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Dear Rene, 

 

We have revised the manuscript as requested. Below are the reviewers comments and for each issue 

raised our remedial action or an explanation to address their concerns is reported in bold. 

 

I think that this version is certainly improved, and we will be glad to consider any further 

suggestion you may have. 

 

All the best, 

Franco 

 

  

Reviewer #1: Fiandra et al. 

 

In this manuscript Fiandra et al present some interesting data on apparent enhancement of TMOF 

action by chitinase. Overall, this is a sound study that will be improved with the following 

modifications:  

1. What is the mechanism of action of TMOF? This should be introduced upfront. The action 

of TMOF in inhibiting trypsin synthesis and impeding larval digestive processes is key to 

the logic behind these experiments. Not until page 16 is this information provided for the 

reader! This information should actually be included in the abstract. Clearly introduce 

TMOF. 

 

The information requested has been added in the manuscript (Abstract and 

Introduction). 

 

2. Page 4 What is the size of TMOF? Why is it restricted by the peritrophic matrix? What is 

the size exclusion limit of the PM? Provide some specific details here - this is important to 

justify the use of chitinase. 

 

All the details about the size of TMOF and its permeability through the peritrophic 

membrane have been provided (Introduction). 
 

3. Chi-HDEL - the original paper should be cited for this, and the KDEL-HDEL mutation 

should be explained in the context of the mutated chitinase not being retained in the ER. 

This is important information that the reader should know.  

 

The ChiA coding sequence was fused to the sequence coding for the HDEL,  the ER 

retrieval signal peptide (Napier et al., Journal of Cell Science, 102: 261-271). The ER 

localization of recombinant proteins  via the addition of KDEL or HDEL increases 

by one or two orders of magnitude the accumulation of foreign protein in transgenic 

plants. We think that this piece of information is not relevant in the context of the 

present paper. In addition, all the details related to the Chi A engineering and 

subsequent cloning are described in Corrado et al., 2008, as indicated in the text. 

 

4. There are several other examples where chitinase has been shown to enhance the insecticidal 

action of a toxin (e.g. Bt toxins, protease - see W. Fang et al 2009 J Invertebr Pathol.), this 

is the not the first example. These other examples should be discussed, rather than creating 

the impression that this is the first case of such potentiation.  

 

*Response to Reviewers



The discussion now includes a sentence and a couple of references that address the 

issue raised by the  reviewer on the presence in the literature of studies reporting  the 

combined expression of chitinase and other insecticidal molecules. 

 

5. Table 1 could be provided as supplementary information (should read "detection" rather than 

"diction"). 

 

We corrected the caption, but we have maintained the table in the text, as we would 

consider supplementary material large pieces of information, not easy to incorporate 

in the manuscript but useful.  

     

6. Data presented in Figures 3 and 4 should be combined and presented in a Table. (There is no 

reason to use different colored bars if only one parameter is being measured here). 

 

We followed the reviewer’s suggestion. 

 

7. Figure 7 - images of control treatments, and labels should be added (e.g. gut, lumen, 

columnar cell, microvilli etc). 

 

Figure 7 has been corrected on the basis of reviewer’s suggestion. We have specified 

in figure 7 caption that control midgut (incubated in the absence of FITC-TMOF) 

did not emit fluorescence when excited at the wavelength used. 

 

8. Figure legend: Fig 2 legend needs statistical analysis. All legends lack a concluding 

statement. 

 

The statistical analysis has been added. 

 

9. Table 2 title "fourth instars" 

 

We have corrected in the title of table 2 "fourth instars" 

 

Editorial corrections 

1. Abstract, provide abbreviations for TMOF and AcMNPV ChiA AFTER the full name, not 

before.  

 

We have provided the abbreviations for TMOF and AcMNPV ChiA after the full 

name in the Abstract. 

 

2. P3 line 8 "the insecticide molecules in the environment" 

 

We have corrected the sentence on the basis of reviewer’s suggestion. 

 

3. P3 "predator derived toxins"? Be more specific here. 

 

We feel that the terms used are informative and we do not see a real need for change, 

unless a better word is suggested. 

 

4. P4 line 1 worthy of further 



Done. 

 

5. P4 line 4. Cite the following review on uptake of macromolecules into the hemocoel from 

the gut: Jeffers, L. A.; Michael Roe, R., The movement of proteins across the insect and 

tick digestive system. J Insect Physiol 2008, 54, 319-332. 

 

We have added the citation suggested by the reviewer. 

 

6. P4 Cite the original work on the AcMNPV chitinase (R. Hawtin et al) rather than a review 

paper.  

 

We preferred not to change the reference and maintain a review, because we refer 

not only to AcMNPV chitinase, but to a number of studies addressing the impact of  

different viral enzymes on PM structure. 

 

7. Page 5 and page 12, 15 replace "evidenced" by "showed" 

 

8.      Northern and Western should not have capital letters.  

9.      P7 Waring Blender 

10.     P7 three lines from end "surviving larvae" 

11.     P9 l3 known amounts 

12.     P9 line8 Explain here that the TMOF is synthesized.  

13.     P10 first sentence should be combined with previous sentence. 

 

 7-13: all corrections done. 

 

14.     P11. Was TMOF (GenScript) mentioned on p9 also FITC-labeled? Be consistent 

 

FITC-TMOF was only used for the analysis of whole mount midguts by confocal microscopy 

(P11), while the TMOF mentioned on P9 was not labelled and it was detected by Zonal 

Capillary Electrophoresis, as indicated in Material and Methods . Both compounds were 

purchased by GenScript Coorporation. 

 

15.     P11. "with A coverslip.scanNING microscope" 

 Corrected as requested. 

 

16.     P 11 last line "and excluded events of post-transcriptional gene silencing". You cannot claim 

this, given that transgenic expression can out-express the plant RNAi response (see J Baum et al, 

Nature Biotechnology paper on rootworm control by dsRNA) 

 

 We agree with the reviewer and modify the text  accordingly. 

 

17.     P12 "immunodetection of TMOF was not performed due to its small molecular mass". Too 

small to detect on a gel? Doubtful if an appropriate % is used. 

 

 The polyTMOF synthetic gene expressed in the tobacco parental plants encodes for a 

precursor which is likely  to be processed in tobacco cell (Tortiglione et al.,  2002, quoted in 

the manuscript). As a consequence  of the processing,  several products of different sizes may 

be produced.    Western analyses of peptides extracted from transformed plants detected no 

peptide corresponding to any of the expected sizes. This may be due to the small size of the 

peptides, their presence in very low amount,  or to the unsuitability of the antibodies raised 



against the synthetic TMOF  to recognize both poly-TMOF or its partial cleavage products. 

For these reasons we preferred to monitor the expression of the polyTMOF synthetic gene only 

at transcriptional level. 

 

18.     P12 line 8 "included the weight of the pupae" 

19.     P12 two lines from end "showed significantly" 

20.     P13 line 1 "Was affected by"  

21.     P13 line 7 "resulted in fragility"; line 15 "performed with larvae.because the PM was too 

small". 

22.     P14 Was the lack of TMOF detection in hemolymph discussed? Seems you could say more 

here. 

23.     P14 line 13 "prevented from reaching" ; line 16 "TMOF promoted by"; line 17 "were located 

nearby"; line 19 "occurrence of discrete signals on" 

24.     P15 line 5 "suggesting binding.sites on the basolateral" 

25.     Discussion line 1, "In recent"; line 3 "from public opinion for new"; line 4 "agents and their 

possible" 

26.     P17 line 3 "regulate physiological", "suggested a long"; line 8 "and much experimental 

evidence indicates that"; line 13 "worthy of further" 

27.     P18, 5 lines from end "as in B. mori" 

28.     Fig 3 legend Replace "alimented" with "fed" 

 

18-28: all corrections done 

 

Reviewer #2: IB-D-10-00052 

 

Very interesting paper that I recommend for publication in IBMB. But before, there are two points 

that need the attention of the authors.  

 

I would encourage the authors to cite also the cloning and expression of TMOF on the coat protein 

of TMV as published by Borovsky et al. in PNAS 2006. The latter innovative paper showed that 

Heliothis virescens trypsin activity and growth were effectively affected by TMOF, and that high 

amounts of TMOF alone as produced by the TMV in the leaves of the tobacco plant can produce 

high insecticide effects. The current paper reported that the transgenic plants poorly affected the 

insects, but can this be due to the fact that these plants poorly synthesized the hormone peptide and 

thus were not very effective. I suggest that the authors discuss their interesting results in relation to 

the PNAS paper.  

 

This has been done. 

 

Another thing that is somewhat bothersome to me was the fact that chitinase by itself causes 

mortality and growth inhibition. I suggest the authors comment and explain this. I think that the 

chitinase may also disrupt the epithelial cells causing perhaps holes that affect the insect even 

without TMOF.  

 

It is has been widely demonstrated how chitinase alone is able to induce an alteration of larval 

fitness and mortality in Lepidoptera, by affecting midgut physiology (Rao et al., 2004; 

Corrado et al., 2008). The degradative action of chitinase on the chitin mesh of peritrophic 



membrane results in an alteration of the compartmentalization of the digestive enzymes 

between the endo- and ectoperitrophic spaces, which is known to be critical for the efficiency 

of digestion in lepidopteran larvae (Terra, W.R., 2001. Arch. Insect Biochem. Physiol. 47, 47–

61). We have added in the manuscript (Discussion) this information. 

On the other hand, an effect of chitinase on the epithelial cells is not feasible, since cell apical 

brush border membranes are not a target for this enzyme. 
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Abstract 

In this study we investigate the combined effect on Heliothis virescens (Lepidoptera, 

Noctuidae) larvae of Aedes aegypti-Trypsin Modulating Oostatic Factor (Aea-TMOF), a peptide 

that inhibits trypsin synthesis by the gut, impairing insect digestive function, and Autographa 

californica nucleopolyhedrovirus Chitinase A (AcMNPV ChiA), an enzyme that is able to alter the 

permeability of the peritrophic membrane (PM). Aea-TMOF and AcMNPV ChiA were provided to 

the larvae by administering transgenic tobacco plants, co-expressing both molecules. Experimental 

larvae feeding on these plants, compared to those alimented on plants expressing only one of the 

two molecules considered, showed significantly stronger negative effects on growth rate, 

developmental time and mortality. The impact of AcMNPV ChiA on the PM of H. virescens larvae, 

measured as increased permeability to molecules, was evident after five days of feeding on 

transgenic plants expressing ChiA. This result was confirmed by in vitro treatment of PM with 

recombinant ChiA, extracted from the transgenic plants used for the feeding experiments. 

Collectively, these data indicate the occurrence of a positive interaction between the two transgenes 

concurrently expressed in the same plant. The hydrolytic activity of ChiA on the PM of tobacco 

budworm larvae enhances the permeation of TMOF molecules to the ectoperitrophic space, and its 

subsequent absorption. The permeation through the paracellular route of Aea-TMOF resulted in a 

spotted accumulation on the basolateral domain of enterocytes, which suggests the occurrence of a 

receptor on the gut side facing the haemocoel. The binding of the peptide, permeating at increased 

rates due to the ChiA activity, is considered responsible for the enhanced insecticide activity of the 

transgenic plants expressing both molecules. These data corroborate the idea that ChiA can be 

effectively used as gut permeation enhancer in oral delivery strategies of bioinsecticides targeting 

haemocoelic receptors.  

 
Key-words: bioinsecticide, gut absorption, peptide, peritrophic membrane, transgenic plants.
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Introduction 

The reduction of chemical insecticide use is one of the major issues for safe food 

production. The importance of this objective in modern agriculture has fostered significant research 

efforts towards the development of innovative technologies based on the use of biological control 

agents (Bale et al., 2008), natural insecticides, which include small organic molecules (Dayan et al., 

2009) and peptide or protein toxins, deriving from plants and insect natural antagonists (Whetstone 

and Hammock, 2007).  

The success and safety of pest management technologies largely depends on the efficacy of 

the delivery methods used to distribute the insecticide molecules in the environment. When dealing 

with peptide/protein toxins, the choice of the most appropriate delivery vector is directed by the 

localization of the receptor to be targeted, which can be in the gut or behind the gut wall. The 

delivery of biopesticides through oral ingestion, for example by transgenic plant expression, is 

considered more appropriate for molecules exerting their activity in the gut, while those targeting 

haemocoelic receptors are more efficiently delivered via insect-specific symbionts and pathogens 

(Inceoglu et al., 2006; Whetstone and Hammock, 2007). This conceptual dichotomy is largely 

motivated by the assumption that most macromolecules are unable to pass across the gut barrier in 

significant amounts, but can easily cross it if expressed in recombinant baculoviruses (Liu et al., 

2006). However, a growing number of exceptions to this assumption can be found in the literature, 

with cases of parasitoid (Maiti et al., 2003) and predator derived toxins (Liu et al., 2006), which 

have conferred a significant protection level when expressed in transgenic plants. However, none of 

these studies provided direct evidence that the toxins passed from the gut lumen to the haemocoel of 

the target insects (reviewed in Liu et al., 2006), even though they indirectly indicated that gut 

absorption of macromolecules in insects is likely possible and of practical value for pest control. 

The possibility of delivering intrahaemocoelic toxins with food opens very interesting new 
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perspectives in the field of biotechnology for insect control, and is certainly worthy of further 

research efforts.  

In spite of these promising perspectives, the study of the physiological mechanisms 

mediating the absorption of macromolecules in the insect gut has received limited attention (Jeffers 

and Roe, 2008). Over the last few years, we have contributed to this research area, by focusing our 

interest on the absorption pathways of peptides and proteins in the midgut of lepidopteran larvae, 

demonstrating that the paracellular route (Fiandra et al., 2006) is mostly exploited by small peptides 

(Fiandra et al., 2009), while transcytosis is the main route of entrance for proteins (Casartelli et al., 

2005; 2007). The absorption pathway of peptides can be modulated by manipulating the 

intracellular concentration of cAMP and Ca
++

 (Fiandra et al., 2006); the ligand specificity of the 

receptor involved in the internalization of albumin can be exploited for promoting the uptake of 

fusion proteins, bearing toxic domains along with domains which are involved in the receptor-

mediated endocytosis (Casartelli et al., 2008). This information provides the background on which 

new strategies for enhancing the rate of gut absorption can be developed. 

However, the gut epithelium is only one of the two major intestinal barriers to be crossed by 

ingested macromolecules, and the peritrophic membrane (PM) represents the first physical layer 

with pores that discriminates the passage of large molecules (Lehane, 1997; Barbehenn, 2001). In 

Bombyx mori larvae, for instance, the PM was largely permeable to methylene blue, a molecule 

with a molecular mass of 320 Da, and almost impermeable to PEG 4000, while the Trypsin 

Modulating Oostatic Factor from Aedes eagypti (Aea-TMOF) had an intermediate permeability 

coefficient, in line with its molecular mass (1005 Da) (Fiandra et al., 2009). Therefore, the 

structural disruption of the PM can facilitate the passage of molecules, as naturally occurs in the 

case of infection by baculoviruses, which use specific metalloproteases for disrupting the 

peritrophic membrane, to allow the contact of viral particles with midgut epithelial cells (Slavicek 

and Popham, 2005; Liu et al., 2006).  
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In the framework of a coordinated effort towards the development of new delivery strategies 

and combinations of bionsecticides, we discovered that the Chitinase A (ChiA) of Autographa 

californica nucleopolyhedrovirus (AcMNPV), which has a key-role in the post-mortem liquefaction 

of the infected larval host cadaver (Bonning, 2005), determined structural alterations on 

lepidopteran larvae PM (Rao et al., 2004), and had a significant negative effect on insect biological 

performance and survival when the recombinant protein was delivered either with artificial diet or 

with transgenic plants (Rao et al., 2004; Corrado et al., 2008). The same studies also clearly showed 

a strong increase of the permeability to molecules of the PMs treated in vitro with ChiA. These 

results stimulated the idea of using ChiA in combination with Aea-TMOF, which targets receptors 

expressed in the basolateral membrane of epithelial midgut cells and causes the inhibition of trypsin 

synthesis, thus impairing the insect digestive processes (Borovsky et al., 1994; Nauen et al., 2001; 

Borovsky and Meola, 2004). Aea-TMOF exerts mild insecticide activity on Heliothis virescens 

larvae when expressed in transgenic tobacco plants (Tortiglione et al., 2002; 2003), and negatively 

interferes with larval growth of the tobacco budworm (Heliothis virescens), when fused to Tobacco 

Mosaic Virus coat protein (Borovsky et al., 2006). 

In this study we demonstrate that tobacco plants co-expressing both Aea-TMOF and 

AcMNPV ChiA show a significantly stronger impact than parental lines, expressing only one of the 

two genes, on the development and survival of the tobacco budworm larvae, which is associated 

with a higher permeability to Aea-TMOF of the peritrophic membrane of larvae fed on transgenic 

plants. This corroborates the hypothesis that the use in tandem of gut permeating agents and 

insecticide molecules targeting haemocoelic receptors can result in a more efficient insect control 

activity, as a consequence of functional complementation of the molecules used and reduced risk of 

resistance in the target population. 
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Material and Methods 

Production of hybrid tobacco plants co-expressing AcMNPV ChiA and polyTMOF  

Transgenic tobacco plants constitutively expressing the polyTMOF synthetic gene (line R1-

2) and ChiA gene (ChiA HDEL line 9) were obtained as reported in Tortiglione et al. (2002) and 

Corrado et al. (2008), respectively. Both transgenic lines were screened for resistance to kanamycin 

on Murashige Skooge medium, supplemented with 100 mg/l kanamycin, and then transferred to soil 

and grown under containment glass house conditions. Crosses of the two transgenic lines originated 

tobacco genotypes co-espressing both genes, ChiA and polyTMOF, which, for simplicity reasons, 

are hereafter denoted as hybrids.  

 

Molecular characterization of tobacco hybrid genotypes 

The presence of both polyTMOF and ChiA mRNA in the tobacco hybrids was detected by 

Northern blot, with the appropriate cDNA probes, as previously described (Tortiglione et al., 2002; 

Corrado et al., 2008). 

Furthermore, the expression of the ChiA protein was monitored by Western blot. Total 

proteins were isolated from leaves, quantified and resolved by SDS-PAGE (Sambrook et al., 1989). 

Western analysis was carried out on 40 µg of water soluble proteins, using as primary antibody the 

anti-myc (Santa Cruz Biotechnology, CA), diluted 1:500, and anti-rabbit IgG conjugated with 

horseradish peroxidase, diluited 1:2000, as secondary antibody, according to the procedures already 

published (Corrado et al., 2008). 

 

ChiA purification from tobacco transgenic plants 

The recombinant ChiA protein was purified from transgenic tobacco leaves as described in 

Di Maro et al. (2010). The enzymatic activity of the isolated protein was assayed using the substrate 

4-methyl-umbelliferyl-β-D-N-N’-N’’-acetyl-chitotriose [4MU-(GlcNAe)3, Sigma–Aldrich, Italy] 

for the detection of endo-chitinolytic activity, as reported elsewhere (McCreath and Gooday, 1992; 
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Rao et al., 2004). Briefly, for the ChiA protein purification procedure, leaves were homogenized in 

1x PBS, in presence of EDTA 5 mM, PMSF 1 mM and PVP-40 1.5%, by 20-s bursts at full power 

using a Waring Blender (Waring Products, CT, USA). The proteins were subjected to ammonium 

sulfate precipitation, followed by ion exchange and gel filtration chromatography. The purification 

was monitored by analyzing the chromatography fractions by SDS-PAGE and Western blot. 

ChiA, separated by SDS-PAGE, was transferred onto PVDF membrane and directly 

subjected to Edman degradation on a Procise Model 491 sequencer (Applied Biosystems), for N-

terminal sequencing, as previously described
  
(Di Maro et al., 2001). 

 

Feeding bioassay on transgenic plants 

The insecticidal activity of transformed tobacco plants was assayed in vivo on larvae of the 

tobacco budworm Heliothis virescens. Selected transformants expressing either the TMOF peptide 

(line polyTMOF R1-2) or ChiA (line ChiA HDEL 9) or both of them and control plants (NN) were 

daily supplied as leaf disks to newly hatched larvae. Experimental larvae were singly maintained at 

29 ± 1 °C, in multiwell plastic trays, bottom lined with a thin layer of a 2% agar solution and closed 

with transparent plastic covers provided by the commercial supplier (CD International). Two 

different well sizes were used: 4×4×2 cm (for instars 1st–4th) (CD International BIO-RT-32) and 

8×8×2 (for 5th instars) (CD International BIOSMRT- 8). Larvae were weighed every other day, 

starting on day 4 from the beginning of the bioassay. Mortality was daily checked during the whole 

larval feeding period. In each of the 4 replicate, 16 larvae were assayed for each treatment. 

The larval development was compared by combining the larval growth and survival into a 

single parameter, the total larval biomass, calculated every other day, as the sum of the weight of 

the surviving larvae in each treatment. The growth curves of the larval biomass of individuals fed 

on control or transformed plants were compared by Repeated Measures Analysis of Variance (Sokal 

and Rohlf, 1995). The interaction of diet and the within-factor time was tested using linear, 

quadratic and cubic order polynomial contrasts, in order to assess differences in the slope of the 
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growth curves. Compound symmetry was checked by Huynh-Feldt statistics (Systat 12, Systat 

Software Inc.). 

Developmental times and survival rates were analyzed by One-Way Analysis of Variance, 

and mean comparison (Tukey’s test) was performed when statistical significance (α=0.05) occurred. 

Percentages were arcsine transformed before analysis (Zar, 2009). Mean percentages presented in 

figures were transformed back into proportions after analysis. Because the confidence limits are not 

symmetrical about the means when expressed again in proportions, in the result section we report the mean 

values and the mean values plus and minus the SE. 

All data analyses were performed with the statistical package Systat 12 (Systat Software 

Inc.).  

 

Evaluation of the peritrophic membrane permeability 

To assess the impact of feeding on transgenic plant lines, experimental larvae of H. 

virescens, fed with artificial diet until the end of the third instar, were divided into four groups of 16 

larvae each and then reared from the first day of the fourth instar on the following tobacco 

genotypes: NN, polyTMOF R1-2, ChiA HDEL 9 and hybrids. Their survival and body weight were 

monitored during the fifth instar at 120, 132 and 144 hours since the beginning of treatment. After 

132 h, randomly selected larvae from each experimental group were used to study in vitro the 

permeability of their peritrophic membrane. The PM was isolated as described in detail in Rao et al. 

(2004). Briefly, the PM was carefully extracted from the dissected midgut, and cut longitudinally on 

a thin cotton gauze, which maintained the PM extended, avoiding its fluttering once mounted in the 

experimental apparatus. A portion of the PM was mounted as a flat sheet in Ussing chambers 

(World Precision Instruments, Berlin, Germany), with an exposed surface area of 12,6 mm
2
. Thus, 

the PM separated the endoperitrophic and ectoperitrophic compartments, both filled with 500 µl of 

PBS (137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4 and 1.4 mM KH2PO4, pH 7). The PMs 

explanted from experimental larvae fed on different plant lines were incubated for 90 minutes, in 
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the presence of 1 mg/ml methylene blue in the endoperitrophic compartment. The total amount of 

dye diffused to the ectoperitrophic compartment was collected and determined 

spectrophotometrically (Ultrospec 3000 Pharmacia Biotech, Cambridge, UK), at the wavelength of 

661 nm. A calibration curve was carried out with known amounts of the molecule dissolved in the 

incubation buffer. 

To demonstrate that the increased permeability was due to AcMNPV ChiA produced by 

transgenic plants, this enzyme, extracted and purified from ChiA HDEL 9 genotypes, was used in 

PM permeability assays to TMOF. PMs were explanted from larvae continuously reared on 

artificial diet. The flux of TMOF (synthesized by GenScript Coorporation, USA) was measured by 

adding the peptide (1 mg/ml) to the endoperitrophic compartment in the absence (control) or in the 

presence of 40 µg/ml ChiA and by recovering the solution in the ectoperitrophic compartment after 

90 min of incubation. The amount of permeated TMOF, detected by Zonal Capillary 

Electrophoresis (Beckman Coulter P/ACE MDQ Capillary System), was determined using a 

suitable calibration curve.  

The calculated methylene blue and TMOF flux values were expressed as nmol/cm
2
/h. Mean 

values were compared by Student’s t test.  

 

Detection of TMOF in the haemolymph of experimental larvae 

Experimental larvae fed for 132 h on polyTMOF R1-2 and hybrid tobacco genotypes, as 

described in the previous section, were used for haemolymph collection. Fifty l of haemolymph, 

collected from the cut proleg of 5 larvae using capillary glass tubes, were diluted 1:10 in methanol 

and stored at -20°C. Samples to be analysed were centrifuged at 4,000 rpm for 10 min and cleaned 

up on a reversed phase Strata C18-E 500 mg cartridge (Phenomenex, Torrance, CA, USA). A 

volume of 500 l was loaded on the cartridge, previously conditioned with methanol (3 ml) and 

water (3 ml). The column was then washed with water (3 ml), and eluted with 3 ml of pure 

methanol. The eluate was dried under a gentle nitrogen stream, dissolved in 50 l of methanol, 
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centrifuged at 12,000 rpm for 3 min and used for liquid chromatography coupled with tandem mass 

spectrometry (LC/MS/MS) analyses. Chromatographic separation was obtained using an HPLC 

apparatus, equipped with two Micropumps Series 200 (Perkin Elmer, Shellton, CT, USA), a 

UV/VIS detector series 200 set at  220 nm and an Aquapore RP300 C8, 7 μm 220 × 2.1 mm column 

(Brownlee, CT). The eluents were: A: H2O, 0.1% formic acid; B: CH3CN, 0.1% formic acid. The 

gradient program was as follows: 0–50 % B (13 min), 50–100% B (3 min), 100 % B (4 min), 100-0 

% B (5 min) at a constant flow of 0.2 ml/min. Injection volume was 20 l and all samples were 

centrifuged, before the analysis, at 12,000 rpm for 3’ using a centrifuge 5415 R (Eppendorf, 

Germany). 

MS and MS/MS analyses were performed on an API 3000 triple quadrupole mass 

spectrometer (Applied Biosystems, Canada), equipped with a TurboIonSpray. Acquisition was in 

positive ion mode, in MRM (Multiple Reaction Monitoring). The analyses were performed using 

the following settings: drying gas (air) was heated to 350 °C, capillary voltage (IS) was set at 5500 

V. The declustering potential (DP), focus potential (FP) and the collision energy (CE) were 

optimized infusing directly into the mass spectrometer a TMOF peptide standard solution (10 

g/ml) at a constant flow rate of 6 l/min using a model 11 syringe pump (Harvard Apparatus, 

Holliston, MA, USA). The detection limit (LOD with a signal to noise ratio of 3) was 2 ng/ml. 

TMOF peptide showed an [M+H]
+
 ion at m/z 1047.6 and a [M+2H]

2+
 ion at m/z 524.6. The 

LC/MS/MS  characteristics of TMOF are reported in Table 1. 

The recovery of TMOF was about 100% and was assessed by spiking a sample of 

haemolymph with a solution of standard TMOF, at a final TMOF concentration of 22 ng/ml. 

 

Incubation of larval midguts in Ussing chambers and fluorescence analysis of FITC-TMOF in 

whole mount tissues 

Larvae reared on the artificial diet were sacrificed on the second day of the last instar, and the 

midgut, deprived of the peritrophic membrane, was mounted as a sheet in the Ussing chambers, as 
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previously described (Fiandra et al., 2006). Tissues were perfused with 2.5 ml of the following 

physiological solution (in mM): 5 CaCl2, 24 MgSO4, 20 Kgluconate, 190 sucrose and 5 Tris 

adjusted to pH 7 in the haemolymph compartment, or 5 CAPS adjusted to pH 10 in the luminal one. 

The solutions, connected via Ag-AgCl voltage electrodes in series with agar bridges (3 M KCl, 

5.5% Agar) to a voltmeter for the measurement of the transepithelial voltage (Vt), were circulated 

by gas influx (100% O2) and maintained at 25°C in water-jacketed reservoirs. 

One hundred thirty µM of FITC-TMOF (GenScript Coorporation, USA) was added to the 

luminal solution, which contained a cocktail with the following peptidase inhibitors: 1 mM 1-10 

phenanthroline, 10 M bestatine and 10 M amastatine (Sigma-Aldrich, Italy). After 2 hours of 

incubation, the midgut was removed from the Ussing chambers, washed five times with the 

physiological solution and fixed for 30 minutes in 4% paraformaldehyde. After further five rinsing 

in PBS, the samples were mounted in DABCO (Sigma)-Mowiol (Calbiochem). The tissues covered 

with a coverslip were examined with a confocal laser scanning microscope imaging system (CLSM 

TCS SP2 AOBS- Leica Microsystems, Heidelberg, GmbH, Germany), equipped with an argon-

krypton laser and an UV laser. 

 

Results 

Production and characterization of tobacco plants co-expressing ChiA protein and polyTMOF 

peptide 

Tobacco plants co-expressing ChiA and TMOF peptides, obtained by crossing the two 

parental transformants, were subjected to Northern blot analysis, to monitor the expression of the 

two transgenes. The hybridization of the total RNA extracted from the hybrids showed the presence 

of both transcripts of the expected size, in 5 out of the 10 hybrids analyzed (Fig. 1A). The presence 

of the two bands, one of 0.4 kb (polyTMOF transcript) and the other of 2 kb (ChiA transcript), 

separately present in the parental lines and absent in the control plants, confirmed the success of the 

hybridization between transgenic lines. The presence of the recombinant ChiA protein in the 
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hybrids was showed by Western blot (Fig. 1B). A single band, with an estimated molecular mass of 

60 kDa, was detected in all the lines where the ChiA gene was actively transcribed. The 

immunodetection of TMOF was not performed, for the technical reasons already discussed 

elsewhere  (Tortiglione et al., 2002).  

 

Biological performance and survival of H. virescens  larvae fed on transformed tobacco plants 

We compared the larval development by combining the growth and survival into a single 

parameter, the total experimental biomass, which, after the maximum larval weight was attained, 

included also the weight of the pupae. The effect of the experimental conditions considered on this 

parameter is shown in Figure 2. The mean total experimental biomass obtained on the transformed 

and control plants was different in a highly significant way (analyzed with Repeated Measures 

ANOVA until day 10: F=8.824; df 3, 12; p=0.002). The interaction between diet and time was also 

highly significant (F=8.802; df 9, 36; p<0.001), indicating that the pattern of the total biomass 

growth curves obtained with transgenic and control tobacco plants were significantly different. 

Polynomial contrasts showed that the linear (F=10.731; df 3, 12; p=0.001) and quadratic (F=5.327; 

df 3, 12; p=0.014) components accounted for the differences among the curves. The lowest value of 

total biomass growth curve was registered for the experimental larvae fed on the hybrid transformed 

plants. On day 8, the total biomass of the larvae fed on control plants was significantly higher than 

the total biomass of both ChiA HDEL 9 and hybrid fed larvae (Tukey’s test, α=0.05). On day 10, 

the total biomass of larvae fed on control plants was significantly higher than that registered for all 

the other three experimental groups (Tukey’s test, α=0.05). 

The mean time to the completion of development, until the adult emergence , also differed 

significantly (F=5.949; df 3, 122; p=0.001) among the different experimental treatments, as well as 

the pre-adult mortality rate (Table 2) (F=8.175; df 3, 12; p=0.003). Larvae fed on the hybrid 

transformed lines showed significantly longer development compared to control, and also a 

significantly lower survival rate (Tukey’s test, α=0.05). 
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Peritrophic membrane permeability affected by ChiA ingestion 

To demonstrate that feeding of tobacco budworm larvae on transgenic plants expressing 

ChiA enhances the permeability of PM, we determined in vitro the flux of methylene blue through 

the PMs isolated from larvae reared on the different plant genotypes, starting from the first day of 

the fourth instar. The reduction of the rearing time on transgenic plants was motivated by the need 

of using tobacco budworm larvae exposed to the ChiA activity for shorter time intervals, as longer 

exposures, starting from egg hatching to the mature larvae, resulted in fragility of PMs and in poor 

synchronization of the biological material. The impact of feeding on body weight (Table 3) was 

evident even for the shorter time intervals considered, and in agreement with the trend obtained in 

the experiment reported in Figure 2. Moreover, an increase of the mortality rate was observed after 

120 h for ChiA HDEL 9 (12.5%) and hybrids (19%).  

The permeability of the PMs was measured in fifth instar larvae fed on the experimental 

leaves for 132 h, because at this time of development the dimensions of the PM were wide enough 

to avoid any leakage between the two compartments in the Ussing chambers. The experiments 

could not be performed with larvae fed on the hybrid plants because the PM was too small. The 

PMs were incubated in the presence of methylene blue in the endoperitophic compartment: this dye 

is a reliable and easily quantified tracer of PM permeability (Rao et al., 2004; Corrado et al., 2008; 

Fiandra et al., 2009). Figure 3 shows that the flux of methlylene blue was significantly higher than 

that of controls in larvae reared on ChiA-expressing tobacco plants, whereas, as expected, the flux 

across the PMs explanted from larvae fed with the polyTMOF R1-2 line did not differ from that of 

controls. 

To demonstrate that the increased permeability was due to the hydrolytic activity of 

AcMNPV ChiA on the PM chitin mesh, this enzyme was extracted and purified from ChiA HDEL 9 

genotypes and its activity tested on the permeability of PMs of control larvae isolated in Ussing 
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chambers. Figure 4 shows that PM incubation with 40 µg/ml ChiA in the endoperitrophic 

compartment caused a significant increase of TMOF flux compared to control.  

 

Detection of TMOF in the haemolymph of the experimental larvae. 

The analysis of haemolymph, collected 132 h after the onset of feeding on experimental 

plants, showed that TMOF was undetectable in all samples.  

 

In vitro distribution of permeating FITC-TMOF within the midgut epithelium. 

The biological effects of TMOF recorded on tobacco budworm larvae (Nauen et al., 2001; 

Tortiglione et al., 2002), enhanced by ChiA as here reported, and the apparently contradictory 

absence of a detectable amount of TMOF in the haemolymph of affected larvae, prompted us to 

further investigate the TMOF fate after ingestion. TMOF receptors in mosquitoes are located on the 

basolateral plasma membrane of the midgut epithelium (Borovsky et al., 1994): if similar receptors 

were also present in H. virescens, the observed biological effects could be explained by the capture 

of the low permeating amounts, which are, then, prevented from reaching the haemolymph. We 

have shown that TMOF permeability across the midgut is very low and most part of its transfer 

takes place by diffusion through the paracellular route across the septate junction (Fiandra et al., 

2009). The enrichment in this microenvironment of TMOF promoted by ChiA could more easily 

exert a detectable effect if the target receptors were located nearby. To assess this, we observed the 

distribution of FITC-TMOF molecules permeating in vitro a perfused midgut, looking for the 

possible occurrence of discrete signals on the plasma membrane, which would be indicative of a 

specific interaction with a putative receptor.  

The midguts of last instar larvae, isolated in Ussing chambers, were incubated for two hours 

in the presence of 130 µM FITC-TMOF in the luminal compartment. The tissues, rapidly rinsed and 

immediately fixed to preserve the distribution of the peptide in the intercellular spaces (Fiandra et 

al., 2009), were observed as whole mounts by confocal microscopy. The acquisition of a single 
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optical section at the junctional level of the epithelium (Figure 5A) revealed that FITC-TMOF was 

extensively localized in the paracellular space and, therefore, permeated across the epithelium by 

this route. An optical section acquired at a deeper plane of the tissue (Figure 5B) confirmed the 

intercellular localization of the peptide and showed intense fluorescent dots around the cells, 

suggesting binding of the peptide to specific sites in the basolateral membrane of the epithelial cell. 

Numerous spots of FITC-TMOF molecules associated with the basolateral membranes were even 

more evident in a more basal optical section (Figure 5C). In this section, the freely dispersed 

fluorescent TMOF molecules had already left the basal intercellular spaces, so that only the bound 

peptides were apparent as spots on the cell surface. 

 

Discussion 

In recent decades, a number of research efforts have been focused on the identification and 

use of new bioinsecticide molecules (Whetstone and Hammock, 2007; Dayan et al., 2009), in 

response to the growing demand from public opinion for new production protocols in agriculture 

less dependent on the use of chemical insecticides. The use of biocontrol agents and their possible 

integration with transgenic plants appears a very promising alternative (Bale et al., 2008). 

Moreover, the study of the molecular bases of the interactions between insects and their natural 

antagonists represents a very attractive possibility for the isolation of new molecules and genes for 

insect control (Beckage and Gelman, 2004; Pennacchio and Strand, 2006; Ferry et al., 2006; 

Whetstone and Hammock, 2007). This objective is pursued not only in the perspective of finding 

alternative genes for engineering new insect-resistant plants, which is highly needed (Gatehouse, 

2008), but also to develop new bioinsecticides and effective delivery strategies, not exclusively 

based on the use of transgenic plants. This approach aiming at a sustainable exploitation of insect 

natural antagonism, obviously applies to a large variety of insect antagonists, which offer a virtually 

unlimited reservoir of new molecules with insecticide activity (Wethstone and Hammock, 2007). 
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The disruption of insect life and reproduction can be achieved not only by using natural 

antagonists and molecules/genes derived from them, but also by targeted manipulation of key 

signalling pathways which regulate physiological homeostasis. This was suggested a long time ago, 

and the idea of manipulating the titre and metabolism of peptides with endocrine functions appeared 

particularly amenable to develop new insect control technologies, even though quite a few concerns 

were raised about the effective occurrence of peptide gut absorption (Schneidermann, 1984; Keeley 

and Hayes, 1987; Menn and Borkovec, 1989). However, the peptide/protein degradation in the gut 

upon ingestion is not an absolute barrier, and a consistent experimental evidence indicates that 

absorption of molecules and macromolecules takes place at detectable levels (Bavoso et al., 1995; 

Kurahashi et al., 2005; Casartelli et al., 2005; 2007; Uchoa et al., 2006; Fiandra et al., 2009). As the 

background information in these basic field of study continues to grow, the possibility of integrating 

different tools and approaches to develop new biotechnologies for insect control appears to be 

particularly promising, and certainly worthy of further research efforts.  

Among the numerous peptides which were isolated and characterized in the last three 

decades, Aea-TMOF appeared of particular interest, as it targets the gut of mosquitoes, by inhibiting 

trypsin synthesis, through the interaction with a receptor localized on the haemolymphatic side of 

the gut epithelium (Borovsky et al., 1994). Moreover, the same molecule is also active on H. 

virescens larvae (Nauen et al., 2001), even when expressed in transgenic plants (Tortiglione et al., 

2002; 2003). The strategy pursued in these latter studies was to deliver in the gut, with different 

constructs, a TMOF precursor made of multiple peptide units, spaced by dibasic residues, Arg-Arg, 

as potential post-translational cleavage site. The significant impact on biological performance and 

survival of H. virescens fed on these transgenic plants corroborated the validity of the expression 

approach proposed, which, in principle, could be applied to any other peptide to be used for insect 

control. However, the mild effects observed in terms of mortality, further corroborated by the 

negative impact on the growth of tobacco budworm larvae which ingested TMOF fused with the 

coat protein of the tobacco mosaic virus (Borovsky et al., 2006),  suggested the idea of combining 
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this transgene with others capable to hit different functional targets, possibly exerting a synergistic 

interaction. 

Among the different alternatives available, we decided to focus our attention on AcMNPV 

ChiA, which proved to be active, upon ingestion, in lepidopteran larvae, by disrupting the 

peritrophic membrane and increasing its permeability (Rao et al., 2004). This determined direct 

negative effects (i.e. developmental alterations, mortality) on the larvae fed on artificial diet 

containing the recombinant ChiA (Rao et al., 2004) or on transgenic plants (Corrado et al., 2008). 

These adverse effects on larval development well agreed with the apparent delamination and 

perforation observed in enzyme-treated PMs (Rao et al., 2004), and corroborated the notion that PM 

has a primary physiological role in the compartmentalization and recirculation of digestive 

enzymes, as proposed by Terra (reviewed in: Terra, 2001; Terra and Ferreira, 2005), essential for 

the full exploitation of dietary compounds. 

Thus, the availability of transgenic plants expressing two genes with mild but significant 

effects, potentially able to interact in a synergistic way, to enhance gut absorption, stimulated the 

idea of generating hybrids, using them as parental lines. This not only to test experimentally a new 

combination of bioinsecticide molecules, but also to validate a delivery strategy per os of toxic 

molecules targeting haemocoelic receptors, which, even though already proposed with encouraging 

results (Wang et al., 2005; Arakane and Muthukrishnan, 2010), has never been thoroughly 

investigated. 

The stronger detrimental effect on growth and survival recorded for larvae reared on the 

hybrid tobacco line (Fig. 2, Table 2) indicates that a positive interaction takes place between the two 

transgenes concurrently expressed in the same plant. The data generated by this study show that the 

hydrolytic activity of ChiA on the PM of tobacco budworm larvae enhances the permeation of 

TMOF molecules, increasing the hormone concentration in the ectoperitrophic space, in direct 

contact with the intestinal epithelium. The experiments performed in vitro demonstrate that the 

incubation of larval PM with ChiA extracted from transgenic tobacco does increase the diffusion of 
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TMOF across the membrane to the ectoperitrophic compartment (Fig. 4). The chitinolytic effect 

was also observed in the PMs of larvae reared on the ChiA-expressing tobacco line, as 

demonstrated by the higher flux of the test molecule methylene blue through the isolated 

membranes (Fig. 3). This latter experiment directly demonstrates that feeding on transgenic plants 

is effective in disrupting the PM, and the results are comparable to those originally recorded in vitro 

(Rao et al., 2004). The enhanced TMOF concentration at the apical side of the intestinal epithelium 

due to the PM lesions increased TMOF flux through the epithelium, as corroborated by the more 

pronounced toxicity of the hybrid plants. Therefore, we looked for the presence of the peptide in the 

haemolymph. We expected different titres directly associated with the biological effects observed, 

although quite low, due to the poor permeability of this peptide across the lepidopteran midgut 

(Fiandra et al., 2009). But this was not the case, as TMOF was undetectable in all haemolymph 

samples analyzed. However, we cannot rule out that TMOF may be chemically modified after 

ingestion, attaining a different molecular mass.  

The alteration of larval growth upon TMOF ingestion and, more pronouncedly, when hybrid 

tobacco genotypes were eaten (Table 2), clearly indicates that an increase of the haemolymphatic 

titre of TMOF is not necessary for the biological effects observed. This apparent contrast can be 

reasonably reconciled by taking into consideration the specific biological features of this peptide. 

According to the model described in their review by Borovsky et al. (2003), TMOF produced from 

Aedes aegypti gene (Aea-TMOF) and fed to mosquito larvae, affects the normal growth and 

survival of the insects by inhibiting trypsin synthesis in midgut cells, after its binding to gut 

receptors on the haemocoel side of the tissue (Borovsky et al., 1994). In a recent study on 

Spodoptera littoralis larvae, the presence of Aea-TMOF receptors on the basolateral membrane of 

midgut cells has been hypothesized (Lemeire et al., 2008). The effect of ingested and injected Aea-

TMOF on trypsin biosynthesis (Nauen et al., 2001) and on the growth of H. virescens larvae 

(Tortiglione et al., 2002; 2003) also suggests the presence of a TMOF-like hormone in Lepidoptera, 

and, therefore, of receptors similar to those identified in mosquitoes. In the present study we show 
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that FITC-TMOF crosses H. virescens larval midgut by diffusion through the paracellular pathway 

(Fig. 5A), as in B. mori (Fiandra et al., 2009). A specific binding of TMOF to the basolateral 

membrane of the enterocytes of lepidopteran larvae has not yet been described. According to our 

results, we can reasonably surmise that, as soon as FITC-TMOF reaches the intercellular spaces, it 

binds to well defined sites on the basolateral membrane of the intestinal cells (Fig. 5B, C), as 

suggested by the numerous fluorescent spots clearly visible in the confocal images. Overall, based 

on the experimental data we gathered so far, we can assume that ingested TMOF molecules can 

pass more freely across the damaged PM, reaching a higher concentration in the ectoperitrophic 

space; this allows a more rapid diffusion along the septate junction, that determines higher 

concentrations of TMOF, or of TMOF-like bioactive molecules, in the microenvironment where the 

putative receptors are located, with obvious negative consequences on trypsin biosynthesis.  

In conclusion, this study directly demonstrates that chitinases, besides being used as 

biopesticides, can be profitably exploited to compromise the PM permeability and, when delivered 

in tandem with other peptide/protein toxins, to enhance their gut absorption rates. This significantly 

contributes to the development of innovative delivery strategies of bioinsecticides, by enriching the 

toolkit that biotechnology can use in the continuous effort towards a more effective exploitation of 

toxin biodiversity for sustainable insect control.  
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Figure Captions 

Figure 1. (A) Northern blot hybridization of ChiA and polyTMOF transcripts. 1-10: ChiA-

polyTMOF hybrids; R1-2: tobacco parental line expressing the polyTMOF synthetic gene; ChiA: 

tobacco parental line expressing ChiA gene; NN: untransformed tobacco plant. 

(B) Western blot analysis of ChiA protein. NN: untransformed tobacco plant, R1-2: transgenic 

tobacco parental line expressing polyTMOF synthetic gene; ChiA: tobacco parental line expressing 

ChiA gene; 1, 2, 6, 8 and 10: ChiA polyTMOF hybrids. The blot was probed with the rabbit anti-c-

myc as primary antibody and anti-rabbit IgG conjugated with horseradish peroxidise as a secondary 

antibody. 

 

Figure 2. Growth curves of the total biomass (Mean ± SEM) of Heliothis virescens larvae as 

affected by feeding with leaf disks obtained from transgenic or control plants (Repeated Measures 

ANOVA: F=8.82; df 3,12; p=0.002). Total larval biomass combines larval growth and survival and 

is calculated as the sum of the weight of the surviving larvae in each treatment. For each treatment, 

n=16 per replicate, for a total of 4 replicates. 

 

Figure 3. Methylene blue flux across the isolated peritrophic membrane of Heliothis virescens 

larvae fed with NN (control), ChiA HDEL 9 or polyTMOF R1-2 tobacco genotypes. Mean ± SEM 

of at least 3 replicates. Student’s t-test vs control (*P < 0.05). 

 

Figure 4. TMOF flux across the isolated peritrophic membrane of Heliothis virescens larvae 

incubated in the absence (control) or in the presence of 40 µg/ml ChiA. Mean ± SEM of 3 

replicates. Student’s t-test vs control (*P < 0.05). 

 

Figure 5. Confocal laser scanning micrographs (single optical sections) of a whole-mount midgut 

after 2 h of incubation in the presence of 130 μM FITC-TMOF in the luminal compartment. The 
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optical sections reported on the right side roughly correspond to the scheme of a traversal section of 

the midgut epithelium on the left side. (A): optical section acquired at the junctional level of the 

epithelial cells monolayer; (B): optical section acquired at the basal side, immediately under the 

junction; (C): a more basal optical section. Arrows indicate binding of FITC-TMOF to the 

basolateral membrane of cells. Midguts incubated in the absence of FITC-TMOF did not emit 

fluorescence when excited at the wavelength used (not shown). Bars: 20 μm (A), 10 μm (B and C). 

C: columnar cell; G: goblet cell; mv: microvilli; bi: basal infoldings; sj: septate junction. 

 

 



Table 1 MS-MS Instrumental parameters optimized for the detection of TMOF (DP Declustering 

potential, CE Collision Energy) 

Precursor ion 

[M+H]
+
 (m/z) 

Product ions 

(m/z) 

DP (V) CE (V) 

1047,6 601,6 

504,4 

407,7 

68 46 

59 

53 

Precursor ion 

[M+2H]
+2 

(m/z) 

Product ions 

(m/z) 

DP (V) CE (V) 

524,6 385,4 

213,0 

279,4 

47 29 

20 

25 
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Table 2. Developmental time, from egg hatching to adult emergence and  percent survival rates 

until adult emergence of Heliothis virescens larvae fed with control or transgenic leaf-disks. Means 

denoted with different letters are significantly different (Tukey’s test, α=0.05). For each treatment, 

n=16 per replicate, for a total of 4 replicates. See Materials and Methods for an explanation relative to 

the SE of the survival rate. 

 

 

Leaf-disks fed 
Developmental Time 

(Mean ± SEM) 

Survival 

Mean Percentage (+SEM to –SEM) 

NN 23.44 ± 0.26   a 
75.27    a 

(81.48 – 68.47) 

PolyTMOF R1-2 
24.19 ± 0.31  ab 50.08   ab 

(57.62 – 42.54) 

ChiA HDEL 9 
24.58 ± 0.32   b 48.51   ab 

(56.07 – 40.99) 

Hybrids 
25.47 ± 0.46   b 24.74    b 

(31.53 – 18.52) 
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Table 3 Larval weight of H. virescens larvae 120, 132 and 144 h after they started to feed, as newly 

moulted fourth instars, on the tobacco genotypes NN (control), ChiA HDEL 9, polyTMOF R1-2, 

hybrid. 

 
Larval weight (g) 

 120 h 132 h 144 h 

NN 
0.20 ± 0.01 

(16) 

0.22 ± 0.01 

(16) 

0.23 ± 0.01 

(10) 

ChiA HDEL 9 
0.22 ± 0.01 

(14) 

0.24 ± 0.02 

(14) 

0.23 ± 0.02 

(8) 

PolyTMOF R1-2 
0.22 ± 0.01 

(16) 

0.24 ± 0.01 

(16) 

0.20 ± 0.01
*
 

(10) 

Hybrid 0.16 ± 0.01
**

 

(13) 

0.19 ± 0.01
*
 

(13) 

0.20 ± 0.03 

(7) 

 

Symbols indicate significant differences by Student’s t-test: 
*
p < 0.05; 

**
p < 0.01 vs. corresponding 

control for each experimental time. 
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