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Chapter 1

Introduction

In this work we show how to use concepts that come from physics to get a
suitable description of financial world, in accordance with the main ideas of
a new interdisciplinary field: Econophysics. In particular, the rest of this
work is organized as follows.
In Chapter 2 we present our motivations for studying Econophysics. After
a personal and general description of the financial world, we explain what
are the main aspects of Econophysics and why it is important for the future
development of financial and economics research. In particular we focus our
attention on the need for economics of a scientific revolution as claimed by
J.-P. Bouchaud [1].
In Chapter 3 we make a general introduction on Econophysics and on the
main mathematical and statistical instruments used to model financial world.
In particular, we focus our attention on stochastic calculus and probability
theory, always showing the relationship between physical and financial mod-
els. At the end of the Chapter, we also show how these instruments can
be used to describe actual data that come from financial markets and we
introduce the main financial concepts like market efficiency.
In Chapter 4 the main financial models for the option pricing are presented.
In particular we focus our attention on Black-Scholes model and the related
concept of implied volatility. For the latter we give a statistical description
of the so called volatility smile effect and an intuitive and quantitative inter-
pretation of this phenomenon.
In Chapter 5 we show how a physical concept like the adiabatic transition
can be efficiently exploited to get an alternative interpretation of the volatil-
ity smile effect and how this approach can be useful to get a new fitting
procedure of the volatility smile to avoid arbitrage opportunities. This and
the following Chapter represent the original part of this work and our con-
tribution to the research in this topic.
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In the Chapter 6, we further extend our adiabatic approach to get a suitable
characterization of the implied probability function of financial returns. In
particular we focus our attention on the exponential decay of the distribu-
tion and we develop a new algorithm to get a fitting function of the volatility
smile coherent with the model hypothesis and the historical relation between
implied volatility and decay of the tails of the distribution.
Finally in the Chapter 7 we present our conclusions.
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Chapter 2

Motivations

2.1 Introduction

The word Econophysics was coined by H. Eugene Stanley in the mid 1990s
to describe a interdisciplinary field that makes use of the basics ideas, math-
ematical models and scientific method of Physics to better understand phe-
nomena related to economy. Indeed, a strong relation between economy and
complex systems can be found, and, in particular, Statistical Physics seems
to be the natural field for the description of financial markets and related
phenomena in so much as someone considers economy (as social activities)
as a simple generalization of Physics described by the same mathematical
model. From this point of view, a Unification Theory should be formulated
that could describe all kinds of interactions, not only the physical interac-
tions, but also the human and social ones. In our opinion, this vision is
surely fascinating and a little bit visionary and it could be considered as a
good philosophical motivation for the development of Econophysics.
In the rest of this short Chapter, we will try to give some other more practical
motivations for the study of Econophysics, showing why it could play a role
for the future development of economy, considering also personal working
experiences.

2.2 Do We Really Need Econophysics?

After about twenty years from its “invention”, the term “Econophysics” is, in
our opinion, still unknown at financial world practitioners or it is considered
a theoretical matter without any practical applications. In the worst cases,
people consider Econophysics a forcing thing where unconventional models
are used to describe phenomena that are not of interest neither for finance
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nor for Physics.
To find a job position, the situation is probably more dramatic as the skills
required are typically related to the understanding of conventional models
like Black-Scholes, Heston or the knowledge of standard procedures as the
VaR estimation by parametric approach or historical simulation. This atti-
tude can be justified if one considers that, in general, it is not an easy task
for big financial institutions to change a pricing model or a standard proce-
dure for risk evaluation as this could mean to change the organization and
the work of many people with big consequences on costs and budget. This
physiologically induces a sort of inertia and changes are actuated just when
they are considered necessaries, i.e. when they could have a deep impact
on the P&L (Profit and Loss) of the bank or the financial institution. That
explains why a matter that is intrinsically unconventional like Econophysics
could be not well valued during the job searching activity.
Unfortunately, also from an academic point of view, the situation is not
better. In fact there is a sort of reluctance by the side of physicists or
economists to recognize Econophysics as something related to respectively
Physics or Economy; in our opinion, this is typical for new subjects and
probably Econophysics is still too young to be accepted as a new field of
Physics or finance. In addiction, one should consider that similar subjects,
like Quantitative Finance or Econometrics, already exist with an analogous
field of application. This generates more confusion and the understanding of
what we exactly mean for Econophysics is almost impossible.
If the criticisms showed above concern mainly the usefulness of Econophysics,
there are many others, on more fundamental level, that are related to all the
economics fields that make use of the mathematics to model some financial
system. All the criticisms can be summed up quoting the sentence of a col-
league: the human being is not Nature! By this sentence, people against the
use of mathematics in economics matter mean that it is not possible to model
the behavior of people by mathematics as it have been done in Physics to
describe Nature, simply because people can change their opinion abruptly
and without any rationality and this fact cannot be modeled by any ratio-
nal approach. So, from this point of view, mathematics cannot be suitable
to describe financial world because of the intrinsic irrational nature of the
human being. This position could seem really poor and unfounded to the
eyes of a statistical physicist that is used to model complex systems with
chaotic and “irrational” behaviors and, indeed, it is; but it shows that the
main source of criticism to the math-like subjects related to finance concerns
the method used and not the details of model itself. From this point of view,
Econophysics plays an important role as it tries to apply models that come
from Physics to financial matters, exploiting the same scientific method that
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Physics uses to model Nature. In our opinion, the most important contri-
bution that Econophysics can give to finance is related to the method used:
scientific and rigorous as in Physics, with a deep attention to actual data,
as physicists do for the data of the experiments. From this point of view,
Econophysics can have a really important and active role in the Scientific
Revolution claimed in [1]. This aspect will be treated in the next Section.

2.3 Economics Needs a Scientific Revolution

Physicists[...] have learned to be suspicious of axioms and models. If empir-
ical observation is incompatible with the model, the model must be trashed or
amended, even if it is conceptually beautiful or mathematically convenient.
So many accepted ideas have been proven wrong in the history of Physics
that physicists have grown to be critical and queasy about their own models.
Unfortunately, such healthy scientific revolutions have not yet taken hold in
economics, where ideas have solidified into dogmas that obsess academics as
well as decision-makers high up in government agencies and financial institu-
tions. These dogmas are perpetuated through the education system: teaching
reality, with all its subtleties and exceptions, is much harder than teaching a
beautiful, consistent formula. Students do not question theorems they can use
without thinking. Though scores of physicists have been recruited by financial
institutions over the last few decades, these physicists seem to have forgot-
ten the methodology of natural sciences as they absorbed and regurgitated the
existing economic lore, with no time or liberty to question its foundations.

By these words J.-P. Bouchaud in [1] explains what is, in his opinion, the
relation between Physics and Economics and why economics needs a scientific
revolution. From his point of view, the most important thing that should be
changed in financial, and in general, in economics world is the method and
in doing this, Physics could be a good advisor. Correctly, in our opinion, he
talks about a revolution to underline the need to completely change the way
of thinking at the economy, with a completely new attitude. Theoretical and
practical aspects should be included in the same theory based on empirical
observations so that the big break between thinkers and doers, as suggested
by Derman in [2] could be reduced and a quantitative and solid knowledge of
financial markets could be motivated. To conclude, we quote the words used
by J.-P. Bouchaud in [1] to underline the need to include a natural science
education in the economics sciences:

[...] Most of all, there is a crucial need to change the mindset of those
working in economics and financial engineering. They need to move away
from what Richard Feynman called Cargo Cult Science: a science that fol-
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lows all the apparent precepts and forms of scientific investigation, while still
missing something essential. An overly formal and dogmatic education in the
economic sciences and financial mathematics are part of the problem. Eco-
nomic curriculums need to include more natural science. The prerequisites
for more stability in the long run are the development of a more pragmatic
and realistic representation of what is going on in financial markets, and to
focus on data, which should always supersede perfect equations and aesthetic
axioms.
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Chapter 3

Basic Concepts on
Econophysics

3.1 Introduction

This Chapter is organized in three parts. In the first part we give our defini-
tion of Econophysics and we show which are the main relationships between
Physics and Financial issues. In particular we give a brief description of the
main topics of Econophysics. In the second part, we introduce the basics no-
tions about Probability Theory that are used in Statistical Physics and can
be useful for a statistical description of price dynamics and other financial
variables. Finally, in the third part of the Chapter, we show some empirical
analysis of the statistics of real prices, defining the main concepts related the
financial market description, i.e. efficient market hypothesis and arbitrage
opportunities.

3.2 What is Econophysics?

Econophysics is [...] “a neologism that denotes the activities of physicists who
are working on economics problems to test a variety of new conceptual ap-
proaches deriving from the physical sciences”. This definition is given in [3]
the book that probably gives the most complete description of the topics
treated by Econophysics and it is considered as a milestone for all the physi-
cists that are interested to economics concepts and in the application of
Physics in multidisciplinary field. In this definition it is understood that
there exists a strong relation between some physical system and the eco-
nomical one, at least from the conceptual point of view. This is indeed the
fact that is proved by the growing number of physicist that is involved in
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the analysis of economic systems and the significant number of papers of
relevance to economics that is now published on physics journal. In fact,
financial markets are well-defined complex systems and concepts such as
power-law distributions, correlations, scaling, unpredictable time series and
random process can be efficiently used to describe them. On the other hand,
physicists have achieved important results in the field of phase transitions,
statistical mechanics, disordered systems and nonlinear dynamics, so, in our
opinion, it is somehow natural to try to understand if the same concepts can
be applied in some other different field that seems to be so similar to the
statistical point of view.
Another really important question that could arise from the previous defini-
tion of Econophysics is: how Econophysics is different from the other subjects
that study financial markets? As in all classification issues, it is really hard to
give a precise answer to this question and, in particular, to trace a border line
between similar subjects, like Quantitative Finance, Financial Engineering,
Econometrics, etc. At this point, we just want to stress that probably the
main difference is the methodology that physicists follow to carry on their
analysis, in particular the emphasis that they put on the empirical analysis
of economic data and the desire to find a good fundamental description of
market dynamics starting from first principles and a few parameters, sharing
the common theoretical background of Statistical Physics.

3.3 Pioneering Approches

Interestingly enough, the first use of a power-law distribution and the first
mathematical formalization of a random walk took place in the social sciences
before than in the natural sciences. The first concept was introduced when
the social economist Pareto investigated the statistical character of the wealth
of individuals in a stable economy and modeled its distribution by

y ∼ x−ν , (3.1)

where y is the number of people having income x or greater and ν is an
exponent that Pareto estimated to be 1.5 [4]. Pareto noticed that this result
was quite general and applicable to different nations. It is interesting that
the concept of a power-law distribution is counterintuitive, because it may
lack any characteristic scale; this is related to the non convergence of the
integral that evaluates the magnitude of the typical fluctuation. For this
reason the use of power-law distributions was prevented until the emergence
of two new paradigms:
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• the application of the power-law distributions to several problems in
probability theory. In particular the work of Lévy [5] and Mandel-
brot [6].

• the study of phase transitions, in which it was introduced the concepts
of scaling for thermodynamic functions and correlation functions.

The random walk concept was firstly formalized in a doctoral thesis, titled
“Théorie de la spéculation”, by Bachelier [7] in 1900, where it was discussed
the problem of the pricing of the options, a particular financial contract whose
value depends on another asset that is called underlying. Bachelier deter-
mined the probability of price changes by writing down what is now called
the Chapman-Kolmogorov equation and recognizing that, what is now called
a Wiener process, satisfies the diffusion equation. If today we reconsider
Bachelier’s thesis, we could notice that it lacks rigor in some of its math-
ematical and economic points and, in particular, the Gaussian distribution
for the price changes was not sufficiently motivated. Besides, Bachelier made
his statistical analysis starting from price increments, whereas economists
are mainly interested in logarithmic changes of price. Nonetheless, his work
is considered pioneering and somehow revolutionary.

3.4 The Modern Econophysics

After more than 100 years, from the pioneering works of Pareto and Bache-
lier, Econophysics evolved a lot and now there are many important areas of
physics research dealing with financial and economics systems. In particular,
after 1980, the electronic trading was introduced also for foreign exchange
market and a great amount of data became available to test financial theories,
following the same methodology that physicists use to check their theories.
Even if, as already said in the previous Section, it is unfeasible to discern
between different but similar subjects, for Econophysics, one can recognize
the following areas of interest:

• Analysis of stochastic process of price changes of financial assets.
The main objective of the studies in this area is to find a good statisti-
cal description of the price changes, i.e. the shape of their distribution,
the temporal memory and the higher-order statistical properties. This
requires a really careful analysis of historical series of price paying at-
tention to details and to the data cleaning. A good description of
price dynamic from a statistical point of view should also deal with the
problematic characterization of the second moment and the so-called
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fat-tails of the distribution. From this point of view, the techniques
used in Statistical Physics related to the Levy flights and Levy distri-
butions seem to be the natural set up for this kind of problems [8].

• Theoretical models for financial markets.
The main goal of this area of studies is to find a good model for the
description of the so-called market microstructure, namely the statis-
tical description of the market starting from the single order of the
trader and his behavior. The relation with Statistical Physics is partic-
ularly evident if, for example, one considers the Ising model assuming
that the values ±1 related to the components of the system are not
describing the spin of a particle, but the order to buy or to sell given
by a trader at a certain moment. In this case, the “magnetization” of
the system represents the general consensus of the system for a price
increase or decrease. The main idea related to these kind of models
is that it should be possible to get a general statistical description of
an economic system just making some (noisy) assumption about the
behavior of the single trader and the correlation between traders, as it
was already done for statistical thermodynamics. These kind of models
are called agent-based and have a great importance for the theoretical
understanding of financial market and, in practical applications, for
forecasting activities.

• Rational option pricing of a derivative product.
One of the main goals of financial activities is estimating what is the
rational price that can be associated to a particular product. This
activity can be really hard because of the great complexity of some
financial product whose value is connected to another financial product
(underlying) in a really complex way. This kind of products are called
financial derivatives and they had a really important role also in the
recent world financial crisis. In 1973, Black and Schöles published one of
the most important work about rational pricing of financial derivatives
and from that moment a sort of revolution started in financial activities
to continuously improve the models for option pricing to get a better
estimation of the fair value of any financial derivatives. Despite of the
huge amount of publications addressed to this kind of problems and
the large amount of people with experience in hard sciences hired by
banks and financial institutions, nowadays there is a great number of
financial derivatives that are still priced without a suitable model and a
rational estimation of the risks related to these financial products. This
lack of rational knowledge has, in our opinion, a key role also in the
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recent financial world crisis and justifies the interest of many physicists
in this field. In this case the relation with Physics is due to the need
to model the price dynamic of the underlying as a stochastic process
like a Brownian motion or a Levy flight. The solution of stochastic
differential equations (SDE) or partial differential equations (PDE),
like the Fokker-Planck equation, has a central role for this activity.

• Risk Management
As already said in the previous point, the risk estimation and control are
really important activities for banks and financial institutions and it is
also regulated by the Basel Committee on Banking Supervision (Basel
II). For this reason a good estimation of risk is compulsory for every
financial activities. As already stressed in the previous Section the
distribution of price changes and financial returns are not Gaussian and
a good estimation of the typical order of magnitude of the fluctuation of
these variables is not an easy task. A suitable theory for the statistics of
extreme and rare events (related to huge losses of money) is necessary
for this activity together with a good estimation of the correlations
between different assets. In this case, a good example of application
of Statistical Physics for this kind of problems can be found in [9]
where random matrix theory is used to get a correct estimation of the
correlation of portfolio of assets, fundamental for risk estimation. This
theory can be easily applied in practical situations with good results.

This list of areas of interest can be extended indefinitely and it cannot
be considered completed. With this short description, we just want to give
an idea of which are the main activities related to the field of Econophysics
and how Physics can be exploited in financial modeling. In our opinion, it is
important to stress that, although a lot of analogies can be found between the
Physics of complex systems and financial modeling, it is unrealistic to look
for a perfect correspondence between the two subjects and, in general, from
this point of view, forcing relationships should be avoided. In our opinion,
the Econophysics researcher should remember that in general people are not
interested in finding Physics in Economy, but in finding good and practical
solutions for Economy, using a scientific methodology that can be inspired
by Physics. The application of this scientific method is probably the most
important aspect that justifies why physicists should be involved in financial
matters.
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3.5 Basic notions of Probability Theory and

Physics for Financial Modeling

In this Section we want to introduce the basic concepts of Probability Theory
and Physics that can be useful for a correct interpretation of the financial
models and the statistical description of the main financial variables that will
be presented in the following Section and in the next Chapters.

3.5.1 Probability distributions, typical value and devi-
ations

Randomness has a central role in Nature, in Finance as in many aspects of
our life [10, 11]. In [12], it is shown how extreme and rare events has influ-
enced dramatically the life of the author and how a rational decision process
cannot leave this intrinsic uncertainty apart. This aspect is also present in
Science with the introduction of Quantum Mechanics that forced scientists to
abandon Laplace’s deterministic vision of Nature accepting a sort of less cer-
tain description of the world as a statistical system. From this revolutionary
vision of the Universe, the need to measure, mathematically speaking, this
uncertainty in an appropriate mathematical framework and the consequent
birth of the modern probability theory.

In order to describe a random process X for which the result is a real
number, one uses a probability density P (x), such that the probability that
X is within a small interval of width dx around X = x is equal to P (x)dx.
Starting from this notation the probability that X is between a and b is given
by the integral of P (x) between a and b

P(a < X < b) =
∫ b

a
P (x)dx. (3.2)

The function P (x) is a density and in this sense it depends on the units used
to measure X. In order to be a probability density in the usual sense, P (x)
must be non-negative (P (x) ≥ 0 for all x) and must be normalized, i.e. the
integral of P (x) over the whole range of possible values for X must be equal
to one ∫ xM

xm
P (x)dx = 1, (3.3)

where xm (xM) represents the smallest (largest) value which X can take. If
X is not bounded one can take xm = −∞ and xM = +∞ in Eq. (3.3). An
equivalent way of describing the distribution ofX is to consider its cumulative
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distribution P<(x), defined as

P<(x) =
∫ x

−∞
P (u)du, (3.4)

where P<(x) takes values between zero and one, and is monotonically increas-
ing with x. Similarly, one defines P>(x) = 1 − P<(x). If these probabilities
are based on some information set It, then P (x) is called conditional density.
The dependence on It is formally denoted by P (x|It). If the P (x) is not
based on any particular information, the It term is dropped and the density
is written as P (x).
It is quite natural to talk about the “typical” value of a random process and
there are at least three intuitive definition for it: the mean, the median and
the most probable . The most probable value x∗ corresponds to the maximum
of the function P (x) (notice that x∗ needs not to be unique), the median xmed
is such that the probabilities that X be greater or less than this particular
value are equal, namely P<(xmed) = P>(xmed) = 1/2, and the mean or ex-
pected value of X, which we will denote by < x > or by E[x], is the average
of all possible values of X, weighted by the corresponding probability:

E[x] =< x >=
∫
xP (x)dx. (3.5)

Once defined the typical value of a random process, one could be interested
in the “typical” order of magnitude of the fluctuations around this typical
value. The definition of this second quantity can be more complicated than
the definition of the first one and, in particular, once a definition is given,
the meaning of the value that represents this quantity can be misleading and
badly interpreted; one should pay attention to the underlying probability
distribution. Some detail will be given in the following Section, when the
Risk Management activity will be described in more depth.
Two possible definition for this quantity are the mean absolute deviation
(MAD):

Eabs =
∫
|x− xmed|P (x)dx (3.6)

and the root mean square (RMS) σ (or, in financial terms, the volatility) that
is given by the square root of the variance:

σ2 =< (x− < x >)2 >=
∫

(x− < x >)2P (x)dx. (3.7)

Since the variance has the dimension of x squared, its square root (the RMS,
σ) gives the order of magnitude of the fluctuations around the mean value.
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3.5.2 Moments and Characteristic Function

The definition of RMS can be somehow generalized and one can introduce
the so-called moments of the distribution:

< xn >=
∫
xnP (x)dx, (3.8)

where < xn > is called the n-moment of the distribution P (x). From the
definition (3.8), it is clear that the first moment represents the mean of X,
and the variance is related to the second moment (σ2 =< x2 > − < x >2).
Considering that the mean represents the typical value of the stochastic pro-
cess X and the volatility gives the order of magnitude of the fluctuations
around the mean, intuitively, one could expect that a complete specification
of all the n-moments (for n very large) gives a more complete description of
the stochastic process X and, in particular of its distribution P (x). Indeed,
this relation between moments and distribution of a stochastic process can be
made more explicit introducing the so called characteristic function, defined
as

P (z) =
∫
eizxP (x)dx, (3.9)

so the explicit relation between the distribution P (x) and its characteristic
function can be obtained taking the inverse Fourier transform:

P (x) =
1

2π

∫
e−izxP (z)dz. (3.10)

It can be easily shown that the moments of P (x) can be obtained through
successive derivatives of the characteristic function at z = 0

< xn >= (−i)n dn

dzn
P (z)

∣∣∣∣
z=0

. (3.11)

This equation makes evident the relation between the distribution P (x) and
the moments < xn > by mean of the characteristic function. Analogously
to the moments, one can define the cumulants cn of a distribution as the
successive derivatives of the logarithm of its characteristic function:

cn = (−i)n dn

dzn
log(P (z))

∣∣∣∣
z=0

. (3.12)

As one could expect from their definitions, there is a polynomial relation
between the moments and the cumulants; for example: c2 =< x2 > − <
x >2. Finally one can define the normalized cumulants λn

λn =
cn

< xn > − < x >n
. (3.13)
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Often one uses the third and the fourth normalized cumulants, called respec-
tively the skewness and the kurtosis :

λ3 = <(x−<x>)3>
<x3>−<x>3

λ4 = <(x−<x>)4>
<x4>−<x>4 − 3.

(3.14)

These definitions of cumulants may look arbitrary, but they give indeed im-
portant information about the characteristic of a distribution. In fact, for
example, a Gaussian distribution is characterized by the fact that all the
cumulants of order greater than two are identically zero. So, considering the
cumulants of order higher than two (and in particular the kurtosis) one can
have an idea of the “distance” between a given distribution and a Gaussian.
In general the skewness is interpreted as a measure of the asymmetry of the
distribution and the kurtosis a measure of the amplitude of its tails. In par-
ticular if a distribution has a kurtosis less than zero it means that its center
is thiner than a Gaussian and consequently its tails are fatter. This kind of
distributions are called leptokurtic.
Notice finally that the moments (or cumulants) of a given distribution do
not always exist. A necessary condition for the nth moment to exist can
be derived requiring that the integral in Eq. (3.8) would converge for |x|
going towards infinity: the distribution density P (x) should decay faster
than 1/|x|n+1. In particular if one considers distribution densities that are
behaving asymptotically as a power-law, with exponent 1 + µ

P (x) ∼ µAµ

|x|1+µ
for x→ ±∞, (3.15)

where Aµ is a generic constant depending on µ, then all moments such that
n ≥ µ are infinite. Obviously, this fact could generate some problems for the
definition of the typical order of magnitude of the fluctuations of the process.

3.5.3 Some Typical and Useful Distributions

In this Section we want to introduce the main distributions typically used in
financial applications and their main characteristics.

Gaussian Distribution

Surely the most famous and probably the most used distribution in many
statistical field is the Gaussian distribution. We have already mentioned its
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characteristics and we want to present them here in a more formal way.
A Gaussian distribution is defined by:

PG(x) =
1√

2πσ2
exp (−(x−m)2

2σ2
), (3.16)

where m and σ2 are the two parameters of the distribution and represent
respectively the mean and the variance of the distribution. As already men-
tioned before, all the moments greater than two are equal to zero and this fact
can be easily understood considering the Gaussian characteristic function:

PG(z) = exp (−σ
2z

2
+ imz). (3.17)

The logarithm of this function is a second order polynomial for which all
derivatives of order larger than two are zero. This distribution is particularly
important because, applying the central limit theorem (see next Section), it
can be shown that, if the number of random variables is large enough, the
central part of many distributions, can be well approximated by a Gaussian
distribution.

Log-Normal Distribution

Log-Normal Distribution is strongly related to the Gaussian distribution and
this relation is self-evident if one compare Eq. (3.16) with its analytical ex-
pression:

PLN(x) =
1

x
√

2πσ2
exp

(
− ln2(x/x0)

2σ2

)
, (3.18)

where σ, x0 are the parameters of the distribution. The importance of this
distribution is due to its relation with the log normal Brownian motion which
is the approximation in the Black and Schöles model for the price dynamic.
According to this model the log normal distribution represents the distribu-
tion of the prices (S) of the underlying, as a consequence, the distribution of
financial returns (ln(S)) it is assumed to be a Gaussian. Differently from the
Gaussian distribution, the log normal distribution is asymmetric, and pre-
dicts that large positive jumps are more frequent than large negative jumps.

Lévy Distribution

The importance of Lévy distribution is related to the context of the Central
Limit Theorem (CLT) (See Sect. 3.5.5). The Gaussian distribution, it can be
shown that the Lévy distribution can be a good approximation of the central
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part of many distributions if the number of stochastic variables is large. It
is said an attractor of stable non -Gaussian distributions; the exact meaning
of this expression will be clarified in the following.
An important constitutive property of the Lévy distribution is the power-law
behavior for large arguments, often called Pareto tails

Lµ(x) ∼ µAµ±
|x|1+µ

for x→ ±∞, (3.19)

where 0 < µ < 2 and Aµ± are two constants that represents the tails am-
plitude or the scale parameters as they give the order of magnitude of large
fluctuations of x. Notice that for µ ≤ 2 the variance of a Lévy distribution
is formally infinite and, if µ ≤ 1, even the mean or the MAD fail to exist.
From this point of view the interpretation of the standard deviation as the
typical order of magnitude of the fluctuations loses its meaning and the two
constants Aµ± should be used to this purpose. If Aµ+ = Aµ− the distribution is
symmetric. Unfortunately, an analytical expression of symmetric Lévy dis-
tributions is not know, except for µ = 1, which correspond to a Cauchy (or
Lorentzian) distribution:

L1(x) =
A

x2 + π2A2
. (3.20)

In all the other symmetric cases, Lévy distributions can be identified by its
characteristic function:

Lµ(z) = exp (−aµ|z|µ) , (3.21)

where aµ is a constant proportional to the tail parameter Aµ. Notice that for
µ = 2 we recover the Gaussian distribution. For asymmetric cases, Eq. (3.21)
can be generalized and one gets:

Lβµ(z) = exp

[
−aµ|z|µ

(
1 + iβ tan(µπ/2)

z

|z|

)]
(µ 6= 1), (3.22)

where β = (Aµ+−Aµ−)/(Aµ+ +Aµ−) is the asymmetry parameter. For practical
applications, it can be useful to limit the power-law behavior of the Lévy
distribution in a certain regime x� 1/α, where α is generic parameter that
defines the amplitude of the region. Beyond this region, one could ask that
the distribution decays exponentially as exp(−αx), so that the Pareto’s tails
are “truncated” for large values of x. So, it can be obtained a generalization
of the Lévy distributions which accounts for this exponential cut-off, in terms
of its characteristic function:

L(t)
µ (z) = exp

[
−aµ

(α2 + z2)µ/2 cos(µ arctan(|z|/α))− αµ
cos(πµ/2)

]
, (3.23)
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where 1 ≤ µ ≤ 2. This distribution is called Truncated Lévy Distribution
(TLD) and can be really useful for practical financial applications.

3.5.4 Convolutions and Sums of Random Variables

When one think at a random process, generally is considering the dynamic
generated by a multiple extraction of the random variables that generate the
process itself. It is quite natural, given the probability density function of
a random variables, to be interested in the distribution of the sum of many
independent random variables. To simplify the problem we consider the sum
of two independent random variables X = X1 + X2 distributed respectively
according to P1(x1) and P2(x2). The probability that X is equal to x is given
by all the combinations of x1 and x2 that summed give x. Since x = x1 + x2

and two variables are independent, the joint probability that X1 = x1 and
X2 = x2 is equal to P1(x1)P2(x− x1), so that:

P (x,N = 2) =
∫
P1(x′)P2(x− x′)dx′ = P1 ? P2. (3.24)

Eq. (3.24) tells us that to obtain the distribution of the sum of two inde-
pendent random variables, one needs to evaluate the convolution of the two
distributions of the two variables. This equation can be generalized to the
sum of N random variables:

P (x,N) =
∫
P1(x

′

1) . . . PN−1(x
′

N−1)PN(x−x′

1− . . .−x
′

N−1)ΠN−1
i=1 dx

′

i. (3.25)

A really important theorem shows that the convolution is a simple product
in the Fourier space; for example Eq. (3.24) can be written in the Fourier
space as:

P (z,N = 2) =
∫
eiz(x−x

′+x′)
∫
P1(x′)P2(x− x′)dx′dx = P1(z)P2(z). (3.26)

This observation simplify in many cases the calculations of the distribution
generated by the sum of many random variables.

3.5.5 Central Limit Theorem

As already explained above, the importance of Gaussian distributions and
Lévy distributions is due essentially to their capability to describe the central
part of any distribution convoluted with itself a large number of times; in
other words they are attractors of these convoluted distributions. In fact, in
general, if one adds random variables distributed according to an arbitrary
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law P1(x1), one constructs a random variable which has a different proba-
bility distribution given by the convolution P (x,N) = [P1(x1)]?N , where the
notation (·)?N means that one has to take the convolution N -times. Instead,
it can be shown that Gaussian and Lévy distributions are stable or self-affine,
that is the shape of the convoluted distribution is the same as the elementary
one. In more formal words, a distributions is stable (self-affine) if one can
find a translation and dilatation of x such that the two laws coincide:

P (x,N)dx = P1(x1)dx1 where x = aNx1 + bN , (3.27)

where aN , bN represent the operations of dilatation and translation. It can
be shown that the family of all possible stable distributions coincide with
the Lévy distributions definition given in Eq. (3.22) where Gaussian is the
special case µ = 2, β = 0. Stability is reflected on the moments estimation;
in fact, it can be shown that for Lévy symmetric distribution where µ < 2
one finds:

< |x|q > 1
q∝ AN

1
µ q < µ, (3.28)

where A = A− = A+ because we are considering symmetric distributions.
This relation shows the order of magnitude of the fluctuations of N random
variables taken from a Lévy symmetric distribution is a factor N1/µ larger
than the fluctuations of a Lévy random variable. However, once this factor
is taken into account, the probability distributions are identical. Because
of this property, Lévy distributions are considered fixed points in the field of
distributions. The central limit theorem (CLT) shows that these distributions
are also attractors for the others, in the sense that any distribution convoluted
with itself a large number of times finally converges towards a stable law.
The classical formulation of the CLT deals with sums of independent and
identically distributed (iid) random variables of finite variance. In this case
it can be shown that all these distributions converge towards a Gaussian one:

lim
N→∞

P
(
u1 ≤

x−mN
σ
√
N
≤ u2

)
=
∫ u2

u1

1√
2π
e−u

2/2du, (3.29)

for all finite u1, u2. This formulation can be extended to distributions with
infinite variance. In this case the attractor is non a Gaussian, but, in general,
a Lévy distribution. It is important to notice that Eq. (3.29) refers to the
central part of a generic distribution of finite variance and tell us that this
part can be approximated by a Gaussian. In practical situations one could
be interested in what happens in the tails of the distribution, for example
for risk estimation. In this cases, the application of the CLT is meaningless
and the Gaussian approximation cannot be invoked. The main hypothesis
ensuring the validity of the Gaussian CLT are:
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• Xi must be independent random variables, or at least not “too corre-
lated”.

• Xi need not necessarily be identically distributed but one must require
that the variance of all these random variables is not too dissimilar.

• Formally CLT applies only when N is infinite. For practical applica-
tions one should estimate which is region of the random variable where
the Gaussian approximation is still valid and the minimum required N .

• As already explained CLT does not tell anything about the tails of the
distributions.

One could be interested in defining more quantitatively which is the region of
validity of the CLT, at least for Gaussian case. To do this we define X as the
sum of N iid random variables of mean m and variance σ2 and considering
the relation (3.28) we define the rescaled variable

U =
X −Nm
σ
√
N

. (3.30)

The CLT can be restated in the following way

lim
N→∞

P>(u) = PG>(u), (3.31)

where PG>(u) is the cumulated density function of a Gaussian distribution:

PG>(u) =
∫ +∞

u

1√
2π

exp (−x2/2)dx. (3.32)

One could try to estimate for a fixed N what is the region |u| � u0(N) for
which the Gaussian approximation is still valid, assuming that the elementary
distribution P1(x1) decreases faster than a power-law when |x1| → ∞ such
that all the moments are finite. In this case all the cumulants of P are
finite and one can obtain an expansion in powers of N−1/2 of the difference
∆P>(u) = P>(u)− PG>(u)

∆P>(u) ∼ exp (−u2/2)√
2π

(
Q1(u)

N1/2
+
Q2(u)

N
+ . . .+

Qk(u)

Nk/2
+ . . .

)
, (3.33)

where Qk(u) are polynomial functions which can be expressed in terms of
the normalized cumulants λn (Eq, (3.13)). In particular we focus on the first
two terms on r.h.s.:

Q1(u) =
1

6
λ3(u2 − 1) (3.34)
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and

Q2(u) =
1

72
λ2

3u
5 +

1

8
(
1

3
λ4 −

10

9
λ2

3)u3 + (
5

24
λ2

3 −
1

8
.λ4)u (3.35)

In general, for asymmetric distribution P1(x1), λ3 6= 0, so the leading term
is given by Eq. (3.34). Requiring that when u ∼ 1 (x − mN ∼ σ

√
N) the

Gaussian approximation is suitable means that Q1(u) ∼ N1/2, so we obtain
the condition: N � N∗ = λ2

3. For large u, the relative error is obtained
by dividing Eq. (3.33) by PG>(u) ∼ exp(−u2/2)/(u

√
2π), so one obtains the

following condition:

λ3u
3 � N1/2 i.e. |x−mN | � σ

√
N
(
N

N∗

)1/6

. (3.36)

The last equation shows that the central region where the Gaussian approx-
imation is valid grows as N2/3. Following a similar procedure, it can be
evaluated the amplitude of the Gaussian region for a completely symmetric
distribution (λ3 = 0). In this case the leading term is given by Eq. (3.35)
and the conditions are N � N∗ = λ4 and

λ4u
4 � N i.e. |x−mN | � σ

√
N
(
N

N∗

)1/4

. (3.37)

In this case the central region extends over a region of width N3/4.

3.5.6 Correlations

A really natural assumption in financial modeling is that random variables
are independent and identically distributed. This assumption is, in many
cases a good proxy of reality, but sometimes it requires further specification.
In general we define the correlation coefficient of two variables X, Y as

ρ =
< XY > − < X > − < Y >

2σXσY
, (3.38)

where σX , σY are the standard deviations of X and Y . In addiction, a stan-
dard results in Statistics tell us that the standard deviation of the variable
Z = X + Y is given by:

σZ =
√
σ2
X + σ2

Y + 2ρσXσY . (3.39)

Eq. (3.39) can be really useful for practical application if one wants to evalu-
ate the total risk of a portfolio made by different assets correlated and char-
acterized by different levels of fluctuations. This estimation will be shown in
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the following.
The concept of correlation can be relevant if one considers a stochastic pro-
cess where the random variables that generate it are correlated. In this case
we define the correlation function as

Ci,j =< xixj > −m2. (3.40)

Assuming that the process is stationary, i.e. that Ci,j depends only on |i−j|:
Ci,j = C(|i− j|), with C(∞) = 0, the variance of the sum can be expressed
in term of the correlation function as:

< x2 >=
N∑

i,j=1

Ci,j = Nσ2 + 2N
N∑
l=1

(1− l

N
)C(l), (3.41)

where σ2 = C(0). From this expression it is clear that if C(l) decays faster
than 1/l the sum over l tends to a constant for large N and the CLT is still
valid. On the contrary, if C(l) decays for large l as a power-law l−ν with
ν < 1 the second term on the r.h.s. in Eq. (3.41) becomes relevant and the
CLT cannot be applied straightforwardly.

3.5.7 Brownian Motion and Other Stochastic Process

To describe the dynamics of the market price, it is quite common to as-
sume that its movements can be well described by the sum of two terms, one
that represents the drift and is related to the time increment and one that
represents the impossibility to forecast in a deterministic manner the price
evolution and it is related to a random term in the equation. For that rea-
son, we will describe theories in therms of the general stochastic differential
equation:

dS = A(S, t)dt+B(S, t)dW, (3.42)

where dS represents the increment of the variable S, dt is the time increment
and dW = W (t + 1) −W (t) represents the increment (Wiener increment)
of the stochastic variable W (t). This increment is Normally distributed with
zero mean and unit variance. Finally, A(S, t) and B(S, t) are two generic
functions that represents respectively that drift term and the diffusion term.
As we will show in the next Chapter, a complete specification of the functions
A and B implies the specification of a model for some financial variable (price
or volatility) and it represents the first step to get a good description of
reality.
In this work, we will not give an exhaustive description of all the matters
related to stochastic equations, we will just try to give a short summary
of the main aspects of this topic. A more formal treatment of stochastic
calculus can be found in [13, 14].
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Itô’s Lemma

One of the fundamental aspects of stochastic equations is that the quadratic
variation of the Wiener increment increases with time:∫ t

0
(dW )2 = t, (3.43)

where the stochastic integral is defined as the limit extension of a discrete
random process

S(t) =
∫ t

0
f(τ)dW (τ) = lim

n→∞

n∑
j=1

f(tj−1) (W (tj)−W (tj−1)) , (3.44)

where f(t) is a generic function, W (tj) is a random variable extracted at the
discrete time tj and n is the number of the time discretization (see [13]). In
a less formal notation Eq. (3.43) an be written as:

dW 2 = dt. (3.45)

This relation has a great importance in differential calculus, because it gener-
ates some problems in the definition of the incremental rate that is, indeed,
divergent. In addiction, because of Eq. (3.45), in evaluating a first order
Taylor expansion in time, one has to consider also the second order terms
in dW . By these considerations, it is intuitively justified the so-called Itô
Lemma, that represents the stochastic generalization of the first order Taylor
expansion for the stochastic process (3.42)

dF =
∂F

∂t
dt+

∂F

∂S
dS +

1

2
B2∂

2F

∂S2
dt, (3.46)

where F (S, t) is a generic function of S and t. The last term on the r.h.s.
represents the Itô correction to the common Taylor expansion and it is due
to the stochastic nature of Eq. (3.42). By Eq. (3.46), given a stochastic
equation for a certain variable S(t), it is possible to determine the stochastic
equation related to any function of S(t). This fact is particularly important
for the pricing of financial derivatives, when, given a certain model for the
price of underlying, one can evaluate the stochastic equation related to the
derivative. In the following we will make an extensive use of this Lemma.

Brownian Motion with Drift

One of the basic and, probably, most important example of random walk is
the simple Brownian motion but with a drift:

dS = µdt+ σdW, (3.47)
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where µ is a constant and represents the drift. The point to note about
this stochastic equation is that S can be negative. This random walk would
therefore not be a good model for many financial quantities, such as inter-
est rates or equity prices that are supposed to be positive. This stochastic
differential equation can be integrated exactly to get:

S(t) = S(0) + µt+ σ(W (t)−W (0)). (3.48)

Lognormal Random Walk

A second example of random walk is similar to the above but, in this case,
the drift and the randomness scale with S:

dS = µSdt+ σSdW. (3.49)

In this case, if S starts out positive it can never become negative; the closer
that S goes to zero, the smaller the increment dS. This property can be
easily derived if one considers the function F = ln(S) and applies the Itô’s
Lemma:

dF =
∂F

∂S
dS +

1

2
σ2S2∂

2F

∂S2
dt = (µ− 1

2
σ2)dt+ σdW. (3.50)

This shows that F follows a Brownian motion and so can range between
minus and plus infinity even if it cannot reach these limits in a finite time.
As a consequence S cannot reach zero or infinity in a finite time. From
Eqs. (3.48,3.50) and from the definition of F it follows that:

S(t) = S(0)e(µ−1/2σ2)t+σ(W (t)−W (0)). (3.51)

Orstein-Uhlenbeck and CIR Random Walk

Some financial variables like volatility can be well described by the so-called
mean reverting processes. These processes are defined so that they con-
tinuously move around their mean. An example is given by the Ornstein-
Uhlenbeck process, defined as:

dS = θ(µ− S(t))dt+ σdW, (3.52)

where θ, µ, σ are three positive constants of the model. From the definition
it is clear that if the variable S(t) is greater than µ the drift term of the
equation is negative and so it decreases the value of S, while if S(t) is less
than µ the drift term is positive and the value of S(t) is increased. The
net result is that the variable S(t) continuously oscillates around the mean
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value µ. From this interpretation it follows that θ represents the velocity at
which such trajectories will regroup around µ and σ gives the amplitude of
the fluctuations around the mean. The solution of Eq. (3.52) is given by:

S(t) = S(0)e−θt + µ(1− e−θt) +
∫ t

0
σeθ(s−t)dW (s), (3.53)

from which the mean and the variance can be evaluated

E[S(t)] = S(0)e−θt + µ(1− e−θt)

V ar[S(t)] = σ2

2θ
(1− e−2θt).

(3.54)

Furthermore, it can be shown that the Orstein-Uhlenbeck process admits for
really large time (t→ +∞) a Gaussian stationary solution where µ represents
the average of the process and σ2/(2θ) its variance.

As a generalization, one can consider a sum of squared Orstein-Uhlenbeck
processes. In this case one obtains a CIR process, named after its creators
John C. Cox, Jonathan T. Ingersoll, and Stephen A. Ross [15], defined as:

dS = θ(µ− S(t))dt+ σ
√
S(t)dW, (3.55)

where θ, µ, σ are the parameters of the model and have the same meaning of
the Orstein-Uhlenbeck process. Provided that 2θµ > σ2, the process has a
stationary gamma distribution with scale parameter σ2/(2θ).

Fokker-Planck and Kolmogorov Equations

In the preceding paragraphs, we showed some examples of stochastic equa-
tions that can be useful for financial modeling. It can be shown that for
each of these equations there is an equation that governs the time evolution
of probability density function of the considered stochastic process. This
equation can be directly deduced from the general structure of the stochastic
equation. The easiest way to deduce this equation is to consider a trinomial
approximation to the continuous-time random walk. This approximation im-
plies that in a time step δt, there are only three possibilities for the evolution
of the stochastic variable, it can go up or down of a certain amount δS or
stay at the same level. The probabilities of a rise and fall are respectively
φ+ and φ−, so the probability of staying at the same level comes from the
normalization condition 1 − φ+ − φ−. From this quantities is it possible to
evaluate the mean of the change in S after the time step:

E[dS] = φ+δS + (1− φ+ − φ−) · 0 + φ−(−δS) = (φ+ − φ−)δS (3.56)
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and the variance:

V ar[dS] = δS2(φ+ + φ− − (φ+ − φ−)2). (3.57)

To the leading order, the mean of the change in the continuous-time
version of the random walk is, from Eq. (3.42)

E[dS] = A(S, t)δt (3.58)

and the variance is
V ar[dS] = B(S, t)2δt. (3.59)

To make Eqs. (3.56, 3.57) consistent with Eqs. (3.58, 3.59) we impose:

φ+(S, t) =
1

2

δt

δS2
(B(S, t)2 + A(S, t)δS) (3.60)

and

φ−(S, t) =
1

2

δt

δS2
(B(S, t)2 − A(S, t)δS). (3.61)

In addiction, because of the diffusive properties of the process we impose the
scaling relation:

δS ∼
√
δt. (3.62)

Now it is possible to find the equations for the transition probability density
function. In our trinomial walk we can only get the point S ′ at the time t′, if
S at the time t assumes one of these three values three values: S ′, S ′+ δS or
S ′−δS. The probability of being at S ′ at time t′ is related to the probabilities
of being at the previous three values and moving in the right direction:

P (S ′, t′|S, t) = φ−(S ′ + δS, t′ − δt)P (S ′ + δS, t′ − δt|S, t)
+ (1− φ−(S ′, t′ − δt)− φ+(S ′, t′ − δt))P (S ′, t′ − δt|S, t)
+ φ+(S ′ − δS, t′ − δt)P (S ′ − δS, t′ − δt|S, t).

(3.63)
We can easily expand each of the terms in Taylor series about the point S ′, t′.
For example:

P (S ′+δS, t|S, t) ∼ P (S ′, t′|S, t)+δS
∂P

∂S ′
+

1

2
δS2 ∂

2P

∂S ′2
−δt∂P

.
∂t′+ . . . (3.64)

We will omit the rest of the details, but the result is:

∂P

∂t′
=

1

2

∂2

∂S ′2
(B(S ′, t′)2P )− ∂

∂S ′
(A(S ′, t′)P ). (3.65)

This is the Fokker-Planck or forward Kolmogorov equation, a forward parabolic
partial differential equation, requiring initial condition at time t and to be
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solved for t′ > t. For example considering the log normal random walk
(Eq. (3.49)), the Fokker-Planck equation becomes:

∂P

∂t′
=

1

2

∂2

∂S ′2
(σ2S ′2P )− ∂

∂S ′
(µS ′P ). (3.66)

Considering the initial condition:

P (S ′, t|S, t) = δ(S ′ − S), (3.67)

where δ represents the Dirac’s function, a solution of Eq. (3.66) is given by:

P (S ′, t′|S, t) =
1

σS ′
√

2π(t′ − t)
exp

(
−(ln(S ′/S)− (µ− 1/2σ2)(t′ − t))2

2σ2(t′ − t)

)
.

(3.68)
Analogously one can derive the equation governing the probabilities of reach-
ing a specified final state from various initial states. In this case the equation
is given by:

∂P

∂t
=

1

2
B(S, t)2∂

2P

∂S2
−B(S, t)2∂P

∂S
. (3.69)

This is the so-called backward Kolmogorov equation.

3.5.8 Adiabatic Description of Physical Systems

In this Section we want to introduce a particular technique that is used to
describe physical systems that are characterized by a slow varying parameter
that specifies the properties of the system. We will refer to these kind of
systems as adiabatic systems. In the following Chapters we will show that
this way of modeling systems can be efficiently used to describe financial
systems that are governed by a slow varying parameter like implied volatility
to get an efficient calibration procedure of the model.
From a physical point of view, the adiabatic approach can be well described
by the following example. We consider a mechanical system executing a
finite motion in one dimension and characterized by some parameter λ which
specifies the properties of the system or of the external field in which it is
placed and let us suppose that λ varies slowly (adiabatically) with time as
the result of some external action. By “slow” variation we mean one in which
λ varies only slightly during the period T of the motion:

T
dλ

dt
� λ. (3.70)

If λ were constant, the system would be closed and would execute a strictly
periodic motion with a constant energy E and a fixed period T (E). When
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the parameter λ is variable, the system is not closed and its energy is not
conserved, but, because of our slow varying hypothesis, we could expect that
also the rate of change of the energy Ė will also be small. This idea can
be extended to other kind of systems described by an adiabatic parameter.
In general, one could expect that if the rate of variation of the parameter is
sufficiently slow, the properties of the model will not change a lot, equiva-
lently to the energy for a physical system. So, from this point of view one
could be interested in defining quantitatively when a system is adiabatic and
what happens when it is not adiabatic. For the physical system considered,
one could expect that if the rate of change of the energy is averaged over
the period T and the “rapid” oscillations of its value are thereby smoother
out, the resulting value Ė determines the rate of steady slow variation of the
energy of the system, and this rate will be proportional to the rate of change
λ̇ of the parameter. In other words, one could expect that Ė will be some
function of λ and that this dependence can be expressed as the constancy
of some combination of E and λ. We will refer to this quantity as adiabatic
invariant. Let H(p, p;λ) the Hamiltonian of the system, that depends o the
parameter λ. The rate of change of the energy of the system is

∂H

∂t
=
∂H

∂λ

∂λ

∂t
. (3.71)

The expression on the right depends not only on the slowly varying quantity
λ but also on the rapidly varying canonical variables q and p. To get the
steady variation of energy, one must to take the average n the time period of
the motion. Since λ varies only slowly, we can take λ̇ outside the averaging:

<
dE

dt
>=

dλ

dt
<
∂H

∂λ
>, (3.72)

where ∂H/∂λ has to be averaged considering p and q as variables, and not
λ. In a more explicit form, one has

<
∂H

∂λ
>=

1

T

∫ T

0

∂H

∂λ
dt. (3.73)

In addiction, one should notice that, according to Hamilton equations q̇ =
∂H/∂p and dt = dq/(∂H/∂p), the time period T can be written as:

T =
∫ T

0
dt =

∮ dq

∂H/∂p
, (3.74)

where
∮

denote an integration over the complete range of variation of the
co-ordinate during the period T . Thus Eq. (3.72) becomes

<
dE

dt
>=

dλ

dt

∮
(∂H/∂λ)dq/(∂H/∂p)∮

dq/(∂H/∂p)
. (3.75)
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Now, we have to make some considerations about the variable dependences
of the system. As already mentioned, because of the operation of averaging,
λ can be consider constant, and along such a path also the Hamiltonian has
a constant value E. As a consequence the momentum can be defined as a
function of the co-ordinate q and of the two independent constant parameters
E and λ, namely p = p(q;E, λ). So differentiating the equation H(q, p, λ) =
E with respect to λ we have ∂J/∂λ+ (∂H/∂p)(∂p/∂λ) = 0, or

∂H/∂λ

∂H/∂p
= −∂p

∂λ
. (3.76)

Substituting this in the numerator of Eq. (3.75) and writing the integrand in
the denominator as ∂p/∂E, we obtain

<
dE

dt
>= −dλ

dt

∮
(∂p/∂λ)dq∮
(∂p/∂E)dq

(3.77)

or ∮
(
∂p

∂E
<

dE

dt
> +

∂p

∂λ
dλdt)dq = 0. (3.78)

Finally this may be written as

<
dI

dt
>= 0, (3.79)

where

I =
1

2π

∮
pq (3.80)

and the integral is taken over the path for given E and λ. Eq. (3.79) shows
that, if our hypothesis are respected, an adiabatic system can be character-
ized by a variable I which is constant when the parameter λ varies, i.e. I
is an adiabatic invariant. The existence of this constant is a consequence of
the relation between the rate of change of the energy in the system and the
rate of change of the variable λ, that “controls” these changes.
For general and interdisciplinary applications it is of crucial importance to
understand when the system can be considered adiabatic. In fact let us
suppose that we have a system (not necessarily a physical system) that is
controlled by a parameter λ. As a consequence of the previous treatment,
we know that if the parameter does not vary too much, also the system itself
does not change a lot, because it can be described by a similar energy level. In
our vision, this means that the mathematical model that correctly describes
the system for a certain value of λ can be used to describe the system also
for other value of the adiabatic parameter, until the adiabatic hypothesis are
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satisfied. So, knowing when the system is adiabatic tell us when a particular
simplified model can be applied with a good level of precision and when it
should be avoided. In the following Chapters a concrete application of these
ideas will be shown.

3.6 Statistics of Real Prices

In this Section we want to analyze the statistic properties of the main vari-
ables of financial markets. In particular we want to describe the price dy-
namic as a process using the mathematical tools described in the previous
Section. In addiction, we want to give an general description about price
formation and analyze the main characteristics of market microstructure.

3.6.1 Prices, Financial Returns and Distributions

To get a model of financial market, it is quite natural to analyze firstly the
statistical properties of the prices. In particular, if one wants to describe
the price evolution in terms of Wiener increments, it is quite natural to con-
sider as the relevant variable some function of price increment. In the whole
modern financial literature, it is postulated that the relevant variable is not
the price increment itself, δS = S(t + τ) − S(t) where S(t) is the price at
time t and τ represent the unit of time, but rather the logarithmic finan-
cial return z = ln(S(t + τ)/S(t)). Notice that if S(t + τ)/S(t) ∼ 1, the
definition of logarithmic financial return is equivalent to the common defini-
tion of percentage variation, i.e. ln(S(t+ τ)/S(t)) ∼ (S(t+ τ)− S(t))/S(t).
The hypothesis to take the logarithmic return as the relevant variable can
be tested considering actual market data and the standard deviation of the

price increment
√
< δS2 > |S conditioned to a certain value of price S. If the

logarithmic hypothesis is correct, one should get a dependence on the price;√
< δS2 > |S = σ1S, where σ1 is a constant and represents the RMS of log

returns. The results of this analysis are shown in [16]. In general it seems
that the log return hypothesis is correct only if one considers a long historical
series, otherwise one should consider a combination of the two variables as a
function of the time scale. Except for different specifications, in the following
we will assume that our model has to describe a really long time series, so
the logarithmic return represents the right choice as relevant variable.
A typical way to test the hypothesis of a stochastic model of price dynamic
is to check if actual returns distribution is well represented by the model
itself and, in particular, one is interested in the tails of the distribution.
From empirical analysis it was observed that, if the unit of time short (up
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Figure 3.1: Cumulative distribution P>(z) (for z > 0) and P<(z) (for z < 0)
considering the historical price series of ENI from 01/01/2008 to 01/06/2010
(Bloomberg data-provider) with 1 min of time lag. The vertical line shows the
regions where the power-law decay and the exponential decay are suitable.

to one day), returns distributions exhibit a power-law decay in the tails (the
so-called fat-tails) for a large region of z (Fig. 3.1).

However, for really large values of |z|, the tails seems to be well approxi-
mated by an exponential decay. These results seem to be almost robust and
recurrent for many asset classes, so, for these time units, a good description
of reality seems to be given by a stochastic process involving a truncated
Lévy distribution (Eq. (3.23)). If one considers greater units of time some-
thing changes and it seems that a good description can be reached using
exponential or Gaussian distributions (see [3, 39] where this scaling behavior
is well investigated).

3.6.2 Risk Management

The knowledge of the distribution of financial returns has a crucial role in the
risk estimation and, in general, in Risk Management activities. In general,
in practical estimation of the risk, common assumptions are:

• Financial returns are distributed as a Gaussian
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Figure 3.2: We show a graphical representation of the VaR for a theoretical
Gaussian distribution.

• The variance of the returns scales linearly with time: σ2(T ) = σ2
τT ,

where σ2
τ is the unit time variance and T is measured in τ -unit of time

• The relation between assets can be described considering the linear
correlation of returns using Eq. (3.38), so, an estimation of the total
risk related to a portfolio can be obtained by generalizing Eq. (3.39):

σ2
P =

N∑
i=1

N∑
j=1

ρi,jαiαjσiσj, (3.81)

where N represents the number of assets in the portfolio, ρi,j is the
correlation matrix between the asset i and the asset j with ρi,i = 1, αi
is the amount of money invested in the asset i and σi is the standard
deviation of of returns of the asset i.

Using these assumptions one is able to evaluate the Value-at-Risk (VaR) of
a generic portfolio, that should represent the market risk that is related to
the holding of the portfolio. In a more formal way, the VaR is defined as the
level of loss ΛV aR corresponding to a certain probability of loss PV aR over
time time interval τ : ∫ −ΛV aR

−∞
Pτ (z)dz = PV aR, (3.82)

where Pτ (z) is the PDF of returns (Fig. 3.2).
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Figure 3.3: We show a graphical representation of the returns distribution
(not normalized) obtained considering the historical price series of ENI from
01/01/2008 to 01/06/2010 (Bloomberg data-provider) with 1 min of time
lag. The arrow shows our historical VaR estimation at 1% confidence level.

For example, if one fix PV aR = 1% and τ = 1 day, it means that a loss
greater than ΛV aR happens only every 100 days. If the preceding assump-
tions hold, VaR estimation of a portfolio can be made easily by measuring
historical standard deviation of assets returns and the correlations between
assets. Then, using Eq. (3.81), the total variance of the portfolio can be
evaluated and, multiplying it by the suitable scaling factor, one can obtain
the estimation of VaR at the require level of confidence PV aR. Finally, using
the second assumption one can rescale the VaR at the right time unit.
This is a really simple (and maybe naive) estimation of the value-at-risk that
can be properly extended for the estimation of the risk of much more com-
plex financial instruments like derivatives. In literature more sophisticated
approaches that generalize the assumptions related to Gaussian distribution
of returns can be found that can improve VaR estimation. For portfolios that
do not include complex financial instruments, a good solution that is insen-
sitive on the choice of the distribution is the so-called historical estimation.
In this case, the value-at-risk is extracted directly from the historical series
of returns considering a fixed percentile (Fig. 3.3).

In this case any assumption on volatility and correlation estimation are
not needed and the only problem could arise in managing the huge amount
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of data necessary for the estimation.
VaR definition is subjected to many criticisms, some of them are reported in
the following:

• VaR does not take into account the shape of the tails, but it considers
the possible losses up to a certain level of confidence. From this point
of view, two portfolios with different distributions of losses could be
classified by the same risk.

• VaR does not take into account the value of the maximal loss inside the
period τ . For example, if we consider τ = 1 day, with VaR estimation
we do not have any information about the maximal loss during the day,
but just at the end of the day.

• VaR does not take into account the fact that losses can accumulate
on consecutive time intervals τ , leading to an overall loss which might
substantially exceed ΛV aR.

Nonetheless these criticisms, VaR is still considered a fixed point and its
definitions is generally accepted in financial world; currently it is used by
many financial institutions for risk estimation.

3.7 Efficient Market Hypothesis and Some El-

ements of Market Microstructure

One of the most accepted paradigm in market description is the so-called
Efficient Market Hypothesis (EMH). The underlying idea is that the mar-
ket is highly efficient in the determination of the most rational price of the
traded asset. More precisely, a market is said to be efficient if all the available
information is instantly processed when it reaches the market and it is imme-
diately reflected in a new value of prices of the assets traded. This hypothesis
is strongly related to the impossibility to forecast future price fluctuations
starting from the analysis of the historical series of price. Samuelson [18]
showed mathematically that assuming the rational behavior of market par-
ticipants and market efficiency, it is possible to demonstrate there is a relation
between the expected future value of the price S(t+ 1) and its past history:

E[S(t+ 1)|S(0), S(1) . . . S(t)] = S(t), (3.83)

i.e. price evolution can be represented by a martingale stochastic process.
The notion of martingale is, intuitively, a probabilistic model of the “fair
game”, that is to say, a game where gains and losses cancel and the future
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Figure 3.4: We show the autocorrelation as a function of the time lag. We
considered a tick-by-tick historical series of EURUSD from 01/01/2007 to
10/06/2010. A correlation of 0.25 do exist for the first time lag. For the
other time lags, autocorrelations are not statistically significant.

expected wealth is equal to the present one.
EMH was checked by empirical observations and theoretical considerations
that showed that price changes are difficult if not impossible to predict if one
starts from time series of price changes. In particular it can be shown that
autocorrelation of price increments is substantially negligible for unit time of
the order of minutes and this justifies the use of random walk in modeling
financial markets.
For really short units of time, correlations are not negligible and are seen as
local violations of EMH (Fig. 3.4).

In general, different assumptions should be taken in consideration to ob-
tain a suitable description of realty, in particular the so-called market mi-
crostructure. A typical effect related to market microstructure is the negative
autocorrelation of price increments, measured for many financial assets [19].
It can be shown that this correlation holds just for the first time lag if one
consider a tick-by-tick dataset; from this fact the name first order corre-
lation. For the other time lags, autocorrelations mainly lie within the 95%
confidence interval of an identical and independent Gaussian distribution and
so they can be neglected. For this effect, at least three explanations were
proposed [20]:
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• The traders have different and diverging opinions about the price and
that generate opposite fluctuations of the price.

• Negative correlation is a direct consequence of the market marking ten-
dency to skew the spread in a certain direction to control the evolution
of the price

• When direction of the price is not clear, some bank systematically
publish overestimated bid-ask spread that can generate negative corre-
lations.

An other interesting aspect of market microstructure is related to a typical
transaction cost: the so called bid-ask spread, that is defined as the difference
between the best price to buy and to sell at a particular time. In fact, in real
market there is not just one price, as in low frequency financial models, but
there exist a book of prices that represents, at a particular time t, all the or-
ders of the traders (buyers and sellers) that are waiting for an opposite order
to be executed. An example of a typical order book is shown in Table (3.1).

Amount Bid Bid Ask Amount Ask
13295 9.7700 9.7800 21345
28978 9.7650 9.7850 38151
22897 9.7600 9.7900 47930
34798 9.7550 9.7950 16663
58500 9.7500 9.8000 23571

Table 3.1: First five levels of a book. For every levels it is shown the two
price and the quantity of shares available for that price. The data in the
Table refers to FIAT on 19/08/2010 at 15.58

In this case, the first five levels of price of the book are represented. This
book tells to an hypothetical trader that it is possible to buy 21345 shares of
FIAT at 9.78 , 38151 shares at 9.785, 47930 shares at 9.79 and so on. Analo-
gously, the hypothetical trader could sell 13295 shares of FIAT at 9.77 , 28978
shares at 9.765, 22897 shares at 9.76. Alternatively, the trader can introduce
his own order in the book and wait for an other order that could match his
offer. In the tables, the bid-ask spread is represented by the difference be-
tween the best buy price 9.78 and best sell price 9.77 and it is interpreted as
the friction faced by traders with the most direct access to the market. A
good model of the bid-ask spread can be of fundamental importance for every
high frequency strategies as it represents a suitable estimation of the trans-
action costs that a trader should face to exploit an autocorrelation-based
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strategy. In [16] it is shown that a quite robust relation holds between the
bid-ask spread and the instantaneous volatility of the market estimated on
a tick-by-tick time frame. This relation can be interpreted as the need of
market maker of increasing their gain given by bid-ask spread to cover their
risk exposure due to the volatility of the market. Interestingly enough, it
seems that a good estimation of this risk can be obtained by a tick-by-tick
volatility instead of the conventional volatility estimated on physical units of
time.
Negative autocorrelation of price increments and the relation between bid-ask
spread and volatility are just two examples of market microstructure effects
that should be taken in consideration in high-frequency modeling activities;
most of these effects are still lacking of an exhaustive interpretation.

3.8 Conclusions

In this Chapter we presented a general introduction to Econophysics. After a
brief description of the history of Econophysics we presented the many math-
ematical instruments that come from Physics and are used to model financial
markets. In particular we focused on Central Limit Theorem, Brownian Mo-
tion and Adiabatic Conditions; these topics will be recurrent in the following
Chapters to develop the option pricing models. In the last part of the Chap-
ter, we discussed about the main recurrent hypothesis on financial market
and when these hypothesis are suitable for the description of financial data.
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Chapter 4

The Volatilities of Financial
Markets

4.1 Introduction

In this Chapter we want to introduce the basic concepts about financial
derivatives and the most important mathematical models to get the fair value
of these complex financial instruments. In particular we focus our attention
on the most famous model in the options pricing world: the Black-Schöles
(BS) [21] model and its generalizations. In doing this, we also discuss one of
the main problem related to the application of this model in practical situ-
ations, namely the calibration of the parameters and the so called volatility
smile (VS) effect. In particular we emphasize the statistical properties of the
volatility implied by the BS model, its relation with other kind of volatility
(historical and local) and the main problems related to its estimation. At the
end of this Chapter we stress the importance of implied volatility for practi-
cal applications and its crucial role for hedging strategies and the pricing of
exotic derivatives.

4.2 Introduction to Financial Derivatives

Financial derivatives are complex financial instruments that, in the last
decades, increased their importance in the financial world and had a cen-
tral role also in the recent financial world crisis. From this point of view,
getting a reliable estimation of the fair value of many financial instruments
is still an open problem of great importance and justifies the great amount
of publications that in the recent years try to develop new models more and
more suitable for options pricing, risk estimation, trading strategies, etc. Be-
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fore describing the main mathematical models for options pricing we need
to clarify what we exactly mean for financial derivatives and give a general
introduction about this topic.
J. Hull, in one of the most important book about quantitative finance [22]
defines a derivative as: a financial instrument whose value depends on (or de-
rives from) the values of other, more basic, underlying variables. Very often
the variables underlying derivatives are the prices of traded assets. A stock
option, for example, is a derivative whose value is dependent on the price of
a stock. However, derivatives can be dependent on almost any variable, from
price of hogs to the amount of snow falling at a certain ski resort. In particu-
lar, in this thesis, we focus on options derivatives, which are special contracts
between a buyer and a seller that gives to the buyer of the option the right,
but not the obligation, to buy or to sell a specified asset (underlying) on
or before the option’s expiration time, at an agreed price (the strike price).
From this definition it is clear there is a sort of asymmetry between the two
parties of the contract: in fact, the buyer of the option can choose to buy or
sell the underlying, unlike the seller of the option; because of this asymmetry
the buyer has to pay a premium to the seller that corresponds to the value
of the option. It is straightforward to determine what is fair value of the call
and put options at the time to maturity starting from their definition. Let
us firstly consider the call option case. At the time to maturity the buyer of
the option has to decide if exercising his right of buying the option or not.
A rational decision about what to do depends on the difference between the
spot price of the underlying at the time to maturity and the strike price fixed
by the contract. If the spot price is greater than the strike price for the buyer
of the call is gainful to exercise his right; his gain from this operation will be
given by the difference of the two prices. On the contrary, if the spot price
is less than the strike price, there is no reason for the buyer to exercise his
right because it would be more convenient to buy the underlying directly on
the market. In this second case the value of the option is zero. These two
situations can be summarized by the formula

C(S, T ) = max(S(T )−K, 0), (4.1)

where S(T ) is the spot price of the underlying at the time to maturity T and
K is the strike price. By a similar argumentation, it can be shown that the
payoff of a put option at the time to maturity is

P (S, T ) = max(K − S(T ), 0). (4.2)

The main objective of the option pricing theory is to evaluate what is the
fair value of the option at the time t < T , given the time to maturity T ,
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the strike price K and the current spot price of the underlying S0. Option
derivatives can be classified by the time when they can be exercised, the type
of payoff and other details related to the kind of contract. In the following
we report the main definitions about option derivative.

• Call Option: gives the holder the right to buy the underlying asset by
a certain date for a certain price.

• Put Option: gives the holder the right to sell the underlying asset by
a certain date for a certain price.

• American Option: can be exercised at any time up to the expiration
date.

• European Option: can be exercised only on the expiration date itself.

• Bermudan Option: can be exercised only at some particular fixed time
before the expiration date.

• Barrier Option: An option contract that may only be exercised when
the underlying asset reaches some barrier price. A barrier option may
either be a knock-in or a knock-out. A knock-in may only be exercised
when the underlying asset rises above or falls below (depending on the
particular terms) the barrier price. On the other hand, a knock-out
automatically expires when the underlying asset rises above or falls
below the barrier price. It is important to note that the barrier price
is distinct from the exercise price, though, theoretically, they may be
set at the same amount.

• Vanilla Option: option with simple payoff, namely Call and Put op-
tions.

• Exotic Option: option with complex payoff. It cannot be classified as
call and put option.

• Option at the money (ATM): when the spot price is similar to the strike
price.

• Option out of money (OTM): when the spot price is less than the strike
price.

• Option in the money (ITM): when the spot price is greater than the
strike price.
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4.3 The Black, Schöles and Merton Model

4.3.1 Standard Derivation

In 1973, Black and Schöles published what is considered the most famous
model in option pricing theory [21] and it represents a really simple and
effective answer for the fair value estimation of a European call and put
option. The derivation of their formula is really simple and makes use of
the stochastic mathematical tools shown in the previous chapter. The main
hypothesis of the BS model are:

• It is possible to borrow and lend cash at a known constant risk-free
interest rate.

• There are no transaction costs or taxes.

• The stock does not pay a dividend.

• All securities are perfectly divisible.

• There are no restrictions on short selling.

• There is no arbitrage opportunity.

• Options use the European exercise terms, which dictate that options
may only be exercised on the day of expiration.

• The price of the underlying follows a log normal Brownian motion

dS = µSdt+ σSdW, (4.3)

where S is the price of the underlying and dS its infinitesimal incre-
ment, dt is the time increment, µ is a constant that represent the drift
term, σ is the constant diffusion term and dW is the Wiener increment,
a stochastic term distributed as a Gaussian of zero mean and variance
equal to dt.

Starting from these hypothesis it is possible to build an imaginary portfolio
composed by a long position of a call option (the derivation is similar for a
put option) and a short position of a certain amount ∆ of the underlying:

Π(S, t) = C(S, t)−∆(S, t)S(t). (4.4)
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Assuming that ∆ does not change over the time interval dt, we differen-
tiate Eq. (4.4)

dΠ(S, t) = dC(S, t)−∆(S, t)dS(t). (4.5)

Applying Itô’s Lemma to the differential dC(S, t), with dS given by
Eq. (4.3), we find

dC =
∂C

∂t
dt+

∂C

∂S
dS +

1

2
σ2S2∂

2C

∂S2
dt (4.6)

and so, substituting the last Equation in Eq. (4.5), we obtain:

dΠ(S, t) =
∂C

∂t
dt+

∂C

∂S
dS +

1

2
σ2S2∂

2C

∂S2
dt−∆dS. (4.7)

From Eq. (4.7) it is clear that by choosing ∆ = ∂C
∂S

any source for ran-
domness can be cancelled making the theory insensitive to the random fluc-
tuations of the market. In addiction, by this choice of ∆, it is cancelled also
the dependence of the drift term µ, that is difficult to estimate because it
requires a forecast of real market evolution. In financial terms ∆ is called the
delta of the option and represents the amount of underlying that the writer
of the option should buy to cancel the market risk (delta hedging). Since the
stochastic term has been removed from the equation governing the evolution
of Π, we require

dΠ(S, t) = Π(S, t)rdt, (4.8)

where r represents the risk free interest rate, namely the rate of interest
for an investment without risk. Eq. (4.7) become

∂C

∂t
+
∂C

∂S
rS +

1

2
σ2S2∂

2C

∂S2
= rC. (4.9)

This is a partial differential equation (PDE) that needs boundary condi-
tions to be solved. This condition is given by the payoff of the call option
at the time to maturity which is given by Eq. (4.1). Eq. (4.9) can be solved
using different techniques [23] and the solution is (Fig. 4.1):

C(S, t) = S(t)N(d1)−Ke−r(T−t)N(d2), (4.10)

where

d1 =
ln(S(t)/K) + (r + σ2/2)(T − t)

σ
√

(T − t)
,

d2 = d1 − σ
√

(T − t),

N(x) = 1√
2π

∫ x
−∞ dz e−z

2/2.

(4.11)
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Figure 4.1: We show the value of a call option as a function of the spot
price S(t), considering the strike price K = 100$, the volatility σ = 0.1, the
risk free rate r = 0.01 and a time to maturity of 10 years (red line). For
comparison we show also the value of the option at the maturity with the
same parameters (blue line).

The structure of Eq. (5.3) is similar to the payoff (4.1) except for the fact
that in this case the spot price and the discounted strike price are weighted
in a probabilistic manner by the cumulative of the gaussian distribution.
The solution of the BS model depends on five parameters: K,T, r, S(t), σ.
Four of these five parameters can be easily obtained, in fact: the strike price
(K) and the time to maturity (T ) are written in the call contract, the spot
price (S(t)) can be taken from the market and the risk free parameter (r)
can be evaluated considering, for example the LIBOR rate for the fixed time
to maturity. The only real free parameter of the model is σ that represents
the random fluctuation of the market and it should be estimated by some
calibration procedure that will be presented in the next Chapters. Using a
similar demonstration, it can be shown that the fair value for a put option
is given by:

H(S, t) = SN(d1)−Ke−r(T−t)N(d2). (4.12)

There is a really useful formula that relates the prices of a call and a put
option. This relationship is model-free and follows from the trivial fact that
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ST −K = max(S(T )−K, 0)−max(K − S(T ), 0)

C(t)−H(t) = S(t)− e−r(T−t)K. (4.13)

Eq. (4.13) is known as put-call parity.

4.3.2 Risk Neutral Approach

There is another way to derive BS formula starting from a really general
approach that is based on risk neutral pricing. The main idea of this approach
is founded on the fact that we are not interested to forecast the market, we
just want to know what is the fair value of an option assuming that all
the source of randomness of the market can be cancelled buying or selling
a certain amount of the underlying (delta-hedging). In the previous Section
we showed that to cancel this randomness we had to impose ∆ = ∂C

∂S
, that is

exactly the amount of underlying to buy or sell to cover the risk due to the
market fluctuations. By this operation we moved from a market risk world to
a risk free world where no forecast about market trend is needed and the drift
term µ of Eq. (4.3) is substituted by the risk free parameter r. Intuitively
the risk neutral approach is based on the assumption that the fair value of an
option can be obtained just considering the (discounted) expectation value
of the relative payoff considering a new risk free probability measure, i.e. the
probability measure Q that transform the discounted process O(t + u) =
e−ruO(t), where u > 0 and O(t) represent the value of an option at the time
t, in a martingale process [14]

O(t) = EQ[O(T )|Ft], (4.14)

where Ft represents the filtration at the time t, i.e. all the information
available at the time t. By the fundamental theorem of asset pricing such
a measure Q exists if and only if the market is arbitrage-free, i.e. by this
theorem, if the market is arbitrage-free, it is possible to describe the time
evolution of an asset price as a martingale process under a certain “synthetic”
probability. It can be shown that the probability that satisfies Eq. (4.14)
(under the assumption that the portfolio is self-financing, see next paragraph)
for the log normal process (4.3) is given by:

ln(S(T )/S(t)) ∼ N(r − 1

2
σ2(T − t), σ2(T − t)), (4.15)

where N(α, β) is the normal distribution with mean α and variance β. Notice
that Eq. (4.15) is independent on the drift term µ and depends on the risk
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free parameter r whence the name risk neutral distribution. Considering the
boundary condition (4.1), Eq. (4.14) implies for a call option:

C(t) = EQ[e−r(T−t) max(S(T )−K, 0)|Ft]

= e−r(T−t)
∫∞

0 max(S(T )−K, 0)P (S(T )|St)dS(T ),
(4.16)

where P (S(T )|St) represents the risk neutral probability distribution of the
price of the underlying and we assumed that the risk free term r is constant.
Using Eqs.(4.16 - 4.15) it is possible to obtain again Eq. (5.3) that shows
the equivalence of the risk neutral approach for option pricing. Notice that
Eq. (4.16) is valid for every risk neutral distribution modeling the underlying
price in a risk free world and in this sense it is a generalization of the BS
equation (4.9).

4.3.3 Accuracy of the BS Model

In Section 4.3.1 the source of randomness in the market has been neglected
imposing that

∆ =
∂C

∂S
, (4.17)

then ∆ could be dependent on S. This assumption is in contrast with
Eq. (4.5) where we assumed that ∆ is constant. So, strictly speaking, our
derivation of the BS formula is not coherent and one could wonder what is
the accuracy related to this simplification. To better understand the prob-
lem, we consider again the derivation of the BS equation, taking into account
Eq. (4.17). Our theoretical portfolio is

Π(t) = C(t)− ∂C

∂S
S(t). (4.18)

Then, differentiating yields

dΠ(t) =
∂C

∂t
dt+

∂C

∂S
dS − ∂C

∂S
dS − ∂S

∂t
d
∂C

∂S
, (4.19)

where the last term in r.h.s. represents the differential form of ∆. Applying
Itô’s Lemma to the ∆ we get

d
∂C

∂S
=

∂2C

∂S∂t
dt+

∂2C

∂S2
dS +

1

2

∂3C

∂S3
σ2S2dt. (4.20)

Thus, the formal differential form of Π is given by

dΠ = (
∂C

∂t
dt+

∂C

∂S
dS)−∂C

∂S
dS−S

[[
∂2C

∂S∂t
+
∂2C

∂S2
µS +

∂2C

∂S2

]
dt+

∂2C

∂S2
σSdW

]
.

(4.21)
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This equation can be simplified if one differentiates Eq. (4.9) with respect to
S

∂2C

∂S∂t
+
∂2C

∂S2
rS +

1

2

∂3C

∂S3
σ2S2 + σ2S

∂2C

∂S2
= 0 (4.22)

and uses this relation to eliminate most of the unwanted terms in Eq. (4.21).
Unfortunately this simplification is not enough and, to make Eq. (4.21) con-
sistent with Eq. (4.5), one should require

S2∂
2C

∂S2
(σdW + (µ− r)dt) = 0, (4.23)

which will not hold in general.
Fortunately, even if formally speaking our derivation of the BS equation is
not satisfactory, the method we used still gives us the correct partial differ-
ential equation. The answer is in the additional term on the l.h.s. in the
Eq. (4.23). This term has nonzero expectation under the true probability
measure but it can be shown that the following relation holds for the risk
free distribution (4.15)

EQ[S2∂
2C

∂S2
(σ∆W + (µ− r)∆t)] ∼ 0, (4.24)

where in this case ∆ represents the finite differential increment (not to be
confused with the ∆ for the randomness cancellation). Thus, in small inter-
vals, the extra cost associated with the portfolio Π has zero expectation and
this fact justifies the coherence of our derivation. It is interesting that the
average is taken with respect to the synthetic risk-neutral measure and not
with respect to the real-life probability.

4.4 Implied Volatility and Volatility Smile

In this Section, we want to introduce the main concept that is the object
of all this work, namely the implied volatility (IV). Typically, traders on
option markets and practitioners consider the BS model as a zeroth order
approximation that takes into account the main features of options prices.
To get a pricing closer to the actual data, they consider the volatility as a
parameter that can be adjusted considering the inverse problem

CBS(S(t), t,K, T, σ)− Cmkt(t) = 0, (4.25)

where CBS is the value of the call option given by the BS formula and Cmkt

represent the observed market price of the call option. Eq. (4.25) defines
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Figure 4.2: We show a typical volatility smile as a function of the logarithm
of the strike price K. S0 represent the (fixed) spot price at the time t = 0.

implicitly the value of the volatility σ that is, using the words of Rebon-
ato [24]: the wrong number to put in the wrong formula to obtain the right
price. In this way a more reliable value of the volatility (implied volatility)
can be obtained and used to price more complex options for which analyti-
cal solutions are not available. The value of the implied volatility depends
on the value of the strike, K, in a well-known characteristic curve called the
smile volatility (typically for foreign currency options) whose shape is approx-
imately parabolic and symmetric (see Fig. 4.2), or skew volatility (typically
for equity options) when asymmetric effects dominate [25, 26, 27, 28].

An intuitive explanation of this shape can be found if an actual returns
distribution is considered. In fact, it is well known that the tails of the returns
PDF are not Gaussian but exhibit a power law decay (fat tails) [29, 30]. On
the contrary, BS model assumes that the PDF of returns is Gaussian thus
underestimating the actual probability of rare events. To compensate for this
model deficiency, one has to consider the greater implied volatility for strike
out of the money then for strike at the money.
To get the right price for every call (and put) option one has to choose
different values of the IV for every combination of the strike price and the
time to maturity. Thus IV is in fact a mapping from time, strike prices and
expiry days to IR+

σ : (t,K, T )→ σt(K,T ). (4.26)
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This mapping is called implied volatility surface (IVS).
A central question about IVS is: what does the IVS imply for practice? In
two points are raised to answer to this question. The first one is that IV
summarizes all the information needed for the pricing in one single entity,
hence it is common practice to quote options in terms of IV. From this point
of view the BS formula is a simple way to map every option to the same
number dependent on the strike price. For this purpose it is not necessary
to believe in the BS model. It simply acts as a computational tool insuring
a common language among traders. The second point, which is negative,
is that for each strike price and each time to maturity we have a different
IV, so a different BS model is applied. This generates a lot of difficulties in
managing a portfolio of options, from the hedging and exotic pricing point
of view.
Commonly, IV is interpreted as the future average volatility of the market
and represents the traders and pratictioners vision. In the following it will
be shown that this interpretation is of fundamental importance for pratical
applications and to get a good calibration procedure of the BS model.

4.4.1 Quantitative Interpretation of the Implied Volatil-
ity

As already explained in the previous Section often the BS formula is inter-
preted as a zeroth order approximation of a model that has to be adapted
to real life situations by changing an a priori constant parameter to get an
approximate theory that describes more subtle effects. In this case the subtle
parameter is the volatility and the subtle effect is due to the fact that the
distributions of the financial returns are not Gaussian but exhibit fat-tails.
We already presented an intuitive explanation of the recurrent shape of the
IV as a function of the strike price. In this Section we want to explain it in
a more quantitative manner following the lines in [16]. First of all, we as-
sume that the price process is additive rather than multiplicative, namely the
real independent random variable is not the logarithmic return (ln(S(t)/S0)
as required by BS model but the price increment itself (S(t + 1) − S(t)).
Eq. (4.16) is still valid and we can get a new Gaussian pricing formula:

CG =
∫ +∞

K
(S −K)

1√
2πTS2

0σ
2

exp

(
−(S − S0)2

2S2
0σ

2T

)
dS. (4.27)

Eq. (4.27) can also be derived directly from BS formula in the small maturity
limit, where the relative price variations are small allowing one to write
y = ln(S(T )/S0) ∼ (S(T ) − S0)/S0. In this limit Gaussian and log-normal
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distributions become really similar.
Then, let us notice that Eq. (4.16) through integration by parts can be written
as

C =
∫ +∞

K
P>(S, T |S0, 0)dS, (4.28)

where we defined

P>(u) = 1− P<(u) =
∫ u

−∞
P (x)dx, (4.29)

where P (x) represents a generic distribution of the variable x. In particular
if the distribution is Gaussian we define

PG>(u) =
∫ +∞

u

1√
2π

exp (−x2/2)dx. (4.30)

If the distribution P (x) is decreasing faster than algebraic when |x| → ∞
(and such that all the moments are finite), Eq. (4.28) can be written as an
expansion of cumulants function, using the relation derived in 3.5.5

C = CG+σS
√
T
e−u

2
K/2√
2π

(
λ3

6
√
N
uK +

λ4

24N
(u2

K − 1) +
λ2

3

72N
(u4

K − 6u2
s + 3) + . . .

)
,

(4.31)
where CG represents a Gaussian pricing formula of Eq. (4.27), λk is the k-
normalized cumulant, uk = (K −S0)/

√
σ2S0T and N represents the number

of the stochastic variables that generate the price evolution such that T = Nτ
where τ is the unit of time. Eq. (4.31) shows the contributions on call pricing
due to the skewness (λ3) and the kurtosis (λ4) of the distribution of the price
respect to the pricing given by a Gaussian distribution. Neglecting the term
associated to the skewness, we get

∆C =
λ4τ

24T

√
DT

2π
exp

(
−(K − S0)2

2DT

)(
(K − S0)2

DT
− 1

)
, (4.32)

where ∆C = C − CG and D = σ2S2
0 . On the other hand, we can estimate

the variation of Eq. (4.27) when the volatility changes by a small quantity
δD = 2σS2

0δσ

δC = δσS0

√
T

2π
exp

[
−(K − S0)2

2DT

]
. (4.33)

Comparing Eqs. (4.32, 4.33) it is possible to understand how to change the
volatility in a Gaussian context to reproduce the kurtosis effect:

Σ = σ + δσ = σ

[
1 +

λ4

24N
(
(K − S0)2

DT
− 1)

]
. (4.34)
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Eq. (4.34) shows the effect on the implied volatility of Gaussian pricing model
if the price increments distribution has a kurtosis different than the Gaussian
PDF. The parabolic shape of the formula justifies quantitatively the smile
aspect of the IVS and creates a relationship between the fat-tails character-
istic shape of actual price increments distribution and the increasing implied
volatility for options out of the money.

4.4.2 Static Properties of the Smile Volatility

In the previous Sections we defined the IV and we described intuitively and
quantitatively the VS effect. Now we want to analyze the main properties of
this variable in order to understand how to model it coherently and to get a
better pricing calibration.

Bounds on the Slope

From the general fact that European call prices are monotonically decreas-
ing and puts are monotonically increasing functions of the strike price, it is
possible to get boundary conditions on the slope of the smile. Assuming that
K1 < K2 from the previous observation, we have for a fixed time to maturity

C(K1) ≥ C(K2), P (K1) ≤ P (K2) (4.35)

and due to an observation in [31] this can be improved to

C(K1) ≥ C(K2),
P (K1)

K1

≤ P (K2)

K2

. (4.36)

Now, assuming an explicit dependence of volatility on strike prices, we get

∂C

∂K
=
∂CBS

∂K
+
∂CBS

∂σ

∂σ

∂K
≤ 0, (4.37)

so
∂σ

∂K
≤ −∂C

BS/∂K

∂CBS/∂σ
. (4.38)

Repeating the differentiation for the second inequality in (4.36), we get

∂σ

∂K
≥ PBS/K − ∂PBS/∂K

∂PBS/∂σ
. (4.39)

Putting together Eqs. (4.38 - 4.39) and using the BS formula for call and put
options, we get

− N(−d1)√
T − tKG(d1)

≤ ∂σ

∂K
≤ N(d2)√

T − tKG(d2)
, (4.40)
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where G(x) = 1√
2π

exp (−x2/2). Eq. (4.40) gives an estimation of the upper
and the lower bound for the volatility smile to avoid arbitrage opportunities.
These bounds has been derived starting from monotonicity considerations
about call and put prices and are very broad estimates of the slope of the
smile function in practical situations.

Large Strike Behavior

It is possible to characterize the behavior of the volatility smile for large
strike price, imposing again the monotonicity of the BS formula for call and
put option. Defining

x =
K

er(T−t)S(t)
, (4.41)

for sufficiently large |x| > x∗, one has [32]

σ(x, T ) <

√
2|x|
T
. (4.42)

This estimation of the limit behavior of the smile volatility can be made
more precise to get a quantitative relation between the slope coefficients of
the asymptotes of the implied variance function and the number of finite
moments in the underlying distribution of the price S(t). Intuitively this
results can be explained considering the fact that the IV smile must carry
the same information as the underlying risk neutral transition probability, so
it should hold a relationship between the asymptotic behavior of the smile
and the tail behavior of the risk neutral PDF of financial returns. The general

result is that the smile should not grow faster than
√
|x| and, furthermore,

it should not grow slower than
√
|x| unless one assumes that the distribution

of S(T ) has finite moments of all the orders. These results has a great
importance for practical applications where the extrapolation of the IVS is
necessary beyond the values at which options are typically observed. The
choice of the extrapolation is a delicate matter especially for exotic option
pricing that depends significantly on the specific extrapolation method.

Empirical Regularities

Analogously to the statistical properties of financial returns distributions
shown in the previous Chapter, for IVS too, are observed some empirical
regularities that can be summarized as follows:

• For short time to maturities the smile is very pronounced, while it
becomes more and more shallow for longer T .
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• The smile function achieves its minimum when the strike price is ATM.
This behavior can be justified considering the quantitative interpreta-
tion of the volatility smile (see Sect. 4.4.1).

• The dependence of the IV on the time to maturity (term structure)
is increasing, but may also display a humped profile, especially during
high market fluctuations

• OTM put regions display an higher levels of IV than OTM call regions

• The standard deviation of IV (volatility of volatility) is bigger for short
maturity options and monotonically declining with time to maturity

• Financial returns of the underlying asset and IV increments are nega-
tively correlated, indicating the so called leverage effect.

• IV appears to be mean-reverting

• Shocks across IVS are highly correlated, so the dynamics of IVS can
be modeled by a small number of driving factors

All these regularities justify the recent interest in IV dynamics and should
be taken in consideration in every modeling attempt.

4.5 Problems with IV

Essentially, the concepts of IV and IVS were introduced to make the results of
the BS model more similar to reality as a perturbative fine-tuning approach.
Unfortunately, these perturbations generates some ambiguity in the hedging,
in the risk management and in the pricing activities that could creates some
problem in practical applications. Firstly, let us consider the hedging prob-
lem. The standard BS model application requires to buy or sell a certain
amount of the underlying asset to cancel the source of randomness of the
market, according to the value of the delta, that measures the sensitivity of
call price on the price of the underlying. This procedure is well defined when
the implied volatility is constant, but it is less clear when one considers a
volatility as a function of the strike price. In fact one should be aware that
the IV is not necessarily equal to the hedging volatility, defined as

∂CBS

∂S
(S(t), t,K, T, σ)− ∂Cmkt

∂S
= 0, (4.43)

which is the volatility that equates the BS delta with the delta of true, but
unknown, pricing model and represented by the second derivative in Eq. 4.43.
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From the risk management point of view other difficulties appear when differ-
ent BS models are applied for different strikes. In this case one may wonder
if the delta risks across different strikes can simply be added to control the
overall risk in the option book or another more suitable procedure should be
followed.
The situation is unclear also in the pricing activity that involves exotic op-
tions, for example an ITM knock-out option with strike price K and barrier
L > K. In this case it is not clear which IV should be used for pricing, if the
one at K, the one at L or some average of both.
All these problems can be solved using some pricing model that includes in
its structure the smile effect. Some of these models will be presented shortly
in the following Sections.

4.6 Local Volatility

The concept of local volatility (LV) was introduced by Dupire [33] and further
developed by Derman and Kani [34]. Intuitively one may think at local
volatility, denoted by σK,T , as the market’s consensus of the instantaneous
volatility for a market level K at some future date T . The ensemble of such
estimates for a collection of market levels and future dates, analogously to
the implied volatility, is called local volatility surface (LVS). The concept of
local volatility was introduced to get a reliable estimation of the fair value of
the option derivatives that could include in the model the VS effect, to avoid
the problems presented in the previous Section.
One starts assuming that the asset price dynamic can be modeled by the
following stochastic process

dS(t) = µ(S(t), t)S(t)dt+ σI(S(t), t, ·)dW (t), (4.44)

where µ(·, ·) is the drift term and σI(S(t), t, ·) represents the instantaneous
volatility that follows some stochastic process, possibly depending on some
function of S(t) and t and other possible variables. The local variance
σ̃2
K,T (S(t), t) is defined as the risk-neutral expectation of the square instan-

taneous volatility conditional on S(T ) = K and the time t information Ft

σ̃2
K,T (S(t), t) = EQ

[
σ2
I (S(t), t, ·)|S(T ) = K,Ft

]
, (4.45)

where EQ is the expectation operator under the risk neutral measure Q.
Then, the LV is given by

σ̃K,T (S(t), t) =
√
σ̃2
K,T (S(t), t). (4.46)
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This definition of local volatility assumes that the market’s view on future
volatility can be expressed by the expectation of the instantaneous volatility
so that all sources of risk from the stochastic volatility can be integrated out.
Therefore, if the instantaneous volatility is deterministic in spot price and
time, i.e. σI(S(t), t, ·) = σI(S(t), t), both concepts, instantaneous and local
variance, coincide

σ̃2
K,T (S(t), t) = EQ [σ2

I (S(t), t, ·)|S(T ) = K,Ft]

= EQ [σ2
I (S(t), t)|S(T ) = K,Ft] = σ2

I (K,T ).
(4.47)

By this assumption, one can get an estimation of local volatility modeling
instantaneous volatility and vice versa.
A good estimation of local volatility can be obtained by the so called Dupire
formula that can be derived applying the Itô’s Lemma to Eq. (4.16)

σ̃2
K,T (S(t), t) = 2

∂C(t,K,T )
∂T

+ δC(t,K, T ) + rK ∂C(t,K,T )
∂K

K2 ∂
2C(t,K,T )

,
∂K2

(4.48)

that can also be expressed as a function of the IV

σ̃2
K,T (S(t), t) =

σ
(T−t) + 2 ∂σ

∂T
+ 2Kr ∂σ

∂K

K2
{

1
K2σ(T−t) + 2 d1

Kσ
√
T−t

∂σ
∂K

+ d1d2
σ

( ∂σ
∂K

)2 + ∂2σ
∂K2

} , (4.49)

where d1, d2 are the parameters of the BS solution. Eq. (4.49) shows the
relation between IV (σ) and LV (σ̃) and, because of Eq. (4.47), with in-
stantaneous volatility (σI). So, using this relation, one can develop a model
coherent with VS effect using an instantaneous volatility that is a function
of time and the spot price level. Moreover Eq. (4.49) gives a exhaustive cri-
terion to generate this function starting from the implied volatility that can
be directly observed on the market. We want to stress that this approach
does not introduce any additional source of stochastic noise to model the
volatility and so, it does not require additional assumptions on the market
price of risk.
Obvioulsy, there is still the problem that the implied volatility is not a known
continuous function of strike and maturity, but only known at certain points.
Then, to get the local volatility function from Eq. (4.49), some method has
to be used to interpolate and extrapolate the given IV points to get a contin-
uous differentiable function that could describe the IVS. This problem will
be the topic of the following Chapters, where we show how methods that
come from Statistical Physics can be applied to get a suitable description of
the IVS.
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4.7 Stochastic Volatility Models

Local volatility models try to stay close to the Black-Schöles model by intro-
ducing more flexibility into the volatility and this is one of the main reasons
of criticism. A different approach is followed by the so called Stochastic
Volatility Models that try to obtain a closer description of actual market
data introducing a new source of randomness related to the volatility. Since
volatility is not a tradable asset, this implies that the market is incomplete,
as such there is a whole family of risk-neutral pricing measures, unlike in
the constant volatility case when there is only one. So the description of
the market is not unique as it depends on the choice if a parameter that
cannot be determined directly from the market. In these cases the market is
called incomplete. The literature about stochastic volatility models is really
wide [35, 36, 37], here we just want to summarize the results of one of the
most important stochastic volatility model that is applied by many financial
institutions and it seems to be one of the candidate to replace, in the future,
the BS model: the Heston model [36]. According to this model, asset price
dynamic can be described by the following system of equations

dS = µSdt+ σSdW1

dσ2 = γ(θ − σ2)dt+ kσdW2,
(4.50)

where µ, γ, θ, k are constants and the parameters of the model, dW1, dW2

are the two Wiener’s increments that have correlation ρ and, as usual, S(t)
represents the price of the asset at time t and σ is the stochastic volatility.
In this case we are assuming that the volatility follows a mean-reverting CIR
process (See Sect. 3.5.7) where θ is the long-time mean of σ2, γ is the rate of
relaxation of the mean, and k represents the variance of σ2. By this process
we are implicitly supposing that the stationary probability distribution of
the variance is given by the gamma distribution

Π(σ2) =
αα

Γ(α)

σ2(α−1)

θα
eασ

2/θ, (4.51)

where α = 2γθ/k2. By the definition of an imaginary portfolio similar to the
one described for the derivation of the BS formula, but using a combination
of two different options, it is possible to obtain the following equation:

∂C

∂t
+ rS

∂C

∂S
+ (γ(θ − σ2)− λ(S, σ2, t))

∂C

∂σ2
+DC − rC = 0, (4.52)

where r is the risk free rate, λ(S, σ2, t) is a generic function that represents
the price of the volatility risk and D is an operator defined as

D =
1

2
σ2S2 ∂

2

∂S2
+

1

2
k2σ2 ∂2

∂(σ2)2
+ σ2Skρ

∂2

∂S∂σ2
. (4.53)
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In his paper, Heston redefined the price of the volatility risk as λ(S, σ2, t) =
λσ2, where λ is a constant of the problem and solved Eq. (4.52) guessing, by
analogy with the BS solution, a solution of the form

C(S, σ, t) = SP1 −Ke−r(T−t)P2, (4.54)

where P1, P2 are two unknown functions to be determined. In [36] it is shown
that it is possible to get a semi-closed analytical solution of the problem given
by:

Pj(x, σ
2, T ; ln(K)) =

1

2
+

1

π

∫ +∞

0
Re

[
e−iφ ln(K)fj(x, v, T ;φ)

iφ

]
dφ, (4.55)

where x = ln(S), K is the strike price, T the time to maturity, j = 1, 2 and

fj(x, σ
2, t;φ) = exp (C(T − t, φ) +D(T − t, φ)v + iφx), (4.56)

where

C(T−t, φ) = rφi(T−t)+
a

k2

{
(bj − ρkφi+ d)(T − t)− 2 ln

[
1− ged(T−t)

1− g

]}
,

(4.57)

D(T − t, φ) =
bj − ρkφi+ d

k2

[
1− ed(T−t)

1− ged(T−t)

]
(4.58)

and

g =
bj − ρkφi+ d

bj − ρkφi− d
, (4.59)

d =
√

(ρkφi− bj)2 − k2(2ujφi− φ2), (4.60)

u1 = 1/2, u2 = −1/2, a = γθ, b1 = γ + λ− ρk, b2 = γ + λ. (4.61)

To estimate the fair value of a call option starting from this model, one just
needs to calibrate the six parameters of the model (ρ, γ, θ, k, r, λ) and to
evaluate the integral in Eq. (4.55) using numerical approximations. A de-
scription of how to calibrate Heston model can be found, for example in [38].
Differences between Heston and BS pricing model are essentially due to the
different probability distributions implied by the two models. In particular
in [39] is shown that the returns PDF of Heston model has exponential tails
and this fact can better describe actual returns distribution with a time lag
greater than one day. The two main parameters that govern the differences
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in the pricing are ρ and k. As shown in [36] the first has an important effect
on the skewness of the distribution so that a positive skewness is associated
with increases in the prices of OTM options relative to ITM options; the lat-
ter increases the kurtosis of the spot return, increasing, as a consequence, the
value of the options OTM with respect to value obtained by the BS model.
The main drawbacks related to the Heston model are essentially due to the
difficulty of the calibration process (in particular the evaluation of the com-
plex integral in Eq. (4.55) could be laborious) and to the introduction of
a second stochastic process that could have important consequences on the
hedging and risk management activities.

4.8 Conclusions

In this Chapter we introduced the main concepts about option pricing mod-
eling. After giving some definitions about derivatives and in particular about
options, we introduced the most famous model for the option pricing: the
Black-Schöles model. We derived its formula to price and European call (and
put) option by the construction of an imaginary portfolio and, equivalently
using the so called risk neutral approach. In this way, we showed which are
basic concepts related to this model and in particular how to move into a
risk free world deleting markets noise by using the delta hedging approach.
Then we presented the main concept of this work: the implied volatility.
We showed its statistical properties and, in particular, the smile effect, with
an intuitive and quantitative interpretation. Finally we focus on the main
problems related to the implied volatility and on some possible extension of
the BS model to fix them: the local volatility and the stochastic volatility
models. We showed that the first approach is closer to the BS framework and
can be developed requiring a good fitting procedure of the IVS. The second
approach introduces an additional stochastic equation for the description of
the price dynamics obtaining a good description of realty starting from a
more fundamental point of view. The price to pay is a more complex calibra-
tion procedure, losing the completeness of the original Black-Schöles model
since the stochastic volatility in asset prices cannot be traded. In the fol-
lowing Chapters we will focus on the first approach and in particular we will
deal with the problem of getting a good fitting procedure of the IVS that
represents the basis for the application of local volatility models.
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Chapter 5

Adiabaticity Conditions for
Volatility Smile in
Black-Schöles Pricing Model

5.1 Introduction

In this Chapter we show how some concepts, that come from physics can be
applied to financial world to obtain new models with concrete applications.
These models, presented in [40], were developed starting from an unconven-
tional point of view that finds its inspiration from physics world and this fact
confirms that a relationship between physical and financial model should ex-
ist and can be exploited by both the areas. On the other hand we want to
stress that this relationship can be used as a “source of inspiration” from a
methodological point of view and that is unrealistic, in our opinion, to look
at finance as a straightforward application of physical models.
In particular, in this Chapter we derive the distribution function of financial
returns using the Black-Schöles expression for the call pricing with volatility
in the form of a volatility smile. We show that this approach based on a
volatility smile leads to relative minima for the distribution function (“bad”
probabilities) never observed in real data and, in the worst cases, negative
probabilities. We show that these undesirable effects can be eliminated by
requiring “adiabatic” conditions on the volatility smile. Finally, we formu-
late an algorithm that can be used in practical situations to get a good fit
of the volatility smile, avoiding negative probabilities and, as a consequence,
the arbitrage opportunities.
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5.2 The Inverse Problem for the Stock Price

Distribution Function and Arbitrage Op-

portunities

As already mentioned in the previous Chapters, one of the simplest “prod-
ucts” on the derivative financial market is the European call (put) option.
Considering the risk neutral approach, the price of the European call option,
C ≡ C(ST , K, T, r), is defined by

C = e−rT
∫ ∞
K

(ST −K)P (ST )dST , (5.1)

where ST is the stock price at time t = T , K is the strike price of the option,
T is the expiration time (time to maturity) of the option, r is the interest
rate and P (ST ) ≥ 0 is the probability density function (PDF) of the stock
prices in a “risk-neutral world” (

∫∞
0 P (ST )dST = 1).

Eq. (5.1) is too general since it does not place any restrictions on the
underlying stock price distribution function, P (ST ). To calculate explicitly
the option price, C, using Eq. (5.1), one must know the PDF, P (ST ). Conse-
quently, one must make some assumptions about the stock prices, as already
seen in the previous Chapters. An important achievement in the theory of
option pricing is the Black-Schöles (BS) theory which gives analytic solutions
for the European call and put options [21].

In particular, for the European call option, a solution of the BS equa-
tion is given by Eq. (5.1), if one assumes for the PDF, P (ST ), a log-normal
distribution,

P (x) =
1√

2πσ2(T − t)
exp

[
−(x+ σ2(T − t)/2)2

2σ2(T − t)

]
, (5.2)

where x = ln(ST/S(t)) − r(T − t) is the logarithmic return deprived of the
risk-free component, S(t) is the stock price at time t and σ is the stock price
volatility. For seek of simplicity, in the following we consider t = 0 and
we define S0 ≡ S(t = 0). Substituting Eq. (5.2) in Eq. (5.1) an explicit
expression for the price of the European call option which satisfies the BS
equation [21] is obtained,

CBS = S0N(d1)−Ke−rTN(d2), (5.3)
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where

d1 =
ln(S0/K) + (r + σ2/2)T

σ
√
T

,

d2 = d1 − σ
√
T ,

N(x) = 1√
2π

∫ x
−∞ dz e−z

2/2.

(5.4)

There are some problems with the expressions for C given by Eqs. (5.1-
5.3). Indeed, one can derive any option price from Eq. (5.1), using different
assumptions about the PDF, P (ST ). To derive from Eq. (5.1) a result for
C which will even approximately coincide with the real market price, CM,
one must specify a distribution function for future stock prices, P (ST ). On
the other hand, the expression given by Eq. (5.3) is (a) too specific, and
(b) derived using rather strong restrictions. Namely, the BS model does not
account for correlations of returns, x and, moreover, the volatility, σ, and the
interest rate, r, are not well-defined parameters (given the actual data). As
a result, the expression, CBS, often does not coincide (even approximately)
with the corresponding market option price, CM. Useful approaches have
been developed which partially solve the problems mentioned above.

We shall mention here one analysis which is related to that presented
below. This analysis deals with building “implied trees” [41, 42, 33, 43, 44].
There are many variations of this approach, but the main idea is based on
the solution of the inverse problem: a search for a stock price model that
corresponds to the real market prices of options, CM. A more restricted
problem is to search for a stock price model that effectively deals with the
volatility smile. In this case, one starts with the BS formula (5.3), (even for
American options) but instead of choosing a fixed volatility, σ = constant,
one uses the dependence, σ = σ(K) (volatility smile). To some extent, this
dependence corresponds to the “real behavior” of the volatility, σ, if one
wants to use Eq. (5.3) as the “zeroth approximation” for option pricing.

There are still some problems with this implied volatility. For example,
the corresponding “implied” stock prices, ST , can have “bad” (negative)
probabilities which must be eliminated (Fig. (5.1)).

Despite the simplicity of the calibration procedure, a solution to this kind
of problem for trees generation was proposed in [45, 46]. In general, another
way to avoid the problem of “bad” probabilities is to find some constraint on
the general shape of σ(K) via a nonparametric or parametric specification of
the functional form of the volatility smile. In the first case, volatility smiles
are computed requiring some smoothness conditions derived from arbitrage-
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Figure 5.1: a) Log-distribution given by Eq. (5.12) for the volatility smile
given by Eq. (5.18), with the following parameters: g = 0.1, T = 0.5, n =
0.04, χ = 2.7. b) Volatility smile related to the PDF shown in a).

free considerations [47, 48, 49]. This kind of algorithms has the advantage
to be based on more general assumptions on volatility smile and PDFs of
return but, as a consequence, they increase the complexity of the problem
and the computational time of the calibration. On the contrary, using a
parametric approach, one needs to specify the expression of the volatility
smile to get a parametric restriction on the implied volatility space that can
be used straightforwardly in the fitting procedure, generally decreasing the
computational time for calibration.

In this Chapter, we discuss the inverse problem for Eq. (5.1) using the
following parametric approach. First, using Eq. (5.1), we build the PDF
for future stocks prices and returns from the empirical data for the market
option prices, C(K). Second, we build the returns PDF using for C(K) a
BS expression, CBS, with a volatility, σ = σ(K), in the form of the volatility
smile. In particular, we show that the condition of the absence for relative
minima in the PDF of returns, (or elimination of “bad” probabilities) leads to
the condition of “adiabaticity” for the volatility smile. The term “adiabatic”
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comes from statistical physics and is related to the slowness of the variation
of a parameter λ that specifies the properties of a system or an external field.
In fact from a physical point of view, it can be shown that if in a system one
introduces a small perturbation (λ) compared to the characteristics period
of the motion T , namely:

T
dλ

dt
� λ (5.5)

the rate of the change of the energy of the system will be also small [50].
In the same spirit we assume that our parameter λ is represented by the
implied volatility σ and we look for an adiabatic condition that leads to a
small perturbation of the implied Gaussian distribution that derives from
the BS model with constant volatility, eliminating the problem of negative
probabilities.

First of all, we derive an explicit expression for the PDF for the future
stock prices, P (ST ) and for logarithmic returns P (x). In Eq. (5.1) the PDF,
P (ST ), can be rather arbitrary but it is natural to assume that P (ST ) does
not depend on the strike price, K. According to Eq. (5.1), the option price,
C, is expressed explicitly through the strike price, K. Differentiating C in
Eq. (5.1) twice with respect to K, we have [51]

P (ST ) = erT
∂2C(K)

∂K2

∣∣∣∣
K=ST

. (5.6)

In Eq. (5.6), we indicate only the dependence C(K) in the option prices. In
particular, applying Eq. (5.6) to CBS given in Eq. (5.3) we derive a distribu-
tion function, PBS(ST ), which we present in the form

PBS(ST ) ≡ erT
∂2CBS(K)

∂K2

∣∣∣∣
K=ST

=
1√

2πσ2TST
×

× exp

(
−(ln(ST/S0)− (rT − σ2/2T ))2

2σ2T

)
.

(5.7)

Analogously, the distribution of returns for the Black-Schöles model is Gaus-
sian, as expected:

PBS(x) =
1√

2πσ2T
exp

[
−(x+ x0)2

2σ2T

]
, (5.8)

where x0 = σ2/2T .
We can try to consider the inverse problem substituting the dependence,

σ = σ(K), in Eq. (5.3) and evaluating the distribution of future stocks price
and returns, applying Eq. (5.6). After differentiation we get
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P (ST ) =
F (ST ;S0, r, T, σ)√

2πσ2TST
×

× exp

[
−(ln(ST/S0)− (rT − x0))2

2σ2T

]
,

(5.9)

where we defined

F (ST ;S0, r, T, σ) =
[
1 + ST

σ̇

σ
(rT − ln(ST/S0))

]2

−(σ̇σTST )2

4
+ σ̇σTST + S2

Tσσ̈T,

σ̇ =
∂σ

∂K

∣∣∣∣
K=ST

,

σ̈ =
∂2σ

∂K2

∣∣∣∣
K=ST

.

(5.10)

Obviously, we can get the expression for the distribution of returns by a
simple change of variable

x ≡ ln
(
K

S0

)∣∣∣∣
K=ST

− rT, (5.11)

so that

Pσ(x) =
1√

2πσ2T
exp

[
−(x+ x0)2

2σ2T

]
F (x;T, σ), (5.12)

where, in a similar way, we have defined:

F (x;T, σ) = (1− σ′

σ
x)2 − (σ′σT )2

4
+ σσ′′T,

σ′ =
∂σ

∂x
,

σ′′ =
∂2σ

∂x2
.

(5.13)

From Eq. (5.13) it is clear that if σ is constant Eq. (5.9-5.12) are the dis-
tributions for the standard Black-Schöles model; we will call them “zeroth-
approximation” distributions. If σ 6= const, the term F (x; r, T, σ) could
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“perturb” the relative zero approximation (Gaussian) giving rise to distri-
butions that cannot fit real data. As we will show here, it is possible to
get distributions with relative minima (not observed in real returns distribu-
tions) and, in the worst case, negative probability.
The negative probability aspect in option pricing theory is particularly rele-
vant because it is related to arbitrage opportunity, namely the opportunity
to get a risk free profit. In fact even if from a mathematical point of view
negative probabilities are impossible, from a financial perspective it can be
shown from arbitrage theorem [14] that there is a strong relation between
negative probability and arbitrage opportunity. A simple example of this re-
lation is given considering the discrete approximation of the second derivative
in Eq. (5.6):

∂2CBS(K)

∂K2
=
C(K)− 2C(K + ∆) + C(K + 2∆)

∆2
, (5.14)

where ∆ represents the discrete increment. At the numerator on the right
hand of the Eq. (5.14) we have an imaginary portfolio of three call options of
different strikes: K,K+∆, K+2∆. Considering that at the time to maturity
T the payoff of a call option is max(S(T )−K, 0), it is clear that at that time
the value of the portfolio is greater or equal to zero (See Fig. 5.2).

If for some t < T the implied distribution is negative as well the value of
the imaginary portfolio, we know for sure that this portfolio will increment
its value when it reaches the time to maturity passing from a negative value
to a positive one. This gain can be greater to the one allowed by the risk free
rate, so it is, in principle, a simple example of static arbitrage opportunity.

5.3 The Volatility Smile: Real Market Data

As already stressed in the previous Chapter, typically, traders on option
markets and practitioners consider the volatility as a parameter that can
be adjusted taking into account the inverse problem given by Eq. (5.3) and
the real price of call and put options. In this way a more reliable value of
the volatility (implied volatility) can be obtained and it can be used to price
more complex options for which analytical solutions are not available. In this
Chapter, we focus our attention on the volatility smile of foreign currency
options and we neglect any skew effects [52]. To perform our analysis we
consider the volatility smile as a function of the ∆ of the option (defined
by Eq. (5.15)), the time to maturity, T , and the currency considered. We
consider specific days, for which volatility is not affected by the skew effect,
and we use Bloomberg as data provider. In the BS model, the ∆ of a call
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Figure 5.2: We show the payoff of the imaginary portfolio (black) given by
Eq. (5.14) and its three call options (gree, blue, red). The value of the
portfolio at the maturity is always greater or equal to zero.

option is defined as

∆ =
∂C

∂ST
=

1√
2π

∫ d1

−∞
dz e−z

2/2. (5.15)

Inverting this relation it is possible to get an expression for x:

x = σ2/2T − σ
√
TΦ−1(∆), (5.16)

where Φ−1(x) is the inverse of the error function

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2 dt. (5.17)

In Fig. 5.3 we show an example of volatility smile in terms of our variables
and a suitable fit given by the function

σ(x) = g

[
1 + (χ− 1)

(x+ g2T/2)2

(x+ g2T/2)2 + n

]
, (5.18)

where g, χ, n are fitting parameters. In this case, g represents the minimum
of the volatility smile,

√
n is the half width at the half height, while g(χ− 1)
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Figure 5.3: Typical volatility smile and the relative fit obtained with
Eq. (5.18). The parameters of the fit are: g = 0.1758(5), χ = 1.20(9),
n = 0.00030(9). We get the real data using Bloomberg provider and they
refer to the AUDUSD currency with time to maturity T = 1/365 years.

represents the height of the smile. In particular χ is the ratio between the
limiting value of σ and g as x approaches ∞. In this way the variation of
σ is bounded between g and gχ. If we consider the volatility smile as an
effect due to the fat-tails of returns distribution, we could expect that the
minimum of the smile should be found in correspondence of the center of the
returns distribution, where there is no need to change the value of implied
volatility because of the fat tails effect. Considering also Eq. (5.8), it follows
that the average value of x is

〈x〉 = −σ
2T

2
, (5.19)

so one expects that the minimum of the implied volatility occurs at x =
−g2T/2 as required by our fitting function.

Repeating many times the interpolation procedure considering different
values for T and currencies (Table 5.1), we can determine typical parameters
that can fit a wide range of volatility smiles; in the following we will use this
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information to check our results. Let us notice that the following relation

Currency Maturities (days) Date
AUDUSD, EURCHF 1, 7, 14, 21, 30 21/10/2009
EURGBP, EURJPY 60, 90, 120, 180, 270 01/02/2010
EURUSD, GBPUSD 360, 540, 720, 1080 01/04/2010
USDCAD, USDCHF

Table 5.1: Dataset for Volatility Smile

between n, g and T holds

n ∝ Tg2, (5.20)

as shown in Fig. 5.4. This gives a scaling rule that can be used to determine
the range of n, fixing T and g. Our intuitive explanation of this equation
is really simple and it is related to the fact that the PDF of returns is not
Gaussian but exhibits fat/exponential tails. Indeed, while the term

√
n gives

the order of magnitude of the volatility amplitude, g
√
T represents the min-

imum of the implied volatility (which can be considered as the unperturbed
standard deviation of the PDF of returns). Therefore Eq. (5.20) suggests
that when x is about 2 − 3 times the standard deviation of the returns dis-
tribution (namely in the tails) the implied volatility should be increased to
fatten up the PDF of returns.

5.4 First Approximation of the Volatility Smile:

the Squared Well

In this Section we show qualitatively the reason why there is a relative mini-
mum in the returns distribution and why an adiabatic approach can describe
the problem of avoiding these “bad” probabilities. To keep the problem sim-
ple, we consider, as a first step, a volatility smile modelled by a squared well
defined as follows

σ(x) =

{
σ1 for |x| < x1

σ2 otherwise
, (5.21)

where σ2 > σ1 and x1 are positive constants. See Fig. 5.5a,b. The distri-
bution functions corresponding to two values of σi, i = 1, 2 are shown in
Fig. 5.5c,d. Indicating as ±xc

1 the abscissa of the intersections between the
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Figure 5.4: Relation between the parameters n, g, T . We fit 72 volatility
symmetrical smiles (Bloomberg) considering different currency (EURUSD,
AUDUSD, EURCHF, EURGBP, EURJPY, GBPJPY, GBPUSD, USDCAD,
USDCHF, USDJPY) and time to maturity (1 day, 1-3 weeks, 1, 2, 3, 4, 6,
9 months, 1, 1.5, 2, 3, 4, 5 years) with the function (5.18). The data are
from the days 21/10/2009 and 01/02/2010. We also show the best linear fit
ln(g2T ) = ln(n) + c, where c = −1.95(12).

two distributions, it is clear that a sufficient condition for avoiding spurious
minima is x1 < xc

1. A rough estimation of xc
1, ignoring the term x0, usually

small, is

xc
1 = σ1

√
T

√
2χ2 lnχ

χ2 − 1
, (5.22)

where χ = σ2/σ1. Therefore, a sufficient condition to avoid minima in the
PDF is to use, as a fitting function a square well depending on the parameters
x1, σ1, σ2, such that x1 < xc

1. Therefore, a standard fitting procedure of the
volatility smile with a square well, constrained by the condition x1 < xc

1

solves the problem of avoiding spurious minima, even if it is very rough.
If we consider a volatility smile with a continuous variation from σ1 to σ2,
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Figure 5.5: a,b) Discontinuous squared well as a fit of the volatility smile.
c,d) The corresponding PDF with (c) or without (d) spurious minima.

we can get, instead of a discontinuity, the onset of a relative minimum. The
latter can be avoided if the variation between σ1 and σ2 is slow enough so that
the connection between the two PDFs takes place keeping constant the sign
of the first derivative of the distribution during the whole transition. So there
will be a critical “speed” of the transition that will generate zero derivative
points which will not correspond to the maximum of the distribution. In this
case the variable related to the time is x1, while χ = σ2/σ1 can be identified
as a “distance”. To be more precise, one should consider that for x < xc

1,
Pσ1(x) ≥ Pσ2(x), so that the effective “time” should be: x1 − xc

1.
We will define an adiabatic transition as one whose passage from σ1 to

σ2 is sufficiently slow, so that relative minima in the distribution are not
generated. In this same spirit, we define the critical adiabatic parameter
χc(n, g, T ) as the minimum value of χ that generates a minimum in the
distribution, Eq. (5.12). This effect has been shown in Fig. (5.6), modelling
the volatility smile using Eq. (5.18), so that σ1 = g, σ2 = gχ. We fix the
parameters g, T and we vary n and χ, seeking relative minima in the PDF.
The lines in Fig. 5.6, obtained respectively at fixed T (a) and fixed g (b),
divide the plane of parameters into two regions: to the left of the lines the
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PDF has spurious minima, while this does not happen in the region to the
right of it. It is then clear that for a given set of fixed parameters (g, T ), there
is a relation between χ and n that allow one to obtain a PDF without minima
(minima are not observed in real data). The main goal of this paper is to
determine a simple relation that determines whether or not the parameters
of a volatility smile fit are consistent with real returns distribution and if
they could give a reliable option pricing.

5.5 Numerical and Theoretical Results

In this Section we show our numerical and theoretical results about the rela-
tion between the set of parameters n, g, T and the critical adiabatic parameter
χc. Using a numerical simulation, we kept fixed n, g, T and we continuously
increased the parameter χ until we found a zero-derivative point for some
x 6= −g2T/2. In this way we could determine numerically the critical χc. We
repeated this approach for a wide range of the parameters values, as shown
in Table 5.2, where we used the parameter ρ = n/g2T instead of n, due to

min max
g 0.03 0.5
ρ 2.5 10
T (years) 1/365 4

Table 5.2: Range of the parameters of the numerical simulations

the scaling relation (5.20). In order to obtain the relation χc = fT (n, g), we
use the following fit function

fT (n, g) = α

(
n

g2T

)β
− γ
√
Tg

(
n

g2T

)δ
. (5.23)

This has been obtained assuming that the value of the critical parameter
χc depends on the rescaled “time” of the transition (in our model given by
ρ). We also consider a further term γ

√
Tgρδ to take into account the time

correction, xc, as explained in Sec. (5.4). In this case we make explicit the
dependence of the time correction on T and g as suggested by σ2 in Eq. (5.22).
In Eq. (5.23), α, β, γ, δ are the fitting parameters whose values are given in
Table 5.3.

In Fig. 5.7 we show the result of our fit for a few selected values of g and
T .

The whole procedure can thus be summarized as follows :
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α 1.4373± 0.0002
β 0.2787± 0.0006
γ 0.1738± 0.0002
δ 0.4683± 0.0006

mean squared errors 1× 10−5

Table 5.3: Fitting parameters and relative errors.

• The real volatility smile, usually given for a fixed T can be fitted
by a function dependent on three parameters g, n, χ, as indicated in
Eq. (5.18) and the optimal values gopt, nopt, χopt are returned.

• The optimal values gopt, nopt are inserted in Eq. (5.23), with α, β, γ, δ
given in Table II and a critical χc = fT (nopt, gopt) obtained.

• If χopt < χc then we know that relative minima in the PDF do not
exist. Otherwise we should perform a fitting procedure to the volatility
smile using Eq. (5.18), constrained by χ ≤ χc.

An example of the previous procedure has been shown in Fig. 5.8 where
the PDF with unwanted minima and the “corrected ” one is shown together
with the corresponding fitting curve to the volatility smile. As one can see
the price to pay in order to get a smooth PDF is very small: the two fitting
curves for the real volatility smile are similar, but the PDF has, in the latter
case a more realistic behavior.

5.6 Conclusions

In this Chapter, we started from the pricing equation of the Black-Schöles
model for a European call and we analyzed a suitable generalization to in-
clude the volatility smile effect. Then we considered the inverse problem and
the relative returns distribution, Eq. (5.12), varying the typical parameters of
the volatility smile. We showed that, for some values of the parameters, it is
possible to get relative minima in the returns distribution (bad distribution)
that are never observed in real distributions. We demonstrated that bad dis-
tributions can be eliminated by requiring adiabatic constraints (intuitively
justified with the example of the squared well) on the volatility smile and
we gave a numerical formula to determine the value of the adiabatic critical
parameter, χc. In this way we provide an easy-to-use tool to determine if a
volatility smile fit is consistent with the general requirement for probabilities
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(P (x) ≥ 0) and if it can generate a suitable returns distribution. This kind of
problems are also discussed in [47, 48, 49] using a nonparametric approach.
In these cases volatility smiles are computed requiring some smoothness con-
ditions derived from arbitrage-free considerations. These algorithms have on
one side the advantage to be based on more general assumptions on volatility
smile and PDFs of return, while, on the other, the disadvantage to increase
the complexity of the problem and the computational time of the calibra-
tion. Moreover our approach is based on the explicit knowledge of the fitting
function of the volatility smile and the implied PDF of returns. In this way
it is possible to get a globally parametric restriction on the implied volatility
space that can be used straightforwardly in the fitting procedure, simplify-
ing the calibration procedure. Interestingly, this restriction is derived using
theoretical principles that come from physics.
A reliable estimate of the implied volatility has application in the risk man-
agement activities and in the pricing of exotic derivatives, where, in general,
the implied volatility is an input of more complex models.
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Figure 5.6: a) Critical ratio χc = σ2/σ1 as a function of n for fixed T = 0.5,
and different g as indicated in the legend. The arrow indicates the direction
of growing g. In the region to the right of the lines the PDF do not have
minima, while in the left hand region it has. b) The same as a) but for fixed
g = 0.1 and different T values. The arrow indicates the direction of growing
T .

77



−6 −4 −2 0 2 4

0.6

0.7

0.8

0.9

1

ln(n)

ln
(χ

)

 

 

g = 0.03, T = 1/252

g = 0.2, T = 1/252

g = 0.03, T= 1

g = 0.2, T = 1

Figure 5.7: Critical adiabatic parameter as a function of n for few selected
pairs of values of (g, T ) as indicated in the legend. The points are numerical
data, straight lines are the result of fitting procedure.
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Figure 5.8: a) Volatility smile as a function the returns x. Dots indicate real
data, red curve is the non adiabatic fit, while the blue one represents the
adiabatic (constrained) fit. b) PDF of returns for the two curves indicated
in a).
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Chapter 6

Do your Volatility Smiles take
care of extreme events?

6.1 Introduction

In the previous Chapter it is shown a new calibration procedure that can be
obtained using an adiabatic approach to avoid arbitrage opportunities. The
main idea is that there exists a parameter (represented by the implied volatil-
ity) that “perturbs slowly” the shape of probability density function (PDF)
of returns, so controlling this parameter is possible to avoid arbitrage oppor-
tunities. In this Chapter we extend this adiabatic approach and we study we
study how to characterize PDF of returns with a small perturbation of the
parameter σ to get a suitable description of actual data [53], coherent from
a theoretical point of view. In particular, in the following, it is shown the
importance of this calibration procedure from the risk management point of
view and its relevance in the risk estimation.

6.2 Volatility Smile: Analysis of Actual Mar-

ket Data

In this Section, as already done in the previous Chapter, we focus our atten-
tion on the volatility smile (VS) of foreign currency options and we neglect
the skew effect [52]. To perform our analysis we consider the same dataset
(Table 6.1) described in the previous Chapter and the same fitting function:

σ(x) = g

[
1 + (χ− 1)

(x+ g2T/2)2

(x+ g2T/2)2 + n

]
, (6.1)
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where g, χ, n are fitting parameters. As already mentioned, g represents the
minimum of the volatility smile,

√
n is the half width at the half height,

while g(χ− 1) represents the height of the smile. In particular χ is the ratio
between the limiting value of σ as x approaches ∞ and g . In this way the
variation of σ is bounded between g and gχ. In addiction we require the
the minimum of the implied volatility to correspond to the average value of
returns distribution x = −g2T/2 as required by our fitting function.

Repeating the fitting procedure considering the volatility smile for differ-
ent days, currencies and time to maturity T (Table 6.1),

Currency Maturities (days) Date
AUDUSD, EURCHF 1, 7, 14, 21, 30 21/10/2009
EURGBP, EURJPY 60, 90, 120, 180, 270 01/02/2010
EURUSD, GBPUSD 360, 540, 720, 1080 01/04/2010
USDCAD, USDCHF

Table 6.1: Dataset for VS

as already observed in [40], the following relation between n, T, g holds:

√
n = cg

√
T , (6.2)

where c = 2.65(28) is a fitting parameter.

6.3 Importance of VS in Risk Estimation

In the previous Chapter, we derived the analytical expression of the implied
distribution of financial returns, considering the dependence σ = σ(K):

Pσ(x) =
1√

2πσ2T
exp

[
−(x+ x0)2

2σ2T

]
F (x;T, σ), (6.3)
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where we have defined:

x ≡ ln
(
K
S0

)∣∣∣∣
K=ST

− rT,

F (x;T, σ) = (1− σ′

σ
x)2 − (σ′σT )2

4
+ σσ′′T,

σ′ =
∂σ

∂x
,

σ′′ =
∂2σ

∂x2
.

(6.4)

It is also helpful to define the implied complementary cumulative distribution
function (CCDF) of financial returns as:

E(x) = 1−
∫ x

−∞
Pσ(y)dy. (6.5)

Eq. (6.3) shows that there is a strong relation between V S and the PDF of
financial returns. From another point of view, Eq. (6.3) should be seen as a
warning that shows how similar fits of a VS could imply strong differences in
the implied returns of the PDF with obvious consequences, for example, on
the risk estimation. If one considers, for example, the two curves (red and
blue) in Fig. (6.1), it is clear that even if the two lines are close to the actual
data, the differences in the decay of the two distributions can be relevant
with important consequences for the risk estimation procedure.

One could consider, for example, the estimation of the risk using the
standard VAR (value-at-risk) measure [16], defined as

PVAR =
∫ −ΛV AR

−∞
P (x)dx, (6.6)

where ΛV AR represents our estimation of the maximum potential loss with
a fixed confidence level given by PVAR and P (x) is a generic function that
represents reuturns PDF. In this Chapter, we consider P (x) = Pσ(x) and
PVAR = 1% as a standard value for the confidence level; this means we can
expect a loss less than or equal to ΛV AR in the 99% of the cases.
For the distributions in Fig. (6.1), we get Λred

V AR = 5.23% and Λblue
V AR = 5.06%,

so the difference in the VAR estimation using the two different fits is about
3.27%. To have an idea of the order of magnitude of the error, one should
consider that for the flat smile (BS) in the figure, we get ΛBS

V AR = 4.8% and
the difference with the other VAR estimation is about 5%− 8%.
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Figure 6.1: Comparison of two suitable approximations for the VS (red and
blue) (a) and their CCDFs (b). As evident, even if the two curves can be
close to the actual data, the differences in the Value at Risk estimation can
be relevant. For comparison we also show the case of a completely flat smile
(black) and its Gaussian distribution.

From this example it is clear that there is some arbitrariness in the fitting
parameters of the VS function that can generate significant differences in the
description of the implied returns distribution, with important consequences,
for example, from the risk estimation point of view. So the importance of
getting a reliable fitting procedure consistent with the theoretical aspects, as
already stressed in [54].
In this framework, we focus our attention on the generalized BS model by
considering VS effect and we try to characterize the decay of the tails of
the implied distribution of returns as a function of the fitting parameters of
the VS, to get a suitable procedure for the smile fitting coherent with the
historical observed decay of the actual returns PDFs. As already shown,
a suitable characterization of the implied distributions decay can have a
fundamental importance, for example, for the risk estimation.

6.4 Relation between VS and the tails of PDF

of financial returns

In this Section, we want to establish a simple relation between the parameters
of the fitting function Eq. (6.1) and the decay of the tails of the implied
distribution of returns, Eq. (6.3). To better understand what we mean for
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Figure 6.2: a) We show the transition region of the VS R and b) the expo-
nential decay approximation for the CCDF of returns in the same region.

“decay of the tails”, we need to analyze the structure of the Eqs.(6.1, 6.3).
First of all, it is important to notice that σ(x) is a bounded function

g ≤ σ(x) ≤ gχ.

The whole process can be seen as a continuous transition from the a minimum
value g to a limit value gχ reached for large enough returns, x. From the
PDF point of view, we can think of the VS as a continuous transition between
two Gaussian distributions with different standard deviations, g and gχ. So,
due to our choice of the VS fitting function, we already know that for large x
values the tails of the implied distribution behaves as a Gaussian distribution.
Nonetheless, there is a region of x, namely the region of the transition, not
described by a Gaussian, since in this case σ is not constant. In Section
6.2 we have already discussed the order of magnitude of x for this region:
x ∼ √n = 2.6g

√
T which corresponds to the tail of the distribution. So, even

if we know that for really large x the implied distribution is a Gaussian, the
region that can be related to the tails of actual returns distributions is the
region of transition and this is the region we are going to study in details.
Looking at a typical implied distribution of returns on a semilog plot it seems
reasonable to approximate the region of the transition by a straight line, as
shown in Fig. (6.2).

This approximation is equivalent to assume that the tails distributions
of financial returns have an exponential decay, exp (−µ|x|), where µ is the
factor that characterize the tail. This fact finds confirmation in our real data
analysis and it is coherent with results shown in [39].
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The main goal of this Section is to establish a relation between the parameter
of decay, µ, and the fitting parameters of the smile, g, χ, n. The procedure
we consider is straightforward and it is described in the following.
First of all, we fixed the range of the parameters repeating many times the
fitting procedure and considering the data set described in Section 6.2. In
Table 6.2, we show the range of the parameters that we used to perform our
simulations (we used the parameter ρ = n/(g2T ) instead of n due to the
scaling relation Eq. (6.2)).

min max
g 0.03 0.5
ρ 2.5 10
T (days) 1 1080
χ 1.01 3

Table 6.2: Range of the parameters of the numerical simulations.

Using this range of parameters, we consider the implied CCDF of returns,
derived from Eq. (6.3), and we fit the region of transition considering an
exponential decay, exp (−µ|x|), where µ is the fitting parameter. In this way
we get for every set of the parameters in the Table 6.2 the corresponding
decay parameter, µ. We define the region of transition as R = {x|√n/2 ≤
x ≤ √n}; in this way, if A = gχ+ g represents the height of the VS, we are
considering the region from the 20% to the 50% of the total height.
Our goal is to find a relation between µ and the three parameters of the VS.
First of all, let us fix χ = 1, so that the VS is completely flat. In this case
we know that the distribution is Gaussian, F (x, T, σ) = 1 and the parameter
µ should be thought of an approximation of an exponential decay. In this
case, µ can be easily estimated as:

µ =
∆y

∆x
=

ln(P(
√
n)− ln(P(

√
n/2))√

n/2
, (6.7)

where P is the CCDF of P defined in Eq. (6.3). Performing some calculations
we get:

µ1 =
2

g
√
T
f(ρ), (6.8)
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where, the function f(ρ), is defined by,

f(ρ) =
1√
ρ

ln

1− erf(1
2

√
ρ
2
)

1− erf(
√

ρ
2
)

 , (6.9)

and has the following asymptotic expansion:

f(ρ) '
{ √

ρ if ρ 7−→ +∞
1/2
√
π if ρ 7−→ 0.

(6.10)

Let us now discuss the case χ 6= 1: in the light of the adiabatic interpretation
presented in [40], we expect that on increasing χ, the PDF will present, soon
or later a minimum. This means that the PDF should be flatter than before,
so that µ should decrease. This is coherent with our physical interpretation
of the VS as a small perturbation of a theoretical system represented by a
Gaussian distribution. Increasing the order of magnitude of the perturbation,
here represented by the parameter χ, we get a PDF of returns increasingly
different from the Gaussian until the adiabatic limit of the perturbation is
violated. After that point the system cannot be described by a perturbative
approach.

For simplicity, let us assume the simple inverse proportionality:

µχ =
µ1

χ
=

2

χg
√
T
f(ρ). (6.11)

Relation (6.11) has been checked in Fig. (6.3) where we plot the real param-
eter µ obtained by our simulation vs the parameter µχ given by (6.11): the
agreement is within a 2% of mean squared error.

6.5 A New Recipe to Fit the Volatility Smile

In this Section we show how to include the information given by the for-
mula (6.11) on the decay of the CCDF of the financial returns to get a
suitable fit of the VS coherent from theoretical point of view. Firstly, to do
this we need to analyze what is the ordinary interpretation of the implied
volatility of the BS model and its relation with historical volatility. Implied
volatility is usually interpreted as the future volatility of the market and rep-
resents the traders and practitioners vision. From this point of view historical
volatility can be interpreted as a peculiar realization of this vision at some
particular time period. So, in general, there will be a mismatch between
historical volatility and implied volatility and this fact is reflected on histor-
ical and implied PDF of returns. Therefore, to use properly the information

86



Figure 6.3: We show the relation between the decay parameter µ, given by
numerical simulation and the estimation given by Eq. (6.11). As reference,
we also show the (dotted) line µ = µχ.

on the decay of the historical distribution, we need at first the scaling rela-
tion between the volatility and the decay of the distribution. This relation
can be estimated from historical series of currencies (AUDUSD, EURCHF,
EURGBP, EURJPY, EURUSD, GBPUSD, USDCAD, USDCHF, time pe-
riod 2001-2010) using the following procedure. We consider different time
lag (T = 1, 10, 100 days) and build different historical series of returns. We
divide each series into subgroups of at least 300 elements and we evaluated
the standard deviation of each group. To evaluate the decay we consider
the CCDF of returns using the procedure described in [16] and we fit the
tail decay using a straight line in a semi log plot. We repeat this procedure
for any subgroup and for any currency to make explicit the relation between
µH and σH . In Fig. (6.4) we show our results superimposed with a suitable
fitting function

σH =
C1

µH
, (6.12)

where C1 = 1.6 ± 0.5 is a fitting parameter. Let us observe that this is in
quite good agreement with an exponential PDF for returns, since in that case
one would have σH = 2/µH .

Eq. (6.12) makes explicit the relation between µH and σH (their product
should be a constant ≈ 1.6) and gives us the opportunity to exploit the
information on the historical decay of the PDF of financial returns to get a
suitable fit of the VS. The procedure can be summarized as follow:
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Figure 6.4: Relation (independent on the time lag T ) between µH and σH
considering three different time lag for the returns (T = 1, 10, 100). We also
show the best linear fit ln(µH) = ln(σH) + ln(C1), where C1 = 1.6± 0.5.

• Using the historical price series we determine the decay and the stan-
dard deviation of the financial returns, respectively: µH , σH .

• Identifying the product µHσH with g
√
Tµχ and using our estimation,

Eq. (6.11), we can obtain one of three fitting parameters, e.g. χ, de-
scribing the VS, as a function of the other two (g, n) :

χ =
2

µHσH
f(n/g2T ). (6.13)

Following this approach, we reduce the number of free parameters for
the smile fitting, fixing implicitly the right decay of the PDF of returns. As
already stressed in Section 6.3, the need of getting a suitable fit for the VS
coherent also with the theoretical aspects of the model, is really important
in many Risk Management activities and could lead to significant differences
in risk estimation.

For example in Fig. (6.5), we compare the PDF of returns obtained by
a standard fitting procedure of VS (unconditional fit) with the one obtained
following the procedure described before (conditional fit). As evident, even
if the two fitting procedures give similar curve for the VS, the effect on the
VAR estimation are of the order of 10%.
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Figure 6.5: We compare unconditional fit of the VS (a) and the implied
PDF (b) for a particular dataset (EURJPY, T = 30 days, downloaded on
21/10/2009 15:37) with the conditional one.

6.6 Conclusions

We started from the pricing equation of the Black-Schöles model for an Eu-
ropean call and we considered the effect of the VS correction on the implied
PDF. Our approach comes from statistical physics and it is related to the
adiabatic interpretation in [40]. We showed that similar fits of a VS could
imply strong differences on the implied returns PDF with obvious conse-
quences on the risk estimation. To obtain a stronger fitting procedure for
the VS that can be compatible with the theoretical aspects of the model
we first derived a relation between the exponential decay of the CCDF of
returns and the parameters of the fitting function of the smile. Then, we
exploit this relation to get a new fitting procedure that can be compatible
with the historical data. An interesting case is shown in Fig. (6.6) where we
compare the PDF of returns obtained by a standard fitting procedure of VS
(unconditional fit) with the one obtained following the procedure described
before (conditional fit). In this case the time to maturity is large, T = 2520,
so we cannot get σH and µH directly from the dataset but we extrapolate
their values considering the relation µ ∝ 1/

√
T and σ ∝

√
T . As evident,

the unconditional fit generates an implied PDF with a relative minima never
observed in actual data [40], on the contrary the conditional fit generates a
PDF more “regular” that seems suitable for the description of actual PDF
of returns. The price to pay in order to get a smooth PDF is related to the
error for the smile fitting: the horizontal amplitude of the conditional fit is
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Figure 6.6: We compare unconditional fit of the volatility smile (a) and the
implied PDF (b) for a particular dataset (EURJPY, T = 2520 days, down-
loaded on 21/10/2009 15:37) with the conditional one. To fix the historical
decay parameters, µH , σH , we find the values from actual data considering
the relation µ ∝ 1/

√
T (Eq. 6.12) and the standard scaling σ ∝

√
T . As

evident, the PDF of conditional procedure does not present spurious minima
and gives a distribution suitable to describe actual data.

higher than the one required to get a suitable fit. This can be explained
assuming that market makers overreact to extreme events when the time to
maturity is large, estimating the volatility in a way that is not compatible
with historical data. Besides, conditional fit is compatible with the skewness
reduction claimed in [54] to get a smile fitting more suitable to the historical
data.
In conclusion we provide a new tool for the VS fitting that can be used to
get a more coherent estimation of the parameters of fitting function, com-
patible with historical series and theoretical aspects of the model. A reliable
estimate of the implied volatility has application in the risk management ac-
tivities and in the pricing of exotic derivatives, where, in general, the implied
volatility is an input of more complex models.
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Chapter 7

Conclusions

In this work we showed how to use concepts that come from physics to get
a suitable description of financial world, in accordance with the main ideas
of a new interdisciplinary field: Econophysics. In particular, after a wide in-
troduction about what is Econophysics and which are the main motivations
that make this subject relevant in the economic world, we introduced the
main mathematical instruments useful to treat the main financial problems,
namely the Stochastic Calculus and the Probability Theory. In doing this,
we also showed how these instruments can be used to describe actual data
that come from financial markets.
Then, we focus our attention on an aspect that is peculiar of option deriva-
tives: the implied volatility of the Black-Schöles pricing model and the volatil-
ity smile effect. In particular we gave a statistical description of this effect
and an intuitive and quantitative interpretation of this phenomenon. Finally,
we focus our attention on the problem of getting a suitable fit of the volatility
smile, coherent to the theoretical hypothesis of the underling model. To do
this, we proposed a new interpretation of the volatility smile effect, start-
ing from the physical concept of adiabatic transition, making a parallelism
between a physical system and a financial one. So, starting from a physical
interpretation of the problem, we could derive some adiabatic conditions to
avoid arbitrage opportunities in the pricing of option derivatives. The use
of these conditions was summed up in an algorithm that can be applied in
practical situations. Then, we further extended this methodology to char-
acterize the implied probability density function of financial returns and in
particular its tails. We showed how this characterization can be relevant in
the risk estimation activities and, how to get a fitting procedure theoreti-
cally coherent with the Black-Schöles model and the historical exponential
decay of the implied PDF. In conclusion, by this work we showed how phys-
ical methodology can be applied to finance and how this approach can be
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relevant to get practical and concrete results.
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[38] S. Mikhailov, U. Nögel, HestonÕs Stochastic Volatility Model: Imple-
mentation, Calibration, and some Extensions, Wilmott, 74-79 (2003).

[39] A. A. Dragulesco and V. M. Yakovenko, Probability distribution of re-
turns in the Heston model with stochastic volatility, Quantitative Fi-
nance, 2, 443-453 (2002).

[40] L. Spadafora, G. B. Berman, F. Borgonovi, Adiabaticity Conditions for
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