
UNIVERSITÀ DEGLI STUDI DI MILANO
Facoltà di Scienze Matematiche, Fisiche e Naturali

DOTTORATO DI RICERCA IN INFORMATICA
XXIII CICLO

SETTORE SCIENTIFICO DISCIPLINARE INF/01 INFORMATICA

Dealing with next-generation malware

Tesi di
Roberto Paleari

Relatore
Prof. D. Bruschi

Coordinatore del Dottorato
Prof. E. Damiani

Anno Accademico 2009/2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187845823?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITÀ DEGLI STUDI DI MILANO
Facoltà di Scienze Matematiche, Fisiche e Naturali

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE
XXIII CICLO

Dealing with next-generation malware

PhD Candidate
Roberto Paleari

Adviser
Prof. D. Bruschi

PhD Coordinator
Prof. E. Damiani

Academical Year 2009/2010

Copyright c© February 2011 by Roberto Paleari

Abstract of the dissertation

Dealing with next-generation malware

by
Roberto Paleari

Doctor of Philosophy
in

Computer Science

Università degli Studi di Milano
2011

Malicious programs are a serious problem that threatens the security of billions
of Internet users. Today’s malware authors are motivated by the easy financial
gain they can obtain by selling on the underground market the information stolen
from the infected hosts. To maximize their profit, miscreants continuously im-
prove their creations to make them more and more resilient against anti-malware
solutions. This increasing sophistication in malicious code led to next-generation
malware, a new class of threats that exploit the limitations of state-of-the-art
anti-malware products to bypass security protections and eventually evade de-
tection. Unfortunately, current anti-malware technologies are inadequate to face
next-generation malware. For this reason, in this dissertation we propose novel
techniques to address the shortcomings of defensive technologies and to enhance
current state-of-the-art security solutions.

Dynamic behavior-based analysis is a very promising approach to automat-
ically understand the behaviors a malicious program may exhibit at run-time.
However, behavior-based solutions still present several limitations. First of all,
these techniques may give incomplete results because the execution environments
in which they are applied are synthetic and do not faithfully resemble the environ-
ments of end-users, the intended targets of the malicious activities. To overcome
this problem, we present a new framework for improving behavior-based analy-
sis of suspicious programs, that allows an end-user to delegate security labs the

ii

execution and the analysis of a program and to force the program to behave as
if it were executed directly in the environment of the former. Our evaluation
demonstrated that the proposed framework allows security labs to improve the
completeness of the analysis, by analyzing a piece of malware on behalf of mul-
tiple end-users simultaneously, while performing a fine-grained analysis of the
behavior of the program with no computational cost for the end-users.

Another drawback of state-of-the-art defensive solutions is non-transparency:
malicious programs are often able to determine that their execution is being
monitored, and thus they can tamper with the analysis to avoid detection, or
simply behave innocuously to mislead the anti-malware tool. At this aim, we
propose a generic framework to perform complex dynamic system-level analyses of
deployed production systems. By leveraging hardware support for virtualization
available nowadays on all commodity machines, our framework is completely
transparent to the system under analysis and it guarantees isolation of the analysis
tools running on top of it. The internals of the kernel of the running system need
not to be modified and the whole platform runs unaware of the framework. Once
the framework has been installed, even kernel-level malware cannot detect it
or affect its execution. This is accomplished by installing a minimalistic virtual
machine monitor and migrating the system, as it runs, into a virtual machine. To
demonstrate the potentials of our framework we developed an interactive kernel
debugger, named HyperDbg. As HyperDbg can be used to monitor any critical
system component, it is suitable to analyze even malicious programs that include
kernel-level modules.

Despite all the progress anti-malware technologies can make, perfect malware
detection remains an undecidable problem. When it is not possible to prevent a
malicious threat from infecting a system, post-infection remediation remains the
only viable possibility. However, if the machine has already been compromised,
the execution of the remediation tool could be tampered by the malware that is
running on the system. To address this problem we present Conqueror, a software-
based attestation scheme for tamper-proof code execution on untrusted legacy
systems. Besides providing load-time attestation of a piece of code, Conqueror also
ensures run-time integrity. Conqueror constitutes a valid alternative to trusted
computing platforms, for systems lacking specialized hardware for attestation.
We implemented a prototype, specific for the Intel x86 architecture, and evaluated
the proposed scheme. Our evaluation showed that, compared to competitors,
Conqueror is resistant to both static and dynamic attacks.

We believe Conqueror and our transparent dynamic analysis framework consti-
tute important building blocks for creating new security applications. To demon-
strate this claim, we leverage the aforementioned solutions to realize HyperSleuth,
an infrastructure to securely perform live forensic analysis of potentially compro-
mised production systems. HyperSleuth provides a trusted execution environment
that guarantees an attacker controlling the system cannot interfere with the anal-
ysis and cannot tamper with the results. The framework can be installed as the
system runs, without a reboot and without loosing any volatile data. Moreover,

iii

the analysis can be periodically and safely interrupted to resume normal execu-
tion of the system. On top of HyperSleuth we implemented three forensic analysis
tools: a lazy physical memory dumper, a lie detector, and a system call tracer.
The experimental evaluation we conducted demonstrated that even time consum-
ing analyses, such as the dump of the content of the physical memory, can be
securely performed without interrupting the services offered by the system.

iv

To Laura,
Thank you for always believing in me

Acknowledgements

This dissertation would have not been possible without the help of several people,
who supported me during my years as a PhD student.

First, I would like to thank my advisor, Prof. Danilo Bruschi, for his guidance
and for having always encouraged me and supported my research ideas. I am
also extremely grateful to my external referees, Prof. Herbert Bos, Prof. Wenke
Lee, and Prof. Dawn Song: their insightful comments and suggestions greatly
contributed to improving by dissertation. I would like to thank them all so much
for the time they spent on my thesis.

There are many friends I would like to thank. First of all, I wish to thank
Lorenzo Martignoni: he is really one of the best computer scientists I have had
the fortune to meet, besides being a great friend; I really learnt a lot by working
with him, and I known we will still have a lot of fun together. I am also very
grateful to Lorenzo “Sullivan” Cavallaro and Andrea Lanzi: I thank them for
their help and for the great discussions we had together; I always admired their
tenacity, and I have been very fortunate to collaborate with them. A special
thank goes to Prof. Mattia Monga: his knowledge and his love for research have
inspired me during my doctoral studies.

I want to thank all those who shared with me their PhD experiences, especially
Emanuele Passerini – I will always remember the night we spent jailbreaking our
iPods –, Giampaolo Fresi Roglia – his final solution to the DefCon’s Shakespeare
challenge is a masterpiece –, and Alessandro Rozza: we really had a lot of fun
together! Of course I am also indebted to the LaSeR crew, namely Aristide
Fattori, Luca Giancane, Davide Marrone, Alessandro Reina, and all the students
who spent some time in the lab. I will never forget the days – and nights – we spent
working on crazy (and extremely “low-level”) projects, or just participating in our
beloved CTF competitions. Guard@MyLan0 (a.k.a. Chocolate Makers)
team rocks! I hope I will have the opportunity to work with them again in the
future.

To conclude, I wish to extend a huge thank you to my parents for their help.

vi

They always supported all the decisions I made, and they never, ever asked me
for anything in return. I know it is not so easy to tolerate a moody PhD student,
so I need to thank them both very much!

Last but not least I would like to thank my dear Laura. She has always been
(and always will be) a big source of inspiration for me: without her I would simply
not be the person I am today. This dissertation is dedicated to her.

vii

Contents

1 Introduction 1
1.1 Dissertation contributions . 4
1.2 Dissertation organization . 6

2 Malware analysis in the cloud 7
2.1 Overview . 9

2.1.1 Delegating the analysis to the cloud 9
2.1.2 Exploiting diversity of end-users’ environments 11

2.2 Design and implementation . 12
2.2.1 Executing a program in multiple environments 12
2.2.2 An in the cloud behavior-based malware detector 17

2.3 Evaluation . 17
2.3.1 Experimental setup . 17
2.3.2 Evaluation on benign programs 18
2.3.3 Performance overhead . 19
2.3.4 Evaluation on malicious programs 19
2.3.5 Conceptual comparison with input oblivious analyzers . . . 20

2.4 Discussion . 21

3 Transparent and efficient dynamic analysis 22
3.1 Intel VT-x . 24
3.2 Overview of the framework . 25
3.3 Design and implementation . 27

3.3.1 Framework and analysis tool loading 30
3.3.2 Execution tracing . 32
3.3.3 State inspection and manipulation 34
3.3.4 Tool isolation . 35
3.3.5 OS-dependent interface . 36

3.4 HyperDbg . 37

viii

3.4.1 User interface . 39
3.4.2 User interaction . 39
3.4.3 Real world examples . 40

3.5 Discussion . 40

4 Software-based code attestation 42
4.1 State-of-the-art of attestation on legacy systems 44
4.2 Conqueror overview . 45

4.2.1 Threat model . 46
4.2.2 Conqueror architecture and protocol 46

4.3 Conqueror implementation . 47
4.3.1 Tamper-Proof Environment Bootstrapper 48
4.3.2 Checksum function . 48
4.3.3 Obfuscation . 56

4.4 Evaluation . 56
4.4.1 Prototype . 56
4.4.2 Experimental setup . 57
4.4.3 Estimating the parameters of the challenge 57
4.4.4 Experimental results . 58
4.4.5 A real application of Conqueror 60

4.5 Discussion . 60

5 Live and trustworthy forensic analysis 62
5.1 Overview . 63

5.1.1 HyperSleuth architecture 64
5.1.2 HyperSleuth trusted launch 65
5.1.3 Requirements and threat model 66

5.2 Implementation . 67
5.2.1 HyperSleuth VMM . 67

5.3 Live forensic analysis . 70
5.3.1 Physical memory dumper 70
5.3.2 Lie detector . 73
5.3.3 System call tracer . 73

5.4 Experimental evaluation . 74
5.4.1 HyperSleuth launch and lazy dump of the physical memory 75
5.4.2 Lie detection . 76

5.5 Discussion . 78

6 Related literature 79
6.1 Malware analysis . 79

6.1.1 Behavior-based malware analysis 79
6.1.2 Malware analysis in the cloud 81
6.1.3 Post-infection countermeasures 82

6.2 Code attestation . 83

ix

6.3 Dynamic analysis of commodity systems 84
6.3.1 Dynamic kernel instrumentation 84
6.3.2 Kernel-level debugging . 84
6.3.3 Frameworks based on virtual machines 85
6.3.4 Aspect-oriented programming 85

7 Future directions 86

8 Conclusions 89

Bibliography 103

x

1
Introduction

T
he term malware, or malicious software, indicates any computer program
written with the explicit intent to damage users and compromise their
systems to perform various types of fraud. Nowadays, malware is used to

send spam e-mails, to perpetrate web frauds, to steal personal information, and
for many other nefarious tasks. The widespread diffusion of malicious software is
one of the biggest problems the Internet community has to face today.

Malicious programs have been known for decades, since in 1982 the Elk Cloner
virus started to spread by infecting floppy disks. Despite this first incident, the
malware phenomenon was able to gain significant media attention only in 1988,
when the Internet Worm infected most of the Internet at the time [121]. The
community soon realized this was not an isolated case, and the next events firmly
confirmed this belief. Indeed, the problem quickly became so extensive that it
hit the headlines many times [38, 70], and in the following years malware caused
an economic damage of many billions of dollars [28, 77].

To defend against malicious programs, users typically rely on anti-malware
products in order to preemptively detect a threat before it can damage their sys-
tems. The approach adopted by traditional anti-malware solutions is signature-
based : malware samples are analyzed in a security laboratory and, for each sam-
ple, analysts identify a signature, i.e., a sequence of bytes that uniquely identifies
the sample and that is unlikely to be found in benign programs. Then, anti-
malware products are shipped with a database of signatures. If a suspicious
application is found to contain a known signature, the application is considered
to be infected by the corresponding malicious sample. To account for newly dis-
covered samples, vendors periodically distribute signature updates to all their
customers [129].

For some years, the signature-based approach has been quite effective, but
more recently we have witnessed a drastic shift in the malware landscape. Crim-
inals realized that malicious programs can turn into a very profitable business,
and started to use malware to perform all kinds of illegal activities. As depicted
in Figure 1.1, this trend is also testified by the exponential growth in the num-

1

CHAPTER 1. INTRODUCTION

2002 2003 2004 2005 2006 2007 2008 2009

500,000

1,000,000

1,000,000

2,000,000

2,000,000

3,000,000

N
u
m

b
e
r

o
f

n
e
w

si
g
n

a
tu

re
s

Period

Figure 1.1: New malicious code signatures observed in the last years (source: Symantec
Corporation [126])

ber of malicious threats observed during the last years. However, the problem
goes far beyond a mere increase in the number of threats: we are observing the
emergence of a complex digital underground economy deeply connected with the
malware phenomenon [36, 48]. Nowadays, malware is an essential link of a net-
work of fraudulent activities whose goal is to steal any valuable information from
the victims (e.g., credit card numbers, bank accounts, e-mail addresses) and to
trade this information at the underground market.

This lucrative motivation had important consequences for the evolution of ma-
licious software. Basically, today’s malware is characterized by a steep increase
in the sophistication of its code, as authors continuously introduce additional
features and specific modifications to maximize the resilience of their creations
against anti-malware solutions. Encryption [123], polymorphism [81], metamor-
phism [128], and other code obfuscation techniques [66, 134] are widely used by
malware authors to evade detection. Strictly speaking, malware samples are now
able to mutate their syntactical representation after each infection, thus making
signature-based strategies completely ineffective. Moreover, to further conceal
their presence inside the systems, malware started to include kernel-level compo-
nents (root-kits) to alter the functionalities of the operating system running on
the machines of the victims [51, 6]. Such kernel modules are typically used to
hide various kind of information (e.g., running processes, open files, and network
connections) that could be considered as a symptom of the infection.

Traditional signature-based products are not able to face such an increase in
the complexity of malicious code [26, 20]. For this reason, security vendors and
researchers are investigating novel analysis and detection strategies. The current
trend is to move towards behavior-based solutions: according to this paradigm, a
suspicious program should be considered malicious because it exhibits a malicious

2

CHAPTER 1. INTRODUCTION

behavior, independently from its actual binary representation. This approach is
rapidly becoming the primary method for security labs to automatically under-
stand the behaviors that characterize each new piece of malware and to develop
the appropriate countermeasures [5, 141, 120]. On the other side, this technology
is also used on end-users’ hosts, to monitor the execution of suspicious programs
and try to detect and block malicious behaviors in real-time [85, 89, 107].

Behavior-based approaches can be typically classified into two categories, de-
pending on whether they adopt a static or a dynamic strategy. Static solu-
tions reason on the binary code of a suspicious application without actually
running it, so they can consider all the behaviors the program may exhibit at
run-time [19, 60, 98]. However, the application of static analysis techniques to
malicious software poses serious theoretical problems that limit the overall pre-
cision of the final results [63]. For this reason, most of today’s approaches are
dynamic [5, 76, 141]. Dynamic solutions focus on an actual execution of the tar-
get program, they can provide more accurate results, and are more resilient to
code obfuscation. To observe the behavior of the suspicious program, dynamic
analyzers execute the untrusted application in a special environment, typically a
virtual machine, that provides fine-grained monitoring capabilities.

Dynamic behavior-based solutions are very promising, but they are not free
from limitations. In particular, state-of-the-art approaches suffer four fundamen-
tal problems: they are incomplete, non-transparent, cannot be used on a system
that has already been compromised, and they introduce a non-negligible run-time
overhead. In the following paragraphs we briefly discuss these limitations.

First, all dynamic approaches are incomplete, as they can reason only on a
limited number of program paths (i.e., the ones observed during the executions of
the program). In other words, if a malware sample does not exhibit its malicious
behavior during the observed executions, then it will be considered as benign.
Unfortunately, malware is becoming increasingly specialized, as it often targets
very specific classes of users and systems. It is not uncommon to see malware that
behave maliciously only when specific conditions are satisfied. For example some
samples start to log pressed keys only when a user visits the web site of its bank,
while others steal the serial numbers of various software programs, but behave
innocuously if these applications are not found on the infected machine. Current
solutions address the incompleteness of the analysis by systematically exploring
all environment-dependent program paths [80, 7], but this is not always possible,
and several techniques are already known to thwart these systems [13, 115].

Another limitation of dynamic approaches is that malware is often able to
detect the virtual environments they use to monitor the execution of suspicious
programs. Indeed, in order to be employed for malware analysis, a virtual en-
vironment should not only provide bulletproof separation between the host and
guest systems, but it should also operate transparently. In other words, the
program running inside the guest should never be able to detect that it is not
running on a native machine. In our previous work we proved this is not always
the case [74, 75], and further research demonstrated that a malicious program

3

CHAPTER 1. INTRODUCTION

can leverage many discrepancies between emulated and native environments to
detect if it is being analyzed [87]. Despite the fact that recent research work
has introduced some platforms that cannot be easily detected by malicious pro-
grams [29, 99], these approaches assume the target system is already running
inside a virtual machine, so they cannot be used directly on end-users’ hosts to
implement detection or remediation solutions.

Moreover, it should be considered that writing a perfect malware detector
is not just very challenging, but is rather an undecidable problem [25]. In other
words, it is not always possible to act proactively, i.e., to detect threats before they
infect the system. In some situations, post-infection countermeasures remain the
only solution to get rid of a malware and of the damages it may have caused to the
system, other than reinstalling the entire machine. Unfortunately, the analysis of
an infected system is not so straightforward: once a malicious program has taken
the control of the host, it may tamper with the results of the analysis in order
to hide its presence. Current approaches typically do not consider this situation,
and they suppose the target host has not been compromised, or that the malware
cannot tamper with the execution of the analysis tool.

Finally, today’s dynamic approaches suffer a high computational overhead
that still allows to deploy them in analysis environments, but prevents them
from being employed at end hosts.

Miscreants are aware of the recent advances in malware countermeasures, as
well as of the aforementioned problems that limit their effectiveness. Indeed,
malware authors continuously update their creations to exploit the weaknesses
of current anti-malware approaches. We will use the term next-generation mal-
ware to indicate this emerging class of malicious programs that use sophisticated
techniques to circumvent state-of-the-art security products. Obviously, the prob-
lems that affect dynamic analyzers are exacerbated when they have to deal with
next-generation malware.

1.1 Dissertation contributions

This dissertation provides novel solutions that address the shortcomings of dy-
namic behavior-based analyzers when dealing with next-generation malware. In
particular, our goal is to focus on the problems that still limit the applicability
of behavior-based analysis techniques directly at the end hosts, with the intent
to provide better protection for the users.

For this purpose, we first present a framework for improving the completeness
of the behavior-based analysis of suspicious programs. As we already pointed
out, next-generation malware often manifest their malicious behaviors only when
very specific conditions are met. However, such conditions are more likely to be
satisfied on the machines of the end-users rather than in security laboratories,
where malicious code is typically analyzed in very synthetic environments. As
a consequence, the results of the analysis are very likely to be incomplete. Our

4

CHAPTER 1. INTRODUCTION

infrastructure allows an end-user to delegate security labs the execution and the
analysis of a program, but to force the program to behave as if it were executed
directly in the environment of the former. With this approach, the end-user
benefits from fine-grained analysis that would be computationally infeasible on
his system. On the other hand, the security lab can observe the behavior the
program manifests in the execution environment of the end-user. In other words,
the security lab can exploit the heterogeneity of users’ environments to improve
the completeness of the analysis.

Our second contribution is a generic framework that provides a programming
interface to perform complex dynamic system-level analyses of deployed produc-
tion systems. By leveraging hardware support for virtualization available nowa-
days on all commodity machines, the infrastructure we propose (i) is completely
transparent and isolated from the system under analysis, (ii) does not require
any modification to the internals of the system being monitored, and (iii) can be
installed and removed as the target system runs. As we will show, these character-
istics make the framework very suitable for being employed as the basic building
block for transparent anti-malware solutions. Moreover, as this approach can
deal with both user- and kernel-level code, it can also be used to analyze malware
that include root-kit components.

The contributions discussed so far present an important limitation that pre-
vents them from being directly used at end hosts: if the system has already been
compromised, the malicious software could tamper with the execution of the anal-
ysis or detection tool and hide its presence on the machine. For this reason, we
introduce a software-based attestation scheme for tamper-proof code execution on
untrusted hosts. Our solution guarantees that an arbitrary piece of code can be
executed untampered in an untrusted system, even in the presence of malicious
software.

Finally, we leverage our virtualization-based analysis framework and our at-
testation primitive to design a secure solution for the live and trustworthy forensic
analysis of potentially compromised machines. Our framework can be installed
and removed without the need to reboot the machine, and it is completely trans-
parent to an attacker that controls the system. Moreover, the analysis can be
periodically and safely interrupted to resume the normal execution of the system.

To summarize, we make the following contributions:

(ICISS 2009) a framework for improving behavior-based analysis of suspicious
programs. Our framework allows an end-user to delegate security labs the
execution and the analysis of a program and to force the program to behave
as if it were executed directly in the environment of the former [72].

(ASE 2010) An infrastructure that provides a programming interface to per-
form complex dynamic system-level analyses of deployed production sys-
tems. We leverage hardware support for virtualization, available nowadays
on all commodity machines, to realize a framework that is completely trans-
parent to the system under analysis and also guarantees isolation of the

5

CHAPTER 1. INTRODUCTION

analysis tools running on top of it [33].

(DIMVA 2010) A software-based attestation scheme for tamper-proof code ex-
ecution on untrusted legacy systems. The solution we propose provides
load-time attestation of a piece of code and also ensures run-time code in-
tegrity. Our primitive is resistant to static and dynamic attacks that are
known to defeat state-of-the-art approaches [73].

(RAID 2010) A framework to securely perform live forensic analyses of poten-
tially compromised production systems. We demonstrate that this infras-
tructure is particularly valuable for analyzing an alleged infected system a
posteriori, i.e., after the infection took place [71].

1.2 Dissertation organization

The dissertation is organized as follows. In Chapter 2 we describe our framework
to allow security labs to observe the execution of suspicious programs in multiple
realistic end-users’ environments, in order to improve the completeness of the
analysis. Chapter 3 presents our generic infrastructure to perform complex dy-
namic analyses with the guarantee that even kernel-level malware cannot detect
the analysis infrastructure. Chapter 4 introduces Conqueror, a software-based
code attestation primitive resilient to both static and dynamic attacks. Then, in
Chapter 5 we propose a framework to perform live forensic analyses of potentially
compromised production systems. Chapter 6 compares our research work with
the related literature. Finally, Chapter 7 proposes some possible directions for
future work, while Chapter 8 concludes the dissertation.

6

2
Malware analysis in the cloud

T
wo of the major disadvantages of dynamic behavior-based analysis are in-
completeness and non-negligible run-time overhead. Security laboratories
analyze new malicious programs automatically in special environments

(e.g., virtual machines) which allow very fine grained monitoring of the behav-
ior of the programs. The automatic behavioral analysis of specialized malware
becomes more and more difficult because the malicious behaviors manifest only
in very specific circumstances [3]. As an example, the Bancos trojan behaves
like a malware only when it runs in the system of a user of a Brazilian bank,
but it is innocuous on the vast majority of other systems [32]. If the behavioral
analysis of such malware samples is performed in inappropriate environments,
like the synthetic ones used in security labs, the results are very likely to be in-
complete. On the other hand, if the malicious program were analyzed directly on
an end-user’s machine, which is the intended target of the attack, the malicious
behavior would have more chances to be triggered and it would be caught as
it manifests. Unfortunately, the strict lightweight constraint required for end-
users’ systems does not allow a fine grained analysis of the behaviors of the
programs [76, 141]. Consequently, some malicious behaviors (e.g., the leakage
of sensitive information) cannot be detected on end-users’ machines. Current
solutions address the incompleteness of dynamic analysis by systematically ex-
ploring all environment-dependent programs paths [80, 8, 137]; however, this is
not always possible [13, 115].

In this chapter we propose a new framework for supporting dynamic behavior-
based malware analysis, based on cloud computing, that blends together the
computational power available in security labs (the cloud) with the heterogeneity
of end-users’ environments. The rationale of the framework are the two fol-
lowing assumptions. First, the security lab has no limit on the computational
resources available and can exploit hardware features, in combination with recent
advances in research, to further improve its computational capabilities [15, 83, 50].
Second, end-users’ environments are more realistic and heterogeneous than the
synthetic environments typically available in security labs and consequently are

7

CHAPTER 2. MALWARE ANALYSIS IN THE CLOUD

better suited for analyzing potentially malicious software. The proposed frame-
work allows an end-user to delegate a security lab the execution and the analysis
of an alleged malicious program, and to force the program to behave as if it were
executed directly in the environment of the former. The advantage is twofold. It
allows the security lab to monitor the execution of a potentially malicious program
in a realistic end-user’s environment and it allows end-users to raise their level
of protection by leveraging the computational resources of the security lab for
fine-grained analysis that would not be feasible otherwise. Since each end-user’s
environment differs from the others and since the behavior of a program largely
depends on the execution environment, through our framework the security lab
can improve the completeness of the analysis by observing how a program be-
haves in multiple realistic end-users’ environments. Such in the cloud execution
is made possible by a mechanism we have developed for forwarding and executing
(a subset of) the system calls invoked by the analyzed program to a remote end-
user’s environment and for receiving back the result of the computation. As the
execution path of a program entirely depends on the output of the invoked sys-
tem calls, the analyzed program running in the security lab behaves as if it were
executed directly in the environment of the user. It is worth pointing out that
the solution we propose in this chapter is not a malware detector, but is rather
a framework that enhances the capabilities of existing dynamic behavior-based
detectors. Examples of malware detectors that could integrate our approach are
TTAnalyze [5], Panorama [141], CWSandbox [138], and the layered architecture
described in [76].

To evaluate the proposed approach, we have implemented a prototype for
Microsoft Windows XP. We used this prototype to study the benefits in term
of completeness given by the analysis in multiple execution environments and to
measure the performance impact. Our evaluation witnessed that the distributed
execution of programs is possible and the computational impact on end-users
is negligible. With respect to the traditional analysis in the security lab, the
analysis of malicious programs in multiple execution environments resulted in a
significant relative improvement of the code coverage: with just four additional
distinct end-users’ environments we achieved an improvement of ∼15%.

To summarize, in this chapter we make the following contributions.

1. We propose a new framework for dynamic behavior-based malware analysis
in the cloud.

2. We describe the design and implementation of a working prototype of the
aforementioned framework, that has also been integrated into an existing
behavior-based malware detector.

3. We perform an evaluation of the proposed framework, demonstrating the
feasibility and the efficacy of our idea.

8

CHAPTER 2. MALWARE ANALYSIS IN THE CLOUD

2.1 Overview

Imagine a malicious program, like the one shown in Figure 2.1, that resembles
the behavior of the Bancos malware [32]. To ease the presentation we use high-
level APIs of Microsoft Windows; nevertheless our approach works directly with
the system calls invoked by these functions. The program polls the foreground
window to check whether the user is visiting the website of a Brazilian bank. The
existence of such a window is the trigger condition of the malicious behavior. If
the bank website is visited, the program displays a fake authentication form to
tempt the user to type his login and password. Finally, the program forwards the
stolen credentials to a remote site.

The automatic analysis of such a piece of malware in a synthetic execution
environment, like those available in a security lab, is very likely to give incomplete
results. Such an environment is generated artificially and consequently it cannot
satisfy all the possible trigger conditions of malicious programs. Furthermore,
some malicious programs expect inputs from the user and then behave accord-
ingly. As the analysis is performed automatically, user inputs are also artificial
and that can prevent the triggering of certain behaviors. On the other hand, we
have realistic execution environments, the systems of the end-users, which are
more suited for analyzing a piece of malware like Bancos, as they are the in-
tended victims of the malicious activity. Indeed, in the system of a certain class
of users, the users of Brazilian banks, our sample malicious program would man-
ifest all its behaviors. Unfortunately, although such systems are more suited for
the analysis, it is not reasonable to expect to use all their resources for detecting
and stopping potentially malicious programs (fine grained analysis can introduce
a slowdown by a factor of 20 [96, 141, 84]). Consequently, host-based detectors
perform only very lightweight analysis and cannot detect certain malicious be-
haviors (e.g., to detect that sensitive information is being leaked using data-flow
analysis).

2.1.1 Delegating the analysis to the cloud

In our framework the behavior-based analysis of a new suspicious program is
performed in the cloud: the user U does not run directly on his system the sus-
picious program, nor the malware detector, but he requests the security lab L
to analyze the program on his behalf; in turn the latter requests the help of the
former to mitigate the fact that its execution environment is synthetic. Our ap-
proach to overcome the limitations of the execution environment of L is based on
the following assumption: a program interacts with the environment by invoking
system calls, and the execution path taken by the program entirely depends on
the output of these calls [46]. In our particular context, this assumption means
that the triggering of a malicious behavior entirely depends on the output of the
system calls invoked. It follows that, to achieve our goal, it is sufficient to force
the system calls executed by the program in L to behave as if they were executed

9

CHAPTER 2. MALWARE ANALYSIS IN THE CLOUD

VirtualAlloc();
...
VirtualFree();
while (true) {

hwnd1 = GetForegroundWindow();
title = GetWindowText(hwnd1);

if (title == ”Banco do Brasil” ||
title == ”Banco Itau” || ...) {

// Display a fake login screen for
// the site
hwnd2 = CreateWindow(...);
...
// Send credentials to a remote site
socket = WSAConnect();
WSASend(socket, ...);
...
break;
}

Sleep(500);
}

Figure 2.1: Pseudo-code of a sample
malicious program that resembles the
Bancos trojan.

Lab (L) User (U)
VirtualAlloc()

. . .

VirtualFree()

GetForegroundWindow()

hwnd

GetWindowText(hwnd1)

"Baco du Brazil"

CreateWindow(...)

hwnd2

socket(...)

s1

s3

s4

s5

s6

Figure 2.2: Diagram of the execution of the sam-
ple malicious program in the security lab (L), by
forcing the program to behave as in the environ-
ment of the end-user (U).

in U . To do that, the system calls, instead of being executed in L, are executed
in U , and L simulates their execution by using the output produced by U . It
is worth noting that only a small subset of all the system calls executed by the
program might actually affect the triggering of a malicious behavior. Examples
of such system calls are (i) those used to access user’s data (e.g., the file system
and the registry), (ii) those used to query particular system information (e.g.,
active processes, system configuration, open windows), and (iii) those used to
interact with the users (e.g., to process keyboard and mouse events). Therefore,
the collaboration of U is needed only for these system calls, while the remaining
ones can be executed directly in L, where the computational resources available
allow more sophisticated analyses.

Figure 2.2 shows how our sample malicious program is executed and analyzed
leveraging our framework. The scenario of the analysis is the following. The
user U has received a copy of the program by e-mail (or by another vector)
and he executes the program. With a conventional behavior-based detector the
program would be analyzed entirely on the host. With our framework instead,
the program is not executed locally but it is submitted to the security lab L,
that executes and analyzes the program with the cooperation of the user. The
new analysis environment thus becomes 〈L,U〉. All the system calls executed
by the program are intercepted. Our sample program initially executes some
system calls s1, . . . , s3 whose output does not depend on the environment (e.g., to
allocate memory). These system calls are executed directly in L. Subsequently,
the program tries to detect whether the user is browsing a certain website: it
invokes s4 = GetForegroundWindow to get a reference to the window currently

10

CHAPTER 2. MALWARE ANALYSIS IN THE CLOUD

active on the desktop of the user. As the output of this call highly depends on the
execution environment, L requests U to execute the call: L forwards s4 to U , U
executes s4 and sends back the output to L. The program does not notice what is
happening in the background and continues the execution. The next system call
is s5 = GetWindowText, which is used to get the title of the foreground window.
As one of its input arguments (hwnd1) is the output of a system call previously
executed in U , s5 is also executed in U . Supposing that the user in U is actually
visiting a website targeted by the program, the trigger condition is satisfied and
the program displays the fake login form to steal the user’s credentials. As this
activity involves an interaction with the user and such interaction is essential to
observe the complete behavior of the program, the system calls involved with this
activity are also forwarded to U , to get a realistic input. L can eventually detect
that there is an illegitimate information leakage.

The in the cloud execution of a potentially malicious program does not expose
the end-user to extra security risks. First, we confine the dangerous modifica-
tions the program could make to the system in the environment of the security
lab. Second, more malicious behaviors can be detected and stopped, because
the analysis performed in the lab is more thorough. Third, the execution of the
program consumes less resources, as the user is in charge of executing a subset of
all the system calls of the program. Fourth, annoying popups are still redirected
and shown to the user, but that would happen also if the program were executed
normally.

2.1.2 Exploiting diversity of end-users’ environments

The proposed framework allows to monitor the execution of a potentially mali-
cious program in multiple execution environments. Given the fact that end-users’
environments are very heterogeneous (e.g., users use different software with dif-
ferent configurations, visit different websites), it is reasonable to expect that the
completeness of the analysis improves with the increase of the number of different
environments used.

To analyze a program in multiple execution environments, it is sufficient to
run multiple instances of the analyzer, L1, . . . , Ln, such that each instance coop-
erates with a different environment U1, . . . , Un to execute the system calls that
might affect the triggering of the malicious behaviors (i.e., the environments used
are those of n of the potential victims of the malicious program, chosen according
to some criteria). The security lab can thus observe how each analysis environ-
ment 〈Li, Ui〉 affects the behavior of the program and can merge and correlate
the behaviors observed in each execution. It is worth pointing out that each en-
vironment Ui is involved in the analysis only when it tries to execute a suspicious
application; on the contrary, an end-user environment that does not execute a
potentially malicious program is never intentionally exposed to unwanted threats.

Figure 2.3 shows how the analysis of our sample program is performed simul-
taneously in multiple execution environments 〈L1, U1〉, . . . , 〈L6, U6〉. Each execu-

11

CHAPTER 2. MALWARE ANALYSIS IN THE CLOUD

L

L1

L2

L3

L4

L5

L6

U1

U2

U3

U4

U5

U6

Figure 2.3: Diagram of the execution of multiple instances of the analysis of a suspicious
program in multiple execution environments 〈L1, U1〉, . . . , 〈L6, U6〉. The central entity
L aggregates the results of each analysis.

tion is completely independent from the others but the results of the analysis are
collected and correlated centrally by L. As U1, . . . , U6 are distinct environments,
we expect the forwarded system calls to produce different output (e.g., to return
different window titles) and thus to cause the various instances of the analyzed
program to follow different paths. In the example, we have that the trigger con-
dition is satisfied only in U2 and U6, but the websites being visited are different
(one user is visiting the website of “Bancos do Brazil” and the other one the
website of “Banco Itau”). Therefore, the correlation of the results reveals that
the program is effectively malicious and some of its trigger conditions.

2.2 Design and implementation

The two parties participating in the in the cloud analysis of a program are the
security lab, L for short, and the end-user (the potential victim), U for short. In
this section we describe the components we have developed for these two parties to
make such distributed execution possible. The current prototype implementation
is specific for Microsoft Windows XP, but the support for other versions of the OS
can be added with minimal efforts. At the moment, our prototype can successfully
handle all the system calls involving the following system resources: file, registry
keys, system and processes information, and some graphical resources.

2.2.1 Executing a program in multiple environments

The execution of a suspicious program in multiple environments presents sev-
eral problems. In the following we discuss the challenges we had to face during
the development of our analysis infrastructure, together with the solutions we
propose.

12

CHAPTER 2. MALWARE ANALYSIS IN THE CLOUD

System calls hooking

To intercept the system calls executed by the analyzed program, we leverage a
standard user-space hooking technique. We start the process we want to monitor
in a suspended state and then inject a DLL into its virtual address space. The
DLL hooks the functions KiIntSystemCall and KiFastSystemCall, two small
function stubs used by Microsoft Windows for executing system calls [51, 102].
This approach allowed to simplify the development and facilitated the integration
of the framework into an existing malware detector.

System calls proxying

A user-space application cannot directly access the data structure representing a
particular resource of the system (e.g., a file, a registry key, a mutex, a window)
but it has to invoke the appropriate system calls to obtain an opaque reference,
a handle, to the resource and to manipulate it. We exploit this characteristic of
the operating system to guarantee a correct functioning of the analyzed program,
and to simulate the existence of resources with certain properties that exists on
a remote system, but do not in the system in which the program is executed.
When a system call is invoked, we analyze the type of the call and its arguments
to decide how to execute it: locally or remotely.

To differentiate between local and remote calls, we check if the system call
creates a handle or if it uses a handle. To create a handle means to open an
existing resource or creating a new one (e.g., to open a file), while to use a handle
means to manipulate the resource (e.g., to read data from an open file). In the
first case, we analyze the resource that is being opened and according to some
rules (details follow) we decide whether the manipulation of the resource might
influence the triggering of a malicious behavior. If not, we consider the resource
and the system call local and we execute the call in L. Otherwise, we consider
the resource and the system call remote and we forward and execute the latter
in U . When we intercept a system call that uses a handle, we check whether the
resource being manipulated (identified by the handle) is local or remote and we
execute the call in L or U accordingly.

Figure 2.4 represents the various components we have developed (highlighted)
to intercept system calls and to execute them either locally or remotely. All
system calls executed by the analyzed program P are intercepted. Local system
calls are passed to the kernel as is, remote ones are forwarded to the system of
the end-user. To execute a remote syscall in U , L serializes the arguments of
the system call and sends them to U . The receiver deserializes the arguments,
prepares the program state for the execution (i.e., by setting up the stack and the
registers), and then executes the call. When the syscall returns, U serializes the
output arguments and sends them back to L. Finally, L deserializes the output
arguments, where the program expects them, and resumes the normal execution.
The program P cannot notice when a system call is executed elsewhere, because
it finds in memory the expected output.

13

CHAPTER 2. MALWARE ANALYSIS IN THE CLOUD

OS Kernel

P

S
ec
u
ri
ty

la
b
(L

)

lo
ca

l
sy

sc
a
ll

OS Kernel

E
n
d
-u
ser

(U
)

remote syscall

return value & output arguments

Syscall hooking

Syscall (de) serialization

Syscall execution

Syscall (de) serialization

Figure 2.4: System calls interception and remote execution (P is the analyzed program)

There are certain types of handles that do not represent a tangible resource
(e.g., a file, a registry key, or a mutex), but instead represent resources that are
used to execute other system calls asynchronously. When such a handle is created
we do not know if it will be used to synchronize (or notify) a local or a remote
system call. Our solution is to consider the system call and the resource it creates
as lazy. Thus, if a system call is lazy, we simulate its execution and we postpone
the real execution until the resource it creates is used by another system call,
and we can tell whether the handle will be used locally or remotely. To safely
postpone the execution it is necessary to save the arguments, because they might
be overwritten by subsequent operations, and restore them at the proper time.
Arguments are saved in memory using the same serialization primitives we use
for remote execution.

On paper, the mechanism for serializing and proxying a system call looks
simple; however, its implementation is very challenging. The Microsoft Windows
system call interface, known as native API, is poorly documented and may change
due to operating system updates. We put a lot of reverse engineering efforts to
understand how to properly serialize all system calls and their arguments. After
all, the Windows native API turned out to be well suited for proxying and to
simulate the existence of resources that physically reside on a different system.
No system call can operate concurrently on two resources, resources can always
be distinguished, and system calls manipulating the same resource are always
executed in the same environment.

In-situ (de)serialization

A prerequisite for transparently proxying a system call is that, at the return of
the call, the program must find in memory the output exactly as if the output
were produced locally. Thus, the consistency of the data-structures representing
the various arguments of the system call must be preserved. Unfortunately, the
(de)serialization of system call arguments is very challenging: many arguments
contain pointers and others are completely opaque (i.e., huge arrays of bytes that
conceal very complex data structures and sometimes contain internal pointers).

We have addressed the problem of serializing such complex data-structures by

14

CHAPTER 2. MALWARE ANALYSIS IN THE CLOUD

developing a generic mechanism we called in-situ (de)serialization. In short, the
mechanism consists in maintaining constant the locations at which the various
arguments are stored and in maintaining constant the value of the pointers they
contain. The advantage is that we can guarantee consistent pointers with no effort
because we never touch their values. A requirement for in-situ (de)serialization
is that, in U , the memory locations at which the arguments have to be deseri-
alized must be accessible and must not contain program data. To satisfy this
requirement, we “align” the address space of the module running in U , with the
address space of the monitored program in L. The alignment consists in reserving
in the user component all the memory pages that the monitored program could
use to store system calls arguments and by committing these pages on-demand.
That prevents the user component to use the aforementioned memory pages for
anything but the in-situ (de)serialization.

Choosing remote system calls

Remote system calls are selected using a whitelist. The whitelist contains a
list of system call names and a set of conditions on the arguments. Exam-
ples of the system calls we consider remote are: NtOpenKey, NtCreateKey (if
the arguments indicate that the key is being opened for reading), NtOpenFile,
NtCreateFile (if the arguments indicate that the file is being opened for read-
ing), NtQuerySystemInformation, and NtQueryPerformanceCounter. The han-
dles returned by these calls are flagged as remote, by setting the most significant
bits (which are unused)1. Thus, we can identify subsequent system calls that
access a remote resource and we have the guarantee that no overlap between
handles referencing local and remote resources can occur. Even when we execute
a system call on U because one of its arguments is flagged as remote, we still
match the system call against our whitelist to guarantee that the environment of
the end-user is not accidentally exposed to security threats.

GUI system calls

User’s inputs and GUI resources often represent trigger conditions. For this rea-
son it is important to let the analyzed program to interact with realistic user’s
inputs (i.e., GUI events) and resources. Although in Microsoft Windows all the
primitives of the graphical user interfaces are normal system calls, to facilitate
the proxying, we rely on the Windows Terminal Services subsystem to automat-
ically forward the user interface of the monitored application from the lab to the
user’s machine. In particular, our prototype uses seamless RDP (Remote Desk-
top Protocol) [14], that allows to export to a remote host the graphical interface
of a single application instead of the entire desktop session. Therefore, if the
analyzed program executed in the lab displays the user a fake login form and

1 As concrete handle values are opaque to user-space applications, by manipulating their
unused bits we do not alter the semantics of the process being monitored.

15

CHAPTER 2. MALWARE ANALYSIS IN THE CLOUD

blocks for inputs, the form is transparently displayed in U and the received user’s
events (keystrokes and mouse clicks) are sent back to the program running in L.

The solution based on RDP allows only to forward a GUI to a remote system.
However, the session in which the application is run belongs to L. Thus, attempts
to query the execution environment would return the status of the environment
in L. As an example let us consider the system calls associated with the API
functions GetForegroundWindow and GetWindowText, used by our sample mal-
ware (Figure 2.1) to check if the victim is visiting the website of a Brazilian bank.
Without any special handling these system calls would return the windows of the
session (on L). We want instead these calls to return information about the win-
dows found in the remote environment. To do that, we execute them remotely
as any other remote system call.

Memory-mapped files

Memory-mapped files violate the assumption that system resources can be ma-
nipulated only through system calls. Our approach to handle memory mapped
files is as follows. We intercept and forward the system calls used to map a file
into memory to U . In L instead we reserve, and protect from any access, the
memory regions at which the file is mapped. When the analyzed program tries to
read, write, or execute data from the memory mapped file, a page fault exception
occurs. We intercept the exception, retrieve the page accessed by the program
from U , and we store the content of the page locally at the same address. Finally,
we update the permissions of the page to authorize future accesses and resume
the execution of the program. The program will transparently continue its exe-
cution. To intercept page faults we have developed a kernel driver that we install
in L to replace the default exception handler. The kernel driver is necessary to
bypass the Windows Structured Exception Handling (SEH) mechanism and to
prevent the execution of several system calls that were executed (some of which
could be considered remote) before the exception would be caught by our system.

One-way isolation

One of the goals of our framework is to protect the system of the end-user from
damages that could be caused by the analyzed program, without interfering with
the execution of the program. The approach we adopt to achieve this goal is
based on one-way isolation [124]: “read” accesses to remote system resources
are allowed, but “write” accesses are not and are performed locally. That is, if
the program executes a system call to create or to modify a resource we nor-
mally consider remote, we treat the resource as local and do not proxy the call.
To guarantee a consistent program state, we also execute locally all subsequent
system calls involving such resource.

In case the analyzed program turned out to be benign, system changes made
in the lab environment could be committed to end-user’s environment. Our pro-
totype currently does not support this feature, nor does it support the correct

16

CHAPTER 2. MALWARE ANALYSIS IN THE CLOUD

isolation of a program that accesses a resource that is concurrently accessed by
another.

2.2.2 An in the cloud behavior-based malware detector

In order to demonstrate how our framework can naturally complement behavior-
based malware detectors, we have integrated it in an existing detector [76], which
is based on virtual machine introspection and is capable of performing fine grained
information flow tracking and to identify data-flow dependencies between system
call arguments. The malware detector is built on top of a customized system em-
ulator, which supports system calls interception and taint analysis with multiple
taint labels. As our framework works directly inside the guest, the integration of
the two components required only a trivial modification to allow the detector to
isolate the system calls executed by the suspicious program from those executed
by our prototype to proxy system calls and to ignore the latter.

To monitor the execution of a suspicious program in multiple end-users’ en-
vironments it is sufficient to run multiple instances of the enhanced malware
detector just described, where each instance collaborates with a different end-
user’s machine, and to merge the results. We have not yet addressed the problem
of correlating the results of multiple analyses.

2.3 Evaluation

This section presents the results of testing our prototype implementation of the
framework and presents a conceptual comparison of our approach with existing
solutions that try to systematically explore all program paths. We evaluated the
prototype with benign and malicious programs. The results of the evaluation
on benign programs witness that our approach does not interfere with normal
program execution and that it introduces a negligible overhead. Moreover, the
evaluation demonstrates that the analysis of a piece of malware in multiple execu-
tion environments significantly improves the completeness of the results: with the
collaboration of just four different execution environments we observed a ∼15%
relative improvement of the code coverage.

2.3.1 Experimental setup

The infrastructure used for the evaluation corresponds to the one described in
Section 2.2.2, with the difference that, instead of performing behavior-based de-
tection, we tracked the basic blocks executed in each run of the experiments.
To simulate the lab environment we used a vanilla installation of Windows XP
running inside the emulator, while as users’ environments we used some other
machines and we acted as the end-users.

17

CHAPTER 2. MALWARE ANALYSIS IN THE CLOUD

Program Action Local Remote

ClamAV Scan (remote) files with (remote) signatures 166,539 1,238
Eudora Access and query (remote) address book 1,418,162 11,411
Gzip Compress (remote) files 19,715 93
MS IE Open a (remote) HTML document 1,263,385 10,260
MS Paint Browse, open, and edit (remote) pictures 1,177,818 9,708
Netcat Transfer (remote) files to another host 16,007 93
Notepad Browse, open, and edit (remote) text files 929,191 7,598
RegEdit Browse, view, and edit (remote) registry keys 1,573,995 13,697
Task Mgr. List (remote) running processes 33,339 241
WinRAR Decompress (remote) files 71,195 572

Table 2.1: List of tested benign programs, actions over which each program was exer-
cised, and number of locally and remotely executed system calls (GUI system calls are
not counted).

2.3.2 Evaluation on benign programs

To verify that our framework did not interfere with the correct execution of the
programs, we executed through our prototype multiple benign applications. The
tested programs included both command-line utilities and complex GUI applica-
tions. Table 2.1 reports the set of programs tested, together with the actions over
which each program was exercised and with the number of local and remote sys-
tem calls. We interacted with each program to perform the operations reported
in the table. As we ran the experiments with the proxying of all supported system
calls enabled, the numbers in the table indicate the total number of remotely ex-
ecuted calls and not only those involved with the described actions. For example,
we used ClamAV to scan all the content of a directory. Through our framework
the anti-virus transparently scanned a directory existing only in the simulated
end-user’s system, using a database of signatures which also existed only in the
remote system.

We successfully executed all the actions reported in the table and verified
that the resources that were accessed effectively corresponded to those residing
on the system of the end-users. The number of system calls executed indicates
that the programs used for the evaluation are quite complex and thus that our
results are good representatives. We can conclude that: (i) system calls accessing
remote resources do not interfere with system calls accessing local resources, (ii)
our framework does not interfere with the correct execution of programs, and (iii)
system calls proxying allows to transparently access system resources residing on
remote hosts.

18

CHAPTER 2. MALWARE ANALYSIS IN THE CLOUD

2.3.3 Performance overhead

We used a subset of the benign programs of Table 2.1 to evaluate the overhead
introduced by our framework on the systems of the user and of the security lab.
We observed that the number of remotely executed system calls depended on
the type of applications and the actions exercised; consequently the overhead
depended on these factors. On the system of the end-user, we measured a CPU,
memory, and network usage that was roughly proportional to the number of
remotely executed system calls. Nevertheless, in all cases, the resources consumed
never exceeded the resources consumed when the same programs were executed
natively on the system: on average we observed a 60% and 80% reduction of CPU
and memory usage respectively. On the other hand, we noticed a slight increase
of the resource usage in the system in the lab: on average we observed a 36%
and 77% increase of CPU and memory usage respectively. We also measured
that, on average, 956 bytes have to be transferred over the network to remotely
execute a system call. For example, the execution of RegEdit required in total to
transfer 1030Kb of data. In conclusion, our framework has negligible performance
impact on the end-user and the impact on the security lab, without considering
the overhead introduced by the analysis run on the framework, is sustainable and
can be drastically reduced by improving the implementation (e.g., by compressing
data before transmission).

2.3.4 Evaluation on malicious programs

We evaluated our framework against multiple malicious programs representing
some of the most common and recent malware families. The goal of the evaluation
was to measure whether the analysis of multiple executions of the same piece of
malware, in different end-users’ environments, gives more complete results than
the analysis of a single execution of the program in an unrealistic environment
(i.e., the vanilla installation of Windows XP).

To quantify the completeness of the results we measured the increase of code
coverage. We initially executed batch (i.e., without any user interaction) each
malicious program in the environment of the security lab and we recorded the
set of unique basic blocks executed (excluding library code). Subsequently, we
ran each malicious program multiple times through our prototype, each time in
collaboration with a different end-user’s environment, and again we recorded the
set of unique basic blocks executed. Therefore, if b0 represents the set of basic
blocks executed in the environment of the security lab, and bi, i > 0, represents
the set of basic blocks executed with the collaboration of the ith end-user’s en-
vironment, the increase of code coverage after the ith execution is measured as
|bi \ (bi−1 ∪ . . . ∪ b0)|.

Figure 2.5 reports the relative increase of code coverage (using b0 as baseline)
measured during our evaluation, leveraging just four different end-users’ environ-
ments and 27 different malware samples. The figure clearly shows that in the

19

CHAPTER 2. MALWARE ANALYSIS IN THE CLOUD

 0

 10

 20

 30

 40

 50

 60

R
e
la

ti
v
e
 i
n

c
re

a
s
e
 o

f
 c

o
d
e

 c
o

v
e
ra

g
e

 (
%

)

Malware

Environment 1
Environment 2

Environment 3
Environment 4

Average

Figure 2.5: Relative increase of code coverage obtained by analyzing the tested malware
samples in multiple execution environments.

majority of the cases we have a noticeable relative increase of the code cover-
age; the average increase is 14.53%, with a minimum of 0.24%, to a maximum
of 60.92%. It is worth noting that, although the observed improvements appear
minimal, most of the time small percentages correspond to the execution of hun-
dreds of new basic blocks. It is also important to note that certain environments
contributed to improve the results with certain malware but did not contribute at
all with others. Indeed, the four environments contribute respectively on average
25.35%, 30.86%, 18.14%, and 25.68% of the total increase observed.

For example, during the analysis of a variant of Satiloler, we noticed that
the monitoring of web activities was triggered only in one of the four environ-
ments, when we visited a particular website. Thus, in this environment we ob-
served a 16.54% increase of the relative code coverage, corresponding to the exe-
cution of about 140 new unique basic blocks; the observed increase in the other
environments did not exceed 3%. Another example is Antigen, a malware that
displays a modal window and blocks its execution until the user clicks a button.
With our approach, the modal window is forwarded to the user’s machine, and
the user promptly clicks on the button, thus dismissing the window and allowing
the malware to continue its execution and to manifest its malicious behaviors
(i.e., theft of visited URLs, ICQ and dial-up accounts information).

In conclusion, we believe the relative improvements observed during the eval-
uation testify the effectiveness of the proposed approach at enhancing the com-
pleteness of dynamic analysis.

2.3.5 Conceptual comparison with input oblivious analyz-
ers

Input oblivious analyzers are tools capable of analyzing exhaustively a malicious
program by systematically forcing the execution of all program paths [80, 8].
When an input-dependent control flow decisions is encountered, both program

20

CHAPTER 2. MALWARE ANALYSIS IN THE CLOUD

branches are explored. Such systematic exploration is achieved by manipulat-
ing the inputs and updating the state of the program accordingly, leveraging
constraint solvers, to force the execution of one path and then of the other.

The framework we propose in this chapter addresses the same problem through
a completely different approach. Although our methodology might appear less
systematic, it has the advantage that, by leveraging real execution environments,
it can deal with complex trigger conditions that could exhaust the resources
of input oblivious analyzers. For example, trigger conditions dominated by a
complex program structure might easily generate an unmanageable number of
paths to explore and unsolvable constraints. Indeed, several situations are already
known to thwart these systems [13, 115]. Examples of other situations that can
easily render input oblivious analyzers ineffective are malicious programs with
payload delivered on-demand (e.g., the Conficker malware [94]) and programs
with hidden malicious functionality, like rogue anti-viruses, where the trigger
conditions consist in multiple complex asynchronous events. As we assume that
sooner or later the malicious program will start to reap victims, we can just sit
and watch what a program does in each victim’s system, without being affected
by the complexity of trigger conditions. At the first sign of malicious activity, we
consider the program as malicious; then we can notify all victims, but we could
also continue to analyze the program in some of the affected systems.

2.4 Discussion

The framework we propose can clearly raise privacy issues: by controlling the sys-
tem calls executed on the system of an end-user, the security laboratory can access
sensitive user’s data (e.g., files, registry keys, GUI events). We are convinced that
the privacy issues introduced by our approach are comparable to already existing
issues. For example, commercial behavior-based detectors incorporate functional-
ity, typically enabled by default, to submit to laboratories suspicious executables
or memory dumps of suspicious processes (which can contain sensitive user data).
Thus privacy of users is already compromised. Moreover, the security laboratory
is just a special provider of cloud services: users have to trust it like they trust
other providers (e.g., e-mail providers and web storage services).

Moreover, our framework is sensitive to various forms of detection and eva-
sion. As an example, the user-space hooking technique we employ to intercept
the system calls issued by a suspicious program can be thwarted very easily. To
prevent similar attacks and also others based on the identification of emulated
or analysis environments, it would be sufficient to build our framework on top of
undetectable systems for malware analysis, such as the one we present in Chap-
ter 3. The limitations of our current implementation (e.g., lack of support for
inter-process communication) can also offer opportunities for detection and eva-
sion. We believe the majority of the attacks will not be possible with a complete
implementation.

21

3
Transparent and efficient dynamic analysis

A
ll behavior-based analysis and detection techniques share a common char-
acteristic: to observe a suspicious application, they have to monitor its
execution. Basically, monitoring can be performed in two ways: by

leveraging a user- or system-level module, or using an out-of-the-box approach.
Kernel-level malware, which compromise the kernel of an operating system (OS),
can easily fool the solutions that adopt the first approach, as the malware is exe-
cuted at the same privilege level of the OS [51, 6]. For instance, Shadow Walker
exploits kernel-level privileges to defeat memory content scanners by providing a
de-synchronized view of the memory used by the malware and the one perceived
by the detector [122]. To address the problem of kernel-level malware and of
attackers that are able to obtain kernel-level privileges, researchers proposed to
run out-of-the-box analyses by exploiting virtual machine monitor (VMM), or
hypervisor, technology. In such a context, the analysis is executed in a trusted
environment, the VMM, while the monitored OS and users’ applications are run
as a guest of the virtual machine. Unfortunately, today’s malicious software often
incorporates a variety of tests to detect whether it is executed in a virtual ma-
chine, and to obfuscate its behavior if it suspects its execution is being monitored.
Even worse, our research demonstrated that such tests can be generated with a
fully automatic and systematic methodology [87].

Recently, the introduction of hardware extensions for the x86 architecture
made possible to implement more transparent virtual machine monitors [2, 53].
Using such extensions, the hypervisor can operate at a higher privilege level than
the guest OS, it has complete control of the hardware, it can preemptively inter-
cept events, it cannot be tampered by a compromised OS, and therefore it can
be used to enforce stronger protection [29, 42, 92, 99, 110, 116]. Advanced tech-
niques, like the one used by Shadow Walker to hide malicious code, are defeated
using out-of-the-box memory content scanners. All the VMM-based solutions
proposed in literature are based on the same assumption: they operate proac-
tively. In other words, the hypervisor must be started before the guest OS and it
must run until the guest terminates. Therefore, post-infection analysis of systems

22

CHAPTER 3. TRANSPARENT AND EFFICIENT DYNAMIC ANALYSIS

that were not running such VMM-based protections before an infection continues
to be unsafe, because the malware and the tools used for the analysis run at the
same privilege level.

To address these problems, in this chapter we propose a generic framework
that allows to perform dynamic and transparent analyses of both user- and kernel-
level code in commodity production systems. Our approach does not require to
instrument the system under test, thus it can be used also on off-the-shelf products
whose source code or debugging symbols are not necessarily available. Moreover,
the framework we propose is able to inspect systems running on real hardware,
since it does not require an emulation container. Similar to existing out-of-the-
box approaches, ours can be used to analyze both the kernel and user-space
components. However, differently from existing solutions, ours is fully dynamic,
transparent, loosely dependent on the operating system, and fault-tolerant with
respect to possible defects in the analysis code. First, our framework does not
require recompilation or rebooting of the target system. Thus, it can be used
to analyze any running production system, including commodity systems lacking
native support for instrumentation and systems not running in virtual machines.
Second, the framework is not invasive, since analyses can be performed on a
virtually unmodified system: as explained in the following, only a minimal driver
needs to be installed and no parts of the kernel are patched in any way. Moreover,
since the framework itself is not accessible from the target system, its code cannot
be detected by malicious programs. Thus, the infrastructure can be applied to
any operating system, as the majority of the facilities it supports are completely
OS-independent, and the only OS-dependent functionalities are just provided to
ease the development of analysis tools built on top of it. Finally, the framework is
fault-tolerant, as it guarantees that a defect in an analysis tool does not damage
the framework itself, nor the analyzed system.

Our framework leverages hardware extensions for virtualization available on
commodity x86 CPUs [2, 82]. Hardware-support for virtualization allows the de-
velopment of virtual machine monitors that are very efficient, completely trans-
parent, and non invasive to the systems running in the virtual machine. To
overcome the major limitation of traditional VMM-based approaches (i.e., the
impossibility to analyze productions systems not running in a virtual machine),
our framework exploits a feature of the hardware that allows to install a virtual
machine monitor and to migrate a running system into a virtual machine. When
the analysis is completed, the original mode of operation of the system can be
restored. Practically speaking, our framework is a minimalistic virtual machine
monitor acting as a broker between the analyzed system and the analysis tool.
The framework abstracts low-level events occurring in the analyzed system into
high-level events and guarantees fault-tolerance by relying on the hardware to
run the analysis tool in an isolated execution environment.

To demonstrate the potential of our framework we have developed an in-
teractive kernel debugger, nicknamed HyperDbg, constructed entirely using the
programming interface exposed by our infrastructure. HyperDbg adds live and in-

23

CHAPTER 3. TRANSPARENT AND EFFICIENT DYNAMIC ANALYSIS

teractive debugging support to Linux and Microsoft Windows XP, so far only pos-
sible using very invasive tools, like Syser [127], or traditional VMM-based debug-
gers. HyperDbg can be used to debug any component of the Linux and Windows
kernels, including interrupt/exception handlers, device drivers, and even supports
single instruction stepping. Being completely separated from the debuggee, Hy-
perDbg is transparent to the analyzed system, thus it cannot be detected by a
malicious program. These characteristics make HyperDbg very suitable to be em-
ployed for the interactive analysis of malicious programs, including those that
contain kernel-level components. Then, in Chapter 5, we extend the framework
to design a more comprehensive solution to perform live forensic analyses of po-
tentially compromised production systems.

We designed our framework with the intent to provide a transparent and
efficient infrastructure for the development of new malware analysis and detec-
tion tools. However, it is worth pointing out that the solution we propose is
generic, and can be used to perform other sophisticated and non-intrusive dy-
namic analyses on system-level code, including profiling and tracing of the kernel
and user-space applications, interactive debugging, or even extension of system
features.

In summary, this chapter makes the following contributions.

1. We propose a generic framework to perform complex dynamic system-level
analyses of commodity production systems. Compared to existing frame-
works, the one we propose guarantees transparency, efficiency, and does not
require the target system to be already installed on a virtual machine.

2. We implemented our framework in an experimental prototype for Microsoft
Windows XP. Recently we extended our prototype to support also the Linux
operating system.

3. We describe the design and the implementation of HyperDbg, a kernel-level
interactive debugger built on top of our framework.

Both the analysis framework and HyperDbg are available at http://code.

google.com/p/hyperdbg/ and are released under the terms and conditions of
the GPL (v3.0) license.

3.1 Intel VT-x

Before presenting our VMM-based framework, we give a brief overview of the
hardware virtualization technology available in Intel x86 CPUs, called VT-x [82].
AMD technology, named SVM [2], is very similar and differs mostly in terms of
terminology.

Intel VT-x separates the CPU execution into two modes of operation: VMX
root mode and VMX non-root mode. The VMM and the guest (OS and appli-
cations) execute respectively in root and non-root modes. Software executing in

24

http://code.google.com/p/hyperdbg/
http://code.google.com/p/hyperdbg/

CHAPTER 3. TRANSPARENT AND EFFICIENT DYNAMIC ANALYSIS

both modes can operate in any of the four privilege levels that are supported
by the CPU. Thus, the guest OS can execute at the highest CPU privilege and
the VMM can supervise the execution of the guest without any modification of
the guest. When a VMM is installed, the CPU switches back and forth between
non-root and root mode: the execution of the guest might be interrupted by an
exit to root mode and subsequently resumed by an enter to non-root mode. After
the launch, the VMM execution is never scheduled and exits to root-mode are
the only mechanism for the VMM to regain the control of the execution. Like
hardware exceptions, exits are events that block the execution of the guest, switch
from non-root mode to root mode, and transfer the control to the VMM. However,
differently from exceptions, the set of events triggering exits to root mode can be
configured dynamically by the VMM. Examples of exiting events are exceptions,
interrupts, I/O operations, and the execution of privileged instructions that ac-
cess control registers or descriptor tables. Exits can also be requested explicitly
by the guest through a VMM call. Exits are handled by a specific VMM routine
that eventually executes an enter to resume the execution of the guest.

The state of the CPU at the time of an exit and of an enter is stored in a data
structure called Virtual Machine Control Structure, or VMCS. More precisely,
the VMCS stores the host state, guest state, and the execution control fields.
The host state stores the state of the processor that is loaded on exits to root
mode, and consists of the state of all the registers of the CPU (except for general
purpose registers). Similarly, the guest state stores the state of the processor that
is loaded on entries to non-root mode. The guest state is updated automatically
at every exit, such that the subsequent entry to non-root mode will resume the
execution from the same point. The execution control fields allow a fine-grained
specification of which events should trigger an exit to root mode.

In the typical deployment, the launch of the VMM consists of three steps.
First, the VMX root-mode is enabled. Second, the CPU is configured to execute
the VMM in root-mode. Third, the guests are booted in non-root mode. However,
Intel VT-x supports a particular feature, called late launching of VMX modes,
that allows to launch a VMM at any time, thus giving the ability to transform
a running host into a guest of a VMM. The procedure for such a delayed launch
is the same as the one just described, with the exception of the third step. The
state of the CPU for non-root mode is set to the exact same state of the CPU
preceding the launch, such that, when the launch is completed, the execution of
the OS and its applications resumes in non-root mode. The inverse procedure
can be used to unload the VMM, disable VMX root-mode, and give back full
control of the system to the OS.

3.2 Overview of the framework

Figure 3.1 depicts the architecture of our framework, the installation and removal
processes, and the migration of the operating system and its applications into a

25

CHAPTER 3. TRANSPARENT AND EFFICIENT DYNAMIC ANALYSIS

Operating system kernel

User mode

Kernel mode

User
process

User
process

Operating system kernel

User mode

Kernel mode

User
process

User
process

Non-root mode
Root mode

Framework

Analysis
tool

Install

Remove E
xi

t
In

sp
ec

t

Figure 3.1: Overview of the framework

virtual machine. Our framework consists of a virtual machine monitor that pro-
vides a programming interface for the development of system-level analysis tools.
As in traditional VMM-based analysis approaches, the analysis tool is run within
the VMM and thus completely transparent to guests of the virtual machine.
However, compared to traditional VMM-based ones, ours does not require the
system to be already running inside any virtual machine. To achieve this goal,
our framework leverages hardware extensions for virtualization available on all
modern x86 CPUs (which are unused in the majority of the deployments). As
discussed in Section 3.1, these extensions augment the instruction set architecture
with two new modes of operation: VMX root mode and VMX non-root mode1.
These new modes of operation separate logically the virtual machine monitor
from a guest without having to modify the latter. More precisely, we exploit late
launching of VMX modes to install a virtual machine monitor even if the system
has already been bootstrapped. In other words, late launching allows to migrate
(temporarily) a running operating system in a virtual machine, and to analyze
and control the execution of the system from the monitor. Through the rest of
the chapter, we use the term “guest” to refer to the system under analysis that
has been migrated into a virtual machine.

Practically speaking, the running operating system is not migrated anywhere
and not touched at all. Rather, by launching VMX modes, the execution envi-
ronment is extended with the two aforementioned operating modes; the running
operating system is then associated with non-root mode, while the VMM is as-
sociated with root mode. Thus, in all respects, the operating system and its
applications become a guest of our special virtual machine. Following the same
principle, the VMM can be unloaded, and the original mode of execution of the
operating system restored, by simply disabling VMX modes. After the launch

1VMX (non-) root mode is the terminology used by Intel; AMD adopts a different terminol-
ogy.

26

CHAPTER 3. TRANSPARENT AND EFFICIENT DYNAMIC ANALYSIS

of the VMX modes, the execution of the guest can continue exactly as before,
even in terms of interactions with the underlying hardware devices. However,
during its execution, the guest might be interrupted by an exit to root mode.
Being executed at the highest privilege level, the routine that handles the exit
has complete read/write control of the state of the guest system (of both memory
and CPU registers).

The framework itself does not perform any analysis. It is only responsible for
handling a small set of exits to control all accesses to the memory management
unit of the CPU, to prevent the guest from accessing the physical memory loca-
tions holding the code and the data of the framework. On the other hand, the
framework provides a flexible API to develop tools to perform sophisticated anal-
yses of both kernel and user code running in the guest. Using the functionalities
provided through the API, the tool can request the framework to monitor cer-
tain events that might occur during the execution of the guest; when such events
occur, it can inspect, and even manipulate, the state of the guest. The events
that can be monitored include, but are not limited to, system call invocations,
function calls, context switches and I/O operations. Practically speaking, events
are monitored through exits to root mode. Thus, a request of the analysis tool to
monitor a certain high-level event (e.g., the execution of a system call) is trans-
lated by the API of the framework into a sequence of low-level operations that
guarantee that all the occurrences of such event in the guest trigger an exit to
root mode. Similarly, the framework translates the exit into a higher-level event
and notifies the occurrence of the event to the analysis tool. Once notified, the
tool can recover information about the event (e.g., arguments and return value
of a system call), using the inspection functionalities offered by the API.

A fundamental requirement for the analysis of production systems is that
analysis tools must not interfere with the correct execution of the guest. This is
particularly important for faults and deadlocks that might occur in the analysis
tool. The approach we adopt is to run the tool in a less privileged execution
environment, isolated from the analyzed system and from the framework. The
tool can interact with the guest only through the API exposed by the framework.
This approach guarantees the framework the ability to intercept any fault occur-
ring in the tool, to mediate all accesses to the analyzed system (and to prevent
write accesses), and to terminate the tool in case of deadlocks or other anomalous
situations.

3.3 Design and implementation

Figure 3.2 shows a more detailed view of the architecture of our framework. In-
tuitively, this architecture is very similar to that of traditional operating systems:
the framework plays the role of the kernel and the analysis tool plays the role of
a user-space application. As will become clear later, this architecture prevents
buggy analysis tools from compromising the guest system and the framework.

27

CHAPTER 3. TRANSPARENT AND EFFICIENT DYNAMIC ANALYSIS

7. Interrupt

Event gate Trap gate API

Analysis tool

1
.

E
xi

t

2
.

N
o
ti

fi
ca

ti
o
n

3. API call
6. Exception

4. API request

4
a
.

In
sp

ec
t/

m
a
n

ip
u

la
te

4b. Request event notification

5. Recover information about events

Non-root mode
Root mode

User mode
Kernel mode

Hardware

Framework

Timer Disk NetworkVideo

Figure 3.2: A close-up of the framework

The separation between these two parts is made possible by the fact that, when
VMX is enabled, root and non-root modes offer two fully-featured execution envi-
ronments. Thus, like the guest running in non-root mode, the framework running
in root mode can rely on privilege separation to isolate the analysis tool and can
handle independently interrupts and exceptions that might occur while executing
in root mode.

When an exit to root mode interrupts the execution of the guest, the event is
delivered to the event gate (step 1 in Figure 3.2). The event gate is responsible for
abstracting low-level events into higher-level ones, and to notify the analysis tool
if the latter has requested to do so (step 2). On startup the analysis tool requests
the framework to be notified of certain events (not shown in the figure). The
tool can use the API provided by framework to query extra information about
the event (e.g., the content of the stack location storing one of the arguments
of a function). Since the tool is isolated from the framework, API functions are
invoked through software interrupts. Thus, requests coming from the analysis
tool are received by the trap gate (step 3), then forwarded to the component
implementing the API (step 4). The tool can perform two types of API calls:
(step 4a) to inspect or manipulate the state of the guest, and (step 4b) to control
event notifications (e.g., enable or disable the notification of certain events). Note
that the component implementing the API is also used by the framework itself
(step 5) to recover extra information about events (e.g., the return address of a
function stored in the stack). The trap gate also serves the purpose of detecting
exceptions (e.g., page faults) that might occur during the execution of the analysis
tool. If the trap gate intercepts an exception (step 6), it terminates the faulty
tool and unloads the framework, to resume the normal operation mode of the

28

CHAPTER 3. TRANSPARENT AND EFFICIENT DYNAMIC ANALYSIS

Event Description Arguments

ProcessSwitch Context (process) switch —
Exception Execution Exception vector, faulty instruction, error

code
Interrupt Hardware or software interrupt Interrupt vector, requesting instruction
BreakpointHit Execution breakpoint Breakpoint address
WatchpointHit Watchpoint on data read/write Watchpoint address, access type, hitting in-

struction
FunctionEntry Function call Function name/address, caller/return ad-

dress
FunctionExit Return from function Function name/address, return address
SyscallEntry System call invocation System call number, caller/return address
SyscallExit Return from system call System call number, return address
IOOperationPort I/O operation through hardware port Port number, access type
IOOperationMmap Memory-mapped I/O operation Memory address, access type

Table 3.1: Events traceable using our framework and corresponding arguments (the
argument that represents the current process is omitted, as it is common to all the
events)

system. Finally, the trap gate is also used to handle timer interrupts (step 7),
that, as will be discussed in Section 3.3.4, are employed to enforce a time-bound
on the execution of the tool.

The functionalities provided by the API of the framework can be classified into
two classes: execution and I/O tracing and state inspection and manipulation.
The following paragraphs describe briefly the API. More details are given in
Sections 3.3.2 and 3.3.3.

Execution and I/O tracing facilities allow a tool to intercept the occurrence
in the analyzed system of certain events and certain I/O operations respectively.
Table 3.1 reports the main types of events that can be traced. For each event,
the table also reports the arguments associated to the event; arguments are infor-
mation about the events most commonly used in tools. For example, the events
FunctionEntry and SyscallEntry are used to trace functions and system calls
respectively. The arguments associated to the FunctionEntry event are the ad-
dress (or the name) of the function called, the caller and the return address.
Another example is the ProcessSwitch event that can be used to trace context
switches between processes (not threads). From the point of view of the analysis
tool all the events are handled in the same way: the tool can subscribe to any
event and, when the event occurs, can inspect its arguments and take the proper
actions. However, at the framework-level, certain events are different from other
ones. Indeed, some of them (e.g., context switches between processes) can be
traced directly by the hardware. That is, the event triggering the exit corre-
sponds exactly to the event being traced. Other events instead (e.g., function
calls and returns) cannot be traced directly by the hardware. In all these cases
the framework relies on other low-level events to trace the execution and then ab-
stract exiting low-level events into higher-level ones, meaningful for the analysis
tool.

Arguments can optionally be used as conditions, to limit the tracing to a sub-

29

CHAPTER 3. TRANSPARENT AND EFFICIENT DYNAMIC ANALYSIS

set of all the events. Conditions on events serve two purposes. First, conditions
allow to simplify the analysis tools, since events that do not match the requested
conditions are discarded by the framework and thus do not need to be handled
by the tool. Second, some conditions allow preemptive filtering of the events.
In other words, the framework configures a priori which events trigger an exit,
instead of filtering out exits caused by uninteresting events. For example, in the
case of the IOOperationPort event, preemptive filtering means to configure the
CPU such that only I/O operations involving a specific I/O port trigger an exit.
This feature is very important to minimize the number of exits and thus the
overall overhead.

State inspection and manipulation primitives can be used by the tool to access
the state of the guest, in order to extract more detailed information about events
or other data useful for the analysis. For example, these primitives allow to
extract the arguments of an invoked function, or to inspect the internal structures
of the guest operating system. Note that, by default, write access to guest state
is not granted to a tool. If necessary, such permission can be enabled at compile-
time. Obviously, in this case the framework cannot protect the state of the guest
from dangerous modifications.

3.3.1 Framework and analysis tool loading

The framework and the analysis tool are loaded by a minimal kernel driver. This
is unavoidable since the operations we need to perform to load the framework
require maximum privileges and can be performed only by the kernel of the
operating system. The driver, however, is indeed very simple and we put extreme
care in avoiding any interference with the kernel. Moreover, since once loaded the
framework is completely invisible to the system, we unload the driver immediately
as soon as the framework has been installed.

When VMX modes are enabled, the VMCS is made accessible initially to the
loader, and subsequently, when the loading is completed, only to the framework.
As we mentioned in Section 3.1, the VMCS stores the guest state and the host
state, i.e., the states of the processor that are loaded on entries to non-root and
on exits to root mode, respectively. Furthermore, the execution control fields can
be used to control the set of events triggering exits. The task of the loader is
to enable VMX modes and to configure the VMX data structure such that the
operating system and user-space applications continue to run in non-root mode,
while the framework and the analysis tool are executed in root mode. In addition,
the loader has to configure the CPU such that all the events necessary for the
tool to trace the execution of the system trigger exits to root mode. When the
initialization is completed, the driver unloads itself and resumes the execution of
the system.

30

CHAPTER 3. TRANSPARENT AND EFFICIENT DYNAMIC ANALYSIS

Guest state configuration

The guest state is initialized to the current state of the system. In this way,
when the virtual machine is launched and execution enters non-root mode, the
guest operating system will resume its execution as if nothing happened. A tricky
problem when initializing non-root mode concerns the management of the mem-
ory. More precisely, we must prevent the newly created guest to use and access
the physical memory frames allocated to the framework and to the tool. Other-
wise, the guest could detect and even corrupt the framework. Most recent CPUs
provide hardware facilities for memory virtualization (e.g., Intel Extended Page
Table extension). If these facilities are not available, memory virtualization must
be implemented entirely via software. Briefly, software memory virtualization
consists of intercepting all guest operations to manipulate the page table (the
data structure the CPU uses for virtual-to-physical address translation) and in
ensuring that none of the physical frames allocated to the framework and to the
analysis tool are mapped into the guest. In case the guest tries to map a reserved
physical frame, the framework assigns the guest a different one and masquerades
the difference (not available in our current implementation).

Host state configuration

The host state is initialized as follows. The CPU is configured to use, when in
root mode, a dedicated address space and a dedicated interrupt descriptor table
(IDT). This configuration simplifies the separation of the analyzed system from
the framework and allows to detect and handle interrupts and exceptions that
occur in root mode. Differently from the address of the entry point of non-root
mode, which is updated at every exit to allow to resume execution of the guest
from where it was interrupted, the address of the entry point of root mode is fixed.
The entry point is set to the address of the routine that takes care of dispatching
an exit event to the appropriate handler and that in turn might notify the analysis
tool (i.e., the entry point of the event gate). Finally, we register the Global and
Local Descriptor Tables (we use the same tables used in non-root mode) and we
assign the stack.

Execution control fields configuration

To reduce the run-time overhead suffered by the guest system, the execution
control fields are configured to minimize the number of events that trigger an
exit to root mode. When the tool is initialized, it specifies which events must be
intercepted. Subsequently, in response to the invocation of API functions, the
configuration of the execution control fields can be altered to intercept additional
events or to ignore other ones.

31

CHAPTER 3. TRANSPARENT AND EFFICIENT DYNAMIC ANALYSIS

Event Exit cause Native exit

ProcessSwitch Change of page table address
√

Exception Exception
√

Interrupt Interrupt
√

BreakpointHit Debug except. / Page fault except.
WatchpointHit Page fault except.
FunctionEntry Breakpoint on function entry point
FunctionExit Breakpoint on function return address
SyscallEntry Breakpoint on syscall entry point
SyscallExit Breakpoint on syscall return address
IOOperationPort Port read/write

√

IOOperationMmap Watchpoint on device memory

Table 3.2: Techniques for tracing events

3.3.2 Execution tracing

Table 3.2 describes the techniques used to trace all the events currently supported
by the framework. Low-level events (those with a mark in the last column)
correspond directly to exits to root mode (e.g., Exception). Other events are
traced through the aforementioned ones (e.g., BreakpointHit), and others again
are traced through the latter (e.g., FunctionEntry).

Events that can be traced directly through the hardware are process switches,
exceptions, interrupts, and port-based I/O operations. All these events exit con-
ditionally: they exit to root mode only when requested and can have optional exit
conditions to limit exits to particular situations. The remaining of this section
presents how we developed the primitives for tracing higher-level events starting
from the low-level ones.

Breakpoints and watchpoints are two of the most complicated events to imple-
ment. Modern CPUs provide hardware facilities to realize efficient and transpar-
ent breakpoints and watchpoints. Unfortunately, hardware-assisted breakpoints
and watchpoints are limited in number (only 4) and shared between non-root and
root mode. Therefore, they cannot be used simultaneously by the analyzed sys-
tem and by the framework. The solution we adopt to allow an arbitrary number
of breakpoints is to use software breakpoints. A software breakpoint is a one-byte
instruction that triggers a breakpoint exception when executed. Software break-
points are enabled by replacing the byte at the address on which we want the
breakpoint with the aforementioned instruction. When the breakpoint is hit, the
original byte is restored and the event is notified to the tool. If the breakpoint is
not persistent the execution of the system is resumed. Otherwise the instruction
is emulated and then the breakpoint is set again. Clearly, this approach to break-
points is not transparent for the analyzed system (i.e., a malicious program could
spot a software breakpoint and alter its behavior). However, it is very efficient.
An alternative and transparent approach is to use the same technique we use for

32

CHAPTER 3. TRANSPARENT AND EFFICIENT DYNAMIC ANALYSIS

watchpoints, as described in the next paragraph. Our framework supports both
approaches.

The approach used in our framework to implement software watchpoints is
based on protecting the memory locations from any access via hardware (or just
from write accesses, depending on the type of watchpoint), such that any access
results in an exception [132]. More precisely, since the finest level of protection
offered by the hardware is at the page level, we mark the page containing the
address on which we want to set the watchpoint as “non-present”. Any future
access to this page will result in a page fault exception that will be intercepted
by our framework. The framework analyzes the exception and checks whether
the accessed address corresponds to the address with the watchpoint. If the
watchpoint is hit, the framework delivers the event to the analysis tool, otherwise
it emulates the instruction, and then resumes the normal execution of the guest.
Emulation is necessary to execute the faulty instruction manually. Indeed, to
prevent a second fault, the original permission of the memory page accessed by
the instruction must be restored before executing the faulty instruction. After the
execution of the instruction, the page must be marked again as “non-present” to
catch future accesses. Obviously this approach increases the run-time overhead,
due to a number of synthetic page fault exceptions; however, it also guarantees
a higher level of transparency to both the guest operating system and user-space
applications.

Other higher-level events, such as function and system call entries and exits,
are traced through breakpoints. When the analysis tool requests the framework
to monitor a certain function, the framework sets a breakpoint on the address of
the entry point of the function. Later, when a breakpoint is hit, the framework
checks whether the hit breakpoint corresponds to a function entry point and, if
so, it delivers the appropriate event (i.e., FunctionEntry) to the analysis tool.
Function exits, instead, are traced by setting a breakpoint on the return address.
The framework discovers the return address by setting a breakpoint on the func-
tion entry and by inspecting the stack frame of the function when the breakpoint
on the entry point is hit. A similar approach is used for tracing system calls
entries and exits.

The approach for tracing function calls and returns just described allows to
trace specific functions, whose names or addresses are supplied by the tool. The
tracing of all function calls and returns is instead more complicated because it is
not possible to know a priori the addresses of all functions’ entry points. The
solution in this case is to perform a static analysis to identify the addresses of all
functions’ entry points (e.g., by recognizing function prologues). This feature is
still not available in our current implementation of the framework. Nevertheless,
if needed, the static analysis could be performed directly in the tool. It is worth
pointing out that, due to the theoretical limitations of static approaches [64],
this kind of analysis cannot always provide very accurate results, especially when
dealing with highly optimized machine code. The tracing of all system calls is
instead much easier, since they are all invoked through a common gate. The

33

CHAPTER 3. TRANSPARENT AND EFFICIENT DYNAMIC ANALYSIS

solution we adopt is to put a breakpoint on the entry point of the system call
gate [29].

Besides execution tracing facilities, the framework also exposes to analysis
tools the possibility of intercepting I/O operations with hardware peripherals.
Software can interact with hardware devices through hardware I/O ports, or it
can leverage memory-mapped I/O. In the first case, VMX allows to intercept
the operation without any effort: the framework simply configures the execution
control fields such that all the interactions with the specific hardware ports trig-
ger an exit to root mode; when such an exit occurs, the framework notifies the
tool by means of a IOOperationPort event. However, for performance reasons,
modern peripherals typically resort to memory-mapped I/O. In this case, read
and write operations do not involve any hardware port, as they are performed
directly on memory. To intercept such operations we set a watchpoint on the
appropriate memory region, using the aforementioned technique. Thus, when an
access to the memory region being watched is detected, the framework delivers a
IOOperationMmap event to the tool.

3.3.3 State inspection and manipulation

Several situations require to access the state of the guest system in order to in-
spect, and optionally manipulate, both the registers of the CPU and the memory.
As an example, the framework could need to read the return address of a func-
tion from the stack, to access the parameters of a system call from the processor
registers, or to insert a breakpoint into the address space of a particular process.
Similarly, the analysis tool might need to extract data from the memory of the
guest.

The inspection and manipulation of CPU registers is a straightforward activ-
ity. This information is saved during an exit and restored before an entry. Thus,
the inspection and manipulation of registers merely consists of reading or writing
the VMX guest state (or the memory of the framework, depending on the type
of register).

Inspection and manipulation of memory locations is much more complex.
When paging is enabled, virtual addresses are translated by the hardware into
physical addresses according to the content of the page table and direct physi-
cal addressing is not possible. Each process has its own page table; therefore,
different processes have different virtual-to-physical mappings and a process can-
not access the memory of the others. The framework is isolated from the guest
using the same approach and thus it has its own page table and its own map-
ping. Consequently, the framework cannot directly access memory locations of
guest processes. Moreover, inspection is complicated by the fact that page ta-
bles cannot be traversed via software (but only via hardware): the page table
is a multilevel table and pointers to lower levels are physical. To overcome this
problem we have developed a specific, OS-independent, algorithm to access an
arbitrary virtual memory location of an arbitrary process. The core of the algo-

34

CHAPTER 3. TRANSPARENT AND EFFICIENT DYNAMIC ANALYSIS

rithm is a primitive that allows to access arbitrary physical memory locations.
This is accomplished by mapping a given physical address p to an unused virtual
address v in the page table of the framework, and subsequently by accessing v.
Then, using this primitive, the algorithm can traverse the page table of a process
of the guest via software by iteratively mapping the physical addresses stored in
the table.

The framework exposes memory inspection and manipulation facilities, based
on the aforementioned algorithm, to the analysis tools through two API func-
tions: GuestRead(p,a,n) and GuestWrite(p,a,data). The former reads n

bytes starting from virtual address a of process p ; the latter writes the content
of buffer data into the address space of process p , starting from virtual address
a . By default, to preserve the integrity of the guest, all GuestWrite operations
are forbidden. On top of these functions we have built higher-level ones that
facilitate the extraction of functions’ arguments, null terminated strings, and to
disassemble code.

3.3.4 Tool isolation

To be able to use our infrastructure on a production system, it is essential to
guarantee that any defect in the analysis tool will not affect the stability of the
analyzed system and of the framework. At this aim, the framework controls the
execution of the analysis tool and, if any anomalous behavior is observed, the
whole infrastructure is automatically unloaded.

As we outlined at the beginning of this section, even if the analysis tool is
executed in VMX root mode, it is still constrained into a less privileged execution
mode than the framework. Thus, any operation the tool performs on the guest
must be mediated by the framework. This is exactly what happens in traditional
operating systems: a user-mode process cannot access directly the resources of
the operating system, nor those of other user-mode processes, and any action it
performs outside its address space must be mediated by the kernel. Similarly, in
our context, to perform an operation on the guest system, the tool must use the
programming interface offered by the framework.

In the default configuration, the framework does not allow a tool to access in
write-mode to the state of the guest. However, there is still the possibility that
the execution of an instruction of the tool raises an unexpected exception (e.g., a
page fault on memory access, or a general protection fault). When such an event
occurs, the framework has no way to handle the anomalous situation and to allow
the tool to continue its execution. The only viable approach that also preserves
the integrity of the guest system is to terminate the analysis tool and to remove
the framework. At this aim, the solution we adopt is to intercept unexpected
exceptions through the custom interrupt descriptor table (IDT) installed when
launching VMX modes. The IDT receives the trap, and delivers it to the trap gate

35

CHAPTER 3. TRANSPARENT AND EFFICIENT DYNAMIC ANALYSIS

that eventually unloads the framework2. Another problem that might arise with
a buggy analysis tool is non-termination: if the analysis tool entered an infinite
loop, the guest system would never be resumed. To prevent this problem we added
to the framework a minimalistic watchdog and set a time limit on the execution
of the tool. The limit is not on the whole execution time of the tool, but rather on
the execution time to handle an event. Thus, the analysis tool could potentially
be run forever, but with the guarantee that the execution of the analyzed system
will be resumed within the specified time limit. At this aim, before delivering
an event to the analysis tool, the framework resets a timer. Then, while the
tool handles the event, the framework periodically regains the control of the
execution and checks whether the time limit has been exceeded. To do that
the framework registers, in the IDT, a custom interrupt handler to handle timer
interrupts and programs the interrupt controller to deliver only timer interrupts
(that is necessary to prevent the framework to consume interrupts for all the
other devices). Before returning to non-root mode, the framework reprograms
the interrupt controller to deliver all the interrupts to the analyzed system.

3.3.5 OS-dependent interface

Our framework provides a general programming interface completely independent
from the operating system running inside the guest. However, in many cases some
OS-specific facilities can ease the analysis of the guest. As an example, the only
OS-independent manner to identify a process is by means of the base address of
its page table (typically stored inside the cr3 CPU register). However, it is quite
awkward to refer to processes using page table base addresses, and it is more
natural to identify a process through its process identifier (PID) or through the
name of the application it executes.

The OS-dependent interface we provide leverages virtual machine introspec-
tion techniques [42] to analyze the internal structures of the guest operating
system to translate OS-independent information (e.g., process with page ta-
ble base address 0x13cdc000) into something more user-friendly (e.g., process
notepad.exe). Moreover, if debugging symbols are available the framework can
use them to resolve symbols’ names and addresses (e.g., functions and global vari-
ables). In this way, a tool can ask to interrupt the execution of the guest when
function NtCreateFile is invoked, instead of referencing the function through
its address. Similarly, when a function is invoked, it is possible to inspect its
call-stack and to resolve the name of the caller functions and even to recover the
libraries to which the various functions belong to. Some of the OS-dependent
functionalities provided are summarized in Table 3.3.

In case the guest operating system is not supported, the OS-dependent module
is disabled, and only OS-independent functionalities are available. Our current

2Only unexpected exceptions caused by a tool trigger the unloading of the framework. In-
terrupts coming from hardware devices, such as the network card or the disk, are queued and
eventually injected into the guest system instead.

36

CHAPTER 3. TRANSPARENT AND EFFICIENT DYNAMIC ANALYSIS

Name Description

GetFuncAddr(n) Return the address of the function n
GetFuncName(a) Return the name of the function at address a
GetProcName(p) Get the name of process with page directory base address p
GetProcPID(p) Get the PID of process with page directory base address p
GetProcLibs(p) Enumerate the dynamically linked libraries loaded into pro-

cess p
GetProcStack(p) Get the stack base for process p
GetProcHeap(p) Get the heap base for process p
GetProcList() Enumerate processes
GetDriverList() Enumerate device drivers

Table 3.3: OS-dependent API

implementation offers an OS-dependent interface only for the Windows XP op-
erating system.

3.4 HyperDbg

In this section we present HyperDbg, an interactive kernel debugger we built
on top of our framework. The current implementation of HyperDbg supports
both Microsoft Windows XP and Linux. In our strive to contribute to the open
source community, we released the code of HyperDbg, along with the code of
the framework, under the GPL (v3.0) license. The code is available at http:

//code.google.com/p/hyperdbg/.
HyperDbg offers all the features commonly found in kernel-level debuggers

but, being completely run in VMX root mode, it is OS-independent and grants
complete transparency to the guest operating system and its applications. The
debugger provides a simple graphical user interface to ease the interaction with
the user. This interface is activated in two circumstances: (i) when the user
presses a special hot-key or (ii) when the debugger receives the notification for
an event that requires the attention of the user (e.g., when a breakpoint is hit).
From this interface the user interacts with the debugger and can perform several
operations, including setting breakpoints and watchpoints, tracing functions and
system calls, and inspecting and manipulating the state of the guest (since all
interactive debuggers allow to modify the state of the debuggee, we decided to
enable write access to the guest as well).

Figure 3.3 shows HyperDbg in action3. In particular, the figure shows the de-
bugger notifying the event that interrupted the execution of the analyzed system,
displaying a fragment of the code of the process currently running in the ana-
lyzed system and displaying a “backtrace” of the function calls that are currently

3The screenshot was taken using our development environment based on an Intel x86 emu-
lator supporting extensions for virtualization (i.e., BOCHS).

37

http://code.google.com/p/hyperdbg/
http://code.google.com/p/hyperdbg/

CHAPTER 3. TRANSPARENT AND EFFICIENT DYNAMIC ANALYSIS

Figure 3.3: HyperDbg in action

active. Additionally, the debugger displays information about the status of the
registers at the time the event occurred (in the case of the figure the event is
the pressure of the hot-key). To facilitate the analysis, the debugger leverages
OS-dependent information. For example, the screenshot in Figure 3.3 shows that
the debugger resolved the ID and the name of the process in a Microsoft Windows
XP guest, by knowing how the process table is managed by the operating system.

It is worth pointing out that HyperDbg can be used to debug any piece of code
of the guest system, including critical components such as the process scheduler,
or interrupt and exception handlers. Indeed, Figure 3.3 shows that the guest
operating system has been stopped while executing the PS/2 keyboard/mouse
driver (i8042prt.sys). Thanks to the fact that the framework on which the
debugger is built on is completely transparent to the analyzed system, the user
can use the keyboard to interact with the debugger even though the keyboard
driver of the guest is being debugged.

HyperDbg consists of less than 1600 lines of code: ∼25% of the code imple-
ments the graphical interface, ∼23% of the code provides the facilities required
for keyboard-based user interaction, and the remaining ∼52% is responsible for
handling events and for all the other interactions with the framework. Note that
certain functionalities (e.g., disassembling a code region) are implemented di-
rectly in the framework since, most likely, they will be used for other types of
analysis as well. The framework is about four times bigger than the debugger
(without considering the disassembly module embedded in the framework, as it
is based on an off-the-shelf disassembler). We believe these numbers are very

38

CHAPTER 3. TRANSPARENT AND EFFICIENT DYNAMIC ANALYSIS

significant. The number of lines of code we had to write to implement HyperDbg
clearly witnesses that complex analysis tools like an interactive kernel debugger
are straightforward to implement using our framework.

The remaining of this section describes how we used the facilities of the frame-
work to implement the user interface and the component to receive commands
from the user.

3.4.1 User interface

Although the graphical user interface of the debugger is rough, its implementation
is very challenging. The reason of the complexity is the fact that we cannot rely
on any high-level graphical facility available in the analyzed system to render
the interface. Such approach would be too OS-dependent and not transparent
at all. The lack of graphical primitives obliged us to interact directly with the
video card. The video memory is mapped at a fixed address in the guest and thus
unmodified inspection and manipulation API (i.e., GuestRead and GuestWrite)
can be used by the debugger to render the interface. Note that this approach
is not dependent on the OS nor on the hardware. We developed a small video
library that provides basic graphical functionalities and translates our requests
into data that are written directly in the memory of the video card. Before
rendering the graphical interface to the screen, the debugger backups the content
of the video memory and restores the content right before resuming the execution
of the analyzed system.

3.4.2 User interaction

User interaction is keyboard-based. When in non-root mode, the user can switch
into HyperDbg by pressing a hot-key. Then, in root mode the user can control the
debugger. For these reasons, HyperDbg must be able to intercept keystrokes both
in root and non-root mode. To intercept keystrokes in non-root mode we monitor
all the read operations from the hardware I/O port devoted to the keyboard. In
other words, HyperDbg registers to the core for all the IOOperationPort events
that satisfy the event condition port =KEYBOARD PORT && access =read. When
such operation is detected, HyperDbg checks whether the key pressed corresponds
to the hot-key that enables the debugger. If the key pressed matches the hot-key
the debugger pops up the graphical interface and waits for commands. Otherwise,
the debugger passes the keystroke to the analyzed system such that the latter will
continue its execution as if the keystroke were read directly from the keyboard.
Keyboard handling in root mode is done by polling the keyboard hardware I/O
port. Since direct access to I/O ports is not permitted to any analysis tool, the
debugger relies on a API function exported by the framework which mediates all
accesses to I/O ports and allows (if the permission is granted at compile time)
certain analysis tools to read data from certain I/O ports.

39

CHAPTER 3. TRANSPARENT AND EFFICIENT DYNAMIC ANALYSIS

3.4.3 Real world examples

Debugging from root mode assures a number of different advantages in respect
to a common ring 0 debugger. First of all advantages is transparency. There
is no way, as far as we know, that code running inside the guest, regardless of
its privilege level, can detect the presence of the debugger (unless the debuggee
cooperates with an external entity, as we discuss in Section 3.5). This feature
comes really handy when analyzing malware and root-kit code. Such pieces of
code are often able to detect the presence of debuggers and other analysis tools,
included virtual machine based ones [87], so that they try to deceive them to hide
their presence or assume fake benign behaviors to trick the analysts.

Besides security-related aspects, HyperDbg is extremely useful for device driver
developing. Indeed, writing and testing a device driver cannot be done in a virtual
machine, as it would be necessary that the VM emulates the piece of hardware
for which the driver is being developed and, moreover, that it does that correctly.
Current solutions for this problem often include a secondary machine linked with
a serial or USB cable to the machine where the testing is being performed [79].
Since, as we explained before, our framework can be hot-plugged in a running
system, a driver developer just needs to load HyperDbg on the target machine and
perform the debugging session on the same machine. To summarize, HyperDbg
allows kernel-level debugging without the need of running the kernel as guest of
a virtual machine or to have a debugging-dedicated second machine.

3.5 Discussion

In this chapter we described an analysis framework that provides an isolated
execution environment to run security tools. Once installed, such environment
cannot be altered by any malicious program. However, if the system to be ana-
lyzed has already been infected, then a malware controlling the machine can still
tamper with the framework before it is installed, thus making the whole infras-
tructure completely ineffective. In this situation, a possible solution is to attest
that the module responsible for loading the analysis infrastructure runs untam-
pered, and that the framework itself is not modified by the malware during the
installation process. We address these problems in Chapter 4.

The effectiveness of the VMM-based analysis framework we propose depends
on the impossibility to detect its presence from the guest. There has been much
discussion about the transparency of hardware-assisted hypervisors: several re-
searchers believe hypervisors necessarily introduce some discrepancies and suggest
a number of detection strategies [34, 1], while others insist this is not always the
case, and that similar techniques can be evaded [104]. In our opinion, writing
an undetectable hypervisor is extremely challenging, if not unfeasible [40]. For
example, timing analysis is very effective in detecting running VMMs, especially
when the analysis is performed by an external entity, with a real perception of
time. Indeed, in Chapter 4 we propose a software-based attestation primitive

40

CHAPTER 3. TRANSPARENT AND EFFICIENT DYNAMIC ANALYSIS

that leverages this technique to detect unwanted software running in root mode.
The reader could argue that malware authors can use similar strategies also to
detect our VMM-based analysis framework. Anyway, we believe it is not realistic
to assume that a malicious program can rely on an external entity to perform
the timing analysis, and internal time sources can be altered by the hypervisor.
Alternatively, malware might attempt to detect our running hypervisor by trying
to install another VMM. One approach to contrast such attempts is to let the
malware believe that virtualization support is not available at all.

Secondly, it is worth noting that hypervisor detection techniques can check if a
VMM is installed on the system, but they cannot discern what kind of hypervisor
is actually present. With the widespread diffusion of virtualization technologies,
this kind of detection is often too coarse grained. A malware that hides its
malicious behavior on a machine only because it found a running hypervisor will
not be able to infect many of the virtualized environments in use today.

To conclude, the current implementation of our framework needs to be further
improved in order to provide a reliable analysis platform. Most notably, our pro-
totype lacks a robust interrupt handling module. As we briefly mentioned before,
when executing in root mode device interrupts directed to the monitored system
should be intercepted by the hypervisor, queued and injected into the guest later.
The strategy we use in our current prototype is to simply ignore interrupts com-
ing from the hardware peripherals: the hypervisor does not send to the interrupt
controller any acknowledgement, so interrupts are periodically retransmitted and
eventually acknowledged by the guest system. This solution is quite rough but
it works pretty well in practice, even when the CPU executes in root mode for
several minutes. However, in more complex scenarios this technique cannot be
adopted. As example, to support user interaction through USB keyboards (now
a de facto standard on desktop computers), HyperDbg must be able to handle in-
terrupts coming from the USB controller, and there is no easy way to enable only
USB keyboard interrupts and to disable all the other ones. We are working to
address this and other implementation issues. To this end, we decided to release
our analysis infrastructure and HyperDbg under the GPL license, in the hope of
stimulating a broader involvement of the open-source community.

41

4
Software-based code attestation

P
roactive detection of malicious code is not always possible. Despite the
continuous advances in anti-malware technology, it is often the case that
some nasty malware bypasses security protections and eventually infects

a system. In these cases, the only viable alternatives are a posteriori approaches:
it is necessary to run a program on the infected system to eradicate the malware
and remediate all the effects of the infection. But how to guarantee that the
malicious program that runs on the compromised machine cannot tamper with
the execution of the remediation software?

A solution to this problem is to attest the execution of the anti-malware tool.
More precisely, code attestation is the process of verifying the integrity of a piece
of code executing in an untrusted system. Besides integrity verification, code
attestation can also be used to execute an arbitrary piece of code in an untrusted
system with the guarantee that the code is run unmodified and in an untampered
execution environment. In the last years, hardware extensions, such as TPM
chips [47], have been proposed for securing computations, including performing
attestation. However, these extensions are not yet available on every computing
device. In such a situation, pure software-based solutions are the only possibility.

Several different software-based attestation schemes have been proposed in
literature [39, 112, 109, 108, 111, 113]. All these schemes are based on a challenge-
response protocol involving two parties: an untrusted system and a verifier. The
verifier issues a challenge for the untrusted system, where the challenge consists
in computing the checksum of certain memory locations and properties of the
execution environment. The checksum is computed by executing a particular
attestation routine, or checksum function. Once computed, the checksum is sent
back to the verifier. The verifier relies on the time to determine whether the
checksum is genuine or if it could have been forged. Indeed, attestation routines
are constructed such that any tampering attempt results in a noticeable increase
of the execution time. Thus, a checksum received too late is a symptom of an
attack.

The complexity of the attestation routine depends on the hardware character-

42

CHAPTER 4. SOFTWARE-BASED CODE ATTESTATION

istics of the untrusted system on which it has to be executed. Indeed, the output
of the routine is guaranteed to be genuine only if it is executed in a properly
configured execution environment. In complex hardware architectures, such as
the ones used in personal computers, there exist several configurations of the ex-
ecution environment that can be exploited by an attacker to thwart attestation.
Therefore, the attestation routine must ensure, and prove to the verifier, that
the execution environment in which it executes satisfies all the requirements to
impede attacks. In other words, the attestation routine must attest its own code,
but also the execution environment. Intuitively, the requirements for tamper-
proof attestation are that the attestation routine must be executed at the highest
level of privilege (i.e., at the same level of the most powerful attacker) and that
its execution must be uninterruptible. Practically speaking, in a legacy system
with no hardware support for virtualization, that means that the routine must
execute in system mode (i.e., the privilege level of the operating system) and that
all interrupts must be disabled, to prevent the attacker to regain the control of
the execution at some point. Unfortunately, even if the requirements are very
well defined, guaranteeing that they are satisfied in a complex execution environ-
ment where attacker and defender have the same privileges is a very challenging
problem.

In this chapter we present Conqueror, a software-based scheme for tamper-
proof code execution on untrusted legacy systems. Conqueror provides a security
primitive that allows to build applications that require the availability of a trusted
computing base. Pragmatically speaking, Conqueror guarantees that an arbitrary
piece of code can be executed untampered in an untrusted system, even in the
presence of malicious software. Conqueror has been developed to address the lim-
itations of Pioneer, the state-of-the-art software-based attestation solution [111]:
Conqueror is immune to all attacks that are known to defeat Pioneer, and it can
also be used on untrusted systems where the attacker could leverage hardware
virtualization extensions to hold control of the execution environment in which
the attestation routine executes. Conqueror adopts a variation of the challenge-
response protocol used in traditional attestation schemes: the challenge does not
consist in a seed to initialize a constant attestation routine, but instead consists
in an entire routine, that is different each time, self-decrypting, and obfuscated.
The intent is to make it impossible for an attacker to reverse engineer the logic
of the checksum computation, and to facilitate the hiding of the sensitive opera-
tions that Conqueror needs to perform to attest that the state of the environment
executing the code impedes any attack. The strength of this approach is that we
are drastically increasing the time needed by an attacker to forge a checksum.

We experimentally demonstrate our claims about Conqueror’s resistance to
attacks. We show that even a preliminary low-level analysis of the code of Con-
queror’s one-time attestation routine (i.e., disassembly), which is necessary to per-
form any subsequent meaningful analysis for reconstructing the semantics, costs
about the same time required to execute the routine. Moreover, we show that
Conqueror is also resilient to dynamic attacks performed by an attacker leveraging

43

CHAPTER 4. SOFTWARE-BASED CODE ATTESTATION

a hardware-assisted hypervisor. Finally, to demonstrate Conqueror’s potential, we
present a proof-of-concept software-based primitive to launch securely a hypervi-
sor in a running untrusted system, to segregate the system into a restricted guest.
This primitive could be used in place of skinit [2] and senter [47] on untrusted
systems with no hardware support for trusted computing.

4.1 State-of-the-art of attestation on legacy sys-

tems

This section presents Pioneer, Conqueror’s main competitor. Both systems target
the same hardware architecture, but they use very different approaches. More-
over, Conqueror is resistant to attacks that are known to defeat Pioneer.

Pioneer is a software-based attestation scheme that can be used to establish
a trusted computing base, called dynamic root of trust, on an untrusted legacy
system. Pioneer is specific for Intel x86 with EM64T extensions. The code
of the dynamic root of trust is guaranteed to be unmodified and to execute
in a tamper-proof execution environment. The dynamic root of trust measures
the integrity of an arbitrary executable, and then runs the executable in the
trusted execution environment. The dynamic root of trust is established using a
verification function. The verification function is an extension of a conventional
checksum function and additionally includes a hash function to verify the integrity
of an executable. The verification function is self-checking (i.e., it attests its own
code), and it attests the execution environment.

The Pioneer verification function is composed of three components: (i) a
checksum function, (ii) a send function, and (iii) a hash function. The checksum
function is used to compute a checksum over the entire verification function and
to setup the execution environment in which the other functions are guaranteed
to run untampered. Since the sensitive component of Pioneer is the checksum
function, we do not overview the others.

As in the majority of code-attestation schemes, in Pioneer the checksum func-
tion is known a priori and the challenge issued by the verifier consists in a seed
that initializes this function. Therefore, an attacker has complete access to the
checksum function and can analyze it offline to find weaknesses. The checksum
function has been constructed manually to be time-optimal: no adversary func-
tion that can compute the correct checksum without introducing a noticeable
overhead exists. Time-optimality is achieved using operations that prevent par-
allelization, that have a low variance execution time, and by executing these op-
erations iteratively, to maximize the overhead of the attacker. Most importantly,
the checksum function is responsible for initializing the execution environment
and for attesting the correct initialization.

Unfortunately, since the hardware architecture for which Pioneer was devel-
oped is full of subtle details, researchers have found ways to thwart the setup of
the dynamic root of trust without being noticed by the verifier. For example,

44

CHAPTER 4. SOFTWARE-BASED CODE ATTESTATION

it is possible to perform the entire checksum computation in user-space and to
regain the control of the execution through exceptions without corrupting the
checksum. Another attack consists in desynchronizing data and code pointers
and to execute a modified checksum function that computes the checksum of a
pristine function residing elsewhere in memory [139]. Finally, Pioneer’s assump-
tions that the most powerful attacker operates in system mode does not hold on
new commodity hardware with support for virtualization [2, 53].

The remaining of this section briefly presents some attacks against Pioneer.

Checksum computation in user mode. One of the requirements to create a
tamper-proof execution environment is that the verification function must operate
at system level. Pioneer verifies that such requirement is satisfied by checking if
the verification function can disable maskable interrupts. However, it is possible
to execute the checksum in user mode, and to simulate that maskable interrupts
have been disabled.

Dedicated stack for interrupt handling. Pioneer disables interrupts to pre-
vent an attacker to interrupt the execution of the checksum function. However,
not all interrupts can be disabled (e.g., exceptions). The solution adopted by
Pioneer is to store part of the checksum in the stack. If an exception handler
is executed to respond to an interrupt, the checksum will get corrupted because
the CPU saves its state on the stack before invoking the handler. An attacker
can execute his malicious interrupt handlers without corrupting the checksum by
configuring the CPU to use a dedicate stack for interrupt handling.

Segments and TLB desynchronization. An attacker can modify the code
of the checksum function to compute the checksum over a pristine copy of the
memory. Pioneer adopts several tricks to defeat this kind of attack. Nevertheless,
it is vulnerable to variations of this attack performed by desynchronizing code
and data segments or desynchronizing code and data TLBs [139, 122].

Attestation in the presence of a hypervisor. Pioneer assumes that the
most powerful attacker operates in system mode. This assumption can be violated
on new commodity hardware with support for virtualization [2, 53], where the
most powerful attacker operates in hypervisor mode (or root mode, according to
Intel terminology) and is completely transparent to guests, Pioneer included.

4.2 Conqueror overview

In this section we give an overview of Conqueror, our scheme for software-based
code attestation and tamper-proof code execution on untrusted legacy systems
(Intel x86). Conqueror does not suffer the problems that affect the state-of-the-art
attestation scheme for this class of systems.

45

CHAPTER 4. SOFTWARE-BASED CODE ATTESTATION

Executable

Send function

Checksum function

TPEB

Verifier

Executable

Send function

Checksum function

TPEB

Untrusted system

1. Checksum function
2. Decryption key

4
6

3
.

C
o
m

p
u

te
ch

eck
su

m

5. Checksum

7. Output

Figure 4.1: Overview of Conqueror

4.2.1 Threat model

Conqueror has been developed to operate in the following adversary scenario. We
assume that the untrusted system has been compromised, and that the attacker
operates at the highest privilege level: system mode (ring 0) if the system has
no support for hardware-based virtualization, hypervisor mode if the support is
available. However, we assume the adversary cannot operate in system manage-
ment mode, that he cannot perform hardware-based attacks (e.g., DMA-based
attacks or overclocking), and that he cannot leverage a pristine or a more pow-
erful system to break the attestation scheme. The final assumption is that the
untrusted system supports a single thread of execution (e.g., no SMP).

4.2.2 Conqueror architecture and protocol

As any other software-based code attestation scheme, Conqueror is based on a
challenge-response protocol, where a verifier challenges the untrusted system.
The central component of Conqueror is the Tamper-Proof Environment Boot-
strapper (TPEB). As the name says, the TPEB is responsible for setting up the
environment in the untrusted system for the tamper-proof execution of an ar-
bitrary executable. Figure 4.1 shows the layout and the protocol of Conqueror
(the numbers in the figure represent the temporal ordering of the events). The
TPEB is composed of a checksum function and a send function. The checksum
function computes the checksum to attest the integrity of the TPEB itself and the
integrity of the executable. The send function transmits the computed checksum
value to the verifier and invokes the executable. The send function is logically
separated from the checksum function because it is hardware dependent (i.e., it
depends on the network card installed on the untrusted system).

In Conqueror the verifier generates the checksum function on demand, such
that each function differs considerably from the others. Differences are both syn-
tactic and semantic. Moreover, functions are obfuscated using multiple obfusca-
tion schemes. The attacker has no access to the checksum function ahead of time
and cannot perform any offline analysis nor optimization [113]. In Conqueror, the

46

CHAPTER 4. SOFTWARE-BASED CODE ATTESTATION

newly generated checksum function is initially sent encrypted to the untrusted
system. Later on, at time t0, the verifier transmits the key for decryption. Since
the verifier knows precisely in which execution environment the function must
be executed and knows the hardware characteristics of the untrusted system, it
can compute the expected checksum value and can estimate the amount of time
that will be required by the untrusted system to decrypt, to execute the function,
and to send back the result. Let t1 = t0 + ∆t be the time by which the correct
checksum has to be received by the verifier to be considered authentic; ∆t is an
upper bound, empirically estimated, of the maximum time requested by the un-
trusted system to compute the checksum in the absence of an attack (including
network delay). If the verifier does not receive the correct checksum by t1, then
the checksum is considered forged and the execution environment not tamper-
proof. In a traditional checksum function (e.g., that used in Pioneer), where the
function is known a priori and can be analyzed offline, the attacker has ∆t time
to execute a malicious function to forge the checksum. In Conqueror, the attacker
has ∆t to (i) analyze the checksum function, (ii) generate a new function capable
of forging the checksum, and (iii) execute the generated function. Alternatively,
the attacker would have to emulate the entire execution of the checksum func-
tion. Differently from traditional checksum functions, the ones in Conqueror are
generated automatically; for this reason we cannot guarantee a low collision rate
nor that their implementation is optimal (in terms of execution time and in code
size). Nevertheless, given the small time frame available, there is no opportunity
for the attacker to reverse engineer their semantics, nor to emulate the execution,
and to forge checksums in time.

Since Conqueror targets a very complex hardware architecture, particular at-
tention has to be devoted to prevent checksum forgery, by tampering either the
checksum function or the execution environment. To attest the trustworthiness of
the environment, the verifier embeds in the checksum function several operations
whose behavior and execution time depend on the configuration of the envi-
ronment (e.g., instructions that raise exceptions when executed without enough
privileges).

An attacker who tampers the execution of the checksum function will corrupt
the checksum, or will incur in a time overhead that will cause the overall check-
sum computation to exceed the expected time ∆t. For these reasons, Conqueror
guarantees that a correct checksum, received by the verifier by t1, is the proof
that the checksum function has been executed unmodified and that the bootstrap
of the tamper-proof execution environment succeeded.

4.3 Conqueror implementation

Conqueror current implementation is specific for the Intel x86 architecture and
so are the details of the implementation presented in this section. However, we
believe the same scheme can be used, as is, on the Intel x86-64 architecture.

47

CHAPTER 4. SOFTWARE-BASED CODE ATTESTATION

4.3.1 Tamper-Proof Environment Bootstrapper

The layout in memory of the TPEB is shown in Figure 4.2. The TPEB consists of
the checksum function, its data, and the send function. For simplicity, the TPEB
is located at a fixed address (BASE) and in consecutive memory pages. Moreover,
the executable follows immediately the TPEB, and the overall buffer is padded
to a multiple of page size (SIZE). We assume that the TPEB is already initialized
on the untrusted system, with the exception of the checksum function. The
checksum function and its data reside in a dedicated memory page (starting from
BASE) and all unused bytes in this page are initialized randomly, to hide code
and data. This page is generated on-demand by the verifier and transmitted
encrypted to the untrusted system. The latter stores in memory, at the BASE

address, the page and waits for the decryption key. Attestation begins when
the verifier sends out the key. The reason for encryption is to exclude from the
measurement the time required to transmit and prepare the TPEB.

4.3.2 Checksum function

The checksum function is composed of a prologue, a checksum loop, and an
epilogue (Figure 4.2). The prologue decrypts the rest of the page containing the
checksum function, initializes the execution environment for the remaining of the
computation, and invokes the checksum loop. The checksum loop (described in
Section 4.3.2) computes the checksum of the memory pages containing its own
code, the send function, and the module we want to execute (i.e., from BASE to
BASE + SIZE), and invokes the epilogue. The epilogue invokes the send function,
which in turn invokes the executable module.

The checksum function computes the checksum by combining multiple check-
sum gadgets. In the current implementation the checksum size is 128 bits. A
gadget (ci) is a small code snippet that receives in input the address of a mem-
ory location and updates the running value of the checksum, according to the
content of the memory. We refer to these gadgets as active, since they are in-
tentionally executed by the checksum function. The purpose of an active gadget
is twofold. First, each gadget contributes to the computation of the checksum
in a different way. Thus, the correct checksum can be computed only if all the
gadgets are executed in the proper order and with the proper arguments. Sec-
ond, certain gadgets perform additional operations to verify the trustworthiness
of the execution environment and, in case the environment has been tampered,
they either corrupt the checksum or introduce a time overhead. Since gadgets
are scattered around the memory, differ syntactically and semantically from one
checksum function to another, and are obfuscated, it becomes very difficult for
the attacker to reconstruct the exact logic of the checksum function.

In addition to active gadgets, the checksum function relays on passive gadgets
(hj), or handlers, that are not invoked directly by the checksum function, but
rather as the result of an unexpected event that can occur only in a tampered ex-

48

CHAPTER 4. SOFTWARE-BASED CODE ATTESTATION

Send function

Executable

c0

c1

c2
c3

c4
h0

c6

c7

c8

c9

c10

c11

c12

c13

c14c15
c16

c5

h1

h2h3

Epilogue

Checksum
loop

IDT

Checksum function

Prologue
BASE

BASE + 0xFFF

BASE + SIZE

R
eg

io
n

o
n

w
h

ich
th

e
ch

eck
su

m
is

co
m

p
u

ted

Figure 4.2: Overview of the TPEB

ecution environment. If executed, passive gadgets corrupt the checksum. Passive
gadgets are registered during the prologue, by replacing the Interrupt Descriptor
Table (IDT) with a new one embedded within the TPEB, and cannot be disabled
by the attacker: an improper configuration of these gadgets will result in a wrong
checksum.

Prologue

The prologue (Figure 4.3) is a small routine that decrypts the rest of the page
and initializes the trusted execution environment. More precisely, the prologue
disables all maskable interrupts (line 2), decrypts the rest of the page (line 4 and
5), and installs custom interrupts handlers (line 7). Custom handlers are installed
by updating the address of the interrupt descriptor table (IDT). The new address
is set to a location, within the memory page containing the checksum function,
that holds a pre-initialized IDT (Figure 4.2). The mapping between interrupts
and handlers (the content of the IDT) is chosen by the verifier and not known to
the attacker. The handlers (hi in Figure 4.2), or passive gadgets, are a special type
of gadget: like normal gadgets they modify the running value of the checksum,
but they terminate their execution with a special instruction to return to normal
execution (i.e., iret). Furthermore, handlers are never invoked explicitly by the
checksum loop but only in response to interrupts or exceptions.

The purpose of the prologue is twofold. First, by disabling maskable interrupts
(pin-based interrupts generated by the peripherals) we inhibit the asynchronous
execution of all handlers. Second, by installing custom interrupt handlers that up-
date the checksum value, we can tell whether any interrupt or exception occurred
during the computation of the checksum. If maskable interrupts are successfully

49

CHAPTER 4. SOFTWARE-BASED CODE ATTESTATION

disabled, no asynchronous interrupt occurs, and the checksum is not corrupted
because no interrupt handler is fired. Similarly, if the checksum loop executes
privileged instructions, and the checksum function is executed in system mode, no
exception occurs and no exception handler corrupts the checksum. On the other
hand, any attempt to execute the checksum function in user mode results in an
exception, in the execution of the corresponding handler, and in a corruption of
the checksum value.

By positioning the IDT in the same memory page of the checksum function, we
implicitly certify the content of the table. The only opportunity for the attacker
is to intercept and simulate a successful update of the IDT. For example, the
attacker could emulate the execution of the prologue or execute the prologue in
user-space, such that the update of the IDT will raise an exception and will be
intercepted. Then, the attacker could install his own malicious IDT and simulate
a successful disabling of maskable interrupts. We prevent this attack by including
in the checksum loop a special gadget that queries the address of the IDT and
updates the running value of the checksum accordingly. Therefore, attacker’s
attempts to relocate the IDT will result in a corrupted checksum. Further details
about the aforementioned gadget and about why its execution cannot be detected
by the attacker are given in Section 4.3.2.

In conclusion, a correct value of the checksum, received by the verifiers within
the expected time, certifies that the prologue is executed successfully, that the
checksum function is executed at the maximum privilege level, and that the
attacker cannot interrupt the execution using interrupts or exceptions.

Checksum loop

The core of the checksum computation is the checksum loop shown in Figure 4.4.
The checksum loop is composed of two nested loops. The innermost loop traverses
the memory and updates the checksum according to the content of the memory,
invoking a different gadget at each iteration. The memory is not traversed lin-
early, but instead in a pseudorandom fashion (line 4), using a T-function [61].
The T-function produces a pseudorandom permutation of all the memory loca-
tions to traverse. More precisely, the T-function returns the memory offset of
the next memory location for the checksum computation. At each iteration (line
5), from the offset returned by the T-function, the checksum loop computes the
absolute address of the memory location to process, and invokes a specific gadget
to update the running value of the checksum (GADGETS represents the number of
gadgets available). Clearly, without an analysis of the code, the attacker can-
not predict which gadgets will process which memory locations and, even if the
checksum function were weak (e.g., it suffers a high collision rate), the attacker
would not have enough time to exploit the weakness. Finally, it should be noted
that the execution of the checksum loop is deterministic, unless it is tampered.

The outermost loop repeats the memory traversal multiple times (ITERATIONS
denote the number of iterations of the outermost loop). At each iteration, the

50

CHAPTER 4. SOFTWARE-BASED CODE ATTESTATION

1 // Disable maskable interrupts

2 asm("cli");

3 // Decrypt the remaining of the page

4 for (i = PROLOGUE_SIZE; i < 4096; i++)

5 BASE[i] ^= KEY[i % KEY_SIZE]

6 // Install custom interrupt handlers

7 asm("lidt %0" : : "m" (IDT));

Figure 4.3: Overview of the pro-
logue

1 for (i = 0, j = 0; i < ITERATIONS; i++) {

2 x = seed(i) % (SIZE / 4);

3 do {

4 x = (x + (x*x | 5)) % (SIZE / 4);

5 checksum_gadget[j++ % GADGETS](BASE + x*4);

6 } while (x != seed(i) % (SIZE / 4));

7 }

Figure 4.4: Overview of the checksum
loop (in C for clarity)

T-function used in the innermost loop is initialized with a different seed (line 2).
Therefore, the innermost loop is executed multiple times and at each execution
the running value of the checksum is updated using a different combination of
memory locations and gadgets, and the order in which the checksum is updated
is also different. Since the checksum function is constructed such that any at-
tacker’s attempt to forge the correct checksum will introduce an overhead in the
computation of the checksum, the outermost loop causes a constant time over-
head per iteration and facilitates the detection of the attack. Details about how
we select the optimal number of iterations for the outermost loop are given in
Section 4.4.

The seeds used by the T-function to generate the addresses are also included in
the memory page containing the checksum function. To avoid wasting precious
bytes of the page, the vector containing the seeds is positioned at a random
location within the page and is not initialized, to overlap with the existing content
of the page.

Checksum gadgets

The checksum is computed by executing a sequence of gadgets, each of which
contributes to update the running value of the checksum in a different way. Cer-
tain gadgets also perform additional operations to attest the trustworthiness of
the execution environment. Given that gadgets are very small in size and that an
entire memory page is dedicated to the checksum function, the checksum func-
tion can rely on about a hundred different gadgets simultaneously. Gadgets are
generated on demand by the verifier and change (in number, position, syntax,
and semantics) from challenge to challenge.

The following paragraphs describe in details the gadgets used in the checksum
function to attest the integrity of the TPEB and of the code of the executable.
Figure 4.5 shows some sample gadgets. For clarity, the gadgets presented are not
optimized and use symbolic names (in uppercase) to refer to absolute memory
locations containing data: CHKSUM and ADDR refer respectively to the memory lo-
cations storing the 128-bit checksum and the address of the next word to process.

Plain checksum computation. The simplest and most frequently used gad-
get is responsible only for updating the running value of the checksum. Different

51

CHAPTER 4. SOFTWARE-BASED CODE ATTESTATION

1 mov ADDR, %eax

2 mov (%eax), %eax

3 xor $0xa23bd430, %eax

4 add %eax, CHKSUM+4

1 mov ADDR, %eax

2 mov (%eax), %eax

3 add %eax, CHKSUM+8

4 sidt IDTR

5 mov IDTR+2, %eax

6 xor $0x6127f1, %eax

7 add %eax, CHKSUM+8

1 mov ADDR, %eax

2 mov (%eax), %eax

3 xor $0x1231d22, %eax

4 mov %eax, %dr3

5 mov %dr3, %ebx

6 add %ebx, CHKSUM

1 mov ADDR, %eax

2 mov (%eax), %eax

3 lea l_smc, %ebx

4 roll $0x2, 0x1(%ebx)

5 l smc :

6 xor $0xdeadbeef, %eax

7 add %eax, CHKSUM+4

1 mov ADDR, %eax

2 mov (%eax), %ebx

3 and $0xfffff000, %eax

4 add $0x2b8, %eax

5 movb (%eax), %cl

6 movb $0xc3, (%eax)

7 call %eax

8 movb %cl, (%eax)

9 xor $0x7b2a63ef, %ebx

10 sub %ebx, CHKSUM+8

1 mov ADDR, %eax

2 mov (%eax), %ebx

3 vmlaunch

4 xor $0x7b2a63ef, %ebx

5 sub %ebx, CHKSUM+8

(a) (b) (c)

(d) (e) (f)

Figure 4.5: Sample gadgets for (a) plain checksum computation, (b) IDT attestation,
(c) system mode attestation, (d,e) instruction and data pointers attestation, and (f)
hypervisor detection.

gadgets update the checksum in different ways, by applying different arithmetical
or logical operations and by modifying different bits of the checksum value. Fig-
ure 4.5(a) shows a sample gadget. The gadget updates the checksum by adding
the result of a bitwise XOR between the current memory location (ADDR) and a
random key (0xa23bd430). Note that this gadget modifies the second word of
the running 128-bit checksum (CHKSUM+4, at line 4).

IDT attestation. During the prologue, the interrupt descriptor table is re-
placed with a custom table, which is provided along with the checksum function.
Since the prologue is executed at the beginning of the checksum function, it is
reasonable to expect the attacker to try to emulate or intercept its execution.

The content of the IDT is implicitly attested by the normal checksum com-
putation, but the address of the IDT is not. To attest that the IDT shipped
with the checksum function is actually being used, the checksum function relies
on a specific gadget that queries the CPU to obtain the address of the IDT and
updates the checksum accordingly. Obviously, the checksum will be wrong if a
different IDT is being used. The only opportunity for the attacker to force the
checksum function to behave as if the requested IDT were successfully installed
is to intercept the query and to manipulate its output. To query the address of
the IDT, the gadget uses the sidt instruction. Unfortunately for the attacker,
this instruction is not privileged: it does not trigger an exception when executed
in user mode [100]. Consequently, the only solution for the attacker to detect
the instruction is to analyze the checksum function or to emulate its execution.
However, any analysis or emulation attempt will introduce a noticeable overhead

52

CHAPTER 4. SOFTWARE-BASED CODE ATTESTATION

in the computation of the checksum. Figure 4.5(b) shows a sample gadget to
attest the IDT. The only difference with a plain gadget (Figure 4.5(a)) is the
addition of the instructions to query the address of the IDT (lines 4 and 5).

System mode attestation. After the update of the IDT, the attacker cannot
regain the control of the execution, because all interrupts and exceptions will
be served by the handlers installed by the checksum function. Although the
previously described gadget forces the attacker to install our IDT, he could still
attempt to execute the entire checksum function in user mode. If no maskable
interrupt occurred during the execution of the checksum function, the checksum
would not get corrupted, and the attack would not be detected. However, even if
we suppose that the attacker executed the checksum function in user mode and
that he were able to reprogram the interrupt controller to prevent any interrupt,
he would lose any opportunity to regain the control of the system after checksum
computation.

To have the guarantee that the TPEB is operating in system mode, the check-
sum function relies on a specific class of gadgets. These gadgets use a privileged
instruction to update the running value of the checksum. If the function is exe-
cuted in system mode, all the instructions of the gadgets will be executed success-
fully. However, if the function is executed in user mode, the privileged instruction
will raise an exception (because of the lack of privileges), and the exception han-
dler we installed to handle the exception will corrupt the checksum. In some
cases, the handler could also trigger an endless loop. An example of such a gad-
get is shown in Figure 4.5(c). The gadget uses the CPU register dr3 to store
an intermediate result during the computation of the new checksum value. This
register can be accessed only in system mode and any access originating from
user mode causes a general protection fault exception.

Instruction and data pointers attestation. The checksum function is a self-
checksumming function. A common class of attacks against self-checksumming
functions are memory copy attacks, that allow attackers to forge checksums [111].
Briefly, in a memory copy attack, the attacker modifies the instructions of the
checksum function, or the execution environment, to redirect all memory reads to
memory locations containing a pristine copy of the data to attest. A memory copy
attack can be performed in different ways: (i) by patching the instructions of the
checksum function to read from different locations, (ii) by configuring segmen-
tation to separate the code from the data segment, and (iii) by desynchronizing
the data and the instruction TLBs [139].

To prevent memory copy attacks, the checksum function uses a specific type
of gadget that guarantees that reads, writes, and fetches involving the same
virtual memory location refer to the same physical location. Indeed, data and
instruction physical pointers equivalence is sufficient to guarantee that no memory
copy attacks of type (ii) and (iii) can be performed. We intentionally do not
consider the case of memory copy attacks of type (i), performed by patching or

53

CHAPTER 4. SOFTWARE-BASED CODE ATTESTATION

by emulating the checksum function, because of the noticeable time overhead
the attacker would suffer. To validate the equivalence of data and instruction
pointers we leverage a gadget based on self-modifying code [43]. The gadget
updates the running value of the checksum by performing an operation that is
generated dynamically by modifying the code of the checksum function in place.
If no memory copy attack is being performed, the data pointer (used for both
reads and writes) and the instruction pointer point to the same physical page.
Thus, the memory write executed by the gadget to update its instruction modifies
the physical page that is also being executed. If the attacker were performing
a memory copy attack, the data and the instruction pointer would point to two
different physical pages and the instruction executed to update the checksum
would differ from the ones just created by the gadget. Consequently, the out-of-
date instruction would corrupt the checksum.

Figure 4.5(d) shows a sample gadget used by Conqueror to prevent memory
copy attacks. The gadget updates the checksum by adding the data read from
the memory (lines 1, 2, and 7). Before the addition, the word read is XORed with
an immediate (line 6). The immediate is rotated (by two bits) at each execution
of the gadget, by modifying the operand of the instruction in place (line 3 and
4). In the case of a memory copy attack the checksum would not be updated
correctly because the operand of the xor instruction would remain unmodified.

Note that, in the case of a memory copy attack of type (iii), the attacker can
operate on each page separately. The aforementioned gadget successfully protects
against the desynchronization of data and instruction pointers that point to the
page containing the checksum function, but, as is, it is ineffective at protecting
other pages (containing the send function and the executable). Indeed, only
instructions residing in the page containing the checksum function are executed
during the checksum computation. To address this problem, we use a variation
of the original gadget, that places a temporary small snippet of code (e.g., a ret

instruction) in a random position of the input page, executes the snippet, and
restores the original content of the modified locations. Figure 4.5(e) shows an
example of this type of gadget. The gadget selects a random location in the page
being attested (lines 1 to 4), saves the content of the location (line 5), replaces the
content with a ret instruction (line 6), executes the newly generated instruction
(line 7), restores the original content of the modified location (line 8), and finally
updates the checksum (line 9 and 10).

Hypervisor detection. An attacker operating in hypervisor mode, on a sys-
tem with hardware support for virtualization, has complete control of the op-
erating system: he can intercept the execution of all sensitive instructions, in-
terrupts, exceptions, and, most importantly, the hypervisor and the attacker are
completely transparent to guests. Dai Zovi and Rutkowska et al. have clearly
demonstrated what an attacker can do on systems with hardware support for vir-
tualization [27, 103]. The gadgets presented so far are effective at attesting the
trustworthiness of the execution environment only if we can guarantee that no

54

CHAPTER 4. SOFTWARE-BASED CODE ATTESTATION

attacker can operate in hypervisor mode. Therefore, the checksum function that
attests the existence of a tamper-proof execution environment on the untrusted
system must be adapted to compute the correct checksum value, in the expected
amount of time, only when no hypervisor is running on the system.

There is a rich ongoing debate among researchers about hypervisors detection
and hiding. Although the hardware has been specifically designed to masquer-
ade the existence of a piece of code running in hypervisor mode, everybody has
become aware that constructing a completely transparent hypervisor is funda-
mentally infeasible and impractical from a computational and engineering per-
spective [40]. Indeed, hypervisors introduce several discrepancies, especially in
terms of resources and timings. Our goal is to exploit these discrepancies, in
particular timing discrepancies, to detect when the execution environment could
not guarantee untampered execution. The main advantage we have over attack-
ers is that checksum validation is performed by an external party, the verifier,
that has a real perception of time. We exploit this advantage by including in the
checksum function special gadgets that execute instructions that unconditionally
trap to the hypervisor. Similarly to exceptions, hypervisor traps cause the CPU
to spend several cycles to transition from system (or user) mode to hypervisor
mode, to execute the handler of the hypervisor, and to transition back to system
mode. By periodically executing such instructions, we cause a noticeable time
overhead when a hypervisor is running on the untrusted system.

Figure 4.5(f) shows a sample gadget we use to detect hypervisors. The gadget
reads a word from the memory (line 1), executes a vmlaunch instruction (line 3),
and then updates the checksum (line 4 and 5). Other instructions, such as cpuid,
vmread, and vmcall, can be used for this purpose. The vmlaunch instruction is
available only on CPUs with hardware support for virtualization. Furthermore,
the instruction can be executed only when virtualization support has been en-
abled. If a hypervisor is running on the untrusted system, any attempt to execute
the instruction results in a trap to the hypervisor. In any other situation the CPU
refuses to execute the instruction and generates an illegal operation exception.
Recall that, by installing a custom IDT, we register handlers for all exceptions
and that these handlers modify the running value of the checksum. In particular,
the handler for the illegal instruction exception we install additionally updates
the address of the faulty instruction for resuming the normal execution of the
checksum function from the next one. That is necessary to prevent an endless
loop. To not interfere with the correct checksum computation, after the trap, the
attacker has to reproduce the situation that would occur on a system without hy-
pervisor: he has to inject an illegal instruction exception into the guest to trigger
the handler registered during the prologue. If the attacker mimics exactly the
behavior of the CPU in the absence of the hypervisor, the checksum is computed
correctly. However, the cost of the trap, of the execution of the logic to handle
the trap, of the event injection, and of the exception handling we have on a sys-
tem controlled by an attacker operating in hypervisor mode is much higher than
the cost of the mere exception handling that we would have on a system without

55

CHAPTER 4. SOFTWARE-BASED CODE ATTESTATION

hypervisor. In conclusion, the gadget takes much longer to execute in an insecure
execution environment. By executing this type of gadgets multiple times during
the checksum loop we have the guarantee that, if the checksum computation pro-
duces the correct return value and it does not exceed the expected computation
time, the execution environment is tamper-proof.

It is worth noting that if the attacker attempted to execute the checksum
function directly in hypervisor mode, he would never be able to regain the control
of the execution (this is the same case of an attacker that executes the checksum
function in system mode without any hypervisor).

4.3.3 Obfuscation

After generation, the checksum function is obfuscated using simple obfuscation
techniques [66]. Particular efforts are devoted to obfuscate the checksum loop be-
cause, by analyzing the loop, the attacker could identify the position of the various
gadgets. The strategy we adopt is to introduce specific gadgets for obfuscating
the logic of checksum computation. More precisely, these gadgets replace some
of the existing gadgets and interrupt handlers with new ones. Furthermore, we
obfuscate gadgets singularly by introducing dead code, overlapping instructions,
and non-trivial pointers computations.

The gadgets we used for normal checksum computation give, as a side effect,
an extra advantage for the verifier over the attacker. The presence of aggressive
self-modifying code prevents the attacker from using efficient code emulations
techniques, such as dynamic binary translation and software-based virtualiza-
tion. Indeed, self-modifying code invalidates cached translated code, and forces
the emulator to analyze and translate the code again and again. We have experi-
enced directly this problem during the development of Conqueror: self-modifying
code executed in system mode caused our development system, based on Virtu-
alBox [125], to trash.

4.4 Evaluation

4.4.1 Prototype

We implemented a prototype of Conqueror to evaluate the effectiveness of our
proposed solution. The prototype is specific for untrusted 32-bit systems running
Microsoft Windows XP, and it consists in a hybrid user/kernel space component,
implementing the verifier protocol, and a device driver that stays resident on the
untrusted system.

When the verifier wants to bootstrap a tamper-proof execution environment
on the untrusted system, it generates a new checksum function and encrypts
it. Checksum functions are generated by leveraging a code generation module,
currently written in Python. The verifier uses a kernel component to precisely

56

CHAPTER 4. SOFTWARE-BASED CODE ATTESTATION

measure packets transmission and arrival times. As it will be clear in the fol-
lowing, network delay is estimated with the help of a trusted system located in
the same network of the untrusted machine. The kernel component running on
the untrusted system passively waits for challenges. When challenged, it fills the
TPEB with the encrypted checksum function; when the key is received, the at-
testation begins. To minimize network latency, both parties intercept challenge
requests and responses through a hook installed in the network driver.

To experiment the feasibility of attacks based on hardware-assisted virtual-
ization and their cost we also implemented a minimalistic hypervisor, inspired
by the Blue Pill hypervisor [103], that simply resumes normal execution after
traps. Obviously, any meaningful hypervisor must be much more sophisticated
than this.

4.4.2 Experimental setup

For our experiments we employed three laptops with the following characteristics:
Intel Core2 Duo 2.1GHz, with 4GB RAM, and a Broadcom BCM5906M network
card, connected on the same 100Mbps local network. The first laptop was used as
a verifier, the second one as the untrusted system, and the third one as a trusted
system. Since our current implementation does not support SMP, on the laptops
we used as trusted and untrusted systems we disabled the secondary core of the
CPU. In our experiments, the total size of the TPEB and the executable was
fixed to six 4Kb pages.

4.4.3 Estimating the parameters of the challenge

To estimate the various parameters involved in the attestation scheme, we con-
sidered two attack scenarios: a dynamic hypervisor-based attack, and a static
attack aiming to reverse engineer the checksum function.

To understand how the various parameters of the challenge influenced the
overall time to compute the checksum and to understand the opportunities of
the attackers, we generated multiple checksum functions, varying the number
and type of gadgets and the number of iterations of the checksum loop. After
several experiments we decided to fix a minimum for the number of gadgets
for “hypervisor detection”. In each of the checksum functions we subsequently
generated, at least 5% of the total of gadgets performed hypervisor detection.

In order to estimate the maximum checksum computation time and the net-
work round-trip time (RTT), the verifier relies on a third-party trusted system,
with the same hardware characteristics of the untrusted system. It is worth noting
that checksum functions can be generated ahead of time and their execution time
can be precomputed. Indeed, the running time depends only on the checksum
function, on the CPU, and on the amount of data to attest. Given multiple mea-
surements of the checksum computation time, we estimate the maximum compu-
tation time using Chebyshev’s inequality, that states that for a random variable

57

CHAPTER 4. SOFTWARE-BASED CODE ATTESTATION

X, with mean value µ and standard deviation σ, Pr(µ−σ ≤ X ≤ µ+σ) ≥ 1− 1
λ2

,
where λ ∈ R. In our context, X is the computation time, including the network
RTT1. Therefore, the upper bound on checksum computation time is ∆t = µ+λσ,
with confidence 1

λ2
. Similarly, the minimum checksum computation time of the

most powerful attacker (i.e., an attacker operating in hypervisor mode) is µ−λσ;
in the calculation of the minimum computation time of the attacker we assumed
the adversary to have a null network overhead.

The number of iterations of the checksum loop must be selected to force the
time overhead suffered by the attacker to skyrocket. On the other hand, an
excessive number of iterations would increase attacker’s opportunities to reverse
engineer the checksum function. The challenge is to find the best balance between
the two. The approach we used was to generate multiple checksum functions, and
to compare the time to compute the checksum in the trusted environment and
in the environment controlled by the most powerful attacker. Figure 4.6 depicts
the time overhead suffered by the attacker during our simulations, performed
using five different checksum functions. More precisely, the figure shows the
difference between the time to compute the checksum on the simulated untrusted
system and on the trusted one. The simulation confirmed our hypothesis: the
time overhead suffered by the attacker increases with the number of iterations of
the checksum loop. According to our simulation two iterations are sufficient to
detect an attack in our experimental scenario (attestation of six memory pages).
However, to prevent false negatives, we doubled the number of iterations. Note
that the number of iterations to detect a forgery is inversely proportional to the
amount of memory to attest; thus, the number of iterations performed by the
checksum loop can be tuned accordingly.

4.4.4 Experimental results

Using the approaches described in the previous paragraphs we generated multi-
ple challenges and used them to verify the effectiveness of Conqueror at detecting
authentic checksum computations from forgeries. For clarity we refer to ∆t, the
upper bound of the checksum computation time estimated using Chebyshev’s in-
equality, as the attacker detection threshold. In our experiments we chose λ = 11
to obtain an attacker detection rate with 99% confidence. For each challenge we
estimated the attacker detection rate by challenging multiple times the trusted
host. Subsequently we challenged the untrusted system twice: once the un-
trusted host simulated a genuine system (i.e., with no attacker), and once the
host simulated the presence of the most powerful dynamic attacker (i.e., an at-
tacker attempting to forge the checksum using a hypervisor-based attack). In all
the challenges the untrusted system computed the correct checksum without ex-
ceeding the attacker detection rate. Similarly, in all the challenges the untrusted

1Clearly attestation requires RTT to be minimal. The verifier can measure the RTT and
wait to start the challenge if the RTT is too high.

58

CHAPTER 4. SOFTWARE-BASED CODE ATTESTATION

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 1 2 3 4 5 6 7 8 9 10

T
im

e
(m

s)

of iterations

Upper bound on network RTT

Figure 4.6: Time overhead in a hypervisor-based attack

system under the control of the attacker did not compute the correct checksum
in time to be considered authentic.

Figure 4.7 shows the details of one of the challenges we used during the exper-
iment. The figure compares the time the untrusted system took to compute the
checksum in the two aforementioned scenarios (the same challenge was repeated
more than 50 times). Moreover, the figure shows the attacker detection threshold
(∆t), and the lower bound for the most powerful attacker (µhvm − 11σhvm). For
the challenges in the figure, the average network RTT was less than 0.32ms, and
the attacker detection rate was 112.44ms. Similarly, the lower bound for the com-
putation of forged checksum was 115.56ms. The four ms difference and the very
small variance between the two clearly indicate that false negatives are practically
impossible. The data in the figure confirms the claim: no checksum was forged
in time to be considered valid and no authentic checksum was considered forged.

The figure also compares the time requested to compute genuine checksums
with the time the attacker would require to perform a preliminary static analysis
(i.e., a recursive disassembly) of the checksum function. To measure the cost of
the analysis, we loaded in Ida Pro [49], a widely used and well recognized dis-
assembler, the checksum function and then measured the analysis time. Note
that the checksum analyzed through Ida Pro was generated without employing
any obfuscation technique because the disassembler would not have been able
to analyze the code otherwise. The preliminary analysis took about 105ms, just
four ms less than the attacker detection rate. Considering that disassembly is
fundamental for any static analysis, and that any meaningful analysis to recon-
struct the semantic of the checksum function costs much more, it is practically
impossible for an attacker to forge a checksum without being detected.

59

CHAPTER 4. SOFTWARE-BASED CODE ATTESTATION

 104

 106

 108

 110

 112

 114

 116

 118

 0 10 20 30 40 50 60

T
im

e
(m

s)

measurements

∆t

µhvm - 11 σhvm

Preliminary static analysis (disassembly)

No attack
Hypervisor-based attack

Figure 4.7: Checksums computation time in different scenarios

4.4.5 A real application of Conqueror

Conqueror has been developed to build security applications that must be installed
and executed on an untrusted system. All the aforementioned experiments were
performed using dummy executables. Nevertheless, Conqueror is an integral part
of HyperSleuth, the live forensic analysis tool we describe in Chapter 5. In this
case, the goal is to use this loader to install a measured hypervisor on an un-
trusted system [47], on-the-fly, and to segregate the untrusted system in a guest
virtual machine. Using Conqueror, we successfully installed HyperSleuth’s hy-
pervisor on our test untrusted environment and then resumed the normal, but
controlled, execution of the system. In conclusion, Conqueror represents a pure
software alternative to the senter and skinit operations available in the In-
tel LaGrande [47] and AMD Pacifica [2] technologies for hypervisors secure late
launch.

4.5 Discussion

Conqueror conservatively assumes that if a hypervisor is installed on the system,
then the hypervisor is malicious. It would be worthless to use Conqueror in a
system that already runs as a guest of a benign hypervisor: the dynamic root of
trust could be established directly by the hypervisor.

The major limitation of Conqueror is the impossibility to bootstrap a tamper-
proof environment on SMP and SMT systems. Most modern systems support
symmetric flows of executions. An attacker could use the secondary computa-
tional resources to forge checksums or to regain control of the execution after
attestation. Although we have not addressed the problem in detail, we would like
to sketch a possible solution. The verifier can challenge the untrusted SMP (or

60

CHAPTER 4. SOFTWARE-BASED CODE ATTESTATION

SMT) system with multiple challenges simultaneously. More precisely, each pro-
cessor is given a different checksum function to execute. To solve the challenge,
the untrusted system has to compute all the checksums and send them back to
the verifier, within the given time frame. Thus, the attacker is left with no spare
computational resource to use.

61

5
Live and trustworthy forensic analysis

T
he goal of computer forensics is to explain the current state of a computer
system or a digital media [136]. Forensic investigations are typically con-
nected with the collection of evidences that might be used in a court.

However, in a more general sense, computer forensics aims to acquire some kind
of information from a machine, with the guarantee that the acquisition process
itself does not alter the data that is being collected. In our context, we are
interested in collecting volatile data (e.g., the content of the RAM, the list of
active processes) from an allegedly compromised host, and to ensure that even
malware that controls the kernel of the operating system cannot tamper with
the acquisition process. The data we collect can later be used to detect the
presence of malicious programs on the machine. Besides being extremely useful
for malware detection at the end-host, a similar solution could also be employed
in other situations, such as for the live acquisition of digital evidences for legal
proceedings.

In this chapter we address the problem of the live acquisition of volatile data
from alleged compromised production systems. In particular, we describe Hy-
perSleuth, a solution that exploits the VMM extensions available nowadays in
commodity hardware, to securely perform live forensic analyses. HyperSleuth is
executed on systems that are believed to be compromised, and obtains complete
and tamper-resistant control over the OS, by running in root-mode (i.e., the hy-
pervisor privilege level). HyperSleuth consists in (i) a tiny hypervisor, based on
the framework described in Chapter 3, that performs the analysis and (ii) a se-
cure loader (Chapter 4) that installs the hypervisor and verifies that its code is
not tampered during installation. Like in virtualization-based malware, the hy-
pervisor is installed on-the-fly : the alleged compromised host OS is transformed
into a guest as it runs [103]. Since the hardware guarantees that the hypervisor is
not accessible from the guest code, HyperSleuth remains persistent in the system
for all the time necessary to perform the live analysis. On the contrary, other
solutions proposed in literature for executing verified code in untrusted environ-
ments are not persistent and thus cannot guarantee that the verified code is not

62

CHAPTER 5. LIVE AND TRUSTWORTHY FORENSIC ANALYSIS

tampered when the execution of the untrusted code is resumed [78, 111, 112].
By providing a persistent trusted execution environment, HyperSleuth opens new
opportunities for live and trusted forensic analyses, including the possibility to
perform analyses that require to monitor the run-time behavior of the system.
When the live analysis is concluded positively (e.g., no malicious program is
found), HyperSleuth can be removed from the system and the OS, which was
temporarily transformed into a guest OS, becomes again the host OS. As for the
installation, the hypervisor is removed on-the-fly.

We developed a memory acquisition tool, a lie detector [42], and a system call
tracer on top of HyperSleuth, to show how our hardware-supported VMM-based
framework can be successfully used to gather volatile data even from production
systems whose services cannot be interrupted. To experimentally demonstrate
our claims about the effectiveness of HyperSleuth, we simulated two scenarios:
a compromised production system running a heavy-loaded DNS server and a
system infected by several kernel-level malware. We used HyperSleuth to dump
the content of the physical memory of the former and to detect the malware in
the latter. In the first case, HyperSleuth was able to dump the entire content of
the physical memory, without interrupting the services offered by the server. In
the second case, HyperSleuth detected all the infections.

5.1 Overview

HyperSleuth should not be considered merely as a forensic tool, but rather as a
framework for constructing forensic tools. Indeed, its goal is to provide a trusted
execution environment to securely perform any live forensic analysis on produc-
tion systems. More precisely, the execution environment in which a forensic
analysis should be performed must guarantee four fundamental properties. First,
the environment must guarantee a tamper-proof execution of the analysis code.
That is, an attacker controlling the system cannot interfere with the analysis and
cannot tamper with the results. Second, it must be possible to perform an a
posteriori bootstrap of the trusted execution environment, even after the system
has been compromised, and the bootstrap process itself must require no specific
support from the system. Third, the trusted execution environment must be
completely transparent to the system and to the attacker. Fourth, the trusted
execution environment must be persistent. That is, the analysis performed in the
trusted environment can be periodically interrupted, and the normal execution
of the system resumed. Practically speaking, that allows to analyze an alleged
compromised system without freezing it and without interrupting the services it
provides. Moreover, such a property would allow to perform forensic analyses
that require to monitor the run-time behavior of the system. As we will briefly
see in the next sections, HyperSleuth fulfills all the aforementioned properties
and can thus be used to safely analyze any compromised system that meets the
requirements described in Section 5.1.3.

63

CHAPTER 5. LIVE AND TRUSTWORTHY FORENSIC ANALYSIS

Potentially
compromised host

Trusted host

1. Load

2. Dynamic Root of
Trust bootstrap

3. Analysis

4. Result

Figure 5.1: Overview of HyperSleuth execution

Figure 5.1 depicts the execution of HyperSleuth. HyperSleuth is installed and
executed on demand (step 1 in Figure 5.1), only when there is a suspicious that
the host has been compromised, or in general when there is the necessity to
perform a live forensic analysis. The execution is characterized by two phases.
In the first phase (step 2 in Figure 5.1), HyperSleuth assumes complete control of
the host and establishes a Dynamic Root of Trust (DRT). That is accomplished
with the collaboration of a trusted host (located in the same local network).
The trusted host is responsible for attesting that the DRT has been correctly
established. In the second phase (steps 3–4 in Figure 5.1), HyperSleuth performs
a specific live forensic analysis and transmits the results of the analysis to the
trusted host. Since the trusted host has a proof that the DRT has been correctly
established and since, in turn, the DRT guarantees that the analysis code executes
in the untrusted host untampered, the results of the analysis can be transitively
considered authentic.

In the following, we briefly describe the architecture of HyperSleuth and how it
manages to assume and maintain complete control of the untrusted host. Then,
we describe the mechanism we use to bootstrap the dynamic root of trust, and, fi-
nally, we describe the assumptions and the threat model under which HyperSleuth
runs.

5.1.1 HyperSleuth architecture

HyperSleuth needs to be isolated from the host OS, to prevent any attack poten-
tially originating from a compromised system. Simultaneously, HyperSleuth must
be able to access certain resources of the host, to perform the requested forensic
analysis, and to access the network to transmit the result to the trusted machine.

Figure 5.2 shows the position where HyperSleuth resides in the host. Since
HyperSleuth needs to obtain and maintain complete control of the host and needs
to operate with more privileges than the attacker, it resides at the lowest level:
between the hardware and the host OS. In other words, it executes at the privilege
level of a Virtual Machine Monitor (VMM) and thus it has direct access to the
hardware and its isolation from the host OS is facilitated by the CPU. At this
aim, HyperSleuth is designed as an extension of the VMM-based framework we

64

CHAPTER 5. LIVE AND TRUSTWORTHY FORENSIC ANALYSIS

Operating system kernel

User
process

User
process

User
process

Operating system kernel

User
process

User
process

User
process

HyperSleuth VMM

Load

Unload

Figure 5.2: Overview of HyperSleuth architecture

propose in Chapter 3. By leveraging hardware virtualization, HyperSleuth can
transparently take over an allegedly compromised system, turning, on-the-fly, its
host OS into a guest one, and vice-versa at will. This is done without rebooting
the system and thus preserving all those valuable run-time information that can
allow to discover a malware infection or an intrusion.

The greyed portions in Figure 5.2 represent the trusted components in our sys-
tem. During the launch, HyperSleuth assumes complete control of virtual memory
management, to ensure that the host OS cannot access any of its private memory
locations. Moreover, HyperSleuth does not trust any existing software component
of the host. Rather, it contains all the necessary primitives to inspect directly
the state of the guest and to dialog with the network card to transmit data to
the trusted party.

Depending on the type of forensic analysis, the analysis might be performed
immediately after the launch, or it might be executed in multiple rounds, inter-
leaved with the execution of the OS and users’ applications. The advantage of the
latter approach over the former is that the host can continue its normal activity
while the analysis is being performed. Thus, the analysis does not result in a de-
nial of service and can also target run-time evolving characteristics of the system.
In both cases, when the analysis is completed, HyperSleuth can be disabled and
even unloaded.

5.1.2 HyperSleuth trusted launch

HyperSleuth’s launch process consists in enabling the VMM privilege level, in
configuring the CPU to execute HyperSleuth code at this level, and in configuring
the CPU such that all virtual memory management operations can be intercepted
and supervised by the VMM. Unfortunately, an attacker could easily tamper
with the launch. For example, she could simulate a successful installation of the
VMM and then transmit fake analysis results to the trusted host. This weakness
stems from the fact that the launch process just described lacks an initial trusted
component on which we can rely to establish the DRT.

The approach we use to establish the DRT is based on Conqueror, the primitive
for tamper-proof code execution described in Chapter 4. Briefly, this primitive

65

CHAPTER 5. LIVE AND TRUSTWORTHY FORENSIC ANALYSIS

allows to create and to prove the establishment of a minimalistic trusted execution
environment that guarantees that the code executed in this environment runs
with maximum available privileges and that no attacker can manipulate the code
before and during the execution. We use this primitive to create the environment
to launch HyperSleuth and to prove to the trusted host that we have established
the missing trusted component and that all subsequent operations are secured.

Alternatively to our pure software solution, a TPM-based hardware attesta-
tion primitive can be used for this purpose (e.g., Intel senter and AMD skinit

primitives [2, 47]).

5.1.3 Requirements and threat model

Since HyperSleuth leverages hardware support for virtualization available in com-
modity CPUs, such support must be available on the system that must be ana-
lyzed1. To maximize the portability of HyperSleuth, we have designed it to only
require first generation of hardware facilities for virtualization (i.e., HyperSleuth
does not require extensions for MMU and I/O virtualization). Clearly, Hyper-
Sleuth cannot be used on systems on which virtualization support is already in
use [12]. If a trusted VMM were already running on the host, the VMM could
be used directly to perform the analysis. On the other side, if a malicious VMM
were running on the host, HyperSleuth’s trusted launch would fail.

In order to launch HyperSleuth some privileged instructions must be executed.
That can be accomplished by installing a kernel driver in the target host. Note
that, in the unlikely case of a damaged system that does not allow to load any
kernel driver, alternative solutions for executing code in the kernel can be used
(e.g., the page-file attack [103]).

The threat model under which HyperSleuth operates takes into consideration a
very powerful attacker, e.g., an attacker with kernel-level privileges. Nonetheless,
some assumptions were made while designing HyperSleuth. In particular, the
attacker does not operate in system management mode, the attacker does not
perform hardware-based attacks (e.g., a DMA-based attack), and the attacker
does not leverage an external and more powerful host to simulate the bootstrap
of the DRT. Some of these assumptions could indeed be relaxed by virtualizing
completely I/O devices using either a pure-software approach or recent hardware
support for devices virtualization (e.g., Intel VT-d), and by employing an hard-
ware trusted platform for code attestation (e.g., TPM), keeping HyperSleuth a
secure and powerful framework for performing forensic analysis of live data.

1Although nowadays all consumer CPUs come with hardware support for virtualization, in
order to be usable, the support must be enabled via the BIOS. At the moment we do not know
how many manufactures enable the support by default.

66

CHAPTER 5. LIVE AND TRUSTWORTHY FORENSIC ANALYSIS

Physical memory

GDT/LDT

Page
table
Page
table
Page
table

IDT

Data &
Code
Data &
Code
Data &
Code

VMCS

Guest state
area

Host state
area

Control
fields

GDT/LDT

Page
table

IDT

Data &
Code

Non-root mode Root mode

Figure 5.3: Memory layout after the launch of HyperSleuth; 99K denotes the CPU
contexts stored in the VMCS, −→ denotes physical memory mappings, and denotes
the physical memory locations of the VMM that must not be made accessible to the
guest.

5.2 Implementation

The core of HyperSleuth is the framework we described in Chapter 3. In this
section we will focus on the peculiar characteristics of HyperSleuth that are not
part of the framework discussed in the previous chapter.

5.2.1 HyperSleuth VMM

HyperSleuth can be loaded at any time by exploiting the delayed launch feature
offered by the CPU. Figure 5.3 shows a simplified memory layout after the launch
of HyperSleuth. The environment for non-root mode, in which the OS and users’
application are executed, is left intact. The environment for root mode instead
is created during the launch and maintained isolated by the VMM. In the follow-
ing paragraphs we describe the steps required to securely launch the VMM, to
enforce the isolation of root mode from non-root mode, and to access hardware
peripherals.

VMM trusted launch and removal

To launch HyperSleuth VMM in a running host we perform the following opera-
tions. First, we allocate a fixed-size chunk of memory to hold the data and code
of the VMM. Second, we enable VMX root-mode. Third, we create and initialize
the VMCS. Fourth, we resume the normal execution of the guest by entering
non-root mode.

Although on the paper the launch of the VMM appears a very simple process,
it requires to perform several operations. Such operations must be performed
atomically, otherwise a skilled attacker may interfere with the whole bootstrap

67

CHAPTER 5. LIVE AND TRUSTWORTHY FORENSIC ANALYSIS

process and tamper with VMM code and data. To maximize HyperSleuth porta-
bility, we decided to address this problem using the software-based primitive for
tamper-proof code execution we thoroughly describe in Chapter 4. In summary,
the primitive is based on a challenge-response protocol and a checksum function.
The trusted host issues a challenge for the untrusted system and the challenge
consists in computing a checksum. The result of the checksum is sent back to the
trusted host. A valid checksum received within a predefined time is the proof that
a Trusted Computing Base (TCB) has been established on the untrusted system.
The checksum function is constructed such that the correct checksum value can
be computed in time only if the checksum function and the code for launching
the VMM are not tampered, and if the environment in which the checksum is
computed and in which the VMM launch will be performed guarantees that no
attacker can interrupt the execution and regain the control of the execution be-
fore the launch is completed. Practically speaking, the correct checksum will be
computed in time only if the computation and the launch are performed with
kernel privileges, with interrupts disabled, and no VMM is running.

At the end of the analysis, HyperSleuth can be completely removed from the
system. The removal essentially is the opposite process of the launch. We start
by disabling VMX root-mode, then we deallocate the memory regions assigned to
the VMM (e.g., the Interrupt Descriptor Table, the stack, and the code). Finally,
we update the context of the CPU such that the OS and users’ applications can
resume their normal execution.

MMU virtualization

In order to guarantee complete isolation of the VMM from the guest, it is essential
to ensure that the guest cannot access any of the memory pages in use by the
VMM (i.e., the crosshatched regions in Figure 5.3). However, to perform any
useful analysis, we need the opposite to be possible.

Although modern x86 CPUs provide hardware support for MMU virtualiza-
tion, we have opted for a software-based approach to maximize the portability
of HyperSleuth. The approach we use is based on the assumption that the di-
rect access to physical memory locations is not allowed by the CPU (with paging
enabled) and that physical memory locations are referenced through virtual ad-
dresses. The CPU maintains a mapping between virtual and physical memory
locations and manages the permissions of these locations through page tables.
By assuming the complete control of the page tables, the VMM can decide which
physical locations the guest can access. To do that, the VMM maintains a shadow
page table for each page table used by the guest, and tricks the guest into using
the shadow page table instead of the real one [118].

A shadow page table is a clone of the original page table and is used to
maintain a different mapping between virtual and host physical addresses and to
enforce stricter memory protections. In our particular scenario, where the VMM
manages a single guest and the OS has already filled the page tables (because

68

CHAPTER 5. LIVE AND TRUSTWORTHY FORENSIC ANALYSIS

the VMM launch is delayed), the specific duty of the shadow page table is to
maintain as much as possible the original mapping between virtual and physical
addresses and to ensure that none of the pages assigned to the VMM is mapped
into a virtual page accessible to the guest. As described in Section 5.3, we also
rely on the shadow page table to restrict and trap certain memory accesses to
perform the live forensic analysis. The algorithm we currently use to maintain the
shadow page tables trades off performance for simplicity and is based on tracing
and simulating all accesses to tables.

Unrestricted guest access to I/O devices

In the typical deployment, physical I/O devices connected to the host are shared
between the VMM and one or more guests. In our particular scenario, instead,
there is no need to share any I/O device between the guest and the VMM: Hy-
perSleuth executes batch and interacts only with the trusted host via network.
Thus, the guest can be given direct and unrestricted access to I/O devices. Since
the OS runs in non-root mode, unmodified, and at the highest privilege level, it is
authorized to perform I/O operations, unless the VMM configures the execution
control fields of the VMCS such that I/O operations cause exits to root-mode.
By not doing so, the VMM allows the guest OS to perform unrestricted and di-
rect I/O. This approach simplifies drastically the architecture of the VMM and,
most importantly, allows the OS to continue to perform I/O activities exactly as
before, without any additional overhead.

Direct network access

HyperSleuth relies on a trusted host to bootstrap the dynamic root of trust and to
store the result of the analysis. Since we are assuming that no existing software
component of the host can be trusted, the only viable approach to communicate
securely over the network is to dialog directly with the network card. For this
reason, HyperSleuth contains a minimalistic network driver that supports the card
available on the host. All the data transmitted over the network is encapsulated
in UDP packets. Packets are signed and encrypted automatically by the driver
using a pre-shared key, which we hardcode in HyperSleuth just before the launch.

As described in the previous paragraph, HyperSleuth does not virtualize hard-
ware peripherals, but it lets the guest to access them directly. Thus, the network
card must be shared transparently with the guest. In other words, to avoid in-
terferences with the network activity of the guest, HyperSleuth must save and
restore the original state of the card (i.e., the content of PCI registers), respec-
tively before and after using the network. To transmit a packet the driver writes
the physical address and the size of the packet to the appropriate control regis-
ters of the device. The driver then polls the status register of the device until
the transmission is completed. Polling is used because, for simplicity, we execute
all VMM code with interrupts disabled. Packets reception is implemented in the
same way.

69

CHAPTER 5. LIVE AND TRUSTWORTHY FORENSIC ANALYSIS

5.3 Live forensic analysis

HyperSleuth operates completely in batch mode. The only user action required is
to copy an executable on the system to be analyzed and to fire its execution. This
executable is a loader that establishes the dynamic root of trust by creating a
tamper-proof execution environment and by using this environment to launch the
VMM. Note that the loader is removed from the memory and the disk to prevent
malicious software to detect its presence. Once launched, the VMM performs
the forensic analysis, transmits the results to the trusted hosts and then removes
itself.

Although HyperSleuth VMM is completely transparent to the OS and users’
applications and it is removed after the end of the analysis, the launch of the
VMM is a slightly invasive process. Indeed, it requires to execute the loader
that in turn loads a kernel driver (to launch the VMM) and might start other
additional in-guest utilities. Our claim is that, considered the valuable volatile
information HyperSleuth can gather from the system, the little modifications its
installation produces to the state of the system are an acceptable compromise.
After all, no zero invasive solution for a posteriori forensic analysis exists.

Currently, HyperSleuth supports three live forensic applications: a lazy phys-
ical memory dumper, a lie detector, and a system call tracer. Clearly, all these
analyses could be performed also without the need of a dynamic root of trust and
the VMM. Indeed, there are several commercial and open source applications
with the same capabilities available, but, by operating at the same privilege level
of the OS kernel to analyze, they can easily be tampered by an attacker (with
the same privileges), and cannot thus provide the safety guarantees offered by
HyperSleuth.

5.3.1 Physical memory dumper

Traditional approaches for dumping the content of the physical memory are typ-
ically based on kernel drivers or on FireWire devices. Unfortunately, both these
approaches have a major drawback that limits their applicability to non produc-
tion systems. Dumping the content of the physical memory is an operation that
should be performed atomically, to guarantee the integrity of the dumped data.
Failing to achieve this would, in fact, enable an attacker to make arbitrary modifi-
cation to the content of the memory, potentially hampering any forensic analysis
of live data. On the other side, if the dump is performed atomically, the system,
and the services the system provides, will be blocked for the entire duration of the
dump. That is not desirable, especially if there is only a marginal evidence that
the system has been compromised. As the dump may be very time consuming,
the downtime might be economically very expensive and even dangerous.

To address this problem, we exploit HyperSleuth’s persistent trusted execution
environment to implement a new approach for dumping lazily the content of
the physical memory. This approach guarantees that the state of the physical

70

CHAPTER 5. LIVE AND TRUSTWORTHY FORENSIC ANALYSIS

1 switch (VMM exit reason)

2 case CR3 write:

3 Sync PT and SPT

4 for (v = 0; v < sizeof(SPT); v++)

5 if (SPT[v].Writable && !DUMPED[SPT[v].PhysicalAddress])

6 SPT[v].Writable = 0;

7

8 case Page fault: // ’v’ is the faulty address

9 if (PT/SPT access)

10 Sync PT and SPT and protect SPTEs if necessary

11 else if (write access && PT[v].Writable)

12 if (!DUMPED[PT[v].PhysicalAddress])

13 DUMP(PT[v].PhysicalAddress);

14 SPT[v].Writable = DUMPED[PT[v].PhysicalAddress] = 1;

15 else

16 Pass the exception to the OS

17

18 case Hlt:

19 for (p = 0; p < sizeof(DUMPED); p++)

20 if (!DUMPED[p])

21 DUMP(p); DUMPED[p] = 1;

22 break;

Figure 5.4: Algorithm for lazy dump of the physical memory

memory dumped corresponds to the state of the memory at the time the dump is
requested. That is, no malicious process can “clean” the memory after HyperSleuth
has been installed. Moreover, being performed lazily, the dump of the state of
the memory does not monopolize the CPU and does not interrupt the execution
of the processes running in the system. In other words, HyperSleuth allows to
dump the content of the physical memory even of a production system without
causing any outage of the services offered by the system.

The dump of the memory is transmitted via network to the trusted host.
Each page is fragmented, to fit the MTU of the channel, and labelled. The
receiver reassembles the fragments and reorders the pages to reconstruct the
original bitstream image of the physical memory. To ease further analysis, the
image produced by HyperSleuth is compatible with off-the-shelf tools for memory
forensic analysis (e.g., Volatility [135]).

The algorithm we developed for dumping lazily the content of the physical
memory is partially inspired by the technique used by operating systems for han-
dling shared memory and known as copy-on-write. The rationale of the algorithm
is that the dump of a physical memory page can be safely postponed until the
page is accessed for writing. More precisely, the algorithm adopts a combination
of two strategies to dump the memory: dump-on-write (DOW), and dump-on-idle
(DOI). The former permits to dump a page before it is modified by the guest; the
latter permits to dump a page when the guest is idle. Note that the algorithm
assumes that the guest cannot access directly the physical memory. However, an
attacker could still program a hardware device to alter the content of the memory
by performing a DMA operation. In our current threat model we do not consider
DMA-based attacks.

Figure 5.4 shows the pseudo-code of our memory dumper. Essentially the
VMM intercepts three types of events: updates of the page table address, page-

71

CHAPTER 5. LIVE AND TRUSTWORTHY FORENSIC ANALYSIS

Physical memory

rwx

rwx

rwx

r-x

rwx

r-x

rwx

r-x

rwx

r-x

rwx

r-x

Process 1 Process 2 Process 3

Page Table Page Table Page Table

Shadow PT Shadow PT Shadow PT

Figure 5.5: Overview of permissions used to implement dump-on-write (and denote
respectively dumped and not dumped physical pages)

fault exceptions, and CPU idle loops. The algorithm maintains a map of the
physical pages that have already been dumped (DUMPED) and leverages the shadow
page table (SPT) to enforce stricter permissions than the ones specified in the real
page table (PT) currently used by the system. When the page table address (stored
in the CR3 register) is updated, typically during a context switch, the algorithm
synchronizes the shadow page table and the page table (line 3). Subsequently,
all the entries of the shadow page table mapping physical not yet dumped pages
are granted read-only permissions (lines 4–6). Such a protection ensures that
all the memory accesses performed by the guest OS for writing to any virtual
page mapped into a physical page that has not been dumped yet result in a
page fault exception. The VMM intercepts all the page fault exceptions for
keeping the shadow page table and the real page table in sync, for reinforcing
our write protection after every update of the page table (lines 9–10), and also
for intercepting all write accesses to pages not yet dumped (lines 11–14). The
latter type of faults are characterized by a write access to a non-writable virtual
page that is marked as writable in the real page table. If the accessed physical
page has not been dumped yet, the algorithm dumps the page and flags it as
such. All other types of page fault exceptions are delivered to the guest OS that
will manage them accordingly. Finally, the VMM detects CPU idle loops by
intercepting all occurrences of the hlt instruction. This instruction is executed
by the OS when there is no immediate work to be done, and it halts the CPU
until an interrupt is delivered. We exploit these short idle periods to dump the
pending pages (lines 19–22). It is worth noting that a loaded system might enter
very few idle loops. For this reason, at every context switch we check whether the
CPU has recently entered the idle loop and, if not, we force a dump of a small
subset of the pending pages (not shown in the figure).

Figure 5.5 shows the protections enforced by the algorithm, through the

72

CHAPTER 5. LIVE AND TRUSTWORTHY FORENSIC ANALYSIS

shadow page table, to trap all write accesses to the physical memory pages that
have not been dumped yet.

5.3.2 Lie detector

Kernel-level malware is particularly insidious as it operates at a very high priv-
ilege level and can, in principle, hide any resource an attacker wants to protect
from being discovered (e.g., processes, network communications, files). Different
techniques exist to achieve such a goal (see [51, 6]), but all of them aim at forc-
ing the OS to lie about its state, eventually. Therefore, the only effective way
to discover such liars is to compare the state of the system perceived from the
system itself with the state of the system perceived by a VMM. Unfortunately,
so far lie detection has been possible only using a traditional VMM and thus it
has not been applicable on production systems not already deployed in virtual
machine environments. On the other hand, HyperSleuth’s hot-plug capability of
securely migrating a host OS into a guest one (and vice-versa) on-the-fly makes
it a perfect candidate for detecting liars in production systems that had not been
deployed in virtual machine environments since the beginning.

To this end, besides launching the VMM, HyperSleuth loader runs a simple
in-guest utility that collects detailed information about the state of the system
and transmits its output to the trusted host. This utility performs the operations
typically performed by system tools to display information about the state of the
system and intentionally relies on the untrusted code of the OS. The intent is to
trigger the malicious code installed by the attacker to hide any malicious software
component or activity. For example, this utility collects the list of running pro-
cesses, active networks connections, loaded drivers, open files and registry keys,
and so on. At the end of its execution, the utility performs a VMM call to trans-
fer the execution to the HyperSleuth VMM. At this point the VMM collects the
same information through OS-aware inspection. That is, the VMM does not rely
on any untrusted code of the system, but rather implements its own primitives
for inspecting the state of the guest and, when possible, offers multiple primitives
to inspect the state of the same resource. For example it offers primitives to
retrieve the list of running processes/threads, each of which relies on a different
data structure available in the kernel. Finally, the trusted host compares the
views provided by the in-guest utility and the VMM.

Since the state of the system changes dynamically and since the in-guest utility
and the VMM does not run simultaneously, we repeat the procedure multiple
times, with a variable delay between each run to limit any measurement error.

5.3.3 System call tracer

System calls tracing has been widely recognized as a way to infer, observe, and un-
derstand the behavior of processes [35]. Traditionally, system calls were invoked
by executing software interrupt instructions causing a transition from user-space

73

CHAPTER 5. LIVE AND TRUSTWORTHY FORENSIC ANALYSIS

to kernel-space. Such user-/kernel-space interactions can be intercepted by Hy-
perSleuth, as interrupt instructions executed by the guest OS in VMX non-root
mode cause an exit to VMX root mode, i.e., to the VMM.

Alternative and more efficient mechanisms for user-/kernel-space interactions
have been introduced by CPU developers, recently. Unfortunately, Intel VT-x
does not support natively the tracing of system calls invoked through the fast in-
vocation interface used by modern operating systems (sysenter/sysexit). The
approach we use to trace system calls is thus inspired by Ether [29]. System calls
are intercepted through another type of exits: synthetic page fault exceptions.
All system calls invocations go through a common gate, whose address is defined
in the SYSENTER EIP register. We shadow the value of this register and set the
value of the shadow copy to the address of a non-existent memory location, such
that all system calls invocations result in a page fault exception and in an exit
to root mode. The VMM can easily detect the reason of the fault by inspecting
the faulty address. When a system call invocation is trapped by the VMM, it
logs the system call and then resumes the execution of the guest from the real
address of SYSENTER EIP. To intercept returns from system calls we mark the
page containing the return address as not accessible in the shadow page table.

When a system call is invoked or returns, HyperSleuth retrieves and parses
all the input and output arguments of the call and includes them in the trace.
Moreover, HyperSleuth includes in the trace information about the process and
the thread involved in the call. Like with all the results of other types of analysis,
the trace is transmitted via network to the trusted host.

5.4 Experimental evaluation

We implemented a prototype of HyperSleuth and of the routines for the three anal-
yses described in Section 5.3. Our implementation is an extension of the frame-
work discussed in Chapter 3. For the secure loader we currently use Conqueror,
the attestation primitive presented in Chapter 4. While the core of HyperSleuth
is mostly OS-independent, the routines for the analysis (e.g., the enumeration of
running processes and of active network connections) are OS-dependent and may
require to be slightly adapted to provide support for different operating systems.

In this section we discuss the experimental results concerning the launch of
HyperSleuth, the lazy physical memory dumper, and the lie detector. To this
end, we simulated the compromised production system using an Intel Core i7,
with 3GB RAM, and a Realtek RTL8139 100Mbps network card. Note that we
disabled all cores of the CPU but one, since the VMM currently supports a single
core. We simulated the trusted host using a laptop. We used the trusted host to
attest the correct establishment of the dynamic root of trust and to collect and
subsequently analyze the results of the analysis.

74

CHAPTER 5. LIVE AND TRUSTWORTHY FORENSIC ANALYSIS

Figure 5.6: Round-trip time of the queries performed against the compromised produc-
tion DNS server before (1) and after (2) the launch of HyperSleuth and (3–5) during
the lazy dump of the physical memory (the scale of the ordinate is logarithmic).

5.4.1 HyperSleuth launch and lazy dump of the physical
memory

To evaluate the cost of launching HyperSleuth, the base overhead of the VMM,
and the cost of the lazy physical memory dumper we simulated the following
scenario. A production DNS server was compromised and we used HyperSleuth
to dump the entire content of the physical memory when the server was under
the heaviest possible load. We used an additional laptop, located on the same
network, to flood the DNS server with queries and to measure the instantaneous
round-trip time of the queries. About 20 seconds after we started the flood, we
launched HyperSleuth; 25 seconds later we started to dump the content of the
memory.

Figure 5.6 summarizes the results of our experiments. The graph shows the
round-trip time of the queries sent to the compromised DNS server over time. For
the duration of the experiment, the compromised machine was able to handle all
the incoming DNS queries, and no query timed out. Before launching HyperSleuth
the average round-trip time was ∼ 0.34ms (mark 1 in Figure 5.6). Just after the
launch, we observed an initial increase of the round-trip time to about 0.19s (mark
2 in Figure 5.6). This increase was caused by the bootstrap of the dynamic root of
trust and then by the launch of the VMM, which must be performed atomically.
After the launch, the round-trip time quickly stabilized around 1.6ms, less than
five times the round-trip time without the VMM. The overhead introduced by
the VMM was mostly caused by the handling of the shadow page table. When
we started the dump of the physical memory we observed another and steeper

75

CHAPTER 5. LIVE AND TRUSTWORTHY FORENSIC ANALYSIS

peak (mark 3 in Figure 5.6). We were expecting this behavior since there are a
lot of writable memory pages that are frequently accessed (e.g., the stack of the
kernel and of the user-space processes and the global variables of the kernel) and
that, most likely, are written each time the corresponding process is scheduled.
Thus, the peak was caused by the massive number of write accesses to pages
not yet dumped. A dozen of seconds later the round-trip time stabilized again
around 1.6ms (mark 4 in Figure 5.6). That corresponds to the round-trip time
observed before we started the dump. Indeed, the most frequently written pages
were written immediately after the dump was started, and the cost of the dump
of a single page was much less than the round-trip time and was thus unnotice-
able. The regular peaks around 32ms about every second (mark 5 in Figure 5.6)
were instead caused by the periodic dump of non-written pages. Since the system
was under heavy load, it never entered an idle loop. Thus, the dump was forced
after every second of uninterrupted CPU activity. More precisely, the dumper
was configured to dump 64 physical pages about every second. Clearly, the num-
ber of non-written pages to be dumped when either the system enters the idle
loop, or the duration of uninterrupted CPU activity hits a certain threshold, is a
parameter that can be tuned accordingly to the urgency of the analysis, to how
critical the system is, and to the throughput of the network.

In conclusion, the dump of the whole physical memory of the system (3GB of
RAM), in the setting just described, required about 180 minutes and the result-
ing dump could be analyzed using an off-the-shelf tool, such as Volatility [135].
The total time could be further decreased by increasing the number of physi-
cal pages dumped periodically, at the cost of a higher average round-trip time.
It should also be pointed out that, on a 1Gbps network, we could increase the
number of physical pages dumped every second to 640, without incurring in any
additional performance penalty. In this case, the whole physical memory (3GB)
would be dumped in just ∼ 18 minutes. It is important to remark that although
HyperSleuth, and in particular the algorithm for dumping lazily the memory, in-
troduces a non-negligible overhead, we were able to dump the entire content of
the memory without interrupting the service (i.e., no DNS query timed out). On
the other hand, if the memory were dumped with traditional (atomic) approaches
the dump would require, in the ideal case, about 24 seconds, 50 seconds, and 4
minutes respectively on a 1Gbps network, on a 480Mbps FireWire channel, and
on a 100Mbps network (these estimations are computed by dividing the maximum
throughout of the media by the amount of data to transmit). In these cases, the
production system would have not been able to handle any incoming request, for
the entire duration of the dump.

5.4.2 Lie detection

Table 5.1 summarizes the results of the experiments we performed to assess the
efficacy of the lie detection module. To this end, we used nine malware samples,
each of which included a root-kit component to hide the malicious activity per-

76

CHAPTER 5. LIVE AND TRUSTWORTHY FORENSIC ANALYSIS

Sample Characteristics Detected?

FU DKOM X
FUTo DKOM X
HaxDoor DKOM, SSDT hooking, API hooking X
HE4Hook SSDT hooking X
NtIllusion DLL injection X
NucleRoot API hooking X
Sinowal MBR infection, Run-time patching X
Smiscer DKOM, Run-time patching X
TDL3 DKOM, Run-time patching X

Table 5.1: Results of the evaluation of HyperSleuth’s lie detector with nine different
malware (all equipped with a root-kit component)

formed on the infected system. We used HyperSleuth’s lie detector to detect the
hidden activities. The results testify that our approach can be used to detect
both user- and kernel-level root-kits.

For each malware sample we proceeded as follows. First, we let the malware
infect the untrusted system. Then, we launched HyperSleuth on the compromised
host and triggered the execution of the lie detector. The module performed the
analysis, first by leveraging the in-guest utility, and then by collecting the same
information directly from the VMM through OS-aware inspection. The results
were sent separately to the trusted host. On the trusted host we compared the two
views of the state of the system and, in all cases, we detected some discrepancies
between the two. These discrepancies were all caused by lies. That is, the state
visible to the in-guest utility was altered by the root-kit, while the state visible
to HyperSleuth VMM was not.

As an example, consider the FUTo root-kit. This sample leverages direct
kernel object manipulation (DKOM) techniques to hide certain kernel objects
created by the malware (e.g., processes) [51]. Our current implementation of
the lie detector counteracts DKOM through a series of analyses similar to those
implemented in RAIDE [9]. Briefly, those analyses consist in scanning some
internal structures of the Windows kernel that the malware must leave intact
in order to preserve its functionalities. Thus, when we compared the trusted
with the untrusted view of the state of the system we noticed a process that
was not present in the untrusted view produced by the in-guest utility. Another
interesting example is NucleRoot, a root-kit that hooks Windows’ System Service
Descriptor Table (SSDT) to intercept the execution of several system calls and to
filter out their results, in order to hide certain files, processes, and registry keys.
In this case, by comparing the two views of the state of the system, we observed
that some registry keys related to the malware were missing in the untrusted
view. Although we have not yet any empirical proof, we speculate the even root-
kits like Shadow Walker [122] would be detected by our lie detector since our

77

CHAPTER 5. LIVE AND TRUSTWORTHY FORENSIC ANALYSIS

approach allows to inspect the memory directly, bypassing a malicious page-fault
handler and bogus TLBs’ entries.

5.5 Discussion

In this chapter we proposed HyperSleuth as a generic infrastructure to support
live and trusted forensic analyses of allegedly compromised systems. To further
corroborate our thesis, we built upon its top three different analysis tools. One of
the fundamental characteristics of our VMM-based infrastructure is that analysis
tools are run in hypervisor-mode, i.e., at a higher privilege level than the moni-
tored operating system. An important consequence is that a tool cannot leverage
user-level libraries, nor the programming interface offered by the kernel. Obvi-
ously, this limitation complicates the development of analysis tools: HyperSleuth
itself includes some primitives to support very common activities (e.g., string op-
erations), but it cannot provide the same functionalities offered by fully-featured
programming libraries. A possible solution is to equip the hypervisor with a
self-contained implementation of general-purpose libraries, and to implement a
minimalist set of hypervisor-level primitives to support their execution.

Finally, so far we presented HyperSleuth from a technical prospective. The
decisions we made in designing and implementing HyperSleuth were mostly mo-
tivated by the intent of minimizing the dependencies on the hardware and of
maximizing the portability. Therefore, we always opted for pure software-based
approaches (e.g., to secure the launch of the VMM and to virtualize the MMU),
whenever possible. However, since HyperSleuth is a framework for performing live
forensic analyses, it is important to reason about its probatory value. From such
a prospective, we must take into account that the trustworthiness of the results of
the analyses depends on the trust people have in the tool that generated the re-
sults. To strengthen its probatory value, all HyperSleuth’s components should be
verified in order to prove that their code meets all the expectations [37]. At this
aim, in the future we plan to further decrease the size of HyperSleuth’s code base
in order to ease its verifiability (e.g., by leveraging hardware-based attestation
solutions, such as the TPM).

78

6
Related literature

T
he solutions we discuss in this dissertation are related with several research
areas, such as malware analysis, code attestation, and dynamic analysis
infrastructures. In this chapter we briefly review the related literature

and we highlight existing differences and similarity between previous approaches
and our own research work.

6.1 Malware analysis

6.1.1 Behavior-based malware analysis

Behavior-based malware analysis is a very promising approach that recently
gained the attention of the research community. In Chapter 1 we already sketched
out the problems that affect behavior-based techniques. During the last years,
researchers suggested many possible solutions to overcome these limitations. In
this section we review some of the recent advances in behavior-based analysis and
detection strategies.

Exploration of multiple program paths

One of the main problems of dynamic approaches for malware analysis is their in-
completeness. To address this limitations, in [80] Moser et al. proposed a system
that dynamically monitors a suspicious program to identify the execution points
where the application makes control-flow decisions based on input-dependent val-
ues. For each of these program points, the system forks the execution to explore
both paths. To explore a path different from the one that is intentionally ex-
ecuted by the program, the system tracks the linear dependencies between the
variables used in the control flow decisions and the input. Then, a constraint
solver is used to generate a configuration of input values that allows to follow the
new program path. In [8] Brumley et al. describe a multiple path exploration
system that is based on a similar approach. The infrastructure we propose in

79

CHAPTER 6. RELATED LITERATURE

Chapter 2 addresses the incompleteness problem from a completely different per-
spective: instead of performing a systematic exploration of all input-dependent
program paths, we exploit the high diversity of end-users’ environments to induce
a malware to exhibit its malicious behaviors. A thorough comparison between
our solution and the systems based on multiple path exploration is presented in
Section 2.3.

It is worth pointing out that, before being employed for malware analysis,
multiple path exploration approaches have been also investigated by the software
engineering community to automatically discover bugs, by analyzing either the
source code [44, 10] or the binary representation of a program [65, 45].

“Out-of-the-box” malware analysis

In Chapter 5 we investigate the idea of leveraging a virtual machine monitor
to perform sophisticated run-time analyses, with the guarantee that the results
cannot be tampered by a malicious attacker. This approach has been widely ex-
plored in the literature. Garfinkel et al. were the first to propose to use a VMM to
perform OS-aware introspection [42], and subsequently the idea was further elab-
orated [96, 54, 29]. Other researchers instead proposed to use a VMM to protect
the guest OS from attacks by supervising its execution, both with a software-
based VMM [99] and by leveraging hardware support for virtualization [110].
Similar ideas were also suggested by other authors [92, 116]. In [17], Chen et al.
proposed a solution to protect applications’ data even in the presence of a com-
promised operating system. More recently, Vasudevan et al. presented XTREC,
a lightweight framework to record securely the execution control flow of all code
running in an untrusted system [93]. Unfortunately, in order to guarantee that
the analyses they perform cannot be tampered by an attacker, all the existing so-
lutions must take control of the system before the guest is booted, and cannot be
removed until the guest is shut down. On the contrary, the solution we describe
in Chapter 5 can be installed as the compromised system runs, and, when the
analyses are completed, it can be removed on-the-fly. The idea to take advantage
of the possibility to install a VMM on a running system was also sketched in [105].

Besides using virtual machines to analyze malware and protect the end-users,
researchers also proposed to use VMMs to implement malware that are partic-
ularly hard to detect and to eradicate. SubVirt was one of the first prototypes
that employed this technique [58]. Being implemented using a software-based
VMM, the installation of SubVirt required to reboot the machine, and the mal-
ware also introduced a noticeable run-time overhead in the infected target. Later,
the Blue Pill malware started to exploit the hardware-assisted supports for vir-
tualization to implement an efficient VMM-based malware that is able to infect
a machine as it runs, without the need for reboot [103, 27]. Our VMM-based
analysis framework was inspired by this malware.

80

CHAPTER 6. RELATED LITERATURE

Efficient malware analysis

Behavior-based approaches can be very effective, but effectiveness comes at a
price: these approaches introduce a high run-time overhead that prevents them
from being used as detection solutions at the end-host. Recently, researchers
developed several techniques to improve the efficiency of behavior-based detectors.
In [116] Sharif et al. introduce a framework that allows “in-VM” monitoring and
detection. Their observation is that the approaches that employ virtual machine
introspection techniques to isolate security tools from the untrusted environment
are very effective, but they are also computationally expensive. For this reason,
they propose to place security applications right inside an untrusted system for
efficiency, while using hardware-assisted virtualization facilities to protect the
“in-VM” detector.

Kolbitsch et al. describe a technique for efficient and effective malware de-
tection [62]. Their idea is to build models of the malicious samples off-line, and
then to verify at run-time if the behavior of a suspicious application adheres to
a known model. The idea of building a model of malicious behaviors has been
also investigated by other researchers. As an example, in [21] the authors derive
automatically behavioral models by comparing the execution of a malware with
a set of benign applications, while in [76] Martignoni et al. use hierarchical be-
havior specifications to build a model of a malicious program. As the number of
malicious samples keeps growing, efficiency is essential not only for detectors, but
also for automatic malware analysis systems. To address this problem, Bayer et
al. propose a technique that allows to detect if a binary is a polymorphic varia-
tion of a malware sample that has already been analyzed in the past [4] . Their
approach consists in comparing the dynamic behavior of a new binary program
with a database of known behaviors. If a match is found, the new program needs
not to be analyzed.

6.1.2 Malware analysis in the cloud

The approach we discuss in Chapter 2 leverages cloud computing to blend to-
gether the computational power available in security laboratories (the cloud) with
the heterogeneity of end-users’ environments. In the last years, similar ideas were
also suggested by other researchers and anti-malware companies in order to pro-
vide more comprehensive and effective protection solutions. CloudAV is the first
implementation of an in the cloud malware detector through which end-users
delegate to a central authority the task of detecting if an unknown program
is malicious or not [86]. More recently, a similar approach, called “collective
intelligence”, has also been introduced in a commercial malware detector [90].
Such centralized detection gives two major benefits. First, the analysis no longer
impacts on end-users’ systems, and, being centralized, it can be made more fine-
grained. For example CloudAV analyzes programs simultaneously with multiple
off-the-shelf detectors. Second, the results of the analysis can be cached to serve

81

CHAPTER 6. RELATED LITERATURE

future requests of other users at no cost.
We further enhanced the aforementioned solutions by proposing a framework

that leverages the systems of potential victims to make the behavioral analysis
much more complete. The strategy we adopt to force a program executed in a
security lab to behave as in the environment of the end-user involves system calls
proxying techniques. In previous research work, remote system call execution has
been successfully used to implement a high-throughput computation environment
based on Condor [67], where files stored on remote nodes of the environment are
made accessible locally and transparently by proxying the appropriate system
calls. Similarly, the V2 project [133] includes support for remote system call
execution. The framework we describe in Chapter 2 leverages system call proxying
to achieve a completely different goal.

6.1.3 Post-infection countermeasures

Back in 1987 Fred Cohen demonstrated that no algorithm exists to precisely
discern malware samples from benign programs [25]. As a consequence, there will
always exist some malware that is able to bypass proactive detection solutions
and to infect the system. Obviously, the safest way to remediate an infection is to
format the permanent storage and re-install the operating system from scratch.
While effective, this approach is also costly, time expensive, and usually results in
a loss of valuable personal data. Rather than re-installing compromised systems
from scratch, alternative solutions have been presented.

Several researchers proposed to use sandboxes to isolate suspicious programs
and to prevent damages to end-users’ systems. The idea is to execute untrusted
programs inside a sandbox, and the changes made to the “virtual” system are
committed to the real one at the end of the execution, but only if the program
can be considered innocuous. As an example, Sun et al. introduced a one-way
isolation technique to safely execute untrusted programs [124]. Their approach
consists in isolating the effects of an untrusted program from the rest of the system
by intercepting system calls that modify the file-system and redirecting them to
a cache, invisible to other processes. When the untrusted program terminates,
the user can choose to discard these modifications, or to commit them to the
real system. The approach we adopt in Chapter 2 to proxy the access to remote
system resources is similar to the one proposed by Sun et al. A similar technique
was also proposed by Hsu et al. [52]; the difference is that the execution of the
untrusted program is not isolated, but monitored, and at the end of the execution
the modifications made to the system can be reverted.

Unfortunately, sandboxing is not very popular, and users typically prefer to
leverage remediation capabilities of anti-malware products to revert the effects
of an infection. A recent study we performed demonstrated that even top-rated
commercial anti-malware software fails to revert the effects of all the actions
performed by malware during infections [91]. For this reason, in [57] Kim et al.
describe Retro, an infrastructure to repair a system that has been compromised

82

CHAPTER 6. RELATED LITERATURE

by a malicious program: Retro first records a dependency graph that describes
the actions taken during normal system execution; then, during repair, the action
graph is used to undo the unwanted actions. In [88] we proposed an architecture
to automatically generate remediation procedures from malicious programs, i.e.,
procedures that can be used to remediate all and only the effects of the execution
of the malware in any infected system. The infrastructure presented in Chapter 5
can be used to take over a compromised system and to support the execution of
these remediation procedures, with the guarantee that the malware running on
the host cannot affect their execution.

6.2 Code attestation

The majority of the research work on software-based attestation and verifiable
code execution is specific for embedded devices and sensor networks. Most
of the schemes are based on the same type of challenge and response proto-
col [112, 109, 108, 111]; we thoroughly presented it in Section 4.1. The strength
and weaknesses of these schemes have been studied by Castelluccia et al. [22].
Conqueror, the software-based attestation primitive described in Chapter 4, is in-
stead inspired by the work done by Shaneck et al. and by Garay et al. [39, 113].
However, the two attestation schemes are also specific for embedded devices and
not suited at all for attestation on legacy systems. Genuinity and Pioneer are two
schemes, for environment attestation and verifiable code execution respectively,
specific for legacy systems [56, 111]. Both schemes are vulnerable to attacks. The
vulnerabilities of the former have been studied by Shankar et al. [114], while the
vulnerabilities of the latter have been introduced in Section 4.1.

The alternative approach to software-based attestation is hardware-based at-
testation. The research community spent a lot of efforts in developing hardware
technology equipped with special trusted components to make hardware-based
attestation practical. Examples of hardware technology with such capabilities
are Cerium [16], BIND [117], Intel LaGrande Technology [47], and AMD Pacifica
Technology [2]. In particular, thanks to the efforts of the Trusted Computing
Group and the standardization of the TPM chip [131], Intel LaGrande and AMD
Pacifica technologies are slowly becoming mainstream. They have been used
as ground to develop various hardware-based attestation schemes. Examples of
these schemes are the IBM Integrity measurements Architecture [106], the Open
Source Loader [55], Terra [41], and Flicker [78]. Similarly to Conqueror and Pio-
neer, Flicker’s goal is to achieve tamper-proof execution of code on untrusted sys-
tems. While Conqueror and Pioneer are entirely software-based solutions, Flicker
leverages the TPM, available on modern commodity hardware, to accomplish the
same goal. In particular Flicker relies on a feature introduced in the CPU that
allows the secure late launch of virtual machine monitors.

83

CHAPTER 6. RELATED LITERATURE

6.3 Dynamic analysis of commodity systems

The generic dynamic analysis infrastructure we propose in Chapter 3 shares many
similarities with analysis frameworks and instrumentation techniques extensively
explored in the past. In the following we briefly review some of these approaches
and we compare them with the infrastructure described in Chapter 3. However,
it is worth noting that, by exploiting recent facilities available on modern Intel
x86 CPUs, our solution is able to combine and to offer simultaneously the main
benefits introduced by previous research work.

6.3.1 Dynamic kernel instrumentation

DTrace is a facility included into the Solaris kernel that allows the dynamic
instrumentation of production systems [11]. The key points of DTrace are effi-
ciency and flexibility. First, the instrumentation framework itself introduces no
overhead. Second, the framework provides tens of thousands of instrumentation
points, and the actions to be taken can be expressed in terms of a high-level con-
trol language, that also includes a number of mechanisms to guarantee run-time
safety. Similarly, KernInst is a dynamic instrumentation framework for com-
modity kernels [130]. KernInst has been developed mainly to gather information
about the performances of a running kernel, but it has also been employed for
run-time kernel optimization. Differently from DTrace, KernInst is not transpar-
ent to the other components of the system and does not provide any mechanism
for run-time safety of the instrumentation routines. None of the aforementioned
approaches is OS-independent, and they cannot be applied to closed-source op-
erating systems. DTrace requires the pre-existence of instrumentation points in
the kernel. KernInst instead requires to patch the code of the kernel of the oper-
ating system to add the missing instrumentation points. Clearly, that is possible
only if low-level details about the internals of the kernel are made available. Our
framework does not suffer these limitations, since it can instrument the kernel
without modifying it and does not rely on any facility offered by the kernel.

6.3.2 Kernel-level debugging

Several efforts have been made to develop efficient and reliable kernel-level de-
buggers. Indeed, these applications are essential for many activities, such as the
development of device drivers, or the analysis of malicious kernel-level modules.
One of the first and most widely used kernel-level debuggers that targeted the
Microsoft Windows operating system was SoftICE [119], but today the project
has been discontinued. However, both commercial [127] and open-source [101]
alternatives to SoftICE appeared. Modern versions of Windows already include
a kernel debugging subsystem [79]. Unfortunately, to exploit the full capabil-
ities of Microsoft’s debugging infrastructure, the host being debugged must be
physically linked (e.g., by means of a serial cable) with another machine. All

84

CHAPTER 6. RELATED LITERATURE

these approaches share a common factor: to debug kernel-level code, they lever-
age another kernel-level module. Obviously, that is like a dog chasing its tail.
On the contrary, the generic dynamic analysis framework we propose does not
require any kernel support nor to modify the kernel to add the missing support
at run-time.

6.3.3 Frameworks based on virtual machines

Instead of relying on a kernel-level module to monitor other kernel code, an
alternative approach consists in running the target code inside a virtual machine
and performing the required analyses from the outside [42]. In [59, 140, 30] the
authors propose virtual machines with execution replaying capabilities: a user can
move forward and backwards through the execution history of the whole system,
both for debugging and for understanding how an intrusion took place. In [18]
Chow et al. propose Aftersight, a system that decouples execution recording from
execution trace analysis, thus reducing the overhead suffered by the system where
the guest operating system is run. Nowadays, Aftersight is part of the VMware
platform, and other mainstream commercial products provide similar capabilities.
Our analysis infrastructure can provide these functionalities even on systems not
running in any virtual machine. Finally, Portokalidis et al. designed a solution
based on execution replaying to protect smartphones from malicious threats [95].
Their idea consists in running a replica of the phone on a server: a tracer on the
phone records a minimal execution trace, that is then transmitted to the server
where a replica of the mobile device is run inside an emulated environment. As
the server can leverage much more powerful computational resources than the
smartphone, it can also perform sophisticated security analyses. This approach
shares several similarities with the technique we discussed in Chapter 2.

6.3.4 Aspect-oriented programming

Aspect-orientation is a programming paradigm that promises to increase modu-
larity by encapsulating cross-cutting concerns into separated code units, called
“aspects”, whose “advice” code is woven into the system automatically, by spec-
ifying the properties of the join-points. AspectC is an aspect-oriented framework
that is used to customize (at compile-time) operating system kernels [24, 68, 69].
More dynamic approaches have been proposed: for example TOSKANA pro-
vides before, after and around advices for in-kernel functions and supports the
implementation of aspects themselves as dynamically exchangeable kernel mod-
ules [31]. The framework we propose allows to achieve the same goal while being
transparent and fault-tolerant.

85

7
Future directions

T
he research work presented in the previous chapters aims to overcome
some of the limitations that affect current malware analysis and detec-
tion solutions. However, the techniques we described are not free from

limitations. In this chapter we sketch possible improvements and extensions over
the ideas we proposed, together with some directions for future work.

Multi-environment malware analysis. The dynamic framework proposed
in Chapter 2 allows security labs to leverage multiple end-users’ environments to
increase the completeness of the analysis. Such approach opens new interesting
challenges which we plan to investigate in the near future.

First, we assume that we are given a set of willing users, that we can use their
systems for the analysis, and that these systems are diverse enough to trigger all
the malicious behaviors of a malware. In practice we have to balance the coverage
of the analysis with the number of end-users’ environments available and that we
are inclined to use. This is still an open problem. Second, by comparing the
various execution traces collected from different end-users’ environments, inter-
esting correlations between malware behaviors and their trigger conditions could
be mined. Finally, imagine that the suspicious program being monitored is found
to be benign. We currently assume that, when the analysis of the process ter-
minates, the synthetic lab environment is discarded. Consequently, every change
the process could have made to the environment is lost. This is undoubtedly good
for malicious processes, but probably an end-user wants to preserve the opera-
tions performed by a benign application. We are currently investigating possible
solutions to this problem. As an example, when the analysis terminates, benign
operations could be committed on the user’s environment employing a technique
similar to the one discussed in [52].

Dynamic analysis through hardware-assisted virtualization. In Chap-
ter 3 we described a generic analysis framework that allows sophisticated and
transparent analyses of both user- and system-level code. This infrastructure is

86

CHAPTER 7. FUTURE DIRECTIONS

now an open-source project that is actively maintained by several developers. In
the future, we plan to improve the implementation of our framework to support
SMT and SMP machines, to allow the OS-aware inspection of different operating
systems, and to support AMD virtualization technology [2].

As an application of our analysis infrastructure we also presented HyperDbg, a
kernel-level debugger that demonstrates that our framework is very versatile and
that enables new opportunities for dynamic analysis. An interesting extension of
HyperDbg will be the support for kernel-level omniscient debugging. Omniscient
debugging allows developers to inspect the status of their programs in past execu-
tion instants, in order to detect the cause of a failure without the need to run the
target program multiple times [97]. HyperDbg could be extended to allow a user to
record and inspect the values a memory location stored during the time, and the
exceptions and interrupts occurred. Such a feature would ease a user to discover
when a memory location of the kernel gets corrupted and which instruction is
responsible for the corruption. Moreover, the ability to log asynchronous events,
such as interrupts, would allow to spot defects connected to non-deterministic
behaviors of the analyzed system. Our framework already offers all the neces-
sary facilities for this kind of debugging: exception and interrupts can be traced
natively by the framework and memory accesses can be traced using watchpoints.

Another interesting application of our framework will be dynamic aspect-
oriented programming of operating system kernels. Several approaches have been
proposed to apply AOP to kernels [24, 68, 69, 31]. The main advantage offered
by our framework over the approaches proposed so far is that it does not require
any modification of the source code of the kernel, nor any modification of the
image in memory of the kernel. Moreover, our framework protects the running
kernel from defects in the woven code. One approach to facilitate the use of
such technology would be to provide programmers a source-to-source translator,
to translate aspect oriented code written in languages like AspectC [23] into C
code that uses the API offered by our framework. In particular, the translator
would be responsible for translating pointcuts into API calls to trace the corre-
sponding events, using advices as events handlers, and for translating all pointer
dereferences into calls to inspection API to read the memory of the guest.

Software-based code attestation. Conqueror, the pure software-based attes-
tation primitive we presented in Chapter 4, is extremely resilient against both
static and dynamic attacks. We showed it is effective even when attackers are
able to execute code at a very high level of privilege (e.g., at the hypervisor level).
However, we believe Conqueror can still be extended in order to relax its threat
model. As an example, in the future we plan to improve our solution to support
even SMP and SMT systems, as modern systems typically support multiple pro-
cessors or multiple execution cores. Moreover, as the checksum functions used by
Conqueror are generated dynamically, obfuscated, and they exploit many subtle
details of the x86 architecture, it is extremely difficult to prove that the primitive
is actually immune to all possible attacks. Indeed, in Chapter 4 we gave only em-

87

CHAPTER 7. FUTURE DIRECTIONS

pirical evidence of the effectiveness of Conqueror, but we still cannot guarantee
that no attack exists that is able to defeat our attestation scheme.

Trustworthy analysis of compromised machines. We presented Hyper-
Sleuth (Chapter 5), a framework for constructing tools for the post-infection
analysis of alleged compromised systems. HyperSleuth leverages the virtualiza-
tion extensions provided by commodity hardware to guarantee that the results of
the analyses cannot be altered, even by an attacker with kernel-level privileges.
We believe HyperSleuth represents an interesting starting point to further extend
in the future.

In particular, we plan to investigate the possibility to use HyperSleuth to
develop a solution to bootstrap a fully-featured trustworthy environment inside
an untrusted system. Imagine a user who needs to use an untrusted machine
to perform security-critical operations, such as to access its bank account or to
perform some e-commerce transactions. In this situation, any malicious software
that runs on the untrusted machine could steal the bank credentials or the credit
card details of the user. Our idea is to provide an infrastructure that can be
used to take over the untrusted system, and to establish a trusted environment
where standard applications (e.g., a web browsers) can be run with the guarantee
that no malware can tamper with their execution, neither at the user- nor at
the kernel-level. All this without the need to reboot the system. Unfortunately,
HyperSleuth cannot be used as is for this purpose, because it does not support
the execution of standard user-space applications on its top.

88

8
Conclusions

M
alware is the root cause of many of the illicit activities that threaten
Internet users every day. To defend against malicious software, users
rely on anti-malware products to preemptively detect threats before

they can infect their systems, or to remediate the damages done by the malware
when infection already took place. Unfortunately, miscreants are often one step
ahead of security vendors and researchers. As malware authors can study current
defensive solutions, they can also try to exploit their limitations in order to make
their malicious programs harder to detect and to eradicate. In this dissertation,
we addressed the problems that affect today’s security technologies, and we pro-
vided novel solutions to improve the effectiveness of state-of-the-art anti-malware
products.

As a first contribution, we presented a framework that enables sophisticated
behavior-based analyses of suspicious programs in multiple realistic and hetero-
geneous environments. We achieve this goal by distributing the execution of
the program between the security laboratory (with virtually unlimited compu-
tational resources) and the environments of potential victims (which are hetero-
geneous by definition and might affect differently the behavior of the analyzed
program), by forwarding to the latter certain system calls. We have implemented
an experimental prototype to validate our idea and integrated it into an existing
behavior-based malware detector. Our evaluation demonstrated the feasibility
of the proposed approach, that the overhead introduced is very small, and that
the analysis of multiple execution traces of the same malware sample in multiple
end-users’ environments can improve the results of the analysis.

In the dissertation we also proposed an infrastructure to perform complex
run-time analyses of both user- and system-level code on commodity production
systems. The framework exposes an API that eases the development of analysis
tools on its top. The approach we described leverages hardware extensions for
virtualization available on modern processors to overcome the limitations that
affect existing approaches for the analysis of system-level code. In particular, the
solution we suggested is transparent, does not require to recompile or reboot the

89

CHAPTER 8. CONCLUSIONS

target system, it is almost completely OS-independent, and it guarantees that a
defect in an analysis tool cannot damage the framework itself nor the analyzed
system. Such an infrastructure is extremely valuable to analyze malware that
includes kernel-level components. To demonstrate its potentials, we developed
HyperDbg, an interactive kernel-level debugger for Microsoft Windows XP and
Linux. HyperDbg and the whole framework have been released as an open source
package.

Unfortunately, if the target system has already been compromised, the so-
lutions we just described are completely ineffective, as a malware could tamper
with the execution or the installation of the aforementioned frameworks, and
hide its presence on the machine. We addressed this problem with Conqueror, a
software-based code attestation scheme for tamper-proof code execution on un-
trusted legacy systems. Conqueror allows to execute an arbitrary piece of code
with the guarantee that it is run untampered, even when no specific hardware
for trusted computing is available. We developed an experimental prototype of
Conqueror, to evaluate its resilience against hypervisor-based attacks, the most
powerful type of dynamic attack, and against attacks based on static analysis of
the code.

Finally, we introduced HyperSleuth, a framework for the analysis of alleged
compromised systems. HyperSleuth guarantees that the results of the analyses
cannot be altered, even by an attacker with kernel-level privileges. HyperSleuth
leverages our virtualization-based analysis framework to install itself on a po-
tentially compromised system as it runs. The installation of the hypervisor is
attested by Conqueror, our secure loader. We developed a proof-of-concept pro-
totype of HyperSleuth and, on top of it, we implemented three forensic analysis
applications: a lazy physical memory dumper, a lie detector, and a system call
tracer. These applications can be used to take over a potentially compromised
host and to securely collect the data necessary to verify the presence of malicious
code. The experimental evaluation testified the effectiveness of the proposed
approach.

Malicious threats are continuously evolving subjects, and their authors invest
more and more efforts trying to improve their creations. Today’s interconnected
world provides a plethora of technologies that malware authors could exploit in
order to create new threats. SCADA networks, VoIP infrastructures, mobile de-
vices, and modern web technologies are just some examples of the possible targets
of tomorrow’s malware. At the same time, anti-malware manufacturers develop
defensive countermeasures that can barely keep up with malicious technology.
But how to break this arms race between miscreants and the anti-malware com-
munity?

During the last years, the academic research made the headway on innovative
security solutions. However, both marketing and technical issues prevent a wide
adoption of new defensive approaches. As an example, the majority of today’s
deployed anti-virus software is one step behind malware: many hosts still leverage

90

CHAPTER 8. CONCLUSIONS

signature-based products, as these approaches continue to be more reliable and
more scalable than behavior-based technologies. In our opinion, it is essential
that the research community starts to address some of the practical challenges
that prevent the wide adoption of innovative defensive solutions (e.g., how to
perform sophisticated analyses at the end host? How to reduce false positives?).
It is fundamental to invest even more efforts into these topics in order to keep up
with the evolving malware landscape.

Secondly, proactive approaches remain the only effective protection against
malicious threats. After a malware sample infects a host, it is really difficult to
provide a post-infection solution that can remediate the infection and clean up the
compromised machine. In this dissertation we described different techniques to
support the execution of post-infection tools. Nevertheless, little research focuses
on the development of remediation approaches that can be applied on end-users’
machines. In our previous work we made a first step towards the automatic gen-
eration of remediation procedures [88]. However, there are still many challenges
that need to be addressed to build effective post-infection solutions, with the final
intent to provide end-users’ defensive software that is one step ahead malicious
threats.

91

Bibliography

[1] Keith Adams. Blue Pill detection in two easy steps, 2007.

[2] AMD, Inc. AMD virtualization. (http://www.amd.com/virtualization).

[3] Davide Balzarotti, Marco Cova, Christoph Karlberger, Christopher Krue-
gel, Engin Kirda, and Giovanni Vigna. Efficient detection of split personali-
ties in malware. In Proceedings of the 17th Annual Network and Distributed
System Security Symposium (NDSS), February 2010.

[4] Ulrich Bayer, Engin Kirda, and Christopher Kruegel. Improving the effi-
ciency of dynamic malware analysis. In Proceedings of the 25th Symposium
On Applied Computing (SAC), Lusanne, Switzerland, March 2010.

[5] Ulrich Bayer, Christopher Kruegel, and Engin Kirda. TTAnalyze: A tool
for analyzing malware. In Proceedings of the Annual Conference of the
European Institute for Computer Antivirus Research, 2006.

[6] Bill Blunden. The Rootkit Arsenal: Escape and Evasion in the Dark Cor-
ners of the System. Jones and Bartlett Publishers, Inc., USA, 2009.

[7] David Brumley, Cody Hartwig, Min Gyung Kang, Zhenkai Liang, James
Newsome, Pongsin Poosankam, Dawn Song, and Heng Yin. BitScope: Au-
tomatically dissecting malicious binaries. Technical Report CMU-CS-07-
133, Carnegie Mellon University, March 2007.

[8] David Brumley, Cody Hartwig, Zhenkai Liang, James Newsome, Dawn
Song, and Heng Yin. Towards automatically identifying trigger-based be-
havior in malware using symbolic execution and binary analysis. Technical
Report CMU-CS-07-105, Carnegie Mellon University, 2007.

[9] Jamie Butler and Peter Silberman. RAIDE: Rookit analysis identification
elimination. In Black Hat USA, 2006.

92

http://www.amd.com/virtualization

[10] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and
Dawson R. Engler. EXE: Automatically generating inputs of death. In
Proceedings of the 13th ACM Conference on Computer and Communications
Security (SIGSAC). ACM SIGSAC, 2006.

[11] Bryan Cantrill, Michael W. Shapiro, and Adam H. Leventhal. Dynamic
instrumentation of production systems. In Proceedings of USENIX Annual
Technical Conference, June 2004.

[12] Martim Carbone, Diego Zamboni, and Wenke Lee. Taming virtualization.
IEEE Security and Privacy, 6(1), 2008.

[13] Lorenzo Cavallaro, Prateek Saxena, and R. Sekar. On the limits of informa-
tion flow techniques for malware analysis and containment. In Proceedings
of the Conference on Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA), 2008.

[14] Cendio. SeamlessRDP – Seamless windows support for rdesktop. (http:
//www.cendio.com/seamlessrdp/).

[15] Milind Chabbi. Efficient taint analysis using multicore machines. Master’s
thesis, University of Arizona, 2007.

[16] Benjie Chen and Robert Morris. Certifying program execution with secure
processors. In Proceedings of the 9th conference on Hot Topics in Operating
Systems, 2003.

[17] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis, Pratap Subrahmanyam,
Carl A. Waldspurger, Dan Boneh, Jeffrey Dwoskin, and Dan R. K. Ports.
Overshadow: a virtualization-based approach to retrofitting protection in
commodity operating systems. Operating Systems Review, 42(2), 2008.

[18] Jim Chow, Tal Garfinkel, and Peter Chen. Decoupling dynamic program
analysis from execution in virtual environments. In Proceedings of USENIX
Annual Technical Conference, June 2008.

[19] Mihai Christodorescu and Somesh Jha. Static analysis of executables to
detect malicious patterns. In Proceedings of the 12th conference on USENIX
Security Symposium. USENIX Association, 2003.

[20] Mihai Christodorescu and Somesh Jha. Testing malware detectors. SIG-
SOFT Software Engineering Notes, 29(4):34–44, 2004.

[21] Mihai Christodorescu, Somesh Jha, and Christopher Kruegel. Mining spec-
ifications of malicious behavior. In Proceeding of the 1st Annual India Soft-
ware Engineering Conference (ISEC), Hyderabad, India, February 2008.

93

http://www.cendio.com/seamlessrdp/
http://www.cendio.com/seamlessrdp/

[22] Daniele Perito Claude Castelluccia, Aurélien Francillon and Claudio Sori-
ente. On the difficulty of software-based attestation of embedded devices. In
Proceedings of the 16th ACM conference on Computer and Communications
Security (CCS), 2009.

[23] Yvonne Coady, Gregor Kiczales, Michael J. Feeley, Norman C. Hutchinson,
and Joon Suan Ong. Structuring operating system aspects. Communica-
tions of the ACM, 44(10):79–82, 2001.

[24] Yvonne Coady, Gregor Kiczales, Mike Feeley, and Greg Smolyn. Using
AspectC to improve the modularity of path-specific customization in oper-
ating system code. In Proceedings of the 8th European Software Engineering
Conference, 2001.

[25] Fred Cohen. Computer viruses, theory and experiments. Computers &
Security, 6, 1987.

[26] Cyveillance. Malware detection rates for leading AV solutions. Technical
report, Cyveillance, August 2010.

[27] Dino Dai Zovi. Hardware virtualization based rootkits. Black Hat USA,
2006.

[28] Dancho Danchev. Conficker’s estimated economic cost? $9.1 billion.

[29] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. Ether: Mal-
ware analysis via hardware virtualization extensions. In Proceedings of the
15th ACM conference on Computer and communications security, 2008.

[30] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai,
and Peter M. Chen. ReVirt: Enabling intrusion analysis through virtual-
machine logging and replay. In Proceedings of the 5th Symposium on Oper-
ating Systems Design and Implementations (OSDI), December 2002.

[31] Michael Engel and Bernd Freisleben. TOSKANA: A toolkit for operating
system kernel aspects. Transactions on Aspect-Oriented Software Develop-
ment II, 4242:182–226, 2006.

[32] F-Secure. Trojan information pages: Bancos.VE. (http://www.f-secure.
com/v-descs/bancos_ve.shtml).

[33] Aristide Fattori, Roberto Paleari, Lorenzo Martignoni, and Mattia Monga.
Dynamic and transparent analysis of commodity production systems. In
Proceedings of the 25th International Conference on Automated Software
Engineering (ASE), Antwerp, Belgium, September 2010.

[34] Peter Ferrie, Nate Lawson, and Thomas Ptacek. Don’t tell Joanna, the
virtualized rootkit is dead. Black Hat USA, 2007.

94

http://www.f-secure.com/v-descs/bancos_ve.shtml
http://www.f-secure.com/v-descs/bancos_ve.shtml

[35] Stephanie Forrest, Steven R. Hofmeyr, Anil Somayaji, and Thomas A.
Longstaff. A sense of self for unix processes. In Proceedings of the IEEE
Symposium on Security and Privacy (Oakland), 1996.

[36] Jason Franklin, Adrian Perrig, Vern Paxson, and Stefan Savage. An in-
quiry into the nature and causes of the wealth of Internet miscreants. In
Proceedings of the 14th ACM conference on Computer and communications
security (CCS), pages 375–388. ACM, 2007.

[37] Jason Franklin, Arvind Seshadri, Ning Qu, Anupam Datta, and Sagar
Chaki. Attacking, repairing, and verifying SecVisor: A retrospective on
the security of a hypervisor. Technical report, Carnegie Mellon University,
2008.

[38] Merrick Furst. Expert: Botnets no. 1 emerging internet threat. CNN
Technology, 2006.

[39] Juan A. Garay and Lorenz Huelsbergen. Software integrity protection using
timed executable agents. In Proceedings of the 2006 ACM Symposium on
Information, computer and communications security (ASIACCS), 2006.

[40] Tal Garfinkel, Keith Adams, Andrew Warfield, and Jason Franklin. Com-
patibility is not transparency: VMM detection myths and realities. In Pro-
ceedings of the 11th Workshop on Hot Topics in Operating Systems (HotOS-
XI), 2007.

[41] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh.
Terra: a virtual machine-based platform for trusted computing. In Proceed-
ings of the 19th ACM symposium on Operating systems principles, 2003.

[42] Tal Garfinkel and Mendel Rosenblum. A virtual machine introspection
based architecture for intrusion detection. In Proceedings of the Sympo-
sium on Network and Distributed Systems Security (NDSS), San Diego,
CA, USA, February 2003.

[43] Jonathon Giffin, Mihai Christodorescu, and Louis Kruger. Strengthening
software self-checksumming via self-modifying code. In Proceedings of the
21st Annual Computer Security Applications Conference (ACSAC), 2005.

[44] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed auto-
mated random testing. ACM SIGPLAN Notices, 40(6), June 2005.

[45] Patrice Godefroid, Michael Y. Levin, and David A Molnar. Automated
whitebox fuzz testing. In Proceedings of the Network Distributed Security
Symposium (NDSS). Internet Society, 2008.

95

[46] Ian Goldberg, David Wagner, Randi Thomas, and Eric A. Brewer. A se-
cure environment for untrusted helper applications. In Proceedings of the
USENIX Security Symposium, 1996.

[47] David Grawrock. Dynamics of a Trusted Platform: A Building Block Ap-
proach. Intel Press, 2009.

[48] Peter Gutmann. The commercial malware industry, 2007.

[49] Hex-Rays. IDA Pro. (http://www.hex-rays.com/idapro/).

[50] Alex Ho, Michael Fetterman, Christopher Clark, Andrew Warfield, and
Steven Hand. Practical taint-based protection using demand emulation. In
Proceedings of the EuroSys Conference, 2006.

[51] Greg Hoglund and James Butler. Rootkits: Subverting the Windows Kernel.
Addison-Wesley, 2006.

[52] Francis Hsu, Hao Chen, Thomas Ristenpart, Jason Li, and Zhendong Su.
Back to the future: A framework for automatic malware removal and sys-
tem repair. In Proceedings of the Annual Computer Security Applications
Conference (ACSAC), 2006.

[53] Intel, Inc. Intel virtualization technology. (http://www.intel.com/
technology/virtualization/).

[54] Xuxian Jiang and Xinyuan Wang. “Out-of-the-Box” monitoring of VM-
based high-interaction honeypots. In Proceedings of the International Sym-
posium on Recent Advances in Intrusion Detection (RAID), 2007.

[55] Bernhard Kauer. OSLO: Improving the security of trusted computing. In
Proceedings of 16th USENIX Security Symposium, 2007.

[56] Rick Kennell and Leah H. Jamieson. Establishing the genuinity of remote
computer systems. In Proceedings of the 12th USENIX Security Symposium,
2003.

[57] Taesoo Kim, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek. Intru-
sion recovery using selective re-execution. In Proceedings of the 9th Sympo-
sium on Operating Systems Design and Implementation (OSDI), Vancou-
ver, Canada, October 2010.

[58] Samuel T. King, Peter M. Chen, Yi-Min Wang, Chad Verbowski, Helen J.
Wang, and Jacob R. Lorch. SubVirt: Implementing malware with virtual
machines. In Proceedings of IEEE Symposium on Security and Privacy
(Oakland), 2006.

96

http://www.hex-rays.com/idapro/
http://www.intel.com/technology/virtualization/
http://www.intel.com/technology/virtualization/

[59] Samuel T. King, George W. Dunlap, and Peter M. Chen. Debugging op-
erating systems with time-traveling virtual machines. In Proceedings of
USENIX Annual Technical Conference, April 2005.

[60] Engin Kirda, Christopher Kruegel, Greg Banks, Giovanni Vigna, and
Richard Kemmerer. Behavior-based spyware detection. In Proceedings of
the 15th USENIX Security Symposium, Vancouver, BC, Canada, August
2006.

[61] Alexander Klimov and Adi Shamir. A new class of invertible mappings. In
Proceedings of the 4th International Workshop on Cryptographic Hardware
and Embedded Systems, 2003.

[62] Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel, Engin
Kirda, Xiaoyong Zhou, and Xiaofeng Wang. Effective and efficient malware
detection at the end host. In Proceedings of the 18th USENIX Security
Symposium, Montreal, Canada, August 2009.

[63] Andreas Moser Christopher Kruegel and Engin Kirda. Limits of static
analysis for malware detection. In Proceedings of the 23rd Annual Computer
Security Applications Conference (ACSAC), 2007.

[64] William Landi. Undecidability of static analysis. ACM Letters on Program-
ming Languages and Systems, 1(4), 1992.

[65] Andrea Lanzi, Lorenzo Martignoni, Mattia Monga, and Roberto Paleari.
A smart fuzzer for x86 executables. In Proceedings of the 3rd International
Workshop on Software Engineering for Secure Systems (SESS), Minneapo-
lis, MN, USA, May 2007.

[66] Cullen Linn and Saumya Debray. Obfuscation of executable code to improve
resistance to static disassembly. In Proceedings of the 10th ACM conference
on Computer and communications security (CCS), 2003.

[67] Miron Livny, Jim Basney, Rajesh Raman, and Todd Tannenbaum. Mech-
anisms for high throughput computing. SPEEDUP Journal, 1997.

[68] Daniel Mahrenholz, Olaf Spinczyk, Andreas Gal, and Wolfgang Schröder-
Preikschat. An aspect-oriented implementation of interrupt synchronization
in the PURE operating system family. In Proceedings of the 5th ECOOP
Workshop on Object Orientation and Operating Systems, June 2002.

[69] Daniel Mahrenholz, Olaf Spinczyk, and Wolfgang Schröder-Preikschat. Pro-
gram instrumentation for debugging and monitoring with AspectC++. In
Proceedings of the Symposium on Object-Oriented Real-Time Distributed
Computing, April 2002.

97

[70] John Markoff. Attack of the zombie computers is a growing threat, experts
say. The New York Times, January 2007.

[71] Lorenzo Martignoni, Aristide Fattori, Roberto Paleari, and Lorenzo Cav-
allaro. Live and trustworthy forensic analysis of commodity production
systems. In Proceedings of the 13th International Symposium on Recent Ad-
vances in Intrusion Detection (RAID), Ottawa, Canada, September 2010.

[72] Lorenzo Martignoni, Roberto Paleari, and Danilo Bruschi. A framework for
behavior-based malware analysis in the cloud. In Proceedings of the 5th In-
ternational Conference on Information Systems Security (ICISS), Kolkata,
India, December 2009. Springer.

[73] Lorenzo Martignoni, Roberto Paleari, and Danilo Bruschi. Conqueror:
tamper-proof code execution on legacy systems. In Proceedings of the 7th

Conference on Detection of Intrusions and Malware and Vulnerability As-
sessment (DIMVA), Lecture Notes in Computer Science, Bonn, Germany,
July 2010. Springer.

[74] Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia, and Danilo
Bruschi. Testing CPU emulators. In Proceedings of the 2009 Interna-
tional Conference on Software Testing and Analysis (ISSTA), pages 261–
272, Chicago, Illinois, USA, July 2009. ACM.

[75] Lorenzo Martignoni, Roberto Paleari, Giampaolo Fresi Roglia, and Danilo
Bruschi. Testing system virtual machines. In Proceedings of the 2010 Inter-
national Symposium on Testing and Analysis (ISSTA), Trento, Italy, July
2010.

[76] Lorenzo Martignoni, Elizabeth Stinson, Matt Fredrikson, Somesh Jha, and
John C. Mitchell. A layered architecture for detecting malicious behav-
iors. In Proceedings of the International Symposium on Recent Advances in
Intrusion Detection (RAID), 2008.

[77] McAfee, Inc. Operation Aurora. (http://www.mcafee.com/us/threat_
center/operation_aurora.html).

[78] Jonathan M. McCune, Bryan Parno, Adrian Perrig, Michael K. Reiter, and
Hiroshi Isozaki. Flicker: An execution infrastructure for TCB minimiza-
tion. In Proceedings of the ACM European Conference in Computer Systems
(EuroSys), 2008.

[79] Microsoft Corporation. Debugging tools for Windows.

[80] Andreas Moser, Christopher Kruegel, and Engin Kirda. Exploring multiple
execution paths for malware analysis. In Proceeding of the 2007 IEEE
Symposium on Security and Privacy (Oakland), 2007.

98

http://www.mcafee.com/us/threat_center/operation_aurora.html
http://www.mcafee.com/us/threat_center/operation_aurora.html

[81] Carey Nachenberg. Understanding and managing polymorphic viruses.
Technical report, Symantec, Inc., September 1996.

[82] Gil Neiger, Amy Santoni, Felix Leung, Dion Rodgers, and Rich Uhlig. Intel
virtualization technology: Hardware support for efficient processor virtual-
ization. Intel Technology Journal, 10(3):167–177, August 2006.

[83] Edmund B. Nightingale, Daniel Peek, Peter M. Chen, and Jason Flinn.
Parallelizing security checks on commodity hardware. In Proceedings of the
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, 2008.

[84] NoAH Consortium. Containment environment design. Technical report,
European Network of Affined Honeypots, 2006.

[85] NovaShield. (http://www.novashield.com/).

[86] Jon Oberheide, Evan Cooke, and Farnam Jahanian. CloudAV: N-Version
antivirus in the network cloud. In Proceedings of the USENIX Security
Symposium, 2008.

[87] Roberto Paleari, Lorenzo Martignoni, Giampaolo Fresi Roglia, and Danilo
Bruschi. A fistful of red-pills: How to automatically generate procedures
to detect CPU emulators. In Proceedings of the 3rd USENIX Workshop on
Offensive Technologies (WOOT), Montreal, Canada, August 2009. ACM.

[88] Roberto Paleari, Lorenzo Martignoni, Emanuele Passerini, Drew Davidson,
Matt Fredrikson, Jon Giffin, and Somesh Jha. Automatic generation of
remediation procedures for malware infections. In Proceedings of the 19th

USENIX Security Symposium, Washington, DC, USA, August 2010.

[89] Panda Security. True Prevent. (http://research.pandasecurity.com/
archive/How-TruPrevent-Works-_2800_I_2900_.aspx).

[90] Panda Security. From traditional antivirus to collective intelligence, 2007.

[91] Emanuele Passerini, Roberto Paleari, and Lorenzo Martignoni. How good
are malware detectors at remediating infected systems? In Proceedings of
the 6th Conference on Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA), Lecture Notes in Computer Science, Como, Italy,
July 2009. Springer.

[92] Bryan D. Payne, Martim Carbone, Monirul Sharif, and Wenke Lee. Lares:
An architecture for secure active monitoring using virtualization. In Pro-
ceedings of the IEEE Symposium on Security and Privacy (Oakland), 2008.

[93] Adrian Perrig, Virgil Gligor, and Amit Vasudevan. XTREC: secure real-
time execution trace recording and analysis on commodity platforms. Tech-
nical report, Carnegie Mellon University, 2010.

99

http://www.novashield.com/
http://research.pandasecurity.com/archive/How-TruPrevent-Works-_2800_I_2900_.aspx
http://research.pandasecurity.com/archive/How-TruPrevent-Works-_2800_I_2900_.aspx

[94] Phillip Porras, Hassen Saidi, and Vinod Yegneswaran. An analysis of Con-
ficker’s logic and rendezvous points. Technical report, SRI International,
2009.

[95] Georgios Portokalidis, Philip Homburg, and Herbert Bos. Paranoid an-
droid: Versatile protection for smartphones. In Proceedings of the 26th

Annual Computer Security Applications Conference (ACSAC). IEEE, De-
cember 2010.

[96] Georgios Portokalidis, Asia Slowinska, and Herbert Bos. Argos: an emulator
for fingerprinting zero-day attacks. In Proceedings of the ACM European
Conference in Computer Systems (EuroSys), Leuven, Belgium, April 2006.

[97] Guillaume Pothier and Eric Tanter. Back to the future: Omniscient debug-
ging. IEEE Software, 26:78–85, 2009.

[98] Mila Dalla Preda, Mihai Christodorescu, Somesh Jha, and Saumya Debray.
A semantics-based approach to malware detection. ACM Transactions on
Programming Languages and Systems, 30(5), August 2008.

[99] Ryan Riley, Xuxian Jiang, and Dongyan Xu. Guest-transparent prevention
of kernel rootkits with VMM-based memory shadowing. In Proceedings of
the 11th International Symposium on Recent Advances in Intrusion Detec-
tion, 2008.

[100] John Scott Robin and Cynthia E. Irvine. Analysis of the Intel Pentium’s
ability to support a secure virtual machine monitor. In Proceedings of the
9th USENIX Security Symposium, 2000.

[101] Rasta ring 0 debugger. (http://rr0d.droids-corp.org/).

[102] Mark Russinovich and David Solomon. Microsoft Windows Internals. Mi-
crosoft Press, 4th edition, 2004.

[103] Joanna Rutkowska. Subverting vista kernel for fun and profit. Black Hat
USA.

[104] Joanna Rutkowska and Alexander Tereshkin. IsGameOver() anyone? Black
Hat USA, 2007.

[105] Ravi Sahita, Ulhas Warrier, and Prashant Dewan. Dynamic software ap-
plication protection. Technical report, Intel Corporation, 2009.

[106] Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert van Doorn. De-
sign and implementation of a TCG-based integrity measurement architec-
ture. In Proceedings of the 13th USENIX Security Symposium, 2004.

[107] Sana Security. (http://www.sanasecurity.com/).

100

http://rr0d.droids-corp.org/
http://www.sanasecurity.com/

[108] Arvind Seshadri, Mark Luk, and Adrian Perrig. SAKE: Software attes-
tation for key establishment in sensor networks. In Proceedings of the
2008 International Conference on Distributed Computing in Sensor Sys-
tems (DCOSS), 2008.

[109] Arvind Seshadri, Mark Luk, Adrian Perrig, Leendert van Doorn, and
Pradeep Khosla. SCUBA: Secure code update by attestation in sensor net-
works. In Proceedings of the ACM Workshop on Wireless Security (WiSe),
2006.

[110] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. SecVisor: A tiny
hypervisor to provide lifetime kernel code integrity for commodity OSes.
In Proceedings of the ACM Symposium on Operating Systems Principles.
ACM, 2007.

[111] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert van Doorn,
and Pradeep Khosla. Pioneer: Verifying integrity and guaranteeing execu-
tion of code on legacy platforms. In Proceedings of ACM Symposium on
Operating Systems Principles (SOSP), 2005.

[112] Arvind Seshadri, Adrian Perrig, Leendert van Doorn, and Pradeep Khosla.
SWATT: Software-based attestation for embedded devices. In Proceedings
of the IEEE Symposium on Security and Privacy (Oakland), 2004.

[113] Mark Shaneck, Karthikeyan Mahadevan, Vishal Kher, and Yongdae Kim.
Remote software-based attestation for wireless sensors. In Security and
Privacy in Ad-hoc and Sensor Networks, 2005.

[114] Umesh Shankar, Monica Chew, and J.D. Tygar. Side effects are not suffi-
cient to authenticate software. In Proceedings of the 13th USENIX Security
Symposium, 2004.

[115] Monirul Sharif, Andrea Lanzi, Jonathon Giffin, and Wenke Lee. Impeding
malware analysis using conditional code obfuscation. In Proceedings of
the Annual Network and Distributed System Security Symposium (NDSS),
2008.

[116] Monirul Sharif, Wenke Lee, Weidong Cui, and Andrea Lanzi. Secure in-
vm monitoring using hardware virtualization. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS), 2009.

[117] Elaine Shi, Adrian Perrig, and Leendert Van Doorn. BIND: A fine-grained
attestation service for secure distributed systems. In Proceedings of the
2005 IEEE Symposium on Security and Privacy (Oakland), 2005.

[118] Jim E. Smith and Ravi Nair. Virtual Machines: Versatile Platforms for
Systems and Processes. Morgan Kaufmann, 2005.

101

[119] SoftICE. (http://en.wikipedia.org/wiki/SoftICE).

[120] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager,
Min Gyung Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam,
and Prateek Saxena. BitBlaze: A new approach to computer security via
binary analysis. In Proceedings of the 4th International Conference on In-
formation Systems Security (Keynote invited paper), Hyderabad, India, De-
cember 2008.

[121] Eugene H. Spafford. The Internet Worm program: An analysis. Computer
Communications, 19(1):17–57, January 1989.

[122] Sherri Sparks and Jamie Butler. Shadow Walker. raising the bar for windows
rootkit detection. Phrack Magazine (Vol. 11, No. 63), 2005.

[123] Adrian Stepan. Improving proactive detection of packed malware. Virus
Bulletin, March 2006.

[124] Weiqing Sun, Zhenkai Liang, R. Sekar, and V. N. Venkatakrishnan. One-
way isolation: An effective approach for realizing safe execution environ-
ments. In Proceedings of the Symposium on Network and Distributed Sys-
tems Security (NDSS), 2005.

[125] Sun Microsystems, Inc. Sun xVM VirtualBox. (http://www.virtualbox.
org/).

[126] Symantec, Inc. Symantec global internet security threat report: Volume
XV. Technical report, Symantec, Inc., April 2010.

[127] Syser kernel debugger. (http://www.sysersoft.com/).

[128] Peter Ször. Hunting for metamorphic. Technical report, Symantec, Inc.,
June 2003.

[129] Peter Ször. The Art of Computer Virus Research and Defense. Addison
Wesley Professional, 2005.

[130] Ariel Tamches. Fine-Grained Dynamic Instrumentation of Commodity Op-
erating System Kernels. PhD thesis, University of Wisconsin-Madison,
2001.

[131] Trusted Computing Group. (http://www.trustedcomputinggroup.org/).

[132] Amit Vasudevan and Ramesh Yerraballi. Stealth breakpoints. In Proceed-
ings of the 21st Annual Computer Security Applications Conference (AC-
SAC), 2005.

[133] VirtualSquare. Remote system call. (http://wiki.virtualsquare.org/
index.php/Remote_System_Call).

102

http://en.wikipedia.org/wiki/SoftICE
http://www.virtualbox.org/
http://www.virtualbox.org/
http://www.sysersoft.com/
http://www.trustedcomputinggroup.org/
http://wiki.virtualsquare.org/index.php/Remote_System_Call
http://wiki.virtualsquare.org/index.php/Remote_System_Call

[134] VMPsoft. VMProtect. (http://www.vmprotect.ru/).

[135] Volatile Systems LLC. Volatility. (http://www.volatilesystems.com/).

[136] Wikipedia, the free encyclopedia. Computer forensics. (http://en.
wikipedia.org/wiki/Computer_forensics).

[137] Jeffrey Wilhelm and Tzi cker Chiueh. A forced sampled execution ap-
proach to kernel rootkit identification. In Proceedings of the 10th Inter-
national Symposium on Recent Advances in Intrusion Detection (RAID),
Gold Goast, Australia, 2007.

[138] Carsten Willems, Thorsten Holz, and Felix Freiling. Toward automated
dynamic malware analysis using CWSandbox. IEEE Security and Privacy,
2007.

[139] Glenn Wurster, P. C. van Oorschot, and Anil Somayaji. A generic attack
on checksumming-based software tamper resistance. In Proceedings of the
2005 IEEE Symposium on Security and Privacy (Oakland), 2005.

[140] Min Xu, Vyacheslav Malyugin, Jeffrey Sheldon, Ganesh Venkitachalam,
and Boris Weissman. ReTrace: Collecting execution trace with virtual
machine deterministic replay. In Proceedings of the 3rd Annual Workshop
on Modeling, Benchmarking and Simulation, 2007.

[141] Heng Yin, Dawn Song, Manuel Egele, Engin Kirda, and Christopher
Kruegel. Panorama: Capturing system-wide information flow for malware
detection and analysis. In Proceedings of the Conference on Computer and
Communications Security (CCS), 2007.

103

http://www.vmprotect.ru/
http://www.volatilesystems.com/
http://en.wikipedia.org/wiki/Computer_forensics
http://en.wikipedia.org/wiki/Computer_forensics

	1 Introduction
	1.1 Dissertation contributions
	1.2 Dissertation organization

	2 Malware analysis in the cloud
	2.1 Overview
	2.1.1 Delegating the analysis to the cloud
	2.1.2 Exploiting diversity of end-users' environments

	2.2 Design and implementation
	2.2.1 Executing a program in multiple environments
	2.2.2 An in the cloud behavior-based malware detector

	2.3 Evaluation
	2.3.1 Experimental setup
	2.3.2 Evaluation on benign programs
	2.3.3 Performance overhead
	2.3.4 Evaluation on malicious programs
	2.3.5 Conceptual comparison with input oblivious analyzers

	2.4 Discussion

	3 Transparent and efficient dynamic analysis
	3.1 Intel VT-x
	3.2 Overview of the framework
	3.3 Design and implementation
	3.3.1 Framework and analysis tool loading
	3.3.2 Execution tracing
	3.3.3 State inspection and manipulation
	3.3.4 Tool isolation
	3.3.5 OS-dependent interface

	3.4 HyperDbg
	3.4.1 User interface
	3.4.2 User interaction
	3.4.3 Real world examples

	3.5 Discussion

	4 Software-based code attestation
	4.1 State-of-the-art of attestation on legacy systems
	4.2 Conqueror overview
	4.2.1 Threat model
	4.2.2 Conqueror architecture and protocol

	4.3 Conqueror implementation
	4.3.1 Tamper-Proof Environment Bootstrapper
	4.3.2 Checksum function
	4.3.3 Obfuscation

	4.4 Evaluation
	4.4.1 Prototype
	4.4.2 Experimental setup
	4.4.3 Estimating the parameters of the challenge
	4.4.4 Experimental results
	4.4.5 A real application of Conqueror

	4.5 Discussion

	5 Live and trustworthy forensic analysis
	5.1 Overview
	5.1.1 HyperSleuth architecture
	5.1.2 HyperSleuth trusted launch
	5.1.3 Requirements and threat model

	5.2 Implementation
	5.2.1 HyperSleuth VMM

	5.3 Live forensic analysis
	5.3.1 Physical memory dumper
	5.3.2 Lie detector
	5.3.3 System call tracer

	5.4 Experimental evaluation
	5.4.1 HyperSleuth launch and lazy dump of the physical memory
	5.4.2 Lie detection

	5.5 Discussion

	6 Related literature
	6.1 Malware analysis
	6.1.1 Behavior-based malware analysis
	6.1.2 Malware analysis in the cloud
	6.1.3 Post-infection countermeasures

	6.2 Code attestation
	6.3 Dynamic analysis of commodity systems
	6.3.1 Dynamic kernel instrumentation
	6.3.2 Kernel-level debugging
	6.3.3 Frameworks based on virtual machines
	6.3.4 Aspect-oriented programming

	7 Future directions
	8 Conclusions
	Bibliography

