
Minimizing Disclosure of Private Information

in Credential-Based Interactions: A Graph-Based Approach

Claudio A. Ardagna∗, Sabrina De Capitani di Vimercati∗, Sara Foresti∗, Stefano Paraboschi†, Pierangela Samarati∗
∗DTI - Università degli Studi di Milano, 26013 Crema - Italy

†DIIMM - Università degli Studi di Bergamo, 24044 Dalmine - Italy
Email: firstname.lastname@unimi.it, parabosc@unibg.it

Abstract—We address the problem of enabling
clients to regulate disclosure of their credentials and
properties when interacting with servers in open
scenarios. We provide a means for clients to specify
the sensitivity of information in their portfolio at
a fine-grain level and to determine the credentials
and properties to disclose to satisfy a server request
while minimizing the sensitivity of the information
disclosed. Exploiting a graph modeling of the prob-
lem, we develop a heuristic approach for determining
a disclosure minimizing released information, that
offers execution times compatible with the require-
ments of interactive access to Web resources.

Keywords-privacy, portfolio management, creden-
tials.

I. Introduction

The development in the past years of the Internet
and associated Web technology has produced a large
impact on society. Still, technology experts and final
users perceive crucial open problems in the area of secu-
rity and privacy. A specific goal receiving considerable
attention is the design of a Web infrastructure offering
protection against adversaries interested in improperly
acquiring user access privileges. At the same time, users
want to easily access all the resources available to them,
without the need to remember passwords or manage
a specific account for each of the systems they access.
Cryptographic credentials offer a great potential for the
satisfaction of the above requirements. Using creden-
tials it is possible to verify that the counterpart on
the other side of the Internet communication channel
exhibits given properties, proved in a robust way using
a simple challenge/response interaction. Today, the most
significant use of credentials is represented by X.509
certificates exhibited by servers to prove that they are
the legitimate owners of a given domain.

The use of credentials to regulate interactions in open
systems has received considerable attention in the last
ten years. A large number of approaches (e.g., [3], [11],

This work was supported in part by the EU within the 7FP
project “PrimeLife”under grant agreement 216483 and by the Ital-
ian Ministry of Research within the PRIN 2008 project“PEPPER”
(2008SY2PH4).

[15]) have been developed proposing novel policy lan-
guages and engines to specify and enforce access control
regulations in the presence of requests coming from
clients not known a priori and to communicate them the
requirements they need to satisfy. Most proposals have
typically focused on the server side of the problem of
supporting interactions, typically assuming that at the
client side a symmetric approach could be applied for
specifying possible regulations on the release of informa-
tion in the client portfolio.

The support for client side solutions to regulate cre-
dentials release is crucial for a wide-scale deployment of
credentials. However, access control-like specifications do
not completely fit the possible protection requirements
at the client side, where users may need a way to specify
preferences on the information to disclose based on the
sensitivity of such information [6], [10], [14]. In this
paper, we focus on this aspect and provide a way for
users to specify privacy settings on their portfolio for
regulating information release.

The paper contribution is multifold. First, after a
recollection of basic concepts (Section II), we introduce
novel concepts in the modeling of the client portfolio,
which also consider emerging paradigms for producing
and presenting credentials, and illustrate a graph-based
modeling of such concepts (Section III) and of the server
request (Section IV). Second, we provide a way for the
client to specify at a fine-grain level the sensitivity of all
the components in its portfolio. Our modeling of sensitiv-
ity is very general and can accommodate different ways
in which sensitivity could be specified, also capturing
sensitive associations of client’s properties (Section V).
Third, we characterize the disclosure of information in a
portfolio in terms of the graphical modeling and repre-
sent the problem of determining a disclosure satisfying
the request while minimizing information as the problem
of determining a minimum isomorphic graph matching
(Section VI). Finally, we describe our heuristic, exploit-
ing the graphical representation of the model compo-
nents, for computing a solution to the problem and
present experimental results that confirm the approach
is applicable to interactive scenarios (Section VII).

IEEE International Conference on Social Computing / IEEE International Conference on Privacy, Security, Risk and Trust

978-0-7695-4211-9/10 $26.00 © 2010 IEEE

DOI 10.1109/SocialCom.2010.115

743



II. Basic concepts

The information that a client can provide to acquire
services forms a portfolio that includes properties in
certificates, signed by third parties, as well as (uncer-
tified) properties that the client can utter. Like in the
literature [3], we refer to certificates as credentials and
to uncertified information as declarations. Credentials
are organized by type, where the type of a credential
identifies the properties that the credential certifies.
Abstractions can be defined over the credential types,
possibly introducing a hierarchy of types. Formally, a
hierarchy H of credential types is a pair (T ,�isa), where
T is the set of all types, and �isa is a partial order
relationship over T . Given two types t i and tj in T ,
t i�isatj if tj is an abstraction of t i. For instance, id is
an abstraction of credential types photo-id and student-
id (i.e., photo-id�isaid and student-id�isaid).

Each credential certifies a set of properties and is
characterized by its type, unique identifier, and issuer.

Our modeling of the portfolio includes all the concepts
described above, and distinguishes types from instances,
and credentials from declarations.

• Credential types vs instances. Our model allows
referring to credentials at the granularity of instance
or type. For example, while a client can refer to
credential types or their specific instances, which it
knows (e.g., a specific identity card), the requests
by the server will typically be expressed in terms of
credential types (e.g., photo-id or id). Note that a
portfolio may contain different credential instances
of the same type. Also, while directly belonging to
a single type, a credential indirectly belongs to all
the abstractions of such a type.

• Credentials vs declarations. We explicitly model
declarations allowing the inclusion in the client
portfolio of properties that do not belong to any
credential. In addition, we assume that any property
appearing in credentials can be uttered in an uncer-
tified way by the client, and therefore can be stated
as a declaration. In our modeling, we conveniently
represent declarations as a self-signed credential,
whose identifier is decl , containing all the properties
of the portfolio.

III. Client portfolio

We enrich the client portfolio with novel concepts,
aiming at providing ability to the client to organize and
manage its portfolio at a fine-grain level for regulating
disclosure of credentials and properties.

• Credential-dependent vs credential-independent
properties. Credentials certify some properties
of the client. We distinguish between properties
associated uniquely with the client, regardless

of the credentials that certify them (credential-
independent properties), and properties associated
with a specific credential of the client (credential-
dependent properties). For instance, date of birth
is a property of the user, and possible occurrences
of the property in different credentials refer all
to the same piece of information. In other words,
the value of credential-independent properties
depends only on the credential’s owner, and not
on the specific credential certifying the value. By
contrast, a property such as credit card number
is specific of some given credentials of the user.
Different instances of the credit card credential
type will all refer to their specific credit card
number, and therefore to a different piece of
information. Credential-dependent properties
might have different occurrences, depending on the
existence of different credentials including them.

• Atomic vs non-atomic credentials. The most com-
mon kind of credentials used today in distributed
systems is represented by X.509 certificates. One of
the limitations of X.509 certificates is their rigidity:
the signature is computed on the hash of the content
of the credential, and the use of the credential
requires to access its complete representation. In
other words, it is not possible to selectively disclose
only part of the credential content. Instead, modern
credential technology (e.g., UProve and Idemix [4],
[5]) supports the release of individual properties
extracted from the credential. Our model includes
this aspect of modern credential technology and
classify credentials as atomic or non-atomic. Atomic
credentials can only be released as a whole, that
is, their release entails the disclosure of all the
properties they certify. Properties in non-atomic
credentials can instead be selectively released. The
self-signed credential decl is clearly non-atomic.

• Information sensitivity . Previous works have put
forward the idea of a preference relationship among
credentials/properties defining that release of some
information is to be preferred over release of other
information. We provide a way for the user to
specify the sensitivity of her credentials, properties,
and associations among properties, to the aim of
minimizing the ‘amount’ of information released for
acquiring a service. We discuss portfolio sensitivity
in Section V.

We model the client portfolio as a portfolio graph,
defined as follows.

Definition III.1 (Portfolio Graph). Let C and P be
a set of credentials and properties, respectively, in a
client portfolio. The portfolio graph G(VC∪VP ,ECP ) is
a bipartite graph having a vertex for each credential in

744



Figure 1. An example of a portfolio graph

C and each property in P, and an edge connecting each
credential to the properties contained in it.

The label of a vertex representing a property is of the
form p :value, where p is the property name and value
its value. The label of a vertex representing a credential
is of the form c :type, where c is the credential identifier
and type its type. For simplicity, in the following, we
will use c (p , resp.) to refer to either the credential
(property, resp.) or the label c :type (p :value, resp.) of the
corresponding vertex. We will also denote with type(c)
the type of credential c . Note that, in the portfolio
graph, each credential-independent property is repre-
sented as a single vertex (connected to all credentials
in which it is contained). Each credential-dependent
property is instead represented with several vertices (one
for each credential where it appears, i.e., each of its
instantiations).

In the graphical representation, credential vertices are
represented as rectangles and property vertices are rep-
resented as ovals. Also, we distinguish atomic from non-
atomic credentials by attaching all the edges incident to
an atomic credential to a black semicircle.

Example III.1. Figure 1 illustrates an example of
a portfolio graph, including credentials myIdCard and
myPassport (both of type photo-id), myStudentId (of
type student-id), and myVISA and myAMEX (both of
type cc). The only non-atomic credential is myPassport.
Properties Name, DoB, Address, SchoolYear, and Job are
credential-independent, while CCNumber and CCExpDate

are credential-dependent (having a different occurrence
for each credit card).

IV. Server request

The request of the server is modeled as a boolean
formula R, which describes the set of properties (and
the way in which they should be certified) that the
client needs to disclose to acquire a given service. For
simplicity and without loss of generality, we assume the
request R to be expressed as the disjunction of simple
requests, that is, R=r1 ∨ . . .∨ r i. Each simple request r
is the conjunction of terms of the form type.{p1,. . . ,pm},
where each term prescribes the disclosure of the set
{p1,. . . ,pm} of properties from a single credential c in
the client portfolio, such that type(c)�isatype. Different
terms must be certified by different credentials.

Example IV.1. A request R = r1 ∨ r2, with
r1=

(

id.{Name,DoB} ∧ cc.{Name,CCNumber,CCExpDate} ∧
∗.{SchoolYear,Job}

)

and r2 =
(

id.{Name,DoB,Address}
∧ cc.{Name,CCNumber} ∧ cc.{Name,CCNumber}

)

can be
satisfied by two different ways. The first possibility dis-
closes: i) properties Name and DoB from a credential of
type id; ii) a credit card; and iii) properties SchoolYear

and Job from any credential (denoted with ∗). The second
possibility discloses: i) properties Name, DoB, and Address

from a credential of type id; and ii) properties Name and
CCNumber from two different credit cards.

A request R can be graphically represented as a set
of request graphs. Each request graph models a simple
request r , where, for each term type.{p1,. . . ,pm}, there
is a vertex with label type, a vertex for each property,
whose label is the property name, and an edge connect-
ing each term with the properties it requires. A request
graph is formally defined as follows.

Definition IV.1 (Request Graph). Let r be a
simple request in a request R. The request graph
Gr (V r

T∪V r

P ,E r

TP ) of r is a bipartite graph having a
vertex for each term and each property, and an edge
connecting each term to the properties contained in it.

In the following, when clear from the context, we will
call request either a request R or a simple request r in
R. Figure 2 illustrates the request graphs for the request
R described in Example IV.1.

V. Portfolio sensitivity

The major motivation of our work is to allow the client
to automatically select which properties/credentials to
release for acquiring access to a given service, while
minimizing disclosure of sensitive information. In fact,
when the server allows choices on the properties or
credentials to present, the user may prefer to disclose
some over others. For instance, one may prefer to release
her address instead of her school year, and either of the
two instead of her credit card number.

745



(a) Gr1 (b) Gr2

Figure 2. An example of request graphs

With a very general setting, we assume privacy re-
quirements on a portfolio to be specified in terms of the
sensitivity labels of the portfolio components.1 The only
assumptions we make on such labels are the existence
of a (partial) order relationship over them and the
definition of a composition operator that determines the
label resulting from the combination of two labels.

Sensitivity labels are then defined as follows.

Definition V.1 (Sensitivity Labels). Sensitivity labels Λ
are a set of values in a partial order relationship � and
over which an operator ⊕ is defined such that, for any
two labels λi and λj in Λ, λi ⊕λj � λi and λi ⊕λj � λj.

The condition on operator ⊕ in the definition requires
the operator to be monotonic; intuitively, combining
two sensitivity labels (i.e., merging information) cannot
decrease sensitivity.

It is easy to see that our generic definition of sensitiv-
ity labels permits to capture different ways of expressing
preferences, including the kinds of preferences put for-
ward in other works, as a very specific case. For instance,
sensitivity labels could be classical multilevel security
classifications (e.g., Top Secret, Secret, Confidential,
Unclassified, possibly with associated categories) with
the ⊕ operator corresponding to the least upper bound .
Also, they could be positive integer values, where the ⊕
operator can be either the sum (i.e., λi ⊕ λj = λi + λj)
and therefore reflect an additive property , or the max-
imum (i.e., λi ⊕ λj=max (λi, λj)). These examples are
just two specific instantiations of sensitivity labels, and
our modeling accommodates a variety of ways in which
preferences over the credentials and properties to release

1A client may want to specify different preferences for different
servers. Such a situation can be modeled in our approach by
considering different labels depending on the server requesting the
release; the approach would then work on the specific instance
of the labels determined by the server with whom the client is
interacting.

can be specified and composed.
In our model, sensitivity labels can be specified at

different granularities: properties, credentials, and sets
of properties. Let us discuss the semantics of the labeling
function λ that associates a sensitivity label with a
property p , a credential c , or a set of properties a .

• λ(p). Defines the sensitivity of property p individ-
ually taken. It reflects how much the user considers
the property sensitive and therefore how much she
values its release.

• λ(c). Defines the sensitivity of the existence of
credential c . The specification of sensitivity labels
for all the properties of a credential is not sufficient
to express the sensitivity of a credential. In fact,
the existence of a credential itself may bear some
information that the client considers sensitive. For
instance, a dialysis certificate may include only
properties Name and Address, but the existence of
the certificate itself has an additional sensitivity
that goes beyond the demographic information of
the user. Also, in the case of a non-atomic cre-
dential, λ(c) reflects the sensitivity assigned to the
existence of the credential regardless of the release
of the properties within it.

• λ(a ). Defines the sensitivity of an association a
among a set of properties {p1,. . . ,pn}, whose joint
release carries more information than the individ-
ual release of each property [7]. λ(a ) is the ad-
ditional sensitivity over the combination of the
labels of the properties composing it. The sensi-
tivity of the disclosure of {p1,. . . ,pn} is therefore
λ(a )⊕λ(p

1
)⊕. . .⊕λ(pn). For instance, the associ-

ation between a name and the last four digits of
a social security number can be considered more
sensitive than the ⊕ composition of the sensitivity
labels of the two. This additional sensitivity is
expressed in our model by defining the association
between the properties and expressing a sensitivity
label for the association.

In our model, we explicitly represent sensitive associa-
tions by extending the portfolio graph to be a tripartite
graph, where the third set of vertices is represented
by associations (a vertex for each sensitive association)
with edges connecting each association with the involved
properties.

Definition V.2 (Portfolio Graph – Extended). Let
G(VC∪VP ,ECP ) be a portfolio graph and A be a set of
sensitive associations over P. A portfolio graph extended
by sensitive associations G(VC∪VP∪VA,ECP∪EAP ,λ) is
a tripartite labeled graph, having an additional vertex for
each sensitive association in A, and an additional edge
connecting each sensitive association to the properties
contained in it. The labeling function λ assigns a label

746



Figure 3. An example of a portfolio graph, extended with sensitive
associations and sensitivity labels

λ(v ) to each vertex v , corresponding to the sensitivity of
the information represented by the vertex.

Example V.1. Figure 3 illustrates an example of a
portfolio graph, obtained by extending the portfolio in
Figure 1. For concreteness and simplicity, sensitivity
labels are integer values and are composed using the sum
operator. They are indicated next to the vertices. The
portfolio specifies four sensitive associations: a1) date
of birth and address (since they could work as quasi-
identifier [13], their association is more sensitive than the
simple combination of their sensitivity); a2) name, date
of birth, and school year (as the association might disclose
that the client is a mature student); a3) name, credit card
number, and expiration date of myVISA (since they could
be used for unauthorized payments); a4) similar to a3 but
with less sensitivity, since for credential myAMEX the
risk of unauthorized charges is considered lower.

VI. Disclosure modeling

A disclosure represents a subset of the client portfolio,
which is communicated to the server for satisfying a
request. A disclosure can be modeled as a subgraph of
the portfolio graph, called disclosure graph. Intuitively,
this subgraph includes all the vertices and edges cor-
responding to credentials, properties, and associations
that are exposed by the disclosure. Note that the dis-
closure to the server of a subset of the properties in the
portfolio must also imply the release of a set of creden-
tials certifying them, additional properties included in
atomic credentials, and sensitive associations. Therefore,
while each disclosure is a subgraph, the vice versa is
not necessarily true (i.e., not all subgraphs represent
a disclosure). As a matter of fact, a subgraph of the

portfolio graph can be considered a disclosure graph only
if it correctly represents a possible release of information.
In particular, in a disclosure: 1) each disclosed property
must be certified by (at least) a credential, that is,
credential existence is also disclosed (certifiability); 2)
if a property of an atomic credential is disclosed, all
its properties are disclosed (atomicity); 3) if all prop-
erties composing a sensitive association are disclosed,
the sensitive association must be considered disclosed
(association exposure). These properties are captured by
the following definition of disclosure graph.

Definition VI.1 (Disclosure Graph). Let
G(VC∪VP∪VA,ECP∪EAP ,λ) be a portfolio graph.
A subgraph Gd(V d

C∪V d
P∪V d

A,Ed
CP∪Ed

AP ,λ) of G
where V d

C⊆VC , V d
P⊆VP , V d

A⊆VA, Ed
CP⊆ECP , and

Ed
AP⊆EAP is a disclosure graph iff the following

properties hold:

1) vp∈V d
P =⇒ ∃ vc∈V d

C s.t. (vc,vp)∈Ed
CP ;

2) vc∈V d
C s.t. credential vc is atomic =⇒ ∀vp∈VP :

(vc,vp)∈ECP , vp∈V d
P and (vc,vp)∈Ed

CP ;
3) va∈VA s.t. ∀(va,vp)∈EAP , vp∈V d

P =⇒ va∈V d
A

and (va,vp)∈Ed
AP .

Condition 1 states that if a property vertex belongs
to the disclosure graph, then at least one of its adjacent
credential vertices belongs to the graph. Condition 2
states that if a credential vertex representing an atomic
credential belongs to the disclosure graph, then all the
vertices representing its properties, and the edges mod-
eling the containment relationship of the properties in
the atomic credential also belong to the graph. Con-
dition 3 states that if all the vertices representing the
properties composing a sensitive association belong to
the disclosure graph, then also the vertex representing
the association and the edges between the association
and the involved properties belong to the graph.

The sensitivity of a disclosure can be computed by
composing the sensitivity labels of the vertices in the
corresponding disclosure graph. Given a disclosure graph
Gd(V d

C∪V d
P∪V d

A,Ed
CP∪Ed

AP ,λ) and a monotonic com-
position operator ⊕ for λ, the sensitivity λ(Gd) of
the disclosure graph is λ(Gd) =

⊕

v
λ(v ), with v in

V d
C∪V d

P∪V d
A.

Example VI.1. Figure 4 represents an example
of a disclosure graph Gd, which is a subgraph of
the portfolio graph in Figure 3. The vertices and
edges in the portfolio graph that also belong to the
disclosure graph are represented with a bold line in
the figure. The sensitivity of the disclosure λ(Gd)
is computed as the composition of the sensitivity
labels of bold vertices, that is, λ(Name:JaneDoe)
⊕ λ(DoB:1975/01/15) ⊕ λ(Address:NewYork) ⊕
λ(SchoolYear:2) ⊕ λ(myVISA:cc/CCNumber:4565. . . )

747



Figure 4. An example of a disclosure graph

⊕ λ(myVISA:cc/CCExpDate:11/12) ⊕ λ(Job:Clerk)
⊕ λ(myIdCard:photo-id) ⊕ λ(myVISA:cc) ⊕
λ(decl:declaration) ⊕ λ(a1) ⊕ λ(a2) ⊕ λ(a3)=129.

Intuitively, a request R is satisfied by a disclosure if at
least one of the simple requests composing it is satisfied.
A simple request r is satisfied by a disclosure that
includes, for each term type.{p1,. . . ,pm} in r , a creden-
tial c certifying {p1,. . . ,pm} such that type(c)�isatype.
Graphically, a disclosure, represented by a disclosure
graph Gd, satisfies a simple request, represented by a
request graph Gr , if there exists a subgraph in Gd

that is isomorphic to Gr , as formalized by the following
definition.

Definition VI.2 (Satisfying Disclosure). Let Gd be a
disclosure graph and Gr (V r

T∪V r

P ,E r

TP ) be a request
graph. Gd satisfies Gr , denoted Gd|=Gr , iff there exists
a sub-graph Gd′

(V d′

C∪V d′

P ,Ed′

CP ) of Gd and an isomor-
phism f :V r

T∪V r

P→V d′

C∪V d′

P , such that the following
conditions hold:

1) ∀v t∈V r

T , ∃f(v t)∈V d′

C ∧ type(f(v t))�isav t;
2) ∀vp∈V r

P , ∃f(vp)∈V d′

P ∧ vp=f(vp);
3) ∀(v t,vp)∈E r

TP , (f(v t),f(vp))∈Ed′

CP .

Condition 1 states that each vertex v t in the request
graph, representing a type in a term of the request,
should have a corresponding vertex f(v t) in the disclo-
sure graph, such that v t is an abstraction of type(f(v t)).
Condition 2 states that each vertex vp in the request
graph, representing a property within a term, should
have a corresponding vertex f(vp) in the disclosure
graph. Condition 3 states that each edge in the request
graph should have a corresponding edge in the disclosure
graph.

Note that the request graph Gr could represent an iso-
morphic proper subgraph of a satisfying disclosure graph
Gd. This is due to the presence of atomic credentials
and sensitive associations. The additional vertices in Gd

represent additional information that is not needed for
a successful access, but whose removal from Gd would
result in a subgraph of G that does not represent a
disclosure (Definition VI.1).

A request R, represented by a set Gr1 ,. . . ,Gri of
request graphs, is satisfied by a disclosure graph Gd, if
Gd satisfies a least one of the request graph (i.e., ∃Grj ,
j = 1, . . . , i, such that Gd|=Grj ).

Example VI.2. Consider the disclosure graph Gd in
Figure 4 and the request graphs Gr1 and Gr2 in Figure 2.
It is easy to see that Gd|=Gr1 , since Gr1 is isomorphic
to a subgraph of Gd. We have instead that Gd 6|=Gr2 since
the disclosure of one credential of type cc cannot satisfy
both the terms with type=cc in Gr2 .

Among all disclosure graphs that satisfy the server
request, the client is interested in the one that minimizes
disclosure of information. To this purpose, it is first nec-
essary to guarantee that the disclosure graph is minimal
with respect to the request (i.e., removing any of its
vertices either does not satisfy the request or violates
Definition VI.1). In other words, a disclosure graph Gd

is minimal if there does not exist any disclosure graph
Gd′

, subgraph of Gd, which satisfies the request.

Definition VI.3 (Minimal Disclosure). Let G be a
portfolio graph and R be a request. A disclosure graph
Gd(V d

C∪V d
P∪V d

A,Ed
CP∪Ed

AP ,λ) is a minimal disclosure
of G w.r.t. R iff:

• Gd satisfies R;
• ∄ a disclosure graph Gd′

of G such that Gd′

satisfies
R and V d′

C∪V d′

P ∪V d′

A ⊂ V d
C∪V d

P∪V d
A.

The problem of computing a disclosure graph that
satisfies a request and minimizes the sensitivity label can
be formally defined as follows.

Problem VI.1 (Min-Disclosure). Given a portfolio
graph G and a request R, find a minimum disclosure
graph Gd(V d

C∪V d
P∪V d

A,Ed
CP∪Ed

AP ,λ) of G w.r.t. R
that satisfies the following requirements:

• Gd satisfies R;
• ∄ a disclosure graph Gd′

of G such that Gd′

satisfies
R and λ(Gd′

)≺λ(Gd).

We note that any minimum disclosure graph is also a
minimal disclosure graph, since the composition operator
⊕ defined for λ is monotonic, while the contrary is not
true.

Example VI.3. With reference to the request graph
Gr1 in Figure 2(a), the disclosure graph Gd in Figure 4

748



represents a minimal disclosure for Gr1 . In fact, the
removal of any vertex v in V d

C∪V d
P∪V d

A would produce
a subgraph Gd′

that either violates at least a condition in
Definition VI.1, or does not satisfy Gr1 . However, Gd is
not a minimum disclosure. We note that the first term in
r1, that is, id.{Name∧DoB}, can be satisfied by disclosing
either one of: myIdCard, myPassport, and myStuden-
tId. The release of myIdCard discloses a property (i.e.,
Address) that is not requested and exposes sensitive
association a1. The release of credential myStudentId
reveals that the client is a student. This information is
considered by the client more sensitive than the posses-
sion of an identity-card or a passport, as it is visible
from the sensitivity labels of the corresponding vertices.
The disclosure of (non-atomic) credential myPassport
overcomes both the above limitations and is therefore
preferred.

The Min-Disclosure problem is NP-hard (the mini-
mum cover problem reduces to it in polynomial time).
It is therefore necessary to design heuristic approaches
for solving the problem in polynomial time, even for
relatively large credential portfolios. We discuss this
aspect in the next section.

VII. Computing a minimal disclosure

Our solution models portfolios, requests, and disclo-
sures as graphs. Also, we use graph isomorphisms to
check if a disclosure graph Gd satisfies a given request
R, by checking if at least one of the request graphs Gr

representing the simple requests in R is isomorphic to
a subgraph of the disclosure graph Gd. It seems then
natural to consider the problem of computing a minimal
disclosure that satisfies a request as a problem of graph
matching. However, our model has some peculiarities
that cannot be simply handled by off-the-shelf graph
matching algorithms. For instance, sensitive associa-
tions, which are not defined in the request graph, need
to be considered a posteriori when a satisfying disclosure
is found. Moreover, we also consider atomic credentials,
meaning that a request for a certified property in the
request graph can result in a credential disclosure that
includes more properties than the ones requested.

We then designed and implemented a heuristic algo-
rithm for computing a minimal disclosure that takes
into account all these aspects. Our algorithm takes as
input the portfolio graph G and a set of request graphs
Gr1 ,. . . ,Gri representing a request R, and computes
a minimal disclosure graph Gd for R. The algorithm
computes a minimal disclosure Gdj for each Grj in R as
follows. It initializes Gdj as G , which corresponds to the
disclosure of the whole portfolio. If Gdj satisfies Grj , the
algorithm evaluates the sensitivity label of the disclosure
graphs obtained by removing from Gdj either a property

 10

 1000

 60000

 0  5  10  15  20  25  30  35

T
im

e
 (

m
s
)

Number of total credentials

Exhaustive 50%
Exhaustive 25%
Exhaustive 10%

Exhaustive 0%
Heuristic

Figure 5. Execution time of the heuristic and the exhaustive
algorithms

of a non-atomic credential or an atomic credential as a
whole. Among the graphs obtained, the algorithm selects
the one with minimum sensitivity that satisfies Grj ,
which becomes the new Gdj . The process of reducing
Gdj by removing properties/credentials is repeated until
a minimal disclosure is found (i.e., until the removal
of any property/credential would result in a disclosure
graph that does not satisfy Grj ). Among all the minimal
disclosures Gd1 , . . . , Gdi , the one with lowest sensitivity
is returned.

To assess the efficiency and effectiveness of our heuris-
tic, both in terms of the quality of the computed solution
and the execution time required for its computation, the
algorithm has been implemented in C++. To compare
the solution obtained by the heuristic with the optimum,
we also implemented an exhaustive algorithm solving the
Min-Disclosure problem (Problem VI.1). Experiments
have been run on a PC with two Intel Xeon Quad
2.0GHz L3-4MB, 12GB RAM, four 1-Tbyte disks, and
a Linux Ubuntu 9.04 operating system. A large variety
of configurations have been tested operating on several
parameters: the number of atomic and non-atomic cre-
dentials, the number of properties, the structure of the
type/abstraction hierarchy, the number of sensitive as-
sociations, and the sensitivity of credentials, properties,
and associations. Overall, the heuristic algorithm was
able to produce the optimum in 98% of the cases, and
when the optimum was not identified, the distance from
the optimum was on average 13% above the optimum.
Figure 5 compares the execution time of our heuristic
with the execution time of the exhaustive algorithm,
considering an increasing number of credentials (from 0
to 35) and 4 configurations obtained by assuming 50%,
25%, 10%, and 0% of the credentials to be non-atomic.
As expected, the heuristic was always able to produce
an answer in less than 10ms, whereas the exhaustive
algorithm requires exponential time in the size of the

749



portfolio, with a strong dependence on the number of
non-atomic credentials.

VIII. Related work

Research on credential-based access control (e.g., [2],
[3], [9], [11], [12], [15]) primarily focused on solutions
for controlling access to resources, for specifying and
enforcing policies, and for enabling negotiation strate-
gies, which may be indifferently adopted by the client
and the server. Such solutions however do not allow the
client to exploit the emerging technology (e.g., SAML [1],
OpenID [8], and anonymous credentials [4], [5]) for
determining which credentials and/or properties release
to minimize the sensitive information communicated to
the server. In fact, in the literature only few works have
addressed this issue. Chen et al. [6] propose a solution
that associates costs with credentials and policies to
minimize the cost of a credential release within a trust-
negotiation protocol. Similarly, Yao et al. [14] propose a
point-based trust management model, where the client
labels each credential in its portfolio with a quantita-
tive privacy score, while the server defines a credit for
each credential released by the client and a minimum
threshold of credits to access a resource. The proposed
solution finds an optimal set of client’s credentials, such
that the total privacy score of disclosed credentials is
minimal and the server’s access threshold is satisfied.
Finally, Kärger et al. [10] propose a logic-based language
for the specification of privacy preferences dictating a
partial order among the client’s attributes. All these
solutions provide some treatment of preferences or scores
associated with either credentials or properties, but do
not address the problem of modeling the client portfolio.
By including such a modeling, our work provides a
generic setting of the problem and its solution, capturing
emerging credential paradigms and the reasoning on the
information released, taking into account sensitivity of
properties, credentials and their existence, as well as
sensitive associations of properties.

IX. Conclusions

An important long-term goal of the evolution of ICT
technology is to combine the opportunities for the effi-
cient access, exchange, storage, and dissemination of in-
formation, with an adequate level of user control over her
own personal information. The approach presented in
the paper provides a concrete solution that improves the
support for the privacy requirements of the user when
interacting in open scenarios. We believe approaches of
this kind are going to be implemented in the Internet
of the future, leading to the construction of systems
allowing users to enjoy the benefits of emerging technol-
ogy while maintaining awareness and control over their
private information.

References

[1] A. Anderson and H. Lockhart. SAML 2.0 profile of
XACML. OASIS, September 2004.

[2] C.A. Ardagna, S. De Capitani di Vimercati, S. Para-
boschi, E. Pedrini, P. Samarati, and M. Verdicchio.
Expressive and deployable access control in open Web
service applications. IEEE TSC, 2010. (to appear).

[3] P. Bonatti and P. Samarati. A uniform framework for
regulating service access and information release on the
Web. JCS, 10(3):241–272, 2002.

[4] S. Brands. Rethinking public key infrastructure and
digital certificates – building in privacy. MIT Press,
2000.

[5] J. Camenisch and A. Lysyanskaya. An efficient system
for non-transferable anonymous credentials with op-
tional anonymity revocation. In Proc. of EUROCRYPT
2001, Innsbruck, Austria, May 2001.

[6] W. Chen, L. Clarke, J. Kurose, and D. Towsley. Optimiz-
ing cost-sensitive trust-negotiation protocols. In Proc. of
INFOCOM 2005, Miami, FL, USA, March 2005.

[7] V. Ciriani, S. De Capitani di Vimercati, S. Foresti,
S. Jajodia, S. Paraboschi, and P. Samarati. Combining
fragmentation and encryption to protect privacy in data
storage. ACM TISSEC, 2010. (to appear).

[8] D. Hardt, J. Bufu, and J. Hoyt. OpenID attribute ex-
change 1.0, 2007. http://openid.net/developers/specs/.

[9] K. Irwin and T. Yu. Preventing attribute information
leakage in automated trust negotiation. In Proc. of ACM
CCS 2005, Alexandria, VA, USA, November 2005.

[10] P. Kärger, D. Olmedilla, and W.T. Balke. Exploiting
preferences for minimal credential disclosure in policy-
driven trust negotiations. In Proc. of SDM 2008, Auck-
land, New Zealand, August 2008.

[11] A.J. Lee, M. Winslett, J. Basney, and V. Welch. The
Traust authorization service. ACM TISSEC, 11(1):1–3,
February 2008.

[12] T. Ryutov, L. Zhou, C. Neuman, T. Leithead, and
K.E. Seamons. Adaptive trust negotiation and access
control. In Proc. of SACMAT 2005, Stockholm, Sweden,
June 2005.

[13] P. Samarati. Protecting respondents’ identities in mi-
crodata release. IEEE TKDE, 13(6):1010–1027, Novem-
ber/December 2001.

[14] D. Yao, K.B. Frikken, M.J. Atallah, and R. Tamassia.
Private information: To reveal or not to reveal. ACM
TISSEC, 12(1):1–27, October 2008.

[15] T. Yu, M. Winslett, and K.E. Seamons. Supporting
structured credentials and sensitive policies trough inter-
operable strategies for automated trust. ACM TISSEC,
6(1):1–42, February 2003.

750


