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Abstract

In this paper we show how the analysis of identification of simultaneous system of equations
with different volatility regimes can be addressed is conventional likelihood-based setup, generalizing
previous works in different directions. We discuss general conditions for identification and one of
the results shows that an adequate number of different levels of heteroskedasticity is sufficient to
identify the parameters of the structural form without the inclusion of any kind of restrictions. A
Full Information Maximum Likelihood (FIML) algorithm is discussed.
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I Introduction

The issue of identification of statistical and econometric models has been thoroughly debated in the
literature. The seminal contributions by Haavelmo (1947), Koopmans, Rubin and Leipnik (1950), and
Rothenberg (1971) represent milestones in this field. Rothenberg (1971), in particular, summarized,
in a single framework based on the information matrix, different approaches to identification, and
proposed, as a particular case, necessary and sufficient conditions for global and local identification of
simultaneous equation systems. The main idea, that nowadays has become the traditional approach,
is to restrict the parametric space by imposing restrictions on the parameters. In particular, in
the simultaneous equation models, the problem of identification arises because of a non univocal
correspondence between the identified parameters of the reduced form, and those of the structural
form. Economic knowledge, thus, helps in considering different kinds of constraints on the parameters
of the structural form that allow to draw inference based on the information contained in a sample.
In some cases, however, such economic knowledge of the problem, might be not sufficient to impose
such restrictions.

An alternative approach is to substitute the idea of restricting the parametric space with those of
finding further information in the data to be included in the identification strategies. In a recent paper,
Rigobon (2003), exploits the intuition in Wright (1928), to propose a solution of the identification
problem based on the heteroskedasticity in the data. In particular, he provides necessary and sufficient
conditions for identification of a bivariate system of simultaneous equations with two or more regimes
of volatility, while a necessary condition only for more general systems. Klein and Vella (2003) and
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Lewbel (2008) also uses heteroskedasticity to identify simultaneous and mismeasured equation models,
imposing restrictions on the correlation between some regressors and the heteroskedastic errors. In all
these papers, however, the inspiration for identification and estimation of the parameters comes from
the instrumental variable approach or generalized method of moments (GMM).

In the present paper, instead, we provide a specification of simultaneous equation systems that
explicitly models the heteroskedasticity of the structural shocks, and allows us to write and treat the
likelihood function. The identification conditions, thus, are studied following the Rothenberg (1971)
approach, and the estimation of the parameters is performed through the Full Information Maximum
Likelihood (FIML) procedure.

This strategy allows us to generalize the results in Rigobon (2003) and provide necessary and
sufficient conditions for identification of the structural parameters in the case of general systems of
equations with non diagonal variance covariance matrix of the structural residuals. The second main
result concern the conditions for identification when combining the information on the different states
of volatility, with those coming from economic theory, leading to linear restrictions in the parameters
of the structural form.

The rest of the paper is organized as follows: In Section II we first present the statistical model
and derive the conditions for identification of the structural parameters. Section III describes the
statistical inference while Section IV concludes.

II Identification in a simultaneous equation model with heteroskedas-
ticity

The idea, directly inspired from Rigobon (2003), is to increase the number of relations that link the
parameters in the reduced form to those in the structural form. Consider the following simple case:

pt = βqt + εt (1)
qt = αpt + ηt (2)

where εt and ηt are the uncorrelated structural shocks with variances σ2
ε and σ2

η, respectively. The
model, without restrictions, is not identified and, given the data for pt and qt, one can only estimate
the covariance matrix of the reduced form Ω̂:

Ω̂ =
1

(1− αβ)2

[
β2σ2

η + σ2
ε βσ2

η + ασ2
ε

· σ2
η + α2σ2

ε

]
(3)

The model is clearly not identified in that the covariance matrix of the reduced form provides only three
moments faced of four unknowns in the structural form: α, β, σ2

ε and σ2
η. Following the traditional

approach, one single exclusion constraint in either α or β reaches the identification. If, instead, we
suppose two regimes of volatility for the structural shocks, and that the structural parameters remain
constant over the regimes, then we will have six unknowns (α, β, σ2

ε1, σ2
η1, σ2

ε2 and σ2
η2), but two

covariance matrix with three estimated moments each. The system is thus composed by six equations
in six unknowns, providing a full correspondence between the parameters of the structural and reduced
forms. If such equations are independent, the model is identified. This approach has an instrumental
variable interpretation, in that, in a classical supply-demand scheme as (1), the rise in the variances
of one of the two structural shocks can be seen as a valid probabilistic instrument indicating a higher
probability of the curve to move leaving unchanged the other.

II.1 A simultaneous equation model with heteroskedastic errors

In this section we present an alternative specification that explicitly models the heteroskedasticity of
the structural shocks. As in the previous case, we first discuss the simplest case of two regimes of
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volatility only, while a generalization will be provided in the next sections. A simplified simultaneous
equation model with different regimes of volatility can be written as:

Byt = (Ig +ADt) εt (4)

where yt is the vector of g endogenous variables, εt is the vector of structural shocks, B is the (g × g)
invertible matrix of simultaneous relationships among the endogenous variables. A is a (g × g) invert-
ible matrix that captures the different states of volatility, while Dt is a diagonal matrix assuming only
0− 1 values, indicating whether, at time t, the i-th endogenous variable is in a state of high (1) or low
(0) volatility. In the simplest case of only two equations, the system becomes:(

1 β12

β21 1

)(
y1t

y2t

)
=

(
I2 +

(
a11 a12

a21 a22

)(
d1 0
0 d2

))(
ε1t
ε2t

)
. (5)

A similar specification has been proposed by Favero and Giavazzi (2002) in which, however, the dit are
simple intervention dummies, and the identification problem has been solved with exclusion restrictions
in the dynamic part of the model. In this simple case, there are four possible volatility regimes, given
by the possible combinations of d1 and d2.

The structural shocks εt are assumed to be uncorrelated (this assumption will be relaxed in the
following sections) with a constant covariance matrix E (εtε′t) = Λ. When both variables are in a state
of low volatility, i.e. Dt = 0, the model appears as a standard system of equations, without restriction
on the B parameters. When one or both variables are in a state of high volatility, instead, the aii
parameters act as multiplicative factors for the structural shocks, while the off diagonal values aij
allow for the propagation of shocks to other variables. If the A matrix is restricted to be diagonal, the
structural shocks do not propagate to other variables directly through the covariance matrix. These
interpretations, of course, apply to the more general model in (4).

Based on the invertibility of the B matrix, the reduced form of the model simply becomes:

yt = B−1 (Ig +ADt) εt (6)

or equivalently
yt = B−1Ctεt (7)

where Ct = (Ig +ADt). The covariance matrix of the endogenous variables is E (yty′t) = B−1CtΛC ′tB
−1′,

and changes over time because of Ct.
The heteroskedasticity, thus, is intended as different regimes of volatility that might apply to one

or more variables in the system. This approach to model the heteroskedasticity implicitly imposes
a maximum number of regimes which, however, becomes consistent as the number of dependent
variables increases. As in Rigobon (2003), in this approach it is only required that some form of
heteroskedasticity is present in the data, such as crisis, policy shifts, changes in collecting the data, or
cross-sectional peculiarities. Alternative approaches, instead, uses ARCH-based model for the residuals
of the reduced form in order to obtain identification1.

If we suppose that the structural shocks follow a normal random variable, the likelihood function
of the structural form in (4) can be written in the following way:

L (B,A,Λ) =
T∏
t=1

∣∣C−1
t B

∣∣ (2π)−g
T
2 |Λ|−

T
2 exp

{
−1

2

T∑
t=1

(
C−1
t Byt

)′ Λ−1
(
C−1
t Byt

)}
(8)

and the log likelihood function

l (B,A,Λ) = C +
T∑
t=1

log
∣∣C−1

t B
∣∣− T

2
log |Λ| − 1

2

T∑
t=1

(
C−1
t Byt

)′ Λ−1
(
C−1
t Byt

)
= C −

T∑
t=1

log |Ct|+ T log |B| − T

2
log |Λ| − 1

2

T∑
t=1

(
C−1
t Byt

)′ Λ−1
(
C−1
t Byt

)
(9)

1See Caporale et al. (2002), Dungey and Martin (2001), King et al. (1994), Rigobon (2002). Sentana and Fiorentini
(2001) study identification in conditionally heteroskedastic factor models.
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where T is the number of observation, g is the number of equations and, as before, Ct = (Ig +ADt).
As we will see below, the likelihood function will be used for estimating the unknown parameters of
the model by means of the FIML approach.

II.2 Specification and identification in a model with two regimes

In this section we study the identification of the simultaneous equation system in (4) in the simplest
case of s = 2 regimes of volatility. The generalization is not straightforward and will be the argument
of the next section. In the case of two regimes of volatility we will have only two distinct matrices D1

and D2 that, at each instant t show at each state of volatility the system is. The model, thus, can be
rewritten with two separate equations, one for each regime:

Byt = (Ig +AD1) εt (10)
Byt = (Ig +AD2) εt (11)

where equation (10) is for the observations in the first state of volatility, and (11) for those in the
second. The associated covariance matrices for the error terms are:

E
(
Ctεtε

′
tC
′
t

)
= (Ig +AD1) Λ (Ig +AD1)′ (12)

E
(
Ctεtε

′
tC
′
t

)
= (Ig +AD2) Λ (Ig +AD2)′ . (13)

The reduced form of the model can be written as

yt = B−1 (Ig +AD1) εt (14)
yt = B−1 (Ig +AD2) εt (15)

with the two covariance matrices for the dependent variables in the two regimes:

E
(
yty
′
t

)
= B−1 (Ig +AD1) Λ (Ig +AD1)′B−1′ = Ω1 (16)

E
(
yty
′
t

)
= B−1 (Ig +AD2) Λ (Ig +AD2)′B−1′ = Ω2. (17)

If we assume that the structural shocks εt behave as a multivariate normal variable, the identifi-
cation can be studied as in the traditional equation models, i.e. concentrating on the relationships
between the parameters in the structural and reduced forms. The normality is required to impose
that the distribution of yt depends only on the parameters of the reduced form. Following Rothenberg
(1971), the identifiability of the structure depends on the uniqueness of solutions of the following
system

(Ig +AD1)−1BΩ1B
′ (Ig +AD1)−1′ − Λ = 0 (18)

(Ig +AD2)−1BΩ2B
′ (Ig +AD2)−1′ − Λ = 0 (19)

RAvecA+RBvecB +RΛv (Λ)− r = 0 (20)

where ψ (A,B,Λ) = RAvecA + RBvecB + RΛv (Λ) − r = 0 is a set of linear restrictions on the
parameters A, B and Λ. The vector v (Λ) denotes the 1

2g (g + 1) elements that is obtained from
vecΛ by eliminating the supra diagonal elements of Λ or, equivalently, Dgv (Λ) = vecΛ, with Dg the
duplication matrix 2. Equations (18)-(20) form a system of non-linear equations (because of (18) and
(19)) in A, B and v (Λ). Differentiating (18)-(20) gives

−C−1
1 dAD1C

−1
1 BΩ1B

′C−1′
1 + C−1

1 dBΩ1B
′C−1′

1 + C−1
1 BΩ1dB′C−1

1

−C−1
1 BΩ1B

′C−1′
1 D1dA′C−1′

1 − dΛ = 0
−C−1

2 dAD2C
−1
2 BΩ2B

′C−1′
2 + C−1

2 dBΩ2B
′C−1′

2 + C−1
2 BΩ2dB′C−1

2

−C−1
2 BΩ2B

′C−1′
2 D2dA′C−1′

2 − dΛ = 0
RAvecdA+RBvecdB +RΛdv (Λ) = 0.

2See as Magnus and Neudecker (2007), pag 57.
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Using the property vec (ABC) = (C ′ ⊗A) vecB, the system of equations can be written

−
[
C−1

1 BΩ1B
′C−1′

1 D1 ⊗ C−1
1

]
dvecA+

[
C−1

1 BΩ1 ⊗ C−1
1

]
dvecB +

[
C−1

1 ⊗ C−1
1 BΩ1

]
KgdvecB

−
[
C−1

1 ⊗ C−1
1 BΩ1B

′C−1′
1 D1

]
KgdvecA− dvecΛ = 0

−
[
C−1

2 BΩ2B
′C−1′

2 D2 ⊗ C−1
2

]
dvecA+

[
C−1

2 BΩ2 ⊗ C−1
2

]
dvecB +

[
C−1

2 ⊗ C−1
2 BΩ2

]
KgdvecB

−
[
C−1

2 ⊗ C−1
2 BΩ2B

′C−1′
2 D2

]
KgdvecA− dvecΛ = 0

RAdvecA+RBdvecB +RΛdv (Λ) = 0.

where Kmn is the commutation matrix 3 and is defined such that KmnvecA = vecA′. Using the
property of the commutation matrix and duplication matrix, we rewrite the system as

−
(
Ig2 +Kg

) [
C−1

1 BΩ1B
′C−1′

1 D1 ⊗ C−1
1

]
dvecA+

(
Ig2 +Kg

) [
C−1

1 BΩ1 ⊗ C−1
1

]
dvecB

−Dgdv (Λ) = 0
−
(
Ig2 +Kg

) [
C−1

2 BΩ2B
′C−1′

2 D2 ⊗ C−1
2

]
dvecA+

(
Ig2 +Kg

) [
C−1

2 BΩ2 ⊗ C−1
2

]
dvecB

−Dgdv (Λ) = 0
RAdvecA+RBdvecB +RΛdv (Λ) = 0.

The Jacobian matrix, thus, can be written as

J (A,B) =

 −2Ng

[
C−1

1 BΩ1B
′C−1′

1 D1 ⊗ C−1
1

]
2Ng

[
C−1

1 BΩ1 ⊗ C−1
1

]
−Dg

−2Ng

[
C−1

2 BΩ2B
′C−1′

2 D2 ⊗ C−1
2

]
2Ng

[
C−1

2 BΩ2 ⊗ C−1
2

]
−Dg

RA RB RΛ

 . (21)

with Ng = 1
2

(
Ig2 −Kg

)
, a
(
g2 × g2

)
matrix with reduced rank g (g + 1) /2. We note that the Jacobian

matrix only depends on A and B, and not on Λ (since the non-linearity in (18)-(20) are on A and B).
Following Rothenberg (1971), a sufficient condition for (A0, B0,Λ0) to be locally identifiable is that
J , evaluated at Λ0 has full column rank. A necessary condition, however, is that the number of row
needs to be, at least, as large as the number of columns. In the present case, the sub matrix composed
by the first two rows in (21) is of dimension

(
2g2 ×

[
2g2 + 1

2g (g + 1)
])

, indicating the necessity of
including at least 1

2g (g + 1) restrictions.
If one is not interested in including restrictions on the covariance matrix Λ, i.e. RΛ = 0, the last

block-column in (21) is always of full column rank (Dg is of full column rank) and the identification
problem reduces to the first two block-column, i.e.

J (A,B) =

 −2Ng

[
C−1

1 BΩ1B
′C−1′

1 D1 ⊗ C−1
1

]
2Ng

[
C−1

1 BΩ1 ⊗ C−1
1

]
−2Ng

[
C−1

2 BΩ2B
′C−1′

2 D2 ⊗ C−1
2

]
2Ng

[
C−1

2 BΩ2 ⊗ C−1
2

]
RA RB

 (22)

that needs to be of full column rank.
Suppose to consider the simple and realistic case that in the first regime all variables are in a state

of high volatility (D1 = Ig), and in the second all are in a state of low volatility (D2 = 0), which is
the case investigated in Rigobon (2003). The previous matrix reduces to:

J (A,B) =

 −2Ng

[
C−1

1 BΩ1B
′C−1′

1 D1 ⊗ C−1
1

]
2Ng

[
C−1

1 BΩ1 ⊗ C−1
1

]
0 2Ng

[
C−1

2 BΩ2 ⊗ C−1
2

]
RA RB

 . (23)

For simplicity of notation, let define the following non-singular matrices

D∗1 =
[
C−1

1 BΩ1B
′C−1′

1 D1 ⊗ C−1
1

]
E∗1 =

[
C−1

1 BΩ1 ⊗ C−1
1

]
E∗2 =

[
C−1

2 BΩ2 ⊗ C−1
2

]
3See as Magnus and Neudecker (2007), pag 54. When m = n it is often written Kn instead of Knn.
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that allows us to rewrite the J matrix (23) as

J (A,B) =

 −2NgD
∗
1 2NgE

∗
1

0 2NgE
∗
2

RA RB

 (24)

whose rank does not change if we post-multiply by a non-singular matrix as follows

J∗ (A,B) =

 −2NgD
∗
1 2NgE

∗
1

0 2NgE
∗
2

RA RB

( −D∗−1
1 0

0 E∗−1
2

)
=

 Ng 2NgE
∗
1E
∗−1
2

0 2Ng

−RAD∗−1
1 RBE

∗−1
2

 . (25)

The condition of full column rank of this matrix is equivalent to the condition that the following
homogeneous system of

(
2g2 + q

)
equations in 2g2 unknowns Ng 2NgE

∗
1E
∗−1
2

0 2Ng

−RAD∗−1
1 RBE

∗−1
2

x = [0] (26)

has only one admissible solution x = [0]. The system can be split into three systems of equations that
are connected because they share the same unknowns

−Ngx1 +NgE
∗
1E
∗−1
2 x2 = 0
Ngx2 = 0

−RAD∗−1
1 x1 +RBE

∗−1
2 x2 = 0

(27)

Following Magnus (1988), the second matrix equation can be solved as

x2 = D̃gq2

where D̃g, defined in Magnus (1988), is a g2×g (g − 1) /2 full column rank matrix and q2 is a g (g − 1) /2
vector of free elements. Substituting the second matrix equation into the first, the system becomes

−Ng

(
x1 − E∗1E

∗−1
2 D̃gq2

)
= 0

D̃gq2 = x2

−RAD∗−1
1 x1 +RBE

∗−1
2 x2 = 0

(28)

The first equation, thus, can be solved as before

x1 − E∗1E∗−1
2 D̃gq2 = D̃gq1 (29)

and substituting into the third
x1 − E∗1E

∗−1
2 D̃gq2 = D̃gq1

D̃gq2 = x2

−RAD∗−1
1

(
E∗1E

∗−1
2 D̃gq2 + D̃gq1

)
+RBE

∗−1
2 D̃gq2 = 0

(30)

The last equation, however, can be also written as(
RAD

∗−1
1 E∗1E

∗−1
2 −RBE∗−1

2

)
D̃gq2 +RAD

∗−1
1 D̃gq1 = 0 (31)

which proves that, even if we do not have any economic knowledge about possible restrictions on the
simultaneous relations among the endogenous variables, i.e. if RB = 0, a suitable choice of RA can be
sufficient for allowing the parameter to be identifiable. In other words, the system of equations has
the unique solution {

q1

q2

}
= 0 (32)
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if and only if the following (q × g (g − 1) /2) matrix

RA
[
D∗−1

1 E∗1E
∗−1
2 RAD

∗−1
1

]
D̃g (33)

has full column rank. This condition, of course, strongly depends on the number of states of volatility
and on the variables that move from one state to another, as indicated by the Di matrices. Actually,
one might argue that in the previous example we simply moved the problem of identification from the
B to the A matrix. However, without any restriction, the model is extremely rich, especially in the
specification of the dynamics of structural shocks, that can be transmitted from one variable to another,
either by the non diagonal elements of the covariance matrix Λ, or by the non diagonal elements of
the A matrix, when the variable is in a state of high volatility. One reasonable possibility, thus, could
be to restrict the A matrix to be simply diagonal. This solution provides g (g − 1) restrictions, that
exceeds the necessary condition of g (g − 1) /2 restrictions discussed above. However, whether these
restrictions are sufficient for identification needs to be tested by using the rank condition in (33).
The previous example is limited in two directions: a) it considers two states of volatility only, b) the
sufficient condition has been calculated based on the particular specifications of D1 and D2. In the
next section we provide a generalization that fills these two shortcomings.

II.3 Specification and identification: The general case

In order to generalize the results of the previous section we need to write the model in a different way.
Once we have information on the different states of volatility, we can easily build a (T × s) matrix P
indicating, at each instant t, the state of volatility characterizing the yt. As an example, let define

P =


1 0 0
1 0 0
0 1 0
0 1 0
0 0 1

 (34)

indicating that the system is characterized by s = 3 states of volatility, and that for the first two
periods the active state is state 1, than state 2, and when t = 5, state three. Thus, using the
Hadamard product4 �, we can reorganize the data as

Y ∗ =
(
i′s ⊗ Y

)
�
(
P ⊗ i′g

)
(35)

where is and ig are two unit vectors of dimension (s× 1) and (g × 1), respectively, while Y is the
(T × g) matrix containing the data on the dependent variables. As an example where P is defined as
in (34), and where yt =

(
y1t y2t

)′, the Y ∗ matrix, becomes

Y ∗ =


y11 y21 0 0 0 0
y12t y22 0 0 0 0
0 0 y13 y23 0 0
0 0 y14 y24 0 0
0 0 0 0 y15 y25

 . (36)

In the same way, we can define the (T × gs) ε∗ matrix containing the error terms

ε∗ =


ε11 ε21 0 0 0 0
ε12t ε22 0 0 0 0
0 0 ε13 ε23 0 0
0 0 ε14 ε24 0 0
0 0 0 0 ε15 ε25

 (37)

4For a general discussion on the Hadamard product, see Magnus and Neudecker (2007), pp 53-54 and 71.
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which allows us to rewrite the model as:

(Is ⊗B) y∗t = A∗ε∗t (38)

where y∗t and ε∗t are vectors obtained from the t-th row of the Y ∗ and ε∗ matrices, respectively.
Furthermore, if we allow for k predetermined variables, the structural form of the model can be
written as

(Is ⊗B) y∗t + (Is ⊗ Γ)x∗t = A∗ε∗t , (39)

in which x∗t is the (ks× 1) vector of predetermined variables expressed as in (36) and Γ is the related
(g × k) matrix of coefficients. The (gs× gs) A∗ and D block diagonal matrices are defined as

A∗ = (Igs + (Is ⊗A)D) (40)

D =

 D1

. . .
Ds

 (41)

where Di is the diagonal (g × g) matrix describing the i-th state of volatility. More precisely, as
described before, it presents Dijj = 1 whether the j-th endogenous variable is in a state of high
volatility and 0 if it is in a state of low volatility. The covariance matrix of the structural shocks is,
as before, E (εtε′t) = Λ, but using the new notation that highlights the state of volatility, we obtain,
for example

Λt = E
(
ε∗t ε
∗′
t

)
=


Λ

0
. . .

0

 (42)

in the case the system is in the first state of volatility at time t. The dependence on t of this matrix,
however, is only apparent in that in all volatility states we impose the same covariance matrix for
the structural shocks, that instead hit the endogenous variables in a different way via the particular
combination of A∗ and D. The particular specification for the data and the model allows us to select,
at each t, the way the structural shocks are amplified and propagated to the different endogenous
variables in the system.

The reduced form of the model can be easily obtained as

y∗t = (Is ⊗Π)x∗t + u∗t
= − (Is ⊗B)−1 (Is ⊗ Γ)x∗t + (Is ⊗B)−1A∗ε∗t

(43)

with, using the same axample as before,

Ωt = E
(
u∗tu

∗′
t

)
= (Is ⊗B)−1A∗E

(
ε∗t ε
∗′
t

)
A∗′
(
Is ⊗B−1

)′ =


Ω
0

. . .
0

 (44)

and
(Is ⊗Π) = − (Is ⊗B)−1 (Is ⊗ Γ) (45)

Assumption 1 The vectors {εt, t = 1 . . . , T} are independent and identically distributed as N (0,Λ)
with Λ a positive definite (g × g) matrix of unknown parameters.

Assumption 2 The (T × k) matrix of predetermined variables has full column rank.

Assumption 3 Each endogenous variable is at least once in a state of high volatility.
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Assumption 4 The parameters B0 and Γ0 do not change among the different states of volatility.

Proposition 1 Consider the simultaneous equations model (38)-(43) under the Assumptions 1-4 pre-
viously expressed. Then (A0, B0,Γ0,Λ0) is locally identified if and only if the matrix

−2Ngs

(
J21 −J22

[
Ig2 − (Π′ ⊗ Ig)+ (Π′ ⊗ Ig)

] )
(46)

has full column rank. Where the two matrices J21 and J22 are defined as follows

J21 =
[
A∗−1 (Is ⊗B) (Is ⊗ Ω) (Is ⊗B)′A∗−1′D ⊗A∗−1

]
(HA ⊗ Ig) (47)

J22 =
[
A∗−1 (Is ⊗B) (Is ⊗ Ω)⊗A∗−1

]
(HB ⊗ Ig) . (48)

A necessary condition of identification is that there are at least (s = 3) different states of volatility.

Proof. The proof of Proposition 1 is discussed in the Appendix A.1.
The approach we follow is based on Rothenberg (1971) and considers, as in the specific case

analysed in the previous section, the system of equations that links the parameters in the structural
and reduced forms. The necessary condition, thus, refers to the number of equations of this system,
that needs to be larger than the number of unknowns. In the standard systems of equations, such a
system is obtained from the following Jacobian matrix (without any restriction on the parameters):

J (Γ) =
(

Π′ ⊗ Ig Igk 0
2Ng [BΩ⊗ Ig] 0 Dg.

)
(49)

which is of dimension
(
kg + g2

)
×
[
g2 + gk + g (g + 1) /2

]
. The corresponding system of matrix equa-

tions will have
(
kg + g2

)
equations with

[
g2 + gk + g (g + 1) /2

]
unknowns. The necessary condition

is clearly not satisfied, necessitating the inclusion of appropriate restrictions to render the parameters
identifiable. More precisely, it is necessary to include at least

[
g2 + gk + g (g + 1) /2

]
−
(
g2 + gk

)
=

1
2g (g + 1) restrictions.

Including different levels of volatility can be an alternative strategy to increase the number of equa-
tions in the system of matrix equations. The price to pay, in our model, is to include more parameters
than the standard systems of equations, due to the A matrix capturing the multiplicative (and even-
tually, the propagation) of the structural shocks. This however does not prevent the possibility of
identifying the parameters without any restriction.

The equivalent order condition for systems with different levels of volatility concerns the minimum
number of states in order to have, at least, as many equations as unknowns in the system. Proposition
1 states that a minimum of three different states of volatility is necessary for making the parameters
identifiable. The main result of this proposition thus, is that, differently from the standard simulta-
neous equations models, when allowing for clusters of heteroskedasticity in the residuals, we do not
need any restriction on the parameters to reach local identification. The first two assumptions are
necessary in order to assume that (i) the joint distribution of the endogenous variables yt depends
on (A0, B0,Γ0,Λ0) only through the reduced form parameters (Π0,Ω0); and (ii) Π0 and Ω0 are glob-
ally identified. Assumption 3 and Assumption 4, instead, are necessary to identify A0, and (B0,Γ)
structural parameters respectively.

The necessary and sufficient condition, which can be interpreted as the rank condition in the tradi-
tional systems of equations, is much more complicated in that it depends on the kind of combinations
of high volatility states as described in the D matrix. All the technical details are discussed in the
Appendix (A.1), as well as the necessary and sufficient condition for the identifiability of the model
when combining a priori information on the parameters together with different states of volatility.
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III Estimation and Inference

In this section we turn to the problem of estimating simultaneous equations models with different
levels of volatility, assuming that some sufficient conditions for identification are satisfied. We propose
a Full-Information Maximum Likelihood (FIML) estimator that is based on the maximization of the
likelihood function of the structural form of the model. The following proposition defines the likelihood
function and finds the score vector and the information matrix for the simultaneous equations model
proposed in (39).

Proposition 2 Consider a random sample of size T from the process defined by the simultaneous
equations model (39) under the Assumptions 1-4. Let θ be an unknown vector of parameters and
define θ0 the true value of θ, such that A0 = A (θ0), B0 = B (θ0), Γ0 = Γ (θ0), and Λ0 = Λ (θ0). The
log-likelihood function is

l (θ) = − (Tg/2) log 2π +
T∑
t=1

∣∣∣(Ig +ADt)
−1
∣∣∣+ T log |B| − T

2
|Λ| (50)

− 1
2

T∑
t=1

tr
[
((Is ⊗B) y∗t + (Is ⊗ Γ)x∗t ) ((Is ⊗B) y∗t + (Is ⊗ Γ)x∗t )

′A∗−1′ (Is ⊗ Λ−1
)
A∗−1

]
The information matrix FT (θ0), determined by

E
(
d2l (θ0)

)
= (dθ)′FT (θ0) dθ, (51)

is given by

FT (θ0) = H ′

 FAA FAΨ FAΛ

FΨA FΨΨ FΨΛ

FΛA FΛΨ FΛΛ

H (52)

where
FAA = 2

(
Igs ⊗ Λ∗−1

)
Ngs (T ∗Λ∗ ⊗ Igs) (53)

FAΨ = 2
[ (

Igs ⊗ Λ∗−1
)
Ngs (T ∗Λ∗ ⊗ Igs) 0

]
(54)

FAΛ =
(
T ∗ ⊗ Λ∗−1

)
(55)

FΨΨ =
( (

A∗−1B∗ ⊗A∗′
)

0
0 Igk

)[(
C ′ ⊗ C

)
K(g+k)s +

(
Q∗t ⊗A∗−1′Λ∗−1A∗−1

)]
(56)( (

B∗′A∗−1′ ⊗A∗
)

0
0 Igk

)

FAΛ =
(
T ∗ ⊗ Λ∗−1

0

)
(57)

FΛΛ = (Λ∗ ⊗ Igs)
(
T ∗ ⊗ Λ∗−1

)
(58)

FΛA = F ′AΛ FΛΨ = F ′ΨΛ FΨA = F ′AΨ (59)

H =


(
D ⊗A∗−1

)
(HA ⊗ Ig) 0 0

0 −
( (

A∗′B∗−1′ ⊗A∗−1
)

(HB ⊗ Ig) 0
0 (HΓ ⊗ Ik)

)
0

0 0 (HΛ ⊗ Ig)Dg


(60)

and where
B∗ = (Is ⊗B) , Λ∗ = (Is ⊗ Λ) , C =

[
Is ⊗B−1′ 0

]
(61)
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T ∗ = (Ig ⊗ T ∗∗) with T ∗∗ =

 T1

. . .
Ts

 (62)

indicating the number of elements in the sample for each state of volatility and, finally

Q∗t = E
(
z∗t z
∗′
t

)
= E

[ (
y∗t
x∗t

) (
y∗′t x∗′t

) ]
(63)

=
[

(Is ⊗Π)Q∗xt (Is ⊗Π) + Ω (Is ⊗Π)Q∗xt
Q∗′xt (Is ⊗Π)′ Q∗xt

]
(64)

with Q∗xt = E (x∗tx
∗′
t ).

The score vector, instead, is defined as (in row form)

f ′ (θ) =
dl (θ)
dvecθ

=
(
fA (θ) , fΨ (θ) , fΛ (θ)

)
(65)

where

fA (θ) =
T∑
t=1

([
vec

(
DA∗−1Ψ∗z∗t z

∗′
t Ψ∗′Λ∗−1A∗−1′)]′Kgs (HA ⊗ Ig)−

[
vec

(
(Ig +ADt)

′Dt

)]′)(66)

fΨ (θ) = −
T∑
t=1

[
vec

(
A∗−1′Λ∗−1A∗−1Ψ∗z∗t z

∗′
t

)]′ (
HΨ ⊗ I(g+k)

)
+ T

(
vec

[
B−1′ 0

])′ (67)

fΛ (θ) =
1
2

T∑
t=1

[
vec

(
Λ∗−1A∗−1Ψ∗z∗t z

∗′
t Ψ∗′A∗−1′)]′ (HΛ ⊗ Ig)Dg −

T

2
(vec (Λ))′Dg (68)

Proof. The proof of Proposition 2 is discussed in the Appendix A.2.
Using the results of Proposition 2 it becomes natural to implement the score algorithm in order

to find FIML estimates of the parameters. In fact, once calculated the information matrix FT (θ) and
the score vector f (θ), the score algorithm is based on the following updating formula (see for example
Harvey, 1990, p. 134):

θn+1 = θn + [FT (θn)]−1 f (θn) . (69)

If the local identification does not require any restriction on the parameters, choosing accurately the
starting values for θ, the recursive algorithm (69) provides consistent estimates θ̂ for the true values
θ0. Once obtained, we can insert such consistent estimates into the information matrix and obtain the
estimated asymptotic covariance matrix of θ̂:

Σ̂θ = F
(
θ̂
)−1

=
[
p lim
x→0

1
T
FT
(
θ̂
)]−1

. (70)

Under the assumptions previously introduced, we obviously obtain

θ̂
L→ N

(
θ0, Σ̂θ

)
(71)

allowing us to make inference on the parameters in the standard way.
In the more general case, in which we have both a priori knowledge on the parameters and different

levels of volatility, and we use a combination of the two for obtaining the local identification, the FIML
approach is a bit more complicated. In particular, introducing some restrictions on the parameters,
both the score vector and the information matrix need to account for such restrictions. The solution,
however, becomes straightforward if we consider the restrictions in the explicit form as follows

vecA = SAγA + sA
vecB = SBγB + sB
vecΓ = SΓγΓ + sΓ

vecΛ = SΛγΛ + sΛ

(72)
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or in more compact form
vecA
vecB
vecΓ
vecΛ

 =


SA 0 0 0
0 SB 0 0
0 0 SΓ 0
0 0 0 SΛ




γA
γB
γΓ

γΛ

+


sA
sB
sΓ

sΛ

 (73)

or equivalently
θ = Sγ + s (74)

Using the standard chain of differentiation the score vector for the new set of parameters γ can be
defined as

f (γ) = S′f (θ) (75)

and, taking into account that the information matrix can be also defined as

FT (θ) = E
[
f (θ) · f ′ (θ)

]
, (76)

considering the new vector of parameters γ, it becomes

FT (γ) = S′FT (θ)S. (77)

The score algorithm, at this stage, can be implemented for γ in order to obtain the FIML estimates γ̂.
Consistent estimates for θ and for the covariance matrix Σθ directly follows from the Cramer’s linear
transformation theorem by substituting the estimated γ̂ in (73). The standard asymptotic result

θ̂
L→ N

(
θ0,

1
T
S′FT (γ̂)S

)
(78)

thus applies.

IV Conclusion

In this paper we have presented a theoretical framework for identifying and estimating the parameters
of a simultaneous equations model with the presence of heteroskedasticity. In particular, we proposed
a specification of the system that explicitly allows for different states of volatility. We suppose that the
structural shocks hitting the economy present a constant covariance matrix, but in particular periods,
such shocks might have amplified, generating thus clusters of higher volatility. The knowledge of such
periods of high instability can represent a useful source of information for identifying the system,
especially when a priori restrictions on the parameters of the model cannot be justified.

Under the assumption that the parameters remain constant over different states of volatility, we
provide an order and a rank condition for solving the problem of local identification, both in the
cases with and without restrictions on the parameters. The order condition, in particular, states that
without any constraint, it is necessary to have at least three different levels of heteroskedasticity to
reach local identification. The rank condition, instead, depends on the combination of high and low
levels of volatility present in the data.

Concerning the estimation framework, under the assumption of normally distributed structural
shocks, we develop a Full Information Maximum Likelihood approach that directly estimates the
parameter of the structural form. We also provide an analytical formulation for both the score function
and the information matrix that allow us to implement an iterative procedure, the score algorithm, to
maximize the likelihood. The classical inference, based on the ML estimators, can thus be applied.

Given the particular specification of the model, a fertile ground for possible empirical applications
can be found in the literature of contagion, where, as highlighted in Forbes and Rigobon (2002), the
distinction between interdependences (relations between endogenous variables) and pure contagion
(transmission of structural shocks) is crucial.
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A Appendix

A.1 Proof of Proposition 1

Following Rotenberg (1971), the identifiability of the parameters of the structural form depends on
the uniqueness of solutions of the system linking the parameters of the structural and reduced forms.
This system of matrix equations can be written as

(Is ⊗B) (Is ⊗Π) + (Is ⊗ Γ) = 0 (79)
A∗−1 (Is ⊗B) (Is ⊗ Ω) (Is ⊗B)′A∗−1′ − (Is ⊗ Λ) = 0 (80)

RAvecA+RBvecB +RΓv (Γ) +RΛv (Λ)− r = 0 (81)

where (81) indicates possible restrictions on the parameters (A,B,Γ,Λ). The first differential becomes

(Is ⊗ dB) (Is ⊗Π) + (Is ⊗ dΓ) = 0
−A∗−1 (Is ⊗ dA)DA∗−1 (Is ⊗B) (Is ⊗ Ω) (Is ⊗B)′A∗−1′ +

A∗−1 (Is ⊗ dB) (Is ⊗ Ω) (Is ⊗B)′A∗−1′ +
A∗−1 (Is ⊗B) (Is ⊗ Ω)

(
Is ⊗ dB′

)
A∗−1′ +

−A∗−1 (Is ⊗B) (Is ⊗ Ω)
(
Is ⊗ dB′

)
A∗−1′D (Is ⊗ dA)A∗−1′ − (Is ⊗ dΛ) = 0

RAvec dA+RBvec dB +RΓdv (Γ)RΛdv (Λ) = 0.

Simple algebra allows us to rewrite the system as[(
Is ⊗Π′

)
⊗ Igs

]
vec (Is ⊗ dB) + vec (Is ⊗ dΓ) = 0

−
[
A∗−1 (Is ⊗B) (Is ⊗ Ω) (Is ⊗B)′A∗−1 ⊗A∗−1

]
vec (Is ⊗ dA) +[

A∗−1 (Is ⊗B) (Is ⊗ Ω)⊗A∗−1
]
vec (Is ⊗ dB) +[

A∗−1 ⊗A∗−1 (Is ⊗B) (Is ⊗ Ω)
]
vec

(
Is ⊗ dB′

)
+[

A∗−1 ⊗A∗−1 (Is ⊗B) (Is ⊗ Ω)
(
Is ⊗B′

)
A∗−1′D

]
vec

(
Is ⊗ dA′

)
− vec (Is ⊗ dΛ) = 0

RAvec dA+RBvec dB +RΓdv (Γ)RΛdv (Λ) = 0.

Using the properties of the Kronecker product, the system becomes[(
Is ⊗Π′

)
⊗ Igs

]
(HB ⊗ Ig) vecdB + (HΓ ⊗ Ig) vecdΓ = 0 (82)

−
[
A∗−1 (Is ⊗B) (Is ⊗ Ω) (Is ⊗B)′A∗−1 ⊗A∗−1

]
(HA ⊗ Ig) vecdA+[

A∗−1 (Is ⊗B) (Is ⊗ Ω)⊗A∗−1
]

(HB ⊗ Ig) vecdB +[
A∗−1 ⊗A∗−1 (Is ⊗B) (Is ⊗ Ω)

]
Kgs (HB ⊗ Ig) vecdB +

−
[
A∗−1 ⊗A∗−1 (Is ⊗B) (Is ⊗ Ω)

(
Is ⊗B′

)
A∗−1′D

]
Kgs (HA ⊗ Ig) vecdA+

− (HΛ ⊗ Ig) vecdΛ = 0 (83)
RAvec dA+RBvec dB +RΓdv (Γ)RΛdv (Λ) = 0. (84)

where, following Magnus and Neudecker (2007) p. 56, the matrix H is defined such that, given two ma-
trices A (m× n) and B (p× q) then vec (A⊗B) = (H ⊗ Ip) vecB, with H = (In ⊗Kqm) (vecA⊗ Iq).
Using the properties of the commutation matrix Kgs, the matrix equation in (83) can be simplified as:

−2Ngs

[
A∗−1 (Is ⊗B) (Is ⊗ Ω) (Is ⊗B)′A∗−1 ⊗A∗−1

]
(HA ⊗ Ig) vecdA+

2Ngs

[
A∗−1 (Is ⊗B) (Is ⊗ Ω)⊗A∗−1

]
(HB ⊗ Ig) vecdB − (HΛ ⊗ Ig) vecdΛ = 0 (85)

with Ngs = 1/2 (Igs +Kgs), as before. From (82), (85) and (84) we obtain the Jacobian matrix

J (A,B,Γ,Ω) =

 0 [(Is ⊗Π′)⊗ Igs] (HB ⊗ Ig) (HΓ ⊗ Ig) 0
−2NgsJ21 2NgsJ22 0 − (HΛ ⊗ Ig)

RA RB RΓ RΛ

 (86)
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or equivalently

J (A,B,Γ,Ω) =

 0 Π′ ⊗ Ig Igk 0
−2NgsJ21 2NgsJ22 0 − (HΛ ⊗ Ig)

RA RB RΓ RΛ

 (87)

where
J21 =

[
A∗−1 (Is ⊗B) (Is ⊗ Ω) (Is ⊗B)′A∗−1′D ⊗A∗−1

]
(HA ⊗ Ig) (88)

J22 =
[
A∗−1 (Is ⊗B) (Is ⊗ Ω)⊗A∗−1

]
(HB ⊗ Ig) . (89)

A sufficient condition for (A0, B0,Γ0,Λ0) to be locally identifiable is that J , that depends only on A
and B, when evaluated at A0 and B0 has full column rank. A necessary condition, thus, is clearly
that rows (J) ≥ cols (J). Including different levels of volatility is a way to increase the number of
rows in the Jacobian matrix (87). The order condition for systems with different levels of volatility
concerns the minimum number of states in order to have, at least, as many rows as columns in the
J (A,B,Γ,Λ) matrix. Without any further restriction on the parameters, we have

g2s2 + kg ≥ g2 + g2 + kg +
1
2
g (g + 1)⇐⇒ s ≥

√
5g + 1

2g
=⇒ s ≥ 3 (90)

indicating that a minimum of three states of volatility is necessary for making the parameters identi-
fiable.

The necessary and sufficient condition depends on the kind of combinations of high volatility states
as highlighted in the D matrix. If we do not want to include restrictions as in (81), we can concentrate
on the following partitioned matrix

J (A,B) =
(

0 Π′ ⊗ Ig Igk 0
−2NgsJ21 2NgsJ22 0 − (HΛ ⊗ Ig)

)
(91)

and verify for the full column rank condition. If the necessary order condition is satisfied, we can
focus on the column rank of the sub matrix

J∗ (A,B) =
(

0 Π′ ⊗ Ig
−2NgsJ21 2NgsJ22

)
(92)

where J21 and J22 are defined as before. To study the column rank of the J∗ (A,B) we can concentrate
on the following system and check whether it admits only the null vector (x′1, x

′
2)′ as possible solution(

Π′ ⊗ Ig
)
x2 = 0 (93)

−2NgsJ21x1 + 2NgsJ22x2 = 0. (94)

The first matrix equation is an homogeneous equation that admits solutions as

x2 =
[
Ig2 −

(
Π′ ⊗ Ig

)+ (Π′ ⊗ Ig)] q2 (95)

for a general vector q2. Substituting the first into the second equation, it becomes[
Ig2 −

(
Π′ ⊗ Ig

)+ (Π′ ⊗ Ig)] = x2 (96)

−2NgsJ21x1 + 2NgsJ22

[
Ig2 −

(
Π′ ⊗ Ig

)+ (Π′ ⊗ Ig)] q2 = 0. (97)

which admits the null vector as the unique possible solution if and only if the matrix

−2Ngs

(
J21 −J22

[
Ig2 − (Π′ ⊗ Ig)+ (Π′ ⊗ Ig)

] )
(98)
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has full column rank. This condition, of course, can be easily verified numerically and represents a
necessary and sufficient condition for identifiability of the parameters of the structural form. Inter-
estingly, if the rank (Π′) = k ≥ g, then (Π′ ⊗ Ig)+ (Π′ ⊗ Ig) = Ig2 and the necessary and sufficient
condition for J∗ to have full column rank reduces to check whether

−2NgsJ21 = −2Ngs

[
A∗−1 (Is ⊗B) (Is ⊗ Ω) (Is ⊗B)′A∗−1′D ⊗A∗−1

]
(HA ⊗ Ig) (99)

has full column rank.

2

A.2 Proof of Proposition 2

The log-likelihood function (50) can also be written as

l (θ) = const +
T∑
t=1

∣∣∣(Ig +ADt)
−1
∣∣∣+ T log |B| − T

2
|Λ| (100)

− 1
2

T∑
t=1

tr
[
Ψ∗z∗t z

∗′
t Ψ∗′A∗−1′ (Is ⊗ Λ−1

)
A∗−1

]
where

z∗t =
(
y∗t
x∗t

)
, Ψ∗ =

(
Is ⊗B Is ⊗ Γ

)
. (101)

The first differential is

dl (θ) = −
T∑
t=1

tr
(

(Ig +ADt)
−1 dADt

)
+ Ttr

(
B−1dB

)
− T

2
tr
(
Λ−1dΛ

)
+

+
T∑
t=1

tr
[(

Λ∗−1A∗−1Ψ∗z∗t z
∗′
t Ψ∗′

)
A∗−1′D

(
Is ⊗ dA′

)
A∗−1′]+

+
1
2

T∑
t=1

tr
(
A∗ − 1Ψ∗z∗t z

∗′
t Ψ∗′A∗−1′Λ∗ − 1 (Is ⊗ dΛ) Λ∗ − 1

)
+

−
T∑
t=1

tr
(
z∗t z
∗′
t Ψ∗′A∗−1′Λ∗ − 1A∗−1dΨ∗

)
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and the second differential is

d2l (θ) = +
T∑
t=1

tr
(

(Ig +ADt)
−1 dADt (Ig +ADt)

−1 dADt

)
+

− Ttr
(
B−1dBB−1dB

)
+
T

2
tr
(
Λ−1dΛΛ−1dΛ

)
+

−
T∑
t=1

tr
(
Λ∗−1 (Is ⊗ dΛ) Λ∗−1A∗−1Ψ∗z∗t z

∗′
t Ψ∗′A∗−1′D

(
Is ⊗ dA′

)
A∗−1′)+

−
T∑
t=1

tr
(
Λ∗−1A∗−1 (Is × dA)DA∗−1Ψ∗z∗t z

∗′
t Ψ∗′A∗−1′D

(
Is ⊗ dA′

)
A∗−1′)+

+
T∑
t=1

tr
(
Λ∗−1A∗−1dΨ∗z∗t z

∗′
t Ψ∗′A∗−1′D

(
Is ⊗ dA′

)
A∗−1′)+

+
T∑
t=1

tr
(
Λ∗−1A∗−1Ψ∗z∗t z

∗′
t dΨ∗′A∗−1′D

(
Is ⊗ dA′

)
A∗−1′)+

− 2
T∑
t=1

tr
(
Λ∗−1A∗−1Ψ∗z∗t z

∗′
t dΨ∗′A∗−1′D

(
Is ⊗ dA′

)
A∗−1′D

(
Is ⊗ dA′

)
A∗−1′)+

− 1
2

T∑
t=1

tr
(
A∗−1 (Is ⊗ dA)DA∗−1Ψ∗z∗t z

∗′
t Ψ∗′A∗−1′Λ∗−1 (Is ⊗ dΛ) Λ∗−1

)
+

+
1
2

T∑
t=1

tr
(
A∗−1dΨ∗z∗t z

∗′
t Ψ∗′A∗−1′Λ∗−1 (Is ⊗ dΛ) Λ∗−1

)
+

+
1
2

T∑
t=1

tr
(
A∗−1Ψ∗z∗t z

∗′
t dΨ∗′A∗−1′Λ∗−1 (Is ⊗ dΛ) Λ∗−1

)
+

− 1
2

T∑
t=1

tr
(
A∗−1Ψ∗z∗t z

∗′
t dΨ∗′A∗−1′D

(
Is ⊗ dA′

)
A∗−1′Λ∗−1 (Is ⊗ dΛ) Λ∗−1

)
+

−
T∑
t=1

tr
(
A∗−1Ψ∗z∗t z

∗′
t Psi

∗′A∗−1′Λ∗−1 (Is ⊗ dΛ) Λ∗−1Λ∗−1 (Is ⊗ dΛ) Λ∗−1
)

+

−
T∑
t=1

tr
(
dΨ∗z∗t z

∗′
t dΨ∗′A∗−1′Λ∗−1A∗−1

)
+

+
T∑
t=1

tr
(
dΨ∗z∗t z

∗′
t Ψ∗′A∗−1′D

(
Is ⊗ dA′

)
A∗−1′Λ∗−1A∗−1

)
+

+
T∑
t=1

tr
(
dΨ∗z∗t z

∗′
t Ψ∗′A∗−1′Λ∗−1 (Is ⊗ dΛ) Λ∗−1A∗−1

)
+

+
T∑
t=1

tr
(
dΨ∗z∗t z

∗′
t Ψ∗′A∗−1′Λ∗−1A∗−1 (Is ⊗ dA)DA∗−1

)
+

(102)
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After some algebra, it becomes

d2l (θ) = vec (Is ⊗ dA)′
[
DA∗−1 ⊗A∗−1′T ∗D

]
Kgsvec (Is ⊗ dA)− Tvec (dB)′

[
B−1 ⊗B−1′]Kgvec (dB)

+
1
2

(dv (Λ))′D′g
[
Λ−1 ⊗ Λ−1

]
Dg (dv (Λ))

−
T∑
t=1

vec (dA)′ (HA ⊗ Ig)′
[
D′A∗−1Ψ∗z∗t z

∗′
t Psi

∗′A∗−1′Λ∗−1 ⊗A∗−1′Λ∗−1
]

(HΛ ⊗ Ig)Dg (dv (Λ))

−
T∑
t=1

vec (dA)′ (HA ⊗ Ig)′
[
D′A∗−1Ψ∗z∗t z

∗′
t Psi

∗′A∗−1′D ⊗A∗−1′Λ∗−1A∗−1
]

(HA ⊗ Ig) vec (dA)

+
T∑
t=1

vec (dA)′ (HA ⊗ Ig)′
[
D′A∗−1Ψ∗z∗t z

∗′
t ⊗A∗−1′Λ∗−1A∗−1

]
(HΨ ⊗ Igk) vec (dΨ)

+
T∑
t=1

vec (dA)′ (HA ⊗ Ig)′
[
D′A∗−1 ⊗A∗−1′Λ∗−1A∗−1Ψ∗z∗t z

∗′
t

]
K(g+k)s

(
HΨ ⊗ I(g+k)

)
vec (dΨ)

− 2
T∑
t=1

vec (dA)′ (HA ⊗ Ig)′
[
D′A∗−1 ⊗A∗−1′Λ∗−1A∗−1Ψ∗z∗t z

∗′
t Ψ∗′A∗−1′D

]
Kgs (HA ⊗ Ig) vec (dA)

+
T∑
t=1

vec (dΨ)′
(
HΨ ⊗ I(g+k)

)′ [
z∗t z
∗′
t Ψ∗′A∗−1′Λ∗−1 ⊗ Λ∗−1

]
(HΛ ⊗ Ig)Dg (dv (Λ))

−
T∑
t=1

(dv (Λ))′D′g (HΛ ⊗ Ig)′
[
Λ∗−1A∗−1Ψ∗z∗t z

∗′
t Ψ∗′A∗−1′Λ∗−1 ⊗ Λ∗−1

]
(HΛ ⊗ Ig)Dg (dv (Λ))

−
T∑
t=1

vec (dΨ)′
(
HΨ ⊗ I(g+k)

)′ [
z∗t z
∗′
t ⊗A∗−1′Λ∗−1A∗−1

]
(HΨ ⊗ Igk) vec (dΨ) .

(103)

The diagonal T ∗ matrix, of dimension (gs× gs), is defined as

T ∗ =



g


T1

T1

T1

. . .

g


Ts

Ts
Ts


(104)

where T1, . . . Ts indicate the number of observations in each state of volatility.
Given the particular definition of y∗t , x

∗
t , and as a consequence z∗t , the following expected values

take the form

E (Ψ∗z∗t z
∗′
t Ψ∗′) = A∗E (ε∗t ε

∗′
t )A∗′ = A∗Λ∗tA

∗′

⇒
∑T

t=1E (Ψ∗z∗t z
∗′
t Ψ∗′) = A∗

∑T
t=1E (ε∗t ε

∗′
t )A∗′ = A∗T ∗ (I∗ ⊗ Λ)A∗′ = A∗T ∗Λ∗A∗′ (105)

and, with some algebra

E (Ψ∗z∗t z
∗′
t ) = A∗Λ∗tA

∗′ [ Is ⊗B−1′ 0
]

= A∗Λ∗tA
∗′C

⇒
∑T

t=1E (Ψ∗z∗t z
∗′
t ) = A∗T ∗ (I∗ ⊗ Λ)A∗′C = A∗T ∗Λ∗A∗′C (106)

The expected value of the second differential thus becomes
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−E
(
d2l (θ)

)
= vec (Is ⊗ dA)′

[
DA∗−1 ⊗A∗−1′T ∗D

]
Kgsvec (Is ⊗ dA)

+ Tvec (dB)′
[
B−1 ⊗B−1′]Kgvec (dB)

− T

2
(dv (Λ))′D′g

[
Λ−1 ⊗ Λ−1

]
Dg (dv (Λ))

+ vec (dA)′ (HA ⊗ Ig)′
[
DT ∗ ⊗A∗−1′Λ∗−1

]
(HΛ ⊗ Ig)Dg (dv (Λ))

+ vec (dA)′ (HA ⊗ Ig)′
[
DT ∗Λ∗−1D ⊗A∗−1′Λ∗−1A∗−1

]
(HA ⊗ Ig) vec (dA)

− vec (dA)′ (HA ⊗ Ig)′
[
DT ∗Λ∗−1A∗C ⊗A∗−1′Λ∗−1A∗−1

]
(HΨ ⊗ Igk) vec (dΨ)

− vec (dA)′ (HA ⊗ Ig)′
[
DA∗−1 ⊗A∗−1′Λ∗−1T ∗Λ∗A∗C

]
K(g+k)s

(
HΨ ⊗ I(g+k)

)
vec (dΨ)

+ 2 (dA)′ (HA ⊗ Ig)′
[
DA∗−1 ⊗A∗−1′Λ∗−1T ∗Λ∗D

]
Kgs (HA ⊗ Ig) vec (dA)

− vec (dΨ)′
(
HΨ ⊗ I(g+k)

)′ [
C ′A∗Λ∗T ∗ ⊗A∗−1′Λ∗−1

]
(HΛ ⊗ Ig)Dg (dv (Λ))

+ (dv (Λ))′D′g (HΛ ⊗ Ig)′
[
Λ∗−1T ∗ ⊗ Λ∗−1

]
(HΛ ⊗ Ig)Dg (dv (Λ))

+ vec (dΨ)′
(
HΨ ⊗ I(g+k)

)′ [
Q∗ ⊗A∗−1′Λ∗−1A∗−1

]
(HΨ ⊗ Igk) vec (dΨ)

(107)

Finally, since d (θ) =
(
dvecA′, dvecB′, dvecΓ′, dv (Λ)′

)′, with some algebra the result follows.
The score vector, instead, can be derived using the properties of the vec and trace operators in the

first differential (102) as follows

dl (θ) = −
T∑
t=1

vec
(
(Ig +ADt)

′Dt

)′
vecdA+ Tvec

(
B−1′)′ vecdB − 1

2
vec

(
Λ−1

)′
Dgdv (Λ)

−
T∑
t=1

vec
(
DA∗−1Ψ∗z∗t z

∗′
t Ψ∗′Λ∗−1A∗−1′)′Kgs (HA ⊗ Ig) vecdA

+
1
2

T∑
t=1

vec
(
Λ∗−1A∗−1Ψ∗z∗t z

∗′
t Ψ∗′A∗−1′)′ (HΛ ⊗ Ig)Dgdv (Λ)

−
T∑
t=1

vec
(
A∗−1′Λ∗−1A∗−1Ψ∗z∗t z

∗′
t

)′ (
HΨ ⊗ I(g+k)

)
vecdΨ (108)

and, since the score vector, in row form, is defined as

f ′ (θ) =
dl (θ)
dvecθ

(109)

with simple algebra the result follows.
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