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Riassunto: Lo scopo del presente lavoro è quello di estendere al caso del 
campionamento per cattura-ricattura il metodo bootstrap per la stima della varianza di 
stimatori costruiti su campioni da popolazioni finite. Nel campionamento da 
popolazioni di animali, non è raro il caso in cui alcuni animali, già catturati una volta, 
mostrino una accresciuta familiarità nei confronti del contatto umano, mentre altri 
tendano a nascondersi. In questi casi, le probabilità di inclusione possono risultare 
modificate. In questo lavoro si presentano due applicazioni dell’algoritmo bootstrap per 
il campionamento PSπ  proposto da Mecatti (2000) adattate al caso del campionamento 
per cattura-ricattura. La prima riguarda la stima della varianza dell’usuale stimatore di 
Petersen della numerosità della popolazione. La seconda utilizza la stessa stima come 
numerosità delle popolazioni empiriche bootstrap su cui si basa l’algoritmo di Mecatti. 
Il lavoro si conclude con due simulazioni  su dati reali. 
Keywords. Finite Population Sampling, Petersen Estimator, PSπ Sampling, Variance 
Estimation. 
 
 
1. Introduction 

 
Animal counting for scientific purposes has always represented a challenging  task 

for ecologists and biologists. Many restrictions have to be taken into consideration when 
dealing with populations of animals: geographical restrictions, animal identification 
restrictions, animal sighting or capture restrictions and so on. With regard to the 
sampling design, problems related with the inclusion probabilities structure have often 
led to biased results. The main animal behaviour that conducts to such unsatisfactory 
results is perhaps the trap-shy/trap-happy behaviour: after the first capture, the 
following captures are affected by the tendency of some animals to be familiar with the 
human contact. Other animals inclination is instead towards a trap-shy behaviour. 
Consequently, even if the inclusion probabilities could be assumed equal at the first 
capture, at the second selection the inclusion probability structure could result deeply 
modified. For example, badgers are considered to have a highly variable behaviour. In 
Minta and Mangel (1989), where an original Monte Carlo method is proposed, an 
example based on real data where badgers were snow tracked in a closed area is 
presented. Fifteen of the badgers were radio tagged and known to occupying the area. In 
a period of two months, badgers were snow tracked towards terminal holes in which 
they were identified if previously radio tagged. A total number of 107 badgers could be 
followed. Radio telemetry revealed that 68 of the tracks were generated by marked 
badgers and 39 by unmarked badgers. Out of the original 15 marked badgers, one was 
sighted 11 times, another one 9 times and, for example, two of them were never sighted. 
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It is clear that in the second sample some of the badgers are more likely to be selected 
than others. With this in mind, in Section 2, two applications of a bootstrap algorithm 
adapted for capture-recapture sampling are proposed: first the sighting probabilities are 
considered as inclusion probabilities; secondly the naïve use of the Mecatti’s algorithm 
is considered by using  the  Petersen estimate of the population size in constructing the 
bootstrap empirical population. In Section 3, the two applications are evaluated by using 
real data from Minta and Mangel (1989) and some initial results are given. 
 
 
2. Extensions of Mecatti’s method to capture-recapture or capture-
resight sampling  
 

In Minta and Mangel (1989) is argued that sighting of animals is a sort of 
visually recapturing and it can be seen as an alternative approach to estimation. 
Practical differences between capture-recapture and capture-resight sampling are also 
discussed. Note that for estimation purposes they could be considered methodologically 
equivalent, i.e. the capture event is assumed equivalent to the sighting event. In our 
proposals, in drawing the first sample, the Lincoln-Petersen assumptions are considered. 
The first proposal aims at establishing an empirical probability distribution of sightings 
among animals in the second sample, considering both marked and unmarked animals, 
so that the bootstrap method by Mecatti (2000) for PSπ  sampling appears adequate. 
This empirical probability distribution could be thought as the sighting PSπ  structure of 
the animal population. In a sense, the more an animal is sighted the more it is expected 
to be sighted in the recapture sample: hence its inclusion probability results modified. 
Let M be the number of marked (or sighted) animals, namely the first sample (or the 
capture-sample) size, n be the total number of re-sightings (or recaptures), namely the 
second sample (or the recapture-sample) size, and m be the total number of marked 
animals in the second sample. Let , im M,....,i 1= , denotes the label of the i-th marked 

animal,  be the label of the j-th unmarked animal, with  where 

denotes the estimator of the number of unmarked animals in the population 

and  denotes the customary Petersen estimator of the population size N. Moreover, let 
 be the total number of sightings for animal i, i.e. its unique sighting in the first 

sample plus the sightings in the second sampling.  The estimated number of sightings 

 for animal i is defined as 
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With the purpose of estimating the variance  of the Petersen estimator, the 

following bootstrap algorithm is proposed (Algorithm 1).   
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Step 1: Chose the number B of bootstrap iterations, sufficiently large. Obtain 
probabilities (1) for labels  and . Step 2. For b in (1: B) (b is the current bootstrap 
iteration): 

im jnm

Step 2.a: Draw a with replacement sample of size n from labels { }∧
U

M nm,....,nm,m,....,m 11  

with inclusion probabilities (1). Step 2.b: Calculate the number  of marked labels in 
the bootstrap sample obtained in Step 2.a. Step 2.c: Calculate the bootstrap Petersen 

estimate of population size 
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⋅= . Step 2.d: Add the quantity  as a new item 

in the vector . Step 3: Calculate the variance of the values in  that is our bootstrap 
variance estimation. 

b

N
∧

*S *S

In the second proposal (Algorithm 2) the sample value of the estimator  is 
used as a device for applying the naïve Mecatti bootstrap algorithm (2000). 

∧

N

 
 

3. Two simulations based on a real case study 
 

The two proposals above have been analysed empirically by performing two 
simulation studies. First we considered the badgers counting reported in Minta and 

Mangel (1989). The Petersen estimate results , so that , 

 and . The variance of the Petersen estimator, 
calculated as the inverse of the Fisher information (Bailey, 1951) is 2.99. According to 
Algorithm 1, a sequence of 10 runs was performed with B =10,000. The related 
variances and mean are reported in Table 1 (left).  Monte Carlo variances calculated 
using 10,000 Minta-Mangel bootstrap estimates (Minta and Mangel 1989) are also 
presented.  A second simulation was conducted on Algorithm 2 by considering the 
badgers skull length. For this simulation we have supposed the distribution of the 

 badgers skull length measurements obtained as drawn from a Normal 
distribution with mean 12.404 and variance 0.107, according to previous similar studies 
(see, among others, Hidaka et al. 1998). A sequence of 10 runs was performed with B 
=10,000 based on an original sample of size M=15. For each simulation run, the 
variance of the sample mean was calculated with Algorithm 2 (without replacement), 
with the classical formula as explained, for example, in Cicchitelli et al. 1992, p. 225, 
and by using a naïve bootstrap with both the original sample and all the bootstrap 
samples drawn with replacement. Results are listed Table 1 (right). 
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Table 1. Results from two simulation studies for Algorithms 1 and 2 
Simulations for Algorithm 1 Simulations for Algorithm 2 

Simulation 
No. 

Algorithm 1 
Bootstrap Variance 

Estimate 

Monte Carlo 
Minta-Mangel 

Variance Estimate 

Algorithm 2 
Bootstrap Variance 

Estimate for 
Sample Mean 

Classical Variance 
Estimate for 

Sample Mean 

Naïve Bootstrap 
Variance Estimate 
for Sample Mean 

1 2.22 0.063 0.0031 0.7838 1.6032 
2 2.28 0.063 0.0035 1.0067 1.8394 
3 2.34 0.058 0.0023 1.1567 1.9395 
4 2.34 0.058 0.0014 1.3745 2.4701 
5 2.26 0.058 0.0032 1.2595 3.9494 
6 2.25 0.063 0.0027 1.3529 3.5699 
7 2.21 0.063 0.0032 1.5338 3.2987 
8 2.24 0.063 0.0036 1.2900 2.2293 
9 2.24 0.058 0.0033 1.2406 4.0943 
10 2.19 0.063 0.0031 0.7838 1.6032 

Mean 2.26 0.061 0.0029 1.2221 2.7771 
 
The estimates generated by the two proposed algorithms appear quite stable 

among all bootstrap simulation runs performed. The average of the Algorithm 1 
bootstrap variance estimates (2.26) is very close to the Fisher information-based 
variance estimate (2.99). The Monte Carlo Minta-Mangel variance estimate could be 
considered suspect because it reaches only two different values among ten simulations 
(0.058 and 0.063), although it is very close to zero. Results from Algorithm 2 are less 
far from the classical variance estimate than the naïve bootstrap estimates, confirming 
the idea that when the independence structure is compromised, a modified bootstrap 
needs to be invoked in order to solve the unfitness problem related to classical bootstrap 
procedure. Future research will focus on confidence intervals coverage and on more 
complicated estimators. 
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