
PROJECTABLE VERONESE VARIETIES

ALBERTO ALZATI AND EDOARDO BALLICO

Abstract. Let X be a non degenerate, reduced, reducible algebraic variety
embedded in PN , of pure dimension m ≥ 3. X is said to be an x-projectable
Veronese variety if, assuming N ≥ m + x + 1, X is of minimal degree, con-
nected in codimension 1 and isomorphically projectable into a linear space of
dimension m + x.

In this paper we classify 2 and 3-projectable Veronese varieties and x-
projectable Veronese varieties having only linear components.

1. Introduction

Let PN be the N -dimensional projective space over C. In this paper a variety will
always be an algebraic, reduced, of pure dimension, projective scheme embedded
in some projective space PN . For any integer k ≥ 0, a variety V ⊂ PN is said to be
connected in codimension k if for any subvariety W ⊂ V, such that codV (W ) > k,
the algebraic set V \W is connected. For any variety V ⊂ PN and for any λ-
dimensional linear subspace Λ ⊂ PN we say that V projects isomorphically to Λ if
there exists a linear projection πL : PN − −− > Λ, from a suitable (N − λ − 1)-
dimensional linear space L, disjoint from V , such that πL(V ) is isomorphic to V
via the projection πL.

In [A-B] we have classified all reducible Veronese surfaces, according to the fol-
lowing definition.

Definition 1. For any positive integer n ≥ 1, we will call reducible Veronese
surface any algebraic surface X ⊂ Pn+4 such that:

i) X is a non degenerate, reducible variety of pure dimension 2;
ii) deg(X) = n + 3, cod(X) = n + 2, so that X is a minimal degree surface;
iii) dim[Sec(X)] ≤ 4, so that it is possible to choose a generic linear space L of

dimension n − 1 in Pn+4 such πL(X) is isomorphic to X via πL, where πL is the
the rational projection πL : Pn+4 −−− > Λ, from L to a generic target Λ ' P4;

iv) X is connected in codimension 1, i.e. if we drop any finite number (eventually
0) of points Q1, ..., Qr from X we have X\{Q1, ..., Qr} is connected;

v) X is a locally Cohen-Macaulay surface.

Examples of reducible Veronese surfaces are the surfaces Σn introduced by the
following:
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Definition 2. For any positive integer n ≥ 1, let us choose a plane Π0 and n+2 dis-
tinct points P1, ..., Pn+2 in general position in Pn+4, so that 〈Π0 ∪ P1 ∪ ... ∪ Pn+2〉
= Pn+4. Let us choose n+2 planes Πi, i = 1, ..., n+2, Pi ∈ Πi, such that Πi∩Π0 is
a line Li and the n + 2 lines Li are in general position on Π0. (i.e. the curve given
by their union has no triple points). Let us call Σn any surface in Pn+4 which is
the union Π0 ∪Π1... ∪Πn+2.

In [A-B] we proved the following:

Theorem 1. (see Theorems 2 and 3 of [A-B]) Let X be a reducible Veronese
surface. Then we have only three possibilities:

i) X is a surface Σn for some n ≥ 1;
ii) X = Q ∪X1 ∪X2, where Q is a smooth quadric, X1 and X2 are planes, and

Q,X1, X2 intersect transversally along a unique line L := Q ∩X1 ∩X2;
iii) X = Q∪X1∪X2 as above and X1 and X2 cut Q along two lines intersecting

at a point P := X1 ∩X2.

Here we will consider x-projectable Veronese varieties X ⊂ PN of dimension
m ≥ 3, according to the following definition. Note that the x-projectability is a
natural geometric property which a minimal degree algebraic subset may have.

Definition 3. For any positive integers m ≥ x ≥ 2, we will call x-projectable
Veronese variety any algebraic variety X ⊂ PN , N ≥ m + x + 1, such that:

i) X is a non degenerate, reducible variety of dimension m ≥ 3;
ii) deg(X) = cod(X) + 1, so that X is a minimal degree variety;
iii) it is possible to choose a generic linear space L of dimension N−m−1−x in

PN such πL(X) is isomorphic to X via πL, where πL is the the rational projection
πL : PN −−− > Λ, from L to a generic target Λ ' Pm+x;

iv) X is connected in codimension 1, i. e. it is possible to arrange the components
of X in such a way that X = X1∪X2∪ ...∪Xr and codXj [(X1∪ ...∪Xj−1)∩Xj ] = 1
for any j ≥ 2;

v) X is a locally Cohen-Macaulay variety.

Remark 1. Actually v) implies iv) by Corollary 2.4 of [Ha], however it is more
useful to give the above definitions 1 and 3 because condition iv) is crucial to get
the classifications. The assumption m ≥ x implies that m + x ≤ 2m.

Remark 2. Note that if condition iii) of Definition 3 is satisfied then
dim[Sec(X)] ≤ m + x. We will often use this fact to prove that iii) is not satisfied.

In this paper we give a precise description of all x-projectable Veronese vari-
eties X having only linear components (see Theorem 5), we prove that there are
no 2-projectable varieties with m ≥ 3 (see Theorem 4) and we give a complete
classification of 3-projectable varieties by the following result.

Theorem 2. Let X = X1∪X2∪ ...∪Xr ⊂ PN be a 3-projectable Veronese variety,
according to Definition 3, dim(X) = m ≥ 3. Then dim(X) = 3 and X is one of the
following:

1) X ⊂ Pr+2 has only linear components, r ≥ 5 and there exists a fixed compo-
nent Xi such that all other components intersect Xi along planes of Xi in general
position;

2) X ⊂ Pr+2 has only linear components, r ≥ 5 and there are two fixed compo-
nents Xi and Xj such that Xi∩Xj := Π ' P2 and all other components intersect Xi
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along planes in general position, or intersect Xj along planes in general position,
and intersect each other along lines in general position in Π;

3) X = X1 ∪X2 ⊂ P7, X1 is a cone of degree 3 having a line E1 as vertex and
a twisted cubic as base, X2 is a cone of degree 2 having a point E2 as vertex and
X1 ∩X2 is a plane containing E1 and E2 with E1 ∩ E2 = ∅;

4) X = X1 ∪X2 ∪X3 ⊂ P7; X1 is a quadric cone having a line E1 as vertex, X2

is a quadric cone having a point E2 as vertex, X3 ' P3 ; X1 ∩X2 ∩X3 is a plane
F , the vertexes are disjoint (the role of X2 and X3 can be exchanged);

5) X = X1 ∪ X2 ∪ X3 ⊂ P7; X1 is a quadric cone having a line E1 as vertex,
X2 is a quadric cone having a point E2 as vertex, X3 ' P3 ; X1 ∩X2 is a plane F,
X3 ∩X1 is another plane F ′, X3 ∩X2 = E1 ⊂ F , the vertexes are disjoint (the role
of X2 and X3 can be exchanged);

6) X = X1 ∪X2 ∪ ...∪Xr ⊂ Pr+3, r ≥ 4; X1 is a quadric cone having a line E1

as vertex, Xi ' P3 for i ≥ 2 ; X1 ∩X2 is a plane F ; Xi ∩X2 are planes in generic
position in X2 intersecting lines Li ⊂ F in generic position for i ≥ 3;

7) X = X1∪X2∪ ...∪Xr ⊂ Pr+3, r ≥ 4; X1 is a quadric cone having a point E1

as vertex, Xi ' P3 for i ≥ 2; X1 ∩X2 is a plane F ; Xi ∩X2 are planes in generic
position in X2 intersecting lines Li ⊂ F in generic position for i ≥ 3; possibly one
of the components Xp, 3 ≤ p ≤ r, is exceptional: it intersects X1 along another
plane F ′, cutting F along a line l in generic position with respect to the set
{Li, i 6= p};

8) X = X1∪X2∪ ...∪Xr ⊂ Pr+3, r ≥ 4; X1 is a quadric cone having a point E1

as vertex, Xi ' P3 for i ≥ 2; X1 ∩X2 is a plane F ; Xi ∩X2 are planes in generic
position in X2 intersecting lines Li ⊂ F in generic position for i = 3, ..., r−1; there
exists a fixed j, 3 ≤ j ≤ r − 1, such that Xr ∩ Xj is a plane and Xr ∩ X1 = Lj

(E1 /∈ Lj);
9) X = X1 ∪ X2 ∪ X3 ∪ X4 ⊂ P7; X1 is a quadric cone having a point E1 as

vertex, Xi ' P3 for i ≥ 2; X1 ∩ X2 ∩ X3 is a plane F ; X4 ∩ X2 is a plane Π,
X4 ∩X3 = X4 ∩X1 is a line L = Π ∩ F, not passing through E1, or X4 ∩X3 is a
plane Π, X4 ∩X2 = X4 ∩X1 is a line L = Π ∩ F, not passing through E1.

Our strategy will be: firstly to consider the case in which all components of
X are linear spaces, secondly to use Remark 2 to get a short list of possibilities,
thirdly to prove (or disprove) that X projects isomorphically by checking that the
union of all Zariski tangent spaces at points P ∈ X is disjoint with a general linear
subspace of dimension N −m − 1 − x of PN (see Theorem 6.5 of [Ho], page 168,
and Propositions 4.2 and 5.3 for the definiton of Zarsec(X, i), see also Corollary 2
of [J]).

We will use the following definitions:
〈V1 ∪ ... ∪ Vr〉: linear span in PN of the varieties Vi ⊂ PN , i = 1, ..., r; when

V1, ..., Vr are linear spaces we often write V1 ∪ ... ∪ Vr instead of 〈V1 ∪ ... ∪ Vr〉 ;
Sing(V ) : singular locus of the subscheme V ⊂ PN ;
TP (V ) : Zariski tangent space at a point P of V ; it is a projective subspace of

PN whose dimension is the embedding dimension of the local ring OV,P ;
TP : union of TP (Vi) for all irreducible components Vi ⊂ V containing P ; note

that the linear span of TP is always contained in TP (V ) for any point P ∈ V ;
[V ; W ] : { ⋃

v∈V,w∈W,v 6=w

〈v ∪ w〉} ⊂ PN , join of V and W, for any pair of distinct

irreducible varieties V, W ⊂ PN . In case V = W, [V ; V ] = Sec(V )
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Sec(V ) : { ⋃
v1 6=v2∈V

〈v1 ∪ v2〉} ⊂ PN for any variety V ⊂ PN ,

if V = V1 ∪ ... ∪ Vr is reducible then Sec(V ) =
⋃

i,j=1,...,r

[Vi;Vj ].

We will often use the following facts: if V is an irreducible variety, not a linear
space, for which there exists a linear space L, such that for any generic point P ∈ V,
TP (V ) ⊇ L, then V is a cone whose vertex contains L (see [A2], page 17, but recall
that, in our paper, a cone is never a linear space); if V = V1 ∪ ... ∪ Vr is reducible
and x-projectable then dim([Vi; Vj ]) ≤ m + x for any i, j = 1, ..., r.

Let a1 ≥ a2 ≥ ... ≥ ak > 0 be a set of integers, k ≥ 1. Let us consider the
rank m ≥ k vector bundle E := OP1(a1) ⊕ OP1(a2).... ⊕ OP1(ak) ⊕ OP1 .... ⊕ OP1
over P1 and let V be P(E). If m = k ≥ 2, we say that V is a smooth rational

scroll of degree
k∑

i=1

ai, embedded in a projective space of dimension
k∑

i=1

ai + k − 1

as a linearly normal variety. If m > k ≥ 2, we say that V is a cone over a smooth
rational scroll, having a vertex E of dimension e := m−k−1; in this case deg(V ) =
k∑

i=1

ai, but V is embedded in a projective space of dimension
k∑

i=1

ai + m − 1 as a

linearly normal variety. If m > k = 1, a1 ≥ 2, we say that V is a cone over a
rational normal curve of degree a1, having a vertex E of dimension e = m − 2; in
this case deg(V ) = a1 and V is embedded in a projective space of dimension a1

+ m − 1 as a linearly normal variety. In all these cases V is a variety of minimal

degree, i.e. deg(V ) = cod(V ) + 1, in its span which has always dimension
k∑

i=1

ai +

m− 1.
Acknowledgements: we wish to thank the referee for his very careful revision

of the manuscript and for having pointed out a missing case in the first version.

2. Xambó’s result and first remarks

In Theorem 1 of [X] Xambó proves the following result:

Theorem 3. Let V = V1∪....∪Vr ⊂ PN be a non degenerate, reducible, reduced, va-
riety of pure dimension m ≥ 2, whose irreducible components are V1, ..., Vr. Assume
that V is connected in codimension 1 and that it has minimal degree, then:

- any irreducible component Vi of V is an irreducible variety of dimension m and
minimal degree in its span 〈Vi〉 ;

- there is at least an ordering V1, V2, ..., Vr such that, for any j = 2, ..., r,
Vj ∩ (V1 ∪ ... ∪ Vj−1) = 〈Vj〉 ∩ 〈V1 ∪ ... ∪ Vj−1〉 and this intersection is always a
linear space of dimension exactly m− 1.

From now on an ordering given by Theorem 3 will be called a good ordering.

Corollary 1. Let V be any variety as in Theorem 3. Let di be the degree of Vi.
Then:

i) for any pair of irreducible components Vj , Vk ⊂ V we have only three possibil-
ities:

- Vj ∩ Vk = 〈Vj〉 ∩ 〈Vk〉 = ∅
- Vj ∩ Vk = 〈Vj〉 ∩ 〈Vk〉 is a point
- Vj ∩ Vk = 〈Vj〉 ∩ 〈Vk〉 is a linear space of dimension δ with 1 ≤ δ ≤ m− 1;
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ii) for any j ≥ 2, there is at least a component Vk with k < j such that Vj ∩Vk '
Pm−1 and the other intersections Vj ∩ Vi, with i < j, are linear spaces contained in
Vj ∩ Vk, possibly coincident with it;

iii) N = dim(〈V 〉) =
r∑

i=1

dim(〈Vi〉)− (r − 1)(m− 1) =
r∑

i=1

di + m− 1;

iv) for any point P ∈ V , TP (V ) = 〈TP 〉.
Proof. i) Let us assume that Vj ∩ Vk 6= ∅ and that k > j in a good ordering for the
components of V . Then Vj ∩ Vk ⊆ Vk ∩ (V1 ∪ ...Vj ∪ ... ∪ Vk−1) which is a linear
space of dimension m− 1, as a scheme, because it is the intersection of two linear
spaces in PN . By Theorem 0.4 of [E-G-H-P] V is small according to the definition
of [E-G-H-P], p.1364, hence Vj ∩ Vk = 〈Vi〉 ∩ 〈Vj〉 is a linear space by Proposition
2.4 of [E-G-H-P]. As Vj ∩ Vk is contained in a linear space of dimension m − 1,
Corollary 1 i) follows.

ii) By i) we know that Vj ∩ (V1 ∪ ...∪ Vj−1) = (Vj ∩ V1)∪ ...∪ (Vj ∩ Vj−1) is the
union of linear spaces of dimension m − 1 at most. On the other hand we know
that Vj ∩ (V1∪ ...∪Vj−1) is in fact a unique linear space of dimension exactly m−1
by Theorem 3 and ii) follows.

iii) The first equality follows from the fact that, for any j = 2, ..., r, dim(〈Vj〉 ∩
〈V1 ∪ ... ∪ Vj−1〉) = m−1; the second equality follows from the fact that dim(〈Vj〉) =
m + dj − 1 for any j.

iv) Recall that TP is the union of the Zariski tangent spaces TP (Vi) for all
irreducible components Vi ⊂ V containing P. In our case TP (V ) is the linear span
of TP thanks to property i).

By Theorem 3 it follows that any irreducible component of an x-projectable
Veronese variety X is an irreducible, m-dimensional variety of minimal degree in its
span containing a linear space of dimension m−1. From the well known classification
of such varieties (see for instance Theorem 0.1 of [E-G-H-P]) we have the following:

Corollary 2. Let Xi be any irreducible component of an x-projectable Veronese
variety X ⊂ PN , of dimension m ≥ 3. Then, a priori, we have only the following
possibilities:

i) Xi is a linear space in PN of dimension m;
ii) Xi is a cone, having a vertex of dimension ei ≥ 0 over a smooth scroll having

fibres of dimension m− ei − 2 ≥ 1;
iii) Xi is a cone, having a vertex of dimension ei ≥ 0 over a rational normal

curve;
iv) Xi is a smooth rational scroll and m ≤ x + 1.

Proof. By looking at Theorem 0.1 of [E-G-H-P], where irreducible, m-dimensional
varieties of minimal degree in their spans are listed, we get Xi may be a linear
space or a hyperquadric, or as in ii), iii), or a smooth rational scroll, or a cone
over a Veronese surface in P5. As Xi must contain a linear space of dimension
m− 1 we can exclude cones over Veronese surfaces because such a surface does not
contain lines. For the same reason we can exclude hyperquadrics of rank ≥ 5; a
hyperquadric of rank 4 is a cone over a smooth quadric of P3 which is a smooth
rational scroll; a hyperquadric of rank 3 is a cone over a rational normal curve: a
smooth conic. If Xi is a smooth rational scroll its fibres of dimension m − 1 are
disjoint, so they have to remain disjoint after projecting X in Pm+x, but this is not
possible if m ≥ x + 2.
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Proposition 1. Let V be a variety as in Theorem 3.
i) Let Vi be any component of V. Then there exists at least a good ordering for

the r components of V such that Vi = V1;
ii) Let W = W1 ∪ ... ∪Wk ⊂ V be the union of some components of V, k < r,

such that the assumptions of Theorem 3 are true for W . Then there exists at least
a good ordering for the r components of V such that Vi = Wi for i = 1, ..., k.

Proof. i) Let W ⊂ V be a proper subvariety of V such that W = V1 ∪ ....∪Vρ with
1 ≤ ρ < r. Let us assume that W is connected in codimension 1. Then we claim
the existence of at least a component Vi ⊂ V such that dim(W ∩ Vi) = m− 1 and
W ∪ Vi is connected in codimension 1.

In fact, if dim(W ∩ Vi) ≤ m − 2 for any irreducible component Vi ⊂ V with
ρ < i ≤ r, then dim[W ∩(Vρ+1∪ ...∪Vr)] ≤ m−2, but this is not possible, otherwise
V \[W ∩ (Vρ+1 ∪ ... ∪ Vr)] would be not connected while we are assuming that V
is connected in codimension 1. Hence, by changing the ordering of Vρ+1, ..., Vr if
necessary, we can assume that dim(W ∩ Vρ+1) ≥ m − 1. It is not possible that
dim(W ∩ Vρ+1) ≥ m, otherwise the irreducible surface Vρ+1 would be a component
of W, so that dim(W ∩Vρ+1) = m−1. Let us consider W ∪Vρ+1. W is connected in
codimension 1 by assumptions, Vρ+1 is connected in codimension 1 because it is an
irreducible variety of dimension m; as dim(W ∩ Vρ+1) = m− 1 we have W ∪ Vρ+1

is connected in codimension 1 too.
Now, let us choose a component V ′ ⊂ V and let us consider a good ordering.

If V ′ = V1 we have nothing to prove, otherwise, in any case, there exists at least
another component Vj such that V ′ ∩ Vj ' Pm−1. Let us prove that there exists
another good ordering having V ′ at the first position. Set V1 = V ′ and V2 = Vj . If
r = 2 we are done, if not we can apply the above remark with W = V1 ∪V2 and we
get another component V3 such that dim(W ∩V3) = m−1 and W ∪V3 is connected
in codimension 1. By applying the above remark a suitable number of times we get
an ordering V1, ..., Vr such that V1 = V ′, dim[Vj ∩ (V1 ∪ ...∪ Vj−1)] = m− 1 for any
j ≥ 2, and V1 ∪ ... ∪ Vj is connected in codimension 1. As Vj ∩ (V1 ∪ ... ∪ Vj−1) ⊆
(〈Vj〉 ∩ 〈V1 ∪ ... ∪ Vj−1〉) for any j ≥ 2, we have only to prove that dim(〈Vj〉 ∩
〈V1 ∪ ... ∪ Vj−1〉) = m − 1 to get Vj ∩ (V1 ∪ ... ∪ Vj−1) = 〈Vj〉 ∩ 〈V1 ∪ ... ∪ Vj−1〉
' Pm−1 for any j ≥ 2, hence to prove the Proposition.

Let us put deg(Vi) = di; obviously dim(〈Vi〉) = m− 1 + di.
Let us put aj := dim(〈Vj〉 ∩ 〈V1 ∪ ... ∪ Vj−1〉) for any j ≥ 2, so that:
dim(〈V1 ∪ V2〉) = m− 1 + d1 + m− 1 + d2 − a2

dim(〈V1 ∪ V2 ∪ V3〉) = dim(〈〈V1 ∪ V2〉 ∪ 〈V3〉〉 =
= m− 1 + d1 + m− 1 + d2 − a2 + m− 1 + d3 − a3

..........
dim(〈V1 ∪ V2 ∪ ... ∪ Vr〉) = r(m− 1) +

r∑
j=1

dj −
r∑

j=2

aj = N.

On the other hand: dim(〈V 〉) = N = m− 1 + deg(V ) = m− 1 +
r∑

j=1

dj so that

we have: r(m− 1)−
r∑

j=2

aj = m− 1, i.e. (r − 1)(m− 1) =
r∑

j=2

aj .

As aj ≥ m− 1 for any j ≥ 2 we get aj = m− 1 for any j ≥ 2 and we are done.
ii) As in the proof of i) we can do induction, starting from W instead of V ′ = V1,

knowing that aj = m− 1 for 2 ≤ j ≤ k.
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Let us recall the Terracini’s lemma:

Lemma 1. Let us consider a pair of irreducible varieties V, W ⊂ PN and a generic
point R ∈ [V ; W ] such that R ∈ 〈P ∪Q〉 , with P ∈ V and Q ∈ W, (hence P and Q
are generic points of V and W, respectively), then TR([V ;W ]) = 〈TP (V ) ∪ TQ(W )〉
and dim([V ; W ]) = dim(〈TP (V ) ∪ TQ(W )〉).
Proof. See Corollary 1.11 of [A1].

Corollary 3. Let V,W ⊂ PN be two irreducible varieties such that V ∩ W = ∅,
then dim([V ; W ]) = dim(V ) + dim(W ) + 1.

Proof. Obviously dim([V ; W ]) ≤ dim(V ) + dim(W ) + 1; if V ∩ W = ∅ we have
dim([V ; W ]) ≥ dim(V ) + dim(W ) + 1, see for instance Corollary 2.5 of [A1].

Lemma 2. Let X ⊂ PN be an x-projectable Veronese variety. Then:
i) any irreducible component Xi ⊂ X can be isomorphically projected in Pm+x;
ii) for any pair of irreducible components Xj and Xk of X we have dim(Xj ∩

Xk) ≥ m − x, and, unless Xj and Xk are both linear spaces, dim(Xj ∩ Xk) ≥
m− x + 1;

iii) for any irreducible, not linear, component Xi ⊂ X let Yi be any linear space
of maximal dimension m − 1 contained in Xi, then Yj ∩ Yk 6= ∅ if m ≥ x + 2 and
Xj ∩ Yk 6= ∅ if m ≥ x + 1.

Proof. i) Obvious.
ii) Since X is an x-projectable Veronese variety, there exists a projection πL :

PN −−− > Λ from a suitable linear space L to a suitable linear space Λ ⊂ PN , Λ '
Pm+x, such that πL(X) ' X. This implies that, for any i = 1, ..., r, πL(Xi) ' Xi,
and, for any pair Xj , Xk ⊂ X, πL(Xj∩Xk) ' πL(Xj)∩ πL(Xk) ' Xj∩Xk = 〈Xj〉∩
〈Xk〉 is a linear space by Corollary 1. As πL(Xj) and πL(Xk) are two irreducible
varieties of dimension m in Pm+x we have dim[πL(Xj)∩ πL(Xk)] ≥ m − x. If
dim[πL(Xj)∩ πL(Xk)] = m − x we have two irreducible varieties of dimension m
in Pm+x whose scheme-theoretic intersection is a linear space of dimension m− x.
By Bezout’s theorem this is possibly only if they are both linear spaces.

iii) Let us consider any pair of linear spaces Yj and Yk. By contradiction let us
suppose that Yj ∩ Yk = ∅, then, by Corollary 3, their join has dimension m − 1 +
m−1+1 = 2m−1 ≤ m+x, because dim[Sec(X)] ≤ m+x, and this is not possible
if m ≥ x + 2. Let us consider any pair Xj and Yk. By contradiction let us suppose
that Xj∩Yk = ∅, then, by Corollary 3, their join has dimension m+m−1+1 = 2m
≤ m + x, because dim[Sec(X)] ≤ m + x, and this is not possible if m ≥ x + 1.

Lemma 3. Let X ⊂ PN be an x-projectable Veronese variety. Let P be a singular
point of X and let XP

1 , ... , XP
s be the irreducible components of X containing P with

s ≥ 2. For any i = 1, ..., s let Ti be the tangent space of XP
i at P in

〈
XP

i

〉
and let us

assume that the natural ordering of XP
1 , ... , XP

s is coherent with a good ordering.
Then, for any j = 2, ..., s, Tj * 〈T1 ∪ ... ∪ Tj−1〉 and dim[Tj ∩ 〈T1 ∪ ... ∪ Tj−1〉] ≤
m− 1.

Proof. By contradiction, let us assume that Tj ⊆ 〈T1 ∪ ... ∪ Tj−1〉 , hence Tj ⊆ Tj ∩
〈T1 ∪ ... ∪ Tj−1〉 ⊆

〈
XP

j

〉∩〈
XP

1 ∪ ... ∪XP
j−1

〉
. As we are assuming that the natural

ordering of XP
1 , ..., XP

s is coherent with a good ordering, we have dim[
〈
XP

j

〉 ∩〈
XP

1 ∪ ... ∪XP
j−1

〉
] ≤ m− 1. Moreover dim(Tj) = m if P is a smooth point of XP

j
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and dim(Tj) ≥ m + 1 if P is a singular point of XP
j . So that in any case we get

a contradiction. By the way we have also proved that dim[Tj ∩ 〈T1 ∪ ... ∪ Tj−1〉] ≤
m− 1.

Lemma 4. Let X ⊂ PN be an x-projectable Veronese variety. Let P be any point
of X and let XP

1 , ... , XP
s be the irreducible components of X containing P, s ≥ 1.

For any i = 1, ..., s let Ti be the Zariski tangent space of XP
i at P in

〈
XP

i

〉
and

let us define TP :=
s⋃

i=1

Ti. Then dim(〈TP 〉) ≤ m + x. Moreover, if P ∈ Sing(Xi)

Ti = 〈Xi〉 and, for any P ∈ X, we have TP (X) = 〈TP 〉 .
Proof. If s = 1 we have 〈TP 〉 = T1 and dim(T1) ≤ m + x by Lemma 2 i). If
s ≥ 2, TP is the union of s linear spaces, of dimensions ≥ m, passing through P
according a certain configuration CP ⊂ PN . By contradiction, let us assume that
dim(〈TP 〉) ≥ m + x + 1. Let πL : PN − −− > Λ be any linear projection, from a
suitable (N − m − 1 − x)-dimensional linear space L to a suitable Λ ⊂ PN , Λ '
Pm+x, such that πL(X) is isomorphic to X, hence πL(CP ) is isomorphic to CP . As
dim(〈TP 〉) ≥ m + x + 1 there is a non empty linear space L′ := L∩ 〈TP 〉 such that
πL(CP ) = πL′(CP ) where πL′ : 〈TP 〉 − −− > Λ. But, as dim(Λ) < dim(〈TP 〉), it is
not possible that πL′(CP ) ' CP , otherwise isomorphic configurations of linear spaces
would have linear spans of different dimensions, so that we get a contradiction.

Now, by Corollary 2, we have Ti = 〈Xi〉 if P ∈ Sing(Xi) and, by Corollary 1 iv)
the Zariski tangent space TP (X) is exactly 〈TP 〉 for any point P ∈ X.

Corollary 4. Let X ⊂ PN be an x-projectable Veronese variety, dim(X) = m ≥ 3.
Let P be any point of X. Then there are at most x+1 irreducible components of X
passing through P.

Proof. Let us assume that there are at least two irreducible components of X pass-
ing through P, so that P ∈ Sing(X). We know that dim(〈TP 〉) ≤ m+x by Lemma
4, on the other hand we can apply Lemma 3 to the set {XP

1 , ..., XP
s } of irreducible

components containing P and we have dim(T1) ≥ m and dim(〈T1 ∪ ... ∪ Tj〉) in-
creases of a unity at least for j = 2, ..., s. If s ≥ x + 2 we would have dim(〈TP 〉) =
dim(〈T1 ∪ ... ∪ Ts〉) ≥ m + s− 1 ≥ m + x + 1, contradiction.

Proposition 2. Let X ⊂ PN be an x-projectable Veronese variety, dim(X) = m ≥
3. Let Xi be an irreducible component of X, of degree di, which is neither a linear
space nor a smooth scroll, then Xi = P(E) where E is a vector bundle over P1of the
following type:

OP1(a1)⊕ ...⊕OP1(aki)⊕OP1 ....⊕OP1 , Xi ⊂ Pm+di−1, di =
ki∑

j=1

aj ≤ x.

If x = 3 we have only the following possibilities:
a) OP1(1)⊕OP1(1)⊕OP1(1)⊕OP1 ...⊕OP1 , Xi ⊂ Pm+2, di = 3
b) OP1(2)⊕OP1(1)⊕OP1 ...⊕OP1 , Xi ⊂ Pm+2, di = 3
c) OP1(3)⊕OP1 ...⊕OP1 , Xi ⊂ Pm+2, di = 3
d) OP1(1)⊕OP1(1)⊕OP1 ...⊕OP1 , Xi ⊂ Pm+1, di = 2
e) OP1(2)⊕OP1 ...⊕OP1 , Xi ⊂ Pm+1, di = 2.
The above cones have a vertex Ei of dimension ei = m − ki − 1 ≥ 0 and none

of them can be isomorphically projected into a linear space unless dim(〈Xi〉) =
m + di − 1 ≤ m + x− 1 and the linear span of the cone is isomorphically projected.
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Proof. Let us fix a good ordering among the irreducible components of X; we know
that Xi is a variety of minimal degree in its span. Let us assume that Xi is a cone
as in ii) or iii) of Corollary 2 and let P be a point in Sing(Xi) = Ei. By Lemma
4 we know that dim[TP (Xi)] ≤ m + x, hence dim 〈Xi〉 = dim[TP (Xi)] ≤ m + x.

By contradiction, let us assume that dim 〈Xi〉 = dim[TP (Xi)] = m + x. If i 6= 1
we have 〈X1 ∪ ... ∪Xi−1〉∩〈Xi〉 = (X1∪ ...∪Xi−1)∩Xi ' Pm−1 and we can choose
a component Xj , with j < i, such that Xj ∩Xi = 〈Xj〉 ∩ 〈Xi〉 ' Pm−1. If i = 1 let
us consider X2 and we have X1∩X2 = 〈X1〉∩〈X2〉 ' Pm−1. In any case we can find
another component Xj of X such that Xj ∩Xi = 〈Xj〉 ∩ 〈Xi〉 ' Pm−1. Note that
P ∈ Xj because Ei is contained in all (m− 1)-dimensional linear spaces contained
in Xi and one of them is containd also in Xj . Let us consider TP (Xj)∪TP (Xi), by
Lemma 4 we know that dim[TP (Xj)∪TP (Xi)] ≤ m+x, hence TP (Xj) ⊆ TP (Xi) =
〈Xi〉 , so that TP (Xj) ⊆ 〈Xj〉 ∩ 〈Xi〉 . As dim[TP (Xj)] ≥ m this is a contradiction.

The conclusion is that dim 〈Xi〉 = dim[TP (Xi)] ≤ m + x − 1. Now let us recall

that for a cone as ii) or iii) of Corollary 2 the linear span has dimension:
k∑

j=1

aj +

m− 1 = di + m− 1. Hence we get di + m− 1 ≤ m + x− 1 and di ≤ x. It is easy
to see that if x = 3 the only possibilities are the above ones.

Let Xi be a cone as above, over a smooth base Bi and having a vertex Ei. Note
that Ei ∩ 〈Bi〉 = ∅; dim(Xi) = dim(Bi) + dim(Ei) + 1; dim(〈Xi〉) = dim 〈Bi〉 +
dim(Ei) + 1. Hence Sec(Xi) contains the cone over Sec(Bi) having vertex Ei and
dim[Sec(Xi)] ≥ dim[Sec(Bi)] + dim(Ei) + 1. Therefore Xi can be isomorphically
projected into a linear space of dimension smaller than the dimension of its lin-
ear span (i.e. dim[Sec(Xi) < dim(〈Xi〉)) only if this is true also for Bi (i.e.
dim[Sec(Bi)] < dim(〈Bi〉). By the well known classification of smooth irreducible
varieties of small degree, which are all projectively normal, it follows that this is
not possible, so that this is not possible for every Xi too.

Proposition 3. Let X ⊂ PN be an x-projectable Veronese variety, dim(X) = m ≥
3. Let Xi be an irreducible component of X which is a smooth scroll of degree di,
then Xi = P(E) where E is a vector bundle over P1of the following type:

OP1(a1)⊕ ...⊕OP1(am), Xi ⊂ Pm+di−1,
m∑

j=1

aj − 1 = di − 1 ≤ x, m ≤ x + 1.

If x = 3 we have only the following possibilities:
OP1(2)⊕OP1(1)⊕OP1(1), Xi ⊂ P6, m = 3, deg(Xi) = 4
OP1(1)⊕OP1(1)⊕OP1(1), Xi ⊂ P5, m = 3, deg(Xi) = 3.
None of the above scrolls can be isomorphically projected into a linear space

unless the linear span of the scroll is isomorphically projected.

Proof. By Corollary 2 iv), m ≤ x + 1. By Lemma 2 i) we know that Xi must be
isomorphically projected into Pm+x, but dim[Sec(Xi)] = min{dim(〈Xi〉), 2m + 1}
(see [C]), hence it must be min{dim(〈Xi〉), 2m + 1} ≤ m + x. As 2m + 1 > m + x,

it must be dim(〈Xi〉) ≤ m+x. As in the proof of Proposition 2 dim(〈Xi〉) =
m∑

j=1

aj

+ m− 1 = di + m− 1, hence di + m− 1 ≤ m + x.
If x = 3 it is easy to see that the only possibilities are the above ones and the

following one: OP1(1)⊕OP1(1)⊕OP1(1)⊕OP1(1), Xi ⊂ P7, m = 4, deg(Xi) = 4.
However this last possibility cannot occur. By contradiction, let us assume that

X has a component as above. By Proposition 1 we can assume that the component
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is X1, note that X1 ' P1×P3. Let Z1j be the linear space which is the intersection
X1 ∩ Xj = 〈X1〉 ∩ 〈Xj〉 for j ≥ 2. By Lemma 2 ii), dim(Z1j) ∈ {3, 2} and, by
Lemma 2 iii), Z1j must intersect any linear space of dimension 3 contained in X1.
But it is easy to see that in P1×P3 ⊂ P7 all linear spaces of dimension 2 and 3 are
contained in a unique linear space of dimension 3.

Corollary 5. Let X ⊂ PN be an x-projectable Veronese variety, dim(X) = m ≥ 3.
Let us assume that X contains an irreducible component Xi which is a cone of
degree di, having a vertex Ei of dimension ei ≥ 0. Let Zij be the linear space which
is the intersection Xi∩Xj = 〈Xi〉∩ 〈Xj〉 for j 6= i, then dim(Ei∩Zij) ≥ ei−x+2.
When x = 3 this fact implies:

a) if Xi is a cone of degree 3, ei = m− 4 (necessarily m ≥ 4) Zij ∩ Ei 6= ∅;
b) if Xi is a cone of degree 3, ei = m− 3, Zij ∩ Ei 6= ∅ when m ≥ 4;
c) if Xi is a cone of degree 3, ei = m− 2, Zij ∩ Ei 6= ∅;
d) if Xi is a cone of degree 2, ei = m− 3, Zij ∩ Ei 6= ∅ when m ≥ 4;
e) if Xi is a cone of degree 2, ei = m− 2, Zij ∩ Ei 6= ∅.

Proof. By Corollary 1 and Lemma 2 ii) we know that m−1 ≥ dim(Zij) ≥ m−x+1.
If dim(Zij) = m− 1 then Zij contains the vertex Ei of Xi and we have nothing to
prove. Let us assume that m−2 ≥ dim(Zij). Let Bi be the base of the cone Xi. Note
that Ei ∩ 〈Bi〉 = ∅ and that Xi = [Ei;Bi], hence 〈Xi〉 = 〈[Ei;Bi]〉 = 〈Ei ∪ 〈Bi〉〉 ,
moreover if we project Zij from Ei onto 〈Bi〉 we get in fact a linear space of Bi

having dimension dim[(Ei ∪Zij)∩ 〈Bi〉]. Recall that the linear spaces contained in
Bi have dimension dim(Bi)−1 at most, hence dim[(Ei∪Zij)∩〈Bi〉] ≤ dim(Bi)−1.
Obviously:

dim(Ei ∪Zij) = ei + dim(Zij)− dim(Ei ∩Zij) ≥ ei + m− x + 1− dim(Ei ∩Zij)
dim(〈Xi〉) = dim(〈Ei ∪ 〈Bi〉〉) = dim(〈Ei ∪ Zij ∪ 〈Bi〉〉) = dim(Ei ∪ Zij ∪ 〈Bi〉)
dim(Ei ∪ Zij ∪ 〈Bi〉) = dim(Ei ∪ Zij) + dim(〈Bi〉)− dim[(Ei ∪ Zij) ∩ 〈Bi〉],

hence:
dim[(Ei ∪Zij)∩ 〈Bi〉] ≥ ei + m− x + 1− dim(Ei ∩Zij) + dim(〈Bi〉)− dim(〈Xi〉)
ei + m− x + 1− dim(Ei ∩ Zij) + dim(〈Bi〉)− dim(〈Xi〉) ≤ dim(Bi)− 1
ei +m−x+1−dim(Ei ∩Zij)+ (di +dim(Bi)− 1)− (m+ di− 1) ≤ dim(Bi)− 1
ei − x + 2 ≤ dim(Ei ∩ Zij).
When x = 3, dim(Ei ∩Zij) ≥ ei− 1 and we have only the five possibilities listed

by Proposition 2.
a) In this case ei = m − 4 ≥ 0, hence dim(Ei ∩ Zij) ≥ m − 5 ≥ 0 if m ≥ 5.

When m = 4, dim(Ei) = 0 and dim(Zij) = 2; if Ei ∩ Zij = ∅ the plane Zij

projects isomorphically from Ei onto a plane contained in Bi ' P1 × P2, hence
Zij is contained only in a unique 3-dimensional linear space of Xi, but this is not
possible by Lemma 2 iii). Therefore Ei ∩ Zij 6= ∅ when m = 4 too.

b) In this case ei = m− 3, hence dim(Ei ∩ Zij) ≥ m− 4 ≥ 0 if m ≥ 4.
c) In this case ei = m− 2, hence dim(Ei ∩ Zij) ≥ m− 3 ≥ 0.
d) In this case ei = m− 3, hence dim(Ei ∩ Zij) ≥ m− 4 ≥ 0 if m ≥ 4.
e) In this case ei = m− 2, hence dim(Ei ∩ Zij) ≥ m− 3 ≥ 0.

Corollary 6. Let X ⊂ PN be an x-projectable Veronese variety, dim(X) = m ≥ 3.
Let Xi and Xj be two irreducible components of X which are cones of degree di and
dj , having vertexes Ei and Ej respectively. Then:

i) if Ei ∩ Ej 6= ∅, di + dj ≤ x + 1;
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ii) if x = 3 and di = 3, X contains only two components, unless m = 3 and the
vertex of Xi (and Xj) is a point.

Proof. i) Let P be a point in Ei ∩ Ej . By Corollary 1 dim(〈Xj〉 ∩ 〈Xi〉) ≤ m − 1.
By Lemma 4 dim[TP (Xi)∪TP (Xj)] ≤ m+x. Therefore, if we consider the tangent
spaces at P , we get dim[TP (Xi)∩TP (Xj)] = m+di−1+m+dj−1−dim[TP (Xi)∪
TP (Xj)] ≤ m − 1. Hence 2m + di + dj − 2 ≤ dim[TP (Xi) ∪ TP (Xj)] + m − 1 ≤
2m + x− 1.

ii) By Proposition 1 we can assume that the cone of the statement is X1; let
E1 be its vertex. Then 〈X1〉 ∩ 〈X2〉 = X1 ∩ X2 ' Pm−1 and X2 ⊃ E1. If X has
another component X3 we have Z13 := X3 ∩X1 is a linear space of dimension at
least m− 2 by Corollary 1 and Lemma 2 ii), moreover Z13 ∩ E1 6= ∅ by Corollary
5, unless m = 3 and the vertex of X1 is a point.

Let P be a point in Z13 ∩ E1; as we have seen P ∈ X2 too. By Lemma 4 we
have: m + 3 ≥ dim[TP (X1) ∪ TP (X2)] = m + 2 + dim[TP (X2)] − dim[TP (X1) ∩
TP (X2)] hence: m ≤ dim[TP (X2)] ≤ 1 + dim[TP (X1) ∩ TP (X2)] ≤ 1 + m− 1 = m
and therefore: dim[TP (X2)] = m, dim[TP (X1) ∩ TP (X2)] = m − 1, dim[TP (X1) ∪
TP (X2)] = m + 3. This is not possible: as P ∈ X3, by Lemma 3 TP (X3) *
[TP (X1) ∪ TP (X2)] and we get a contradiction with Lemma 4. Hence X3 cannot
exist unless m = 3 and the vertex of X1 is a point.

Corollary 7. Let X ⊂ PN be a 3-projectable Veronese variety, dim(X) = m ≥ 3.
Let Xi be an irreducible component of X such that Xi is a cone of vertex Ei and
degree di = 2. Then:

i) for any other irreducible component Xj such that Xj is a cone of vertex Ej

and degree dj , if Ei ∩ Ej 6= ∅, we have dj = 2;
ii) for any other irreducible component Xj such that Xj is a cone of vertex Ej ,

if Xj ∩Xi = 〈Xj〉 ∩ 〈Xi〉 ' Pm−2, we have Ei ∩ Ej = ∅;
iii) if m ≥ 4, X has three components at most unless m = 4, X1 is a cone of

degree 2 having a line E1 as vertex, Xj ' P4 for any j ≥ 3.

Proof. i) By Corollary 6 i) we have: 2 + dj ≤ 4.
ii) By contradiction, let us assume that Ei∩Ej 6= ∅ and let P be a point in Ei∩Ej .

We have: dim[TP (Xi)] = m + 1 and dim[TP (Xj)] ≥ m + 1. Let us consider the
tangent spaces at P : dim[TP (Xi)∩TP (Xj)] = m+1+dim[TP (Xj)]−dim[TP (Xi)∪
TP (Xj)] ≤ m − 2. It follows: 2m + 2 ≤ m + 1 + dim[TP (Xj)] ≤ dim[TP (Xi) ∪
TP (Xj)] + m− 2 and m + 2 ≤ 1 + dim[TP (Xj) ≤ dim[TP (Xi)∪TP (Xj)]− 2. Hence
dim[TP (Xi) ∪ TP (Xj)] ≥ m + 4 and this is not possible by Lemma 4.

iii) By Proposition 1 we can assume that the cone of the statement is X1. Then
〈X1〉 ∩ 〈X2〉 = X1 ∩X2 ' Pm−1 and X2 ⊃ E1. By contradiction let us assume that
X contains two other components X3 and X4 at least. By Corollary 5 we know
that Z13 ∩ E1 6= ∅ and Z14 ∩ E1 6= ∅.

If dim(E1) = m− 2 we have Z13 ∩Z14 ∩E1 6= ∅ (as dim(Z13 ∩E1) ≥ m− 3 and
dim(Z14∩E1) ≥ m−3) so that there exists at least a point P ∈ X1∩X2∩X3∩X4,
but this is not possible because dim[TP (X1)] = m + 1 and by applying Lemma 3
we would get a contradiction with Lemma 4.

If dim(E1) = m−3 we can argue in the same way unless m = 4. If m = 4 we can
argue in the same way unless, for any j ≥ 3, Z1j are planes intersecting the line E1

at different points P1j . Let us show that this is possible only if Xj ' P4 for any
j ≥ 3. Every plane Z1j belongs to a unique 3-dimensional linear space contained in



12 ALBERTO ALZATI AND EDOARDO BALLICO

X1 because Z1j projects from E1 onto a line of the quadric which is the base of the
cone X1. Let F be a generic 3-dimensional linear space contained in X1. We have
F ∩Z1j = P1j , hence F ∩Xj = F ∩〈Xj〉 = P1j . Let us consider [F ; Xj ]. By Lemma
1 we have dim([F ;Xj ]) = 8, unless all tangent spaces at smooth points of Xj pass
through P1j . If dim([F ;X3]) = 8 we would have dim[Sec(X)] ≥ 8, contradiction; in
the other case Xj can be a cone, having a vertex intersecting E1, or a linear space,
but if Xj is a cone we would get a contradiction with ii) as dim(Z1j) = 2, hence
Xj is a linear space.

3. 2-projectable Veronese varieties

The direct generalization of Definition 1 would be the definition of 2-projectable
Veronese varieties. In fact the target space for surfaces has dimension 4 = dim(X)+
2. However the previous definition is not very interesting by the following theorem.

Theorem 4. There are no 2-projectable Veronese varieties of dimension m ≥ 3.

Proof. Let X ⊂ PN be a 2-projectable Veronese variety of dimension m ≥ 3. First
of all let us remark that we can argue as in Lemmas 2, 3, 4 and we can prove that
for any point P ∈ X there pass at most 3 irreducible components of X.

Let us choose a generic linear space L in PN of codimension m − 2. Let S be
X ∩ L, then S is a reducible Veronese surface according to Definition 1. In fact
L cuts Λ along a 4 -dimensional linear space and the projection of S into it from
L∩L is an isomorphism because πL(X) is isomorphic to X, hence dim[Sec(S)] ≤ 4.
Obviously i) and ii) of Definition 1 are satisfied for some n by conditions i) and ii)
of Definition 3. By Proposition 2.1 of [E-G-H-P] S is small, hence we can give an
ordering to the irreducible components {Sj} of S such that (S1 ∪ ...∪Sj)∩Sj+1 =
〈S1 ∪ ... ∪ Sj〉∩〈Sj+1〉 for any j ≥ 1, (Theorem 0.4 of [E-G-H-P]). The dimension of
these linear spaces must be 1, otherwise X could not be connected in codimension 1,
and this implies that S is connected in codimension 1 too. Moreover the coordinate
ring of S is Cohen Macaulay by Theorem 1.4 of [E-G-H-P], hence S is locally Cohen
Macaulay. Therefore S is one of the surfaces classified by Theorem 1.

If S is a surface Σn for some n ≥ 1, then X is the union of n + 3 linear spaces
of dimension m. One of them, say X0, is cut from L along Π0 and the other ones,
say Xi, are cut from L along Πi. It follows that every Xi cut X0 ' Pm along a
hyperplane, and as for any point P ∈ X0 at most other two components of X can
pass, in X0 ' Pm three or more hyperplanes can not intersect. This is possible only
if n = 2 as m ≥ 3 and, in this case, X = X0 ∪X1 ∪X2, dim(X0 ∩X1) = dim(X0 ∩
X2) = m − 1, dim(X1 ∩ X2) = m − 2. However, in this case, dim(〈X〉) = m + 2,
while N must be m + 3 at least.

If S is the union of a smooth quadric Q ⊂ P3 and two planes as in Theorem 1,
then X must be the union of a quadric Q′ and two linear spaces of dimension m
and they must cut Q′ along a linear space of dimension m−1 by Theorem 3. As in
the proof of Corollary 2 the quadric Q′ must be a cone over Q having a vertex of
dimension m−3, so that X is a cone over S having a vertex of the same dimension.
For any point P ∈ Sing(X), dim[TP (X)] = dim(〈X〉) = m − 3 + dim(〈S〉) + 1 =
m + 3 = N, so that, in this case too, X is not 2-projectable because the Zariski
tangent space at P concides with PN .
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4. x-projectable Veronese varieties having only linear components

We need the following Lemma.

Lemma 5. Let X = X1∪ ....∪Xr ⊂ PN be an x-projectable Veronese variety, such
that all components of X are linear spaces, dim(X) = m ≥ 3. Then, for any good
ordering X1, ...., Xr of the components of X:

i) r ≥ x + 2;
ii) for any integer q, r ≥ q ≥ 2, dim(X1 ∩X2 ∩ ... ∩Xq) ≥ m + 1− q;
iii) X cannot contain three components Xi, Xj , Xk, such that Xi ∩Xj ∩Xk =

Pm−1.

Proof. i) We have N = dim(〈X〉) = m+ r− 1 ≥ m+x+1. Thus implies r ≥ x+2.
ii) Let us prove the following claim: for any integer p, r ≥ p ≥ 2, dim(X1 ∩ ... ∩

Xp−1) ≥ dim(X1 ∩ ... ∩Xp) ≥ dim(X1 ∩ ... ∩Xp−1)− 1.
In fact, by Corollary 1 ii) there exists at least a component Xs, with s < p, such

that Xp ∩Xs ' Pm−1. Therefore X1 ∩ ...∩Xp is the intersection of the linear space
X1 ∩ ... ∩Xp−1 ⊂ Xj ' Pm with a hyperplane of Xs, hence the claim follows.

From the claim it follows that dim(X1∩ ...∩Xq) ≥ dim(X1)−(q−1) = m+1−q.
iii) By contradiction, let us assume that X contains three components Xi, Xj ,

Xk, such that Xi ∩Xj ∩Xk := Π ' Pm−1. By Proposition 1 we can choose a good
ordering among the components of X, such that X1 = Xi. We can also assume
that 2 ≤ j < k.

The claim proved in ii) implies that, for any integer q with r ≥ q ≥ 2, if there
exists an integer q′ with 2 ≤ q′ ≤ q such that X1 ∩ ...∩Xq′−1 = X1 ∩ ...∩Xq′ then
dim(X1 ∩ ... ∩Xq) ≥ m + 2− q.

Let us consider three cases, by recalling that r ≥ x + 2 by i) and that m ≥ x.
a) 2 ≤ j < k ≤ x + 2. In this case X1 ∩ ... ∩ Xk−1 = X1 ∩ ... ∩ Xk, hence

dim(X1 ∩ ... ∩Xx+2) ≥ m + 2− (x + 2) ≥ 0 by ii). Then there is a point, at least,
contained in x + 2 components of X and this is a contradiction with Corollary 4.

b) 2 ≤ j ≤ x + 1 < k. In this case dim(X1 ∩ ... ∩Xx+1) ≥ m + 1 − (x + 1) ≥ 0
by ii). Let P be a point in X1 ∩ ...∩Xx+1, P ∈ Xk too by assumptions, then there
is a point, at least, contained in x + 2 components of X and this is a contradiction
with Corollary 4.

c) 2 < x < j < k. In this case dim(X1 ∩ ... ∩ Xx) ≥ m + 1 − x ≥ 1, by ii).
Therefore in X1 there is at least a point P ∈ X1 ∩ ... ∩ Xx ∩ Π, hence there is a
point, at least, contained in x+2 components of X and this is a contradiction with
Corollary 4.

Lemma 6. Let X = X1 ∪X2 ∪ ...∪Xr ⊂ PN be an x-projectable Veronese variety,
dim(X) = m ≥ 3. If all components of X are linear spaces then the components
of X are the vertexes of a connected graph A which is a tree, having X1 as root;
the edges of A correspond to pairs Xi, Xj such that Xi ∩ Xj ' Pm−1, moreover
m = x and no simple path is longer than x. If x = m = 3 we have only the following
possibilities:

i) there is a distinguished component Xi and all other components intersect Xi

along planes of Xi in general position, r ≥ 5;
ii) there are two distinguished components Xi and Xj such that Xi ∩ Xj :=

Π ' P2 and all other components intersect Xi along planes in general position, or
intersect Xj along planes in general position, and intersect each other along lines
in general position in Π; r ≥ 5.
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Proof. Let us cut X with a linear space of codimension m− 1 in general position.
Let C be the linear section. C = C1 ∪ C2 ∪ ... ∪ Cr is a curve having exactly
r irreducible components which are lines. Note that Ci ∩ Cj 6= ∅ if and only if
dim(Xi ∩ Xj) = m − 1. As X is 1-connected C is connected and by Lemma 5
there are no points on C for which there pass more than two lines, moreover C is
small according to the definition of [E-G-H-P]. By Proposition 2.1 of that paper
there are no 3-secant lines for C, no 4-secant planes for C, ... , no k-secant linear
spaces of dimension k − 2 (see Theorem 2.2 of [E-G-H-P]). It follows that if we
consider a graph A such that the vertexes of A are the components of C and the
edges of A correspond to the intersections among the components of C, then A is
a (connected) tree, because there are no circuits in A.

Now, if we consider the weighted graph GX associated to X as in [E-G-H-P],
page 1381, in our case GX is a complete graph by Lemma 2 ii), the graph A is
a spanning tree for GX and X1 gives the root of A. Moreover the order among
the components of X is compatible with the natural order of vertexes in A (see
Theorem 5.1 (b) of [E-G-H-P]).

By contradiction, let us assume that m ≥ x + 1. By Lemma 5 i), we have
r ≥ x+2. By taking q = x+2, Lemma 5 ii) implies that dim(X1∩X2∩...∩Xx+2) ≥
m− (x + 2) + 1 ≥ 0 and this is a contradiction with Corollary 4; hence m ≤ x. As
m ≥ x in any case, we get m = x.

Let us consider a fixed component Xk in X, k 6= 1. There is a unique path γ
in A joining Xk with the root X1. We want to prove that γ has no more than x
edges. Let us assume that X1=p1 , Xp2 , ..., Xpt = Xk give rise to the unique path
in A joining Xk with X1 and let us prove that Xp1 ∩Xpt = Xp1 ∩Xp2 ∩ ... ∩Xpt .
Obviously we have only to prove that Xp1 ∩ Xpt ⊆ Xp1 ∩ Xp2 ∩ ... ∩ Xpt . Let
us do induction on t: if t = 2 it is true. If it is true for 2, ..., t − 1 we have
Xp1 ∩ Xpt−1 ⊆ Xp1 ∩ Xp2 ∩ ... ∩ Xpt−1 , on the other hand Xp1 ∩ Xpt ⊆ Xpt−1 by
Corollary 1 ii) because Xpt ∩ Xpt−1 ' Pm−1. Hence Xp1 ∩ Xpt ⊆ Xp1 ∩ Xpt−1 ⊆
Xp1 ∩Xp2 ∩ ... ∩Xpt−1 ⊆ Xp1 ∩Xp2 ∩ ... ∩Xpt .

By contradiction, let us assume that t ≥ x+2. As dim(X1∩Xk) ≥ 0 by Lemma
2 ii) we have dim(Xp1 ∩ Xp2 ∩ ... ∩ Xpt) ≥ 0 by the previous claim, proved by
induction, but this is a contradiction with Corollary 4.

Now let us consider any two components of X, say Xj and Xk, and, by contradic-
tion, let us assume that there exists a path γ in A, joining Xk with Xj , having more
than x edges. Let us recall that there exists a good ordering such that Xj = X ′

1.
With respect to this new order we get another tree A′ for which the root is Xj ,
however A′ has the same edges of A, so that we would have a path in A′, having
more than x edges, joining Xk and the root of A′: contradiction.

If x = m = 3, in A every path passing through the root X1 has 3 edges at most.
It is easy to see that the only possibilities for X are i) or ii), obviously with r ≥ 5
since N ≥ 7.

Now we can give the complete classification of x-projectble varieties X when all
the components of X are linear spaces.

Theorem 5. Let X = X1∪X2∪...∪Xr ⊂ PN be a variety satisfying the assumptions
of Theorem 3, dim(X) = m ≥ 3, such that all components of X are linear spaces.
Then X is x-projectable if and only if:

i) r ≥ x + 2;
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ii) dim(Xi ∩Xj) ≥ 0 for any pair of components of X;
iii) the components of X are the vertexes of a connected graph A which is a tree,

having X1 as root; the edges of A correspond to pairs Xi, Xj such that Xi ∩Xj '
Pm−1; the natural ordering of the vertexes of A is compatible with a good ordering;

iv) every point P ∈ X is contained in at most x + 1 components of X.

Proof. By Lemma 2 ii), Corollary 4, Lemma 5 i) and Lemma 6 we know that the
above assumptions are necessary.

As X satisfies the assumptions of Theorem 3, we know that i), ii), iv) and v) of
Definition 3 are satisfied (for v) recall the proof of Theorem 4). By looking at the
proofs of Lemma 2 and Lemma 6 we see that the above assumptions imply that
m = x and that in A there are no paths whose lenght is longer than x.

Moreover assumption i) implies that N = m + r− 1 ≥ m + x + 1 and ii) implies
that dim([Xi; Xj ]) = dim(Xi ∪ Xj) ≤ m + x for any pair of components of X,
hence dim[Sec(X)] ≤ m + x. To get iii) of Definition 3 we have only to prove that
the union of all Zariski tangent spaces at any point P ∈ X has dimension at most
m + x = 2m. As X is an union of linear spaces it suffices to prove that, for any
point P ∈ X, the linear span of all linear spaces of X containing P has dimension
at most 2m.

Let P be a point of X, by Proposition 1 we can assume that P ∈ X1, the root
of A. Let us assume that P is contained in s components of X and let Xk be one
of these components. There is a unique path γk, X1=p1 ← Xp2 ← ... ← Xpt = Xk,
joining Xk and X1 in A, with 1 = p1 < p2 < ... < pt = k and, by the proof of
Lemma 6, we know that P ∈ Xp1 ∩Xp2 ∩ ... ∩Xpt .

We consider the components Xk containing P such that the corresponding path
γk is of maximal lenght; let us call them mP -components. Let Γk be the set
of vertexes of A involved by γk. We can give a complete, not unique, ordering
among the distinct mP -components Xk1 ≥ Xk2 ≥ Xk3 ... ≥ Xki ≥ ... induced by
a corresponding complete, not unique, ordering on the sets {Γk} defined in the
following way:

Γk1 ≥ Γk2 ≥ Γk3 ... ≥ Γki ≥ ... if and only if
Γk1 ⊇ Γk1 ∩ Γk2 ⊇ (Γk1 ∪ Γk2) ∩ Γk3 ... ⊇ (Γk1 ∪ Γk2 ∪ ... ∪ Γki−1) ∩ Γki ⊇ ...
For instance, in the following tree:

• Xa

↙
X1 • ← • • ← • Xb

↖ ↙
•

↖
• ← • Xc

Xc ≥ Xb ≥ Xa or Xb ≥ Xc ≥ Xa are allowable orderings, Xa ≥ Xb ≥ Xc is not
allowable.

Now let us consider the first mP -component Xk1 and the corresponding path
γk1

as above. We have dim(Xp1 ∪Xp2 ∪ ... ∪Xpt) = m + t− 1. Let us prove it by
induction on t ≥ 2: if t = 2 it is true; let us assume that it is true for 2, ..., t − 1,
then:

dim(Xp1 ∪Xp2 ∪ ... ∪Xpt) = dim[(Xp1 ∪Xp2 ∪ ... ∪Xpt−1) ∪Xpt ] =
= dim(Xp1 ∪Xp2 ∪ ...∪Xpt−1)+dim(Xpt)−dim[(Xp1 ∪Xp2 ∪ ...∪Xpt−1)∩Xpt ] =
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= m + t− 2 + m− (m− 1) = m + t− 1,
because (Xp1 ∪Xp2 ∪ ...∪Xpt−1)∩Xpt

= Xpt−1 ∩Xpt
by the properties of A given

by assumption iv). In fact {Xp1 , Xp2 , ..., Xpt−1} are among {X1, X2, ..., Xpt−1}, as
the two orderings are compatible, and (X1 ∪X2 ∪ ...∪Xpt−1)∩Xpt = Xpt−1 ∩Xpt

by Corollary 1 ii).
Let us consider the second mP -component Xk2 (if any). We can argue as in the

previous case: there is a unique path γk2
, X1=q1 ← Xq2 ← ... ← Xqτ

= Xk2 , joining
Xk2 and X1 in A, with 1 = q1 < q2 < ... < qτ = k2, P ∈ Xq1 ∩ Xq2 ∩ ... ∩ Xqτ

,
and dim(Xq1 ∪Xq2 ∪ ... ∪Xqτ ) = m + τ − 1. Of course there are some components
common to γk1

and γk2
(at least X1): if p1 = q1, p2 = q2, ..., pz = qz for some

integer z ≥ 1, then dim(Xp1 ∪Xp2 ∪ ... ∪Xpt
∪Xq1 ∪Xq2 ∪ ... ∪Xqτ

) =
= dim(Xp1 ∪Xp2 ∪ ... ∪Xpt

) + dim(Xq1 ∪Xq2 ∪ ... ∪Xqτ
)

− dim[(Xp1 ∪Xp2 ∪ ... ∪Xpt
) ∩ (Xq1 ∪Xq2 ∪ ... ∪Xqτ

)] ≤
≤ (m + t− 1) + (m + τ − 1)− dim(Xq1 ∪Xq2 ∪ ... ∪Xqz ) =
= 2m + t + τ − 2− (m + z − 1) = m + t + τ − z − 1.
Note that t + τ − z is exactly the number of components of X containing P and

involved by γk1
and γk2

.
Now let Xk3 be the third mP -component (if any). As above, there is a unique

path γk3
, X1=v1 ← Xv2 ← ... ←Xvθ

= Xk3 , joining Xk3 and X1 inA, with 1 = v1 <
v2 < ... < vθ = k3, P ∈ Xv1∩Xv2∩...∩Xvθ

, and dim(Xv1∪Xv2∪...∪Xvθ
) = m+θ−1.

Of course there are some components common to γk1
, γk2

and γk3
(at least X1).

Thanks to the given ordering among the mP -components, we have to consider only
the case in which p1 = q1 = v1, p2 = q2 = v2, ..., pw = qw = vw for some integer
w ≥ 1. Then dim(Xp1 ∪ ... ∪Xpt ∪Xq1 ∪ ... ∪Xqτ ∪Xv1 ∪ ... ∪Xvθ

) =
= dim(Xp1 ∪ ... ∪Xpt ∪Xq1 ∪ ... ∪Xqτ ) + dim(Xv1 ∪ ... ∪Xvθ

)
− dim[(Xp1 ∪ ... ∪Xpt ∪Xq1 ∪ ... ∪Xqτ ) ∩ (Xv1 ∪ ... ∪Xvθ

)] ≤
≤ (m + t + τ − z − 1) + (m + θ − 1)− dim(Xv1 ∪Xv2 ∪ ... ∪Xvw) =
= 2m + t + τ + θ − z − 2− (m + w − 1) = m + t + τ + θ − z − w − 1.
Note that t+ τ + θ− z−w is exactly the number of components of X containing

P and involved by γk1
, γk2

and γk3
.

By iterating the same calculation for all mP -components of X, we have that the
dimension of the linear span of all components containing P is at most m + s− 1.
As s ≤ x + 1 by assumption iv), it is at most m + x = 2m.

5. 3-projectable Veronese varieties with m ≥ 4

In this section we will prove the following theorems:

Theorem 6. Let X ⊂ PN be a 3-projectable Veronese variety, dim(X) = m ≥ 4.
Then X cannot contain a cone of degree 3.

Proof. By contradiction, let us assume that X contains a cone Xi of degree 3 as
a component. By Corollary 5 there exists a good ordering among the components
of X, such that i = 1. Let E1 be the vertex of X1. By Corollary 6 we know that
there exists only another component X2 such that X2 ∩X1 = 〈X2〉∩ 〈X1〉 ' Pm−1.
If X2 ' Pm−1 then dim(〈X1 ∪X2〉) = (m + 2) + m − (m − 1) = m + 3, but we
are assuming N > m + 3, so that X2 cannot be a linear space. By Propositions
2, 3 we know that X2 is a cone; let E2 be its vertex. By Corollary 6 i) we have:
E1 ∩ E2 = ∅.

Let F1 be a generic (m− 1)-dimensional linear space contained in X1, different
from X2 ∩X1. Let F2 be a generic (m − 1)-dimensional linear space contained in
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X2, different from X2 ∩X1. If m ≥ 5, by Lemma 2 iii) we know that F1 ∩ F2 6= ∅,
but this implies E1 ∩ E2 6= ∅, as F1 ∩ 〈X2〉 = E1 and F2 ∩ 〈X1〉 = E2, and this is
not possible. The only possibility is m = 4.

If m = 4, X2 ∩ X1 = 〈X2〉 ∩ 〈X1〉 ' P3. Let us consider [F1; X2]. As X is a
3-projectable Veronese variety we know that dim([F1; X2]) ≤ 7. On the other hand,
by Lemma 1, dim([F1; X2]) = 3 + 4− dim[F1 ∩ TP (X2)] where P is a generic point
of X2, hence dim[F1 ∩ TP (X2)] ≥ 0. As F1 ∩ 〈X2〉 = E1 we get: E1 ∩ TP (X2) 6= ∅
for generic points P ∈ X2. By arguing in the same way we get: E2 ∩ TQ(X1) 6= ∅
for generic points Q ∈ X1. It follows that E1 and E2 cannot be points, otherwise
they would belong to the vertex of X2 or of X1, respectively (see [A2], page 17),
and this is not possible as E1∩E2 = ∅. E1 and E2 cannot be planes as E1∩E2 = ∅.
So that the only possibility is that dim(E1) = dim(E2) = 1.

Let us consider the line E2 in X1. As E2 is contained in X2∩X1 and it is disjoint
with E1, it is contained in a unique 3-dimensional linear space of X1, which is a
cone over a cubic scroll B1 ⊂ P4 because E2 projects from E1 onto a line l of B1.
Let us call π the projection. As E2 ∩ TQ(X1) 6= ∅ for generic points Q ∈ X1 we
get l ∩ Tπ(Q)(B1) 6= ∅ for generic points Q ∈ X1, hence l ∩ Tb(B1) 6= ∅ for generic
points b ∈ B1 and this is not possible.

Theorem 7. Let X ⊂ PN be a 3-projectable Veronese variety, dim(X) = m ≥ 4.
If X contains a cone Xi of degree 2 then m = 4 and:

1) if X has at most 3 components, X = X1 ∪ X2 ∪ X3, X1 ∩ X2 ∩ X3 ' P3,
X1 and X2 are cones with a line as vertex, X3 is a cone of the same type and the
three vertexes are disjoint, or X3 ' P4; in the first case X ⊂ P9 in the second case
X ⊂ P8;

2) if X has more than 3 components, X = X1∪X2∪X3∪X4, X1 is a cone with
a line as vertex, Xi are linear spaces for i ≥ 2, X1 ∩X2 ' P3, X1 ∩X2 ∩X3 ' P2,
X1 ∩X2 ∩X3 ∩X4 ' P1, (disjoint with the vertex of X1), X ⊂ P8.

Proof. By Proposition 1 there exists a good ordering among the components of
X, such that i = 1. Let E1 be the vertex of X1. If X has only two components
X1 and X2 we know that X2 ∩ X1 = 〈X2〉 ∩ 〈X1〉 ' Pm−1, and, in any case,
dim(〈X2 ∪X1〉) ≤ m + 3, hence this possibility does not occur as N > m + 3 and
X has 3 components at least. By Proposition 3 and Theorem 6, Xi can be only a
quadric cone or a linear space for any i ≥ 2. By Corollary 7 iii) we have only two
possibilities.

1) Let us assume that X has exactly 3 components. We have to consider the
following four cases:

a) X2 and X3 are quadric cones;
b) X2 is a quadric cone and X3 is a linear space;
c) X2 and X3 are linear spaces;
d) X2 is a linear space and X3 is a quadric cone.

a) Let E2 be the vertex of X2. Let F1 be a generic (m−1)-dimensional linear space
contained in X1, different from X2 ∩X1. Let F2 be a generic (m− 1)-dimensional
linear space contained in X2, different from X2 ∩X1.

If m ≥ 5, by Lemma 2 iii) we know that F1∩F2 6= ∅, but this implies E1∩E2 6= ∅,
as F1 ∩ 〈X2〉 = E1 and F2 ∩ 〈X1〉 = E2. Let us consider X3. We know that
X3∩(X1∪X2) ' Pm−1, hence X3∩X1 ' Pm−1 or X3∩X2 ' Pm−1. In the first case
E1 ⊂ X3 and E1∩E2∩X3 6= ∅. In the second case E2 ⊂ X3 and E1∩E2∩X3 6= ∅. So
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that there exists at least a point P ∈ E1 ∩E2 ∩X3, but this is a contradiction with
Lemmas 3 and 4 because dim[TP (X1)∪TP (X2)] = (m+1)+(m+1)−(m−1) = m+3.

If m = 4 the above argument shows that E1 ∩ E2 = ∅, hence dim(E1) =
dim(E2) = 1 as X2 ∩X1 ' P3 (recall Proposition 2). By Lemma 2 ii) we have to
consider 3 subcases:

- X3 ∩X1 ' P3, different from X2 ∩X1, and X3 ∩X2 ' P2 with (X3 ∩X2) ⊂
(X3∩X1). Hence (X3∩X2) ⊂ (X2∩X1) and (X3∩X2) ⊂ [(X3∩X1)∩(X2∩X1)] = E1

but this is not possible as X3 ∩X2 ' P2.
- X3 ∩X2 ' P3, different from X2 ∩X1, and X3 ∩X1 ' P2 with (X3 ∩X1) ⊂

(X3 ∩X2). We can argue as before and this subcase is not possible.
- X3 ∩X2 = X2 ∩X1 ' P3, hence X1 ∩X2 ∩X3 ' P3. X3 must be a cone having

a line E3 as vertex, because E1 ∩E3 = ∅ and E2 ∩E3 = ∅ by the above argument,
and this subcase is possible.

b) We can argue as in case a), the only difference is that here X3 ' P4.
c) In this case dim(〈X2 ∪X1〉) = m+2 and dim(〈X3 ∪X2 ∪X1〉) = dim(〈X3〉)+

(m + 2) − dim(〈X3〉 ∩ 〈X2 ∪X1〉) = (m + 1) + (m + 2) − (m − 1) = m + 3, hence
this possibility does not occur as N > m + 3.

d) If X3∩X1 ' Pm−1 and X3∩X2 ' Pm−2 or X3∩X2 = X3∩X1 we can consider
a different good ordering among the components of X, according to Theorem 3:
X1, X3, X2 and we can get case b). Hence, by Lemma 2 ii), we can assume: X3 ∩
X2 ' Pm−1 and X3 ∩ X1 ' Pm−2 with (X3 ∩ X1) ⊂ (X3 ∩ X2). Let E3 be the
vertex of X3, by Corollary 7 ii) we have: E1 ∩ E3 = ∅. Now, (E1 ∩ X3 ∩ X1) ⊂
(X3∩X1) ' Pm−2 and E1∩X3∩X1 has dimension dim(E1)−1 = m−ε1−1 because
E1 ⊂ X2 ∩ X1 and X3 ∩ X1 is a divisor in X2 ∩ X1; moreover (E3 ∩ X3 ∩ X1) ⊂
(X3 ∩ X1) ' Pm−2 and E3 ∩ X3 ∩ X1 has dimension dim(E3) − 1 = m − ε3 − 1
because E3 ⊂ X2 ∩X3 and X3 ∩X1 is a divisor in X2 ∩X3. As E1 ∩E3 = ∅ it must
be: m− ε1 − 1 + m− ε3 − 1 < m− 2, i.e. m < ε1 + ε3 ≤ 6, as εi ∈ {2, 3}. We have
to consider 3 subcases:

- m = 5, dim(E1) = dim(E3) = 2. It must be dim([X1; X3]) ≤ m + 3 = 8,
hence, by Lemma 1, it must be dim(〈TP (X1) ∪ TQ(X3)〉) ≤ 8 for generic points
P ∈ X1 and Q ∈ X3. We claim that this implies that there is a fixed plane H ⊂
X3 ∩ X1 = 〈X1〉 ∩ 〈X3〉 ' P3 such that H ⊂ TP (X1) and H ⊂ TQ(X3). In fact
dim[TP (X1)∩TQ(X3)] ≥ 2 and TP (X1)∩TQ(X3) ⊆ K := 〈X1〉 ∩ 〈X3〉 . If TP (X1) =
K for any generic pont P ∈ X1, X1 would be a cone with a vertex containing K and
this is not possible, hence dim[TP (X1)∩K] = 2, analogously dim[TQ(X3)∩K] = 2
for any generic pont Q ∈ X3; hence dim[TP (X1) ∩ TQ(X3)] = 2 for generic points
P ∈ X1 and Q ∈ X3. Let us fix a generic point P ∈ X1 and let H be the plane
TP (X1) ∩ K. As dim[TP (X1) ∩ TQ(X3)] = 2 for any generic point Q ∈ X3 and
TP (X1) ∩ TQ(X3) ⊆ K, we have TP (X1) ∩ TQ(X3) = TP (X1) ∩ TQ(X3) ∩ K =
H ∩ TQ(X3), hence H ⊆ TQ(X3) and H ⊆ TQ(X3) ∩K. As dim[TQ(X3) ∩K] = 2,

it follows that H = TQ(X3) ∩ K for any generic point Q ∈ X3. By changing the
role of X1 and X3 we get the claim.

However this is not possible: let π : X1 → B1 be the natural projection of X1

onto the base B1 of the cone, B1 is a smooth quadric in P3; π(H) is a point or a line
in B1 and the tangent space Tπ(P )(B1) would contain π(H) for any generic point
P ∈ X1: contradiction.

- m = 4, dim(E1) = dim(E3) = 1. It must be dim([X1; X3]) ≤ m + 3 = 7, hence,
by Lemma 1, it must be dim(〈TP (X1) ∪ TQ(X3)〉) ≤ 7 for generic points P ∈ X1



VERONESE VARIETIES 19

and Q ∈ X3. As above, this implies that there is a fixed line L ⊂ X3 ∩X1 = 〈X1〉
∩ 〈X3〉 ' P2 such that L ⊂ TP (X1) and L ⊂ TQ(X3). But this is not possible: let
π : X1 → B1 be the projection of X1 onto the base B1 of the cone, B1 is a smooth
quadric in P3;π(L) is a point or a line in B1 and the tangent space Tπ(P )(B1) would
contain π(L) for any generic point P ∈ X1: contradiction.

- m = 4, dim(E1) = 1,dim(E3) = 2 (the case dim(E1) = 2, dim(E3) = 1 is
analogous). It must be dim([X1; X3]) ≤ m + 3 = 7, hence, by Lemma 1, it must
be dim(〈TP (X1) ∪ TQ(X3)〉) ≤ 7 for generic points P ∈ X1 and Q ∈ X3. As above,
this implies that there is a fixed line L ⊂ X3 ∩X1 = 〈X1〉 ∩ 〈X3〉 ' P2 such that
L ⊂ TP (X1) and L ⊂ TQ(X3). But this is not possible: let π : X1 → B1 be the
projection of X1 onto the base B1 of the cone, B1 is a smooth quadric in P3;π(L)
is a point or a line in B1 and the tangent space Tπ(P )(B1) would contain π(L) for
any generic point P ∈ X1: contradiction.

2) Now let us assume that X has more than 3 components. By Corollary 7 we
know that Xj is a linear space for any j ≥ 3 and by the above proof we know that
X2 can be only a quadric cone, having a line as vertex, or a linear space. In the first
case, by the above proof, X1 ∩X2 ∩X3 is a 3-dimensional linear space containing
the two disjoint vertex of X1 and X2, so that X4 would cut another 3-dimensional
linear space on X3, or on X2, or on X1, by Corollary 1 ii). Therefore X4 would
cut and at least a point on the two vertexes, but this is not possible by Lemma 4.
Therefore Xj is a linear space for any j ≥ 2.

Let F be X1 ∩ X2 ' P3, obviously F ⊃ E1, the vertex of X1. X3 cuts a 3-
dimensional linear space on X1, or on X2. If X3 ∩ X1 ' P3 then E1 ⊂ X3 ∩ X1,
hence E1 ⊂ X3 ∩ X2 ∩ X1 and X4 would cut at least a point on E1: this is not
possible by Lemma 4. Therefore X3 ∩ X2 ' P3, X3 ∩ X1 := H ' P2 (recall that
dim(X3∩X1) ≥ 2 by Lemma 2 ii)), H ⊂ F and H = X3∩X2∩X1. Let us consider
E1∩H; if E1 ⊂ H then X4 would cut a point on E1, at least, and this is not possible
by Lemma 4, hence E1 ∩H is a point P . By Lemma 4 no other component of X
passes through P, hence X4 ∩ X1 cannot be a 3-dimensional linear space, hence
X4 ∩X2 ' P3 or X4 ∩X3 ' P3, in any case X4 ∩H = X4∩ X3 ∩X2 ∩X1 is a line
L, not passing through P, and, by Lemma 4, no other component of X intersects
L. Now it is easy to see that X cannot contain other components: X5 would cut
a point on L, at least, or it would pass through P. Both cases are not possible by
Lemma 4.

6. 3-projectable Veronese varieties with m = 3

A direct computation gives the following lemma.

Lemma 7. Let V = P(E) be a smooth rational scroll over P1 such that E =
OP1(2)⊕OP1(1)⊕OP1(1) or E = OP1(1)⊕OP1(1)⊕OP1(1) or E = OP1(2)⊕OP1(1).
Let F be a fixed fibre of anyone of the above scrolls and let P be a generic point of
V. Then:

- in the first case and in the third case Tp(V ) ∩ F = ∅;
- in the second case Tp(V ) ∩ F is a point and if P belongs to another fibre F ′,

the map F ′ → F, given by P → Tp(V ) ∩ F, is an isomorphism.

Now we consider 3-projectable Veronese varieties containing scrolls and cones.

Proposition 4. Let X ⊂ PN be a 3-projectable Veronese variety, dim(X) = 3. Let
us assume that X contains a smooth scroll Xi. Then: X = X1 ∪ X2 ∪ X3 ⊂ P7,
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or X = X1 ∪ X2 ∪ X3 ∪ X4 ⊂ P8, X1 ' P1 × P2, X2 ' X3 ' X4 ' P3, and all
components intersect along a fixed 2-dimensional fibre of the scroll X1.

Proof. We can always assume that X1 is a scroll by Proposition 1. Then X1 ∩
X2 = 〈X1〉 ∩ 〈X2〉 ' P2 is a fibre F of the scroll. It must be dim([X1; X2]) ≤ 6,
hence Tp(X1) ∩ TQ(X2) 6= ∅ by Lemma 1 for generic points P ∈ X1 and Q ∈ X2

and Tp(X1) ∩ TQ(X2) ⊆ F. If X1 = P(OP1(2) ⊕ OP1(1) ⊕ OP1(1)), by Lemma 7,
Tp(X1)∩F = ∅ hence X cannot contain such a scroll. If X1 = P(OP1(1)⊕OP1(1)⊕
OP1(1)) ' P1 × P2 and TQ(X2) ∩ F 6= F then for generic points P ∈ X1 we
have Tp(X1) ∩ TQ(X2) = ∅ by Lemma 7. Hence TQ(X2) ∩ F = F , X2 ' P3 and
dim(〈X1 ∪X2〉) = 6. As N ≥ 7 there exist other components in X. Let us consider
X3. By arguing as before we have X3 ' P3 too and X3 ∩X1 is a fibre of the scroll.
Since: X3 ∩ X2 6= ∅, X3 ∩ X2 ⊆ X3 ∩ X1 by Corollary 1 ii) and the fibres of X1

are disjoint, we have X3 ∩ X1 = F. The same is true for X4 if there is another
component. X cannot contain other components by Corollary 4.

We have no other cases to consider thanks to Proposition 3.

From now on we can assume that X does not contain scrolls as components.

Proposition 5. Let X ⊂ PN be a 3-projectable Veronese variety, dim(X) = 3. Let
us assume that X contains a cone Xi of degree 3. Then Xi = X1, X = X1 ∪X2 ⊂
P7, X1 has a line E1 as vertex, X2 is a cone of degree 2 having a point E2 as vertex
and X1 ∩X2 is a plane containing E1 and E2 with E1 ∩ E2 = ∅.
Proof. We can always assume that X1 a cone of degree 3 by Proposition 1. Then
X1 ∩X2 = 〈X1〉 ∩ 〈X2〉 ' P2 is a linear subspace F of maximal dimension for the
cone. It must be dim([X1; X2]) ≤ 6, hence Tp(X1) ∩ TQ(X2) 6= ∅ by Lemma 1 for
generic points P ∈ X1 and Q ∈ X2 and Tp(X1) ∩ TQ(X2) ⊆ F.

If X1 has a point E1 as vertex and a base B1 ' P(OP1(2)⊕OP1(1)) then Tp(X1)∩
F = E1, for generic points P ∈ X1, otherwise, by looking at the projection from
the vertex of the cone onto B1, we would get a contradiction with Lemma 7. Hence
E1 ⊂ TQ(X2) and X2 ' P3 or X2 is a cone with vertex containing E1, but this
is not possible by Corollary 6 i). Therefore X2 ' P3. By arguing in this way we
can conclude that all components Xi of X with i ≥ 2 are isomorphic to P3 and
they pass through E1 (also in case dim(Xi ∩X1) = 1), but this is not possible by
considering TE1 and Lemma 4. The only possibility is X = X1 ∪ X2, but in this
case dim(〈X1 ∪X2〉) = 6. As N ≥ 7, X cannot contain such a cone.

If X1 has a line E1 as vertex and a base B1 which is a rational space cubic then
Tp(X1) ∩ F = E1, for generic points P ∈ X1. Hence E1 ∩ TQ(X2) 6= ∅ for generic
points Q ∈ X2. Let us examine the possibilities for X2.

- If X2 is a cone of degree 3, or of degree 2, having a line (on F ) as vertex we
would get E1 ∩ E2 6= ∅, but this is not possible by Corollary 6 i).

- If X2 is a cone of degree 3 having a point as vertex we can reorder the com-
ponents of X changing the role of X1 and X2; we can argue as above and we can
exclude this case.

- If X2 ' P3, dim(〈X1 ∪X2〉) = 6, then it must exist X3; however X3 would cut
a plane on X1 or on X2 and it would intersect E1 at least at a point P, but this is
not possible by considering TP and Lemma 4.

- If X2 is a cone of degree 2 having a point as vertex, for any generic point
Q ∈ X2 we have TQ(X2) ∩ F is a line passing through E2 so that the condition
E1 ∩TQ(X2) 6= ∅ is fullfilled. Of course it must be E1 ∩E2 = ∅ otherwise we would
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have a contradiction with Lemma 4. X cannot contain another component X3: X3

would cut a plane or a line on X1, hence there would be a point P ∈ X3 ∩ E1 and
this is not possible by considering TP and Lemma 4.

For the sequel we need the following Lemma.

Lemma 8. Let X ⊂ PN be a 3-projectable Veronese variety, dim(X) = 3. Let us
assume that X contains two cones Xi and Xj of degree 2, then Xi ∩Xj is a plane.

Proof. By Lemma 2 ii) we know that Xi ∩Xj = 〈Xi〉 ∩ 〈Xj〉 is a plane or a line.
By contradiction, let us assume that Xi∩Xj is a line L and let π be the isomorphic
projection of X onto P6. In this case π(〈Xi〉) ' 〈Xi〉 ' 〈Xj〉 ' π(〈Xj〉) ' P4

and π(〈Xi〉) ∩ π(〈Xj〉) is a plane Π, moreover there are two planes Πi ⊂ 〈Xi〉 and
Πj ⊂ 〈Xj〉 such that L = Πi ∩Πj and Π = π(Πi) = π(Πj). Let C ′i ⊃ L and C ′j ⊃ L
be the two plane conics Πi ∩Xi and Πj ∩Xj . As π is an isomorphism, Ci = π(C ′i)
and Cj = π(C ′j) are two plane conics in Π and L = Xi ∩ Xj ' π(Xi ∩ Xj) '
π(Xi) ∩ π(Xj) = Ci ∩ Cj : contradiction, as the intersection of two plane conics
cannot be isomorphic to a (reduced) line.

Proposition 6. Let X ⊂ PN be a 3-projectable Veronese variety, dim(X) = 3. Let
us assume that X does not contain cones of degree 3 and that X contains a cone
Xi of degree 2 having a line Ei as vertex. Then:

i) X = X1 ∪X2 ∪X3 ⊂ P8; X1 is a quadric cone having a line E1 as vertex, X2

and X3 are quadric cones having points E2 and E3 as vertexes; X1 ∩X2 ∩X3 is a
plane F , the vertexes are disjoint;

ii) X = X1∪X2∪X3 ⊂ P7; X1 is a quadric cone having a line E1 as vertex, X2

is a quadric cone having a point E2 as vertex, X3 ' P3; X1 ∩X2 ∩X3 is a plane
F , the vertexes are disjoint (the role of X2 and X3 can be exchanged);

iii) X = X1 ∪X2 ∪X3 ⊂ P7; X1 is a quadric cone having a line E1 as vertex,
X2 is a quadric cone having a point E2 as vertex, X3 ' P3 ; X1 ∩X2 is a plane F,
X3 ∩X1 is another plane F ′, X3 ∩X2 = E1 ⊂ F , the vertexes are disjoint (the role
of X2 and X3 can be exchanged);

iv) X = X1 ∪X2 ∪ ...∪Xr ⊂ Pr+3, r ≥ 4; X1 is a quadric cone having a line E1

as vertex, Xi ' P3 for i ≥ 2; X1 ∩X2 is a plane F ; Xi ∩X2 are planes in generic
position in X2 intersecting lines Li ⊂ F in generic position for i ≥ 3.

Proof. As usual we can assume that X1 is a quadric cone having a line E1 as vertex
by Proposition 1. We have to consider three cases.

Case 1: X2 is a quadric cone having a line E2 as vertex, intersecting X1 along
a plane F. Let P be a point in E1∩E2 6= ∅. If X contains a component X3 then X3

cuts a plane on X2 or on X1 (or on both), in any case X3 passes through P, but
this is not possible by Lemma 4. Moreover X cannot be X1 ∪X2 because N ≥ 7.

Case 2: X2 is a quadric cone having a point E2 as vertex, intersecting X1 along
a plane F. If E2 ∈ E1 ⊂ F we can argue as in Case 1 and we have no possibilities,
so we can assume E2 /∈ E1. X cannot be X1 ∪X2 because N ≥ 7. Let us consider
X3.

2a) X3 is a quadric cone. Hence it cuts a plane on X1 and X2 by Lemma 8 and
the two planes coincide with F by Corollary 1 ii). By Lemma 4 the vertex E3 of
X3 does not intersect E1 or E2, hence E3 is a point in F in generic position with
respect E1 and E2. X cannot contain X4 because X4 would cut a plane on some
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Xi, i ≤ 3, hence it would pass through some vertex Ei but this is not possible by
Lemma 4. We have i).

2b) X3 ' P3, X3∩X2 is a plane F ′ 6= F, X3∩X1 is a line L ⊂ F ′. As F ′∩X1 = E2,
the assumptions imply that F ′ = F, so that this subcase is not possible.

2c) X3 ' P3, X3 ∩X2 = F = X3 ∩X1. If X contains X4 then X4 cuts a plane
on some Xi, i ≤ 3, hence X4 intersects E1 or passes through E2, but this is not
possible by Lemma 4. We have ii).

2d) X3 ' P3, X3 ∩X1 is a plane F ′, X3 ∩X2 is a line L ⊂ F ′. Unless L = E1 we
get F ′ = F, the previous considered case. If X contains X4 then X4 cuts a plane
on some Xi, i ≤ 3. If X4 cuts a plane on X1, or on X3, it intersects E1 at least at
a point P, but this is not possible by Lemma 4. If X4 cuts a plane F ′′ on X2, then
it must also cut a line L′ ⊂ F ′′ on X1 hence F ′′ = F and X4 intersects E1 in this
case too. We have iii).

Case 3: X2 ' P3, intersecting X1 along a plane F. X cannot be X1∪X2 because
N ≥ 7. Let us consider X3.

3a) X3 is a quadric cone. By Lemma 8, X3 ∩ X1 is a plane F ′. If F ′ = F we
can argue as in Case 2c) changing the role of X2 and X3. If F ′ 6= F, X3 ∩X2 = E1

because F ′∩X2 = E1 (recall Corollary 1 ii)), moreover the vertex E3 of X3 cannot
be a line, otherwise E3∩E1 would be non empty and this is not possible by Lemma
4. Hence E3 is a point on F ′, E3 /∈ E1. We can argue as in Case 2d) changing the
role of X2 and X3.

3b) X3 ' P3, X3 ∩X1 is a plane F ′ 6= F, X3 ∩X2 is a line L ⊂ F ′. Necessarily
L = E1 (otherwise F ′ = F ). If X contains X4, then X4 cuts a plane on some Xi,
i ≤ 3. In any case X4 intersects E1 at least at a point P, but this is not possible
by Lemma 4. Moreover X cannot be X1 ∪ X2 ∪ X3 as N ≥ 7, so we have no
possibilities.

3c) X3 ' P3, X3 ∩ X1 = F = X3 ∩ X2. We can argue as in the previous case
and we have no possibilities.

3d) X3 ' P3, X3 ∩ X2 is a plane Π 6= F, X3 ∩ X1 is a line L ⊂ Π. If L = E1

X cannot contain X4 because X4 would intersect E1 in any case and this is not
possible by Lemma 4; on the other hand X cannot be X1∪X2∪X3 as N ≥ 7, so we
can assume that L 6= E1. Let H be L∩E1, note that no other component can pass
through H by Lemma 4. Let us consider X4. If X4 is a quadric cone then it must
cut a plane on X1 by Lemma 8, hence it would pass through H: contradiction.
Therefore X4 ' P3. X4 cuts a plane on some Xi with i ≤ 3, but X4 ∩X1 cannot
be a plane, otherwise X4 would contain H. If X4 ∩ X3 is a plane then X4 ∩ X1

would be a line, necessarily contained in this plane (recall Corollary 1 ii)), but,
as X3 ∩ X1 = L, it would imply: X4 ∩ X1 = L, hence H ∈ X4: contradiction.
Hence there is only one possibility: X4∩X2 is a plane Π4 (not passing through H),
X4 ∩X1 is a line L4 ⊂ F, X4 ∩X3 is the line Π4 ∩Π.

Now let us proceed by induction on the number of components of X. Let us
put L3 = L and Π3 = Π. In this subcase Proposition 6 is true when X has r = 4
components. Let us prove Proposition 6 assuming that it is true when X has
4, 5, ..., r−1 components and considering the case in which X has r ≥ 5 components.
Let us consider Xr. If Xr is a quadric cone then it must cut a plane on X1 by Lemma
8, hence it would pass through H: contradiction. Therefore Xr ' P3. Xr cuts a
plane on some Xi with i ≤ r − 1, but Xr ∩ X1 cannot be a plane, otherwise Xr

would contain H. If Xr ∩ Xi is a plane for some i = 3, ..., r − 1, then Xr ∩ X1



VERONESE VARIETIES 23

would be a line, necessarily contained in this plane (recall Corollary 1 ii)), but, as
Xi ∩X1 = Li ⊂ F = X1 ∩X2 by induction, this would imply: Xr ∩X1 = Li, hence
there would be at least a point in X1 ∩ X2 ∩ Xi ∩ Xr and this is not possible by
Lemma 4. Hence there is only one possibility: Xr ∩ X2 is a plane Πr (in generic
position in X2), Xr∩X1 is a line Lr ⊂ F, Xr∩Xi is the line Πr∩Πi for i = 3, ..., r−1,
and we have iv).

Proposition 7. Let X ⊂ PN be a 3-projectable Veronese variety, dim(X) = 3. Let
us assume that X does not contain cones of degree 3, or of degree 2 having a line
as vertex, and that X contains a cone Xi of degree 2 having a point Ei as vertex.
Then:

i) X = X1 ∪X2 ∪ ...∪Xr ⊂ Pr+3, r ≥ 4; X1 is a quadric cone having a point E1

as vertex, Xi ' P3 for i ≥ 2 ; X1 ∩X2 is a plane F ; Xi ∩X2 are planes in generic
position in X2 intersecting lines Li ⊂ F in generic position for i ≥ 3; possibly one
of the components Xp, 3 ≤ p ≤ r, is exceptional: it intersects X1 along another
plane F ′, cutting F along a line l in generic position with respect to the set
{Li, i 6= p};

ii) X = X1∪X2∪ ...∪Xr ⊂ Pr+3, r ≥ 4; X1 is a quadric cone having a point E1

as vertex, Xi ' P3 for i ≥ 2 ; X1 ∩X2 is a plane F ; Xi ∩X2 are planes in generic
position in X2 intersecting lines Li ⊂ F in generic position for i = 3, ..., r−1; there
exists a fixed j, 3 ≤ j ≤ r − 1, such that Xr ∩ Xj is a plane and Xr ∩ X1 = Lj

(E1 /∈ Lj);
iii) X = X1 ∪ X2 ∪ X3 ∪ X4 ⊂ P7; X1 is a quadric cone having a point E1 as

vertex, Xi ' P3 for i ≥ 2 ; X1 ∩ X2 ∩ X3 is a plane F ; X4 ∩ X2 is a plane Π,
X4 ∩X3 = X4 ∩X1 is a line L = Π ∩ F, not passing through E1, or X4 ∩X3 is a
plane Π, X4 ∩X2 = X4 ∩X1 is a line L = Π ∩ F, not passing through E1.

Proof. As usual we can assume that X1 is a quadric cone having a point E1 as
vertex by Proposition 1. By the previous Propositions we know that all other
components of X are linear spaces. X2 ∩X1 is a plane F. We consider two cases.

Case 1: for any i ≥ 3, Xi ∩X1 is a line Li. Let us consider X3. X3 must cut a
plane Π3 on X2 and L3 = Π3 ∩ F on X1. X must contain another component as
N ≥ 7.

Let us consider X4. X4 has to cut a plane on X3 or on X2 (or on both). If X4

cuts a plane on X3 containing the line X4∩X1 = L4 then L4 = L3 as X3∩X1 = L3.
This case is possible only if E1 /∈ L3, otherwise we would get a contradiction with
Lemma 4, and in this case no other component of X can intersect L4 = L3 ⊂ F by
Corollary 4, on the other hand another component X5 would cut a plane on some
Xi with 2 ≤ i ≤ 4, hence X5 would intersect L3: contradiction. Then we get ii)
with r = 4 and j = 3.

If X4 cuts a plane Π4 on X2, then X4 ∩X1 = Π4 ∩F is a line L4, while X4 ∩X3

is the line Π4 ∩ Π3 (the position of E1 with respect to L4 is not important). Here
we get i) with r = 4.

Now we can proceed by induction on the number of components of X. Let us
assume that if X has r − 1 components, r ≥ 5, such that for any i ≥ 3, Xi ∩X1 is
a line Li and let us assume that i) or ii) holds for X. Let us prove that, if X has
r components, r ≥ 5, such that for any i ≥ 3, Xi ∩ X1 is a line Li, then i) or ii)
holds for X. Let us consider Y := X1 ∪ ... ∪Xr−1; by induction we know that i)
or ii) holds for Y. In fact ii) cannot hold: Xr−1 ∩X1 = Lr−1 = Lj ⊂ F for some j
with 3 ≤ j ≤ r − 2; Xr must cut a plane on some Xi with 2 ≤ i ≤ r − 1 and a line
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Lr on X1 such that Lr is contained in that plane, hence Lr ⊂ F and Lr intersects
Lr−1 = Lj , then there would be at least a point on five components of X: X1, X2,
Xj , Xr−1, Xr: contradiction with Corollary 4. Therefore i) holds for Y. Now Xr

must cut a plane on some Xi with 2 ≤ i ≤ r−1 and a line Lr on X1 such that Lr is
contained in that plane, hence Lr ⊂ F. If Lr is distinct from Lj with 3 ≤ j ≤ r− 1,
and necessarily in general position on F to avoid contradiction with Corollary 4,
then we have i) for X; if Lr concides with a line Lj with 3 ≤ j ≤ r− 1, necessarily
not passing through E1, then we have ii) for X.

Case 2: there exists at least a component Xi, i ≥ 3, such that Xi ∩ X1 is a
plane.

2a) X3 ∩ X1 is a plane. Firstly let us assume that X3 ∩ X1 := Π 6= F and
Π ∩ F = ∅ (then X3 ∩ X2 = E1, recall Corollary 1 ii)). X must contain another
component as N ≥ 7. Let us consider X4. X4 has to cut a plane on Xi, i ≤ 3. If
X4 ∩X1 is a plane X4 contains E1; if X4 ∩X2 is a plane then X4 cuts a line or a
point on X3, hence E1 ∈ X4; if X4∩X3 is a plane then X4 cuts a line or a point on
X2, hence E1 ∈ X4; therefore X4 contains E1 in any case, but this is not possible
by Lemma 4.

Secondly let us assume that X3 ∩X1 = F. X must contain another component
X4, as N ≥ 7, and, by arguing as above, we get X4 ∩X2 is a plane Π intersecting
F (and X1 and X3) along a line L not passing through E1, or X4 ∩X3 is a plane
Π intersecting F (and X1 and X2) along a line L not passing through E1. In
both cases X cannot contain another component X5: X5 would cut a plane on Xi,
i ≤ 4, hence it would cut L: contradiction with Corollary 4, or it would contain
E1: contradiction with Lemma 4. We get iii).

Thirdly let us assume that X3 ∩X1 := Π 6= F and Π ∩ F := l is a line. X must
contain another component X4, as N ≥ 7, and X4 cuts a plane on Xi, i ≤ 3. As
X4 ∩X1 cannot be a plane, by looking at TE1 , we have that X4 ∩X3 or X4 ∩X2 is
a plane. We can assume that X4 ∩X2 := Π4 is a plane intersecting F along a line
L4, cutting l at a point P4 6= E1. Note that X3 ∩X4 = P4. X can contain another
component X5. It cannot cut neither a plane on X1 nor on X3 or X4: if X5 ∩X4

would be a plane it would pass through P4 (recall Corollary 1 ii)) and this is not
possible by Corollary 4. Hence X5 ∩X2 is a plane Π5 cutting F along a line L5 in
generic position with respect to l and L4 and i) holds for X1 ∪X2 ∪X4 ∪X5. Now
we can proceed as in Case 1 because, by arguing as above, the other components
Xi must cut X2 along a plane Πi, cutting F along a line Li in generic position with
respect to the previous ones. Note that Xi cannot cut F along a line Lj , i < r, (as
in ii)) otherwise at least five components of X would pass through l ∩ Lj . We get
i) with p = 3.

2b) X3 ∩ X1 is a line. By arguing as in Case 1 we get X3 ∩ X2 is a plane
Π2, intersecting F and X1 along a line L3. X must contain another component as
N ≥ 7. Let us consider X4. X4 has to cut a plane on some Xi, i ≤ 3.

Let us assume that X4 cuts a plane F ′ on X1. If F ′ 6= F and F ′ ∩ F = E1,
then X4 ∩ X3 = ∅ and this is not possible by Lemma 2 ii). If F ′ = F we have
X4 ∩ X3 = L3. X cannot have another component X5: X5 would cut a plane on
Xi, i ≤ 4, hence it would cut L3: contradiction with Corollary 4 or it would contain
E1: contradiction with Lemma 4. We get iii). If F ′ 6= F and F ′ ∩ F := l is a line,
we are in Case 2a) with X4 in the role of X3. We can proceed as in 2a) and we get
i), with p = 4.
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Let us assume that X4 cuts a line L4 on X1, then Y := X1 ∪ X2 ∪ X3 ∪ X4

is as in Case 1 and we get ii) or i) for Y. Only in this second case (X4 ∩ X2 is a
plane Π2 cutting a line L4 on F in generic position with respect L3 and E1), there
can be another component X5 for X. X5 has to cut a plane on some Xi, i ≤ 4.
By arguing as above we can exclude that X5 ∩X1 is a plane different from F. On
the other hand X5 ∩X1 cannot be F, otherwise there would be at least a point on
five components of X (i.e. L4 ∩ L3 ⊂ F ) and this would be a contradiction with
Corollary 4. Therefore X5∩X1 must be a plane intersecting F along a line l and we
get i) with p = 5, or X5∩X1 is a line and so on. By repeating the above arguments
it is easy to see that we get i) with an exceptional component Xp.

7. Proof of Theorem 2

In this section we give the proof of Theorem 2 by showing that only the nine
varieties listed in Theorem 2 are 3-projectable among all remaining varieties, after
having imposed necessary conditions in the previous sections. In any case it suffices
to prove or disprove that dim(

⋃
P∈X

TP (X)) ≤ m + 3.

Firstly let us consider the case in which all components of X are linear spaces.
By Lemma 6 we know that the only possibilities for X are i) and ii) described in
that Lemma, with r ≥ 5 by Lemma 5 i). Theorem 5 says that such an X is in fact
3-projectable. We get 1) and 2).

Let us assume m ≥ 4. By Section 5 we know that the possibilities for X are the
three cases described in Theorem 7.

In the first case X ⊂ P9. If we consider a point P ∈ X1∩X2∩X3 we have, for any
i = 1, 2, 3, TP (Xi) ' P4 is generated by 〈Ei ∪ P 〉 and the tangent plane at πi(P ) to
the smooth quadric Qi, base of the cone Xi, where πi is the natural projection from
Ei onto Qi. Let Li be the line X1∩X2∩X3∩Qi, then TP (X) ' P6 is generated by
X1 ∩X2 ∩X3 and the 3 lines L′P,i ⊂ Qi intersecting Li at πi(P ). Viceversa, if we
take 3 generic points Ri ∈ Qi, if we consider the 3 points R′i intersected on Li by
the unique line L′Ri

of Qi passing through Ri, not belonging to the ruling of Li, if
we consider the point P := 〈E1 ∪R′1〉∩〈E2 ∪R′2〉∩〈E3 ∪R′3〉 ∈ X1∩X2∩X3 ' P3,
then TP (X) =

〈
(X1 ∩X2 ∩X3) ∪ L′R1

∪ L′R2
∪ L′R3

〉
. It follows that the union of

all the 6-dimensional linear spaces TP (X), for generic points P ∈ X1 ∩ X2 ∩ X3,
has dimension 9, and X is not 3-projectable into P7.

In the second case X ⊂ P8. We can argue as in the previous case and we can
prove that the union of all the 6-dimensional linear spaces TP (X), for generic points
P ∈ X1 ∩X2 ∩X3, has dimension 8, and X is not 3-projectable into P7.

In the third case X ⊂ P8. Let us consider the line L := X1 ∩ X2 ∩ X3 ∩ X4

and recall that L is disjoint from the line E1, vertex of X1 and that X1 ∩ (X2 ∪
X3 ∪ X4) = F := X1 ∩ X2 ' P3. For any point Q ∈ L, dim[TQ(X)] = 7 and
TQ(X) = 〈TQ(X1) ∪X2 ∪X3 ∪X4〉 . As the projection of L from E1 is a line on
the 2-dimensional smooth quadric B1 which is the base of X1, when Q moves in L,
TQ(X1) varies in a pencil of 4-dimensional linear spaces, containing F , spanned by
E1 and the tangent plane to B1 at π1(Q), hence dim(

⋃
Q∈L

TQ(X)) = 8 and X is not

3-projectable into P7.
From now on let us assume that m = 3.
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By Proposition 4 we know that, if X contains a scroll, the possibilities are those
described in that Proposition.

In the first case, let F be the fixed fibre of the scroll X1 where all components
of X intersect. For any point P ∈ F, Tp(X) = 〈TP (X1) ∪X2 ∪X3〉 ' P5, moreover
for any other point P ′ ∈ F, TP ′(X) = 〈TP ′(X1) ∪X2 ∪X3〉 6= Tp(X), because
TP (X1) 6= TP ′(X1) by Lemma 7 and 〈X2 ∪X3〉 ∩ 〈X1〉 = F. It follows that the
union of all the 5-dimensional linear spaces TP (X), for generic points P ∈ F, has
dimension 7, and X is not 3-projectable into P6.

In the second case X ⊂ P8. We can argue as in the previous case and we can
prove that the union of all the 6-dimensional linear spaces TP (X), for generic points
P ∈ F, has dimension 8, and X is not 3-projectable into P6.

Proposition 5 describes the unique possibility for X when it contains a cubic
cone. X ⊂ P7, to prove that X is 3-projectable into P6 it suffices to show that
dim(

⋃
P∈X

TP (X)) ≤ 6. Obviously it suffices to control points belonging to X1∩X2 '
P2, because if P belongs to a unique Xi, TP (X) ⊂ 〈Xi〉 ⊂ P7.

If P ∈ (X1 ∩X2)\(E1 ∪ E2), Tp(X) = 〈TP (X1) ∪ TP (X2)〉 ' P4

so that dim(
⋃

P∈(X1∩X2)\(E1∪E2)

TP (X)) ≤ 6.

If P ∈ E1, Tp(X) = 〈TP (X1) ∪ TP (X2)〉 ' P6 and this linear space is fixed as
P varies in E1. If P = E2, Tp(X) = 〈TP (X1) ∪ TP (X2)〉 ' P5. Hence X is 3-
projectable into P6 and we get 3).

By Proposition 6 we know that, if X does not contain cubic cones but it contains
a quadric cone having a line as vertex, the possibilities are those described in that
Proposition. Let us examine them.

i) X ⊂ P8. For any generic P ∈ F, Tp(X) = 〈TP (X1) ∪ TP (X2) ∪ TP (X3)〉 '
P5. As P varies in F, TP (X1) is fixed, but TP (X2) and TP (X3) are generated,
respectively, by F and the two lines, of the smooth base quadrics Q2 and Q3,
different from L2 := F ∩Q2, L3 := F ∩ Q3 and passing through the points π2(P )
and π3(P ), where πi is the natural projection from the vertex Ei of the cone Xi

onto its base Qi. Viceversa, if we take two generic points R2 ∈ Q2 and R3 ∈ Q3, if
we consider the two points R′i intersected on Li by the unique line L′Ri

of Qi passing
through Ri, not belonging to the ruling of Li (i = 1, 2), if we consider the point
P := 〈E2 ∪R′2〉 ∩ 〈E3 ∪R′3〉 ∈ F ' P2, then TP (X) =

〈
TP (X1) ∪ L′R2

∪ L′R3

〉
.

We claim that dim[
⋃

generic P∈F

TP (X)] = 7, excluding the x-projectability of X.

Indeed, since the intersection of two general elements of this family is not P5,⋃
generic P∈F

TP (X) cannot be contained in a linear space of dimension 6. Moreover,

no non-linear 6-dimensional variety contains a 2-dimensional family of linear spaces
of dimension 5 (cut with a general linear subspace and use that a plane is the unique
integral surface of a projective space containing a 2-dimensional family of lines).
It follows that the union of all the 5-dimensional linear spaces TP (X), for generic
points P ∈ F, has dimension 7. Hence X is not 3-projectable into P6.

ii) X ⊂ P7. To prove that X is 3-projectable into P6 it suffices to show that
dim(

⋃
P∈X

TP (X)) ≤ 6. Obviously it suffices to control points belonging to two or

more components of X, because if P belongs to a unique Xi, TP (X) ⊂ 〈Xi〉 ⊂ P7.
If P ∈ F\(E1 ∪ E2), Tp(X) = 〈TP (X1) ∪ TP (X2) ∪ TP (X3)〉 ' P5. As P varies

in F\(E1 ∪ E2), TP (X1) and TP (X3) are fixed, while TP (X2) is generated by
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F and the lines, of the smooth base quadrics Q2, different from F ∩ Q2, and
passing through the points π2(P ). Hence the union of all the 5 dimensional lin-
ear spaces TP (X), for points P ∈ F\(E1 ∪ E2), has dimension 6. If P ∈ E1,
Tp(X) = 〈TP (X1) ∪ TP (X2) ∪ TP (X3)〉 ' P6 and this space is fixed as P varies in
E1. If P = E2, dim[Tp(X)] = 6. Hence X is 3-projectable into P6 and we get 4).

iii) X ⊂ P7. To prove that X is 3-projectable into P6 it suffices to show that
dim(

⋃
P∈X

TP (X)) ≤ 6. Obviously it suffices to control points belonging to two or

more components of X.
If P ∈ F\(E1 ∪ E2), TP (X) = 〈TP (X1) ∪ TP (X2)〉 ' P4,

so that dim(
⋃

P∈F\(E1∪E2)

TP (X)) ≤ 6.

If P ∈ F ′\(E1), TP (X) = 〈TP (X1) ∪ TP (X3)〉 ' P4,
so that dim(

⋃
P∈F ′\(E1)

TP (X)) ≤ 6.

If P ∈ E1, Tp(X) = 〈TP (X1) ∪ TP (X2) ∪ TP (X3)〉 ' P6 and this space is fixed as
P varies in E1. If P = E2, dim[Tp(X)] = 5. Hence X is 3-projectable into P6 and
we get 5).

iv) X ⊂ Pr+3. To prove that X is 3-projectable into P6 it suffices to show that
dim(

⋃
P∈X

TP (X)) ≤ 6. Obviously it suffices to control points belonging to two or

more components of X.
If P ∈ F\(E1 ∪ L2 ∪ ... ∪ Lr), Tp(X) = 〈TP (X1) ∪ TP (X2)〉 ' P4,
so that dim(

⋃
P∈F\(E1∪L2∪...∪Lr)

TP (X)) ≤ 6.

If P ∈ E1\[(E1 ∩ L2) ∪ ... ∪ (E1 ∩ Lr)], Tp(X) = 〈TP (X1) ∪ TP (X2)〉 ' P5 and this
space is fixed as P varies in E1\[(E1 ∩ L2) ∪ ... ∪ (E1 ∩ Lr)].
If P ∈ Li\[(E1∩Li)

⋃
j≥3, j 6=i

(Li∩Lj)], i ≥ 3, Tp(X) = 〈TP (X1) ∪ TP (X2) ∪ TP (Xi)〉
' P5 and this space is fixed as P varies in Li\[(E1 ∩ Li)

⋃
j≥3, j 6=i

(Li ∩ Lj)].

If P ∈ (Xi∩Xj)\(F
⋃

k≥3, k 6=i,k 6=j

Xk), i, j ≥ 3, Tp(X) = 〈TP (Xi) ∪ TP (Xj) ∪ TP (X2)〉
' P5 and this space is fixed as P varies in (Xi ∩Xj)\(F

⋃
k≥3, k 6=i,k 6=j

Xk).

If P is in the remaining discrete sets of a finite number of points we know that
dim[Tp(X)] ≤ 6 because this necessary condition, given by Corollary 4, was checked
in the proof of Proposition 6. Hence X is 3-projectable into P6 and we get 6).

By Proposition 7 we know that the last three possibilities for X are those de-
scribed in that Proposition. Let us examine them.

i) We can argue as in the previous case iv) of Proposition 6 and conclude that
X is 3-projectable into P6, it is 7). Note that the existence of an exceptional
component Xp is not important, since for any generic point P ∈ l := Xp ∩ F we
have Tp(X) = 〈TP (X1) ∪ TP (X2) ∪ TP (Xp)〉 ' P5 and these linear spaces are fixed
for generic P ∈ l. For the remaining discrete sets of points on l we know that
dim[Tp(X)] ≤ 6.

ii) We can argue as in the previous case iv) of Proposition 6 unless P ∈ Xr.
If P ∈ (Xr ∩Xj)\Lj , Tp(X) = 〈TP (Xj) ∪ TP (Xr)〉 ' P4
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and this space is fixed as P varies in (Xr ∩Xj)\Lj .
If P ∈ Lj\(

⋃
k≥3, k 6=r,k 6=j

Xk), Tp(X) = 〈TP (X1) ∪ TP (X2) ∪ TP (Xj) ∪ TP (Xr)〉 '
P6 and this space is fixed as P varies in Lj\(

⋃
k≥3, k 6=r,k 6=j

Xk).

If P is in the remaining discrete sets of a finite number of points we know that
dim[Tp(X)] ≤ 6 because this necessary condition, given by Corollary 4, was checked
in the proof of Proposition 7. Hence X is 3-projectable into P6 and we get 8).

iii) We can argue as in previous cases: for P ∈ F\L, P ∈ Π\L, P ∈ L the
tangent space is fixed as P varies in these sets and dim[TP (X)] ≤ 6. If P = E1

dim[Tp(X)] = 5. Hence X is 3-projectable into P6 and we get 9).
As there are no other possibilities for X we have proved Theorem 2.
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