanding of the
processes underlying the activation of T cells. However, as already pointed
out in Section 3.1.1, sometimes data are inconclusive, or even contradictory,
and more than one hypothesis is able to explain a speci�c phenomenon. The
possibility of testing the validity of di�erent hypotheses is however, one of
the advantages of in silico models.

The following assumptions are mostly widely accepted, and described on
books such as Murphy & Kenneth 2007. When this is not the case, and no
speci�c references or justi�cations are provided, the source of information
are to be considered biological experts.

5.1.1 Cytokines

Assumption 1. All the cytokines of the same type are identical.

This means that, for example, all IL10 cytokines behave identically.
While this may seem obvious, some biological evidence suggests otherwise.
For instance, Svensson et al. 2005 reports that in the early stages of gran-
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uloma formation, macrophages react to INFγ produced by NKT cells, but
not to INFγ produced by other liver cells.

5.1.2 Leishmania Donovani

Assumption 2. The rate of reproduction of leishmania donovani amastig-
otes is the same in both (de)activated and normal macrophages.

While, theoretically, the rate of reproduction could increase in alterna-
tively activated macrophages due to the increase in nutrient supply (poly-
amines), no data are available.

Assumption 3. All leishmania donovani amastigotes are equal.

This assumption implies that all amastigotes have the same reproduction
rate and resistance to killing by macrophages. While no speci�c experiments
exist for leishmania donovani, it is worth noticing that leishmania major has
been reported to have sexual reproduction, and therefore a possible evolution
(Akopyants et al. 2009).

Assumption 4. Leishmania donovani amastigotes interact with the Kup�er
cell in the same way at di�erent stages of reproduction.

This assumption implies that the e�ect of an amastigote on the Kupf-
fer cell that ingested it is independent on the stage of reproduction of the
amastigote.

Assumption 5. Leishmania donovani amastigotes promote the deactivation
of the Kup�er cell that ingested them.

This assumption is very di�cult to test in vivo or in vitro. However,
macrophages infected with leishmania donovani produce IL10 (Bhattacharyya
et al. 2001) and display a reduced secondary MHC expression (Reiner et al.
1987), and both activities are associated with deactivated macrophages.

Assumption 6. The alteration of Kup�er cell activities by leishmania dono-
vani is proportional to the number of parasites ingested by the Kup�er cell.

Given the complex feedback mechanisms usually displayed by cells, it is
possible that the ability of the parasites to interfere with the Kup�er cell by
promoting deactivation reaches a maximum, which may be independent of
the number of parasites. However, currently no data exist on the possible
existence of this maximum.

5.1.3 Macrophages

Assumption 7. Proliferation of Kup�er cells is mostly negligible during
leishmaniasis.
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Biological experts indicate that the proliferation of Kup�er cells during
leishmaniasis, if any, is very limited.

Assumption 8. Classically activated macrophages mainly produce TNF and
IL12.

While classically activated macrophages have been reported to produce
a number of di�erent types of cytokines (Mantovani et al. 2004), IL12 and
TNF are the cytokines produced in larger quantities.

Assumption 9. Alternatively activated macrophages mainly produce IL10.

While alternatively activated macrophages have been reported to produce
a number of di�erent types of cytokines (Mantovani et al. 2004), IL10 is the
cytokine produced in larger quantities.

Assumption 10. Deactivated macrophages mainly produce IL10.

While deactivated macrophages have been reported to produce a number
of di�erent types of cytokines (Mantovani et al. 2004), IL10 is the cytokine
produced in larger quantities.

Assumption 11. Classical activation, alternative activations, and deacti-
vation coexist, but down-regulate each other.

Some biologists suggest that, in a macrophage, the di�erent types of
activations can coexist (see for example Mosser & Edwards 2008). The
down-regulation is a consequence of the possible internal reactions and of
the antagonizing e�ect of the cytokine produced.

Assumption 12. Classical activation of macrophages is triggered by TNF
and INFγ.

It is generally recognized that classical activation of macrophages is trig-
gered by TNF and INFγ (Mantovani et al. 2004).

Assumption 13. Alternative activation of macrophages is triggered by IL4
and IL13.

It is generally recognized that alternative activation of macrophages is
triggered by IL4 and IL13 (Mantovani et al. 2004).

Assumption 14. Deactivation of macrophages is triggered by IL10.

It is generally recognized that deactivation of macrophages is triggered
by IL10 (Mantovani et al. 2004).

Assumption 15. When infected, macrophages produce TNF.
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Infected macrophages produce TNF. The production of TNF subsequently
increases the activity of macrophages in an autocrine way.

Assumption 16. Gigantic Multinucleated cells do not a�ect the behavior of
liver granulomas.

We assume that a gigantic multinucleated cells with n nuclei is function-
ally equivalent to a group of n macrophages. This rather strong assumption
is due to the limited knowledge on the e�ect of macrophage fusion in the
context of leishmania-induced granulomas. Moreover, even considering gran-
uloma formed in response to tuberculosis, there is no clear evidence indicat-
ing whether the role of gigantic multinucleated cells is positive or negative.
Finally, liver granuloma are quite small, and the number of gigantic multin-
ucleated cells is generally low.

Assumption 17. Kup�er cells need to be classically activated to kill leish-
mania donovani amastigotes.

Experiments indicate that classical activation is fundamental to kill leish-
mania amastigotes. Moreover, the e�ciency in killing the parasites depends
on the level of classical activation, and thus on the level of external stimuli
promoting classical activation.

Assumption 18. The ligation of iNKT cells on the surface of macrophages
deactivate them.

According to the current biological opinion, the ligation of CD47, which
is displayed by iNKT cells, on the surface of a macrophage promotes its
deactivation. This is believed, for example, to be one of the mechanisms
that allows macrophage fusion (the deactivation allows the macrophages not
to phagocytose each other).

5.1.4 T Cells

Assumption 19. The only subsets of T cells that impact on the formation
and maintenance of a granuloma are TH0, TH1, TH2, TC0, TC1, and TC2
cells.

While a number of other subsets of T cells exist � such as TH17 cells
�, the cell populations mentioned above appear to be the most numerous.

Assumption 20. Spleen is the main source of T cells, but the priming of T
cells is also possible in the liver.

The role of the spleen as incubator of mature T cells is well established.
However, a growing body of evidence indicates that T cells can mature in
other places. Notably, Greter et al. 2009 suggests the maturation directly in
the liver.
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Assumption 21. TH0, TH1, TH2, TC0, TC1, and TC2 cell populations exist
and are stable.

It is common to classify the populations of helper and cytotoxic T cells
by the cytokines they produce. However, some authors are beginning to
question this classi�cation, or at least to point out that it is not strict. This
is due to the large variability that seems to exist within the same population,
and to the plasticity of T cells (see for example Bluestone et al. 2009).

Assumption 22. TH0 cells di�erentiate to TH1 cells when exposed to INFγ
(and later IL12).

The process of di�erentiation of TH0 cells into TH1 cells is usually be-
lieved to be triggered by INFγ and IL12. However, recent articles describe
how the activity of T-Bet is promoted by INFγ and IL12 independently (see
Schulz et al. 2009).

Assumption 23. TC0 cells di�erentiate to TC1 cells when exposed to INFγ.

INFγ is believed to be the main cytokine responsible for the di�erentia-
tion of TC0 cells to TC1 cells.

Assumption 24. TH0 and TC0 cells di�erentiate to TH2 and TC2 cells
when exposed to IL4.

IL4 is believed to be the main cytokine responsible for the di�erentiation
of TH0 and TC0 cells to TH2 and TC2 cells.

Assumption 25. Newly di�erentiated TH1 and TC1 cells produce mainly
INFγ and IL2.

TH1 and TC1 cells produce di�erent types of cytokines. However, newly
di�erentiated TH1 and TC1 cells produce mainly INFγ (responsible for the
initial expansion of the cell population) and IL2 (responsible for the expan-
sion of all T cells subtypes).

Assumption 26. TH1 cells initiate the production of IL10 after the second
wave of T-bet expression caused by IL12.

As described in Trinchieri 2007, TH1 cells display self-control by produc-
ing IL10. This phenomenon is clearly visible in an established liver gran-
uloma where 2 � 5 % of T cells produce INFγ and IL10. Di�erent factors
have been proposed to be responsible for this phenotypic change, and no ev-
idence clearly indicate when this change happens. However, it is reasonable
to divide the response of TH1 cells into three phases. In the �rst phase, their
activity is auto-promoted by INFγ. In the second phase, their activity is
promoted by IL12. Since IL12 is not produced by TH1 cells, they need to be
sustained externally. In the third phase, besides requiring IL12, TH1 cells
initiate the production of IL10 to self-control their activity.
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Assumption 27. TH2 and TC2 cells mainly produce IL4 and IL10.

TH2 cells produce di�erent types of cytokines. However, they mainly
produce IL4 and IL10.

Assumption 28. INFγ promotes the proliferation of TH1 and TC1 cells.

INFγ is commonly considered to be a promoter of the proliferation of
TH1 and TC1 cells.

Assumption 29. IL4 promotes the proliferation of TH2 and TC2 cells.

IL4 is commonly considered to be a promoter of the proliferation of TH2
and TC2 cells.

5.1.5 Natural Killer T Cells

Assumption 30. NKT cells are very important for the formation of gran-
ulomas (speci�cally before the arrival of e�ector T cells).

The role of NKT cells in the early stages of granuloma formation has been
extensively con�rmed (e.g., Amprey et al. 2004 and Stanley et al. 2008).

Assumption 31. NKT cells mainly produce high quantities of INFγ and
low quantities of IL4 in response to leishmania donovani infection.

As described for example in Matsuda et al. 2008, NKT cells can produce a
broad range of cytokines. However, IL4 and INFγ appear to be the cytokines
produced in larger quantities. Experiments indicate that IL4 production
by NKT cells is low during the response to liver infection by leishmania
donovani.

Assumption 32. NKT cells detect an infected macrophage and activate.

NKT cells can be activated by a number of mechanisms (see Matsuda
et al. 2008). However, peptides displayed by CD1d seems to have a funda-
mental role in leishmaniasis (Amprey et al. 2004).

Assumption 33. NKT cells remain active for some time and then deacti-
vate.

It is currently unclear if the deactivation of NKT cells is time-controlled.
But their lineage connection with T cells, makes this assumption plausible.

Assumption 34. At homeostasis, the liver population of NKT cells is stable,
but they have a high turnover rate.
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The exact mechanism behind the stability of the number of homeostatic
NKT cells in the liver is not well-understood, however: �The number of
NK1.1+ T cells found in the liver of adult mice did not steadily increase.
These results suggest that liver NK1.1+ T cells have a high death rate,
migrate from the liver, or undergo a phenotypic change. The BrdU data
suggest either that NK1.1+ T cells begin proliferating after emigration from
the thymus to the liver, or that the liver is populated by a special set of
thymic NK1.1+ T cells, which are proliferating or were recently generated
from proliferating precursors (Coles & Raulet 2000)�.

Assumption 35. The population of homeostatic NKT cells is stable, even
when an infection is present.

It is not possible to test this assumption with the current technology.
However, during leishmaniasis, the number of NKT cells increases (Stanley
et al. 2008). One possible explanation is that the population of homeostatic
NKT cells remains relatively stable while NKT cells get activated.

Assumption 36. Peripheral blood reproduction of NKT cells is negligible.

No clear evidence exists for peripheral blood reproduction of NKT cells.
Therefore, we will disregard the phenomenon.

5.1.6 Natural Killer Cells

Assumption 37. NK cells produce INFγ in response to leishmania donovani
infection.

The exact mechanism used by NK cells to recognize infected cells is not
completely understood. However, they have been shown to be a source of
INFγ during leishmaniasis. Possible sources of activation are IL12 (Amprey
et al. 2004) or direct recognition of infected macrophages.

Assumption 38. NK cells produce high level of IL10 in the later stages of
granuloma development.

Maroof et al. 2008 reports that, while NK cells produce mainly INFγ in
the early stages of granuloma, later on they initiate the production of IL10.
A sustained production of IL10 is reported 21 days after infection.

Assumption 39. Peripheral blood reproduction of NK cells is negligible.

No clear evidence exists for peripheral blood reproduction of NK cells.
Therefore, we will disregard the phenomenon.

Assumption 40. Death of activated NK cells can be ignored.
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No clear evidence exists on the expected life of an activated NK. How-
ever, the data of Maroof et al. 2008 reports that NK cells synthesize IL10
mRNA for about 21 days before initiating the production of IL10. A possible
explanation is that activated NK cells synthesize IL10 mRNA long before ini-
tiating the production of IL10. This suggests that activated NK cells survive
for a long time (at least 21 day).

Assumption 41. NK cells deactivate after a �xed probabilistic time.

The mechanism behind the (de)activation of NK cells are not completely
understood. Given the limited role that NK cells seem to play in leishma-
niasis we opted for a simple model of deactivation (similar to T and NKT
cells).

5.2 Biology: Quantitative Assumptions

So far we described the qualitative behaviors of the cells. Designing experi-
ments to determine the quantitative behavior of these cells is usually much
more complex. This section aims at presenting available quantitative data
that can be used to construct and validate our model.

5.2.1 Leishmania Donovani

Figure 5.1: Liver parasite burden of wild type C57BL/6 mice. (LDU =
Leishmania Donovani Units) (from Murray et al. 2006)

Assumption 42. The liver parasite burden of a granuloma follows the data
marked WT of Figure 5.1B.
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The liver parasite burden during the course of leishmania donovani-
induced leishmaniasis can be found in many article. Figure 5.1 is taken
from Murray et al. 2006, and has been used as reference.

Assumption 43. Leishmania donovani amastigotes take about 1 day to re-
produce.

In vitro experiments indicate that the reproduction cycle of leishmania
donovani amastigotes is about 24 hours long.

5.2.2 Macrophages

Assumption 44. The number of Kup�er cells constituting the core of a
granuloma is generally between 5 and 10.

These numbers derive from direct observations under in vivo conditions.

Assumption 45. The half-life of MHC I - peptide complexes is 3 hours.

The half-life of MHC I peptides is generally reported to be either 3 or 6
hours (Henrickson et al. 2008). We used the value 3, but characterized the
e�ect of increasing it to 6 by sensitivity analysis.

Assumption 46. The half-life of MHC II - peptide complexes is 60 hours.

The literature indicates a large variability in the half-life of MHC II -
peptide complexes (see for example Lazarski et al. 2005), and it di�cult to
characterize the full spectrum of peptides displayed by antigen-presenting
cells in response to leishmania donovani infection (see Afrin et al. 2002 for
some data). However, MHC II - peptide complexes are generally believed to
be quite stable and their half-life is believed to be in the order of days. The
chosen value (60 hours), was also used by Linderman et al. 2010 (albeit in a
di�erent context) and should be a reasonable trade o�.

Assumption 47. The half-life of CD1d - peptides complexes is 20 hours.

CD1d - α-galactosylceramide complexes are probably the most well-
known CD1d-peptide complexes. However, the reported half-life varies be-
tween few minutes and few days (Benlagha et al. 2000). We used a baseline
value of 20 hours to account for the fact that the complexes are believed to
be quite stable.

Assumption 48. Kup�er cells can sustain about 100 amastigotes.

Direct observations of granulomas indicate the presence of macrophages
with more than 100 amastigotes in vivo. This number is likely a�ected
by many external conditions, as during in vitro experiments the number of
amastigotes that a macrophage can sustain before being killed is about 50.
100 should be a reasonable mean value.
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Assumption 49. Activated Kup�er cells kill the amastigotes in about 1 day.

In vitro experiments indicate that a strongly activated macrophage is
able to kill 10 parasites in 24-48 hours. However, this activity is likely to be
strongly parallel.

5.2.3 Dendritic Cells

Assumption 50. The time required by a dendritic cell to ingest leishmania,
migrate to the lymph node, and mature is 16 hours.

This value is obtained from Huang et al. 2001, which is the source of
Figure 5.2. A more recent article con�rming this value is McIlroy et al.
2005. The time line of Figure 5.2 should be compatible with dendritic cells
migrating to the spleen too.

Figure 5.2: The life of a Dendritic Cell (Huang et al. 2001)

5.2.4 T Cells

Assumption 51. The time needed by a naïve T cell to reproduce is 10.6
hours.

The source of this value is Gudmundsdottir et al. 1999. While the value
had been determined for naïve T cells, we assume that all T cells have the
same reproduction rate.

Assumption 52. T cells get to the liver 4 days after infection.

This value has been con�rmed experimentally and is compatible with
the T cell dynamics described in Murphy & Kenneth 2007 (see Figure 5.3).
During these 4 days various events happen:

1. Infected dendritic cells migrate to the lymph nodes, or spleen, and
mature (about 16 hours)
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Figure 5.3: Priming and activation of T-Cells (Murphy & Kenneth 2007)

2. Naïve T cells with a matching TCR get in contact with the mature
dendritic cell (about 1 day)

3. The naïve T cells mature and replicate (probably at least 53 hours, as
this is the time needed by a naïve T Cell to reach the �fth generation
and therefore its full cytokine production pro�le Gudmundsdottir et al.
1999)

4. The T cells migrate to the liver (few hours)

Assumption 53. Spleen-derived T cells stop getting to the liver 5 days after
infection.

The half-life of mature dendritic cells is not fully characterized yet. How-
ever, a too long half-live would lead to an excessive immune response. A
1-day in�ux of cells from the spleen seemed a reasonable value. Note that,
given the peripheral blood reproduction of T cells, and the in�ux of ma-
ture T cells from other granulomas, this value appeared not to be worth an
extensive investigation.
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Figure 5.4: Cytokines production helper T-Cells (Rutz et al. 2008)

Assumption 54. Activated TH1 cells require INFγ to sustain the production
of cytokines in the �rst 5 days, and IL12 subsequently.

Schulz et al. 2009 indicates that INFγ and IL12 sustain two distinct waves
of T-bet expression. The two waves peak one and �ve days after activation
respectively.

Assumption 55. When the TCR of a T cell senses a matching peptides on
a macrophage, the cell interacts with the macrophage for about 30 minutes.

This result is from Beattie at al. 2010 (PLoS Pathog) and is relative to
CD8+ cells.

Assumption 56. The ratios of cytokines produced by T cells are as follow:

TH1- INFγ : IL2 = 6 : 5

TH1- IL2 : IL10 = 7 : 9 (When IL10 production is active and assume notch
is responsible)

TH2- IL10 : IL4 : IL2 = 9 : 6 : 2

TH∗- (TH0 derived IL2) : (TH1 derived IL2) = 13 : 5

TH∗- (TH0 derived IL2) : (TH2 derived IL2) = 13 : 3

Helper T cells produce di�erent types of cytokines. While the production
pro�le are not necessarily stable, it is easy to obtain data for highly polarized
subpopulation. It is theoretically possible to determine the exact quantity of
cytokines produced by a single T cell in vitro. However, in the liver, cytokines
are subject to di�usion, and moreover it is hard to track the population of T
cells. Nevertheless, we can use the data on cytokine production to determine
the ratio of production of the di�erent types of cytokines produced by the
cells. The ratios are extracted from �gure 5.4, which is taken from Rutz
et al. 2008.

Assumption 57. The percentage of cytokine producing helper T cells follows
Table 5.1.
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Day % of CD4+INFγ+IL10− % of CD4+INFγ+IL10+

0 3 ± 0.75 0.12 ± 0.01
21 12.14 ± 0.71 1.03 ± 0.23
38 9.75 ± 1.87 0.38 ± 0.07

Table 5.1: Percentage of helper T cells

Figure 5.5: Number of NK cells in the liver of control and infected wild type
C57BL/6 mice (from Maroof et al. 2008)

These data are courtesy of the laboratory of Paul Kaye of the University
of York, and are currently unpublished. Table 5.1 indicates the mean value
and the standard deviation. The value at day 0 and the percentage of NKT
cells from Amprey et al. 2004 were used to calculate a �xed number of
leishmania donovani non-speci�c activated helper T cells (assuming the same
number of CD4+ and CD8+ T cells).

5.2.5 Natural Killer Cells

Assumption 58. The number of NK cells follows Figure 5.5.

The number of NK cells at day 0 and 28 was obtained from Maroof et al.
2008. The value for naïve mice was used for day 0.

Assumption 59. NK cells detect an infected target and activate in about 4
hours.

The exact time required for a NK cell to detect its target and activate
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Figure 5.6: Number of NKT cell in the liver during infection of wild type
C57BL/6 mice (from Stanley et al. 2008)

is hard to determine. However, Yokoyama et al. 2004b reports that, in the
lungs, 4 hours after infection NK cells are clearly detectable and activated.

Assumption 60. The half-life of mature NK cells in the liver is about 400
hours (about 17 days).

Yokoyama et al. 2004b reports that �the half-life of mature NK cells in
the periphery appears to be about seven to ten days based on the survival of
adoptively transferred NK cells�. However, the half-life of splenic NK cells
is reported to be 17 days (Jamieson et al. 2004). Since we were not able to
�nd any data for hepatic NK cells, we used the value for spleen.

Assumption 61. NK cells initiate the production of IL10 after 21 days of
activation.

The experiments reported by Maroof et al. 2008 indicate that NK cells
are sources of IL10 21 days after infection.

5.2.6 Natural Killer T Cells

Assumption 62. The number of NKT cells in the liver during leishmaniasis
follows Figure 5.6.
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Assumption 63. The percentage of activated NKT cells is 1.4 two hours
after infection and 10.9 ± 1.2 sixteen hours after infection.

The sources of these data are Amprey et al. 2004 (which used BALB/c
mice) and Beattie at al. 2010 (EJI) (which used C57BL/6 mice)

Assumption 64. The half-life of mature NKT cells in the liver is about 400
hours (about 17 days).

Since we were not able to �nd any data on the half-life of liver NKT cells,
given the connection between NK and NKT cells, we used the same value of
NK cells (see Assumption 60)

5.2.7 Granulomas

Assumption 65. The number of granulomas in the liver is about 5 ⋅ 105.

This estimate is courtesy of Lynette Beattie of the Centre for Immunology
and Infection of the Hull York Medical School (Beattie 2010).

5.3 Modeling: Simpli�cations

Constructing a good model of a complicate system is challenging. Too many
simpli�cations lead to an easily manageable model, that, however, is not
able to replicate the reality of the phenomenon. On the other hand, a model
that tries to use all the information available on the phenomenon without
introducing simpli�cations that remove non essential features is very hard
to build and validate.

This section describes the simpli�cations introduced by our model. We
tried to keep the number of simpli�cations to a minimum, to preserve the
fundamental characteristics of granuloma.

5.3.1 Global

Simpli�cation 1. The functions and characteristics of cells that are not
present in the modeled are negligible for the development of granuloma.

We should consider this simpli�cation the master simpli�cation. As de-
scribed before, many cells perform a wide range of functions, with new func-
tions being discovered as research proceeds. When building a model, it is
assumed, usually implicitly, that what is not in the model is not fundamental
for the outcome of the model itself.

Simpli�cation 2. Fully (de)activated macrophages, activated NK cells, NKT
cells, and T cells produce the same amount of cytokines.
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As described by Assumption 56, it is quite hard to determine the cytokine
production of the various types of cells. Therefore, we set the value to be
the same. Note that, as pointed out by 56, the level of production of the
modeled cytokines produced by T cells is quite similar.

Simpli�cation 3. All the cells that produce cytokines reach a stable level of
production.

The quantity of cytokines produced by a leukocyte is not constant, and
may depend on many factors, such as on co-stimulatory signals. Moreover,
the cytokine production of T cells is likely to be a�ected by the a�nity
of their TCR with the speci�c peptide displayed by MHC molecules. For
instance, TH1 cells reach a stable level of cytokines production after 5 cycles
of reproduction (Gudmundsdottir et al. 1999) and to maintain that level
they need a favorable environment (Schulz et al. 2009).

Simpli�cation 4. The level of cytokine production of the cells is �xed.

Many factors in�uence the cytokine production of T cells. However, given
our modeling formalism, we used a �xed values.

5.3.2 Cytokines

Simpli�cation 5. Only one type of chemokines exists and its role is purely
chemoattractive.

While di�erent types of chemokines exist, their e�ects are usually similar.
We assume that only one type of chemokines exists, and that chemokines
a�ect only the arrival of non-resident macrophages. Additionally, the role
of CCL3 in promoting TH1 cells - based immunity will be ignored. This is
justi�able by the fact that, in our model, iNKT cells, which are the only
sources of CCL3, produce INFγ, which is by itself a strong promoter of the
proliferation of TH1 cells. We will not use any speci�c name for chemokines,
and refer generically to �chemokines�. Moreover, we will model only the
e�ect of chemokines on non-resident mononuclear phagocytes.

Simpli�cation 6. The chemoattractive e�ect of chemokines is proportional
to the number of chemokine-producing cells.

Cytokines have two fundamental roles: they facilitate the passage of
leukocytes through the wall of the blood vessels and stimulate the leukocytes
to move towards a place with a higher density of chemokines. We will simply
assume that the level of chemokines in�uences the arrival rate of a�ected
leukocytes.

Simpli�cation 7. TNF can be ignored in the model.

TNF has three main roles for the cells in our model:
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1) Inducing the expression of adhesion molecules on the surface of en-
dothelial cells

2) Increasing the killing activity of a macrophage

3) Classically activating a macrophage in conjunction with INFγ

We will not model the actual binding of a macrophage to the surface of
endothelial cells and therefore 1) can be ignored. TNF is not su�cient by
itself to classically activate a macrophage, and a non classically activated
macrophage is ine�ective in killing leishmania, therefore 2) can be ignored.
Function 3) is very important for the model, and modifying the mechanism
of classical activation leads to many consequences that need to be discussed
carefully. In our model the only sources of TNF are macrophages (unless
deactivated), and some type I T cells.

Designing experiments with no type I T cells is useless, as they are the
main sources of INFγ, and their role in controlling the infection is well-
established. Unfortunately, removing TNF from the model strongly limits
our ability in experimenting with the deactivation of macrophages in the
early stages of infection. A strong deactivation of macrophages in the initial
phases of the infection could lead to a scenario in which TNF is very low
and the macrophages activate too late to control the infection. However,
designing such an experiment is hard for another reason: no clear data link
the quantities of INFγ and TNF to the level of classical activation. The
main reason is that the level of classical activation is not straightforward to
measure, as it is a more of a qualitative than quantitative behavior.

Simpli�cation 8. All the cytokines are subject to the same di�usion and
drift, due to bloodstream.

Cytokines have di�erent, albeit comparable, sizes and shapes. Therefore,
it is possible that di�erent cytokines di�use di�erently. We will ignore this
variation, as di�cult to measure in vivo.

Simpli�cation 9. Cytokine tokens represent more than one molecule.

Determining the number of cytokine molecules produced by cells is tech-
nically very di�cult. Moreover, cytokine production varies over time in
accordance with the stimuli received by the cell. Cytokine tokens, which are
used by our model, should be considered as a group of molecules.

5.3.3 Macrophages

Simpli�cation 10. A macrophage can undergo classical activation, alter-
native activation, or deactivation.



68 CHAPTER 5. WORKING ASSUMPTIONS

The current biological opinion is that a macrophage is able to undergo a
number of di�erent types of activations. However, liver granulomas are not so
disruptive to require a healing macrophage to repair the extracellular matrix.
Moreover, classical activation, alternative activation, and deactivation are by
far the most studied activation types.

Simpli�cation 11. Classically activated macrophages only produce IL12.

While classically activated macrophages have been reported to produce
a number of di�erent types of cytokines, IL12 is the cytokine produced in
larger quantities.

Simpli�cation 12. Alternatively activated and deactivated macrophages only
produce IL10.

While alternatively activated and deactivated macrophages have been
reported to produce a number of di�erent types of cytokines, IL10 is the
cytokine produced in larger quantities.

Simpli�cation 13. Alternative activation of macrophages is triggered by
IL4 alone.

It is generally recognized that alternative activation is triggered by IL4
and IL13. However, in our model, the only recognized sources of IL13 �
iNKT and TH2 cells � produce also IL4. Therefore, we assign to IL4 the
role of both IL4 and IL13.

Simpli�cation 14. The ligation of iNKT cells on the surface of macrophages
promotes their deactivation.

According to the current biological opinion, the ligation of CD47 on the
surface of a macrophage down-regulate its activity. This is believed, for ex-
ample, to be one of the mechanisms allowing macrophage fusion (the down-
regulation allows the macrophages not to phagocytose each other). Since we
imposed that classical activation is required for killing of leishmania amastig-
otes (Simpli�cation 17), we are not interested in the normal killing activity
of macrophages. Therefore, increasing the deactivation of a macrophage
implies a down-regulation of its killing activity.

5.3.4 T Cells

Simpli�cation 15. TH1 cells produces IL2 and INFγ or IL2, INFγ and
IL10 only.

TH1 cells produce a number of cytokines. However, IL2, INFγ and IL10
are the cytokine produced in larger quantities (see for example Figure 5.4).
Note that the production of TNF is ignored due to Simpli�cation 7.
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Simpli�cation 16. TC1 cells produces IL2, and INFγ only.

TC1 cells produce a number of cytokines. However, IL2, and INFγ are
the cytokines produced in larger quantities. Note that the production of
TNF is ignored due to Simpli�cation 7.

Simpli�cation 17. TH2 and TC2 cells produces IL4 and IL10 only.

TH2 and TC2 cells produce a number of cytokines. However, IL4, and
IL10 are the cytokines produced in larger quantities (see for example Figure
5.4). Note that the production of IL13 is ignored due to Simpli�cation 13.

Simpli�cation 18. T cells deactivates after a �xed probabilistic time.

T cells activation is a complex and a not yet fully understood process
(see Smith-Garvin et al. 2009). It seems, however, possible that a T cell
internalizes a peptide before deactivating, thus continuing to be in active
state for some time. Modeling this mechanism would have required a much
more complex model of T cells (and additional parameters).

Simpli�cation 19. Apoptosis of T cells can be ignored.

Many mechanisms regulate the activities of activated T cells, and apop-
tosis is one of the most important. While the network of signals that leads
to apoptosis is not yet fully characterized, we know that many competing
signals (see for example Holtzman et al. 2000) regulate it. Most of these
signals require many cell phenotypes that are not described by our models.
Therefore, activated T cells will simply not die on our model.

Simpli�cation 20. Cytokines have no e�ect on the deactivation of T cells.

Many cytokines regulate the behavior of T cells, while some of them
promote the emergence of a phenotype, other antagonize it. For example,
INFγ promotes the di�erentiation of TH0 cells to TH1 cells while blocking
the di�erentiation to TH2 cells. We will consider the e�ect of cytokines only
on reproduction, but ignore the e�ect on deactivation.

Simpli�cation 21. T Cells consume their �ag cytokine to keep their phe-
notype active.

Each T cell subpopulation produce a �ag cytokines, that is, a cytokine
which is characteristic of that subpopulation (INFγ for type I, IL4 for type
II, and IL2 for TH0 and TC0). The �ag cytokine has a positive feedback
e�ect on the phenotype by which it is produced and a negative feedback
e�ect on the others. For example, INFγ promotes the expansion of TH1 cells
and down-regulates the expansion of TH2 cells. Moreover, from the data of
Schulz et al. 2009 we know that TH1 cells need a constant exposure to INFγ
and IL12 to preserve their ability to produce INFγ. Therefore, part of the
�ag cytokines produced needs to be used by the producing cell itself.
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Simpli�cation 22. The cytokine production of a TH1 cell requires INFγ up
to 120 hours after activation, and IL12 subsequentially.

As described by Schulz et al. 2009, INFγ and IL12 stimulate the expres-
sion of T-bet rather independently. Given the modeling technique used, we
simpli�ed this behavior using two distinct populations. Note that, in our
model, TH0 cells di�erentiate only to INFγ-consuming TH1 cells, and only
at this point IL12 is considered as a factor for the promotion of the popula-
tion of TH1 cells. This is due to the fundamental role of INFγ in our model,
which leads to a limited interest in a model without INFγ.

Simpli�cation 23. The in�ow of T cells in the granuloma is constituted
only by TH0 cells.

Di�erent populations of T cells enter the granuloma micro-environment.
Notably, di�erent types of TH1 cells migrate from other granulomas, and
contribute to a stronger in�ammatory response. Given the local nature of
our model, this aspect was not modeled.

5.3.5 Natural Killer T Cells

Simpli�cation 24. There is a constant in�ux of homeostatic NKT cells,
but no reproduction.

As described by Assumption 34, the mechanism employed by the immune
system to keep the population of liver homeostatic NKT cells stable is not
well characterized. Since the model we used is local, we are not able to test
hypotheses on the behavior of NKT cells in the whole liver. Therefore, we
are not able to test whether NKT cells reproduce in the liver or not. We will
just assume that there is a constant in�ux of NKT cells (as documented by
Coles & Raulet 2000), ignoring the source of this in�ux.

5.3.6 Natural Killer Cells

Simpli�cation 25. There is a constant in�ux of homeostatic NK cells, but
no reproduction.

Considerations similar to those described by Simpli�cation 24, led to this
simpli�cation.



Chapter 6

Model Description

This chapter describes the details of our model. Section 6.1
presents a brief description of the working of the model, while
the subsequent sections describe the details of the parameters
(Section 6.3), places (Section 6.4), and transition (Section 6.5) of
the Petri net model.

6.1 A Brief Description of the Model

6.1.1 Entities Modeled

This section brie�y describes the entities considered by the model. Besides
the parasite, various leukocytes are modeled: Kup�er cells, Non-resident
macrophages, NKT cells, NK cells, and T cells (TC0, TC1, TC2, TH0, TH1,
TH2). These leukocytes communicate via surface proteins (MHC I/II - pep-
tides complexes, CD1d - peptides complexes, and CD47-SIRPα ligations)
and cytokines (IL2, IL4, IL10, IL12, and INFγ). Additionally, the level of the
di�erent types of (de)activation of Kup�er cells and non-resided macrophages
are modeled.

6.1.2 General Considerations on Cytokines and Active Cells

Many leukocytes produce cytokines upon activation. Cytokines are a mean of
paracrine signaling, this means that the source cell � the cell producing the
cytokines � must be near the target cell � the cell reacting to the cytokines
� for the communication to be e�ective. If the source and target cells are
far apart, the concentration of the cytokines near the target cells is generally
too low to produce an e�ect. This fact poses a problem in interpreting
the data on serum cytokines and cytokine-producing leukocytes: not all the
active cells are producing and e�ect, as some of them can be too far from
the target cells.

71
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A possible approach to this problem would be to consider two populations
of active leukocytes: those producing e�ects and those not producing e�ects.
However, determining how a leukocyte moves between them is not easy and
would require the introduction of space in the model, and parameters which
are very hard to estimate. Therefore, we decided to model all the active
cells as a�ecting the target cells. This implies that each active cell produces
cytokines and the cytokines a�ect all the cells.

6.1.3 Leishmania Donovani

Leishmania donovani parasites (LDs from now on) reproduce, get killed by
classically activated Kup�er cells, and deactivate Kup�er cells. Note that
we are modeling only internalized parasites.

6.1.4 Kup�er Cells

The state of Kup�er cells (KCs from now on) is characterized by their levels
of classical activation, alternative activation, and deactivation.

Classical activation is increased by exposure to INFγ. Alternative acti-
vation is increased by exposure to IL4. Deactivation is increased by

� exposure to IL10

� active NKT

� parasites

Classical activation, alternative activation, and deactivation down-regulate
each other. Moreover, their levels decrease as a consequence of time.

KCs produce a quantity of IL10 proportional to their level of deactivation
and alternative activation, and a quantity of IL12 proportional to their level
of classical activation.

The number of MHC/CD1d peptides produced to be displayed on the
surface is proportional to the number of parasites.

The ability of KCs to kill LDs is proportional to the level of classical
activation.

6.1.5 Non-Resident Macrophages

Just like KCs, the state of non-resident macrophages (NRMPs from now on)
is characterized by their levels of classical activation, alternative activation,
and deactivation. However, the increase in their levels is controlled only
by cytokines (as NRMPs are not infected by leishmania). NRMPs produce
cytokines in the same way as KCs.
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6.1.6 Natural Killer T Cells

We considered two mechanisms of NKT cells (NKTCs from now on) activa-
tion: by direct contact via a CD1d-TCR mechanism and by stress detection.
In both cases NKTCs are activated only by infected KCs. The level of stress
of KCs is proportional to the number of parasites.

Inactive NKTCs have an in�ow, an out�ow, and a death rate. Active
NKTCs do not die. The in�ow of NKTCs is limited by space constraint,
and no in�ow is present when more than 3 inactive NKTCs are present. The
number of active NKTCs does not in�uence the in�ow.

Both NKTCs activated by direct contact and NKTCs activated by stress
deactivate the KC population by CD47-SIRPα ligation. Deactivation of
NKTCs is time dependent and is parameterized.

Active NKTCs produce IL4 (at very low amount) and INFγ. Moreover,
they attract NRMPs. The model allows additional activation of NKTCs
by direct stimulation. NKTCs activated by direct stimulations preserve the
aforementioned cytokine production pro�le (INFγhighIL4low). Additionally,
the model allows for the blocking of the activation.

6.1.7 Natural Killer Cells

NK cells (NKCs from now on) can be activated by stress-detection of infected
KCs and by exposure to IL12. The deactivation of NKCs is triggered by
time or by a low level of IL12. Active NKCs change their phenotype from
INFγ+IL10− to INFγ+IL10+ as a consequence of time.

Inactive NKCs have an in�ow, an out�ow, and a death rate. Active
NKCs do not die. The in�ow of NKCs is limited by space constraint to 1
inactive NKC.

Active NKCs produce INFγ or INFγ and IL10 according to their pheno-
type.

6.1.8 T Cells

Only antigen speci�c T cells (TCs from now on) have been modeled. Addi-
tionally, memory and regulatory TCs have been ignored. Each TC is inactive
until it gets activated by internalizing a peptide presented by KCs.

Inactive TCs have an in�ow (as TH0 and TC0 cells), and out�ow, but
do not die. Active TCs do not die and do not out�ow. Once di�erentiated,
TCs do not display any phenotype decay (e.g., TH1 cells never change their
phenotype back to TH0 cells).

Once activated, a TC consumes cytokines to keep its phenotype active.
When the required cytokine is not present, the active TC moves to an active
but non cytokine-producing state that we will call silent. The deactivation
TCs is time dependent: after a �xed probabilistic time TCs deactivate (both
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in the producing and non-producing state). Active TCs reproduce into TCs
of the same phenotype.

Helper T Cells

Antigen speci�c helper TCs get to the place of infection as inactive TH0 cells
(TH0Cs from now on). TH0Cs di�erentiate to TH1 cells (TH1Cs from now
on) when exposed to INFγ and to TH2 cells (TH2Cs from now on) when
exposed to IL4. TH0Cs have an IL2+ phenotype (when active, they produce
IL2) and consume IL2 to keep their phenotype active.

Newly di�erentiated TH1Cs (which will be called TH1INFγCs) have an
IL2+INFγ+IL10− phenotype (when active, they produce IL2 and INFγ) and
use INFγ to sustain their phenotype. After a �xed probabilistic time, TH1INFγCs
evolve to TH1IL12Cs. TH1IL12Cs cells have an IL2+INFγ+IL10− phenotype
(when active, they produce IL2 and INFγ) but use IL12 to sustain their
phenotype.

TH1IL12Cs subsequently evolve to an IL2+INFγ+IL10+ phenotype (when
active, they produce IL2, INFγ, and IL10) and use IL12 to sustain their
phenotype (these cells will be called TH1IL10Cs). The model will test three
possible mechanisms underlying this evolution:

1. Exposure to IL12

2. Exposure to INFγ

3. Prolonged activation

TH2 cells (TH2Cs from now on) have an IL4+IL10+ phenotype (when
active, they produce IL4 and IL10) and use IL4 to sustain their phenotype.

There are two sources of TH0Cs:

1. Liver (from other granulomas)

2. Spleen

Helper TCs activate by internalizing MHC class II peptides. The rate
of activation depends on the number of peptides and TCs available. Both
inactive and active TH0Cs cells can di�erentiate to TH1INFγCs or TH2Cs
cells. The deactivation is time dependent. The reproduction rate of TH0Cs
is proportional to the concentration of IL2, the reproduction rate of TH1Cs
is proportional to the concentration of INFγ, and the reproduction rate of
TH2Cs is proportional to the concentration of IL4.

Cytotoxic T Cells

Antigen speci�c cytotoxic TCs get to the place of infection as inactive TC0
cells (TC0Cs from now on). TC0Cs di�erentiate to TC1 cells (TC1Cs from
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now on) when exposed to INFγ and TC2 cells (TC2Cs from now on) when
exposed to IL4. TC0Cs have an IL2+ phenotype (when active, they produce
IL2) and consume IL2 to keep their phenotype active.

TC1Cs have an IL2+INFγ+ phenotype (when active, they produce IL2
and INFγ) and use INFγ to sustain their phenotype. TC2Cs have an IL10+IL4+

phenotype (when active, they produce IL4 and IL10) and use IL4 to sustain
their phenotype.

Cytotoxic TCs activate by internalizing MHC class I peptides. The rate
of activation depends on the number of peptides and TCs available. Both
inactive and active TC0Cs can di�erentiate to TC1Cs or TC2Cs. The deac-
tivation is time dependent. The reproduction rate of TC0Cs is proportional
to the concentration of IL2, the reproduction rate of TC1Cs is proportional
to the concentration of INFγ, and the reproduction rate of TC2Cs is propor-
tional to the concentration of IL4.

6.2 Main model: A Few Initial Remarks

The following description of the model is completely textual. Since Petri nets
are a visual formalism, this may seem strange. However, the net used in our
model is quite large and highly connected, and, while handling the net on a
computer is feasible, displaying it on a sheet of paper would make it quite
unreadable. Therefore, besides indicating the parameters used, we provide
all the information needed to reconstruct the net.

6.3 Main model: Parameters

This section describes the parameters of the model. Parameter names are
typeset using small caps characters. Many parameters have been tuned
to obtain the expected behavior from the model, when parameters have
been taken from direct biological data, references to the speci�c qualitative
assumptions are provided.

6.3.1 Environment

� CytDiff controls cytokines di�usion and drift due to the blood �ow.
A larger value indicates that cytokines leave the granuloma more rapidly.

� CellDiff controls cell di�usion and drift due to blood �ow. A larger
value indicates that cells leave the granuloma more rapidly. Cells are
bigger and di�use more slowly that cytokines, this is due to their size
and to the e�ect of other stimuli (e.g., chemokines).

� IL4Effectiveness controls the e�ectiveness of IL4. A larger value
indicates that less IL4 is needed to produce an e�ect.
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� IL10Effectiveness controls the e�ectiveness of IL10. A larger value
indicates that less IL10 is needed to produce an e�ect.

� IL12Effectiveness controls the e�ectiveness of IL12. A larger value
indicates that less IL12 is needed to produce an e�ect.

� INFgEffectiveness controls the e�ectiveness of INFγ. A larger
value indicates that less INFγ is needed to produce an e�ect.

� IL2Effectiveness controls the e�ectiveness of IL2. A larger value
indicates that the cells react to IL2 more rapidly. IL12 has a lower
e�ectiveness with respect to the other cytokines as it is less speci�c.

� INFgStart indicates when the injection of INFγ starts.

� INFgEnd indicates when the injection of INFγ ends.

� INFgLevel indicates the quantities of INFγ tokens injected per hours

Table 6.1 summarizes the values used for the parameters described above.

Parameter name value

CytDi� 0.25
CellDi� 0.05

IL2E�ectiveness 0.1
IL4E�ectiveness 1
IL10E�ectiveness 1
IL12E�ectiveness 1
INFgE�ectiveness 1

INFgStart varies (default value 103)
INFgEnd varies (default value 103)
INFgLevel 10

Table 6.1: Value of environment-related parameters

6.3.2 Leishmania Donovani

� LDKill controls the ability of amastigotes to kill macrophages. A
larger value indicates that amastigotes need less time to kill the KCs.

� LDRep controls the reproduction rate of parasites. A larger value
indicates a faster reproduction. The order of magnitude of the value
was obtained from Assumption 43.

� LDDA controls the ability of amastigotes to deactivate KCs. A larger
value indicates that amastigotes need less time to deactivate KCs.

Table 6.2 summarizes the values used for the parameters described above.
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Parameter name value

LDKill 0.00001
LDRep 0.009
LDDA 0.0001

Table 6.2: Value of Leishmania-related parameters

6.3.3 Macrophages

� CytAct controls the e�ect of cytokines on the activation of macrophages.
This parameter represents the sensitivity of macrophages to cytokines.
A larger value indicates that cytokines activate macrophages more
rapidly.

� MKill controls the ability of KCs to kill LDs. A larger value indicates
that KCs kill LDs more rapidly. The order of magnitude of the value
was obtained from Assumption 49.

� MacArr controls the arrival rate of KCs. A larger value indicates a
more rapid in�ux of KC, and thus leads to a larger core of the granu-
loma.

� MacCyt controls the cytokine production of macrophages. A larger
value indicates a faster production.

� MHCILife represents the half-life of MHC I - peptide complexes. See
Assumption 45 for the source of the value.

� MHCIILife represents the half-life of MHC II - peptide complexes.
See Assumption 46 for the source of the value.

� CD1dLife represents the half-life of CD1d - peptide complexes. See
Assumption 47 for the source of the value.

� MacActivationDecay represents the decay of (de)activation due to
time. A larger value indicates a faster decay.

� MHCIIProd controls the production of MHCII peptides by KCs. A
larger value indicates a faster production.

� CD1dProd controls the production of CD1d peptides by KCs. A
larger value indicates a faster production.

� MHCIProd controls the production of MHCI peptides by KCs. A
larger value indicates a faster production.

� MonoLeave controls the speed of the out�ow of NRMPs. A larger
value indicates a faster out�ow.
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� KCEscapeRate controls the migration of KCs not belonging to the
granuloma in the initial stages of formation. A larger value leads to
smaller granulomas.

� KCIncomeRate controls the in�ows of new KCs. A larger value
indicates a faster in�ow.

� ActivationFight control the time needed for the di�erent types of
(de)activations to reciprocally down-regulate. A larger value indicates
a slower down-regulation.

� KCCC controls the carrying capacity of KCs relative the parasites,
that is, the number of parasites that a single cell can sustain. See
Assumption 48 for the source of the value.

Table 6.3 summarizes the values used for the parameters described above.

Parameter name value

CytAct 0.0049
MKill 0.025
MacArr 0.4
MacCyt 2
MHCILife 3
MHCIILife 60
CD1dLife 20

MacActivationDecay 0.001
MHCIProd 0.037
MHCIIProd 0.015
CD1dProd 0.024
MonoLeave 0.05

KCEscapeRate 0.4
KCIncomeRate 0.0001
ActivationFight 0.02

KCCC 100

Table 6.3: Value of phagocytes-related parameters

6.3.4 Natural Killer T Cells

� iNKTDA controls NKTCs-mediated deactivation of KCs. A larger
value indicates that NKTCs deactivate macrophages more rapidly.

� iNKTStressAct controls stress-mediated activation of NKTCs. A
larger value indicates that NKTCs respond more rapidly to the number
of parasites of the infected KCs.
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� iNKTCD1dAct controls CD1d-mediated activation of NKTCs. A
larger value indicates that NKTCs respond more rapidly to the display
of CD1d by macrophages.

� iNKTDeact controls deactivation of NKTCs. A smaller value indi-
cates that NKTCs are more rapidly deactivated.

� iNKTLife represents the half-life of NKTCs. See Assumption 60 for
the source of the value.

� iNKTArr controls the arrival of NKTCs. A larger value indicates a
more rapid in�ux.

� iNKTIL4Prod controls the production of IL4 by NKTCs. A larger
value indicates that NKTCs require less time to produce IL4.

� iNKTINFgProd controls the production of INFγ by NKTCs. A
larger value indicates that NKTCs require less time to produce INFγ.

� iNKTChem indicates the ability of NKTCs to attract NRMPs by
chemokines. A larger value indicates that NKTCs attract NRMPs
faster.

� iNKTPool indicates the maximum number or homeostatic NKTCs
that can be simultaneously present in the granuloma. See Assumptions
62 and 65 for the source of the value.

� iNKTEffPool indicates the maximum number or active NKTCs that
can be simultaneously present in the granuloma.

� ExternalActivationRate controls the external activation of NK-
TCs. A larger value indicates a faster activation.

� NKTActivationStart indicates when the external activation of NK-
TCs starts.

� NKTActivationEnd indicates when the external activation of NK-
TCs ends.

� NKTBlockActivationStart indicates when the blocking of NK-
TCs activation starts.

� NKTBlockActivationEnd indicates when the blocking of NKTCs
activation ends.

Table 6.4 summarizes the values used for the parameters described above.
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Parameter name value

NKTDA 0.05
NKTArr 0.3

NKTStressAct 0.0035
NKTCD1dAct 0.13
NKTDeact 0.3
NKTLife 400

NKTIL4Prod 0.2
NKTINFgProd 2
NKTChem 0.01
NKTPool 3

NKTE�Pool 103

ExternalActivationRate 1
NKTActivationStart varies (default value 103)
NKTActivationEnd varies (default value 103)

NKTBlockActivationStart varies (default value 103)
NKTBlockActivationEnd varies (default value 103)

Table 6.4: Value of NKT cell-related parameters

6.3.5 Natural Killer Cells

� NKMacAct controls the macrophage-mediated activation of NKCs.
A larger value indicates that NKCs respond more rapidly to the number
of parasites of the infected KCs.

� NKDeact controls the deactivation of NKCs. A larger value indicates
that NKCs are more rapidly deactivated.

� NKArr controls the arrival of NKCs. A larger value indicates a more
rapid in�ux of NKCs.

� NKLife represents the half-life of inactive NKCs. See Assumption 60
for the source of the value.

� NKEvol controls the time required by NKCs to initiate the production
of IL10. A larger value indicates that NKCs initiate the production of
IL10 later. See Assumption 61 for the source of the value.

� IL12NKAct controls the IL12-mediated activation of NKCs. A larger
value indicates that less IL12 is required for activation.

� IL12NKDeact controls the IL12-mediated deactivation of NKCs. A
larger value indicates that even larger quantities of IL12 can deactivate
NKCs.
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� NKCytProd controls the production of cytokines by NKCs. A larger
value indicates that NKCs need less time to produce cytokines.

� NKPool indicates the maximum number or homeostatic NKCs that
can be simultaneously present in the granuloma. See Assumptions 58
and 65 for the source of the value.

� NKEffPool indicates the maximum number or active NKCs that can
be simultaneously present in the granuloma

Table 6.5 summarizes the values used for the parameters described above.

Parameter name value

NKMacAct 0.002
NKDeact 0.3
NKArr 0.08
NKLife 400
NKEvol 500

IL12NKAct 0.0005
IL12NKDeac 0.01
NKCytProd 2
NKPool 1

NKE�Pool 106

Table 6.5: Value of NK cell-related parameters

6.3.6 T Cells

� Th1IL10Diff controls the emergence of IL10-producing phenotype by
TH1Cs. A larger value indicates a higher probability of mutation. The
speci�c meaning and value depends on the model used (INFγ- , IL12-,
or time-dependent evolution)

� TCellDiff controls the di�erentiation of TCs. A larger value in-
dicates that TH0Cs and TC0Cs react more rapidly to cytokines by
di�erentiating.

� TRep controls the reproduction of TCs. A larger value indicates that
TCs react more rapidly to cytokines by reproducing.

� SpleenTCellArr controls the arrival of TH0Cs and TC0Cs from
spleen. A larger value indicates a more rapid in�ux.

� LiverTCellArr controls the arrival of TH0Cs and TC0Cs from other
granulomas in the liver. A larger value indicates a more rapid in�ux.
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� TCellAct controls the activation of TCs. A larger value indicates
that TCs react more rapidly to the display of MHC I/II peptides by
KCs.

� TDeact controls the deactivation of TCs. A larger value indicates
that TCs deactivate more rapidly.

� TChem indicates the ability of TCs to attract NRMPs by chemokines.
A larger value indicates that the TCs attract NRMPs faster.

� ToZeroProd controls the quantity of cytokine needed to keep TCs
active. A larger value indicates that a larger quantity is needed.

� FromZeroProd controls the reprise of cytokine production by silent
TCs. A larger value indicates that less cytokines are needed.

� Th1Evol controls the evolution of TH1Cs from an INFγ- to an IL12-
consuming stage. A larger value indicates that the process takes more
time. See Simpli�cation 22 for the source of the value.

� TCellKeepProd controls the consumption of cytokines by TCs. A
larger value indicates that TCs consume more cytokines to keep their
phenotype active.

� TCellCytProd controls the production of cytokines by TCs. A
larger value indicates that TCs need less time to produce cytokines.

� Th1IL10RepMod controls the reproduction of IL10-producing TH1IL10Cs.
A smaller value indicates a more reduced reproduction ability.

� TimeTStart indicates the time of arrival of antigens speci�c TCs to
the granuloma. See Assumption 52 for the source of the value.

� TimeTStop indicates the time after which antigens speci�c TCs stop
getting to the granuloma from the spleen. See Assumption 53 for the
source of the value.

Table 6.6 summarizes the values used for the parameters described above.

6.3.7 Parameter Simpli�cations

As described before, we set the values of some parameters to be the same
with the aim of building a more meaningful, albeit less precise, model. Table
6.7 recaps the group of parameters that share the same values.

Note that, to assess the importance of the various cell populations, these
parameters vary independently for sensitivity analysis.
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Parameter name value

0.013 for Time-Model
Th1IL10Di� 0.0004 for IL12-Model

0.00025 for INFγ-Model
TCellDi� 0.004
TRep 0.004

SpleenTCellArr 0.05
LiverTCellArr 0.05
TCellAct 0.0069
TDeact 0.3
TChem 0.01

ToZeroProd 0.001
FromZeroProd 0.001

Th1Evol 120
TCellKeepProd 0.4
TCellCytProd 2
TimeTStart 96
TimeTStop 125

Th1IL10RepMod 0.75

Table 6.6: Value of T cell-related parameters

Parameters meaning Parameters

MacCyt, iNKTINFgProd,
Cytokine production

NKCytProd, TCellCytProd
Deactivation TDeact, iNKTDeact, NKDeact

INFgEffectiveness, IL4Effectiveness,
E�ectiveness

IL10Effectiveness, IL12Effectiveness
Chemokine production TChem, iNKTChem

In�ow of T cells SpleenTCellArr, LiverTCellArr

Table 6.7: Group of equal parameters
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6.4 Main model: Places

This section describes the places of the model. Place names are typeset using
bold characters.

6.4.1 Environment

The places IL2, IL4, IL10, IL12, and INFg model the number of IL2, IL4,
IL10, IL12, and INFγ tokens.

Additionally, a number of control places have been introduced to control
the behavior of the model.

� if Remove − INFg is marked INFγ is excluded from the model.

� if Remove − IL10 is marked IL10 is excluded from the model.

� if Remove − IL12 is marked IL12 is excluded from the model.

Finally, EnvTime counts the hours passed from the beginning of the
infection.

6.4.2 Non-Resident Macrophages

Phagocytes models the number of NRMPs, while PhagocytesAlternativeActivation,
PhagocytesCalssicalActivation, and PhagocytesDeactivation model
their level of alternative activation, classical activation and deactivation.

6.4.3 Kup�er Cells

KC models the number of KCs, while KCAlternativeActivation, KCCalssicalActivation,
and KCDeactivation model their level of alternative activation, classical
activation and deactivation. Additionally, AvailableKC models the number
of KCs available to form the granuloma.

Finally, MHCI, MHCII, and CD1d model the number of antigen spe-
ci�c MHC - peptide complexes displayed by KCs.

6.4.4 Leishmania Donovani

LD models the number of leishmania donovani amastigotes phagocytosed
by the KCs.

6.4.5 Natural Killer Cells

NK and NKEff model inactive and active INFγ+IL10− NKCs, while NKIL10
and NKIL10Eff model inactive and active INFγ+IL10+ NKCs. Addition-
ally, NKNumber models the total number of NKCs (both inactive and
active). Finally, if Remove −NK is marked NKCs are excluded from the
model.
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6.4.6 Natural Killer T Cells

iNKT, iNKTEffCd1d, and iNKTEffStress model inactive, CD1d-activated
and stress-activated NKTCs. Additionally, CD47Binded models the num-
ber of CD47-SIRPα ligations and NKTNumber models the total number
of NKTCs (both inactive and active).

Moreover, a number of control places have been introduced to control
the behavior of the model.

� if Remove − iNKT is marked NKTCs are excluded from the model.

� it iNKT −CD1d is marked NKTCs can be activated by a CD1d-
mediated mechanism.

� it iNKT − stress is marked NKTCs can be activated by a stress-
mediated mechanism.

� PreventActivationToken is marked and used to prevent activation
of NKTCs if necessary.

� when PreventActivation is marked NKTCs cannot activate

Finally, iNKTTime counts the hours passed from the beginning of the
infection.

6.4.7 T Cells

Three states are possible for T cells:

� Inactive: Th0, Th1I, Th1II, Th1IL10, Th2, Tc0, Tc1, and Tc2,
model inactive TH0Cs, TH1INFγCs, TH1IL12Cs, TH1IL10Cs, TC0Cs,
TC1Cs, and TC2Cs, respectively.

� Active: Th0Eff , Th1IEff , Th1IIEff , Th1IL10Eff , Th2Eff , Tc0Eff ,
Tc1Eff , and Tc2Eff , model active TH0Cs, TH1INFγCs, TH1IL12Cs,
TH1IL10Cs, TC0Cs, TC1Cs, and TC2Cs, respectively.

� Silent: Th0ZeroProd, Th1IZeroProd, Th1IIZeroProd, Th1IL10ZeroProd,
Th2ZeroProd, Tc0ZeroProd, Tc1ZeroProd, and Tc2ZeroProd,
model active TH0Cs, TH1INFγCs, TH1IL12Cs, TH1IL10Cs, TC0Cs, TC1Cs,
and TC2Cs, respectively.

Moreover, ThNumber and TcNumber model the total number of
helper and cytotoxic TCs (both inactive and active). Additionally, if Remove −T
is marked, TCs are excluded from the model.

Finally, TCellTime counts the hours passed from the beginning of the
infection.
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6.4.8 Others

The place Infected is marked only if the number of LDs is greater than 0.

6.4.9 Initial Marking

The initial number of entities is �xed for all wild type conditions, speci�cally:

� 4 tokens in LD.

� 1 token in KC.

� 10 tokens in AvailableKC

� 2 tokens in iNKT.

� 2 tokens in iNKTNumber.

� 1 token in NK.

� 1 token in NKNumber.

� 1 token in Infected.

� 1 token in PreventActivationToken.

When cell populations are removed form the model, the corresponding tokens
are removed.

Additionally, under �baseline conditions�, iNKT −CD1d contains 1 to-
ken.

6.5 Main model: Transitions

This section describes the transitions of the model. Transition names are
typeset using italics characters. The pre- and post-places of a transition are
followed by an indication of the type and cardinality of the arc connecting
that place to/from the transition. Only cardinalities di�erent from 1 are
explicitly indicated. The following arc types are possible:

� Standard arc (→)

� Read arc (p)

� Inhibitory arc (⊸)

� Modi�er arc (⇢)

The following Snoopy-speci�c function have been used:

� ImmediateFiring() indicates an immediate transition.
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� TimedFiring(x) indicates a transition that, when enabled, �res every
x time units (in our models x hours).

� leq(x, y) is 0 if x ≤ y, and 1 otherwise.

� geq(x, y) is 0 if x ≥ y, and 1 otherwise.

6.5.1 Environment

Cytokine tokens are produced and consumed by various cells. The transitions
controlling this production are described in the subsections relative to these
cells. Additionally, cytokine tokens are a�ected by a di�usion and drift due
to blood �ow. We used a simple exponential decay model, and therefore
CytDiff and the half-life of the cytokines are inversely proportional.

IL2−Diff models the di�usion and drift due to blood �ow of IL2. The
preplace is

� IL2(→)

The coe�cient is

CytDiff ⋅ IL2

IL4−Diff models the di�usion and drift due to blood �ow of IL4. The
preplace is

� IL4(→)

The coe�cient is

CytDiff ⋅ IL4

IL10 −Diff models the di�usion and drift due to blood �ow of IL10.
The preplace is

� IL10(→)

The coe�cient is

CytDiff ⋅ IL10

IL12 −Diff models the di�usion and drift due to blood �ow of IL12.
The preplace is

� IL12(→)

The coe�cient is

CytDiff ⋅ IL12

INFg −Diff models the di�usion and drift due to blood �ow of INFγ.
The preplace is
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� INFg(→)

The coe�cient is

CytDiff ⋅ INFg

Drain − IL10 models the removal of IL10. The preplaces are

� RemoveIL10(p)

� IL10(→)

The coe�cient is

ImmediateFiring()

Drain − IL12 models the removal of IL12. The preplaces are

� RemoveIL12(p)

� IL12(→)

The coe�cient is

ImmediateFiring()

Drain − INFg models the removal of INFγ. The preplaces are

� RemoveINFg(p)

� INFg(→)

The coe�cient is

ImmediateFiring()

Inject − INFg models the injection of INFγ. The preplaces are

� RemoveINFg(p)

� INFg(→)

The coe�cient is

INFgLevel ⋅ geq(EnvTime, INFgStart) ⋅ leq(EnvTime, INFgEnd)

When this transition is enabled, that is when INFgStart ≤ EnvTime ≤
INFgEnd, an average number INFgLevel of INFγ tokens are injected per
hour.
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6.5.2 Leishmania Donovani (LD)

LD −Reproduce models the reproduction of amastigotes. The reproduction
is assumed to be logistic with carrying capacity equal to KCCC ⋅KC. The
preplace is

� LD(p)

The postplace is

� LD(→)

The coe�cient is

LDRep ⋅LD ⋅ (1 − LD

KCCC ⋅KC)

KC −Kill−LD models the killing of amastigotes by KCs. The preplaces
are

� LD(→)

� KC(p)

The coe�cient is

MKill ⋅ (0.01 ⋅ClassicalAcivation) ⋅Macrophage

Since ClassicalAcivation ≤ 100, on average, n fully classically activated
macrophages kill a parasite every 1/(n ⋅MKill) hours.

LD −Deactivate models the deactivation of KCs by amastigotes. The
preplaces are

� LD(p)

� KC(p)

� KCDeactivation(100⊸)

The postplaces is

� KCDeactivation(→)

The coe�cient is

LDDA ⋅LD

Therefore, the deactivation activity of the parasites is proportional to the
number of LDs.

LD −Kill −KC models the death of KCs due to the amastigotes. The
preplaces are
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� KC(→)

� LD(p)

The coe�cient is

LDKill ⋅ LD
KC

As we can see from the coe�cient, the death rate depends on the ratio of
LDs to KCs.

6.5.3 Non-Resident Macrophages (NRMPs)

NRMPs are attracted to the granuloma by the chemokines produced by
by NKTCs and Type I TCs. Once they get to the granuloma, they can
get (de)activated by various cytokines. (De)activations down-regulate each
other and decay over time. NRMPs produce di�erent cytokines according
to their (de)activations, and leave the granuloma when the level of infection
decreases.

Mono − Arr models the arrival of NRMPs due to the chemokines pro-
duced by NKTCs, TH1 and TC1 cells. The preplaces are

� iNKTEffCD1d(p)

� iNKTEffStress(p)

� Th1IEff(p)

� Th1IIEff(p)

� Th1IL10Eff(p)

� Tc1Eff(p)

The postplace is

� Phagocytes(→)

The coe�cient is

iNKTChem ⋅ (iNKTE�CD1d + iNKTE�Stress)
+TChem ⋅ (Th1IE� +Th1IIE� +Th1IL10E�)
+TChem ⋅Tc1E�

More chemokine-producing cells imply a faster arrival rate.
The various (de)activations of NRMPs are proportional to the quantity

of speci�c cytokines and their e�ectiveness. For example, the classical acti-
vation is proportional to the quantity of INFg and its e�ectiveness.

INFg −Mono−CActivate models the classical activation of NRMPs by
INFγ. The preplaces are
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� PhagocytesClassicalActivation(100⊸)

� Phagocytes(p)

� INFg(→)

The postplace is

� PhagocytesClassicalActivation(→)

The coe�cient is

CytAct ⋅ INFgEffectiveness ⋅ INFg

IL4−Mono−AActivate models the alternative activation of NRMPs by
IL4. The preplaces are

� PhagocytesAlternativeActivation(100⊸)

� Phagocytes(p)

� IL4(→)

The postplace is

� PhagocytesAlternativeActivation(→)

The coe�cient is

CytAct ⋅ IL4Effectiveness ⋅ IL4

IL − 10 −Mono −DA models the deactivation of NRMPs by IL10. The
preplaces are

� PhagocytesDeactivation(100⊸)

� Phagocytes(p)

� IL10(→)

The postplace is

� PhagocytesDeactivation(→)

The coe�cient is

CytAct ⋅ IL10Effectiveness ⋅ IL10

The (de)activations down-regulate each-other. This down-regulation is
proportional to the sum of the (de)activations considered. For example, the
reciprocal down-regulation of deactivation and classical activation is propor-
tional to the sum ofPhagocytesClassicalActivation+PhagocytesDeactivation.

Mono−DA−vs−CAmodels the reciprocal downregulation of deactivation
and classical activation of NRMPs. The preplaces are
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� PhagocytesClassicalActivation(→)

� PhagocytesDeactivation(→)

The coe�cient is

ActivationFight⋅
(PhagocytesClassicalActivation +PhagocytesDeactivation)

Mono−DA−vs−AAmodels the reciprocal downregulation of deactivation
and alternative activation of NRMPs. The preplaces are

� PhagocytesAlternativeActivation(→)

� PhagocytesDeactivation(→)

The coe�cient is

ActivationFight⋅
(PhagocytesAlternativeActivation +PhagocytesDeactivation)

Mono −CA − vs −AA models the reciprocal downregulation of classical
and alternative activation of NRMPs. The preplaces are

� PhagocytesClassicalActivation(→)

� PhagocytesAlternativeActivation(→)

The coe�cient is

ActivationFight⋅
(PhagocytesAlternativeActivation +PhagocytesClassicalActivation)

The decay of (de)activations is assumed to be exponential, and a larger
MacActivationDecay indicates a shorter half-life of (de)activations.

PhagocytesClassicalActivation − Decay models the decay of classical
activation of NRMPs as a consequence of time. The preplace is

� PhagocytesClassicalActivation(→)

The coe�cient is

MacActivationDecay ⋅PhagocytesClassicalActivation

PhagocytesAlternativeActivation−Decay models the decay of alterna-
tive activation of NRMPs as a consequence of time. The preplace is

� PhagocytesAlternativeActivation(→)
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The coe�cient is

MacActivationDecay ⋅PhagocytesAlternativeActivation

PhagocytesDeactivation − Decay models the decay of deactivation of
NRMPs as a consequence of time. The preplace is

� PhagocytesDeactivation(→)

The coe�cient is

MacActivationDecay ⋅PhagocytesDeactivation

The cytokine production of NRMPs is proportional to their number and
levels of (de)actiavations.

Mono−DA−IL10 models the production of IL10 by deactivated NRMPs.
The preplaces are

� Phagocytes(p)

� PhagocytesDeactivation(p)

The postplace is

� IL10(→)

The coe�cient is

MacCyt ⋅ (0.01 ⋅PhagocytesDeactivation) ⋅Phagocytes

Mono −AA − IL10 models the production of IL10 by alternatively acti-
vated NRMPs. The preplaces are

� Phagocytes(p)

� PhagocytesAlternativeActivation(p)

The postplace is

� IL10(→)

The coe�cient is

MacCyt ⋅ (0.01 ⋅PhagocytesAlternativeActivation) ⋅Phagocytes

Mono − IL12 models the production of IL12 by classically activated
NRMPs. The preplaces are

� Phagocytes(p)

� PhagocytesClassicalActivation(p)
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The postplace is

� IL12(→)

The coe�cient is

MacCyt ⋅ (0.01 ⋅PhagocytesClassicalActivation) ⋅Phagocytes

The departure of NRMPs is assumed to be inversely proportional to the
number of parasites. This transition is partly responsible for the dissolution
of the granuloma.

PhagocyteDepart models the departure of NRMPs due to the reduced
parasite burden. The preplaces are

� Phagocytes(→)

� LD(⇢)

The coe�cient is

MonoLeave ⋅ 1

LD + 1

6.5.4 Kup�er Cells (KCs)

The in�ow and out�ow of available KCs is assume to be constant.
KCINflow models the in�ow of available KCs. The postplace is

� AvailableKC(→)

The coe�cient is

KCIncomeRate

MigrateToOtherGranulomas models the out�ow of available KCs due
to other granulomas. The preplace is

� AvailableKC(→)

The coe�cient is

KCEscapeRate

The aggregation of a KC to a granuloma is proportional to the infection
level of the granuloma, and therefore to the ratio of LDs to KCs.

KC−Arrival models the formation of the core of the granuloma by KCs.
The preplace is

� AvailableKC(→)

The postplace is
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� KC(→)

The coe�cient is

MacArr ⋅ LD

KC + 1

The (de)activation activities and cytokine production of KCs is the same
as NRMPs.

IL4 −KC −AActivate models the alternative activation of KCs by IL4.
The preplaces are

� KCAlternativeActivation(100⊸)

� KC(p)

� IL4(→)

The postplace is

� KCAlternativeActivation(→)

The coe�cient is

CytAct ⋅ IL4Effectiveness ⋅ IL4

INFg−KC−CActivate models the classical activation of KCs by INFγ.
The preplaces are

� KCClassicalActivation(100⊸)

� KC(p)

� INFg(→)

The postplace is

� KCClassicalActivation(→)

The coe�cient is

CytAct ⋅ INFgEffectiveness ⋅ INFg

IL10−KC −DA models the deactivation of KCs by IL10. The preplaces
are

� KCDeactivation(100⊸)

� KC(p)

� IL10(→)
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The postplace is

� KCDeactivation(→)

The coe�cient is

CytAct ⋅ IL10Effectiveness ⋅ IL10

KC−DA−vs−CA models the reciprocal down-regulation of deactivation
and classical activation of KCs. The preplaces are

� KCClassicalActivation(→)

� KCDeactivation(→)

The coe�cient is

ActivationFight⋅
(KCClassicalActivation +KCDeactivation)

KC−DA−vs−AA models the reciprocal down-regulation of deactivation
and alternative activation of KCs. The preplaces are

� KCAlternativeActivation(→)

� KCDeactivation(→)

The coe�cient is

ActivationFight⋅
(KCAlternativeActivation +KCDeactivation)

KC − CA − vs − AA models the reciprocal down-regulation of classical
and alternative activations of KCs. The preplaces are

� KCAlternativeActivation(→)

� KCClassicalActivation(→)

The coe�cient is

ActivationFight⋅
(KCAlternativeActivation +KCClassicalActivation)

KCClassicalActivation−Decay models the decay of classical activation
of KCs as a consequence of time. The preplace is

� KCClassicalActivation(→)



6.5. MAIN MODEL: TRANSITIONS 97

The coe�cient is

MacActivationDecay ⋅KCClassicalActivation

KCAlternativeActivation−Decay models the decay of alternative acti-
vation of KCs as a consequence of time. The preplace is

� KCAlternativeActivation(→)

The coe�cient is

MacActivationDecay ⋅KCAlternativeActivation

KCDeactivation −Decay models the decay of deactivation of KCs as a
consequence of time. The preplace is

� KCDeactivation(→)

The coe�cient is

MacActivationDecay ⋅KCDeactivation

KC−DA−IL10 models the production of IL10 by deactivated KCs. The
preplaces are

� KC(p)

� KCDeactivation(p)

The postplace is

� IL10(→)

The coe�cient is

MacCyt ⋅ (0.01 ⋅KCDeactivation) ⋅KC

KC−AA−IL10 models the production of IL10 by alternatively activated
KCs. The preplaces are

� KC(p)

� KCAlternativeActivation(p)

The postplace is

� IL10(→)

The coe�cient is

MacCyt ⋅ (0.01 ⋅KCAlternativeActivation) ⋅KC

KC − IL12 models the production of IL12 by classically activated KCs.
The preplaces are
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� KC(p)

� KCClassicalActivation(p)
The postplace is

� IL12(→)
The coe�cient is

MacCyt ⋅ (0.01 ⋅KCClassicalActivation) ⋅KC

The production of peptides is proportional to the number of LDs. This
is due to the fact that the whole population of KCs produces the peptides.

KC − Produce −MHCI models the production of MHC I peptides by
KCs. The preplaces are

� KC(p)

� LD(p)
The postplace is

� MHCI(→)
The coe�cient is

MHCIProd ⋅LD

KC −Produce−MHCII models the production of MHC II peptides by
KCs. The preplaces are

� KC(p)

� LD(p)

� KCClassicalAcivation(⇢)

� KCAlternativeActivation(⇢)

� KCDeactivation(⇢)
The postplace is

� MHCII(→)
The coe�cient is

MHCIIProd ⋅LD⋅
1 +KCClassicalAcivation/50 +KCAlternativeActivation/50

1 +KCDeactivation/50

The coe�cient implies that the production of MHC II peptides is promoted
by activations and advertised by deactivation.

KC −Produce−CD1d models the production of CD1d peptides by KCs.
The preplaces are
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� KC(p)

� LD(p)

The postplace is

� CD1d(→)

The coe�cient is

CD1dProd ⋅LD

MHC I/II and CD1d complexes have an exponential decay.
MHCI − Decay models the decay of MHC I peptides displayed KCs.

The preplace is

� MHCI(→)

The coe�cient is

MHCI

MHCILife
⋅ log(2)

MHCII −Decay models the decay of MHC II peptides displayed KCs.
The preplace is

� MHCII(→)

The coe�cient is

MHCII

MHCIILife
⋅ log(2)

CD1d −Decay models the decay of CD1d peptides displayed KCs. The
preplace is

� CD1d(→)

The coe�cient is

CD1d

CD1dLife
⋅ log(2)

KC −Kill − LD models the parasiticidal activity of KCs. The ability
of KCs to kill the amastigotes is assumed to proportional to their level of
classical activation. The preplaces are

� LD(→)

� KC(p)

� KCClassicalAcivation(p)
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The coe�cient is

MKill ⋅ (0.01 ∗KCClassicalAcivation) ⋅KC ⋅LD

KC − Depart models the departure of KCs after the clearance of the
parasites. The preplaces are

� LD(⊸)

� KC(→)

The coe�cient is

CellDiff ⋅KC

Note that no KC departs unless all the parasites have been cleared.

6.5.5 Natural Killer Cells (NKCs)

NK −Arrival models the arrival of inactive INFγ+IL10+ NKCs. This in�ow
is assumed to be constant and limited by space constraints. The preplaces
are

� NK(⇢)

� NKIL10(⇢)

� RemoveNK(⊸)

The postplaces are

� NK(⇢)

� NKNumber(⇢)

The coe�cient is

NKArr ⋅ leq(NK +NKIL10,NKPool − 1)

Note that this transition is enabled only if no more than NKPool inactive
NKCs are presents and RemoveNK is not marked.

NKIL10−Actmodels the KCs-mediated activation of INFγ+IL10+ NKCs.
This activation is proportional to the number of LD. The preplaces are

� NKIL10(→)

� KC(p)

� LD(p)

� NKNumber(⇢)
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The postplaces are

� NKEff(→)

The coe�cient is

NKMacAct ⋅NKIL10 ⋅LD ⋅ leq(NKNumber,NKEffPool − 1)

Note that this transition is enabled only if no more than NKEffPool active
NKCs are presents.

IL12−NKIL10−Actmodels the IL12-mediated activation of INFγ+IL10+
NKCs. This activation is proportional to the number of IL12. The preplaces
are

� NKIL10(→)

� IL12(→)

� NKNumber(⇢)

The postplaces are

� NKEff(→)

The coe�cient is

IL12NKAct ⋅NKIL10 ⋅ IL12 ⋅ leq(NKNumber,NKEffPool − 1)

Similarity to NKIL10−Act, this transition is enabled only if no more than
NKEffPool active NKCs are presents.

NK−Evolmodels the mutation of the phenotype of NKCs from INFγ+IL10−

to INFγ+IL10+. The preplace is

� NKEff(→)

The postplaces is

� NKIL10Eff(→)

The coe�cient is

NKE�NKEvol ⋅ log(9)

The coe�cient indicates that, if the number of NKE� were una�ected by
other transitions, after NKEvol hours, 90% of tokens in NKE� wuold be
expected to have moved to NKIL10Eff .

The cytokine production of each NKC is assumed to be constant.
NK −Cyt models the production of INFγ by active INFγ+IL10− NKCs.

The preplace is
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� NKEff(p)

The postplaces is

� INFg(→)

The coe�cient is

NKE� ⋅NKCytProd

NKIL10−Cytmodels the production of INFγ and IL10 by active INFγ+IL10+
NKCs. The preplace is

� NKIL10Eff(p)

The postplaces are

� INFg(→)

� IL10(→)

The coe�cient is

NKE� ⋅NKCytProd

Two mechanisms of deactivation of NKCs are present. A timed deactiva-
tion, which is exponentially distributed, and an IL12-dependent deactivation,
which is inversely proportional to the quantity of IL12.

NK −Deact models the deactivation of active INFγ+IL10− NKCs. The
preplaces are

� NKEff(→)

The postplaces is

� NK(→)

The coe�cient is

NKDeact ∗NKE�

NKIL10 −Deact models the deactivation of active INFγ+IL10+ NKCs.
The preplace is

� NKIL10Eff(→)

The postplaces is

� NKIL10(→)



6.5. MAIN MODEL: TRANSITIONS 103

The coe�cient is

NKDeact ∗NKIL10E�

IL12 −NK −Deact models the deactivation active INFγ+IL10− NKCs
due to a low concentration of IL12. The preplaces are

� NKEff(→)

� IL12(⇢)

The postplaces is

� NK(→)

The coe�cient is

IL12NKDeact ⋅NKE�
1 + IL12

IL12 −NKIL10 −Deact models the deactivation of active INFγ+IL10+

NKCs due to a low concentration of IL12. The preplaces are

� NKIL10Eff(→)

� IL12(⇢)

The postplaces is

� NKIL10(→)

The coe�cient is

IL12NKDeact ⋅NKIL10E�
1 + IL12

Similarly to cytokines, inactive NKCs are a�ected by a di�usion and drift
due to blood �ow.

NK −Diff models the di�usion and drift of inactive INFγ+IL10− NKCs
due to blood �ow. The preplaces are

� NK(→)

� NKNumber(→)

The coe�cient is

CellDiff ⋅NK

NKIL10 −Diff models the di�usion and drift of inactive INFγ+IL10+

NKCs due to blood �ow. The preplaces are
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� NKIL10(→)

� NKNumber(→)

The coe�cient is

CellDiff ⋅NKIL10

NK −Death and NKIL10 −Death models the death of NKCs. These
transitions use the half-life obtained by biological data.

NK −Death models the death of inactive INFγ+IL10− NKCs. The pre-
places are

� NK(→)

� NKNumber(→)

The coe�cient is

NK

NKLife
⋅ log(2)

NKIL10−Death models the death of inactive INFγ+IL10+ NKCs. The
preplaces are

� NKIL10(→)

� NKNumber(→)

The coe�cient is

NKIL10

NKLife
⋅ log(2)

6.5.6 Natural Killer T Cells (NKTCs)

The transitions modeling the arrival, di�usion and drift, and death of NKTCs
are similar to those of NKCs.

iNKT −Arrival models the arrival of NKTCs. The preplaces are

� iNKT(⇢)

� RemoveNKT(⊸)

The postplaces are

� iNKT(→)

� iNKTNumber(→)
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The coe�cient is

iNKTArr ⋅ leq(iNKT,NKTPool − 1)

Two activation mechanisms are possible for NKTCs: CD1d-mediated,
which is proportional to the number of CD1d, and stress-mediated, which
is proportional to the number of LD.

iNKT − CD1d −Act models the CD1d-mediated activation of NKTCs.
The preplaces are

� iNKT(→)

� iNKT −CD1d(p)

� CD1d(→)

� iNKTNumber(⇢)

� PreventActivation(⊸)

The postplaces are

� iNKTEffCD1d(→)

� CD47Binded(→)

The coe�cient is

iNKTCD1dAct ⋅ iNKT ⋅CD1d ⋅ leq(iNKTNumber, iNKTEffPool − 1)

Note that this transition is enabled only if no more than iNKTEffPool ac-
tive NKTCs are presents, iNKT −CD1d is marked, and PreventActivation
is not marked.

iNKT − Stress −Act models the stress-mediated activation of NKTCs.
The preplaces are

� iNKT(→)

� iNKT − Stress(p)

� LD(p)

� iNKTNumber(⇢)

� PreventActivation(⊸)

The postplaces are

� iNKTEffStress(→)

� CD47Binded(→)
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The coe�cient is

iNKTStressAct ⋅ iNKT ⋅LD

Note that this transition is enabled only if no more than iNKTEffPool ac-
tive NKTCs are presents, iNKT − Stress is marked, and PreventActivation
is not marked.

The deactivation activity of NKTCs is proportional to the number of
CD47Binded.

iNKT − Deactivate models the deactivation of KCs by NKTCs. The
preplaces are

� CD47Binded(p)

� KC(p)

� KCDeactivation(100⊸)

The postplaces is

� KCDeactivation(→)

The coe�cient is

iNKTDA ⋅CD47Binded

The cytokine production of each NKC is assumed to be constant, but
di�erent quantities of INFg and IL4 are produced.

iNKTCD1d− INFg models the production of INFγ by CD1d-activated
NKTCs. The preplace is

� iNKTEffCD1d(p)

The postplaces is

� INFg(→)

The coe�cient is

iNKTINFgProd ⋅ iNKTE�CD1d

iNKTCD1d−IL4 models the production of IL4 by CD1d-activated NK-
TCs. The preplace is

� iNKTEffCD1d(p)

The postplaces is

� IL4(→)
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The coe�cient is

iNKTIL4Prod ⋅ iNKTE�CD1d

iNKTEffStress − INFg models the production of INFγ by stress-
activated NKTCs. The preplace is

� iNKTEffStress(p)

The postplaces is

� INFg(→)

The coe�cient is

iNKTINFgProd ⋅ iNKTE�Stress

iNKTEffStress−IL4 models the production of IL4 by stress-activated
NKTCs. The preplace is

� iNKTEffStress(p)

The postplaces is

� IL4(→)

The coe�cient is

iNKTIL4Prod ⋅ iNKTE�Stress

The deactivation of NKTCs is time-dependent.
iNKT −CD1d −Deact models the deactivation of CD1d-activated NK-

TCs. The preplaces are

� iNKTEffCD1d(→)

� iNKT −CD1d(p)

� CD47Binded(→)

The postplaces is

� iNKT(→)

The coe�cient is

iNKTDeact ⋅ iNKTE�CD1d

iNKT −Stress −Deact models the deactivation of stress-activated NK-
TCs. The preplaces are

� iNKTEffStress(→)
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� iNKT − Stress(p)

� CD47Binded(→)

The postplaces is

� iNKT(→)

The coe�cient is

iNKTDeact ⋅ iNKTE�Stress

iNKT − Diff models the di�usion and drift of NKTCs due to blood
�ow. The preplaces are

� iNK(→)

� iNKNumber(→)

The coe�cient is

CellDiff ⋅ iNK

iNKT −Death models the death of NKTCs. The preplaces are

� iNKT(→)

� iNKTNumber(→)

The coe�cient is

iNKT

iNKTLife
⋅ log(2)

iNKT −Time−Passes models time �ow for NKTCs. The postplaces is

� iNKTTime(→)

The coe�cient is

TimedFiring(1)

ExternalActivation models the external activation of NKTCs. The pre-
places are

� iNKT(→)

� iNKTTime(p)

The postplaces are

� iNKTEffCD1d(→)
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� CD47Binded(→)
The coe�cient is

iNKT ⋅ExternalActivationRate⋅
geq(iNKTTime,NKTActivationStart)⋅
leq(iNKTTime,NKTActivationEnd)

When this transition is enabled, that is when NKTActivationStart ≤
iNKTTime ≤ NKTActivationEnd, an average of ExternalActivationRate
NKTCs are activated per hours (if enough iNKTEffCD1d are available).

NKTCs can be prevented from activating for a certain period. Transi-
tions StartPreventingActivation and StopPreventingActivation are used
to model this feature.

StartPreventingActivation models the start of the blocking of activa-
tion of NKTCs. The preplaces are

� PreventActivationToken(→)

� iNKTTime(⇢)
The postplaces is

� PreventActivation(→)
The coe�cient is

geq(iNKTTime,NKTBlockActivationStart)
This transition is enabled only whenNKTActivationStart ≤ iNKTTime.

StopPreventingActivation models the end of the blocking of activation
of NKTCs. The preplaces are

� PreventActivation(→)

� iNKTTime(⇢)
The coe�cient is

geq(iNKTTime,NKTBlockActivationEnd)
This transition is enabled only whenNKTBlockActivationEnd ≤ iNKTTime.

6.5.7 T Cells (TCs)

The mechanism of cytokine production, di�usion and drift, and deactivation
of TCs is the same as NKTCs and will not be further commented.

TCell − Time − Passes models time �ow for TCs. The postplaces is

� TCellTime(→)
The coe�cient is

TimedFiring(1)
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6.5.8 Type 0 Helper T Cells (TH0Cs)

A constant in�ow of TH0Cs and TC0Cs is modeled. This in�ow lasts only
few hours from the spleen, but is constant from the liver.

CD4 + TCell − Arrival − Spleen models the arrival of inactive TH0Cs
from spleen. The preplaces are

� Remove −T(⊸)

� TCellTime(⇢)

The postplaces are

� ThNumber(→)

� Th0(→)

The coe�cient is

SpleenTCellArr ⋅ geq(TCellTime,TimeTStart) ⋅ leq(TCellTime,TimeTStop)

This transition is enabled only when Remove −T is not marked andTimeTStart ≤
TCellTime ≤ TimeTStop.

CD4+TCell−Arrival−Liver models the arrival of inactive TH0Cs from
other granulomas. The preplaces are

� Remove −T(⊸)

� TCellTime(⇢)

The postplaces are

� ThNumber(→)

� Th0(→)

The coe�cient is

LiverTCellArr ⋅ geq(TCellTime,TimeTStart)

This transition is enabled only when Remove −T is not marked andTimeTStart ≤
TCellTime.

Th0 −Act models the activation of TH0Cs by internalization of a MHC
II peptide. The preplaces are

� MHCII(→)

� Th0(→)

The postplace is
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� Th0Eff(→)

The coe�cient is

TCellAct ⋅Th0 ⋅MHCII

Th0 − IL2 models the production of IL2 by active TH0Cs. The preplace
is

� Th0Eff(p)

The postplace is

� IL2(→)

The coe�cient is

TCellCytProd ⋅Th0E�

Th0 − IL2 models the reproduction of active TH0Cs. The preplaces are

� Th0Eff(p)

� IL2(p)

The postplace is

� Th0(→)

� ThNumber(→)

The coe�cient is

TRep ⋅ IL2 ⋅ IL2Effectiveness ⋅Th0E�

Note that the reproduction rate is proportional to both IL2 and Th0E�.
Th0EffKeppProd models the consumption of IL2 by active TH0Cs.

The preplaces are

� Th0Eff(p)

� IL2(→)

The coe�cient is

TCellKeepProd ⋅ Th0E�

IL2Effectiveness

Th0Eff − to− Th0EffZeroProd models the silencing of TH0Cs due to
the lack of IL2. The preplaces are

� Th0Eff(→)
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� IL2(⇢)

The postplace is

� Th0EffZeroProd(→)

The coe�cient is

ToZeroProd

1 + IL2 ⋅ IL2Effectiveness
Note that the probability that a TH0C get silenced is inversely proportional
to the number of IL2.

Th0Eff − to − Th0EffZeroProd models the reprise of IL2 production
by silent TH0Cs due to the increased concentration of IL2. The preplaces
are

� Th0EffZeroProd(→)

� IL2(p)

The postplace is

� Th0Eff(→)

The coe�cient is

FromZeroProd ⋅ IL2Effectiveness ⋅ IL2

Note that the probability that a TH0C exits silenced state is proportional to
the number of IL2.

Th0Eff −Deact models the deactivation TH0Cs. The preplace is

� Th0Eff(→)

The postplace is

� Th0(→)

The coe�cient is

TDeact ⋅Th0E�

Th0EffZeroProd−Deact models the deactivation of silent TH0Cs. The
preplace is

� Th0EffZeroProd(→)

The postplace is

� Th0(→)
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The coe�cient is

TDeact ⋅Th0E�ZeroProd

Th0 −Diff models the di�usion and drift due to blood �ow of inactive
TH0Cs. The preplace is

� Th0(→)

The coe�cient is

CellDiff ⋅Th0

The di�erentiation of TH0Cs depends on the cytokines that the cells
encounter, and is proportional to the number of those cytokines.

Th0 − to − Th1 models the di�erentiation of inactive TH0Cs to inactive
TH1Cs. The preplaces are

� Th0(→)

� INFg(p)

The postplace is

� Th1(→)

The coe�cient is

TCellDiff ⋅ INFgEffectiveness ⋅ INFg

Th0 − to − Th2 models the di�erentiation of inactive TH0Cs to inactive
TH2Cs. The preplaces are

� Th0(→)

� IL4(p)

The postplace is

� Th2(→)

The coe�cient is

TCellDiff ⋅ IL4Effectiveness ⋅ IL4

Th0Eff − to − Th1Eff models the di�erentiation of active TH0Cs to
active TH1Cs. The preplaces are

� Th0Eff(→)

� INFg(p)
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The postplace is

� Th1Eff(→)

The coe�cient is

TCellDiff ⋅ INFgEffectiveness ⋅ INFg

Th0Eff − to − Th2Eff models the di�erentiation of active TH0Cs to
active TH2Cs. The preplaces are

� Th0Eff(→)

� IL4(p)

The postplace is

� Th2Eff(→)

The coe�cient is

TCellDiff ⋅ IL4Effectiveness ⋅ IL4

6.5.9 Type I Helper T Cells (TH1INFγCs)

The transitions of TH1INFγCs are similar to those of TH0Cs, and will not be
further commented.

Th1I − Act models the activation of TH1INFγCs by internalization of a
MHC II peptide. The preplaces are

� MHCII(→)

� Th1I(→)

The postplace is

� Th1IEff(→)

The coe�cient is

TCellAct ⋅Th1I ⋅MHCII

Th1I − IL2 models the production of IL2 by active TH1INFγCs. The
preplace is

� Th1IEff(p)

The postplace is

� IL2(→)
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The coe�cient is

TCellCytProd ⋅Th1IE�

Th1 − INFg models the production of INFγ by TH1INFγCs. The pre-
place is

� Th1IEff(p)

The postplace is

� INFg(→)

The coe�cient is

TCellCytProd ⋅Th1IE�

Th1IEff −Rep models the reproduction of active TH1INFγCs. The pre-
places are

� Th1IEff(p)

� INFg(p)

The postplace is

� Th1I(→)

� ThNumber(→)

The coe�cient is

TRep ⋅ INFg ⋅ INFgEffectiveness ⋅Th1IE�

Th1IEffKeppProdmodels the consumption of INFγ by active TH1INFγCs.
The preplaces are

� Th1IEff(p)

� INFg(→)

The coe�cient is

TCellKeepProd ⋅ Th1IE�

INFgEffectiveness

Th1IEff−to−Th1IEffZeroProdmodels the silencing of active TH1INFγCs
due to the lack of INFγ. The preplaces are

� Th1IEff(→)

� INFg(⇢)
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The postplace is

� Th1IEffZeroProd(→)

The coe�cient is

ToZeroProd

1 + INFg ⋅ INFgEffectiveness

Th1IEff − to − Th1IEffZeroProd models the reprise of cytokine pro-
duction by silent TH1INFγCs due to the increased concentration of INFγ.
The preplaces are

� Th1IEffZeroProd(→)

� INFg(p)

The postplace is

� Th1IEff(→)

The coe�cient is

FromZeroProd ⋅ INFgEffectiveness ⋅ INFg

Th1IEff −Deact models the deactivation of TH1INFγCs. The preplace
is

� Th1IEff(→)

The postplace is

� Th1I(→)

The coe�cient is

TDeact ⋅Th1IE�

Th1IEffZeroProd−Deactmodels the deactivation of silent TH1INFγCs.
The preplace is

� Th1IEffZeroProd(→)

The postplace is

� Th1I(→)

The coe�cient is

TDeact ⋅Th1IE�ZeroProd

Th1I −Diff models the di�usion and drift due to blood �ow of inactive
TH1INFγCs. The preplace is



6.5. MAIN MODEL: TRANSITIONS 117

� Th1I(→)

The coe�cient is

CellDiff ⋅Th1I

Th1IEff −to−ThIIEff models the di�erentiation of active TH1INFγCs
to active TH1IL12Cs. The preplace is

� Th1IEff(→)

The postplace is

� Th1IIEff(→)

The coe�cient is

Th1IE�

Th1Evol
⋅ log(9)

6.5.10 Type I Helper T Cells (TH1IL12Cs)

The transitions of TH1IL12Cs are similar to those of TH0Cs, and will not be
further commented.

Th1II −Act models the activation of inactive TH1IL12Cs by internaliza-
tion of a MHC II peptide. The preplaces are

� MHCII(→)

� Th1II(→)

The postplace is

� Th1IIEff(→)

The coe�cient is

TCellAct ⋅Th1II ⋅MHCII

Th1II − IL2 models the production of IL2 by active TH1IL12Cs. The
preplace is

� Th1IIEff(p)

The postplace is

� IL2(→)

The coe�cient is

TCellCytProd ⋅Th1IIE�

Th1II−INFg models the production of INFγ by active TH1IL12Cs. The
preplace is
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� Th1IIEff(p)

The postplace is

� INFg(→)

The coe�cient is

TCellCytProd ⋅Th1IIE�

Th1IIEff − Rep models the reproduction of active TH1IL12Cs. The
preplaces are

� Th1IIEff(p)

� INFg(p)

The postplace is

� Th1II(→)

� ThNumber(→)

The coe�cient is

TRep ⋅ INFg ⋅ INFgEffectiveness ⋅Th1IIE�

Th1IIEffKeppProdmodels the consumption of IL12 by active TH1IL12Cs.
The preplaces are

� Th1IIEff(p)

� INFg(→)

The coe�cient is

TCellKeepProd ⋅ Th1IIE�

IL12Effectiveness

Th1IIEff−to−Th1IIEffZeroProdmodels silencing of active TH1IL12Cs
due to the lack of IL12. The preplaces are

� Th1IIEff(→)

� IL12(⇢)

The postplace is

� Th1IIEffZeroProd(→)
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The coe�cient is

ToZeroProd

1 + IL12 ⋅ IL12Effectiveness
Th1IIEff − to − Th1IIEffZeroProd models the reprise of cytokine

production by silent TH1IL12Cs due to the increased concentration of IL12.
The preplaces are

� Th1IIEffZeroProd(→)

� IL12(p)

The postplace is

� Th1IIEff(→)

The coe�cient is

FromZeroProd ⋅ IL12Effectiveness ⋅ IL12

Th1IIEff − Deact models the deactivation of active TH1IL12Cs. The
preplace is

� Th1IIEff(→)

The postplace is

� Th1II(→)

The coe�cient is

TDeact ⋅Th1IIE�

Th1IIEffZeroProd−Deactmodels the deactivation of silent TH1IL12Cs.
The preplace is

� Th1IIEffZeroProd(→)

The postplace is

� Th1II(→)

The coe�cient is

TDeact ⋅Th1IIE�ZeroProd

Th1II−Diff models the di�usion and drift due to blood �oow of inactive
TH1IL12Cs. The preplace is

� Th1II(→)
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The coe�cient is

CellDiff ⋅Th1II

Th1IEff−to−Th1IL10Eff models the di�erentiation of active TH1IL12Cs
to IL10+ TH1Cs. The preplace is

� Th1IIEff(→)

The postplace is

� Th1IL10Eff(→)

The coe�cient of the INFγ-dependent model is

Th1IL10Diff ⋅ INFgEffectiveness ⋅ INFg

The coe�cient of the IL12-dependent model is

Th1IL10Diff ⋅ IL12Effectiveness ⋅ IL12

The coe�cient of the time-dependent model is

Th1IL10Diff ⋅Th1IIE�

6.5.11 Type I Helper T Cells (TH1IL10Cs)

The transitions of TH1IL10Cs are similar to those of TH0Cs, and will not be
further commented.

Th1IL10 −Act models the activation of inactive TH1IL10Cs by internal-
ization of a MHC II peptide. The preplaces are

� MHCII(→)

� Th1IL10(→)

The postplace is

� Th1IL10Eff(→)

The coe�cient is

TCellAct ⋅Th1IL10 ⋅MHCII

Th1IL10 − IL2 models the production of IL2 by active TH1IL10Cs. The
preplace is

� Th1IL10Eff(p)

The postplace is
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� IL2(→)

The coe�cient is

TCellCytProd ⋅Th1IL10E�

Th1IL10 − INFg models the production of INFγ by active TH1IL10Cs.
The preplace is

� Th1IL10Eff(p)

The postplace is

� INFg(→)

The coe�cient is

TCellCytProd ⋅Th1IL10E�

Th1IL10 − IL10 models the production of IL10 by active TH1IL10Cs.
The preplace is

� Th1IL10Eff(p)

The postplace is

� IL10(→)

The coe�cient is

TCellCytProd ⋅Th1IL10E�

Th1IL10Eff −Rep models the reproduction of active TH1IL10Cs. The
preplaces are

� Th1IL10Eff(p)

� INFg(p)

The postplace is

� Th1IL10(→)

� ThNumber(→)

The coe�cient is

Th1IL10RepMod ⋅TRep ⋅ INFg ⋅ INFgEffectiveness ⋅Th1IL10E�

Th1IL10EffKeppProdmodels the consumption of IL12 by active TH1IL10Cs.
The preplace is
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� Th1IL10Eff(p)

� IL12(→)

The coe�cient is

TCellKeepProd ⋅ Th1IL10E�

IL12Effectiveness

Th1IL10Eff−to−Th1IL10EffZeroProdmodels the silencing of TH1IL10Cs
due to the lack of IL12. The preplaces are

� Th1IL10Eff(→)

� IL12(⇢)

The postplace is

� Th1IL10EffZeroProd(→)

The coe�cient is

ToZeroProd

1 + IL12 ⋅ IL12Effectiveness

Th1IL10Eff−to−Th1IL10EffZeroProdmodels the reprise of cytokine
production by silent TH1IL10Cs due to the increased concentration of IL12.
The preplaces are

� Th1IL10EffZeroProd(→)

� IL12(p)

The postplace is

� Th1IL10Eff(→)

The coe�cient is

FromZeroProd ⋅ IL12Effectiveness ⋅ INFg

Th1IL10Eff −Deact models the deactivation of active TH1IL10Cs. The
preplace is

� Th1IL10Eff(→)

The postplace is

� Th1IL10(→)
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The coe�cient is

TDeact ⋅Th1IL10E�

Th1IL10EffZeroProd−Deactmodels the deactivation of silent TH1IL10Cs.
The preplace is

� Th1IL10EffZeroProd(→)

The postplace is

� Th1IL10(→)

The coe�cient is

TDeact ⋅Th1IL10E�ZeroProd

Th1IL10 − Diff models the di�usion and drift due to blood �ow of
inactive TH1IL10Cs. The preplace is

� Th1IL10(→)

The coe�cient is

CellDiff ⋅Th1IL10

6.5.12 Type II Helper T Cells (TH2Cs)

The transitions of TH2Cs are similar to those of TH0Cs, and will not be
further commented.

Th2 −Act models the activation of inactive TH2Cs by internalization of
a MHC II peptide. The preplaces are

� MHCII(→)

� Th2(→)

The postplace is

� Th2Eff(→)

The coe�cient is

TCellAct ⋅Th2 ⋅MHCII

Th2 − IL4 models the production of IL4 by active TH2Cs. The preplace
is

� Th2Eff(p)

The postplace is
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� IL4(→)

The coe�cient is

TCellCytProd ⋅Th2E�

Th1−IL10 models the production of IL10 by active TH2Cs. The preplace
is

� Th2Eff(p)

The postplace is

� IL10(→)

The coe�cient is

TCellCytProd ⋅Th2E�

Th2Eff −Rep models the reproduction of active TH2Cs. The preplaces
are

� Th2Eff(p)

� IL4(p)

The postplace is

� Th2(→)

� ThNumber(→)

The coe�cient is

TRep ⋅ IL4 ⋅ IL4Effectiveness ⋅Th2E�

Th2EffKeppProd models the consumption of IL4 by active TH2Cs.
The preplace is

� Th2Eff(p)

� IL4(→)

The coe�cient is

TCellKeepProd ⋅ Th2E�

IL4Effectiveness

Th2Eff − to − Th2EffZeroProd models the silencing of active TH2Cs
due to the lack of IL4. The preplaces are

� Th2Eff(→)
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� IL4(⇢)
The postplace is

� Th2EffZeroProd(→)
The coe�cient is

ToZeroProd

1 + IL4 ⋅ IL4Effectiveness
Th2Eff − to − Th2EffZeroProd models the reprise of cytokine pro-

duction by silent TH2Cs due to the increased concentration of IL4. The
preplaces are

� Th2EffZeroProd(→)

� IL4(p)
The postplace is

� Th2Eff(→)
The coe�cient is

FromZeroProd ⋅ IL4Effectiveness ⋅ IL4
Th2Eff −Deact models the deactivation of active TH2Cs. The preplace

is

� Th2Eff(→)
The postplace is

� Th2(→)
The coe�cient is

TDeact ⋅Th2E�
Th2EffZeroProd−Deact models the deactivation of silent TH2Cs. The

preplace is

� Th2EffZeroProd(→)
The postplace is

� Th2(→)
The coe�cient is

TDeact ⋅Th2E�ZeroProd
Th2 −Diff models the di�usion and drift due to blood �ow of TH2s.

The preplace is

� Th2(→)
The coe�cient is

CellDiff ⋅Th2
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6.5.13 Type 0 Cytotoxic T Cells (TC0Cs)

The transitions of TC0Cs are basically the same as those of TH0Cs, and will
not be further commented.

CD8 + TCell − Arrival − Spleen models the arrival of inactive TC0Cs
from spleen. The preplaces are

� Remove −T(⊸)

� TCellTime(⇢)

The postplaces are

� TcNumber(→)

� Tc0(→)

The coe�cient is

SpleenTCellArr ⋅ geq(TCellTime,TimeTStart) ⋅ leq(TCellTime,TimeTStop)

This transition is enabled only when Remove −T is not marked andTimeTStart ≤
TCellTime ≤ TimeTStop.

CD8 +TCell −Arrival −Liver models the arrival of TC0Cs from other
granulomas in the liver. The preplaces are

� Remove −T(⊸)

� TCellTime(⇢)

The postplaces are

� TcNumber(→)

� Tc0(→)

The coe�cient is

LiverTCellArr ⋅ geq(TCellTime,TimeTStart)

This transition is enabled only when Remove −T is not marked andTimeTStart ≤
TCellTime.

Tc0 −Act models the activation of inactive TC0Cs by internalization of
a MHC I peptide. The preplaces are

� MHCI(→)

� Tc0(→)

The postplace is
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� Tc0Eff(→)

The coe�cient is

TCellAct ⋅Tc0 ⋅MHCI

Tc0 − IL2 models the production of IL2 by active TC0Cs. The preplace
is

� Tc0Eff(p)

The postplace is

� IL2(→)

The coe�cient is

TCellCytProd ⋅Tc0E�

Tc0 −Rep models the reproduction of active TC0Cs. The preplaces are

� Tc0Eff(p)

� IL2(p)

The postplace is

� Tc0(→)

� TcNumber(→)

The coe�cient is

TRep ⋅ IL2 ⋅ IL2Effectiveness ⋅Tc0E�

Tc0EffKeppProdmodels the consumption of IL2 by active TC0Cs. The
preplace is

� Tc0Eff(p)

� IL2(→)

The coe�cient is

TCellKeepProd ⋅ Tc0E�

IL2Effectiveness

Tc0Eff − to − Tc0EffZeroProd models the silencing of active TC0Cs
due to the lack of IL2. The preplaces are

� Tc0Eff(→)

� IL2(⇢)
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The postplace is

� Tc0EffZeroProd(→)

The coe�cient is

ToZeroProd

1 + IL2 ⋅ IL2Effectiveness
Tc0Eff − to − Tc0EffZeroProd models the reprise of IL2 production

by silent TC0Cs due to the increased concentration of IL2. The preplaces
are

� Tc0EffZeroProd(→)

� IL2(p)

The postplace is

� Tc0Eff(→)

The coe�cient is

FromZeroProd ⋅ IL2Effectiveness ⋅ IL2

Tc0Eff −Deact models the deactivation of active TC0Cs. The preplace
is

� Tc0Eff(→)

The postplace is

� Tc0(→)

The coe�cient is

TDeact ⋅Tc0E�

Tc0EffZeroProd−Deact models the deactivation of silent TC0Cs. The
preplace is

� Tc0EffZeroProd(→)

The postplace is

� Tc0(→)

The coe�cient is

TDeact ⋅Tc0E�ZeroProd

Tc0 −Diff models the di�usion and drift due to blood �ow of TC0Cs.
The preplace is
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� Tc0(→)

The coe�cient is

CellDiff ⋅Tc0

Tc0 − to − Tc1 models the di�erentiation of inactive TC0Cs to inactive
TC1Cs. The preplaces are

� Tc0(→)

� INFg(p)

The postplace is

� Tc1(→)

The coe�cient is

TCellDiff ⋅ INFgEffectiveness ⋅ INFg

Tc0 − to − Tc2 models the di�erentiation of inactive TC0Cs to inactive
TC2Cs. The preplaces are

� Tc0(→)

� IL4(p)

The postplace is

� Tc2(→)

The coe�cient is

TCellDiff ⋅ IL4Effectiveness ⋅ IL4

Tc0Eff − to − Tc1Eff models the di�erentiation of active TC0Cs to
active TC1Cs. The preplaces are

� Tc0Eff(→)

� INFg(p)

The postplace is

� Tc1Eff(→)

The coe�cient is

TCellDiff ⋅ INFgEffectiveness ⋅ INFg

Tc0Eff − to − Tc2Eff models the di�erentiation of active TC0Cs to
active TC2Cs. The preplaces are
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� Tc0Eff(→)

� IL4(p)

The postplace is

� Tc2Eff(→)

The coe�cient is

TCellDiff ⋅ IL4Effectiveness ⋅ IL4

6.5.14 Type I Cytotoxic T Cells (TC1Cs)

The transitions of TC1Cs are similar to those of TC0Cs, and will not be
further commented.

Tc1 −Act models the activation of inactive TC1Cs by internalization of
a MHC I peptide. The preplaces are

� MHCI(→)

� Tc1(→)

The postplace is

� Tc1Eff(→)

The coe�cient is

TCellAct ⋅Tc1 ⋅MHCI

Tc1 − IL2 models the production IL2 by active TC1Cs. The preplace is

� Tc1Eff(p)

The postplace is

� IL2(→)

The coe�cient is

TCellCytProd ⋅Tc1E�

Th1 − INFg models the production of INFγ by active TC1Cs. The
preplace is

� Tc1Eff(p)

The postplace is

� INFg(→)
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The coe�cient is

TCellCytProd ⋅Tc1E�

Tc1Eff −Rep models the reproduction of active TC1Cs. The preplaces
are

� Tc1Eff(p)

� INFg(p)

The postplace is

� Tc1(→)

� ThNumber(→)

The coe�cient is

TRep ⋅ INFg ⋅ INFgEffectiveness ⋅Tc1E�

Tc1EffKeppProd models the consumption of INFγ by active TC1Cs.
The preplaces are

� Tc1Eff(p)

� INFg(→)

The coe�cient is

TCellKeepProd ⋅ Tc1E�

INFgEffectiveness

Tc1Eff − to − Tc1EffZeroProd models the silencing of active TC1Cs
due to the lack of INFγ. The preplaces are

� Tc1Eff(→)

� INFg(⇢)

The postplace is

� Tc1EffZeroProd(→)

The coe�cient is

ToZeroProd

1 + INFg ⋅ INFgEffectiveness

Tc1Eff − to − Tc1EffZeroProd models the reprise of cytokine pro-
duction by silent TC1Cs due to the increased concentration of INFγ. The
preplaces are
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� Tc1EffZeroProd(→)

� INFg(p)

The postplace is

� Tc1Eff(→)

The coe�cient is

FromZeroProd ⋅ INFgEffectiveness ⋅ INFg

Tc1Eff −Deact models the deactivation of active TC1Cs. The preplace
is

� Tc1Eff(→)

The postplace is

� Tc1(→)

The coe�cient is

TDeact ⋅Tc1E�

Tc1EffZeroProd−Deact models the deactivation of silent TC1Cs. The
preplace is

� Tc1EffZeroProd(→)

The postplace is

� Tc1(→)

The coe�cient is

TDeact ⋅Tc1E�ZeroProd

Tc1 −Diff models the di�usion and drift due to blood �ow of TC1Cs.
The preplace is

� Tc1(→)

The coe�cient is

CellDiff ⋅Tc1
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6.5.15 Type II Cytotoxic T Cells (TC2Cs)

The transitions of TC2Cs are similar to those of TC0Cs, and will not be
further commented.

Tc2 −Act models the activation of inactive TC2Cs by internalization of
a MHC I peptide. The preplaces are

� MHCI(→)

� Tc2(→)

The postplace is

� Tc2Eff(→)

The coe�cient is

TCellAct ⋅Tc2 ⋅MHCI

Tc2 − IL4 models the production of IL4 by active TC2Cs. The preplace
is

� Tc2Eff(p)

The postplace is

� IL4(→)

The coe�cient is

TCellCytProd ⋅Tc2E�

Th1−Il10 models the production of IL10 by active TC2Cs. The preplace
is

� Tc2Eff(p)

The postplace is

� IL10(→)

The coe�cient is

TCellCytProd ⋅Tc2E�

Tc2Eff −Rep models the reproduction of active TC2Cs. The preplaces
are

� Tc2Eff(p)

� IL4(p)
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The postplace is

� Tc2(→)

� TcNumber(→)

The coe�cient is

TRep ⋅ IL4 ⋅ IL4Effectiveness ⋅Tc2E�

Tc2EffKeppProdmodels the consumption of IL4 by active TC2Cs. The
preplace is

� Tc2Eff(p)

� IL4(→)

The coe�cient is

TCellKeepProd ⋅ Tc2E�

IL4Effectiveness

Tc2Eff − to − Tc2EffZeroProd models the silencing of active TC2Cs
due to the lack of IL4. The preplaces are

� Tc2Eff(→)

� IL4(⇢)

The postplace is

� Tc2EffZeroProd(→)

The coe�cient is

ToZeroProd

1 + IL4 ⋅ IL4Effectiveness

Tc2Eff − to−Tc2EffZeroProd models the reprise of cytokine produc-
tion by silent TC2Cs due to the increased concentration of IL4. The preplaces
are

� Tc2EffZeroProd(→)

� IL4(p)

The postplace is

� Tc2Eff(→)



6.5. MAIN MODEL: TRANSITIONS 135

The coe�cient is

FromZeroProd ⋅ IL4Effectiveness ⋅ IL4

Tc2Eff −Deact models the deactivation of active TC2Cs. The preplace
is

� Tc2Eff(→)

The postplace is

� Tc2(→)

The coe�cient is

TDeact ⋅Tc2E�

Tc2EffZeroProd−Deact models the deactivation of silent TC2Cs. The
preplace is

� Tc2EffZeroProd(→)

The postplace is

� Tc2(→)

The coe�cient is

TDeact ⋅Tc2E�ZeroProd

Tc2 −Diff models the di�usion and drift due to blood �ow of inactive
TC2Cs. The preplace is

� Tc2(→)

The coe�cient is

CellDiff ⋅Tc2

6.5.16 Others

InfectionClearence models the clearance of infection. This transition is
not fundamental for the model, but allows for an easier interpretation of the
data. The preplaces are

� Infected(→)

� LD(⊸)

The coe�cient is

ImmediateFiring()
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Chapter 7

Model Validation

This chapter validates the results of our model against the
results of in vivo experiments. The comparisons are displayed
by means of graphical representations of the data. Whenever
possible, the data where obtained from published articles. In a
few cases, the data and feedback were provided by professor Paul
M. Kaye of the Center for Immunology and Infection, Hull York
Medical School and Department of Biology, University of York.
A preliminary discussion of these results has been presented in
Albergante et al. 2010.

Most of the data on leishmaniasis describe the cell populations at the
organ level (for example Stanley et al. 2008 reports the number of NKT cells
per liver). To account for this fact, during each experiment we simulated 50
independent granulomas with the same initial conditions, taking the averages
of the values we were interested in, and multiplying these values by 5 ⋅ 105.

The only exception to this rule are CD4+ cells. In this case, a �xed num-
ber of inactive CD4+, activated CD4+INFγ+IL10− and activated CD4+INFγ+IL10+

T cells were considered in the calculation. These values represent CD4+ T
cells present in a mouse under control condition, and, as such, leishmania
donovani non-speci�c. Therefore, while considered for the calculation, these
cells were not modeled.

In silico data presented in this chapter and in the following indicate the
average of 5 experiments performed under the same conditions and the error
bars represent the standard deviation. Note that the standard deviation δN
of the sample x1, . . . , xN was calculated using the formula

δN =

¿
ÁÁÀ 1

N − 1

N

∑
i=1

(xi − x)2

which is sometime referred as �sample standard deviation�.
The time required to perform each experiment varies according go the

experimental conditions. For example, the model described in Section 7.1
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requires about half a minute to be simulated, while the model described in
Section 7.2.3 requires several minutes.

7.1 Validation of Baseline Model

This section presents in silico results obtained from a baseline model. This
model is characterized by:

� CD1d-dependent activation of NKT cells

� INFγ-dependent phenotype change of TH1 cells

Whenever possible, we considered in vivo experiment on C57BL/6 mice.
In a few cases, however, data were obtained from experiment on BALB/c
mice.

7.1.1 Control

Figure 7.1: Number of NKT cells in the liver. In silico data describe baseline
model. In vivo data are taken from Stanley et al. 2008.

Figures 7.1 and 7.2 display the number of NKT and NK cells when no
infection is present. The data compare very well to the values obtained from
in vivo experiments on mice before infection, or under control conditions
(Stanley et al. 2008 and Maroof et al. 2008). Other checks performed on
parasites, phagocytes and T cells (not presented) con�rmed that the model
behaves as expected.
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Figure 7.2: Number of NK cells in the liver. In silico data describe baseline
model. In vivo data are taken from Maroof et al. 2008.

7.1.2 Parasite Burden

The standard way of reporting parasite burdens in the context of leishmania
donovani infection of the liver and spleen is by means of Leishman-Donovan
Units � also called Leishmania Donovani Units � (LDU). LDU is an indi-
rect estimation of the number of the parasites, and is calculated by

LDU = (# of parasites per 500 host nuclei) × (the organ weight in mg)

or

LDU = (# of parasites per 1000 host nuclei) × (the organ weight in mg)

While LDU is a clear indication of the level of infection, using it to esti-
mate the number of parasites in the organ is rather di�cult. This di�culty
arises from the fact that both the number of host cells and the weight of
the organ vary both among individuals and during the course of infection.
However, the number of parasites in the organ is estimated to be from about
107 ⋅ LDU (Bradley & Kirkley 1977) to about 108 ⋅ LDU (Gutierrez et al.
1984).

Additionally, the literature reports largely di�erent LDU, even in exper-
iments performed under similar conditions. For example, in the context of
wild type C57BL/6 mice, 2 weeks after infection Murray et al. 2006 reports
about 1000 LDU, while Stanley et al. 2008 reports more than 2000. However,
even if LDU varies quantitatively among articles, the qualitative behavior is
generally the same.
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Therefore, we decided to estimate the number of parasites in the liver by
multiplying the LDU reported by Murray et al. 2006 with a number K such
that:

K ⋅ (LDU at Week 4)
Number of Granulomas

= 60

The choice of the number 60 is due to the opinion of biological experts.

Figure 7.3: Parasite Burden. In silico data describe the results of baseline
model. In vivo data are adapted from Murray et al. 2006.

The number of parasites predicted by the model is very similar to the
expected values (see Figure 7.3). However, the infection takes more time to
resolve in silico. This is likely due to the fact that the number of antigens
speci�c T cells in silico is lower than in vivo (see Section 7.1.5 for a discussion
of this problem).

7.1.3 Natural Killer T Cells

The number of NKT cells in the liver is compatible with the data reported
by Stanley et al. 2008 (see Figure 7.4). While, the two curves look di�erent
at �rst sight, the large standard deviation indicate the large uncertainty of
in vivo data, thus suggesting the validity of the in silico results.

The percentage of activated NKT cells is very similar to the in vivo data
reported by Amprey et al. 2004 � 2 hours after infection using BALB/C
mice � and Beattie at al. 2010 (EJI) � 10 hours after infection using
C57BL/6 mice � (see Figure 7.5).
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Figure 7.4: Number of NKT cells. In silico data describe the results of
baseline model. In vivo data are taken from Stanley et al. 2008.

7.1.4 Natural Killer Cells

The number of NK cells is very similar to the in vivo data reported by Maroof
et al. 2008 (see Figure 7.6).

7.1.5 T Cells

Figure 7.7 indicates the number of CD4+ and CD8+ T cells obtained by the
in silico model. While the author was not able to �nd any speci�c published
data, professor Paul M. Kaye reported that Figure 7.7 captures correctly the
fact that CD8+ T cells response is delayed with a cell population comparable
to that of CD4+ T cells. The decrease in cell population, is, however, too
rapid when compared to in vivo experiments. This discordance is likely
due to the larger number of antigen speci�c T cells available in the later
stages of infection as a consequence of the migration from other granulomas.
This increased number of T cells is likely to promote a more e�ective T cell
response. Given the non-connected nature of the model it was not possible
to capture this aspect.

The percentages of di�erent types of TH1 cells in the liver compare quite
well to the data obtained from in vivo experiments (See Figure 7.8). More-
over, considering the history of these percentage (see Figure 7.9), we can
clearly see that these values are the consequence of a trend rather than the
result of stochastic �uctuations.
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Figure 7.5: Percentage of activated NKT cells. In silico data describe the
results of baseline model. In vivo data are taken from Amprey et al. 2004
and Beattie at al. 2010 (EJI).

7.2 Validation of Gene Knock-Out Models

This section describes the behavior of the model when speci�c populations
of cells or cytokines are removed and compares the results with experiments
under gene knock-out conditions. The mechanisms underlying the activation
of NKT cells and the phenotype changes of T cells are the same of Section
7.1

7.2.1 Natural Killer T Cells

The immune response in mice with defective NKT cells is characterized by
an about twofold amount of parasites and an eventual disease resolution (See
for example Figure 1A of Stanley et al. 2008). Removing NKT cells form
the model (NKT− model) leads to comparable results (see Figure 7.10 and
Section B.1 for additional data and comments).

Note that, removing NKT cells from our model leads to a faster disease
resolution, which is not observed in vivo. A possible explanation for this
discordance is the fact that the pool of e�ector T cells is limited in vivo by
space constraints and possibly other stimuli. This limitation is relative to
the liver, and was not considered by the model due to its nature.
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Figure 7.6: Number of NK Cells. In silico data describe the results of
baseline model. In vivo data are taken from Maroof et al. 2008.

7.2.2 T Cells

T cells are considered fundamental for the immune response to leishmania-
sis. Removing T cells from the model (T− model) correctly leads to a high
parasite load and a non-resolving disease (see Figure 7.11 and Section B.2
for additional data and comments).

7.2.3 INFγ

INFγ is the main cytokine responsible for the in�ammatory response to
leishmaniasis (see Murray et al. 2006 for example). Removing INFγ from
the model (INFγ− model) correctly leads to a very high parasite load and to
a non-resolving disease (see Figure 7.12 and Section B.3 for additional data
and comments).



144 CHAPTER 7. MODEL VALIDATION

Figure 7.7: Number of CD4+ and CD8+ cells. In silico data were obtained
from baseline model.

Figure 7.8: Percentage of activated TH1 cells. In silico data describe the
results of baseline model. In vivo data are taken from unpublished data.



7.2. VALIDATION OF GENE KNOCK-OUT MODELS 145

Figure 7.9: Percentage of activated TH1 cells. In silico data describe the
results of baseline model. In vivo data are taken from unpublished data.

Figure 7.10: Parasite burden. In silico data describe the results of baseline
and NKT− model. In vivo data are adapted from Murray et al. 2006.
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Figure 7.11: Parasite burden. In silico data describe the results of baseline
and T− model. In vivo data are adapted from Murray et al. 2006.

Figure 7.12: Parasite burden. In silico data describe the results of baseline
and INFγ− model. In vivo data are adapted from Murray et al. 2006.



Chapter 8

Model Results

This chapter illustrates the main results of our model. The
topics discussed are:

� the various types of granulomas

� the comparison of di�erent causes of the phenotypic muta-
tion of TH1 cells

� the comparison of di�erent mechanisms of NKT cells acti-
vation

� the role of NK cells in leishmaniasis

� the comparison of possible therapeutic options for leishma-
niasis

8.1 Di�erent Types of Granulomas

At the current stage of biological technology, it is not possible to track the
evolution of a single granuloma during the whole course of leishmaniasis,
it is, however, well-known that granulomas develop di�erently (see Figure
8.1). Therefore, using our in silico model, we studied how single granulomas
evolve during the whole course of infection.

As expected, di�erent types of granulomas are obtained from the model.
The most common granulomas have a one-peak type: the number of parasites
increases to a maximum (usually between 50 and 100), and then decreases
to zero. We will call these granulomas �normal� (see Figure 8.2 for the
number of parasites in a sample of them). Normal granulomas account for
about 60% of the total population, and are characterised by a very e�ective
immune response.

When the immune response is less e�ective, the number of parasites oscil-
lates, leading to two, or more, peaks. We will call these granulomas �many-
peaked� (see Figure 8.3 for the number of parasites in a sample of them).
Many-peaked granulomas account for about 30% of the total population.
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Figure 8.1: Various well-established granulomas 2 weeks after infection in
C57BL/6 mice from Figure 4 of Murray et al. 2006.

Figure 8.2: Parasites of normal granulomas.
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Figure 8.3: Parasites of many-peaked granulomas.

Figure 8.4: Parasites of long-lasting granulomas.
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Finally, when the immune response is not e�ective enough, we observe a
long-lasting equilibrium between the parasites and the immune system: the
infection is controlled, but is cleared only after a long time. We will call
these granulomas �long-lasting� (see Figure 8.4 for the number of parasites
in a sample of them). These granulomas account for less that 10% of the
total population, and are a likely cause of recrudescence observed in some
models of visheral leishmaniasis (e.g., Kirkpatrick & Farrell 1982b).

More detailedly, ten weeks after infection, normal and many-peaked gran-
ulomas have successfully killed all the parasites. However, long-lasting gran-
ulomas are still controlling them. This results in a quiescent infection. If this
equilibrium in broken in favor of the parasites, the Kup�er cells are likely
to get killed and the parasites will spread in the liver, causing a secondary
infection.

Interestingly, recrudescence is observed in other granulomatous infection
such as tuberculosis (e.g., De Steenwinkel et al. 2009), suggesting that this
result may apply to other diseases as well.

This diversity in the granuloma population gives us important insights on
the way a therapy should deal with visceral leishmaniasis. Speci�cally, while
improving the immune response in normal and many-peaked granuloma is
useful in decreasing the parasite burden, targeting long-lasting granulomas
should help in preventing recrudescence.

Ideally, a therapy should stimulate each granuloma to be of the normal
type. Unfortunately, as we will see later, this goal is not easily achieved. This
di�culty arises from the fact that the micro-environments of long-lasting and
normal granulomas are substantially very similar, and the formation of the
former seems to be promoted by the interactions with some cells rather than
others.

Finally, it is worth noticing how the parasite burden in the liver emerges
from remarkably di�erent populations of granulomas.
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Figure 8.5: Parasite Burden. In silico data describe the results of INFγ,
IL12, and Time models. In vivo data are adapted from Murray et al. 2006.

8.2 Self-Control of TH1 Cells

8.2.1 Di�erent Models of Phenotypic Changes in TH1 cells

The development of an immunoregulatory phenotype by TH1 cells is an im-
portant topic of the immunological research, as understanding the mecha-
nisms underlying this development is helpful in designing better therapies.

We tested three possible causes of this phenotypical change:

� Exposure to INFγ (INFγ model)

� Exposure to IL12 (IL12 model)

� Prolonged activation (Time model)

More precisely, the probability that TH1 cells change their phenotype is
proportional to INFγ concentration in the INFγ model and to IL12 concen-
tration in the IL12 model; while it is constant in the Time model.

According to our model, all the above mechanisms lead to comparable
results for parasite burden, response of NKT cells, and response of NK cells
(see Figure 8.5 for parasite burden and Section B.4 for additional data).
However, Figures 8.6 and 8.7 indicate that the percentages of activated TH1
cells of INFγ and Time models �t better in vivo data. This suggests that
INFγ and time are more likely to be causes of the phenotypical change.

Additionally, Figures 8.8 and 8.9 show that the percentage of the di�erent
populations of T cells diverges around the �fth week, thus indicating that our
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Figure 8.6: Percentage of INFγ+IL10− T Cells. In silico data describe the
results of INFγ, IL12, and Time models. In vivo data are taken from un-
published data.

Figure 8.7: Percentage of INFγ+IL10+ T Cells. In silico data describe the
results of INFγ, IL12, and Time models. In vivo data are taken from un-
published data.
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Figure 8.8: Percentage of INFγ+IL10− T Cells. Data describe INFγ, IL12,
and Time model.

Figure 8.9: Percentage of INFγ+IL10+ T Cells. Data describe INFγ, IL12,
and Time model.
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results are due to the di�erences in the three models rather that to stochastic
e�ects.

Note that our conclusions strongly depend on the assumption that clas-
sically activated phagocytes are the main source of IL12, and thus, that the
production of IL12 is delayed with respect to INFγ.

8.2.2 Considerations on the IL12-Dependent Model

E�ector T cells that do not develop a memory phenotype are assumed to be
able to replicate only a limited number of times, and since CD4+INFγ+IL10+

T cells are probably quite old, it is likely that their reproduction capability, if
any, is limited. To assess the relevance of this consideration, we investigated
to which extent the outcome of the IL12 model depends on the aforemen-
tioned reproduction ability.

The percentages of activated CD4+INFγ+IL10+ cells decrease when their
reproduction ability is reduced (see Figures 8.11 and 8.10), while the overall
model remains compatible with in vivo data (see Figure 8.10 for parasite bur-
den and Section B.5 for additional data), making IL12 a viable candidate for
the phenotypic change of TH1 cells under the assumption that the reproduc-
tion ability of CD4+INFγ+IL10+ T cells is much lower that the reproduction
ability of CD4+INFγ+IL10− T cells.
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Figure 8.10: Parasite Burden. In silico data describe IL12 model, IL12 model
with reproduction ability of INFγ+IL10+ T Cells reduced by 33%, and IL12
model with reproduction ability of INFγ+IL10+ T Cells reduced by 66%. In
vivo data are adapted from Murray et al. 2006.

Figure 8.11: Percentage of INFγ+IL10+ T Cells. Data describe IL12 model,
IL12 model with reproduction ability of INFγ+IL10+ T Cells reduced by 33%,
and IL12 model with reproduction ability of INFγ+IL10+ T Cells reduced by
66%.
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8.3 Natural Killer T Cells

8.3.1 Activation

As described in Section 1.3.1, NKT cells can be activated by various means.
However, in the context of leishmania, internalization of CD1d peptides is
believed to be the main source of activation. To assess this fact, we compared
two possible mechanisms of NKT cells activation:

� internalization of CD1d peptides (CD1d model)

� detection of stress in Kup�er cells (Stress model)

Note that we disregarded the possibility of an IL12-mediated activation
as the experiments of Amprey et al. 2004 indicate this possibility as very
unlikely.

Figure 8.12: Parasite Burden. In silico data describe CD1d and Stress mod-
els. In vivo data are adapted from Murray et al. 2006.

While both mechanisms lead to comparable results for the overall model
(see Figure 8.12 for the parasites burden, Figure 8.13 for the number of NKT
cells, and Section B.6 for additional data), internalization of CD1d peptides
produces better results when considering the percentages of activated NKT
cells (see Figure 8.14). This con�rm CD1d peptides internalization as the
most likely factor for NKT cells activation.
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Figure 8.13: Number of NKT cells. In silico data describe CD1d and Stress
models. In vivo data are taken from Stanley et al. 2008.

Figure 8.14: Percentage of activated NKT cells. In silico data describe
CD1d and Stress models. In vivo data are taken from Amprey et al. 2004
and Beattie at al. 2010 (EJI).
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8.3.2 External Activation

Stanley et al. 2008 reports that activation of NKT cells by α-galactosylceramide
at day 7 and 14 after infection leads, one week later, to an increased parasite
burden, thus excluding α-galactosylceramide as a therapeutic option.

However, as reported in Section 2.3, some authors suggest that dif-
ferent populations of NKT cells exist. Therefore, it is possible that α-
galactosylceramide and leishmania donovani induce the activation of di�er-
ent subsets of NKT cells. Moreover, NKT cells activated by α-galactosylceramide
are reported to produce high level of IL4, while NKT cells activated during
leishmaniasis are characterized by low level of IL41.

Therefore, we tested the consequences of an increased CD1d-independent
activation of NKT cells at day 7 (NKT↑ (Day 7) model) and 14 (NKT↑ (Day
14) model).

In the NKT↑ (Day 7) model NKT cells were activated from hour 168 to
hour 216, and in NKT↑ (Day 14) model from hour 336 to hour 384 (Figures
8.15 and 8.16 indicate the e�ect of these activations on the number of NKT
cells)

Compatibly with Stanley et al. 2008, our model indicates that an addi-
tional activation of NKT cells leads to a higher parasite burden (see Figures
8.17 and 8.18 for parasite burden, and Section B.7 for additional data). Dif-
ferently form Stanley et al. 2008, however, in our model, the increase in
parasite burden takes more time to display. This is probably due to the fact
that α-galactosylceramide has a systemic e�ect, thus leading to an in�ow
of activated NKT cells, instead of an in�ow of homeostatic cells as in our
model. Finally, note that this activation, while increasing the number of
parasites, does not impair disease resolution.

8.3.3 Role in Late Infection

As described in Section 8.3.1, NKT cells play a major role in controlling the
infection during the early stages of visceral leishmaniasis. However, their role
in the later stages is less clear. Amprey et al. 2004 reports that the percentage
of NKT cells with respect to CD4+ and CD8+ T cells is quite low in the
later stage of infection. However, no data are available on the percentage
of activated cells, and it is even possible that no NKT cell is activated.
Nevertheless, Section 8.3.2 suggests not only that they may unessential, but
even detrimental.

Preventing NKT from activating 4 weeks after infection (NKT↓ (Day 28)
model) has a perceivable e�ect on the parasite burden (see Figures 8.19).
Moreover, the number of parasites after week 8 is generally lower when no

1Note that, the data of Stanley et al. 2008 indicate that NKT cells activated by α-
galactosylceramide produced low levels of IL4 during their experiments.
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Figure 8.15: Number of NKT cells. In silico data describe baseline and
(NKT↑ (Day 7) models. In vivo data are taken from Stanley et al. 2008.

Figure 8.16: Number of NKT cells. In silico data describe baseline and
(NKT↑ (Day 14) models. In vivo data were taken from Stanley et al. 2008.
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Figure 8.17: Parasite Burden. In silico data describe baseline and (NKT↑
(Day 7) models. In vivo data are adapted from Murray et al. 2006.

Figure 8.18: Parasite Burden. In silico data describe baseline and (NKT↑
(Day 14) models. In vivo data are adapted from Murray et al. 2006.
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Figure 8.19: Parasite Burden. In silico data describe baseline and NKT↓
(Day 28) models. In vivo data are adapted from Murray et al. 2006.

Figure 8.20: Parasite Burden. In silico data describe baseline and NKT↓
(Day 56) models. In vivo data are adapted from Murray et al. 2006.
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NKT cells are activated. This result suggests that, if any, the role of NKT
cells during the later stages of infection is mainly immunoregulatory.

Note that, an additional possibility exists: in later stages of infection
NKT cells activate, but their deactivation activity is limited by a reduced
number of SIRPα proteins, or a by a reduced e�ect of SIRPα ligation.

As discussed in Section 8.3.2, an additional activation of NKT cells leads
to a larger parasite burden even two weeks after infection, this fact indicates
that the deactivation activity of NKT cells is still present at that time, and
suggests that it may continue afterward. Since no data are available on a
possible decreased deactivation activity of NKT cells during later stages of
infection, this hypothesis was not tested.

Preventing NKT from activating 8 weeks after infection (NKT↓ (Day
56) model) has a limited e�ect on the parasite burden (see Figures 8.20),
suggesting that their role is probably quite limited at such a later stage of
infection.
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8.4 Natural Killer Cells in Leishmaniasis

The role of NK cells during the immune response to visceral leishmania-
sis is currently not fully understood. Beige mice, which are known to have
defective NK cells, are unable to mount a healing response to leishmania
donovani (Kirkpatrick & Farrell 1982b). However, these mice have a com-
plex biology and other dysfunctions may contribute to prevent an adequate
response. Therefore, in the context of C57BL/6 mice, no clear evidence is
available on the impact of NK cells to the course of visceral leishmaniasis.
To determine the role of NK cells, we tested the e�ect of their removal (NK−

model).

Figure 8.21: Parasite Burden. In silico data describe baseline and NK−

model. In vivo data are adapted from Murray et al. 2006.

Our model suggests that, while positively contributing to the immune
response to leishmaniasis, NK cells do not have a fundamental role in con-
trolling the infection (see Figure 8.21 and Section B.8 for additional data).

Note however, that removing both NKT and NK cells from our model
prevents an e�ective adaptive immune response, as there is no other early
source of INFγ able to drive T cells towards a type I response (see Section
B.9). This situation is unlikely in vivo, because some T cells are believed
get to the place of infection with a type I phenotype. However, this re-
sult suggests that a possible cause of the inability of beige mice to mount
an adequate immune response to leishmaniasis is the presence of somewhat
defective NKT cells.
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8.5 Therapeutic Options in Leishmaniasis

An important goal of immunological modeling is the development of e�ective
therapies, mainly by the identi�cation of key mechanisms that should be
targeted by biological experiments. This section describes three possible
therapeutic options:

� Blocking the activity of IL10

� Increasing INFγ concentration

� Increasing INFγ concentration while blocking the activity of IL10

8.5.1 IL10 Blocking

As a �rst possible therapeutic option, we tested the e�ect of removing IL10
from the model, thus reproducing the e�ect of an anti-IL10 drug.

Figure 8.22: Parasite Burden. In silico data describe baseline and IL10−

models. In vivo data are adapted from Murray et al. 2006.

Our model suggests that removing completely IL10 from the model (IL10−

model) leads to slightly lower parasite burden and facilitates disease resolu-
tion (See Figure 8.22 and Section B.10 for additional data).

8.5.2 INFγ Injection

INFγ is fundamental for the immune response to leishmania donovani. How-
ever, albeit its role is mainly pro-in�ammatory, its supposed ability to stim-
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ulate the production of IL10 by TH1 cells indicates a possible indirect anti-
in�ammatory role. Therefore, the e�ect of increasing INFγ concentration is
not easily predictable.

To better understand the e�ect of a temporary increase in INFγ concen-
tration, we performed four di�erent experiments. Speci�cally, INFγ concen-
tration was increased for 10 hours at di�erent times:

� 12 days after infection (INFγ ↑ (Day 12) model)

� 24 days after infection (INFγ ↑ (Day 24) model)

� 36 days after infection (INFγ ↑ (Day 36) model)

� 48 days after infection (INFγ ↑ (Day 48) model)

12 Days After Infection

In a �rst experiment, we increased INFγ concentration from hour 290 to
hour 300 (Figure 8.23 indicates the e�ect on INFγ concentration). These
experimental conditions lead to a reduced parasite burden. However, they
do not facilitate disease resolution (see Figure 8.24 for parasite burden and
Section B.11 for additional data).

24 Days After Infection

In a second experiment, we increased INFγ concentration from hour 580 to
hour 590 (Figure 8.25 indicates the e�ect on INFγ concentration). These
experimental conditions slightly reduce the parasite burden, but do not sig-
ni�cantly facilitate disease resolution (see Figure 8.26 for parasite burden
and Section B.12 for additional data). Moreover, INFγ concentration is in-
creased beyond the maximum level reached in the baseline model. Therefore,
this slight improvement of the immune response induces an increased stress
to the organism, which can be dangerous. This observation suggests that
this is unlikely to be a good therapeutic option.

36 Days After Infection

In a third experiment, we increased INFγ concentration from 870 hour to
880 hour (Figure 8.27 indicates the e�ect on INFγ concentration). These ex-
perimental conditions lead to limited improvements over the baseline model
(see Figure 8.28 for parasite burden and Section B.13 for additional data).

48 Days After Infection

In a fourth experiment, we increased INFγ concentration from hour 1160 to
hour 1170 (Figure 8.29 indicates the e�ect on INFγ concentration). These
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Figure 8.23: INFγ concentration. Data describe baseline and INFγ ↑ (Day
12) models.

Figure 8.24: Parasite Burden. In silico data describe baseline and INFγ ↑
(Day 12) models. In vivo data are adapted from Murray et al. 2006.
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Figure 8.25: INFγ concentration. Data describe baseline and INFγ ↑ (Day
24) models.

Figure 8.26: Parasite Burden. In silico data describe baseline and INFγ ↑
(Day 24) models. In vivo data were taken from Murray et al. 2006.
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Figure 8.27: INFγ concentration. Data describe baseline and INFγ ↑ (Day
36) models.

Figure 8.28: Parasite Burden. In silico data describe baseline and INFγ ↑
(Day 36) models. In vivo data were taken from Murray et al. 2006.
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Figure 8.29: INFγ concentration. Data describe baseline and INFγ ↑ (Day
48) models.

Figure 8.30: Parasite Burden. In silico data describe baseline and INFγ ↑
(Day 48) models. In vivo data were taken from Murray et al. 2006.
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experimental conditions slightly facilitate disease resolution (see Figure 8.30
for parasite burden and Section B.14 for additional data).

8.5.3 IL10 Blocking and INFγ Injection

Finally, we tested the e�ect of increasing INFγ concentration in absence of
IL10. Speci�cally, INFγ concentration was increased for 10 hours in absence
of IL10 at following times:

� 12 days after infection (IL10−INFγ ↑ (Day 12) model)

� 24 days after infection (IL10−INFγ ↑ (Day 24) model)

� 36 days after infection (IL10−INFγ ↑ (Day 36) model)

� 48 days after infection (IL10−INFγ ↑ (Day 48) model)

12 Days After Infection

Increasing INFγ concentration from hour 290 to hour 300 (Figure 8.31 in-
dicates the e�ect on INFγ concentration), while blocking IL10, leads to a
strongly decreased parasite burden, but appears to have only a limited ef-
fect on disease resolution (see Figure 8.32 for parasite burden and Section
B.15 for additional data). While the parasite burden is lowered (as a conse-
quence of the reduced deactivation of macrophages), these results are similar
to those presented in Section 8.5.2.

24 Days After Infection

Increasing INFγ concentration from hour 580 to hour 590 (Figure 8.33 in-
dicates the e�ect on INFγ concentration), while blocking IL10, leads to a
decreased parasite burden and facilitates disease resolution. (see Figure 8.34
for parasite burden and Section B.16 for additional data). Similarity to Sec-
tion 8.5.2, INFγ concentration is increased with respect to baseline model,
albeit to a lesser extent.

36 Days After Infection

Increasing INFγ concentration from hour 870 to hour 880 (Figure 8.35 in-
dicates the e�ect on INFγ concentration), while blocking IL10, leads to a
lower parasite burden and facilitates disease resolution (See Figure 8.36 for
parasite burden and Section B.17 for additional data). The improvements
over the results of Section 8.5.2 are evident. These experimental conditions
seem to be overall quite e�ective.
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Figure 8.31: INFγ concentration. Data describe baseline and IL10−INFγ ↑
(Day 12) models.

Figure 8.32: Parasite Burden. In silico data describe baseline and
IL10−INFγ ↑ (Day 12) models. In vivo data are adapted from Murray et al.
2006.
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Figure 8.33: INFγ concentration. Data describe baseline and IL10−INFγ ↑
(Day 24) models.

Figure 8.34: Parasite Burden. In silico data describe baseline and
IL10−INFγ ↑ (Day 24) models. In vivo data were taken from Murray et al.
2006.
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Figure 8.35: INFγ concentration. Data describe baseline and IL10−INFγ ↑
(Day 36) models.

Figure 8.36: Parasite Burden. In silico data describe baseline and
IL10−INFγ ↑ (Day 36) models. In vivo data were taken from Murray et al.
2006.
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Figure 8.37: INFγ concentration. Data describe baseline and IL10−INFγ ↑
(Day 48) models.

Figure 8.38: Parasite Burden. In silico data describe baseline and
IL10−INFγ ↑ (Day 48) models. In vivo data were taken from Murray et al.
2006.
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48 Days After Infection

Increasing INFγ concentration from hour 1160 to hour 1170 (Figure 8.37 in-
dicates the e�ect on INFγ concentration), while blocking IL10, decreases the
parasite burden and facilitates disease resolution (See Figure 8.38 for para-
site burden and Section B.18 for additional data). Again, these experimental
conditions seem to be overall quite e�ective.

8.5.4 Conclusions

From the above experiments stem the following key points:

� increasing INFγ negatively a�ect the parasite burden, with an e�ect
dependent on the time of subministration. However, disease resolution
is only limitedly a�ected.

� removing IL10 slightly reduce the parasite burden and facilitate disease
resolution.

The above e�ects seem to be rather independent, and can be combined
to obtain a lower parasite burden while facilitating disease resolution.

Our experiments indicate that increasing the quantity of INFγ during the
later stages of infection, while blocking IL10, seems to be the most e�ective
therapeutic option. However, given the systemic nature of visceral leishma-
niasis, these therapeutic indications require additional analyzes to account
for the e�ects on the spleen and bone marrow.

8.6 Concluding Remarks

The results presented in this chapter should not be considered de�nitive.
They need to be veri�ed by biological experiments. Moreover, these ex-
periments will likely provide new data that will be used to design a better
model.

Additionally, the understating of the granuloma process obtained by our
model, can be used to build new models focusing on di�erent aspects of
granulomas. Probably, the more natural evolution of the model is the intro-
duction of space (as discussed in Section 4.1.2).

Finally, the information on the roles of the cells, can be used to build a
distilled model with only the essential cells. This new model will probably be
unable to simulate realistically the biological process, but should be able to
study the basic mechanisms behind granuloma formation and maintenance,
and provide a better understanding of the causes that led the immune system
to develop such an articulate immune response.
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Chapter 9

Sensityivity Analysis of the

Model

This chapter illustrates the results of sensitivity analysis (SA)
on our model. Section 9.1 presents the reasons for our choice
of partial rank correlated coe�cients (PRCC), while Section 9.2
illustrates the results of PRCC on the parasite burden.

9.1 Why PRCC?

While many importance measure exist (see Section 4.3 and references within),
the characteristics of the model to be analyzed provide important informa-
tion to support the decision of the SA technique to be used.

A �rst characteristic to be considered is the number of parameters to be
analyzed. Analyzing all the parameters allows a more extensive validation of
the model, but requires a large number experiments. We decided to analyze
all the parameters to evaluate possible hidden relations.

A second characteristic to be considered is the time required to perform
a single simulation. Simulating 50 granulomas with Snoopy under normal
conditions takes about one minute on the hardware we have been using.
However, if the number of entities increase, the simulations take far more
time (up to half an hour in our experiments). Moreover, since Snoopy does
not allow the simulations to be scripted, human intervention was required to
start the simulations and save the results. Therefore, only a limited number
of experiments could be performed.

Finally, the nonlinearity and stochasticity of the model was taken into
account.

The chosen importance measure was PRCC. PRCC allows the analysis of
large number of parameters with relatively small number of experiments, and
deals pretty well with nonlinearities. Moreover, Marino et al. 2008 reports
that using averages of experimental results, instead of experimental results

177
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directly, allows PRCC to produce good results even for stochastic models.
To analyzed the 57 parameters of our model, we used the average of 3

experiments performed on 400 parameter sets (leading to 1200 simulations).
50 granulomas were simulated for each experiment. Since the number of
parasites is the most in�uential output value, SA was performed on that.

9.2 Parameter Sets

SA was under baseline model experimental conditions. To allow only for a
limited deviation from the studied behavior, most parameters were varied
from 50% to 150% of the value presented in Section 6.3. Tables 9.1 to 9.6
describe the ranges of variation for the parameters. Additionally, a dummy
parameter that has no e�ect on the outcome of the model, was introduced
varying from 1 to 10.

The PRCC of the dummy parameter is an indication of the stochastic
e�ects. Only parameters with a PRCC signi�cantly larger than the PRCC of
the dummy parameters should be considered as in�uential. The parameter
sets were generated using Latin Hypercube sampling with equally spaced
intervals for each parameter, and are not listed.

Parameter name min max

CytDi� 0.1250 0.3750
CellDi� 0.025 0.075

IL2E�ectiveness 0.05 0.15
IL4E�ectiveness 0.5 1.5
IL10E�ectiveness 0.5 1.5
IL12E�ectiveness 0.5 1.5
INFgE�ectiveness 0.5 1.5

Table 9.1: Range of variation for environment-related parameters

Parameter name min max

LDKill 0.000005 0.000015
LDRep 0.0045 0.0135
LDDA 0.025 0.075

Table 9.2: Range of variation for Leishmania-related parameters

9.3 PRCC of Parasite Burden

This section describes the results of PRCC for the parameters of the model.
Only the parameters with p-values less than 0.01 for at least 10 consecutive
hours are presented.
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Parameter name min max

CytAct 0.0024 0.0073
MKill 0.0125 0.0375
MacArr 0.2 0.6
MacCyt 1 3
MHCILife 1 6
MHCIILife 20 200
CD1dLife 5 40

MacActivationDecay 0.0005 0.0015
MHCIProd 0.0185 0.0555
MHCIIProd 0.0075 0.0225
CD1dProd 0.0120 0.0360
MonoLeave 0.025 0.075

KCIncomeRate 0.00005 0.00015
ActivationFight 0.01 0.03

KCCC 75 125

Table 9.3: Range of variation for phagocytes-related parameters

Parameter name min max

NKTDA 0.025 0.075
NKTArr 0.15 0.45

NKTCD1dAct 0.0650 0.1950
NKTDeact 0.15 0.45
NKTLife 300 500

NKTIL4Prod 0.01 0.03
NKTINFgProd 1 3
NKTChem 0.005 0.015

Table 9.4: Range of variation for NKT cells-related parameters

Parameter name min max

NKMacAct 0.001 0.003
NKDeact 0.05 0.15
NKArr 0.04 0.12
NKLife 300 500
NKEvol 250 750

IL12NKAct 0.00025 0.00075
IL12NKDeac 0.05 0.15
NKCytProd 1 3

Table 9.5: Range of variation for NK cells-related parameters
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Parameter name min max

Th1IL10Di� 0.0001 0.0004
TCellDi� 0.002 0.006
TRep 0.002 0.006

SpleenTCellArr 0.025 0.075
LiverTCellArr 0.025 0.075
TCellAct 0.0034 0.0104
TDeact 0.15 0.45
TChem 0.005 0.015

ToZeroProd 0.0005 0.0015
FromZeroProd 0.0005 0.0015

Th1Evol 60 180
TCellKeepProd 0.02 0.06
TCellCytProd 1 3
TimeTStart 70 120
TimeTStop 100 150

Th1IL10RepMod 0 1

Table 9.6: Range of variation for T cells-related parameters

Since the parasite burden a�ects either directly or indirectly all the en-
tities of the model, using this value to calculate the PRCC should provide
a good indication of the importance of the parameters analyzed. Both the
PRCC and p-values were calculated with MATALB adapting the functions
described by Marino et al. 2008.

9.3.1 Environment

The di�usion of cytokines is a very important parameter for the parasite
burden (see Figure 9.1). The PRCC of CytDiff is much larger than the
PRCC of the dummy parameter, indicating the strong in�uence of this pa-
rameter on the number of parasites. Moreover, the p-values, lower than 0.01
for most of the simulation, indicate the validity of the result. Increasing
the di�usion of cytokines leads to a smaller amount of INFγ, and thus to a
limited activation of Kup�er Cells, which results in a large parasite burden.
This is clearly captured by the large positive PRCC values. The early neg-
ative values are not statistically signi�cant, and are likely due to the small
amount of cytokines in the early stages of granuloma formation.

The di�usion of cells appears to be less important than the di�usion of
cytokines for the parasite burden (see Figure 9.2). The PRCC of CellDiff
is signi�cantly larger than the PRCC of the dummy parameter for most of
the simulation, indicating that the result is not due to stochastic e�ects. The
oscillations in the early stages are a consequence of the stochasticity of the
model, as con�rmed by the comparison with the value of the PRCC of the
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Figure 9.1: PRCC of CytDiff and dummy parameter.

Figure 9.2: PRCC of CellDiff and dummy parameter.
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dummy parameter.
Increasing the di�usion, thus diminishing the number of cells, increases

the parasite burden, as the in�ammatory response is weaker. The statisti-
cally signi�cant zones appear to be less clear. The �rst zone (between 500
and 100 hours) is probably explained by the fact that, as the parasite bur-
den decreases, the number of peptides displayed by Kup�er cells decreases.
This results in a lower probability of activation of the cells, and thus to a
higher parasite burden. The second zone (after 1500 hours), is probably due
to the lower number of leukocytes and parasites in the later stage of infec-
tion, leading again to a lower probability of activation. The reproduction
of cells due to the cytokines in the environment probably explains the large
non-signi�cant zone between the two signi�cant zones.

Figure 9.3: PRCC of INFgEffectiveness and dummy parameter.

The e�ectiveness of INFγ is very important for the parasite burden (see
Figure 9.3). The PRCC of INFgEffectiveness is much larger than the
PRCC of the dummy parameter, and the parameter is statistically signif-
icant for most of the simulation. These results clearly indicate the strong
in�uence of this parameter on the number of parasites. As expected from
the in�ammatory role of INFγ, increasing INFgEffectiveness results in
a diminished number of parasites. The early positive values are not statisti-
cally signi�cant, and are due to the stochasticity of the model, as con�rmed
by the comparison with the values of the PRCC of the dummy parameter.

Note that the role INFγ results to be mainly in�ammatory, even in a
model with an INFγ-induced production of IL10 by TH1 cells.

The e�ectiveness of IL10 clearly a�ects the parasite burden during the
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Figure 9.4: PRCC of IL10Effectiveness and dummy parameter.

Figure 9.5: PRCC of IL12Effectiveness and dummy parameter.
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later stages of infection (see Figure 9.4). The PRCC of IL10Effectiveness
is signi�cantly larger than the PRCC of the dummy parameter, and the p-
values are lower than 0.01 about 600 hours after infection. These results
clearly indicate the strong in�uence of this parameter on the number of
parasites. As expected from the anti-in�ammatory role of IL10, increas-
ing IL10Effectiveness results in an increased number of parasites. The
statistical non-signi�cant role of the parameter in the initial stages of infec-
tion is a consequence of the limited number of IL10-producing cells at the
beginning of the disease.

The e�ectiveness of IL12 has a limited e�ect on the parasite burden.
While the PRCC of IL12Effectiveness appears to be larger than the
PRCC of the dummy parameter, the parameter is statistically signi�cant
only around the peak of the infection. The e�ectiveness of IL12 in�uences
both the activation of NK cells and the cytokine production of some TH1
cells. The negative value of the PRCC con�rms its in�ammatory role.

9.3.2 Leishmania Donovani

Figure 9.6: PRCC of LDRep and dummy parameter.

The reproduction rate of the parasite is a very important parameter for
the parasite burden (see Figure 9.6). The PRCC of LDRep is much larger
than the PRCC of the dummy parameter, and the p-values are lower than
0.01 for most of the simulation, thus indicating the strong in�uence of this
parameter on the number of parasites.

Interestingly, the role of LDRep appears to be double. Up to about
hour 500, and therefore before the parasite burden reached a maximum,
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an increased reproduction rate leads to a larger parasite burden. However,
subsequently, a higher reproduction rate leads to a lower parasite burden.
This apparently strange result, is a consequence of the stronger immune
response triggered by a slightly higher parasite burden, and is partly due to
the limited variation of the parameter.

9.3.3 Macrophages

The arrival rate of Kup�er cells has a limited e�ect on the parasite burden
(see Figure 9.7). Speci�cally,MacArr appears to be statistically signi�cant
only in the early stages of the disease, since it a�ects only the initial size of
the granuloma, and thus the killing ability of the granuloma, which increases
with the number of Kup�er cells. The p-values higher than 0.01 and the val-
ues of PRCC comparable with the values of PRCC of the dummy parameter
indicates the negligible e�ect of his parameter on the parasite number during
the later stages of infection.

The killing ability of macrophages clearly a�ects the parasite burden in
the �rst 500 hours after infection (see Figure 9.8). However, the p-values
higher than 0.01 and the PRCC value comparable with those of the dummy
parameter, suggest a negligible role of MKill after hour 500. A possible
explanation of this quite unexpected result is the role of the level of classical
activation, which controls the killing ability of Kup�er cells to a larger extent.

The sensitivity of phagocytes to cytokine-induced (de)activation is a very
important parameter for the parasite burden (see Figure 9.9). Besides a small
zone at the beginning of the disease, the PRCC of CytAct is much larger
than the PRCC of the dummy parameter, indicating the strong in�uence of
this parameter on the number of parasites. Moreover, the p-values, lower
than 0.01 for most of the simulation, indicate the validity of the result. As
expected from the high INFγ concentration with respect of IL10, increasing
the sensitivity of phagocytes to cytokines leads to a larger classical activation,
and thus to a lower parasite burden.

The speed of reciprocal down-regulation by (de)activations of phagocytes
seems to be important only in the later stage of the disease (see Figure 9.10).
The PRCC of ActivationFight is signi�cantly di�erent from the PRCC
of the dummy parameter only 600 hours after infection, and this result is
supported by the by p-values, which are less than 0.01 in the same zone.
The decrease in the parasite burden is due to the increased deactivation
of phagocytes in the later stage of the disease. A larger ActivationFight
indicates that the deactivation takes more time to down-regulate the classical
activation, and thus that the killing activity of the Kup�er cells is increased.

The productions of MHC class I and II peptides by phagocytes is quite
important for the parasite burdens (see Figures 9.11 and 9.12). MHCIProd

and MHCIIProd, have qualitatively similar PRCC and p-values. In both
cases, besides an initial zone, the p-values of the parameter is less the 0.01
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Figure 9.7: PRCC of MacArr and dummy parameter.

Figure 9.8: PRCC of MKill and dummy parameter.
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Figure 9.9: PRCC of CytAct and dummy parameter.

Figure 9.10: PRCC of ActivationFight and dummy parameter.
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Figure 9.11: PRCC of MHCIProd and dummy parameter.

Figure 9.12: PRCC of MHCIIProd and dummy parameter.
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for the whole disease. The initial statistical non-signi�cant zone is connected
with the number of peptides produced by the Kup�er cells before the adap-
tive immune response. The PRCC con�rms that a larger peptide production
leads to a lower parasite burden. Moreover, the PRCC indicates that the
importance of MHC class I and II peptides, and thus the role of CD4+ and
CD8+ T cells are comparable.

The e�ect of MHCILife is connected withMHCIProd, and the results
are similar (see Figures 9.13). Note that both MHCIILife and CD1dLife
do not appear to be statistically signi�cant, suggesting that the actual half-
life of a MHC - peptide complex is not very relevant if it is long enough.

The production of CD1d peptides by phagocytes is again quite impor-
tant for the parasite burden (see Figure 9.14). However, CD1dProd has a
distinctly di�erent behavior with respect toMHCIProd andMHCIIProd.
In the �rst statistically signi�cant zone, the negative PRCC � signi�cantly
smaller than the PRCC of the dummy parameter � is an indication of the
infection control activity of NKT cells in the early stages of infection. In the
second statistically signi�cant zone, the positive PRCC � larger than the
PRCC of the dummy parameter � is an indication of the anti-in�ammatory
activity of NKT cells in the later stages of infections (see also Section 8.3.3).

9.3.4 Natural Killer T Cells

The production of INFγ by NKT cells is very important for the parasite
burden (see Figure 9.15). The PRCC and p-values of iNKTINFgProd are
strongly connected with those of INFgEffectiveness (see Figure 9.3), and
will not be further commented.

The deactivation activity of NKT cells is very important for the parasite
burden (see Figure 9.16). iNKTDA is statistically signi�cant for most of
the disease and the large PRCC clearly indicates how increasing the NKT
cells-induced deactivation of Kup�er cells leads to a larger parasite burden.

The time between the activation and the deactivation of NKT cells is
rather important for the parasite burden (see Figure 9.17). The role of
iNKTDeact is inverse with respect to CD1dProd: a large iNKTDeact
indicates a fast deactivation, and thus less NKT cells. The PRCC and p-
values of iNKTDeact clearly indicate the aforementioned connection with
CD1dProd (see Figure 9.17), and are indications of the correct behavior of
the model.

9.3.5 T Cells

The cytokine production of T cells is very important for the parasite burden
(see Figure 9.18). Since the T cells response is biased towards a type I
immune response, the PRCC and p-values of TCellCytProd are strongly
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Figure 9.13: PRCC of MHCILife and dummy parameter.

Figure 9.14: PRCC of CD1dProd and dummy parameter.
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Figure 9.15: PRCC of iNKTINFgProd and dummy parameter.

Figure 9.16: PRCC of iNKTDA and dummy parameter.
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Figure 9.17: PRCC of iNKTDeact and dummy parameter.

Figure 9.18: PRCC of TCellCytProd and dummy parameter.
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Figure 9.19: PRCC of TDeact and dummy parameter.

connected with those of INFgEffectiveness (see Figure 9.3). The initial
statistically non-signi�cant zone is due to the delayed T cells response.

The deactivation of T cells is very important for the parasite burden
(see Figure 9.18). Similarly to iNKTDeact (see Section 9.3.4), a large
TDeact indicates a fast deactivation. As indicated by the large positive
PRCC, a faster deactivation leads to an increased parasite burden, and the
p-values less than 0.01 for most of the model, indicate the validity of this
result. It is worth noticing that, contrary to iNKTDeact, the e�ect of
TDeact is more uniform. This result indicates that the e�ect of T cells is
mainly pro-in�ammatory (as expected given the high percentage of INFγ+

T cells).
The activation rate of T cells is not so important for the parasite burden

(see Figure 9.20). The PRCC of TCellAct is not signi�cantly larger than
the PRCC of the dummy parameters and the statistically signi�cant zones
are rather small. This result indicates that, in our model, the production
of MHC peptides is more important than the probability of interacting with
those peptides.

9.3.6 Number of Signi�cant Parameters

Figure 9.21 indicates the number of statistically signi�cant parameters over
time. While the rapid increase around hour 100 is clearly due to the arrival of
T cells, the subsequent increases result from the structure of the model and
the interactions of the entities modeled. Additionally, the stabilization of
the number of statistically signi�cant parameters 1000 hours after infection,
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Figure 9.20: PRCC of TCellAct and dummy parameter.

Figure 9.21: Number of statistically signi�cant parameters
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indicates that after a while all the interactions have come (and stay) into
play.

While Figure 9.21 hardly measures of the complexity of the model, it is
an indication of its complex nature.
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Chapter 10

Summary and Conclusions

As described in the Introduction, this thesis had a number of
goals. The aim of this chapter is to discuss to which extent these
goals were met, and to point out the implications or our results
for immunology and immunological modeling.

10.1 Insight Into Granuloma Formation

A better understanding of the dynamics of granulomas was the primary goal
of this thesis. As discussed in Section 8.1, our model allowed a characteriza-
tion of the di�erent aspects of granulomas that would have been impossible
in vivo. This characterization allowed us to understand how the course of
leishmaniasis emerges from a rather heterogeneous population of granulo-
mas, and allowed us to draw important conclusions on the granuloma as an
immunological process.

The results presented in Section 8.1 imply that the immune system is able
to deal with leishmaniasis quite e�ciently in most of the cases. Therefore,
if we wish to improve the immune response, we need to develop therapies
that focus on a smaller collection of granulomas rather than on the whole
population. Additionally, we can think of designing biological experiments
that will try to force the immune system into developing a less heterogeneous
population of granulomas, to better study the e�ect of speci�c populations
of granulomas.

Moreover, the above results indicate the importance of stochasticity for
the evolution of visceral leishmaniasis, suggesting that other granulomatous
infections may have a similar heterogeneity and discouraging the use of de-
terministic population dynamics models to represent these diseases.

Section 8.3 provided us with important insight on the double-edged na-
ture of NKT cells and on their activation mechanisms. While the results on
the activation of NKT cells are probably quite speci�c, the results on their
behavior are likely to be more general.

197
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This remarkable self-control of NKT cells is quite interesting, as it is
obtained by a homogeneous population, and indicates how NKT cells may
acquire an immunoregulatory function over time. This result suggests that
the immune response in the liver may be improved by preventing the activa-
tion of NKT cells at the later stages of an infection, and therefore indicates
possible future lines of research.

Moreover, the fact that both NKT and T cells seem to display both
in�ammatory and immunoregulatory functions over time, may suggest phy-
logenetic connections between the two populations.

From a modeling point of view, the importance of the double-edged na-
ture of NKT in leishmaniasis suggests that immunological modelers should
deal very carefully with these cells, taking into account the appropriate func-
tions.

Section 8.4 provided us with interesting information on the supporting
role of NK cells. Quite interestingly, these cells seem to possess a mainly
in�ammatory role and our results suggest the boosting of NK cells immune
response as a possible therapeutic option for certain diseases. However,
these considerations heavily depend on our model of NK cells evolution, and
additional modeling e�orts are needed to account for other possibilities such
as the existence of di�erent populations of NK cells (e.g., an INFγ+IL10−

population and an INFγ+IL10+ population).

10.2 Therapeutic Options

The comparison of di�erent therapeutic options for leishmaniasis was a sec-
ond goal of this thesis. As discussed in Section 8.5 none of the tested simple
therapeutic options seem to be very e�ective by itself. However, the e�cacy
of the combined e�ect of just two of them suggested interesting possibili-
ties to improve the immune response. The implication for immunological
research are obvious, but the systemic nature of visceral leishmaniasis, call
for a careful validation of our conclusions.

These results also indicate that some diseases may be better dealt with
by using a sequence of drugs, and suggest that computational immunological
models should be built to account for experiments with multiple drugs. Note
that these results clearly point out the importance of in silico experiments,
as the design and realization of these experiments in vivo would have been
quite expensive and time-consuming.

10.3 Testing of Biological Hypotheses

The comparison of the di�erent biological hypotheses was the third goal of
this thesis. Section 8.2 compared di�erent mechanism of phenotypic changes
in TH1 cells, and therefore di�erent biological hypotheses. Albeit not very
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strong, our results clearly indicate possible directions for biological research
that should clarify the possible role of INFγ and IL12 in the production
of IL10 by TH1. Since many other possibilities exist, additional research
e�orts are needed to study the phenomenon, ideally in a more controlled
environment (for example in vitro). However, the rather marginal role that
INFγ+IL10+ TH1 cells seem to play suggests that it may not be worth an
extensive study in the context of visceral leishmaniasis.

Section 8.3.1 indicated that a simple stress-mediated activation is insu�-
cient to model the response of NKT cells. Besides con�rming the importance
of CD1d-mediated activation, this result suggests that immunological mod-
elers should avoid a simple stress-mediated activation mechanism for NKT
cells. Additional research e�orts are needed to evaluate if a delayed stress-
mediated activation may provide a good alternative.

The above results indicate that using a complex model is an e�ective
way of comparing contrasting hypotheses. Even if the results may not be
too sharp, they clearly indicate possible research lines to restrict the number
of plausible hypotheses.

10.4 Modeling Process

Chapter 5 was devoted to achieve our fourth goal: a clear description of the
modeling steps. While listing the assumptions and simpli�cations used may
seem a very simple way of dealing with this goal, it allowed us to describe
how we moved from the biological process to the numerical model, while
keeping track of the information used (and not used).

Note that, a more structured representation (perhaps by the use of ontolo-
gies) would have better indicated the connection between the assumptions,
but would have introduced a somewhat subjective classi�cation.

We believe that a more consistent use of a precise description of assump-
tions could be very useful in understanding the results of numerical models.
The assumptions and simpli�cations characterize the experimental setup of
a numerical model, and similarly to the �Materials and Methods� section of
biological articles, allow for the reproducibility of the results. While it is
well-possible that more e�cient way of presenting the assumptions and sim-
pli�cations used exist, Chapter 5 can be easily checked by biological experts
and permit fast communications.

A methodology to build complex assumptions trees is certainly an inter-
esting future research line and automatic code generation from UML dia-
grams provides a somewhat similar concept. An even more ambitious goals
would be the building of an hypothesis repository, that would allow modelers
(and to a lesser extent biologists) to better comprehend the consequences of
in silico (and in vitro) experiments.

Additional indications of the modeling steps have been presented in
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Chapters 7 and 9. The comparison to in vivo data presented in Chapter
7 is essential, since it allows to assess the extrinsic validity of the model.
However, the sensitivity analysis presented in Chapter 9 is a great added
value, as it allows to assess the intrinsic validity of the model.

It should be noted that sensitivity analysis was not used only as a �nal
veri�cation, but as a tools to gain important insights during the whole de-
velopment of the model. These insights allowed us to improve the model and
to better represent the biological reality.

We believe that the above considerations in conjunction with the dis-
cussion presented in Section 4.1, provide a good indication of our modeling
process.

10.5 Conclusions

Sections 10.1 to 10.4 indicate how, albeit to di�erent extents, all the goals
set in the Introduction, were achieved. The relevance of our model, and
results, to immunology and immunological modeling were clearly discussed
and many possible research lines are indicated. While the complexity of the
model did not allow us to present an extensive description of its building
and results, we believe that the key points were clearly indicated.
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Appendix A

Mathematical Proofs

This chapter presents the mathematical proof of some results
of Chapter 4.

Note that throughout this Chapter, log(x) is to be interpreted as the
natural logarithm of x.

A.1 Distribution of the Minimum of Independent

Negative Exponentially Distributed Variables

Theorem 1. Let X1, . . . ,Xn be n exponentially distributed independent ran-
dom variables with parameters λ1, . . . , λn, then

Xmin = min (X1, . . . ,Xn)

is exponentially distributed with parameter

λmin = λ1 +⋯ + λn

Proof. Let X1, . . . ,Xn be n independent random variables, with cumulative
distribution functions FX1 , . . . , FXn , the cumulative distribution function of

Xmin = min (X1, . . .Xn)

is

FXmin
(x) = 1 −

n

∏
i=1

(1 − FXi (x))

(see Mood et al. 1974).
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Therefore, if the Xi are exponentially distributed with parameters λi,
the cumulative distribution function of their minimum is

FXmin
(x) = 1 −

n

∏
i=1

(1 − FXi (x))

= 1 −
n

∏
i=1

(1 − 1 + eλix)

= 1 −
n

∏
i=1

(eλix)

= 1 − e(∑n
i=1 λi)⋅x

which is the cumulative distribution function of an exponentially distributed
random variables with parameter

λmin =
n

∑
i=1
λi

A.2 Memoryless Property of Exponentially Distributed

Random Variables

Theorem 2. Let X be an exponentially distributed random variable with
parameter λ, then

P [X > x + k∣X > x] = P [X > k]

∀x, k > 0

Proof. By de�nition, we have

P [X > x + k∣X > x] = P [X > x + k]
P [X > x]

= e
−λ(x+k)

e−λx

= e−λk

= P [X > k]

A.3 Half-life

Theorem 3. Consider the Petri nets system of Figure A.1, if the parameter
of transition t is:

λ = np

t1/2
⋅ log(2)
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p t

1

Figure A.1: A Petri net system modeling a decay process

where np indicates the number of tokens of place p, then the number of tokens
of place p decreases with half-life t1/2.

Proof. The theorem will be proven for a generic number of tokens n, with
n ≥ 2 and even. Let np the initial number of tokens, and let τi be the expected
sojourn time in the marking with n − i tokens in p. Given the linearity of
the expectation, we need to prove that, after t1/2 time units, the number of
tokens in p is np/2

n/2
∑
i=1
τi ≤ t1/2 <

n/2+1
∑
i=1

τi (A.1)

Using the properties of negatively exponential distribution, Inequality
A.1 can be rewritten as

n/2
∑
i=1

t1/2
(n − i + 1) ⋅ log(2) ≤ t1/2 <

n/2+1
∑
i=1

t1/2
(n − i + 1) ⋅ log(2)

which is equivalent to

t1/2
log(2) ⋅

n/2
∑
i=1

1

n − i + 1
≤ t1/2 <

t1/2
log(2) ⋅

n/2+1
∑
i=1

1

n − i + 1
(A.2)

Since t1/2 > 0, we can multiply the terms of Inequality A.2 by

log(2)
t1/2

obtaining
n/2
∑
i=1

1

n − i + 1
≤ log(2) <

n/2+1
∑
i=1

1

n − i + 1

which is equivalent to

n

∑
i=1

1

i
−
n/2
∑
i=1

1

i
≤ log(2) <

n

∑
i=1

1

i
−
n/2
∑
i=1

1

i
+ 2

n
(A.3)

Let

Hn =
n

∑
i=1

1

i
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be the nth harmonic number. Inequality A.3 can be rewritten as

Hn −Hn/2 ≤ log(2) <Hn −Hn/2 +
2

n
(A.4)

which implies

Hn ≤ log(2) +Hn/2 <Hn +
2

n

It is possible to demonstrate that (Havil 2003):

1

2(n + 1) <Hn − log(n) − γ < 1

2n
(A.5)

which implies

1

n + 2
<Hn/2 − log(n) + log(2) − γ < 1

n
(A.6)

Inequality A.5 implies that

Hn <
1

2n
+ log(n) + γ (A.7)

and

1

2(n + 1) + log(n) + γ + 2

n
<Hn +

2

n
(A.8)

where γ is the Euler-Mascheroni constant.
Additionally, Inequality A.6 implies that

1

n + 2
+ log(n) + γ < log(2) +Hn/2 <

1

n
+ log(n) + γ (A.9)

The inequality

1

2n
+ log(n) + γ ≤ 1

n + 2
+ log(n) + γ (A.10)

can be simpli�ed to
1

2n
≤ 1

n + 2

which is true ∀n ≥ 2. Moreover, the inequality

1

n
+ log(n) + γ ≤ 1

2(n + 1) + log(n) + γ + 2

n
(A.11)

can be simpli�ed to
1

n
≤ 5n + 4

2n(n + 1)
which leads to

2n + 2 ≤ 5n + 4
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which is true ∀n > 1
Therefore,

Hn <
1

2n
+ log(n) + γ by Inequality A.7

≤ 1

n + 2
+ log(n) + γ by Inequality A.10

≤ log(2) +Hn/2 by Inequality A.9

≤ 1

n
+ log(n) + γ by Inequality A.9

≤ 1

2(n + 1) + log(n) + γ + 2

n
by Inequality A.11

<Hn +
2

n
by Inequality A.8

which demonstrate Inequality A.4.
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Appendix B

Additional Model Results

This chapter describes additional results of the models pre-
sented in Chapters 7 and 8. Due to their accessory role, the data
are only limitedly commented.

B.1 Removal of Natural Killer T Cells

The NK cells response of the NKT− model seems una�ected (see Figure B.1).
The low percentage of CD4+INFγ+IL10− T cells at day 38 (see Figure B.2)
is likely due to the reduced parasite burden (see Figure 7.10), while the low
percentage of CD4+INFγ+IL10+ T cells indicates a stronger in�ammatory
response (see Figure B.3).

B.2 Removal of T Cells

The removal of T cells leads to stronger NKT and NK cells responses (see
Figures B.4, B.5, and B.6) due to the increased parasite burden (see Figure
7.11). However, NKT and NK cells are not able to control infection, as
expected.

B.3 Removal of INFγ

Similarly to the removal of T cells (Sections 7.2.2 and B.2), the removal of
INFγ leads to an increased parasite burden, and thus to stronger NKT and
NK cells responses (see Figures B.7, B.8, and B.9). Moreover, no TH1 cells
are present in the model (see Figures B.10 and B.11). Note that the small
percentage of TH1 cells indicates antigen non-speci�c T cells used for the
calculation, but not modeled.
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Figure B.1: Number of NK Cells. In silico data describe the results of
baseline and NKT− models. In vivo data are taken from Maroof et al. 2008

Figure B.2: Percentage of activated TH1 cells. In silico data describe the re-
sults of baseline and NKT− models. In vivo data are taken from unpublished
data
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Figure B.3: Percentage of activated TH1 cells. In silico data describe the re-
sults of baseline and NKT− models. In vivo data are taken from unpublished
data

Figure B.4: Number of NKT cells. In silico data describe the results of
baseline and T− models. In vivo data are taken from Stanley et al. 2008
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Figure B.5: Percentage of activated NKT Cells. In silico data describe the
results of baseline and T− models. In vivo data are taken from Amprey et al.
2004 and Beattie at al. 2010 (EJI)

Figure B.6: Number of NK Cells. In silico data describe the results of
baseline and T− models. In vivo data are taken from Maroof et al. 2008



B.3. REMOVAL OF INFγ 229

Figure B.7: Number of NKT cells. In silico data describe the results of
baseline and INFγ− models. In vivo data are taken from Stanley et al. 2008

Figure B.8: Percentage of activated NKT Cells. In silico data describe the
results of baseline and INFγ− models. In vivo data are taken from Amprey
et al. 2004 and Beattie at al. 2010 (EJI)
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Figure B.9: Number of NK Cells. In silico data describe the results of
baseline and INFγ− models. In vivo data are taken from Maroof et al. 2008

Figure B.10: Percentage of activated TH1 cells. In silico data describe the
results of baseline and INFγ− models. In vivo data are taken from unpub-
lished data
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Figure B.11: Percentage of activated TH1 cells. In silico data describe the
results of baseline and INFγ− models. In vivo data are taken from unpub-
lished data
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Figure B.12: Number of NKT cells. In silico data describe the results of
INFγ, Time and IL12 models. In vivo data are taken from Stanley et al.
2008

B.4 INFγ-, Time-, and IL12-Dependent Models

The NKT and NK cells immune responses are very similar in the three models
of TH1 phenotypic change (see Figures B.12, B.13, and B.14).

B.5 Analysis of IL12-Dependent Model

The NK an NKT cells immune responses are una�ected by the reduced re-
production ability of INFγ+IL10+ T cells (see Figures B.15, B.16, and B.17).
Moreover, the percentage of INFγ+IL10− T cells is only slightly a�ected (see
Figure B.18)

B.6 Activation of Natural Killer T Cells

The two models of activation of NKT cells only marginally a�ect the NK
and T cells responses (see Figures B.19, B.20, and B.21)
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Figure B.13: Percentage of activated NKT Cells. In silico data describe the
results of INFγ, Time and IL12 models. In vivo data are taken from Amprey
et al. 2004 and Beattie at al. 2010 (EJI)

Figure B.14: Number of NK Cells. In silico data describe the results of
INFγ, Time and IL12 models. In vivo data are taken from Maroof et al.
2008
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Figure B.15: Number of NKT cells. In silico data describe IL12 model, IL12
model with reproduction ability of INFγ+IL10+ T Cells reduced by 33%,
and IL12 model with reproduction ability of INFγ+IL10+ T Cells reduced by
66%. In vivo data are taken from Stanley et al. 2008

Figure B.16: Percentage of activated NKT Cells. In silico data describe
IL12 model, IL12 model with reproduction ability of INFγ+IL10+ T Cells
reduced by 33%, and IL12 model with reproduction ability of INFγ+IL10+

T Cells reduced by 66%. In vivo data are taken from Amprey et al. 2004
and Beattie at al. 2010 (EJI)
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Figure B.17: Number of NK Cells. In silico data describe IL12 model, IL12
model with reproduction ability of INFγ+IL10+ T Cells reduced by 33%,
and IL12 model with reproduction ability of INFγ+IL10+ T Cells reduced by
66%. In vivo data are taken from Maroof et al. 2008

Figure B.18: Percentage of activated TH1 cells. In silico data describe IL12
model, IL12 model with reproduction ability of INFγ+IL10+ T Cells reduced
by 33%, and IL12 model with reproduction ability of INFγ+IL10+ T Cells
reduced by 66%. In vivo data are taken from unpublished data
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Figure B.19: Number of NK Cells. In silico data describe CD1d and stress
models. In vivo data are taken from Maroof et al. 2008

Figure B.20: Percentage of activated TH1 cells. In silico data describe CD1d
and stress models. In vivo data are taken from unpublished data
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Figure B.21: Percentage of activated TH1 cells. In silico data describe CD1d
and stress models. In vivo data are taken from unpublished data
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Figure B.22: Percentage of activated NKT Cells. In silico data describe
baseline and (NKT↑ (Day 7) models. In vivo data are taken from Amprey
et al. 2004 and Beattie at al. 2010 (EJI)

B.7 Direct Activation of Natural Killer Cells

As expected, the direct activation of NKT cells does not a�ect the percentage
of activated NKT cells in the �rst hours after infection (see Figures B.22 and
B.22), and the NK cells response (see Figures B.27 and B.27).

The percentages of activated TH1 cells are indirectly a�ected (see Figures
B.24, B.25, B.28, and B.29) as the parasite burden is changed (see Figures
8.15 and 8.16).

B.8 Role of Natural Killer Cells

The removal of NK cells slightly a�ects the NKT cells response (see Figures
B.30, and B.31) and the T cells response (see Figures B.33, and B.33), as a
result of the increased parasite burden (see Figure 8.21). As expected, no
NK cell is present in the model (see Figure B.32).

B.9 Removal of Natural Killer and Natural Killer

T Cells

Removing both NK and NKT cells (NK−NKT− Model) leads to a very high
parasite burden (see Figure B.35) and to the absence of TH1 cells (see Fig-
ure B.38 and B.39). Similarly to Section B.3, the small percentage of TH1
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Figure B.23: Number of NK Cells. In silico data describe baseline and
(NKT↑ (Day 7) models. In vivo data are taken from Maroof et al. 2008

Figure B.24: Percentage of activated TH1 cells. In silico data describe base-
line and (NKT↑ (Day 7) models. In vivo data are taken from unpublished
data
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Figure B.25: Percentage of activated TH1 cells. In silico data describe base-
line and (NKT↑ (Day 7) models. In vivo data are taken from unpublished
data

Figure B.26: Percentage of activated NKT Cells. In silico data describe
baseline and (NKT↑ (Day 14) models. In vivo data are taken from Amprey
et al. 2004 and Beattie at al. 2010 (EJI)
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Figure B.27: Number of NK Cells. In silico data describe baseline and
(NKT↑ (Day 14) models. In vivo data are taken from Maroof et al. 2008

Figure B.28: Percentage of activated TH1 cells. In silico data describe base-
line and (NKT↑ (Day 14) models. In vivo data are taken from unpublished
data
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Figure B.29: Percentage of activated TH1 cells. In silico data describe base-
line and (NKT↑ (Day 14) models. In vivo data are taken from unpublished
data

Figure B.30: Number of NKT cells. In silico data were obtained from the
baseline and NK− models. In vivo data are taken from Stanley et al. 2008
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Figure B.31: Percentage of activated NKT Cells. In silico data were obtained
from the baseline and NK− models. In vivo data are taken from Amprey et al.
2004 and Beattie at al. 2010 (EJI)

Figure B.32: Number of NK Cells. In silico data were obtained from the
baseline and NK− models. In vivo data are taken from Maroof et al. 2008
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Figure B.33: Percentage of activated TH1 cells. In silico data were obtained
from the baseline and NK− models. In vivo data are taken from unpublished
data

Figure B.34: Percentage of activated TH1 cells. In silico data were obtained
from the baseline and NK− models. In vivo data are taken from unpublished
data
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Figure B.35: Parasite Burden. In silico data describe baseline and
NK−NKT− models. In vivo data are adapted from Murray et al. 2006

Figure B.36: Number of NKT cells. In silico data describe baseline and
NK−NKT− models. In vivo data are taken from Stanley et al. 2008
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Figure B.37: Number of NK Cells. In silico data describe baseline and
NK−NKT− models. In vivo data are taken from Maroof et al. 2008

Figure B.38: Percentage of activated TH1 cells. In silico data describe base-
line and NK−NKT− models. In vivo data are taken from unpublished data
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Figure B.39: Percentage of activated TH1 cells. In silico data describe base-
line and NK−NKT− models. In vivo data are taken from unpublished data

cells indicates antigen non-speci�c T cells used for the calculation, but not
modeled. As expected, no NK and NKT cells are present (see Figures B.36
and B.37).
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Figure B.40: Number of NKT cells. In silico data describe baseline and
IL10− models. In vivo data are taken from Stanley et al. 2008

B.10 Removal of IL10

Removing IL10 only marginally a�ect the NKT cells response (see Figures
B.40 and B.41), the NK cells response (see Figure B.42), and the T cells
response (see Figures B.43 and B.44).
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Figure B.41: Percentage of activated NKT Cells. In silico data describe
baseline and IL10− models. In vivo data are taken from Amprey et al. 2004
and Beattie at al. 2010 (EJI)

Figure B.42: Number of NK Cells. In silico data describe baseline and IL10−

models. In vivo data are taken from Maroof et al. 2008
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Figure B.43: Percentage of activated TH1 cells. In silico data describe base-
line and IL10− models. In vivo data are taken from unpublished data

Figure B.44: Percentage of activated TH1 cells. In silico data describe base-
line and IL10− models. In vivo data are taken from unpublished data
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Figure B.45: Number of NKT cells. In silico data describe baseline and
INFγ ↑ (Day 12) models. In vivo data are taken from Stanley et al. 2008

B.11 INFγ Injection 12 Days After Infection

The increase of INFγ concentration 12 days after infection, has no e�ect
on the NKT cells response (see Figures B.45 and B.46) and the NK cells
response (see Figure B.47). The e�ect on the T cell populations is, however,
less marginal (see Figures B.48 and B.49), probably as a consequence of the
di�erent parasite burden (see Figure 8.24).

B.12 INFγ Injection 24 Days After Infection

The increase of INFγ concentration 24 days after infection, has no e�ect
on the NKT cells response (see Figures B.50 and B.51) and the NK cells
response (see Figure B.52). Moreover, the e�ect on T cell populations is
marginal (see Figures B.53 and B.54).

B.13 INFγ Injection 36 Days After Infection

The increase of INFγ concentration 36 days after infection, has no e�ect
on the NKT cells response (see Figures B.55 and B.56) and the NK cells
response (see Figure B.57). The e�ect on INFγ+IL10− T cells is marginal
(see Figure B.58). However, the percentage of INFγ+IL10+ T cells is strongly
increased 38 days after infection (see Figure B.59).
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Figure B.46: Percentage of activated NKT Cells. In silico data describe
baseline and INFγ ↑ (Day 12) models. In vivo data are taken from Amprey
et al. 2004 and Beattie at al. 2010 (EJI)

Figure B.47: Number of NK Cells. In silico data describe baseline and
INFγ ↑ (Day 12) models. In vivo data are taken from Maroof et al. 2008
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Figure B.48: Percentage of activated TH1 cells. In silico data describe base-
line and INFγ ↑ (Day 12) models. In vivo data are taken from unpublished
data

Figure B.49: Percentage of activated TH1 cells. In silico data describe base-
line and INFγ ↑ (Day 12) models. In vivo data are taken from unpublished
data
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Figure B.50: Number of NKT cells. In silico data describe baseline and
INFγ ↑ (Day 24) models. In vivo data are taken from Stanley et al. 2008

Figure B.51: Percentage of activated NKT Cells. In silico data describe
baseline and INFγ ↑ (Day 24) models. In vivo data are taken from Amprey
et al. 2004 and Beattie at al. 2010 (EJI)
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Figure B.52: Number of NK Cells. In silico data describe baseline and
INFγ ↑ (Day 24) models. In vivo data are taken from Maroof et al. 2008

Figure B.53: Percentage of activated TH1 cells. In silico data describe base-
line and INFγ ↑ (Day 24) models. In vivo data are taken from unpublished
data
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Figure B.54: Percentage of activated TH1 cells. In silico data describe base-
line and INFγ ↑ (Day 24) models. In vivo data are taken from unpublished
data

Figure B.55: Number of NKT cells. In silico data describe baseline and
INFγ ↑ (Day 36) models. In vivo data are taken from Stanley et al. 2008
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Figure B.56: Percentage of activated NKT Cells. In silico data describe
baseline and INFγ ↑ (Day 36) models. In vivo data are taken from Amprey
et al. 2004 and Beattie at al. 2010 (EJI)

Figure B.57: Number of NK Cells. In silico data describe baseline and
INFγ ↑ (Day 36) models. In vivo data are taken from Maroof et al. 2008
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Figure B.58: Percentage of activated TH1 cells. In silico data describe base-
line and INFγ ↑ (Day 36) models. In vivo data are taken from unpublished
data

Figure B.59: Percentage of activated TH1 cells. In silico data describe base-
line and INFγ ↑ (Day 36) models. In vivo data are taken from unpublished
data
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Figure B.60: Number of NKT cells. In silico data describe baseline and
INFγ ↑ (Day 48) models. In vivo data are taken from Stanley et al. 2008

B.14 INFγ Injection 48 Days After Infection

The increase of INFγ concentration 48 days after infection, has no e�ect on
the NKT cells response (see Figures B.60 and B.61), the NK cells response
(see Figure B.62), and INFγ+IL10− T cells percentage (see Figure B.63).
The, anomalous percentage of INFγ+IL10+ T cells (see Figure B.64) seems to
be due to stochastic e�ects, as the trends of the percentage look comparable
(see Figure B.65).
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Figure B.61: Percentage of activated NKT Cells. In silico data describe
baseline and INFγ ↑ (Day 48) models. In vivo data are taken from Amprey
et al. 2004 and Beattie at al. 2010 (EJI)

Figure B.62: Number of NK Cells. In silico data describe baseline and
INFγ ↑ (Day 48) models. In vivo data are taken from Maroof et al. 2008
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Figure B.63: Percentage of activated TH1 cells. In silico data describe base-
line and INFγ ↑ (Day 48) models. In vivo data are taken from unpublished
data

Figure B.64: Percentage of activated TH1 cells. In silico data describe base-
line and INFγ ↑ (Day 48) models. In vivo data are taken from unpublished
data
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Figure B.65: Percentage of INFγ+IL10+ T Cells. Data describe baseline and
INFγ ↑ (Day 48) models
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Figure B.66: Number of NKT cells. In silico data describe baseline and
IL10−INFγ ↑ (Day 12) models. In vivo data are taken from Stanley et al.
2008

B.15 IL10 Removal and INFγ Injection 12 Days Af-
ter Infection

The increase of INFγ concentration 12 days after infection with the removal
of IL10, has no e�ect on the NKT cells response (see Figures B.66 and B.67)
and the NK cells response (see Figure B.68). The e�ect on T cells in only
marginal (see Figures B.69 and B.70).

B.16 IL10 Removal and INFγ Injection 24 Days Af-
ter Infection

The increase of INFγ concentration 24 days after infection with the removal
of IL10, has no e�ect on the NKT cells response (see Figures B.71 and B.72)
and the NK cells response (see Figure B.73). However, the e�ect on T cells
in clearly detectable (see Figures B.74 and B.75).

B.17 IL10 Removal and INFγ Injection 36 Days Af-

ter Infection

The increase of INFγ concentration 36 days after infection with the removal
of IL10, has no e�ect on the NKT cells response (see Figures B.76 and B.77)
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Figure B.67: Percentage of activated NKT Cells. In silico data describe
baseline and IL10−INFγ ↑ (Day 12) models. In vivo data are taken from
Amprey et al. 2004 and Beattie at al. 2010 (EJI)

Figure B.68: Number of NK Cells. In silico data describe baseline and
IL10−INFγ ↑ (Day 12) models. In vivo data are taken from Maroof et al.
2008
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Figure B.69: Percentage of activated TH1 cells. In silico data describe base-
line and IL10−INFγ ↑ (Day 12) models. In vivo data are taken from unpub-
lished data

Figure B.70: Percentage of activated TH1 cells. In silico data describe base-
line and IL10−INFγ ↑ (Day 12) models. In vivo data are taken from unpub-
lished data
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Figure B.71: Number of NKT cells. In silico data describe baseline and
IL10−INFγ ↑ (Day 24) models. In vivo data are taken from Stanley et al.
2008

Figure B.72: Percentage of activated NKT Cells. In silico data describe
baseline and IL10−INFγ ↑ (Day 24) models. In vivo data are taken from
Amprey et al. 2004 and Beattie at al. 2010 (EJI)
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Figure B.73: Number of NK Cells. In silico data describe baseline and
IL10−INFγ ↑ (Day 24) models. In vivo data are taken from Maroof et al.
2008

Figure B.74: Percentage of activated TH1 cells. In silico data describe base-
line and IL10−INFγ ↑ (Day 24) models. In vivo data are taken from unpub-
lished data
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Figure B.75: Percentage of activated TH1 cells. In silico data describe base-
line and IL10−INFγ ↑ (Day 24) models. In vivo data are taken from unpub-
lished data

Figure B.76: Number of NKT cells. In silico data describe baseline and
IL10−INFγ ↑ (Day 36) models. In vivo data are taken from Stanley et al.
2008
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Figure B.77: Percentage of activated NKT Cells. In silico data describe
baseline and IL10−INFγ ↑ (Day 36) models. In vivo data are taken from
Amprey et al. 2004 and Beattie at al. 2010 (EJI)

Figure B.78: Number of NK Cells. In silico data describe baseline and
IL10−INFγ ↑ (Day 36) models. In vivo data are taken from Maroof et al.
2008
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Figure B.79: Percentage of activated TH1 cells. In silico data describe base-
line and IL10−INFγ ↑ (Day 36) models. In vivo data are taken from unpub-
lished data

Figure B.80: Percentage of activated TH1 cells. In silico data describe base-
line and IL10−INFγ ↑ (Day 36) models. In vivo data are taken from unpub-
lished data
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Figure B.81: Number of NKT cells. In silico data describe baseline and
IL10−INFγ ↑ (Day 48) models. In vivo data are taken from Stanley et al.
2008

and the NK cells response (see Figure B.78). However, the e�ect on T cells
in clearly detectable (see Figures B.79 and B.80). Speci�cally, the large
standard deviation in the percentage of INFγ+IL10+ T cells is an indication
of the e�ect of INFγ (see Figure B.80).

B.18 IL10 Removal and INFγ Injection 48 Days Af-
ter Infection

The increase of INFγ concentration 48 days after infection with the removal
of IL10, has no e�ect on the NKT cells response (see Figures B.81 and B.82)
and the NK cells response (see Figure B.83). However, the e�ect on T cells
in clearly detectable (see Figures B.84 and B.85).
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Figure B.82: Percentage of activated NKT Cells. In silico data describe
baseline and IL10−INFγ ↑ (Day 48) models. In vivo data are taken from
Amprey et al. 2004 and Beattie at al. 2010 (EJI)

Figure B.83: Number of NK Cells. In silico data describe baseline and
IL10−INFγ ↑ (Day 48) models. In vivo data are taken from Maroof et al.
2008
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Figure B.84: Percentage of activated TH1 cells. In silico data describe base-
line and IL10−INFγ ↑ (Day 48) models. In vivo data are taken from unpub-
lished data

Figure B.85: Percentage of activated TH1 cells. In silico data describe base-
line and IL10−INFγ ↑ (Day 48) models. In vivo data are taken from unpub-
lished data
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