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Abstract

This PhD thesis focuses on new types of interparticle interactions in colloidal dispersions. In partic-
ular, it considers interactions mediated by two different phenomena - biomolecular recognition and
electrokinetic flows. The general purpose of this investigation is twofold: while we investigate new
mechanisms providing new forms of colloidal interactions, we also exploit the measured interactions
to better describe the phenomena at their origin. Indeed, the observed colloidal interactions enable
to detect both biomolecular recognition and electrokinetic flows with sensitivity hardly achievable in
other ways. In all cases, interactions have been investigated by optical techniques: static and dynamic
light scattering, electric transmitted light intensity and electric birefringence.
The first part of the thesis reports a systematic study of colloidal interactions performed on a disper-
sion of charged spherical latex particles having two peculiar properties: their surface can be function-
alized with various surfactant molecules and their refractive index is very close to that of water. We
have quantified interparticle interactions through the measurement of the second virial coefficients ex-
tracted from static and dynamic light scattering measurements. We have studied particles coated with
various surfactants and in presence of various ionic strengths. In particular we have studied particles
coated with glyco-lipids, so that the colloids are effectively coated with sugar groups. In agreement
with previous literature we have found attractive interaction in carbohydrate-coated colloidal disper-
sions when calcium ions are present in the solution.
The second part of the thesis reports a previously undescribed interaction found when colloidal mix-
ture of large and small colloids charged of the same sign are under the effect of an electric field at low
(sub-kHz) frequencies. Measurements of the intensity of the transmitted polarized light as a function
of field strength and frequency on rods-spheres mixtures have revealed that the previously observed
negative torque acting on the rods at low frequency, is accompanied by a field-induced clearing of
the dispersion. Measurements performed on mixtures of large (dilute) and small (semidilute) spheri-
cal colloids show that such clearing effect is universal and due to an anisotropic redistribution of the
small spheres around the larger ones. O(E2) electro-osmotic flows, greatly enhanced by the presence
of the small spheres, can be the responsible mechanism of the phenomena observed in rod-sphere and
sphere-sphere binary mixture of charged colloidal particles.
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Introduction

The thesis reports the investigation of new types of interactions in colloidal dispersions. We studied in-

teractions mediated by two different phenomena - biomolecular recognition and electrokinetic flows.

The general purpose of this investigation is twofold: on one side we investigate new mechanisms pro-

viding new forms of colloidal interactions, on the other, we exploit the measured interactions to better

describe the phenomena that generate them. Indeed, the observed interactions enable to detect both

biomolecular recognition and electrokinetic flows with sensitivity hardly achievable in other ways. In

all cases, interactions have been investigated by optical techniques: static and dynamic light scatter-

ing, electric transmitted light intensity and electric birefringence.

The first part of this thesis is devoted to describing a method for studying biomolecular inter-

actions through light scattering experiments by using colloidal particles as interaction amplifiers.

Biomolecular interactions are often very weak and difficult to detect and quantify. The basic idea in

our work is to coat colloidal particles with weakly interacting molecular groups and to inspect the

behavior of the colloids to extract information on the molecules present on their surface.

The colloids employed in our work are spherical particles with radiusR = 30nm constituted by a

fluorurate polymer. They have two peculiar properties: their surface can be easily coated with various

molecular groups and their refractive index differs only slightly from that of water. As a consequence

of the latter property, aqueous dispersions remain optically transparent also at high particles volume

fractions. Moreover the weak scattering enables measuring the adsorption of molecular groups on

particles surface by studying the variation of the light diffused by the colloids as a function of the

quantity of adsorbing molecules added to the dispersion.

To evaluate the interaction between the particles we employed static and dynamic light scattering

measurements to determine the value of the second virial coefficientB2.B2, being a spatial integral of

the interaction potential, quantifies the colloidal interactions. In the case of non-interacting particles

the diffused intensity depends on the particles volume vp, on their volume fraction φ and on their
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refractive index. In the case of interacting particles the diffused light depends also on the interaction

potential. It can be shown that in dilute interacting system the diffused intensity I is related to the

intensity scattered by the same dispersion in absence of interaction I0 through a relation involving B2

and the particles volume fraction φ:

I = I0

(
1 + 2

B2

vp
φ

)−1

.

An analogous procedure applies also to dynamic light scattering experiments; however in this case the

relationship between the collective diffusion coefficientD and the virial coefficient is less immediate.

In biology the interaction between biomolecules is usually quantified through the binding coef-

ficient Kn (or the dissociation constant K) defined as the ratio between the concentration of free

molecules in solution and that of dimer or larger aggregates (while K = 1/Kn). We determined the

relationship between B2 and K. We evaluated the sensibility of our experimental technique in deter-

mining molecular dissociation constant and we found we are able to study very weak interactions.

We can detect dissociation constant between the particles K ≈ 10µM ; the sensibility on molecular

dissociation constant rapidly increases by incrementing the number of links between the particles.

We first measured repulsive electrostatic interaction due to the charges present on particles sur-

face. We coated particles with various surfactants and we examined the light diffused by the colloidal

dispersions at different ionic strengths. We modified the repulsive interaction between the colloids

both by incrementing the ionic strength of the dispersion and by adding to the particles surface a sur-

factant, the HTAB, charged of opposite sign with respect to the particles. By measuring the diffused

light intensity and the diffusion coefficient we determined for each sample the value of the second

virial coefficient B2. From the value of B2 by using the expression of the electrostatic potential, we

quantified the particles charge, which results dependent on the ionic strength and on the surfactant

used to coat the surface of the colloids. The charge of the particles estimated from samples where

the charges have been screened through electrolyte ionic strength is found to be different from that

determined by screening charges through the HTAB adsorption. This finding is in agreement with

renormalization charge theory which asserts that the charges involved in the particles interactions can

be different from the structural charges present on the particles surface.

We determined two different experimental conditions in which particles interact as Hard Sphere,

either by screening charges through ionic strength or by adding to the dispersion a given quantity of

HTAB. The determination of the Hard Sphere condition is preliminary to the study of attractive inter-

actions since residual electric repulsion could impair the detection of other, more subtle, interactions.
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We decided to use our colloidal-based detector to study carbohydrate-carbohydrate interactions.

Despite they play a crucial role in many cellular processes, carbohydrate interactions are very weak

and difficult to detect. We performed dynamic light scattering measurements of suspensions with

particles coated with Dodecyl-α-D-Maltoside, whose molecules consist of an hydrophobic tail while

the head is a disaccharide. We prepared samples by adding to the dispersions HTAB and electrolyte,

so to make particles interact as Hard Spheres. In agreement with the literature, we found attractive

interaction between carbohydrate-coated colloids when Calcium ions are present in the dispersion. We

verified the specificity of the attractive interaction between carbohydrate-coated colloids by adding

to the sample the EDTA, a chelant molecule for Calcium ions. We observed an enhancement of the

diffusion coefficient indicating a redispersion of the Calcium mediated carbohydrate-carbohydrate

links.

In conclusion, the first part of this thesis presents a systematic study of interactions in a particu-

lar colloidal systems which, due to its peculiar properties, allows to study by optical means aqueous

colloidal dispersions at high volume fractions. In such system interactions can be easily tuned and

balanced. The acquired data demonstrate that by studying the ensemble behavior of the colloidal dis-

persion it is possible to obtain information on the interactions between particles superficial groups.

This technique could be very interesting for studying weak molecular interactions, usually difficult to

detect and quantify.

The second part of this thesis reports a previously undescribed effect originating in rod-sphere

and sphere-sphere mixtures of charged colloids mixture in presence of an external oscillating electric

field.

The behavior of colloidal dispersions under the effect of an external electric field is strictly deter-

mined by the dielectric properties of both the colloids and the suspending medium. In particular, when

the colloids are charged particles, the behavior of the dispersion strongly depends on the electric field

frequency. The simplest regime can be found at high field frequencies (MHz) where hydrodynamic

and diffusional effects can be neglected. In this regime charged particles with their electric double

layer can be assimilated to dielectric particles with a conductive skin and the behavior of colloids in

electric field is efficiently described by the well known Maxwell-Wagner model, usually applicable

to conductive particles. At low field frequencies, instead, electrodynamic processes and solvent flows

play a crucial role in determining the behavior of the particles. In particular perturbation of the local

neutral salt concentration, known as concentration polarization, is the basic mechanism at the ori-

gin of the so called α-relaxation. The concentration polarization asymmetrically affects the electric
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double layer length λD and charge distribution on the two side of the particle. This process has a

characteristic frequency

να ≈
D

R2

where D is the mean ionic diffusion coefficient and R is the particle size. The concentration polariza-

tion is the slowest electrokinetic effect for charged particles in electrolyte solution.

It is known from the literature that rod-like particles when exposed to an electric field orient pref-

erentially parallel to the field direction. However Mantegazza et al., by performing birefringence mea-

surements, observed a low frequency phenomenon of anomalous orientation occurring when charged

rod-like particles are dispersed in a mixture with a sufficient concentration of smaller spherical parti-

cles charged of the same sign. In this case rods orient preferentially perpendicular to the field direc-

tion. Since the low frequency anomaly can not be due to an induced dipole-induced dipole interaction,

it should be interpreted in terms of other non-trivial mechanism.

This thesis work offers a better insight into the physics of such anomalous orientation phe-

nomenon. We have performed Electric Transmitted Light Intensity (ETLI) measurements to study

the scattering cross section of the colloidal dispersions. In particular we have determined the optical

turbidity τ of the colloidal dispersion under the effect of an external ac electric field. τ is related to

the transmitted intensity via the extinction equation:

I = I0exp(−τL),

with I0 incident intensity, L length of the cell and I dc component of the transmitted intensity while

the field is applied. We performed measurements with light polarization parallel or perpendicular to

the field direction. By evaluating the field induced turbidity variation we confirmed the observation

of the low frequency anomalous orientation in rod-sphere mixture. Moreover, in the same frequency

range, we found an overall field-induced clearing of the mixture. By modeling the diffuse light ex-

pected in our colloidal dispersion we demonstrated that such clearing effect is due to a structuring

of the secondary particles around the rods taking place in the same frequency range as the negative

orientation of the rods. The characteristic frequency of the phenomenon νmix
∼= 5 kHz is signifi-

cantly lower than the expected α-relaxation frequency. The value of νmix is instead comparable with

Ds/R
2, the diffusion time of the small spheres around the rods of mean size R. The hypothesis is

that νmix could reflect a process analogous to the ionic concentration polarization where the small

charged spheres act as coions.

To test this hypothesis and to seek a generalization of these phenomena we performed experiments
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in mixture of large and small spheres. We found the same low frequency field induced clearing for

both polarization at frequencies ν < νmix ≈ 3− 5 kHz. The observation of a clearing phenomenon

in spheres mixtures, where no orientational effect is possible, clearly indicates that the application

of an electric field produces an interaction between large and small particles. By modeling the light

diffused by the mixture through a second virial expansion of the state equation for binary colloidal

dispersion, we found that a decrease of the scattered intensity can be provoked by a repulsive inte-

raction between large an small sphere. Data also show that the clearing is larger when the light is

polarized perpendicularly to the field direction, thus indicating an anisotropic interaction.

To interpret ETLI data we modeled the geometrical distribution of the small spheres around each

larger sphere. Due to basic optical properties, light scattering experiments are not sensible to density

variation with odd symmetry. To account for our data, we thus assumed a small spheres distribution

with even symmetry, with particles concentration incremented at the poles of the larger particles

along the field direction and decreased in the equatorial region. We have reproduced the measured

field induced turbidity variation with appropriate values for the refractive index variation and for the

spatial extension of the accumulation and depletion regions.

All the observed phenomena point to the following scenario. As the electric field is turned on small

particles accumulate, by mobility mismatch, on one side of the larger rod-like or spherical particles,

while depleting on the other side. This polar accumulation remains undetected by ETLI experiments

because of symmetry. Such accumulation and depletion process continues until it is compensated at

ν < νmix by diffusion of the small particles across the larger ones. The described process is analogous

to the concentration polarization for electrolyte ions. We conceive this “colloidal concentration po-

larization” as the only possible electrokinetic process having the correct frequency that could justify

the onset of strong non-linear electro-osmotic flows around each large sphere. At low frequency such

electrokinetic flows have the appropriate amplitude to account for the negative torque in rod-sphere

mixture and for the depletion of small spheres around the larger ones.

In conclusion in this thesis we demonstrated that biomolecular recognition and electrokinetic

flows generate previously undescribed interactions phenomena. This interactions constitute:

• a method to detect and quantify weak molecular interaction;

• a mean to draw attention to a new electrokinetic phenomenon.

The PhD work has regarded also the modernizing of the apparatus for Birefringence and Electric

Light Scattering measurements by writing a LabVIEW program to remotely control the apparatus
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instruments.
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1 Colloidal dispersions

1.1 Colloidal particles

Colloidal dispersions are liquid solutions in which small scraps of different material, usually solid

particles or drops of a non-mixable liquid, are suspended by Brownian motion. Nature presents many

different types of colloidal dispersions: the blood, the milk, the ice-cream are only few examples of

a wide variety of products ranging from food to cosmetics and paints. The definition of colloidal

particles refers to particles having a radius varying from some nanometers to 500nm. The lower

limit comes from the requirement that the colloids are significantly larger than the molecules of the

constituent material and of the suspension medium. The upper limit ensures that the particles are small

enough to have a Brownian diffusion motion not dominated from gravitational force or convection

effect.

The interest for colloidal dispersions arises from different areas. Historically physicists have

looked at colloids as a model system to verify statistical physics predictions. In fact colloidal particles

are subject to mutual interactions which can be tuned and modified and whose intensities determine

the macroscopic properties of the dispersion. Hence colloidal dispersions allow to experimentally

study the connection between single constituent properties and the ensemble behavior. From a more

practical point of view, colloids represent a rich source of applications: cosmetics, paints, foods,

bonding agents are only some examples of materials whose efficiency directly depends on the pro-

perties of the constituent colloidal dispersions. More recently colloidal systems have been studied

for interesting applications in the biomedical fields. In this case, the attention is devoted more to the

single particle behavior than to the ensemble properties. In fact colloids present different character-

istics from their corresponding macroscopic materials: for example semiconductor nanoparticles are

strongly fluorescent or ferromagnetic colloidal particles are easily magnetizable.
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Colloidal dispersions

Colloidal particles are usually 103 times larger than atoms. This fact has important consequences

on colloids properties and behavior. The number density ρ (number of elementary unit per unit vol-

ume) of an atomic material is about 5 · 1022 cm−3, for a colloidal suspension is about 5 · 1013 cm−3.

It follows that, since the strength of a solid is proportional to ρ while the particle potential energy is

comparable in the two cases, colloidal crystals are about 109 times weaker than the corresponding

atomic ones. Colloidal crystal can be easily disrupted or melted, provoking fluctuation in the suspen-

sion. Defining the relaxation time τR as the time taken by a particle to diffuse for a distance equal to

its radius

τR ≈ R2

D
,

where R and D stand for the particle radius and the diffusion coefficient respectively, it results that

for an atomic material τR ≈ 10−11 s while for colloids one is about 10−2 s. This means that colloidal

crystals have well-defined metastable (non-equilibrium) states, having lifetimes long enough to allow

experimental study.

The scattering of radiation constitutes an important technique for the experimental study of col-

loidal system; light is the most used type of electromagnetic radiation, since its wavelength matches

the range of colloidal extensions. In chapter 2 some experimental techniques involving light scattering

will be described, with particular emphasis on the physical quantities that can be estimated with such

measurements techniques.

The properties of colloidal dispersion strongly depend on the mutual interactions between the

particles. Interactions can be attractive, such as Van der Waals force, or repulsive, as the electrostatic

force. Colloidal dispersions are stable only when the repulsive forces are stronger than the attractive

ones. In the next section a brief description of the interparticles colloidal interactions will be given.

It’s worthwhile noticing that the behavior of colloidal system is also affected by the solvent-particle

structural properties, i.e. the electric charge, the dielectric constants of the materials.

1.2 Colloidal interactions

1.2.1 Hard sphere potential

Hard sphere potential describes the easiest possible interaction among colloidal particles. Colloidal

particles are considered as impenetrable sphere, so that the resulting potential is an infinitely repulsive
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Stabilization 1.3

barrier placed at a a distance 2R, with R particles radius:

V (x) =

 ∞ x < 2R

0 x > 2R.
(1.1)

The excluded volume of a sphere with radius R is Vex = 2
3π(2R)2, namely 4 times the particle

volume.

1.2.2 Van der Waals attraction

Two bodies are attracted by a force caused by the interaction between the fluctuating electromagnetic

fields associated with their polarizabilities. This force is known as Van der Waals force. The attrac-

tion between two atoms at a distance r is proportional to r−6 (Lennard-Jones potential) while the

interaction between two particles of radius R is given by:

VA(r) = −A
6

[
2R2

r2 − 4R2
+

2R2

r2
+ ln

(
1− 4R2

r2

)]
, (1.2)

where r is the distance between the particles centers. The Hamaker constant A is determined by

both colloids and solvent properties, in particular their frequency-dependent polarizabilities. A = 0

in case of particles and dispersing medium having the same polarizabilities. Van der Waals force

creates a potential minimum near r = 2R, which can be greater then the thermal energy kBT (see

Figure 1.1). Not stabilized suspended particles aggregate irreversibly under the effect of this force. It’s

therefore necessary to stabilize the colloidal dispersions, two approaches are commonly used: charge

stabilization and steric stabilization.

1.3 Stabilization

1.3.1 Charge stabilization

Charged particles can be considered as “macroions”: the ionisable groups on their surfaces dissociate

when the particles are immersed in polar liquid such as water, giving rise to a net charge typically

of the order of 102 − 105 elementary charges e. The counterions leaving the surface move away

from the macroion with Brownian motion, although they remain in its field of force. An electrical

double layer, composed by the discharged counterions and by the ions of the electrolyte present in the

suspension, is generated in proximity of the charged colloids. When two macroions approach each

other, the overlap of the respective double layer prevents the particles aggregation, due to the double
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Colloidal dispersions

Figure 1.1: DLVO potential as a function of the particles interdistance.

layer repulsive force. Hence colloidal dispersions of charged particle are stable.

The first detailed treatment of the electric double layer have been proposed by Verwey and Over-

beek [1]. This treatment describes the average spatial distribution of the ions in the macroions poten-

tial fields at the equilibrium with a Boltzmann distribution. This is done by regarding the ions in the

suspension as point charge moving of Brownian motion and having high enough velocities. Poisson

equation is then used to calculate the interaction potential. The resulting Poisson-Boltzmann equation

is linearized. The simplest (but approximate) expression for the effective interaction potential between

two charged colloids is the so called Yukawa potential:

VR(r) =

 ∞ r < 2R
q2
e

εr e
−κer r > 2R,

(1.3)

where qe is the effective macroions charge, ε is the solvent dielectric constant and κe is the Debye

screening parameter, that in the case of a symmetric electrolyte assumes the form:

κe = κ =
4π
εkBT

∑
j

ρjq
2
j , (1.4)

with ρj and qj number density and charge of the j ions respectively. The quantity κ−1 has the di-

mension of a length and is called Debye screening length. From Equation 1.4 it is evident that the
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Stabilization 1.3

electrolyte concentration strongly affect the Debye length and thus the interaction potential.

Derjaguin, Landau, Verwey and Overbeek developed a theory to consider both the Van der Waals

force and the electrostatic repulsive interaction. According to their model the total pair potential

V (r) (DLVO potential) is given by the sum of the Coulombic repulsion VR(r) (Equation 1.3) and of

the attractive force VA(r) (Equation 1.2) and has the form sketched in Figure 1.1. For r ≈ 2R the

attraction dominates and V (r) has a primary minimum. The repulsive interaction dominates for larger

r, except in the case of weakly charged particles and of high electrolyte concentration. Hence there is

a maximum in the potential trend, which, to ensure dispersion stability, must be greater than thermal

energy. Since Van der Waals attraction decays as r−6 while the repulsive force has an exponential

decay, the total potential V (r) presents a secondary minimum for larger value of r. In conclusion,

a colloidal dispersion is stable if there is a negligible probability that the separation between two

particle is smaller than the position of the maximum in V (r).

1.3.2 Steric stabilization

Steric stabilization method consists in coating the colloidal particle surface with layers of polymer.

Many different types of polymer can be used for this purpose, ranging from short chains to more com-

plex structures. Coating can be achieved through physical adsorption or through chemical bonding of

particles and polymers. Due to the great variety of systems obtained by varying particles, solvent or

polymer chains, it’s not possible to give a theory of steric stabilization which has the same generality

as that of charge stabilization. In this context we can just describe the origin of the repulsive force

between polymer coated colloids.

When two coated particles in Brownian motion approach each other, the polymer chains can only

partially compress and interpenetrate. Hence a repulsive force between the particles originates. Differ-

ently form electrostatic stabilization the repulsive force is not influenced by the electrolyte concentra-

tion. It’s worthwhile noticing that steric stabilization is effective also at high colloidal concentrations,

while charge stabilization is more efficient at low concentrations.

To better describe the process of steric stabilization, it’s necessary to investigate how polymer

in solution interact with the solvent medium. Indeed the polymeric chain conformation is strongly

affected by the interaction of each chain segment with the liquid molecules. In a “good solvent”

polymer chains tend to maximize the polymer-solvent contacts, and thus the chains will be elongated.

On contrary, in “bad solvent”, the polymer chains assume a contract conformation; nevertheless in this

case the excluded volume interaction between chain monomers become non negligible. In particular,

if the two effects are balanced the solvent is called θ−solvent. It has been shown by Flory that the
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polymer mean dimension can be written as the mean quadratic distance between the start and the end

of the chains and the following relation is valid:

〈
r2
〉1/2 ∝ nν ,

where n is the number of total monomers and ν is a variable parameter (for a good solvent n = 0.588).

The solvency of a liquid is influenced by the temperature so that a solvent can become a good or a

bad solvent by modifying its temperature.

Polymer-solvent interactions play a crucial role also when polymer chains are adsorbed on col-

loids surfaces and also in this case the polymer-polymer interaction is influenced by the temperature.

At the θ−point there is no interaction, while in other conditions the interaction can be both attractive

or repulsive. In a good solvent, if Van der Waals attraction can be neglected, the effective pair potential

between colloids can be approximated with an hard sphere potential, as described in subsection 1.2.1.

In this case the radius to be considered to calculate the excluded volume is the sum of the particle

radius and of the coating thickness, also if in many condition the polymer dimensions are negligible

with respect to particle ones. When polymer can attract each other, the effective colloidal potential

will contain, in addition to the hard core steric repulsion, a narrow attractive well. This situation is

described through a Sticky Hard Spheres model, which will be analytically presented in the following

chapters.

1.4 New colloidal interactions

A proper characteristic of colloidal dispersion is the high surface-to-volume ratio; this fact together,

with the small dimension of colloidal particles, make surface phenomena determining factors for the

physical behavior of these systems. Moreover, colloidal suspensions allow to easily vary the con-

ditions into which interactions are analyzed: for example, to modify the intensity of the repulsive

interaction between charged particles it is enough to change the electrolyte concentration in the solu-

tion. During the past few years many interesting phenomena involving colloidal particles dispersions

have been discovered and reported. In particular, we devoted our attention to two different classes of

colloidal interaction phenomena.

1.4.1 Biomolecular mediated interactions

In recent years many papers have been published linking biology to colloidal science. In particular

two major research approach can be identified.
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On one side controlling and tuning interactions between particles has always been a relevant chal-

lenge both experimentally and theoretically. It’s worthwhile mentioning a work of Valignat et al. Re-

versible self-assembly and directed assembly of DNA-linked micrometer-sized colloids[2]. They pre-

pared DNA-functionalized polystyrene microbead binary mixtures by conjugating two types (green

and red) of fluorescent NeutrAvidin-coated particles with biotin-modified DNA. Various polymers,

differing for the chain-length, were also added to the solution to prevent particles collapse, since

polymer brush imparts steric repulsion between the particles and limits the number of available link-

ers between them. The particles had a diameter d = 1 µm. A first DNA sequence, called G-type, was

attached to green-particles surface while another type, called R-type, was attached to red-particles

surface. G-type and R-type DNA sequences were 61-base oligonucleotides: 50 bases are in common

to both the DNA’s and are hybridized to form a spacer. The 11-end bases of G-type sequence are

complementary to the 11-end bases of the R-type sequence, thus acting as “sticky tail”. G-type and

R-type microbeads are shown in Figure 1.2.

Figure 1.2: G-type and R-type microbeads (radius R0 = 0.5 µm) stabilized through a polymer which
forms a layer of thickness h on the particles surface. Part of the DNA sticky ends is hidden inside this
layer [2].

In standard experiments R-type and G-type beads were mixed in equal parts and observed by op-

tical fluorescence microscopy. At room temperature with four copolymers as stabilizers a rapid for-

mation of clusters was observed and after few hours aggregation was almost complete. In Figure 1.3

a detailed study of the number of singlet breads fraction as a function of the temperature for different

stabilizers is reported. It shows the reversibility of the aggregation process and a strong dependence

of the melting temperature T b
m on the type of stabilizer, where the melting temperature is defined as

the temperature at which half of the beads are unbound. In particular T b
m increases as the mass of the

copolymer decreases, according to the fact that larger polymer spacers keep the particles further apart
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thus reducing the number of DNA links.

Valignat et al. proposed also a comparison between the melting temperature of the DNA- functional-

ized beads and the melting temperature T s
m of the free DNA in solution, i.e. the temperature at which

half strands are random coil and half form double helixes. T s
m can be calculated through nearest-

Figure 1.3: Fraction of single unbound beads vs. temperature. Discrete marks are experimental point
obtained with different stabilizers while solids lines are the best fits [2].

neighbor thermodynamics and results of the same magnitude order of T b
m. However both the dif-

ference between T s
m and T b

m and the strong dependence of the melting temperature on the stabilizers

length, bring to the conclusion that adsorbing copolymers on microbrads drastically changes the melt-

ing behavior of the DNA-functionalized particles.

Valignat et al. proposed also a geometric estimation of the available DNA links Ns between two

coated beads (see also Figure 1.2):

Ns =
2πR0

L
(L− h)2Γ, (1.5)

where Γ is the particle surface density of strands.

Another approach to the “biology combined with colloidal science” research current consists in

using colloidal particles as mediators and amplifiers for the study of biological interactions. The dif-

ference between the two approaches is that, in the first one biology is at service of colloidal science to

improve colloidal potentiality, while in the second case colloids are exploited to get better knowledge
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of some biological interactions.

Baksh et al. [3] proposed a study of membrane-membrane interactions which employs colloidal

phase transition of membrane-coated silica beads (see Figure 1.4). Membrane-derivatized silica beads

were dispersed, underwater, where they settle gravitationally onto the underlying substrate forming

a two-dimensional colloid. As highlighted in section 1.1 the behavior of a colloidal system depends

on the pair potential interaction between suspended particles; for membrane-coated silica beads the

potential is dominated by the membrane-membrane interactions. The chemical composition of the

membrane was adjusted to modulate pair interaction potential to give rise to condensed phase. Thus,

the effects of protein binding to membrane-associated ligands were expected to produce significant

change in colloidal phase. It was found that in all cases proteins binding triggers a condensed-to-

Figure 1.4: Schematic illustration of the membrane-derivatized silica beads [3].

disperse colloidal phase transition. A quantitative analysis of the phenomenon was performed by

extracting the pair distribution function g(r) (see Figure 1.5).

In literature have been also reported a series of study on carbohydrate molecules performed by

using gold nano-particles as substrate [4, 5, 6, 7]. Carbohydrates are a class of molecules that, al-

though very weakly interacting, are fundamental in life: they play a crucial role in cellular transport

and recognition phenomena. Their micro-domains are functional units associated with cell adhesion,

signal transduction and other normal and pathological processes. Characteristic features for carbohy-

drates interaction are its strong dependency on divalent cations and its extremely low affinity, which

is compensated in nature by polyvalent presentation of the ligands: while the single molecule interac-

tion is weak, usually carbohydrates interaction involves a molecular ensemble, so that the resulting

interaction is much more intense. However these features make the study of such interaction a real

challenge.

Colloidal particles coated with carbohydrate molecules are very similar to real biological system, and
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Figure 1.5: Protein-binding-triggered colloidal phase transition. a Time sequence of images of the
condensed-to-dispersed colloidal phase transition, triggered by protein addition. b Corresponding
plot of g(r) [3].
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allow to study and quantify the carbohydrate interactions. In [4, 5] carbohydrate molecules have been

modified to have a lipid tail and a glycol-head (glycosphingolipid), in order to adhere to gold particles

of spherical shape with radius of 3nm. The principal experimental technique used in these works is

the Surface Plasmon Resonance. A schematic representation of the studied systems is shown in Fi-

gure 1.6: gold surfaces have been coated with glycolipid. It has been studied the interaction between

these functionalied surfaces and gold nanoparticles covered with the same carbohydrate. It has been

Figure 1.6: Schematic representation of the binding structure used to study carbohydrate-carbohydrate
interactions in [4].

observed that the carbohydrate-carbohydrate interaction is active only when Ca2+ ions are dissolved

in solution, according to the well known fact that carbohydrate interactions strongly depends on the

presence of divalent ions.

In the cited paper the principally studied carbohydrate are the LewisX and the Lactose. The first

one presents a slow association phase and a gradual dissociation phase; the binding has a high affinity

and a dissociation constant K = 5.4× 10−7M . The measured dissociation constant for the Lactose-

Lactose binding is K = 1.4 × 10−5M , two magnitude order inferior to the LewisX one. Thus the

Lactose interaction is much weaker. A common characteristic to all cited papers is that the collapse

of the colloidal system is employed to study and quantify biomolecular interaction.

We employed light scattering technique to study and quantify carbohydrate-carbohydrate interac-

tions. According to [8], low-refractive-index nanoparticles can be used to detect molecular interaction

and quantify the dissociation constant of the binding. This methods allows the study of interactions

in a low intensity regime, because it does not need colloidal particles collapse.
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1.4.2 Electric field induced electrokinetic interactions

In the second part of this PhD thesis our attention has been devoted to a particular effect originating

in colloidal suspension under the effect of an external oscillating electric field.

The first observation of electokinetic phenomena date back to 1809, when Reuss observed that

clay particles dispersed in water migrate under the effect of an electric field [9]. Electrokinetic phe-

nomena are characterized by tangential motion of liquid referred to an adjacent charged surface and

involve the interaction between ionic screen clouds, applied electric fields and hydrodynamic flows.

They play a significant role in colloidal and interface science [10, 11, 12], not only as a tool for sur-

face characterization but also for their many practical applications for example in analytical chemistry,

separation science and electrochemistry. The most important electrokinetic phenomena are:

• Electrophoresis: refers to the relative movement of particle with respects to a stationary liquid

under the influence of an external electric field.

• Electroosmosis: in an electrolyte solution the liquid in proximity of a charged surface is dragged

under the influence of an external electric field (see section 5.4 for a detailed description).

• Streaming potential : a potential difference originates when an electrolyte is forced to flow past

a charged surface.

• Sedimentation potential : a potential difference originates when charged particles sediment in a

liquid.

Electrokinetic phenomena are typically second order phenomena, where forces of a certain kind

create fluxes or flows of another type. The basic mechanism which regulates electrokinetics is as

follows: when a charged surface is immersed in an electrolyte, a ionic screening cloud (double layer)

forms in proximity of the surface. In most situations the double layer is thin compared to the other

system dimensions. If an electric field is applied, the ions in the screening cloud experience a force

which gives rise to a fluid flow whose velocity approaches the stationary Smoluchowski value just

outside the charged double layer:

u = −εζ
η
E‖, (1.6)

where ε and η are the solvent dielectric constant and viscosity respectively, E‖ is the component of

the electric filed tangential to the surface and ζ is the so called “zeta potential”, the potential drop

across the double layer.
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Figure 1.7: Pattern of distribution of nonlinear flows near a polarized particle.

The simplest theory to study electrokinetic phenomena is the Standard Electrokinetic Model

(SEM) [10, 11]: only linear electrokinetic effects are considered and quantities like particle mobility,

ionic current, particle polarization are modeled through a set of linearized O(E) equations. One of

the basics approximation assumed in SEM is that the zeta potential ζ is considered an equilibrium

quantity, and thus taken to be constant.

However, in many cases, the combination of electric and dynamic effects give rise to non-trivial

interaction phenomena. As reviewed by Squires and Bazant [13], during last decades many interest-

ing and counter-intuitive effects have been experimentally discovered and theoretically predicted. We

consider some pioneering theoretical work of the Ukrainian school [14, 15]. Murtsovkin was the first

to predict that, under certain conditions, nonlinear solvent flows appear near disperse particles polar-

ized by an external electric field. In particular, in [15], he considers the case of dielectric or infinitely

polarizable spherical particles under the action of an alternating electric field and demonstrates that in

both cases nonlinears flows originate near polarized particles having the distribution pattern sketched

in Figure 1.7.

In recent years a renewed interest toward electrokinetic phenomena have been documented, thanks

also to the growing interest for microfluidic application where electrokinetics plays a crucial role.

Squires and Bazant published a series of work [13, 16] on induced-charged electro-osmosis (ICEO)

at polarizable surfaces, a physical process discovered independently by Ramos et al. [17] in experi-

ment and by Ajdari [18] in theoretical calculations similar to that predicted by Murtsovkin for metal

particles. The basic mechanism is as follows: consider a ideally polarizable conducting body in an

19



Colloidal dispersions

electrolyte subject to an electric field. Initially the field lines intersect the particle surface at right an-

gle to satisfy boundary conditions. However, the field drives current of ions in the electrolyte, which

cannot penetrate the solid/liquid interface. At low frequencies, ions accumulate and this charge cloud

expels field lines, until none intersects the particle surface. The induced charge is dipolar, giving rise

to quadrupolar ICEO flow (see Figure 1.8), similar to the one depicted in Figure 1.7. In this context,

Ajdari [18] first predicted that an asymmetric array of electrodes, subject to AC forcing at particular

frequency, could function as a microfluidic pump as many groups later demonstrated experimentally

[19, 20, 21].

Figure 1.8: Electro-osmotic flow around a conducting cylinder with zero net charge.

Another surprising phenomena involving electric field effect on colloidal solution is reported

by Grier [22]. He performed experiments with aqueous suspension of monodisperse colloidal silica

spheres with diameter d = 3µm confined between two parallel metal coated glass surfaces which al-

low to apply an external electric field to the solution. For biases below 2.4V the ions in solution screen

out the electric field. For higher biases, the spheres levitates into clusters: each cluster is composed

by a toroidal vortex in which spheres move upwards outside and downwards inside the vortex (see

Figure 1.9). The origin of this phenomenon is a combined action of electrokinetic and gravitational

forces.

All the cited works document the great variety and complexity of electrokinetics phenomena.

The second part of the thesis work investigates an intriguing phenomenon firstly observed by

Mantegazza et al. [23]. They studied binary mixture of charged rod-like particles immersed in a sea

of smaller spherical particles charged of the same sign, noticing the occurrence of an anomalous

birefringence signal, which corresponds to an anomalous field-induced particles orientation. In ab-

sence of secondary particles, as explained in chapter 5, rod-like particles align parallel to the electric
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Figure 1.9: Colloidal vortex rings structure. The inset shows the experimental geometry, with parallel
metal coated glass surfaces applying a constant vertical bias to a confined suspension.

field direction. When rod-like particles are immersed in a dispersion of small spheres, the rods align

perpendicularly to the external field. The exploration of many different dispersions indicate that this

anomalous behavior is a universal feature of the electric response of mixture of charged rod and

spheres. In [23] a quantitative analysis of the phenomenon is performed; however the physical pro-

cesses governing this behavior are still unknown. This thesis work attempts to acquire better insight

into the physics of these systems, taking advantage of the theoretical ICEO model.
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2 Experimental techniques and

materials

When a material is exposed to a light beam, the incident electromagnetic field exerts a force on the

charges of the medium. As a consequence charges are accelerated and radiate light. In a region of the

material smaller than the cube light wavelength, all the atoms experience basically the same electric

field. Considering many subregions, the scattered electric field is obtained by the superposition of

the field scattered from each subregion. If the medium is uniform, namely the dielectric constant

is the same in each subregion, the waves diffused by each subregion have the same amplitude but

differ for a phase factor depending on the relative spatial position of the subregions. Thus scattered

waves interfere constructively only in the forward direction. If the dielectric constant is not uniform,

the radiated waves are no more identical in amplitude and scattering take place in directions other

than the forward one. According to this view, light scattering is due to dielectric constant fluctuations

inside the illuminated volume.

Light scattering is a versatile and non-invasive method to study diffusive systems. Many different

experimental techniques employ the scattering of light as basic physical mechanism to detect pro-

perties of the considered medium. We present some of these techniques with particular emphasis on

the physical mechanisms exploited by the measurements and on the physical quantities they allow to

study.

2.1 Static Light Scattering

In a scattering experiment a beam of plane wave monochromatic light is incident on a scattering

medium and the diffused intensity is measured at various angles. Indicating with k0 and k the wave
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Figure 2.1: Scattering vector.

vector of the incident and diffused wave respectively, the difference vector q = k0 − k is called

scattering vector (see Figure 2.1). In the case of elastic scattering |k0|=|k| so that the amplitude of

the scattering vector results:

q = |q| = 4πn
λ
sin(

θ

2
), (2.1)

with n refractive index of the medium, λ wavelength of the incident beam and θ scattering angle.

In the most general case, the intensity diffused by particles of arbitrary form and dimension can be

calculated by solving Maxwell equation with particular boundary conditions (Mie theory). However,

due to the complexity of such calculations, some approximations can be assumed to simplify the

treatment.

The most used approximations are the Rayleigh and the Rayleigh-Gans approximations. The first

applies to particles smaller than the light wavelength λ and with generic refractive index np. The parti-

cles act as punctiform dipoles that oscillate at the same frequency of the incident field. The Rayleigh-

Gans approximation is applicable to particles with larger dimensions than the light wavelength and

relative refractive index approximately equal to one, that means

m ≡ np

ns
≈ 1, (2.2)

where ns is the solvent refractive index. Within the Rayleigh-Gans approximation, the treatment of

light diffusion is performed by dividing the particles volume into elementary volumes each satisfying

Rayleigh approximation hypothesis. The contributions of all elementary volumes are summed.

24



Static Light Scattering 2.1

The Rayleigh model expresses the intensity I diffused at a distance r from spherical particles in

the case of light polarized perpendicularly to the scattering plane:

I ∼=
I0R

6k4

r2

(
m2 − 1
m2 + 2

)
, (2.3)

where R is the particles radius, k the incident wavevector amplitude and m is defined as in Equa-

tion 2.2. If the observation point is not on the scattering plane Equation 2.3 is modified to include the

dependence on the azimuthal angle φ (see Figure 2.2):

I ∼=
I0R

6k4

r2

(
m2 − 1
m2 + 2

)
sin2φ. (2.4)

Our measurements are performed at φ = 90°. Equation 2.3 and Equation 2.4 have a 1/r2 dependence,

P

k0 kd
e

e||

Figure 2.2: Scattering plane.

where r is the distance between the particle and the detector. This dependence assures that the total

scattered power across a spherical surface centered on the scattering volume does not depend on r.

The k4 factor embodies the dependence on the radiation employed: i.e. a blue light (λ = 450nm)

compared to a red light (λ = 670nm) produces an increment of the scattered intensity proportional to

(670
450)4 ∼= 5. It worthwhile noticing that the diffused intensity depends on the square of the scattering

volume, namely for spherical particles on the sixth power of the radius.

The Rayleigh-Gans approximation is valid when the following conditions are satisfied:

|m− 1| << 1

2kR |m− 1| << 1
(2.5)
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The fundamental hypothesis for this approximation are shown in Figure 2.3.

P A
B

1
2

Figure 2.3: The volume of a particle satisfying Rayleigh-Gans approximation conditions can be de-
composed into elementary volumes (i.e. A and B) which radiate as Rayleigh dipoles. The total dif-
fused intensity is found by summing the contributions from all the elementary volumes.

The particle volume can be subdivided into elementary volumes ( A and B in the figure): each volume

is a source of diffused waves which interfere causing a total diffused intensity in each spatial direc-

tion. Equation 2.5 assures that there is a negligible phase lag between the elementary volumes. The

Rayleigh-Gans approximation can be applied also to particles with dimensions greater than the light

wavelength if their refractive index is similar to the solvent one.

Considering polarized radiation, the scattering amplitude diffused by each elementary volume v

is given by:

dA(θ) = i

(
3
4π

)
k3

2
(m− 1)eiδdv

The exponential term includes a dependence on the observation angle θ, which is not present for non-

interacting Rayleigh scatterers. It is easy to show that δ = q · r, where |r| is the distance between the

scattering elementary volume and |q| = 4π
λ sin( θ

2) is the scattering vector (see Figure 2.4).

The total diffused intensity is calculated through the integral of the contributions coming from the

elementary volume on the total particle volume V :

A(q) =
(
i

2π

)
k3(m− 1)

∫
V
eiq·rd3r.

26



Static Light Scattering 2.1

A

B

P

r

P’

n

m

} r n.
r m.

Figure 2.4: Geometric construction of the phase difference between to diffused waves coming from
two points A and B of the same particle. The difference between path PAP’ and the path PBP’ is given
by dr = r · (m−n), where n and m are the unit vector pointing in the direction of the incident and
the diffused field. Hence δ = r(2π

λ )sin( θ
2) = r · q.
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The total scattered intensity is given by:

I(q) =
I0
k2r2

|A(q)|2 = I0
k4v2

4π2r2
(m− 1)2P (q),

where P(q) is defined as:

P (q) =
1
v2

∣∣∣∣∫
V
eiq·rd3r

∣∣∣∣2 = |F (q)|2 . (2.6)

F (q) is the particle form factor. For particles with simple geometry it can be calculated as an integral

on the particle volume. In the case of spherical particles F (q) assumes the value:

F (q) =
3

(qR)3
(sin(qR)− qRcos(qR)) =

(
9π

2(qR)3

)1/2

J3/2(qR) (2.7)

where J3/2 is the Bessel function of order 3/2.

Correlated particles

When the scattering volume contains spatially correlated particles, the scattered intensity must include

a term S(q), called structure factor, that accounts for the spatial correlation between fields diffused

by different particles. It is possible to show that the intensity diffused by a volume V containing N

particles satisfying the Rayleigh-Gans approximation requirements is:

I(q) =

〈∣∣∣∣∣∣
∑

j

Aj(q)eiq·rj

∣∣∣∣∣∣
2〉

,

where the parenthesis 〈〉 indicate that a temporal mean is performed due to the particles motion inside

the scattering volume while Aj(q) is the field diffused by the j particle located at a position rj . By

replacing the square modulus with the product between the summation argument and its complex

conjugate

I(q) =

〈∑
i,j

Aj(q)Ai(q)eiq·(rj−ri)

〉
,

the diffused intensity can be written as:

I(q) = N |A(0)|2 P (q)

〈∫
d3r

∑
i,j

eiq·rδ(r + rj − ri)

〉
, (2.8)

where monodisperse particles have been considered (Ai(q) = Aj(q)) and the factor P (q) =
(

A(q)
A(0)

)2

can be calculated through Equation 6.8. Since the only term depending on time is the δ term Equa-
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tion 2.8 can be rewritten as:

I(q) = N |A(0)|2 P (q)
∫
d3reiq·r

〈∑
i,j

δ(r + rj − ri)

〉

The scattered intensity is proportional to the Fourier transform of the quantity〈∑
i,j

δ(r + rj − ri)

〉
,

which can be decomposed into two contribution:〈∑
i,j

δ(r + rj − ri)

〉
=

〈∑
i6=,j

δ(r + rj − ri)

〉
+Nδ(r)

In particular
1
N

〈∑
i6=,j

δ(r + rj − ri)

〉
= ρg(r)

where ρ = N/V is the number density while g(r) is the pair correlation function.

Accordingly a new function, the structure factor S(q) can be defined as:

S(q) = 1 + ρ

∫
eiq·rg(r)d3r. (2.9)

Finally the intensity diffused by a solution containing N particles results:

I(q) = N |A(0)|2 P (q)S(q) (2.10)

where

|A(0)|2 = I0
k4v2

4π2r2
(m− 1)2. (2.11)

The former calculations show that the scattered intensity is related through a Fourier transform to

the correlation density inside the scattering volume. It’s worthwhile noticing that the structure factor

can also be interpreted as the ratio between the intensity scattered by the interacting system and the

one scattered by the same system in absence of interactions.

2.1.1 Static Light Scattering experimental setup

The Static Light Scattering experimental setup, shown in Figure 2.5, is composed by a laser source

(A), some optical components (B), an injector (C), a temperature controlled cell holder (D), a photo-
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Figure 2.5: Static Scattering experimental setup: the letters highlight the main parts of the apparatus.

tube (E) and a PC for the data analysis.

Laser source and optical components

The optical source is a He-Ne laser (LGK 7665P, Lasos) with wavelength λ = 632.8nm and a power

of 15mW . The laser beam is directed through a lens (focal length f = 10 cm) which focuses the

beam inside the cell. A filter is used to preserve the phototube.

The cell and the cell holder

For the experiments we used a parallelepiped cell in optical glass with 1 × 1 cm square base. The

cell is placed inside a cell holder which contains a resistance to heat the sample and a refrigeration

circuit to maintain the desired temperature. The temperature is remotely controlled through the PC.

A remotely controlled magnetic stirrer (Variomag) is positioned inside the base of the cell holder. A

magnetic anchor 6× 3mm is placed in the cell.

Injector

The injector is used to add small quantity of surfactant to the sample during the measurement. The

injector is a Genie plus syringe pump (Kent Scientific) with Hamilton syringes. The syringe is linked
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Figure 2.6: Cell holder (left) and injector (right) of the Static Light Scattering experimental setup.

to a small tube which connects directly to the cell through a hole located on the cell plug. The pump

is remotely controlled through the PC to set the quantity and the frequency of the surfactant additions.

Signal detection

A phototube RCA 931B is placed at an angle of 90° and collects the light diffused by the sample. The

phototube is connected to the PC through a 34970A Data acquisition control unit (Agilent technolo-

gies).

2.2 Dynamic Light Scattering

A colloidal suspension illuminated by coherent light, at any instant, presents a grainy random far-field

diffraction pattern or speckle pattern (see Figure 2.7(a)).

At some point in the far field the waves scattered by the particles interfere constructively, gener-

ating a large intensity, while at some other points destructive interference leads to a small intensity.

Moreover, due to particles Brownian motion, the scattering medium is not static but evolves in time.

The speckle pattern fluctuates from one random configuration to another. The intensity I(q, t) at one

point in the far field fluctuates in time, as sketched in Figure 2.7(b). This random signal contains
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Figure 2.7: (a) Coherent light scattered by a random medium such as a colloidal suspension, generates
a random diffraction, or speckle, pattern in the far field. As the particles move of Brownian motion,
their position and the phase of the scattered light change. Hence the speckle pattern fluctuates from
one random configuration to another. (b) The fluctuating intensity captured by a detector having size
comparable to a speckle size. (c) The time autocorrelation function of the scattered intensity shown
in (b). The time-dependent part of the correlation function decays with a time constant Tc equals to
the typical fluctuation time of the scattered light.
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information on the particles motion. It’s worthwhile noticing that the intensity fluctuations cannot be

detected by human eye for two reasons: they are too fast with respect to the human eye response time

and they vary from one point to another so that they coincide only over short spatial length. A region

where the phases of the diffused waves do not vary significantly is called coherence area. In different

coherence areas the intensities fluctuate independently; if the light collector opening is larger than a

coherence area the signal to noise ratio reduces due to deletion effect between light waves coming

from different coherence regions. For a monochromatic source the diffused light is coherent inside a

solid angle of the order of λ2/A, where A is the section of the scattering volume perpendicular to the

scattering direction.

In Dynamic Light Scattering measurement (DLS) the main sample properties are extracted from

the time correlation function of the fluctuating intensity, defined as:

G(2)(τ) = 〈I(q, t)I(q, τ)〉 ≡ limT→∞
1
T

∫ T

0
dtI(q, t)I(q, t+ τ). (2.12)

The signal I(q, t) is compared with a delayed version of itself I(q, t + τ) for all starting time t

and for a range of delayed time τ . Typical behavior of the intensity correlation function is shown in

Figure 2.7(c). At zero delay time Equation 2.12 reduces to:

limτ→0 〈I(q, 0)I(q, τ)〉 =
〈
I2(q)

〉
For greater delay times, fluctuations in I(q, t) and I(q, t + τ) are not correlated, so that the average

in Equation 2.12 can be separated:

limτ→∞ 〈I(q, 0)I(q, τ)〉 = 〈I(q, 0)〉 〈I(q, τ)〉 = 〈I(q)〉2

Since
〈
I2(q)

〉
≥ 〈I(q)〉2 for every I(q, t), the starting value of the correlation function is always

greater then the value at long time. Thus the intensity correlation function decays from the mean-

square intensity value at small times to the square of the mean at long times through a characteristic

decay time Tc, that is a measure of the fluctuation time of the intensity. A significant case is repre-

sented by the exponential decay:

G(2)(τ)−G(2)(∞) ∝ exp (−τ/τc) ,

where τc indicates the correlation time.

Another important quantity is the electromagnetic field correlation function G(1)(τ), that is the
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Fourier transform of the spectrum:

G(1)(τ) = 〈E(q, t)E∗(q, t+ τ))〉 .

As a consequence the spectrum can be written as:

S(ω) =
1
2π

∫
G(1)(τ)e−iωτdτ,

where ω is the frequency.

In general there is not an easy relation linkingG(1)(τ) toG(2)(τ). In many DLS experiments, the total

diffused light is the sum of waves diffused by independent particles and presents a gaussian statistic.

In this specific case the Siegert relation is valid:

G(2)(τ) = I2
0

(
1 + γ

∣∣∣g(1)(τ)
∣∣∣2) , (2.13)

where g(1)(τ) = G(1)(τ)/G(1)(0) is the normalized field correlation function, I0 is the mean de-

tected light and γ is an efficiency factor. For perfectly coherent incident light measured on a singular

coherent area γ = 1; if the light detected comes from a region J times larger than a coherence area,

the efficiency factor is of the order of 1/J . A low efficiency makes the measurement very sensible to

the presence of intensity fluctuation caused by laser instability or by the presence of dust in solution.

It could be desirable to measure light coming from a singular coherence area. However, if the coher-

ence area is too small, there is not a sufficient intensity reaching the detector. In DLS experiments it

is necessary to find a compromise between these two requirements.

Correlation function of particles moving of Brownian motion

As introduced in the previous section, the intensity fluctuation are caused by the Brownian motion

of the particles in the dispersion. The smaller the particles are, the larger is the diffusing velocity.

According to Brownian model, every particle moves on a casual path, but there is a net flux of particles

moving from high concentration regions toward low concentration regions. The Brownian motion is

responsible for the diffusion motion, which can be characterized through the diffusion coefficient D .

According to the diffusive motion laws, the displacement ∆x in the time δt of a particles moving of

Brownian motion in a certain direction is:

∆x2 = 2Dδt
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Consider a pair of particles moving with relative motion; the waves diffused by the two particles

at the observation point have a phase difference given by q · r, with r relative distance vector. The

diffused intensity becomes completely independent from its initial value when the particles moves of

a distance ∆x ≈ q−1 along the scattering vector q. The correlation time τc acquires the value:

τc ≈
1
Dq2

. (2.14)

and is the time necessary to a particle to moves on a distance q−1 along q.

It can be shown [24] that the correlation function for the diffused light can be written as:

G(1)(τ) = ISe
iω0τe−Dq2τ (2.15)

and the spectrum assumes the form:

S(ω) =
IS
π

Dq2

(Dq2)2 + (ω − ω0)2
(2.16)

Determination of particles dimension

Starting from Equation 2.13 and Equation 2.15, the measure of the intensity correlation function al-

lows to determine the diffusion coefficients of the particles in the suspension. The diffusion coefficient

of an infinite dilute dispersion depends on the particles shape and is related to the friction coefficient

f through the relation:

D =
kBT

f
, (2.17)

where kB is the Boltzmann constant and T is the absolute temperature.

For a spherical particle of radius R, f = 6πηR, where η is the dynamic viscosity of the solvent. η

is a temperature dependent quantity, as shown in Figure 2.8. By substituting f in Equation 2.17, the

Stokes-Einstein relation is obtained:

D =
kBT

6πηR
, (2.18)

and the radius of spherical particles can be calculated as:

R =
kBT

6πηD
.
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Figure 2.8: Temperature dependence of water viscosity.

It’s worthwhile noticing that diffusing particles drag the solvent, so that an apparent hydrodynamic

radius can be introduced:

Rh
app =

kBT

6πηDapp
,

where Dapp is the diffusion coefficient measured through DLS experiments. The apparent hydrody-

namic radius allows to model also the scattering signal coming from non-spherical particles.

The previous treatment applies rigorously only to very dilute solution, where viscosity and par-

ticles interactions can be neglected. Solvent viscosity indeed grows with the particles concentration

affecting, through Equation 2.18, the diffusion coefficient and the determination of the particles ra-

dius.

The presence of interactions between the particles can have different effects on the dynamic behavior

of the system. Repulsive interactions create local concentration fluctuations which dissipate more

rapidly: thus the diffusion coefficient is higher and the apparent hydrodynamic radius is lower. On

contrary, attractive interactions make fluctuations dissipate slower, so that the diffusion coefficient is

lower and the apparent hydrodynamic radius is higher.
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2.2.1 Dynamic Light Scattering experimental setup

The Dynamic Light Scattering experimental setup, shown in Figure 2.9, is composed by a laser source

(A), some optical components (B), a temperature controlled cell holder (C), a phototube (D) and a PC

for the data analysis.

Figure 2.9: Dynamic Light Scattering experimental setup. The letters refer to the principal parts of
the instrument described in the text.

Laser sources

The principally used optical source is a He-Ne laser (LGK 7626S, Lasos) with wavelength λ =

632.8nm and a power of 50mW . The beam has an exit diameter of 0.49±0.05mm and a divergence

inferior to 1.7mrad.

To perform measurements on very dilute sample we used a COMPASS 315M (Coherent) laser of

wavelength λ = 532nm and 150mW of power. In this case the beam diameter is 0.34 ± 0.02mm

and the divergence is inferior to 2.2mrad.

Optical configuration

To perform measurements with the He-Ne laser, the laser beam is vertically polarized and passes

through a pin-hole with 2mm diameter and placed at a distance of 26 cm from the laser. Instead to

use the green laser, two 45° mirrors were added to carry the laser beam in the right direction.

The laser beam is focused through a lens with focal length f = 10 cm into the center of the
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thermostat. The longitudinal position of the lens can be varied thus modifying the dimension of the

light spot on the sample. Indeed, for a Gaussian beam:

w0 =

√
λz0
π
, (2.19)

where, as shown in Equation 2.2.1, w0 is the beam characteristic dimension and z0 is the so called

Rayleigh range, the length over which the beam is collimated.

Figure 2.10: Gaussian beam.

Figure 2.11: Focusing of a gaussian beam.

If a gaussian beam is focused through a lens, its beam waist varies according to the following

equation:

w′0 =

√
λz′0
π

= w0

√
f2

X2 + z2
0

(2.20)

According to Figure 2.11 X is the distance between the beam waist and the lens minus the lens focal

length. In our setup, X = 0.35m and thus w′0 = 3.1 · 10−5m and z′0 = 4.7mm. The beam waist of

the focused beam is short: as a consequence a short displacement of the lens causes a large variation

in the dimension of the beam reaching the cell.
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Figure 2.12: Sample cell for Dynamic Light Scattering measurements.

Sample cell

To be able to measure small sample volumes (65µl) we have designed the cell shown in Figure 2.12.

The inner cell is a cylindric cell with one open side, realized by Pasquali S.R.L.. The inner and the ex-

ternal diameter are 3 and 5mm respectively; the height is 32mm. The external cell is a parallelepiped

with square base 1×1 cm (Starna) endowed with a holed Plexiglass plug and a Teflon support to hold

the cylindric cell. A cylindric Plexiglass support is positioned on the bottom of the large cell. The

support has a center hole with a diameter equal to the external diameter of the cylindric cell.

To test the alignment of the system we positioned a millimeter paper at a distance of approxi-

mately 2m from the thermostat to control that the light beam is not deviated by the sample cell.

The optical matching between the two cells is realized through a oil (Castor oil refined, Riedel-de

Haën) with refractive index n = 1.479± 0.002, very close to the glass refractive index.

In some cases of very dilute samples, measurements have been performed by injecting the sample

directly in the big parallelepiped cell. During preliminary test measurements we have noticed that the

use of the cylindric cell requires a higher alignment precision than the parallelepiped cell, because the

beam can be deviated by the bending of the cell surface.
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Figure 2.13: Apparatus for light detection through optical fiber. The numbers highlight the main parts
described in the text.

The cell holder

The diffusion coefficient D depends on the temperature both explicitly and through the viscosity. The

curves that describe the viscosity temperature dependence is of the form η = a · eb/T . In a water solu-

tion the factor T/η of Equation 2.18 varies of about 3% every centigrade degree. It is thus important

to control and stabilize the temperature.

To control the sample temperature the cell is placed inside a metal thermostat covered with an in-

sulating material. The cap of the thermostat contains some electric resistances and a tube for water

circulation. The system is remotely controlled through a PC with a RTC (Remote Temperature Con-

trol) software (INSTEC), which allows to set, reach and maintain the desired temperature.

The temperature is measured through two independent thermistor placed inside the thermostat in the

proximity of the sample. The precision in controlling the temperature is 0.1 degrees.

Light detection through optical fiber

The diffused light is collected through an apparatus previously realized in our laboratory and com-

posed by different parts, as highlighted in Figure 2.13. A holed truncated cone is mounted on a metal

plate (2) and extends inside the cell holder. Inside the cone are inserted a rotating polarizer and a lens

with focus inside the sample cell. On the opposite side of the plate there is a collimator (OZ Optics)

(3), consisting in a lens and an optic fiber connector (4). The connector focuses the detected light,

previously straightened by the lens, inside the optic fiber. Three combined translators (1) give access

to the illuminated zone inside the sample cell.

The collected light is carried through a mono-mode optic fiber (10µm core diameter) to a pho-
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toncounting head (PMT R7400, Hamamatsu), i.e. a phototube connected to the PC. The mono-mode

optic fibers transport only a single propagation mode of the electromagnetic field and thus allow to

detect only one speckle. To maximize the efficiency of the detected signal the beam diameter at the

collection point w′0 and at the exit of the optic fiber af must be as small as possible. Indeed the

intensity depends on these diameters through the relation:

I ∝

(
1

w′02 + a2
f

)
. (2.21)

Another relation for the diameters can be written by considering that the optic fiber has to capture

only one speckle an that the incident beam needs to be very focused to increment the incident power:

w′0 = af . (2.22)

Hence during optical alignment we have minimized both the diameters trying to satisfy Equation 2.22.

The signal is analyzed through a digital correlator BI9000AT (Brookhaven Instruments Corpora-

tion).

2.3 Birefringence

A system (solid or liquid) is said to be birefringent if a light beam propagates across the sample

with different velocities depending on the incident angle and on the polarization direction. Such a

system presents always three perpendicular directions with a related refractive index. When the light

propagates along one of these directions, it maintains the entrance polarization and the phase velocity

is given by vi = c/ni (where the index i stands for the light polarization direction). In a birefringent

medium the relations between induced dipoles are of tensorial nature. In general, simple liquids or

colloidal dispersions can present an induced birefringence under the effect of external fields which

perturb the spatial isotropy giving the sample an axial symmetry. When the external field is the electric

one the effect is called electric birefringence or Kerr effect.

The birefringence in a uniaxial system is defined as:

∆n = n‖ − n⊥,

namely the difference between the refractive indexes in the direction parallel and perpendicular to

the symmetry axis respectively i.e. for the Kerr effect the electric field direction. When the sample
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structure is isotropic ∆n must be independent on the sign of the electric field E, so that one expects

∆n to depend at the lower order to E2 (Kerr effect). The extent of the Kerr effect is usually quantified

through the Kerr constant B, that expresses the dependence of ∆n on E2 in the limit of low field.

B = limE→0

n‖ − n⊥

λE2
, (2.23)

where λ represents the wavelength of the incident light. Generally birefringence experiments focus

on studying the relaxation of the induced birefringence after the electric field id turned off, a process

governed by the rotational correlation time [25]. Few studies are instead devoted to the steady-state

amplitude of the Kerr constant in an ac field, the approach employed in [23]. In Frequency Resolved

Electric Birefringence (FREB) experiments a sine-wave voltage of frequency ν is applied to a cell

endowed of two electrodes. In complex notation the applied electric field can be written as:

E0 = Re[E0νe
−i2πνt].

After a starting transient, the signal consists of a dc and an ac component, ∆ndc and ∆nac respec-

tively. FREB measurements study the steady component of the induced birefringence as a function of

the external field frequency ν. In particular the dc part of the Kerr coefficient results:

B (ν) =
∆ndc(ν)
λ(E2

0)dc
, (2.24)

where (E2
0)dc = E2

0/2 is the mean-square amplitude of the applied electric field.

When particles with no permanent dipole and with axially symmetric polarizability are conside-

red, the orientation of the particles can be specified through the angle θ between the particles axis and

the electric field direction. In that case the optical polarizability tensor of the particles αo is diagonal,

with diagonal elements given by αo
‖ and αo

⊥. Assuming ∆αo = αo
‖ − αo

⊥, it can be shown [25] that

the Kerr coefficient B(ν) of the suspension can be written as:

B(ν) =
N∆αoSdc(ν)
λnε0E2

0ν

, (2.25)

where n is the solvent refractive index, ε0 the vacuum dielectric permittivity while Sdc denotes the dc

component of the non polar orientational order parameter defined as:

Sdc(ν) ≡
∫ π

0
P2(cosθ)fdc(θ)senθdθ, (2.26)
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with fdc(θ) normalized dc component of the orientational distribution function and P2 Legendre poly-

nomial of degree 2 defined as P2(x) = 1
2(3x2−1). In particular Sdc = 1 for perfect parallel alignment

while Sdc = 0 for isotropic orientational distribution. Hence to calculate B(ν) it’s necessary to know

the angular distribution function fdc(θ) of the suspended particles when exposed to an oscillatory

electric field, with fdc(θ) strictly depending on the particle-solvent properties and on the frequency

of the applied electric field. When slightly charged particles immersed in aqueous solvent are consi-

dered, their interaction with the electric filed is not governed by a simple electrostatic coupling but

the orientational distribution function fdc(θ) must include the contributions due to ions transport by

conduction, diffusion and hydrodynamic which all cooperate to particles alignment. In this situation

it is more convenient to directly relate the Kerr coefficient B(ν) to the force acting on the dispersed

particles. It has been shown [26] that the angular distribution function fdc(θ) can be related to the

torque σdc(θ) acting on each particle:

fdc(θ) = Fexp

(
1

kBT

∫ θ

0
σdc · uθdθ

)
, (2.27)

with F normalization constant and uθ versor in θ direction. By combining Equation 2.27 with Equa-

tion 2.25 an expression ofB(ν) as a function of σdc is obtained . The separation of the Kerr coefficient

in a dc and an ac components derives from its linear dependence on the squared electric field [27].

B(ν) can thus be evaluated from the torque independently for each frequency ν.

2.3.1 Electric and Hydrodynamic torque

The total torque σdc contains an electric and an hydrodynamic contribution, because a colloid under

an external electric field experience both the effects:

σdc = σdc,E + σdc,H (2.28)

The evaluation of σdc,E and σdc,H proceeds by determining the moment of the forces acting on the

particle surface:

σdc,E,H =
∫

S
r ×

(
γ

dc,E,H
· n
)
dS, (2.29)

where r is the vector identifying the position of the particle surface element dS, n is the versor

normal to dS, γ
dc,E

is the Maxwell electric stress tensor while γ
dc,H

is the hydrodynamic stress

tensor, accounting for viscosity and pressure.

We first evaluate the electric stress tensor γ
dc,E

. It is worthwhile noticing that, for a dilute system,
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the electric field E around particle surface is due to the superposition of three contributions i.e. we can

write E = E0 + Ep,dc + Ep,ac, where E0 is the external electric field (in FREB experiments an a.c.

field), Ep,dc is the steady field inside the unperturbed double layer and Ep,ac is the oscillating field due

to the induced polarization of the particle. When dealing with spherical particles the latter term Ep,ac

is a dipolar field oscillating at the same frequency ν of the externally applied electric field. In this case

it is useful to relate the electric field to the associated dipole potential Ψdip(r) = <
[
Ψdip,ν(r)e−i2πνt

]
whose complex amplitude is given by:

Ψdip,ν(r) =
1

4πε0εs
αE0,ν · r

r3
.

In the above equation r is the distance from the center of the sphere, εs is the solvent relative dielectric

constant and α is the polarizability of the particle with including its counterion cloud. The calculation

of α can be performed within the context of the Standard Electrokinetic model either numerically

[28] or through approximate analytical solutions [29, 30, 31]. The polarizability α is determined

by a dynamic local balance of incoming and outgoing ions carried by hydrodynamic, diffusion and

electromigration flows, and thus is always a “kinetic” quantity. Generally α is a complex variable

because of the finite velocities of both the ions and the solvent flows. In the case of non spherical

particles, the polarizability is a tensor α and the dipolar potential assumes the form:

Ψdip,ν(r) =
1

4πε0εs

(
αE0,ν

)
· r

r3
.

The diagonal elements of the polarizability tensor, α‖ and α⊥ are the particle polarizability in the

direction parallel and perpendicular to the particle’s axis respectively. With this notation the d.c.

component of the electric torque σdc,E assumes the form:

σdc,E = 〈p×E0〉 =
1
2
<
(
α(ν) ·E0,ν

)
×E0,ν , (2.30)

with p = <
(
α(ν)E0e

−i2πνt
)
. Indicating with α

′

‖ and α
′
⊥ the real part of α‖ and α⊥ respectively the

electric torque can be expressed in term of the difference between the real parts of the polarizability:

σdc,E = −1
2

(
α

′

‖ − α
′
⊥

)
E2

0,νsinθcosθuθ. (2.31)

The evaluation of the hydrodynamic torque σdc,H is far more complicated. In fact, when centro-

symmetric particles are considered, there is no E-level. The calculation of Equation 2.29 requires the
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knowledge of solvent flow velocity to E2 level.

In [32], Fixman reported an electrokinetics algorithm which allows to obtain numerical solution

to the full, non-linearized electrokinetic problem. This algorithm models a system consisting of one

macroion (a cylindrical section with identical, hemispheroidal endcaps) in a salt solution subject to

an arbitrary sequence of pulsed electric fields and pulsed translational and rotational velocities. The

evolving fields considered include the solvent flow obeying to Navier-Stokes equations with solvent-

inertia suppressed, the electrostatic potential, satisfying Poisson’s equation, the mobile ion concen-

trations according to Smoluchowski diffusion equations and possibly a redistribution of macroion

surface charge. This algorithm calculates dielectric response, force and torque acting on the parti-

cle. From Fixman’s calculation results that while σE gives always a positive contribution to the total

torque acting on colloidal particles i.e. it orient rod-like particles with the long axis parallel to the

field direction, the hydrodynamic torque σH can be negative in the case of coions having low diffu-

sion coefficient, thus favoring particles perpendicular orientation.

2.3.2 Birefringence experimental setup

The experimental setup for Birefringence measurement is shown in Figure 2.14. A monochromatic

Figure 2.14: Scheme of the optical setup for Birefringence measurements.

linearly polarized laser beam is directed through a Kerr cell, a cuvette endowed of two windows re-

alized in optical glass and in which are inserted two parallel plain electrodes. A tension pulse with

variable amplitude and frequency is applied to the electrodes. The setup for the electric field genera-

tion will be explained in detail in the following subsection.

In birefringence measurements the relative position between the electrodes and the laser beam po-

larization plays a crucial role: the electric field must form a 45° angle with the light polarization

direction. The λ/2 plate forms a 45° angle between the light polarization direction and the horizon-

tal direction, namely the direction of the external electric field. Another polarizer (called analyzer in

the following), which can be remotely controlled, is positioned after the exit window of the cell: the
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optical axis of the analyzer is crossed to that of the entrance polarizer. If the studied sample is not a

birefringent one, there is no light intensity transmitted through the system; on contrary, if the sample

presents optical birefringence, the transmitted intensity becomes elliptically polarized and thus is par-

tially transmitted. A λ/4 plate is inserted between the Kerr cell and the analyzer in order to increment

the instrumental sensibility and to reduce the errors due to parasitic effects. Therefore the transmitted

light is collected by a photodiode, preceded by an interferential filter. The optical signal is then sent

to an oscilloscope, together with the voltage applied at the cell electrodes. The cell is positioned into

a temperature controlled cell holder (see next section), which allows to reduce the sample evaporation

under the effect of the electric field.

The measurement consists in revealing the light transmitted by the sample in presence of the

electric field and in zero field condition. If the electric field is applied along the x direction and

the laser beam propagates along z, being the polarizer oriented at 45° respect to x, the optical field

incident on the cell is:

Eo
x = Eo

y =
Eo

√
2
.

If the sample in the cell is birefringent nx = n‖ 6= n⊥ = ny and thus the x and y components of the

light beam are out of phase of an angle δ given by:

δ =
2π(n‖ − n⊥)l

λ
,

with l optical path length and λ laser beam wavelength. The radiation transmitted by the cell is thus

elliptically polarized and has a non-null intensity given by:

I(δ 6= 0) = I0sen
2(
δ

2
),

where I0 is the cell transmitted intensity. According to that the Kerr coefficient results:

B =
1

πlE2
arcsen

√
I(δ 6= 0)

I0
. (2.32)

However, with this optical configuration, to know B it’s necessary to know I0. To increment signal-

to-noise ratio, it is better to discross polarizer and analyzer of a small angle α: in this way, the light

intensity transmitted in zero field condition Iα is function of the angle α and of the incident light
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intensity I0. In this way B assumes the form:

B =
1

πlE2
[arcsen(

√
Iδ
Iα
− senα)− α]. (2.33)

Electric field generation and signal acquisition

The PhD work has regarded also the reconfiguration of the experimental setup for the generation of

the electric field and for signal acquisition for Birefringence and Electric Transmitted Light Intensity

(ETLI) measurements, whose connections scheme is shown in Figure 2.15.

Power Supply 12V

HF

LF

COM

HFLF
COM

CELL

LeCroy WaveSurfer
(Oscilloscope)

CH1 CH2

Photodiode

Relais controller

Low frequency 
generator

Low frequency 
amplifier

High frequency 
generator

High frequency 
amplifier

CH2CH1 COM

Figure 2.15: Electric scheme of Birefringence and ETLI setup for electric field generation.

The measurement is controlled in remote mode through a LabVIEW program. All the instruments

are connected to the PC through RS−232 serial ports (except the amplifiers which do not need to be

remotely controlled). Figure 2.16 shows the logic scheme of the setup for Birefringence and ETLI

measurements: the only difference between the two apparatus is the presence in the birefringence

setup of an analyzer after the cell, remotely controlled through the PC.

The electric field is generated by an arbitrary wave function generator (Agilent 33120), whose

output is sent at the COM port of a coaxial relay (TOHTSU CX230L). The arbitrary generator is also
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Figure 2.16: Logic scheme of Birefringence and ETLI measurements setup.

the trigger for the whole system: its trigger signal is sent to the EXT channel of the Oscilloscope

(LeCroy WaveSurfer Xs). The relay has two output ports: one for the “low frequency” line (electric

field frequency ν ≤ 1MHz) and the other for the “high frequency” line (ν ≥ 1MHz). In the low

frequency line the electric wave function passes through a Low Frequency Amplifier (Krohn-Hite) and

then enters into another relay (TOHTSU CX530) to be eventually sent to the sample cell electrodes.

For the generation of a high frequency signal, the arbitrary generator produces a square wave which

will be modulated with the desired amplitude and frequency by an High Frequency Generator (HP-

ESG4400B) and will be amplified by an High Frequency Amplifier (AR75). The output is then sent to

the port of a second relay. Both the relays are remotely controlled through a relays controller (National

Control Device). In this way it is possible to send to the cell a low frequency or an high frequency field.

The relay controller is fundamentally a serial switch between two channel: on channel 2 the relays

are connected in series with a 12V power supply while on channel 1 no power supply is included in

the circuit. In this way, by switching between the two relay controller channels, it’s possible to make

both the relays changing their state and to select the low frequency or the high frequency line.

The electric field is carried to the cell electrodes through coaxial cable. A coaxial T precedes the

cell to send the field to the cell and to read the applied field on the oscilloscope. To read the actually

applied field a passive coaxial probe (LeCroy) is necessary: indeed in our measurements we apply to

the cell electrodes voltages of the order of some tens of volt, which cannot be directly measured by

the oscilloscope. The oscilloscope has two channelsl: channel 1 is used to measure the applied field,
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while channel 2 is connected to the photodiode and records the optical signal.

The cell for Birefringence and Electric Transmitted Light Intensity measurements is a 10× 10×

10mm cell appositely realized by STARNA and has two optical glass windows. Two vertical elec-

trodes, with 1 cm2 of surface are positioned inside the cell. The electrodes are realized in stainless

steel and are placed at a distance of 1mm, divided by a Teflon separator.

The cell is bedded into a cell holder, realized on purpose by Quantum Northwest (see Figure 2.17).

The cell holder has four round windows with diameter of 6.4mm and is endowed of a lifter mecha-

Figure 2.17: Cell holder.

nism to insert and extract the cuvette. The cell holder is designed to maintain the sample to a constant

temperature, which can be remotely programmed through RS−232 interface. The sample cell, inside

the cuvette holder, lays on a Peltier plate: a gas flux guarantees the same temperature in the whole

volume.

Program for remote control

The program, realized in LabView, remotely controls the measurement and analyze the acquired data.

As shown in Figure 2.16 the instrument controlled by the program are:

• Low frequency generator: is the trigger of the whole measurement setup. It shapes electric
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field in the low frequency range. For field frequency higher than 1 MHz it sends to the high

frequency generator a square wave to be modulated.

• High frequency generator: shapes electric field in the high frequency range.

• Relays controller: switches both the relays selecting low or high frequency line.

• Rotator: controls analyzer position in birefringence measurements.

• Cell holder: sets and controls the sample temperature.

• Oscilloscope: reads the sample optical response and the applied electric field.

The LabView program remotely assigns the above mentioned functions to the various instruments.

Since the measured effects are often small and noisy, it is proper to mediate the signal, i.e. to apply the

same field many times and to mediate the sample response for each frequency. The program allows

to select the number of field repetitions for each frequency and automatically calculates the mean

sample signal. In birefringence measurement the program calculates the Kerr coefficient and plot a

preview plot of B vs. ν to control the measurement progress. The program manages different types of

measurements: frequency and amplitude scan, angle scan, temperature scan.

2.4 Electric Transmitted Light Intensity

Electric Transmitted Light Intensity measurements (ETLI) determine the variation in the light trans-

mitted by a sample induced by the application of an external electric field.

2.4.1 Turbidity determination

We used ETLI measurements to determine the optical turbidity variation induced by the electric field

inside the samples. The turbidity τ is connected to the transmitted intensity I through the extinction

equation:

I = I0exp(−τL), (2.34)

where I0 is the incident light intensity andL is the optical path length inside the sample. The following

treatment is meaningful only if the optical path of a photon through the sample is small with respect to

τ−1 = Λ, which can be interpreted as the mean free path of the photon inside the diffusing medium.

In the case of a completely non-absorbing medium, the optical turbidity is directly related to the

total scattering and can be calculated from the diffused intensity Is(q). For this purpose, we need to
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introduce scattering cross section Σ which is defined through the differential equation:

∂Σ
∂Ω

=
Is(q)R2

I0
(2.35)

where R is the distance between the diffusing volume V and the detector position i.e. the point where

the scattered intensity Is is measured. According to Equation 2.35 the turbidity can be defined as the

total cross section per unit volume and is calculated through the integration of the former equation on

the whole solid angle:

τ =
1
V

∫
∂Σ
∂Ω

dΩ =
∫
I(q)R2dΩ
I0V

. (2.36)

In other terms, the turbidity represents the total power loss per unit of scattering volume and per unit

of incident intensity.

In our measurements we are interested in determining the turbidity variation induced by the ap-

plication of an external electric field. Through our experimental setup we are able to directly measure

the transmitted intensity variation. Indicating with IE the mean transmitted intensity in presence of

an external electric field and with IM the transmitted intensity during the rest period, and referring to

Equation 2.34, the relative transmitted intensity variation is:

IE − IM
IM

=
I0e

−τEL − I0e
−τML

I0e−τML
= e−(τE−τM )L − 1,

where τE and τM indicate the sample turbidity in presence and in absence of the electric field respec-

tively. According to the former equation:

e−(τE−τM )L = 1 +
IE − IM
IM

and by setting ∆τ = τE − τM it results:

∆τ = − 1
L
ln

(
1 +

IE − IM
IM

)
. (2.37)

In particular, in our experiments, we are interested in studying the turbidity variation in the two

cases of light polarized parallel and perpendicular to the electric field direction, so that τE will assume

the two intuitive notation τ‖ and τ⊥. In the following we will substitute the symbol τM with τ0 where

the 0 indicate that no electric field is applied. In zero field condition, the sample has an anisotropic

orientational distribution and thus the measured turbidity does not depend on light polarization direc-

tion.
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2.4.2 Electric Transmitted Light Intensity experimental setup

In Figure 2.18 is presented the optical scheme of the ETLI experimental setup. A laser beam passes

Figure 2.18: Optical scheme of the experimental setup for Electric Transmitted Light Intensity mea-
surements.

through a sample cell endowed of two electrodes. At the cell electrodes is applied an oscillating

electric field. A photodiode records the variation of transmitted light intensity induced by the external

electric field. The laser employed in our measurements is an HeNe LASOS laser (LGK 7627S) with

λ = 632.8nm and 50mW of power. The laser beam has a diameter of 0.49 ± 0.05mm and a

divergence lower than 1.7mrad. In order to optimize the signal-to-noise ratio for each sample we

used a photodiode with variable gain. The photodiode is attached to a carriage with adjustable height

and lateral position. A λ/2 plate is positioned after the laser, to turn the vertical polarization of the

laser beam of 45°. A polarizer, mounted on a rotator, is positioned after the λ/2: with this setup

it is possible to select a light polarization parallel or perpendicular to the electric field direction.

The sample cell is positioned inside a thermostat, the same used in Birefringence measurements and

described in the former section.

2.5 Materials

2.5.1 ... to study biomolecular interactions

2.5.1.1 PFR 94 nanoparticles (PhP)

PFR 94 nanoparticles (Solvay-Solexis S.p.A.) are constituted by a fluorurate polymer and have a

gummy, i.e. isotropy, internal structure. For more information on the chemical structure of the par-

ticles see [8]. We decided to use these colloids since their refractive index is n = 1.3248 ± 0.0005

at 30°C of temperature, thus approximately equal to the water refractive index (nH2O = 1.3319 ±

0.0002).

Hence, when the PFR 94 particles are immersed in water they are transparent and the light diffused

by the dispersion is more or less the same as the one diffused by water alone. For this reason this
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colloids are also called Phantom Particles (PhP).

Thus, when the PhP are coated with a small quantity of a material having refractive index signifi-

cantly different from the water one, the increment of the scattering signal can be completely ascribed

to the variation of the optical contrast. Hence this system allows to study weak biomolecular interac-

tions if the coating molecules produce a significant variation in the diffused light.

Determination of particles radius

We determined the radius of the particles (PFR 94) through dynamic light scattering measurements.

To avoid particles interaction we prepared a sample of bare particles, without the addition of any

surfactant, with volume fraction φ = 0.001 in water. Since the refractive index of the particles is close

to that of water, the dispersion had a low scattering power and thus we performed measurements with

the laser having λ = 532nm. From the correlation function shown in Figure 2.19 we extracted the

mean particles radius r = 30nm.

Figure 2.19: Normalized correlation function of a sample of PhP with φ = 0.001.

2.5.1.2 Surfactants

Surfactants are molecules constituted by an hydrophobic and an hydrophilic part. The hydrophobic

tail can be easily adsorbed onto fluorurate particles surface, leaving the hydrophilic part at contact

with the water. In this PhD thesis we used three different surfactants.

The Brij 56 has chemical formula
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C16H33(OCH2CH2)10OH

and its molecular weight is 683 gmol−1.

The C12E5 has chemical formula

H − (OCH2CH2)5OCH2(CH2)10CH3

and its molecular weight is 406.6 gmol−1. Both these surfactants are neutral.

We have used another surfactant, the Exadecyl-Trimetil-Ammonio Bromuro (HTAB) which is

charged. Its chemical formula is

C19H42BrN

and its molecular weight is 364.447 gmol−1.

Glycolipids

We devoted our attention to carbohydrate-carbohydrate interactions and, in particular we coated PhP

surface with Dodecyl-α-D-Maltoside and with Dodecyl-β-D-Maltoside. They are both disaccharides,

i.e. constituted by two glucose molecules., have the same molecular weight (510.62 gmol−1) and the

same chemical formula

C24H46O11.

Figure 2.20: Glucose anomers.
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Figure 2.21: Dodecyl-α-D-Maltoside molecular structure.

They differ only for the spatial configuration of one of the carbon atoms and thus for the direction

of the relative carbon-hydrogen binding. Figure 2.20 illustrates the α and β anomers of the glucose.

Figure 2.21 shows the structure of Dodecyl-α-D-Maltoside.

We also wanted to study Lactose-Lactose interaction. However this molecule has low solubility,

so that it can be used only at very low molar concentration but in this condition also colloidal particles

become very dilute. Thus, for the moment, we could not prepare a suitable Lactose-PhP solution.

2.5.1.3 Sample preparation

We tested the stability of the particles by coating their surfaces with two different types of surfactant.

In the following we describe the coating method employed.

To evaluate particles coating degree we used static light scattering measurements. We studied the

intensity diffused by the sample while adding small quantity of surfactant (Figure 2.22 shows the

coating with Brij56).

To describe the diffused intensity we can use Rayleigh-Gans approximation, since the difference

between the refractive index of the particles and that of water is small [33]. Accordingly, the total

field scattered by a particle coated with surfactant molecules can be written as the sum of the field

scattered by the particle and that scattered by the surfactant (T):

E = EPhp + ET
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Figure 2.22: Mean intensity diffused at 90° by a sample of PhP as a function of the volume of Brij56
added to the dispersion. Each point corresponds to an addition of 6 µl of surfactant.

In the Rayleigh-Gans limit, the intensity diffused by the coated particles is [8]:

I = aN (vP ∆nP,W + vT ∆nT,W )2 + b

where a and b are constants which depend respectively on the signal detection efficiency and on the

light diffused by impurities in the sample, vP is the particle’s volume, N is the particles number

density and ∆nP,W = n2
P − n2

W is the difference between the square refractive indexes of particles

(nP ) and of water (nW ). Likewise vT is the volume of surfactant adsorbed onto one particle and

∆nT,W = n2
T − n2

W is the difference between the square refractive indexes of surfactant (nT ) and of

water. It can be shown that:

vT =
MT vP [TT ]

(ρTφ

where MT and ρT are the surfactant mass and density, while TT is the molar concentration of added

surfactant. The curve (see Figure 2.22) starts from an initial value I0, decreases to a minimum Im

and than monotonically grows reaching a stationary value. The minimum is due to the fact that the

particles refractive index is lower than water. Hench by adding small volume of surfactant the refrac-

tive index of the coated particles match the water refractive index. The stationary tail indicate that the

particles are fully coated with the surfactant.
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2.5.2 ... to study electric field induced interactions

2.5.2.1 PTFE particles

Polytetrafluoroethylene (PTFE) particles are realized by Solvay-Solexis through polymerization in

dispersion. The PTFE particles have a rod-like shape with 240nm long semiaxis and axial ratio

close to 3. They have a uniaxial internal crystal structure with an average refractive index 1.37 and

optical anisotropy ∆n = 0.04. The PTFE particles bear a negative surface charge due in part to

the adsorption of anionic surfactant during polymerization procedure and in part to the end groups

of polymer chains. The highly hydrophobic surface allows the surface charge to be controlled by

adsorption of surfactants. In particular by adding the anionic surfactant AOT (C20H37O7SNa) the

PTFE charge can be incremented.

2.5.2.2 Sulfate Latex spheres

Sulfate Latex spheres (Invitrogen) are polymer particles in the colloidal size range constituted by

polystyrene. They are negatively charged and stabilized by sulfate charges. The particles suspensions

are stable up to 0.3M univalent electrolyte concentration. The latex spheres have refractive index

of 1.59 at a wavelength of 590nm. The Sulfate Latex spheres are produced with various radius

dimensions. In our experiments we used P200 (radius R = 200nm), P40 (R = 40nm) and P30

(R = 30nm).
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Introduction
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In the first part of this thesis a new experimental technique to study biomolecular interactions is

proposed and tested. The basic idea is to employ bio-functionalized colloidal particles as interactions

mediators and amplifiers. The employed colloidal particles are monodisperse spheres of radius 30nm

which can be coated with different molecular groups. The main property of such colloids is to have a

refractive index slightly different from that of water. In agreement with the literature we can study, by

optical means, functionalized colloidal dispersion also at high particles volume fraction. By studying

the light diffused by the colloidal dispersion we can obtain information on the interaction between

biomolecules present on the particles surface.

In colloidal system the second virial coefficient B2 contains information on the interaction po-

tential between colloidal particles. In section 3.1 we show how to obtain B2 value from Static Light

Scattering and Dynamic Light Scattering measurements. In section 3.2 we study the second virial

coefficient of charged particles, in order to quantify the electrostatic potential and the electric charge

of the particles. In agreement with the literature we find that in colloidal system the charges involved

in the particles interactions are different from the structural charges present on the particles surface

(section 3.3). In section 3.4 we discuss the second virial coefficient expected in colloidal system with

particles interacting via “Sticky Hard Sphere” potential . To bridge the biomolecular binding coeffi-

cient Kn (or the dissociation constant K) with the measured scattering intensity, we determined the

relationship between B2 and K. We evaluated the sensibility of our experimental technique in deter-

mining molecular dissociation constant and we found we are able to study weak interaction such as

carbohydrate-carbohydrate ones (see section 3.6).

In chapter 4 we firstly illustrate experimental results in suspensions of particles with repulsive

electrostatic interactions. From the measured second virial coefficient we extracted the charge of

the particles. We determined two different experimental conditions under which particles interact as

Hard Sphere. The determination of Hard Sphere condition is preliminary to the study of attractive

interactions since residual electric repulsion could impair the detection of other, more subtle, inter-

actions. The Hard Sphere limit could be achieved both by screening charges through ionic strength

and by adding to particles surface a surfactant charged of opposite sign respect to the colloids. We

decided to use our colloidal-based detector to study carbohydrate-carbohydrate interactions. Despite

they play a crucial role in many cellular processes, carbohydrate interactions are very weak and diffi-

cult to detect and quantify. In section 4.2 we present some preliminary measurements on carbohydrate

coated particles. In agreement to previous literature we have detected attractive interaction between

carbohydrate-coated colloids when Calcium ions are present in the dispersion.
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3Study of interactions through second

virial coefficient formalism

3.1 Virial coefficient from diffuse light experiments

The state equation for an ideal gas is:

PV = NkBT,

with N number of molecules. When the ideality conditions are not satisfied, the state equation can be

rewritten as an expansion in power of the number density N/V :

P

kBT
=
N

V

(
1 +B2(T )

N

V
+B3(T )

(
N

V

)2

+ . . .

)
. (3.1)

The expansion coefficients are called virial coefficients. In particular the second virial coefficient B2

is given by:

B2 = −1
2

∫
dr(e−

V (r)
kBT − 1). (3.2)

B2 is thus a quantity directly related to the two-bodies interaction potential V (r) between gas molecules.

If the interaction is attractive B2 assumes negative values, while in presence of repulsive potentials

B2 is a positive quantity. B2 has the dimensions of a volume.

The same approach can be used for the description of dilute colloidal solutions. In this case V (r)

is the two-bodies interaction potential between colloids. Thus the knowledge of B2 reveals informa-

tion on the particles interaction. Higher order terms can be neglected in most situations. Indeed in

dilute system higher orders in density expansion are neglectable being the density a small quantity.
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Moreover the coefficients B3, B4 . . . account for three-body, four-body...interactions that in dilute

system are rare. Thus Equation 3.2 can be truncated at the second term. In colloidal science it could

be interesting to develop methods for determining experimentally B2 and thus to evaluate the interac-

tion potential between particles.

Light scattering techniques are widely used in the characterization of colloids since they allow

to obtain information on the samples in a non-invasive way. In this thesis we studied how to obtain

second virial coefficient from light scattering measurements. As introduced in chapter 2, the intensity

of the diffuse light in the forward direction is proportional to the mean square fluctuation of dielectric

constant [34]:

I ∝
〈
δε2r
〉

λ2
(3.3)

where λ is the light wavelength in vacuum. In general
〈
δε2r
〉

depends on the fluctuations due to the

solvent and those due to the variations in solute concentration
〈
δc2r
〉
, where c is the mass concentration

per solute unit volume. From the theory of fluctuations:

〈
δc2r
〉

=
kBT

Vs

1
χT

c =
kBT

VS

1
∂π
∂c

c,

where T is the absolute temperature, kB is the Boltzmann’s constant, Vs is the scattering volume and

χT is the coefficient of isothermal compressibility. The second equality follows from the definition

of isothermal compressibility χT = ∂π
∂c , with π osmotic compressibility. π can be expressed through

a virial expansion in function of the concentration c, in analogy with Equation 3.2. Thus the intensity

diffused by a colloidal dispersion can be rewritten to explicitly shows the second virial coefficientB2:

I =
Kc

1
M0

+ 2B2

M2
0 c

,

where M0 is the molecular mass and K is a constant that for vertically polarized light has the value:

K =
4π2n2

NAλ4

(
∂n

∂c

)
.

Hence the diffuse intensity results:

I = KcM0

(
1 +

2B2

M0
c

)−1

. (3.4)
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In [35] an equation which relate the diffuse intensity to the particles mass is reported:

I = KM0c. (3.5)

To account for particles interactions an apparent mass M can be defined [35]:

M = M0

(
1 +

2B2

M0
c

)−1

. (3.6)

and accordingly an equation similar to Equation 3.4 can be written:

I = KcM =
KM0c

1 + 2B2
M0

c
=

KM0c

1 + kIc
=

I0c

1 + kIc
, (3.7)

with

kI =
2B2

M0
. (3.8)

When studying the light diffused by colloidal dispersion it is more convenient to express the

scattered intensity as a function of the volume fraction φ defined as:

φ =
NvP

V

where N is the particles number, vP is the volume of each particle and V is the total volume of the

colloidal dispersion. c and φ are directly proportional and the proportionality constant is the particle

density d. Thus Equation 3.7 can be rewritten as:

I =
KM0dφ

1 + kIdφ
=

KvPφ

1 + k′Iφ
(3.9)

with

k′I = kIρ =
2B2

vP
. (3.10)

Hence from a static light scattering experiment the second virial coefficient can be extracted

through Equation 3.9 by knowing the particles volume fraction and the volume of each particles.

Through this treatment we found a relationship between the scattered intensity and the second virial

coefficient. The former argument applies to static light scattering.

When considering Dynamic Light Scattering experiments we need to write a relationship for

the diffusion coefficient of interacting particles analogous to Equation 3.6 for the mass. A collective
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diffusion coefficient D can be defined as linearly dependent on the colloids concentration:

D = D0(1 + kDc), (3.11)

where D0 is the diffusion coefficient of non-interacting particles. The coefficient kD is related to the

second virial coefficient by the following relation:

kD =
2B2

M0
− kf . (3.12)

kf is not unambiguously defined. A general expression is:

k′f = kfρ = k′f0 +
∫ ∞

0
dxF (x)

[
1− e

−V (x)
kBT

]
, (3.13)

where the term k′f0 is related to the hard sphere potential while F(x) can be defined in different way

[36]. According to [35, 37] we assumed:

k′f0 = 6.55

F (x) = 11.89(1 + x) + 0.706− 1.69(1 + x)−1.
(3.14)

3.2 Virial coefficient of charged particles

As introduced in subsection 1.3.1, around charged particles there is an electric double layer, which

guarantees a repulsive interaction between particles preventing colloidal collapse. Indeed a charged

sphere in an electrolyte solution produces ions redistribution around its surface: the counterions are

attracted in proximity of the particles while the coions are pushed away. On complex the solution is

neutral. All the ions dissolved in the solution, such as all the colloidal particles, undergo Brownian

motion.

By studying the second virial coefficient of a colloidal system with an electrostatic repulsive in-

teraction between the particles, it is possible to determine the surface charge of the colloids, which is

related to the surface potential ψs through Poisson-Boltzmann equation. In the case of plane symme-

try, the Poisson-Boltzmann equation describing the potential in an electrolyte solution can be exactly

solved. Instead, in presence of spherical symmetry, just an analytical solution can be obtained. The

Poisson-Boltzmann equation for a symmetric electrolyte is given by [11]:

1
r2

∂

∂r
r2
∂ψ

∂r
=

2eznb

εε0
sinh

(
ezψ

kBT

)
, (3.15)
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where ε and ε0 are the solvent ad vacuum dielectric constant respectively, e is the electron charge and

z is the electrolyte valence.

Loeb, Overbeek and Wiersema [38] published a numeric treatment of spherical system in z-z

electrolyte solution, showing that the surface charge density can be expressed as:

q =
Q

4πa2
=
εε0kBT

ez
κ

[
2sinh

(
1
2
ΨS

)
+

4
κa
tanh

(
1
4
ΨS

)]
, (3.16)

with a particles radius and κ−1 = λD, with λD Debye length. ΨS is the adimensional potential on

the sphere surface and is given by:

ΨS =
ezψs

kBT
, (3.17)

where ψs is the potential on the sphere surface solving Poisson-Boltzmann equation. The knowledge

of the surface potential ψs is thus necessary to determine the charge of the sphere in solution.

Two spherical particles in a symmetric electrolyte solution experience a repulsive force due to

their screened charges. Since the spherical geometry is more complex than the plane one, an exact

analytic formula for the interaction potential can not be written. A possible approximation is the

Derjaguin approximation, which is valid when the distance h between the two spheres is small in

comparison with their radius a [39]. Under these conditions, the elements on each particle surface

interact as they would be on two parallel planes; the total interaction can be calculated as the sum of

all the infinitesimal contributions. However, when h < λD this approximation is not valid anymore.

In this case it’s worthwhile considering the potential energy Φ associated to the repulsive interaction:

F = −∂Φ
∂h

. (3.18)

By regarding Φ as due to the superposition of electric potentials of two isolate spheres the following

equations are obtained:

F ≈ πεε0

(
kBT
ze

)2
Ψ2

S
1+κ(h+2a)
(h/2a)+1 e

−κh

Φ = 4πεε0
(

kBT
ze

)2
a2

h+2aΨ2
Se

−κh.

(3.19)

Hence through the knowledge of the second virial coefficient obtained by scattering experiments, it

is possible to evaluate the amplitude of the interaction potential; in the case of electrostatic repulsive

interaction also the particles surface charge can be evaluated.
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3.3 Charge renormalization

The Debye-Huckel approximation to solve Poisson-Boltzmann equation is valid within the limit of

low interaction. When the charge on particles surface grows, the Debye-Huckel approximation fails

to give exact solutions to the problem. It has been shown [40, 41] that, in the case of highly charged

particles, Debye-Huckel approximation can already be used by substituting to the structural particles

charge Z an effective charge Zeff . Zeff is obtained by considering the counterions cloud surrounding

the particles and the particle itself as a unique entity. Since the counterions screen part of the particle

charge results Zeff < Z.

Consider a dispersion of spherical highly charged colloids with radius a and surface charge Ze,

with e electron charge. We call ε the solvent dielectric constant, T the absolute temperature and cs

the electrolyte concentration in the solution. The system is characterized by a Bjerrum length:

λB =
βe2

ε
; (3.20)

λB indicates the minimum distance between dissociate charges. As introduced in subsection 1.3.1,

when charged colloids are regarded, each particles is surrounded by a spatial region forbidden to other

particles due to electrostatic repulsion. Hence, by analogy with solid state physics, it is possible to

define around each particle a Wigner-Seitz cell: the cell has null net charge and assumes the same

symmetry of the colloid, in this case spherical symmetry. The radius of the Wigner-Seitz cell R is so

defined that the ratio (a/R)3 is the colloidal volume fraction. The Poisson-Boltzmann equation and

the relative boundary conditions for the mean electrostatic field Φ(r) can be written for the Wigner-

Seitz cell (Φ has been multiplied for βe to be adimensional):

∇2Φ(r) = κ2
ressinhΦ(r) a < r < R

n · ∇Φ(r) = ZλB
a2 r = a

n · ∇Φ(r) = 0 r > a

(3.21)

where n is the outgoing unit vector normal to the surface and κres is the inverse of the screening

length defined in terms of the ionic strength: κres = 8πλBcs. The first boundary condition assures

the constance of the surface charge; the second condition fixes the electroneutrality of the cell. It can

be shown [41] that the Yukawa potential (see Equation 1.3) can be written as:

βv(r) = Z2
effλB

(
e−kPBa

r

)
, (3.22)
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namely it maintains the same shape of the traditional potential but the charge Z and the screening

length κres are substituted respectively by the effective charge Zeff and by κPB , the inverse of the

screening length of the macroions on the Wigner-Seitz cell border defined as:

κPB = 4πλB(nR
+ + nR

−) = κrescoshΦR. (3.23)

Hench, even in presence of highly charged colloids, the electrostatic interaction can be represented

through a Yukawa potential, which has an easy form.

The effective charge Zeff can be determined through the following expression [41]:

Zeff =
tanhΦR

κPBλB

{(
κ2

PBaR− 1
)
sinh [κPB(R− a)] + κPB(R− a)cosh [κPB(R− a)]

}
(3.24)

which explicitly shows the Zeff dependence on the surface potential ΦR, on the particle radius a

and on the inverse of the screening length. The effective charge can thus be calculated by solving

Poisson-Boltzmann equation to obtain ΦR and by substituting Equation 3.23 in Equation 3.24.

3.4 Second virial coefficient for attractive particles

Figure 3.1: Sticky hard sphere potential.

The interaction between two spherical particles that attract at small distance while do not interact

at large distance can be schematized through a Sticky Hard Sphere potential (SHS), sketched in Fi-

gure 3.1. The infinite repulsive barrier at r = σ = 2a, with a spheres radius, is due to the fact that the
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particles are hard spheres, i.e. they can not compenetrate. The attractive region is modeled through a

hole whose width tends to 0 as its depth tends to infinity. For higher distances the potential is null, i.e.

the spheres do not interact. The SHS potential can be expressed as [42, 43]:

V (r)
kBT

=


+∞ 0 < r < σ

log 12τ∆
σ+∆ σ < r < σ + ∆

0 r > σ + ∆

(3.25)

The τ parameter, called stickiness parameter, accounts for the fact that the hole becomes deeper as

it tightens. Moreover, by inserting Equation 3.25 for the potential in Equation 3.2, it is possible to

calculate with analytical methods the second virial coefficient as a function of the τ parameter:

B2 =
1
2

[∫ σ

0
d3r + 4π

∫ σ+∆

σ
drr2

(
1− e−log 12τ∆

σ+∆

)]
∼=

2
3
πσ3

[
1− 1

4τ

]

The second equivalence has been obtained by assuming ∆ << σ; the factor 2
3πσ

3 is the excluded

volume term, namely the hard sphere second virial coefficient:

BHS
2 =

2
3
πσ3 (3.26)

Thus, by modeling attractive interaction through the SHS potential of Equation 3.25, the second virial

coefficient results:

B2 = BHS
2

[
1− 1

4τ

]
(3.27)

3.5 Second virial coefficient and dissociation constant

In chemistry the equilibrium constant Kn or more often the dissociation constant K are used to

describe molecular interaction. Since we found how to extract the second virial coefficient from light

scattering experiments, it is now necessary two find a relationship between B2 and K to compare our

results with those present in literature.

3.5.1 Equilibrium constant of a chemical reaction

A generic chemical reaction can be represented through the equation [44]:

m∑
i=0

biBi = 0 (3.28)
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where Bi is the i molecule of the reaction, bi is the number of molecules involved in the chemical

reaction and the summation extends to all the m interacting species. If both the volume V and the

temperature T are held constant and the system is regarded as ideal, the variation of the Helmholtz

free energy A can be expressed as a function of the chemical potential µi:

∆A =
∑

i

(
∂A

∂Ni

)
T,V,N

bi =
∑

µibi.

At the equilibrium the free energy has a minimum and thus:

∆A =
∑

µibi = 0 (3.29)

The chemical potential can be expressed as:

µi = −kBT ln
ζi
Ni
,

where ζi is the single molecule partition function and does not depend on the molecules number Ni.

By substituting the expression of the chemical potential in Equation 3.29 the following equality is

obtained:

∆A = −kBT
∑

i

bi (lnζi − lnNi) = ∆A0 + kBT
∑

i

bilnNi = 0

where

∆A0 = −kBT
∑

i

bilnζi.

The quantity ∆A0 is called standard free energy variation of the reaction and depends only on the

temperature and on the volume while does not depend on the numberNi of molecules of each species

involved in the reaction. The equilibrium condition can thus be written as:

∑
i

lnN bi
i = ln(N b1

1 N
b2
2 ...N

bm
m ) = −∆A0

kBT
.

The equilibrium constant KN is defined as:

KN ≡ e
−∆A0

kBT (3.30)

and accordingly the mass action law results:

N b1
1 N

b2
2 ...N

bm
m = KN (T, V ).
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Since ∆A0 depends only on the temperature and on the volume, also KN depends only on these two

variables and does not depend on Ni.

If the known quantity is not the number of molecules in the solution but rather their density

nj = Nj

V the chemical potential results:

µi = −kBT ln
ζ ′i
ni
,

where

ζ ′i(T ) =
1
V
ζi(V, T ).

In this case the equilibrium condition can be written as:

nb1
1 n

b2
2 ...n

bm
m = Kn(T ). (3.31)

The equilibrium constant Kn depends only on the temperature and is related to KN through the

equality:

Kn(T ) =
1
V b
KN (T, V ), (3.32)

where b =
∑m

i=1 bi.

If in the solution there are only molecules of one species which interact to form dimers the former

relation becomes:

Kn(T ) = V KN (T, V ).

Since KN is an adimensional constant, Kn has the dimensions of a volume.

3.5.2 Relationship between equilibrium constant and second virial coefficient

We consider now a reaction in which a unique molecular species is involved and the interacting

molecules form dimers. The reaction can be schematized as:

A+A 
 AA. (3.33)

The equilibrium constant Kn is defined as:

Kn =
nD

n2
.
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where n and nD indicates the molecules and dimers number density. However to describe molecular

interaction it is more often used the dissociation constant K defined as the inverse of the equilibrium

constant:

K =
n2

nD
.

Since the constant K is usually expressed in moles per liter (Molar) it is necessary to divide both n

and nD for the Avogadro’s number NA obtaining:

K =
n2

nDNA
. (3.34)

Small dissociation constants (of the order of mM) indicate an high interaction degree between the

molecules while high K value indicate high dissociation.

Figure 3.2: Schematic representation of dimer formation in presence of a sticky hard sphere potential.

To find a relationship between K, the quantity used in chemistry to evaluate molecular interac-

tions, and B2, which can be measured with light scattering experiments, it is necessary to find an

expression for the dimer density nD. The interaction potential between the molecules can be de-

scribed as a Sticky Hard Sphere potential (see section 3.4). Accordingly the dimer can form when

σ < r < σ + ∆, i.e. the distance between the molecules is included between the width σ of the re-

pulsive region and the largeness ∆ of the attractive hole (see Figure 3.2). The probability to find two

molecules inside those region is given by the integral of the radial distribution function g(r) between
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σ and σ + ∆: ∫ σ+∆

σ
d3rg(r).

To obtain the density of dimers in solution it’s necessary to multiply the former equation for the square

particle density n2 and to divide by two not to count particles twice:

nD =
n2

2

∫ σ+∆

σ
d3rg(r).

In dilute system the radial distribution function g(r) can be written as:

g(r) ∼= e
−V (r)

kBT ,

where V (r) is the particles interaction potential. Thus the dimer density results:

nD =
n2

2

∫ σ+∆

σ
d3re

−V (r)
kBT . (3.35)

By considering a Sticky Hard Sphere potential, with stickiness at contact, the virial coefficient results:

B2 = −1
2

∫
d3r(e−

V (r)
kBT − 1) =

= 1
2

[∫ σ
0 (1− e

− V (r)
kBT )d3r +

∫ σ+∆
σ (1− e

− V (r)
kBT )d3r +

∫∞
σ+∆(1− e

− V (r)
kBT )d3r

]
=

= 2
3π(σ + ∆)3 −

∫ σ+∆
σ e

− V (r)
kBT d3r

If the interaction range is much smaller than the hard sphere range (σ >> ∆) it can be assumed
2
3π(σ + ∆)3 ∼= 2

3πσ
3 = B2

HS . Hence it can be evaluated the difference:

∆B2 = B2
HS −B2 =

∫ σ+∆

σ
e
− V (r)

kBT d3r. (3.36)

By substituting Equation 3.36 into Equation 3.35, the dimer density, in dilute solution, is directly

proportional to the second virial coefficient variation respect to hard sphere BHS
2 . By recalling Equa-

tion 3.34, the dissociation constant can be related to ∆B2:

K =
2

NA∆B2
=

4
vPNA∆k′I

, (3.37)

where k′I is the coefficient which can be evaluated through light scattering experiments k′I = 2B2/vP .
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Equation 3.37 indicates that K becomes smaller as the potential becomes more attractive.

3.6 Sensibility

We evaluated the sensibility of the proposed method for measuring dissociation constants. In static

light scattering measurements we have a sensibility on ∆k′I of the order of unit; sinceK = 4/(VPNA∆k′I)

(with VP expressed in liter since K is in Molar units) we can measure dissociation constants of the

order of 10µM .

However in our experiments we measure the dissociation constant K between the functionalized

colloidal particles. To compare our measurement results with the values present in the literature for

molecular dissociation constants, we have to evaluate the relationship between K of the colloids and

Km of the biomolecules arranged on particles surface. According to [2], the equilibrium constantKeq

depends on temperature T through the van’t Hoff relation

Keq = e−
∆G0

c
RT ,

where ∆G0
c is the standard Gibbs free energy of the reaction between colloids. If the colloids in a pair

are attached by Nl links

∆G0
c = Nl∆G0,

where ∆G0 is the standard Gibbs free energy for each link. This treatment neglects the numerous

combinations with which N links can be made between two colloids, each bearing Ntot sticky links.

According to [2] we also neglect the change of rotational entropy of the colloids upon aggregation.

The former equations demonstrate the great potentiality of our colloidal-based detector: by incre-

menting the density of sticky ends on particles surface we obtain a largely enhanced sensibility on

evaluating molecular dissociation constant.

As described in subsection 1.4.1, the number of links Nl can be estimated with a geometric

approach through the formula:

Nl =
2πR0

L
(L− h)2Γ, (3.38)

where Γ is the particle surface density of strands, R0 is the colloids radius, h is the length of the

impenetrable coating layer while the difference L−h is the length of the sticky ends of the molecules.

By substituting all the parameters with those corresponding to our experimental samples we obtain

that we are able to detect very weak molecular interactions with Km of the order of M .
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4 Experimental results of

biomolecular interactions

4.1 Determination of particles charge

PFR94 particles, being charged, experience a repulsive electrostatic interaction and thus to compute

their interaction potential it is necessary to know the particles charge. We have determined the second

virial coefficient from light scattering experiments for different samples presenting repulsive interac-

tion between the colloids and, following the procedure shown in section 3.2, we have determined the

value of the particle charge. Since the effective charge, namely the charge that take parts to interaction,

can be different from the structural charge present on particles surface, as described in section 3.3,

we have analyzed our data to extract both structural and effective charge values. The effective charge

have been determined with both static and dynamic light scattering experiments.

We decided to study the value of the particles charge by coating their surface with the non-ionic

surfactant C12E5. All the experiments have been performed at the same temperature (T=30C).

4.1.1 Effective charge from static light scattering measurements

We initially considered a solution of PhP coated with C12E5 surfactant in NaCl 1mM . We studied

the intensity of the 90° diffuse light as a function of the particles volume fraction φ, here reported

in Figure 4.1. As it can be recognized from the graph, at low particles volume fractions, the curve

trend is linear, since the particles are too dilute to experiments any interaction. Instead, as φ grows,

the trend becomes non-linear. According to the treatment proposed in section 3.1 we fitted the curves

through the function:

I =
I0φ

1 + k′Iφ
+ c (4.1)
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Figure 4.1: 90° diffuse light intensity for a PhP sample coated with C12E5 surfactant in a ionic
strength I = 1mM NaCl. Black squares are the experimental points while the red line is the fit
obtained through Equation 4.1

where the constant c has been added to account for impurities scattering. From the fit we obtained

k′I = 33.35 (4.2)

which corresponds to a second virial coefficient

B2 =
k′IvP

2
= 1.88 · 10−21m3 (4.3)

The volume of the particles have been calculated by assuming particles radius R = 30nm, the

value measured with dynamic light scattering on a sample of bare PhP with φ = 0.001, namely with

sufficiently dilute particles to experience interactions.

It’s worthwhile noticing that in absence of attractive interaction and with completely screened

charges the interaction between the colloids is of excluded volume type. Since in this situation

B2 =
2
3
πσ3

with σ = 2R, k′I assumes the value

k′HS
I =

2B2

vP
=

22
3πσ

3

4
3R

3
= 8 (4.4)
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Thus by comparing Equation 4.2 with Equation 4.4 we deduce that the ionic strength I = 1mM

NaCl of the dispersion is not enough to screen charges, since there is a strong repulsive interaction.

As described in details in section 3.2, in presence of electrostatic repulsive interaction, it’s pos-

sible to determine the electrostatic potential and the particles charge from B2 value . We realized an

algorithm with Mathematica which allows to determine the superficial charge of the particles corre-

sponding to a certain B2 value. The algorithm proceeds as follows. Since

B2 = −1
2

∫
d3h

(
e
−V (h)

kBT − 1
)

where the interaction potential V as function of the particles distance h is given by

V (h) = 4πεε0

(
kBT

ze

)2 a2

h+ 2a
Ψ2

s e
−κh,

from the knowledge of B2 the potential Ψs can be estimated, where Ψs is assumed to be the super-

position of single particle potentials. From the value of Ψs the particle charge is determined through

the equation:

q =
Q

4πa2
=
εε0kBT

ez
κ

[
2sinh

(
1
2
ΨS

)
+

4
κa
tanh

(
1
4
ΨS

)]
. (4.5)

The effective charge for C12E5 coated particles in ionic strength 1mM NaCl is

q = 230 e,

with e elementary charge.

We have thus varied the solution ionic strength: static light scattering data for PhP coated with

C12E5 in NaCl 10mM and NaCl 50mM are shown in Figure 4.2 and Figure 4.3 respectively. The

experimental data curve (90° diffused intensity vs. particles volume fraction) approaches to a linear

trend indicating an Hard Sphere type interaction between the particles.

From the fit of the sample with NaCl 10mM we obtained

k′I = 12.46,

corresponding to a virial coefficient

B2 = 7.14 · 10−21m3
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Figure 4.2: 90° diffuse light intensity for a PhP samplecoated withC12E5 surfactant in a ionic strength
I = 10mM NaCl. Black squares are the experimental points while the red line is the fit obtained
through Equation 4.1

Figure 4.3: 90° diffuse light intensity for a PhP sample coated with C12E5 surfactant in a ionic
strength I = 50mM NaCl. Black squares are the experimental points while the red line is the fit
obtained through Equation 4.1
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and to an effective charge

q = 400e.

These results are in agreement with renormalization charge theory which predicts an augment of the

effective charge by incrementing the solution ionic strength.

By fitting data of Figure 4.3 (I = 50mM ) results

k′I = 4.45;

in this situation k′I < k′HS
I = 8 indicating a partially attractive interaction. For this reason is not

possible to extract a value for the effective charge.

4.1.2 Effective charge from dynamic light scattering measurements

The effective charge can be estimated also through Dynamic Light Scattering measurement. We pre-

pared samples of PhP+C12E5 in NaCl 1mM at various particles volume fraction φ. We measured the

diffusion coefficient D and we plotted D vs. φ (Figure 4.4). In this case, according to the treatment

Figure 4.4: Diffusion coefficient vs. particles volume fraction for samples of PhP+C12E5 in NaCl
1mM .

developed in section 3.1, we fitted the data with the function

D = D0(1 + k′Dφ), (4.6)
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where k′D is related to the second virial coefficient as follows:

k′D =
2B2

vP
− k′f0. (4.7)

From data of Figure 4.4 we extracted the value

k′D = 17.26

With a Mathematica program similar to that realized to analyze Static Light Scattering data, we

determined the effective particles charge, which in this case results

q = 220e.

The effective charge values obtained with the two methods are in agreement. We performed Dy-

namic Light Scattering measurements also on sample of PhP+C12E5 in NaCl 10mM and 50mM at

various particles volume fraction. The data are reported in Figure 4.5. In the case of NaCl 10mM we

Figure 4.5: Diffusion coefficient vs. particles volume fraction for samples of PhP+C12E5 in NaCl
10mM (green line fit) and 50mM (red line-dot fit). Black dots with the corresponding blue dot fit
curve are the 1mM data previously shown in Figure 4.4.

extracted an effective charge value

q = 430e,

in agreement with the value found through diffuse light measurement of 400e. The k′D coefficient ob-
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tained from 50mM samples has a negative value, confirming the previously found result of partially

attractive interaction between the particles.

4.1.3 Structural charge

To determine the structural charge of the PhP we used the surfactant HTAB, which is positively

charged. We prepared solutions of PhP partially coated with C12E5 in NaCl 1mM ; with this solution

we prepared different samples by adding various HTAB concentrations, from 0.05mM to 0.4mM .

Since the particles are not fully coated with C12E5, the HTAB can adsorb onto particles surface,

each surfactant molecule bringing a positive charge.

We measured the diffusion coefficient D for each sample and we extracted the value of the coef-

ficient k′D. We studied both D and k′D as function of the positive charges added to the solution. The

data for k′D are plotted in Figure 4.6. Both D and k′D data exhibit a minimum: the presence of a min-

Figure 4.6: k′D vs. positive charge per particle in elementary charge unit. k′D have been obtained by
studying the diffusion coefficient of samples of Php partially coated with C12E5 and with different
concentration of HTAB.

imum indicates that, by adding HTAB, the particles charge is completely screened by the surfactant

positive charges. The adsorption of other HTAB molecules onto particles surface gives the same

initial charge to the particles but of positive sign. The minimum of D and of k′D is reached by adding

a charge per particle of 850e, which thus corresponds to the particles surface charge. This value is

far different from that obtained by studying the diffuse light intensity and the diffusion coefficient for

various particles volume fractions, described in the former sections. However while the previously
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determined charges were the effective particles charges, namely those taking part in interaction phe-

nomena, now we have evaluated the structural particles charge, i.e. the charge present on particles

surface.

The values obtained for the particles effective charges (q = 220e and q = 230e) do not agree with

the predictions of the renormalization charge theory. Indeed, in Figure 4.7 is shown the renormalized

charge vs. structural charge for different solution ionic strength: the effective charge corresponding to

a structural charge of 800e is about 750e.

Figure 4.7: Effective charge vs. structural charge for various ionic strength.

Probably, the surface charge of the particles originates from the absorption of ions present in the

solution. Indeed, there are no structural reasons for the presence of these charges. Thus we can sup-

pose that the linking of HTAB molecules on the particles promotes the absorption of other negative

ions on the surface; in this way the estimated particles structural charge is higher than the value ob-

tained if the HTAB would not facilitate ions absorption. Hench, the charge on PhP is not univocal

but depends on the molecules used to coat their surface. To verify this hypothesis we have studied the

relation between effective and structural charge also on samples of PhP coated with the carbohydrate

Dodecyl-Alpha-D-Maltoside, as described in the following section.

It is worthwhile noticing that we have reached the Hard Sphere condition both by incrementing

electrolyte ionic strength and by adding the charged surfactantHTAB. The Hard Sphere condition is

necessary to study carbohydrate-carbohydrate interaction since assures that no repulsive interaction

is active.
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Figure 4.8: Diffusion coefficient vs. particles volume fraction for samples of PhPcoated with α-
maltoside in NaCl 1mM (red), 10mM (blu), 50mM (green).

4.2 Preliminary measurements of carbohydrate-carbohydrate interac-

tions

We coated the PhP with carbohydrate molecules of n-Dodecyl-Alpha-D-Maltoside, which should

interact in presence of divalent ions. However to allow particles to experience attractive interaction

we first extinguished electrostatic repulsive interaction, i.e. reached Hard Sphere condition.

4.2.1 Hard Sphere condition

We determined the Hard Sphere condition initially by gradually incrementing solution ionic strength

and then by adding HTAB molecules.

We prepared samples with different NaCl concentrations. In Figure 4.8 we report the diffusion

coefficient D for various particles volume fractions in solution with ionic strength 1mM , 10mM

and 50mM NaCl. We fitted the experimental data with Equation 4.6 and we obtained the values

reported in table 4.2.1.

Following the same procedures used for PhP coated with C12E5, from k′D we determined the

effective charge of the particles, finding for NaCl 1mM an effective charge of 500e. By comparing

this value with that obtained for particles coated withC12E5 (q = 230e) it results that particles coated

with n-Dodecyl-Alpha-D-Maltoside experience an interaction determined by an higher charge. It’s

interesting noticing that in both cases of particles coated with C12E5 and with n-Dodecyl-Alpha-D-
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[NaCl] k′D
1mM 29.58
10mM 12.12
50mM 0.655

Table 4.1: k′D determined in samples of PhP coated with n-Dodecyl-Alpha-D-Maltoside for various
ionic strengths.

Maltoside a ionic strength of 50mMNaCl makes k′D < k′HS
D = 1.5.

Also in the solution of PhP coated with carbohydrate molecules we have noticed that the repulsive

interaction diminishes by incrementing solution ionic strength. The Hard Sphere condition is reached

for I ≈ 50mM .

The Hard Sphere condition have been obtained also through charge compensation by coating

particles with HTAB molecules. We prepared samples with PhP partially coated with n-Dodecyl-

Alpha-D-Maltoside, starting from a volume fraction φ = 0.016 in NaCl 1mM and with various

HTAB concentrations, from 0.05mM to 0.45mM . Analogously to what done for particles coated

with C12E5, we studied the behavior of D and of k′D as a function of the HTAB charges per particle

in unit of the elementary charge e. The data for k′D have been reported in Figure 4.9. Also in this

Figure 4.9: k′D vs. positive charges per particle in elementary charge unit. k′D have been obtained
by studying the diffusion coefficient of samples of Php partially coated with n-Dodecyl-Alpha-D-
Maltoside in NaCl 1mM and with different concentration of HTAB. The datum corresponding to
an added charge of 850e is not present because we could not measure the diffusion coefficient since
the particles collapsed.

case the k′D curve presents a minimum at about 850e: differently from the sample of C12E5 coated
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particles, with carbohydrate coated particles we observed the collapse of the colloidal dispersion. This

fact indicates that the interaction between the particles is different in the two analyzed situations.

In conclusion, also in the case of particles coated with n-Dodecyl-Alpha-D-Maltoside we have

experimentally determined the Hard Sphere condition with the two methods of electrostatic screening

(ionic strength I = 50mM NaCl) and of charge compensation with HTAB. In this case the Hard

Sphere condition is obtained with an HTAB concentration of 0.15mM , corresponding to a positive

charge of 650e per particle.

4.2.2 Attractive Interaction

In order to obtain attractive interaction, we prepared a dispersion in which the particles interact

through a Hard Sphere potential, namely PhP coated with n-Dodecyl-Alpha-D-Maltoside in NaCl

1mM and HTAB 0.15mM . We studied the diffusion coefficient at various particles volume frac-

tions and we extracted the value for k′D = 6.86. Since k′HS
D = 1.5 in our samples particles experience

a slightly repulsive interaction.

As reported in literature [4], carbohydrate-carbohydrate interaction is possible only in presence

of divalent ions, in particular Calcium ions. For this reason we prepared samples by adding to the

previously prepared dispersion (Php in NaCl 1mM and HTAB 0.15mM ) various concentrations

of CaCl2. To determine the particles interaction we measured the diffusion coefficient. We found that

for CaCl2 concentrations lower than 12mM , k′D > 1.5 indicating that the particles do not interact

attractively. Instead, for CaCl2 concentration equal to 12mM we obtained k′D = −2.85, which

indicates the presence of an attractive interaction between the particles.

As a control, we prepared analogous samples with particles coated with C12E5: by adding CaCl2

ions no attractive interaction takes place. This fact confirms that the attractive interaction is mediated

by the carbohydrate molecular recognition.

Finally we added a solution of EDTA to the samples where attractive interaction is present.

EDTA is a chelant molecule for Calcium ions: it means that when a solution contains molecules of

CaCl2 dissociated in divalent ions, each EDTA molecule binds itself to a Calcium ion, preventing

the possibility to the Calcium ion to link to other molecules. such as the carbohydrates.

As recognizable from data in Figure 4.10, by adding the EDTA to the sample with attractive

interaction, the dispersion dilutes and the diffusion coefficient assumes a value perfectly aligned along

the line fitting the diffusion coefficient of the sample before adding both CaCl2 and EDTA.

We have thus documented the possibility to inspect with light scattering techniques attractive

interaction between carbohydrate molecules when the solution contains Calcium ions.
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Figure 4.10: Diffusion coefficient vs. particles volume fraction in a solution of PhP + n-Dodecyl-
Alpha-D-Maltoside in NaCl 1mM .
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In the second part of this thesis we investigate previously undescribed phenomena taking place

in bidisperse mixture of rod-sphere and sphere-sphere colloidal particles under the effect of an ex-

ternal oscillating electric field. Chapter 5 describes the behavior of various type of colloidal particles

(dielectric, conductive, charged) under the action of an external electric field. In particular, when the

particles are charged particles, the behavior of the dispersion strongly depends on the electric field

frequency. The simplest regime can be found at high field frequencies where hydrodynamic and dif-

fusional effects can be neglected and where charged particles can thus be assimilated to dielectric

particles with a conductive skin. In this regime the colloidal polarizability can be described with the

well known Maxwell-Wagner model. At low field frequencies instead, electrodynamic processes and

solvent flows play a crucial role in determining the behavior of the particles. Within a linearized

electrokinetic theory the phenomenon accounting for solvent flows in proximity of charged surface

is the electro-osmosis, here described in section 5.4. Induced-Charge Electro-osmosis (ICEO) (sec-

tion 5.5) refers instead to second order solvent flows which originate around conductive particles,

where charges are not fixed but are induced by the electric field.

Section 6.1 reviews birefringence measurements results obtained on monodisperse mixture of

rod-like particles and bidisperse mixture of rod-sphere colloids is proposed. Indeed, according to the

theory proposed in chapter 5, rod-like particles orient preferentially parallel to electric field direction.

However Mantegazza et al. [23] observed that when the rod-like particles are mixed with a sufficient

concentration of smaller spherical particles, at low field frequency the rods display an anomalous

orientation with the long axis perpendicular to the field direction. We performed Electric Transmitted

Light Intensity measurements to study the scattering cross section of such systems and to acquire

better insight into the physics of such phenomenon. Subsection 6.2.1 and subsection 6.2.2 present the

experimental results for monodisperse suspension of rod-like particles and for mixtures of rods and

spheres. Through our measurements we confirmed the phenomenon of anomalous orientation in bidis-

perse mixtures. Moreover in the same frequency range, we observed an overall field-induced clearing

of the mixtures. In subsection 6.2.3 we demonstrate that such clearing effect can not be ascribed to the

anomalous orientation of the rod-like particles but is related to a structuring of the secondary particles

around the rods. In seeking a better explanation of these phenomena we found that the same field

induced clearing is present also in mixture of large and small spheres, where no orientational effect is

possible (section 6.3). Also in this case we found a decrease of the turbidity at low frequency. In sub-

section 6.3.1 we show that a repulsive interaction between large and small spheres can be responsible

of such clearing effect. We conjecture that second order electro-osmotic flows can be responsible of

all the observed phenomena (section 6.4) giving rise to a new electrokinetic phenomenon of “colloidal
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5 Colloidal particles in electric field

The behavior of colloidal dispersions under the effect of an external electric field is strictly determined

by the dielectric properties of both the colloids and the suspending medium. In this chapter we propose

a brief review of the phenomena occurring in different types of colloidal suspensions when an external

electric field is applied.

5.1 Dielectric particles in dielectric medium

First of all we consider uncharged dielectric spherical particles immersed in a dielectric medium. In

this case, due to the dielectric constant mismatch, a polarization charge arises at the particles/solvent

interface. As the electric field is activated, polarization charges accumulate on the particle-solvent

interface, thus making the particle’s dipole moment to grow, either in the direction of the electric field

or opposite to it. This yields a continuous electric displacement across the interfaces. The growth

proceeds until a stationary condition is not established. The resulting polarizability can be calculated

through the Clausius-Mossotti equation:

α = 4πε0εsR3 εp − εs
εp + 2εs

, (5.1)

where R is the particle’s radius while ε0, εp and εs are the vacuum, particle and solvent dielectric

constant respectively.

In the case of non-spherical particles, due to the anisotropic shape, the induced particle dipole

moment varies with the particle orientation with respect to the external electric field direction. Hence

also the particle’s energy is function of the particle’s orientation. In the case of particles having di-

electric constant higher than the solvent the field induced dipole moment is positive. Moreover when

the particle is parallel to the external field direction the dipole moment is larger than the one in the
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perpendicular configuration. As a consequence the parallel configuration is energetically favored. The

same result can be found also for particles having dielectric constant lower than the solvent. In this

case the dipole moment is negative and its absolute value is larger in the parallel configuration than

in the perpendicular one. Thus dielectric particles orient preferentially parallel to the electric field

direction.

Considering monodisperse colloidal solutions, the only exceptions to this behavior have been found

in highly concentrated rods dispersions, where perpendicular orientation prevails [45, 46].

5.2 Dielectric and conductive particles in dielectric and conductive medium

When considering conductive dielectric particles immersed in conductive dielectric medium, the pres-

ence of an external electric field produces an induced polarization due to the conductivity and dielec-

tric mismatch between the particles and the solvent. The polarization process can be described through

the so called Maxwell-Wagner model. When the electric field is activated, free charges accumulate at

the particles/solvent interface, producing a growth of the particle’s dipole moment. The accumulated

charges create a counterfield which opposes to the external one. This process continue until the field

generated by the accumulated charges balances the conductivity mismatch between the particle and

the solvent i.e. the internal current equals the external one.

For spherical particles, the polarizability can still by expressed through Equation 5.1, where εp and

εs are the particles and solvent complex dielectric function respectively and can be written in terms

of the real dielectric function ε′ and of the volume conductivity K:

εp = ε
′
p + i

Kp

ωε0

εs = ε
′
s + i Ks

ωε0
.

(5.2)

The polarizability of spherical conductive dielectric particles has a characteristic time τMW which

depends on both conductivity and dielectric constants of the particles and on the solvent:

τMW = ε0
ε

′
p + 2ε

′
s

Kp + 2Ks
. (5.3)

In the case of non-spherical elongated particles with short and long semiaxes a and b the polar-

izability can still be expressed through the Clausius-Mossotti equation (see Equation 5.1) modified to

94



Charged particles 5.3

include an orientational dependence:

α = 4πε0εsa2b
εp − εs

3(εs + (εp − εs)L)
, (5.4)

where L is the geometrical depolarization factor for spheroidal particles [47]. It follows from Equa-

tion 5.4 that the process has a characteristic time depending on the particles orientation with respect

to the electric field:

τMW = ε0
(1− L)ε

′
s + Lε

′
p

(1− l)Ks + LKs
. (5.5)

5.3 Charged particles

When charged particles are considered, the phenomenon becomes more complicated. In fact, as illus-

trated in subsection 1.3.1, charged colloidal particles in solution have an electric double layer formed

by dispersed ions and counterions. The presence of an external electric field provokes the movement

of the double layer ions, thus producing non negligible modifications in the double layer structure.

As a consequence, to appropriately describe the behavior of charged particles in electric field, hydro-

dynamic, electric and diffusive processes have to be considered. Hence the physics of this systems is

far more complicated than the situations previously considered.

The theoretical framework used to describe this type of system is the so called Standard Electroki-

netic Model (SEM) [11, 10, 28, 48]. The SEM embodies all the relevant diffusive and hydrodynamic

phenomena, combining charge conservation, Navier-Stoke and Poisson equations with boundary con-

ditions for the electric field, ionic diffusion and conduction. The great generality of the SEM is also

the cause of its extreme complexity. Exact solutions are available only in the case of spherical parti-

cles.

However, at high frequency, ions diffusion can be neglected and the hydrodynamic fluxes are

local. As a consequence charged particles can be regarded as dielectric particles with a conductive

skin. Indeed the double layer acts as a conductive coating and its properties can be embedded into an

effective surface conductivity Kσ. Hence the behavior of charged colloids at high enough frequency

can be described through an extended Maxwell-Wagner model (EMW) i.e. charged particles are anal-

ogous to conductive particles. The polarization process can be ascribed to the charge displacement

inside the electric double layer necessary to produce matching between the ions current inside the

electrolyte solution and the counterions current inside the electric double layer. To calculate the po-

larizability of a charged spherical particle it’s necessary to know both the particle dielectric constant

εp and its conductivityKp. In particularKp has to be regarded as a particles property including differ-
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ent processes involving the double layer. It has been shown by O’Konski [49] that a non-conductive

spherical particle with surface conductivity Ks
p generates the same dipolar field of a particle with

volume conductivity Kp with

Kp =
2Ks

p

R
. (5.6)

From the former equation it follows that, for highly charged colloids with thin double layer, the

particle polarizability can be calculated through an appropriate estimation of the surface conductivity.

This approximation is justified only at high frequency where the ion concentration is not influenced

by the oscillating electric field [50, 51]. Hence in the limit case of high ionic strength, high particle’s

charge and high frequency the processes around a spherical particles can be embodied into a surface

conductivity Ks
p(q, κ,Ks), function of the particle surface charge q, of the Debye length κ−1 and of

the solvent conductivity Ks:

Ks
p = κ−1

[
exp

(∣∣∣∣ eζ

2kBT

∣∣∣∣)− 1
]

(1 + 3m)Ks, (5.7)

where e is the elementary charge , ζ is the particle surface potential, and m is a parameter depending

on the type of electrolyte.

Since the particle surface charge q and the ζ potential for a 1 : 1 electrolyte, when ζ >> 2kBT/e,

are related by the equality

q = 2
εsε0kBT

e
κsinh

(
eζ

2kBT

)
, (5.8)

Equation 5.7 can be rewritten as:

Ks
p(r) ≈ q(r)

Ks

zeI
(1 + 3m), (5.9)

with I ionic strength of the solution.

In synthesis, the EMW models is based on two simplifying hypothesis i.e. the assumption that at

high frequency ion diffusion can be neglected and that hydrodynamic fluxes are local. Under these

conditions, the polarizability of a charged spherical particle can be calculated through some steps.

First, the surface conductivity of a non-conducting particles Ks
p is computed mapping superficial

processes into a surface conductivity (Equation 5.7). Then, following O’ Konski treatment, the surface

conductivity is converted into an equivalent volume conductivity (Equation 5.6). Finally, by inserting

Kp into Clausius-Mossotti formula (Equation 5.1) the particle polarizability is calculated according

to the MW model.

Instead at low frequency the model is more complex because of the presence of various entan-

96



Charged particles 5.3

gled processes, including displacement of counterions within the electric double layer, solvent flows

(electro-osmosis) which will be described in the next section, ion-screened electrostatics, perturba-

tions of the neutral salt local concentration. This last occurrence, known as concentration polarization,

is the basic mechanism at the origin of the so called α-relaxation process. The concentration polariza-

tion is due to the presence of two kinds of ionic motion: assuming a negative charged particle having

thus a double layer rich in cations, there will be normal fluxes in the solution while at the particle sur-

face there will be a tangential flux of cations along the interface. If the electric field is directed from

the left to the right of the particle, on the particle right side there will be a normal outward flux of

cations from the double layer and a normal inward flux of anion from the bulk solution. This process

generates an increased neutral salt concentration c. On the contrary, on the particle left side, normal

fluxes generate a decrease in electrolyte concentration. A gradient of neutral salt is established in a

time inversely proportional to the effective ions diffusion coefficient Deff :

τα ≈
(R+ κ−1)2

2Deff
(5.10)

with κ−1 double layer thickness and Deff equals to:

Deff =
2D+D−

D+ +D− . (5.11)

The characteristic frequency of the phenomenon is ωα ≈ 1/τα.

The modification in the salt concentration will provoke a compression of the double layer on the

particle right side and an expansion on the left side. Hence, on the right side of the double layer cations

accumulate close to the particle surface while on the left side they are driven at a grater distance from

particle surface. Consequently the center of charges shifts to the left, generating a dipole moment

pointing against the field. The concentration gradient generates diffusion fluxes from right to left, that

means opposite to the tangential fluxes provoked by the external field. The concentration polarization

mechanism is sketched in Figure 5.1. For sufficiently high frequency the ions accumulation cannot

form and the diffusion current will be frozen, as sketched in Figure 5.1(b).
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Figure 5.1: Schematic representation of the fluxes of counterions (+) and coins (-) around a negatively
charged colloids in presence of an electric filed E0.In (a) the concentration polarization mechanism
causes diffusion fluxes (j±D) in addition to the electromigration ones (j±em) due to the action of the
electric field. In (b) the frequency is above the α-relaxation and only electromigration fluxes remain.
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5.4 Electro-osmosis

Electro-osmosis is a basic electrokinetic phenomenon. The physical mechanism is as follows. A sur-

face or particle with surface charge q in aqueous solution, as described in subsection 1.3.1, attracts a

screening cloud richer of counter-charged ions to form an electrochemical double layer. The applica-

tion of an external electric field exerts on the electrolyte ions a force proportional to the ion charge

q namely Fe = E · q. At stationary condition this force is balanced by the viscous friction force

Fv = 6πηRv, with R and v radius and velocity of the ions and η viscosity of the fluid. Hence the

stationary velocity is:

v =
Eq

6πηR
∝ E. (5.12)

Figure 5.2: Electro-osmotic velocity profile.

In the region of neutral salt every ion is dragged by the same force, which is only proportional

to the ion charge. Thus, in neutral salt region, there is no net flux. On the contrary, inside the double

layer there is an excess of charges of one sign, so there is a net flux of ions. This flux drags the

solvent generating a solvent profile velocity. The solvent velocity is zero at contact with the surface

and exponentially reaches the value of Equation 5.12. The penetration length of this process is time

dependent, since a certain time is necessary to the solvent flow to reach its stationary value and to

extend far from the electric double layer zone in proximity of the charged surface.
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5.5 Induced-Charge Electro-osmosis (ICEO)

The electro-osmotic flow described in the previous section involves the interaction of an applied

field and a surface with fixed charge; hence the electro-osmotic flow is linear in the applied electric

field. The induced-charged electro-osmosis is instead a non-linear phenomenon which originates in

proximity of uncharged, polarizable (metal or dielectric) surfaces. In the simplest case, an uncharged

conducting cylinder is considered. Immediately after the application of an external electric field E =

E0z, the field lines around the particle bend to intersect the conducting surface at a right angle. In

response to the applied electric field, mobile ions in the electrolyte solution move: a current J = σE

accumulate positive ions on one side of the particle and negative ions on the other side. Thus an

induced opposite charge creates on the two side of the conductor. The dipolar charge grows until the

establishment of a steady-state, i.e. no field line penetrates the induced double layer. The tangential

field drives an electro-osmotic slip velocity (see Equation 5.12) proportional to the local double layer

charge density, which drag solvent from the poles to the equator (see Figure 5.3). An ac field drives

Figure 5.3: ...Electro-osmotic flow around a conducting cylinder with zero net charge.

an identical flow, when the electric field is oppositely directed, since it induces oppositely dipolar

charges around the particle, generating the same net flow. All this treatment applies to uncharged,

polarizable (metal or dielectric) surfaces.

Little is instead known about non-linear fluid flows in proximity of charged surfaces. In [14, 15]

a model is proposed to explicitly calculate nonlinear solvent flows in proximity of charged dielectric

particles as function of the zeta potential and of the ionic strength. The flow lines are sketched in

Figure 5.4.
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Figure 5.4: Pattern of distribution of nonlinear flows near a polarized particle.
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6 Experimental results of

electrokinetics interactions

6.1 Electric Birefringence Spectroscopy measurements (EBS)

6.1.1 Monodisperse PTFE suspensions

Figure 6.1: Frequency dependence of the Kerr coefficient B(ν) measured in PTFE solution (φ =
0.001). Curves refer to different ionic strengths I: (a) I = 0.02mM KCl; (b) I = 0.05mM KCl; (c)
I = 1mM KCl; (d) I = 4mM KCl [52].

Figure 6.1 shows a typical birefringence spectrum obtained by applying an electric field of about

1 − 3V/mm to an aqueous dispersion of PTFE rods with volume fraction φ = 10−3 at various

ionic strengths [52]. At any frequencies the Kerr coefficient B(ν) decreases upon increasing the ionic

strength. Moreover the Kerr coefficient is a decreasing function of the frequency in the kHz and MHz
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region, except for a dip in the MHz region. Figure 6.2 shows an aqueous dispersion of PTFE rods

with volume fraction φ = 10−3 with particles fully covered with AOT at various ionic strengths [52].

As highlighted in section 2.5, the AOT is an anionic surfactant which can be adsorbed onto particles

surface to increase PTFE charge. In this case too B(ν) decreases by increasing the ionic strength of

the solution.

Figure 6.2: Frequency dependence of the Kerr coefficient B(ν) measured in PTFE solution (φ =
0.001) where 10−4mol/l AOT have been added. Curves referee to different ionic strengths I: (a)
I = 0.01mM KCl; (b) I = 1mM KCl; (c) I = 2mM KCl; (d) I = 4mM KCl [52].

As highlighted in section 5.3 and recognizable in both Figure 6.1 and Figure 6.2, the behavior of

charged particles in the electric field presents two different regime. At high enough frequency the rods

behavior can be explained considering only electrostatics effects and ionic displacements, according

to the extended Maxwell-Wagner model. As shown in Figure 6.3, the high frequency behavior of

the Kerr coefficient can be fit using the Maxwell-Wagner model to describe the polarizability of a

spheroidal particle. In Maxwell-Wagner regime B(ν) drops quickly toward the asymptotic value be-

tween 1 and 10MHz; after a pronounced dip (in the case of highly charged particles), the asymptotic

value is reached at frequencies above 100MHz. The values of the Maxwell-Wagner frequency νMW

extracted from the fitting function depend on the ionic strength and the particles charge.

Instead, at low frequency, B(ν) decreases smoothly and monotonically for low charged particles

while, for highly charged particles, B(ν) is less dependent on ν. In the low frequency regime hy-

drodynamic effects can not be neglected and the interpretation of the Kerr coefficient behavior is far

more complicated.

Figure 6.4 shows the fits obtained through Fixman’s algorithm of two experimental curves. Fit
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Figure 6.3: Maxwell-Wagner high frequency fit of the Kerr coefficients shown in Figure 6.1.

analysis indicates that the low frequency behavior of B(ν) vs. ν requires a negative hydrodynamic

torque acting on rod-like particles.

Figure 6.4: Fixman’s fit of two experimental curves of B(ν).

6.1.2 Bidisperse PTFE + SP suspensions

As introduced in subsection 1.4.2 Mantegazza et al. [23] observed a strange low frequency behavior

of the Kerr coefficient when charged rod-like “primary particles” (PP) are dispersed in a solution with

smaller spherical “secondary particles” (SP) charged of the same sign.
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Figure 6.5: Kerr coefficient spectra for: Green dots: monodisperse PTFE (φ = 0.001) (PP); Black
empty dots: monodisperse polystyrene spherical particles (R = 18nm, φ = 0.01) (SP); Red dots:
bidisperse mixture of PP and SP (φPP = 0.001, φSP = 0.01)[23].

Green dots in Figure 6.5 represent the typical Kerr coefficient spectra for a dilute solution (volume

fraction φ = 0.001) of PTFE particle. The spectra is relatively flat up to about 1MHz, indicating that

the anisotropy of the electric polarization of the particles is basically constant. Above 1MHz B(ν)

starts decreasing and reaches an asymptotic value around 100MHz. The B(ν) trend indicates that

the orientational order decreases for frequency higher than 1MHz. For dilute dispersion of PP the

Kerr coefficient always assumes positive values (with the possible exception of a small frequency in-

terval in the MHz range [53]) and hence indicates that rods are oriented with their long axis parallel to

the field direction. Black empty dots in Figure 6.5 are instead the birefringence signal of a dispersion

of SP, in that case polystyrene spheres with radius 20nm and volume fraction φ = 0.01. As expected

spherical particles produce negligible signal with respect to rod like particles. Red dots finally rep-

resent B(ν) of a bidisperse mixture obtained by mixing PP and SP (volume fractions φPP = 0.001

and φSP = 0.01 ): the birefringence spectra shows a large negative value at low frequency, indicating

that rods orient preferentially perpendicularly to the electric field direction. The parallel orientation is

instead recovered at high frequency.

The exploration of many different bidisperse systems in [23] clearly indicates that the anoma-

lous low frequency birefringence response is a general feature of charged rod-sphere mixtures, as

evident from Figure 6.6 (a) and (b), where the same anomalous response has been obtained with dif-

ferent types of PP and SP particles respectively. The anomalous birefringence can not be ascribed
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Figure 6.6: Kerr constant spectra for various PP and SP mixtures [23]. (a) B(ν) of mixtures of
polystyrene spherical SP (φSP = 0.01) with various PP. (b) B(ν) of mixtures of PTFE PP (φPP =
0.001) with various negatively charged SP. (c)B(ν)/φPP of mixtures of PTFE and polystyrene spher-
ical SP (R = 18nm) at fixed φSP = 0.01 and variable φPP (d) B(ν) of mixtures of PTFE PP
(φPP = 0.001) and Ludox AS30 SP (R = 15nm, φSP = 0.01) at different concentration φT of a
non-ionic surfactant, which controls the PTFE surface charge density and thus the ζ potential [23].

to an SP-mediated anisotropic interactions between rods: indeed, as highlighted in Figure 6.6 (c),

there is a perfect collapse of several B(ν)/φPP curves of mixture having the same φSP and vari-

ous φPP . Thus the anomalous behavior is a property of each single rod surrounded of SP particles.

Data in Figure 6.6(d) have been obtained by modifying the PTFE charge through the absorption of

a charge non-ionic surfactant. Decreasing the PTFE charge both the high frequency normal response

and the low frequency anomalous behavior decrease, demonstrating the electrokinetic nature of B(ν)

on the whole explored frequency range. The effect depends also on SP charge and disappears when

uncharged SP are employed. A quantitative analysis of the reported data allows also to exclude an

SP-PP induced dipoles interaction as explanation of the anomalous effect.

The low frequency trend of B(ν) have been fitted through the function for the polarizability of

charged spherical particles in electrolyte solution proposed by Fixman [54](see Figure 6.6(c). In Fix-

man model the frequency dispersion of the polarizability is related to a concentration-polarization

mechanism and thus the characteristic frequency is given by the time required to the electrolyte ions

to diffuse across the spherical particle and is typically∝ 10−100 kHz. In this case instead the values

extracted for the characteristic frequency in the anomalous range are about 10-1000 times smaller and

of the order of time required to SP to diffuse across PP. Hence Mantegazza et al. indicate as possible
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mechanism at the origin of the anomalous behavior an SP crowding on one side of the PTFE which

generates a negative hydrodynamic torque on the PP particles.

6.2 Electric Transmitted Light Intensity measurements of rod-like par-

ticles

To get better insights into the physics of this anomalous behavior, we decided to study the effect of the

electric field on the scattering cross section of PTFE+SP mixtures by performing Electric Transmitted

Light Intensity (ETLI) measurements.

6.2.1 Monodisperse PTFE suspensions

Figure 6.7: ETLI measurement of a dispersion of PTFE rod-like particles. φPTFE = 0.001, ionic
strength I = 0.5mM KCl. Green squares: ∆τ‖/E2 ; Red dots: ∆τ⊥/E2; Blue triangles: ∆τ/E2.

Figure 6.7 shows the ETLI measurements performed on a monodisperse solution of PTFE rods

(φ = 0.001) in ionic strength I = 0.5mM KCl. Since the turbidity variation is proportional to the

square field amplitude for all frequencies and both polarizations, ETLI measurements plots present

the turbidity variation induced by the application of the electric field divided for the square field

amplitude as a function of the electric field frequency ν. Green squares and red dots are ∆τ‖ and ∆τ⊥,

i.e. the induced turbidity variation detected with a light beam polarized parallel or perpendicular to the

electric field direction respectively . Thus ∆τ = τE− τ0 is the difference between turbidity measured

in presence of the electric field and the turbidity of the sample in isotropy condition, when no electric

field is applied. Blu triangles in Figure 6.7 have been obtained by calculating for each frequency the
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difference between the “mean turbidity” defined as τ = (τ‖ + 2τ⊥)/3 and the turbidity of the sample

in isotropy condition. For each frequency results τ − τ0 ≈ 0.

Figure 6.8: (a) τ‖, (b) τ⊥, (c) τ for the sample in an isotropy state.

6.2.2 Bidisperse PTFE + SP suspensions

Figure 6.9: ETLI measurements of ∆τ/E2 in a PTFE+P20 mixture measured for parallel (green
squares) and perpendicular (red dots) polarizations. Blue triangles have been obtained by calculating
∆τ/E2 = (τ − τ0)/E2. Blue stars are ∆τ/E2 magnified of five times. φPTFE = 0.001, φP20 =
0.01, ionic strength I = 0.5mM KCl.

Figure 6.9 presents ∆τ/E2 data for a suspension of PTFE PP (φPTFE = 0.001) and polystyrene

spherical particles P20 as SP (RP20 = 20nm, φP20 = 0.01) in a ionic strength I = 0.5mM

KCl. The fact that τ⊥ > τ‖ confirms the low-frequency orientational anomaly. The anomaly no-

ticed in ETLI data and EBS data are in the same frequency range, with a characteristic frequency

νmix
∼= 5 kHz. The low frequency anomalous behavior is proportional to the volume fraction of

PTFE particles, as evident from the perfect collapse of curves in Figure 6.10. The dependence on

SP volume fraction is instead far more complicated (see Figure 6.11). Moreover τ < τ0 indicates an

overall clearing of the dispersion.
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Figure 6.10: ∆τ‖/(E2φPTFE), ∆τ⊥/(E2φPTFE) and ∆τ/(E2φPTFE) of PTFE + P20 (φP20 =
0.01) mixtures at various PTFE volume fractions (ionic strength I = 0.5mM KCl). Squares:
φPTFE = 0.0005; Circles: φPTFE = 0.001; Triangles: φPTFE = 0.002; Capsized triangles:
φPTFE = 0.003.

Figure 6.11: ∆τ‖/E2, ∆τ⊥/E2 and ∆τ/E2 of PTFE + P20 (φPTFE = 0.005) mixtures at various
P20 volume fractions (ionic strength I = 0.5mM KCl). Squares: φP20 = 0.002; Circles: φP20 =
0.005; Triangles: φP20 = 0.01; Capsized triangles: φP20 = 0.015.
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In the following section we demonstrate that this difference between τ and τ0 can not be simply

ascribed to an orientational behavior of the PTFE rods.

6.2.3 Summation rules

As seen in subsection 2.4.1, the turbidity, being proportional to the total scattering cross section,

depends on the optical polarizability of the dispersed particles and hence on their orientational dis-

tribution. From basic optical modeling, it is possible to show that, for any cylindrically symmetric

distribution of our PTFE particles in high dilute condition, the average turbidity τ coincides with τ0,

the turbidity of the same sample in the isotropic state. To perform the calculation we have first con-

sidered a particle having generic spatial orientation and axially symmetric polarizability and we have

expressed the direction of the particle axis through a spherical coordinate system (see Figure 6.12).

Figure 6.12: Spherical coordinate system for particle orientation.

According to Figure 6.12, the particle axis coordinate in the XYZ reference system are:


x = senθcosφ

y = senθsenφ

z = cosθ

(6.1)

In our notation, in the particle coordinate system, the polarizability of the colloid is a diagonal matrix
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and the diagonal elements are α‖ and α⊥:

αdiag =


α⊥ 0 0

0 α⊥ 0

0 0 α‖.

 (6.2)

The particle polarizability in the XYZ coordinate system is obtained through a rotation of the diagonal

matrix αdiag of an angle θ around X and of an angle π/2− φ around Z, namely:

αxyz = Rθφ · αdiag ·R−1
θφ , (6.3)

where Rθφ is defined as:

Rθφ =


cos(π

2 − φ) sen(π
2 − φ) 0

−sen(π
2 − φ) cos(π

2 − φ) 0

0 0 1

 ·


1 0 0

0 cosθ senθ

0 −senθ cosθ

 (6.4)

If the particle considered are small enough, we can neglect the form factor in the expression of the

scattered intensity. The scattered intensity is thus proportional to the square dipole moment modulated

by the polarization toroid of the dipolar emission, namely:

IS ∝ |p|2 sen2Ψ, (6.5)

where p is the induced dipole moment while Ψ is the angle between the dipole moment and the scat-

tering direction. The optical dipole moment induced in the particle by a light beam can be calculated

by projecting the polarizability of the particle along the light polarization direction i.e. by calculating

the scalar product between the polarizability matrix and the versor in the polarization direction. We

calculated that product for light polarized along the three coordinate system axis directions:


px = E0αxyz · ux = E0αxyz · (1, 0, 0)

py = E0αxyz · uy = E0αxyz · (0, 1, 0)

pz = E0αxyz · uz = E0αxyz · (0, 0, 1),

(6.6)

where ux,uy and uz are the unit vectors oriented as the system coordinate axises.
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Indicating with us a generic unit vector in the scattering direction, sen2Ψ can be calculated as:

sen2Ψ = 1− (up · us) = 1− cos2Ψ, (6.7)

with up unit vector along dipole moment direction. Reminding that the power emitted from a dipole

is the integral of the scattered intensity on the whole solid angle, we calculated, for each light beam

polarization, the power radiated by the particle. As seen in subsection 2.4.1, the turbidity is directly

related to the emitted power, so that we have calculated the mean turbidity τ = (τx+τy+τz)/3, where

τx,τy and τz are the turbidity measured with light polarized along X,Y and Z respectively. Through

this calculation we verified that for a particle with any given spatial orientation, the average scattering

cross section does not depend on the particle orientation and is alway proportional to α2
‖ + 2α2

⊥ i.e.

τ = (τ‖ + 2τ⊥)/3. Thus, if we consider a dilute solution of small particles, so that both the form

factor and the structure factor can be neglected, the optical properties of the solution depend only on

the optical behavior of the dispersed particles. Hench τ ∝ α2
‖ + 2α2

⊥.

In particular we considered a cylindrically symmetric distribution of rod-like particles and we

modeled the orientational distribution of the particles with a 3D gaussian function with symmetry

axis along the coordinate system directions. This model indeed should represent our experimental

condition where the application of an external electric field to a colloidal dispersion of anisotropic

particles biases the anisotropic orientational distribution of the particles generating a system with

cylindric symmetry. By performing the calculation according to the model previously described we

verified that τ = (τ‖ + 2τ⊥)/3 = τ0 where τ0 is the mean turbidity of the sample in the isotropic

state; τ0 has been calculated through the integration of the power radiated by the particle on whole

particle axis directions.

As introduced in section 2.1 the light intensity scattered from a particle depends on the the square

of the particle form factor F (q) defined as:

|F (q)|2 =
1
V 2

∣∣∣∣∫
V
eiq·r

∣∣∣∣2 , (6.8)

where V is the particle volume and q is the scattering vector. If the colloidal particles are small

compared to the light wavelength F (q) = 1 for each q and the interference between light scattered

from different infinitesimal volume of the particle can be neglected. We investigated if, with our PTFE

rod-like particles, the particles form factor invalidates the previously found results. According to [33]

the form factor of rod-like particles with axis parallel to Z direction can be written as the composition

of the form factor of a disk of radius R in the XY plane and of a stepwise function of length l along
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the Z direction. Hence F (q) can be calculated as:

F (qxy, qz) =
sen(lqz)
lqz

2J1(Rqxy)
Rqxy

, (6.9)

where qz and qxy are the scattering vector components in the z direction and in the XY plane re-

spectively, with scattering vector defined as q = ki − ks; ki and ks are the vectors in incident and

scattering direction respectively. J1 is the Bessel function of order 1. Similarly to the former proce-

dures, assuming an external electric field parallel to the Z axis (i.e. rod particle aligned parallel to the

external electric field), we calculated the variation of the mean turbidity τ of the aligned sample with

respect to the turbidity of the same sample in an anisotropic state. We have seen that the form factor

does not invalidate the summation rule, so that the equality τ ∼= τ0 remains valid. Hence we verified

that the anomaly in the birefringence spectra can not be ascribed to an orientational behavior of the

rod-like particles.

6.2.4 Analysis of the results

Low frequency ETLI measurements on rod-sphere mixtures present τ⊥ > τ‖: this fact confirms the

orientational anomaly found in birefringence measurements, with particles preferentially oriented per-

pendicularly to the electric field. However, this orientational behavior of the rods, does not account

for the overall field-induced clearing of the mixtures, which present τ < τ0. The difference between τ

and τ0 is proportional to the PTFE volume fraction while exhibit a more complicated monotonically

increasing dependence on SP volume fraction. All this findings indicate that a field-induced redistri-

bution of the spherical particles around each PTFE rod takes place in the same frequency range where

the orientational anomaly is found, suggesting the two phenomena to be related. The two effects have

the same characteristic frequency νmix
∼= 5 kHz, which is about 30 times lower than the expected α-

relaxation frequency να. The α-relaxation is the slowest electrokinetic effect and its basic mechanism

is the concentration polarization, an asymmetric accumulation and depletion of neutral electrolyte

which modifies the particle double layer (see section 5.3). Thus να depends on the particles mean

dimension R and on the mean ionic diffusion coefficient D:

νalpha ∝
D

R2
.

νmix results instead of the order of DSP /R
2, where DSP is the diffusion time of the secondary

particles around rods having mean size equal to R. Thus the orientational anomaly and the field-

induced clearing could be both due to a process analogous to the concentration polarization, where
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the secondary particles act similarly to coions. We decided to verify this hypothesis by studying

mixtures having spherical primary particles.

6.3 Electric Transmitted Light Intensity measurements of binary mix-

tures of spheres

Due to the difficulties in modeling mixtures involving rod-like particles, we decided to devote our

attention (both experimentally and theoretically) to binary mixtures of spheres. We thus studied dis-

persions of large and small spheres with the hope that they could be a model system to reveal a general

behavior of colloidal mixture.

Figure 6.13 shows the ETLI measurements in mixtures of polystyrene spherical primary parti-

cles P200 (R = 200nm) with P20 or P30 secondary particles (R = 20 or R = 30nm respec-

tively).The electric-field induces a turbidity variation in the samples, proportional to the square of the

field amplitude E2 (see Figure 6.13(c)): for this reason in the plots we present the clearing coefficient

∆τ/E2. Figure 6.13(a) shows the clearing coefficient for a mixture of P200+P20 and for a mixture

of P200+P30 (φP200 = 0.002, φP20,P30 = 0.01). There is a field-induced clearing for both light

polarizations at frequencies ν < νmix
∼= 3− 5 kHz, which depends on the secondary particles cross-

section. The clearing is anisotropic with τ⊥ < τ‖. Figure 6.13(b) presents the clearing coefficient

divided by the P200 volume fraction for mixture of P200 and P20, with various φP200. As evident

from the collapse of all the curves, the turbidity variation is proportional to the P200 volume fraction.

The dependence on the secondary particles volume fraction is instead far more complex, as evident

from Figure 6.14. The effect is slightly dependent on the ionic strength: in Figure 6.15 ∆τ⊥/E2 is

shown for a mixture of P200+P20 at various ionic strengths of KCl.

Since in sphere-sphere systems no orientational effect is possible, the field-induced clearing is

an unambiguous mark of an interaction phenomenon between large and small spheres. In subsec-

tion 6.3.1 we present a calculation performed within second virial expansion formalism which shows

that the intensity diffused by the mixture decreases in presence of a repulsive interaction between

large and small spheres.
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Figure 6.13: Field-induced clearing coefficient (a) ∆τ/E2 and (b) ∆τ/(E2φP200) vs. electric field
frequency in mixtures of large and small spheres. Full (empty) symbols indicate perpendicular
(parallel) polarization. In (a) P200+P20 (diamonds), P200+P30 (squares). φP200 = 0.0002. In (b)
P200+P30 mixtures with various φP200. Dots: φP200 = 0.0003; Squares: φP200 = 0.0002; Triangles:
φP200 = 0.0001. In (c) turbidity variation ∆τ vs E2 for a P200+P30 mixture. In (d) relative variation
in the transmitted intensity I for a mixture of P200+P30. I indicate the transmitted intensity when no
field is applied. E = 24V mm−1 for t < 0 while E = 0 for t > 0. In (c) and (d) ν = 100 Hz and
φP200 = 0.0002. In all panels φSP = 0.01 [55].

Figure 6.14: Field-induced clearing coefficient ∆τ⊥/E2 (full symbol) and ∆τ‖/E2 (empty symbol)
for P200+P20 mixtures (φP200 = 0.0005, ionic strength I = 0.5mM ) at various φP20. Squares:
φP20 = 0.002; Dots: φP20 = 0.005; Triangles: φP20 = 0.01; Capsized triangles: φP20 = 0.015.
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Figure 6.15: Field-induced clearing coefficient ∆τ⊥/E2 for P200+P20 mixtures (φP200 = 0.001,
φP20 = 0.01) at various ionic strengths of KCl. Squares: I = 0.2mM ; Dots: I = 0.5mM ; Triangles:
I = 1mM ; Capsized triangles: I = 1.5mM .

6.3.1 Light scattering in binary mixtures of large and small spheres

We want to model the light scattering signal of a mixture of large and small spheres to study what

happens to the turbidity of the system in presence of an interaction between the colloids. In general,

for a colloidal dispersion, the total scattered intensity in the forward direction is related to the average

square fluctuations of the dielectric constant:

I(k) ∝
〈
|δε̂(k)|2

〉
,

where δε̂(k) is the fourier transform of the dielectric constant fluctuation in real space δε(r), i.e.

δε̂(k) =
∫
dreik·rδε(r).

For a one-component colloidal dispersion with number density ρ = N/V , indicating with εs and

εp the solvent and particle dielectric constant respectively and with Vp the particle volume, the total

dielectric constant is:

ε(r) = εs + ρ(r)(εp − εs)Vp (6.10)

where the product between ρ and Vp is the particles volume fraction. The dielectric constant fluctua-

tions in k space can be written in terms of the particles concentration fluctuations 〈|δρ̂(k)|2〉:

〈|δε̂(k)|2〉 = ∆ε2V 2
p 〈|δρ̂(k)|2〉 (6.11)
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where ∆ε is the difference between the dielectric constant of particle and solvent.

For a two-component mixture of species 1 and 2, the Equation 6.10 can be rewritten as:

ε(r) = εs + ρ1(r)∆ε1Vp1 + ρ2(r)∆ε2Vp2

so that the mixture dielectric constant fluctuations assume the form:

〈|δε̂(k)|2〉 = ∆ε21V
2
p1〈|δρ̂1(k)|2〉+ ∆ε22V

2
p2〈|δρ̂2(k)|2〉+ 2∆ε1∆ε2Vp1Vp1〈δρ̂1(k)δρ̂2(k)〉 (6.12)

The presence of any sort of interaction between the colloids affects the concentration fluctuations and,

as a consequence, the optical response of the system.

It is known from literature [56] that the light intensity scattered by a one component colloidal

dispersion is proportional to the osmotic isothermal compressibility χT , defined as:

χT = − 1
V

(
∂V

∂P

)
T

=
1
ρ

(
∂ρ

∂P

)
T

where P is the osmotic pressure of the system. A relative osmotic compressibility can be defined as:

χR = ρkBTχT =
[
∂(βP )
∂ρ

]−1

, (6.13)

with β = 1/kBT . Reminding the thermodynamic definition of pressure:

P = −
[
∂A

∂V

]
(6.14)

where A is the Helmholtz free energy, Equation 6.13 and Equation 6.14 can be combined to obtain:

1
ρχR

=
∂2

∂ρ2

(
A

VKBT

)
=

1
ρS(k = 0)

(6.15)

where, according to [56], the static structure factor for k = 0 is defined as S(0) = 1
V
〈δρ̂2〉

ρ , where the

density fluctuations are for k = 0. In the following we always consider the scattering in the forward

direction and thus we omit to explicitly indicate the k dependence.

For a binary mixture of species 1 and 2 the static structure factor depends also on the cross density
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correlation between the two species:

S11 = 1
V
〈δρ̂2

11〉
ρ11

S22 = 1
V
〈δρ̂2

22〉
ρ22

S12 = S21 = 1
V
〈δρ̂1δρ̂2〉√

ρ1ρ2

(6.16)

where the Fourier transforms of the density fluctuations are taken for k = 0. Hence the mean square

density fluctuations are related to the Helmholtz free energy second derivatives through the following

equality:

 ρ1S11
√
ρ1ρ2S12

√
ρ1ρ2S12 ρ2S22

 =
1
V

 〈δρ̂2
1〉 〈δρ̂1δρ̂2〉

〈δρ̂1δρ̂2〉 〈δρ̂2
2〉

 =

 ∂2

∂ρ2
1

(
βA
V

)
∂2

∂ρ1∂ρ2

(
βA
V

)
∂2

∂ρ1∂ρ2

(
βA
V

)
∂2

∂ρ2
2

(
βA
V

)
−1

(6.17)

To find the influence of colloidal interaction on the scattered intensity it is convenient to express

the Helmholtz free energy A with a second virial expansion. It can be shown that:

βA

V
= ρ1 ln ρ1 − ρ1 + ρ2 ln ρ2 − ρ2 +B11ρ

2
1 + 2B12ρ1ρ2 +B22ρ

2
1 . . .

in which the second virial coefficientBij
2 contains the interaction potential V ij(r) between the species

i and j:

Bij
2 = −1

2

∫
dr
(
e−βV ij(r) − 1

)
. (6.18)

The second derivatives in Equation 6.17 assumes the form:

∂2

∂ρ2
1

(
βA
V

)
= 1

ρ1
+ 2B11

∂2

∂ρ2
2

(
βA
V

)
= 1

ρ2
+ 2B22

∂2

∂ρ1∂ρ2

(
βA
V

)
= 2B12

Hence the concentration fluctuations in Equation 6.17 can be rewritten in terms of the second virial

coefficients:

1
V

 〈δρ̂2
1〉 〈δρ̂1δρ̂2〉

〈δρ̂1δρ̂2〉 〈δρ̂2
2〉

 =

 1
ρ1

+ 2B11 2B12

2B12
1
ρ2

+ 2B22

−1

(6.19)
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and by solving the matrix equality:

〈δρ̂2
1〉 = ρ1+2B22ρ1ρ2

1+2B11ρ1+2B22ρ2−4B2
12ρ1ρ2+4B11B22ρ1ρ2

〈δρ̂2
2〉 = ρ2+2B11ρ1ρ2

1+2B11ρ1+2B22ρ2−4B2
12ρ1ρ2+4B11B22ρ1ρ2

〈δρ̂1δρ̂2〉 = − 2B12ρ1ρ2

1+2B11ρ1+2B22ρ2−4B2
12ρ1ρ2+4B11B22ρ1ρ2

(6.20)

To calculate the effects of interactions on the scattered intensity we at first determined the relative

variation in the diffused intensity in presence of hard sphere interaction between the particles (IHS)

with respect to the intensity diffused by same system in absence of any colloidal interactions (I0).

Namely we substituted in Equation 6.12 the expression of the concentration fluctuations as a functions

of the second virial coefficients for hard sphere potential and we evaluated the quantity:

∆HS = IHS−I0
I0

=

∆ε21V
2
p1

ρ1+2BHS
22 ρ1ρ2

1+2BHS
11 ρ1+2BHS

22 ρ2−4(BHS
12 )2ρ1ρ2+4BHS

11 BHS
22 ρ1ρ2

+

+∆ε22V
2
p2

ρ2+2BHS
11 ρ1ρ2

1+2BHS
11 ρ1+2BHS

22 ρ2−4(BHS
12 )2ρ1ρ2+4BHS

11 BHS
22 ρ1ρ2

+

−2∆ε1∆ε2Vp1Vp1
2BHS

12 ρ1ρ2

1+2BHS
11 ρ1+2BHS

22 ρ2−4(BHS
12 )2ρ1ρ2+4BHS

11 BHS
22 ρ1ρ2

(6.21)

We then evaluated the relative variation ∆int in the diffused intensity in presence of other particles

interactions in addition to the hard sphere ones (Iint) with respect to the intensity diffused by the same

system in absence of any colloidal interactions (I0):

∆int =
Iint − I0

I0
. (6.22)

In particular ∆int have been calculated with an equality similar to Equation 6.21 where, instead of the

hard sphere virial coefficient BHS
2 we considered various type of interactions between the particles.

The quantity:
∆Int −∆HS

1 + ∆HS
(6.23)

is the one directly related to our measurements results, according to Equation 2.37. We thus consi-

dered different interaction potentials between the particles and we found that a repulsive interaction
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between large and small spheres can decrease the scattering of the system. The related turbidity vari-

ation is comparable to that observed in our ETLI experiments.

6.3.2 Analysis of the results

All the data point toward a scenario where the presence of the electric field activates a repulsive

interaction between large and small spheres which creates an anisotropic depletion layer of SP around

the PP. We have analyzed data reported in Figure 6.13 to model the shape of the field-induced SP

density distribution and to quantify φSP (r), the local value of φSP at a distance r from the center of

each P200 particle. In particular φSP (r, E) = φSP (r, E = 0)+δφ1(r)+δφ2(r), where φSP (r, E =

0) is the secondary particles density in zero field condition while δφ1(r) and δφ2(r) are the O(E)

and O(E2) field-induced local density variation respectively. So defined δφ1(r) is odd along the field

direction, δφ2(r) is even along E while both density variations have cylindrical symmetry around E.

Due to the experimental techniques employed in our measurements, we are not able to detect δφ1(r),

as shown from the following argument. Indeed, we can associate to φSP (r, E) a refractive index

distribution n(r, E) = n0(r) + n1(r) + n2(r) where n0 is the refractive index for E = 0 while n1

and n2 are the O(E) and O(E2) field-induced perturbation the the refractive index of the system. If

E ‖ z, n1 and n2 are odd and even along z direction respectively. In our experimental system, n1 and

n2 can be considered small with respect to n0 since the scattering power of the SP is much inferior

to the scattering power of the PP. The amplitude of the scattered optical field at a certain scattering

vector q, can be considered as the sum of different contributions:

Eo
0(q) = F [n0(r, θ, z)] ∈ <

Eo
1(q) = F [n1(r, θ, z)] ∈ =

Eo
2(q) = F [n2(r, θ, z)] ∈ <

where θ is the angle between incident and scattering direction while F stands for Fourier transform

operation of the quantity between parenthesis. The belonging to real and imaginary set follows from

the property of Fourier transform of odd and even functions. Thus the scattered intensity results:

I(q) = |Eo
0 + Eo

1 + Eo
2 |

2 ∼= Eo
0(q)2 + 2Eo

0(q)Eo
2(q) + Eo

1(q)2. (6.24)

SinceEo ∝ α we can give an approximate evaluation of the former three contributions to the diffused

intensity. In our experimental system Eo
0(q)2 is due to the scattering of the P200 and is proportional

to α2
P200. Eo

1 and Eo
2 instead involve the contribution to the scattering of the regions of depletion of
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the SP and thus depend on the polarizability of such depleted regions αD. According to Clausius-

Mossotti equation (see Equation 5.1) with the substitution of dielectric constants with the square

refractive indexes, we can calculate α2
P200 and αD as:

αP200 = n2
P200−n2

mean

n2
P200+2n2

mean

αD = n2
D−n2

mean

n2
S+2n2

mean

(6.25)

where nP200 = 1.59, nmean =
(
n2

H2O + (n2
SP − n2

H2O)φSP

) 1
2 is the mean refractive index of the

dispersion given by the contribution of the solvent and of the secondary particles. For simplicity

we assumed nD = nH2O which implies a complete depletion of SP in proximity of each P200.

With this assumption it results that αD is two order of magnitude lower than αP200. Accordingly

Eo
0(q)Eo

2 being proportional to the product αP200αD is two order of magnitude lower than (Eo
0)

2

while (Eo
1)

2 is four order of magnitude lower. Thus the last term of Equation 6.24 gives a null or

negligible contribution to the scattered intensity while the mixing term is the dominant one. Hence

scattering experiments enable only to quantitatively evaluate δφ2.

To verify the former prediction we calculated the scattering of a “traffic light”, i.e. a spherical

particle surrounded by two spherical zones with radius equal to the particle’s radius, one having

higher refractive index and the other having lower refractive index than the surrounding medium (see

Figure 6.16). The two spherical volumes correspond to region of accumulation and depletion of the

secondary particles i.e. to a δφ1 6= 0.

It’s worthwhile noticing that for a “traffic light” smaller than light wavelength, one should expect

a diffuse light equals to that scattered by the particles alone. Indeed the object can be regarded as

a punctiform oscillating dipole, where the dipoles of the accumulation and depletion regions are

equal in modulus but have opposite directions, giving null contribution to the total scattering. Thus

a small “traffic light” is indistinguishable from the particle alone. Instead, when the “traffic light”

have dimensions comparable to light wavelength, the contributions to the scattered field coming from

different parts of the object are not in phase. To calculate the total scattered light we followed the

procedure described in subsection 6.2.3 with the addition of a form factor accounting for the assumed

δφ1. In particular the optical field scattered from the “traffic light” have been calculated as:

Es(q) = αP200FP200(q) + αAFA(q)eiq·d + αDFD(q)e−iq·d,
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Figure 6.16: “Traffic light” model of SP perturbations around a P200 PP. Gray levels reflect different
refractive indexes: clear spherical volume (n = 1.333), background (n = 1.336), dark spherical
volume (n = 1.338), P200 (n = 1.59).

where αA = −αD (αD defined as in Equation 6.25). For simplicity we assumed that the accumulation

and depletion regions have the same radius R of the P200 particles and thus results:

FP200(q) = FD(q) = FA(q).

Moreover we assumed the axis of the “traffic light” along the z direction and the distance d between

the center of the particle and that of the two surrounding spherical regions equals to 2R. We then

considered light polarized along z and along y directions and we calculated the scattered intensity at

a certain q as:

I(q) = |Es(q)|2 sen2Ψ (6.26)

where sen2Ψ accounts for the toroid of polarization with Ψ angle between the light polarization

direction and the scattering direction. The total scattered intensity has been calculated by integrating

Equation 6.26 over the whole scattering directions. By comparing the scattering of the “traffic light”

with that of the particle alone we found that the δφ1 distribution of SP does not modify the scattering

of the particle. We verified that the presence of non negligible form factor does not affect the result

that light scattering experiments can reveal only δφ2 concentration modifications.

To explain our experimental observations we conjectured a simple geometry for the distribution

δφ2, as the one sketched in Figure 6.17(a), where the SP concentration is incremented within two

spherical regions along E direction of radius RS while is depleted within a toroidal region having

inner diameter equals to that of the P200 and radius equal to RT centered on E. To calculate the

scattered intensity we used the same procedure as for the “traffic light” with a proper form factor
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Figure 6.17: O(E2) perturbations around a P200 PP: (a) geometrical model of δφ2 used to quanti-
tatively match the scattering data in Figure 6.13(b) for ν = 100Hz and E = 15V mm−1. The SP
density is incremented (δφ2 > 0) within two spherical region along E and decreased (δφ2 < 0)
within an equatorial toroidal region with inner section equal to that of P200 particle. Gray levels re-
flect different resulting refractive indexes: toroid (n = 1.335), background (n = 1.336), spherical
volume (n = 1.337), P200 (n = 1.59). (b) O(E2) solvent flows around a P200 drown according to
the model in [14, 15]. The dashed line represents the SP exclusion shell.

for the accumulation and depletion regions. Also in this case the polarizability of the spherical and

toroidal regions have been calculated according to Clausius-Mossotti equation:

αS = n2
S−n2

mean

n2
S+2n2

mean

αT = n2
T−n2

mean

n2
T +2n2

mean

where the refractive indexes of the sphere nS and of the toroid T have been kept as free parameters

of the model, with the only assumption of nS > nmean and nT < nmean. In particular we have

expressed nS and nT through the rate of accumulation (fa) and depletion (fd) of SP:

αS = nmean + fa(nmean − nH2O)

αT = nmean − fd(nmean − nH2O)

We varied fa, fd, RS and RT to reproduce the turbidity variations observed in experiments. The

extensions of the two regions RS and RT have been estimated through the recovery time tETLI ,

the time necessary to the scattering anomaly to diffuse away after the electric field is switched off.

Since tETLI
∼= 6 ms corresponds to an SP diffusion over about 350 nm, we assumed the toroidal

region having the same section of the P200 and we found we could reproduce experimental data with

RS = 100 nm, nT = 1.335 and spherical volume nS = 1.337, which correspond to an SP depletion

and accumulation of 20% and 50% respectively.
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We verified that the field-induced SP arrangement can not be ascribed to an induced dipole-

induced dipole interaction, which would produce too weak forces and too high characteristic fre-

quency in the MHz Maxwell-Wagner regime. The SP density distribution can instead be related to

the presence of O(E2) electro-osmotic flows around the large particles, as those sketched in Fi-

gure 6.17(b). In the next section we will describe the O(E2) electro-osmotic flows that we conjecture

responsible of the clearing in both rod-sphere and sphere-sphere mixtures and of the anomalous hy-

drodynamic torque in bidisperse mixtures of rod-like and spherical particles.

6.4 O(E2) electro-osmotic flows

As described in chapter 5, electro-osmotic flows originate as a consequence of electric force acting

on the charge fluid inside the particle’s electric double layer. In particular, in the case of symmetric

double layer, O(E) fluxes originate in the proximity of the charged surface. However, in presence of

O(E) polarization effect, the electric double layer looses its symmetry: the resulting electro-osmotic

fluxes will present also an O(E2) dependence. In this case standard electrokinetic model does not

adequately describe the hydrodynamics of the system.

The “ICEO” model introduced in section 5.5 applies to uncharged, highly polarizable particles.

In this case, there are no O(E) flows so that O(E2) flows are the dominant effect generated by the

presence of an electric field in the system. The condition is thus rather different from ours: in charged

system as our colloidal mixtures, O(E) flows are not only present but usually play a prominent role,

shading higher order terms in the flow field . However, as highlighted in the former section, due to

basic optical reasons, we are not sensible to O(E) structure and thus O(E2) flows can be detected.

We drew our flow fields, here reported in Figure 6.17(b) according to the theoretical model proposed

in [14, 15] which applies to charged dielectric particles and allows to explicitly calculate flow lines

from zeta potential and ionic strength values.

We expect in general SP to be dragged along flow lines except when the flow runs too close to

the PP surface, where SP are taken apart due to both steric and electrostatic repulsion. This exclusion

shell, represented in Figure 6.17(b) through a dashed line, is larger than the electric double layer.

Accordingly SP are excluded from the double layer region i.e. the region where the flow lines are the

strongest. As a consequence SP accumulate at the PP poles and deplete the equatorial region around

PP as observed in our experiments.

In this picture, the responsible mechanism at the base of O(E2) fluxes should be the concentra-

tion polarization effect, which perturbs the double layer structure generating an asymmetric charge
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distribution. However the characteristic frequency of the phenomenon νmix ≈ DSP /R
2
PP < να.

Moreover, the 1 ms time required to the toroidal depleted region to establish, would require higher

flow velocities than the ones predicted in [14, 15] for standard particles in simple electrolyte. Both

these facts suggest that the SP being charged are not passive probes of the O(E2) field-induced flows

but play an active role in greatly affecting the flows field, generating a giant and slow electro-osmotic

phenomenon.

Similar considerations can be done to explain the anomalous orientation observed in mixtures

of PTFE and secondary spherical particles. As for the sphere-sphere mixtures, the characteristic fre-

quency of the phenomenon νmix < να suggests the presence of a new electrokinetic effect. Moreover,

as shown in subsection 2.3.1, at low frequency the hydrodynamic torque σH plays a significant role in

determining particles orientation. σH =
∫
dSr× f(r), where f(r) is the viscous force acting on the

particle surface S and thus directly related to the electro-osmotic flows inside the dispersion. In his

numerical model, Fixman showed that while the electric torque σE is always positive, σH assumes

negative values in presence of slowly diffusing coions [32]. Thus the giant negative torque observed

in PTFE+SP mixture at a frequency νmix < να indicates the presence of a new electrokinetic phe-

nomenon involving SP.

6.5 Colloidal concentration polarization

All the data showed in this thesis indicate the presence of a new electrokinetic phenomenon that by

analogy we call “colloidal concentration polarization”. As the electric field is turned on, SP accu-

mulate for mobility mismatch on one side of the larger PP (PTFE or P200 particles) while depleting

on the other side, generating an O(E) SP distribution δφ1 6= 0. This accumulation continues until it

is compensated at ν < νmix by the diffusion of the SP across the PP, a phenomenon similar to the

electrolyte “concentration polarization”. This polar SP distribution cannot be detected through ETLI

experiments due to symmetry properties of the particles density and of the relative scattered fields.

However we expect this “colloidal concentration polarization”, being SP charged, to greatly affect

PP double layer structure generating an enhancement of the non-linear electro-osmotic flows. At

ν < νmix such O(E2) flows could have the amplitude required to create the δφ2 6= 0 SP distribution

around P200 and to account for the large negative torque experienced by PTFE particles.
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