
J-EMBEDDABLE REDUCIBLE SURFACES

ALBERTO ALZATI AND EDOARDO BALLICO

Abstract. Here we classify J-embeddable surfaces, i.e. surfaces whose secant
varieties have dimension at most 4, when the surfaces have two components
at most.

1. Introduction

Let Pn be the n-dimensional complex projective space. In this paper a variety will
be always a non degenerate, reduced subvariety of Pn, of pure dimension. Surfaces
and curves will be subvarieties of dimension 2 or 1, respectively.

In [J] the author introduces the definition of J-embedding: for any subvariety
V ⊂ Pn and for any λ-dimensional linear subspace Λ ⊂ Pn we say that V projects
isomorphically to Λ if there exists a linear projection πL : Pn − −− > Λ, from a
suitable (n− λ− 1)-dimensional linear space L, disjoint from V , such that πL(V )
is isomorphic to V. We say that πL|V is a J-embedding of V if πL|V is injective and
the differential of πL|V is finite-to one (see [J], 1.2).

In this paper we want to give a complete classification of J-embeddable surfaces
having at most two irreducible components. More precisely we prove (see Lemma
9 and Proposition 3) the following:

Theorem 1. Let V be a non degenerate, surface in Pn, n ≥ 5. Assume that for a
generic 4-dimensional linear subspace Λ ⊂ Pn the linear projection πL : Pn−−− >
Λ is such that πL|V is a J-embedding of V, and that V has at most two irreducible
components. Then V is in the following list:

1) V is the Veronese surface in P5;
2) V is an irreducible cone;
3) V is the union of a Veronese surface in P5 and a tangent plane to it;
4) V is the union of two cones having the same vertex;
5) V is the union of a cone with vertex a point P and a plane passing though P ;
6) V is the union of :
- an irreducible surface S, such that the dimension of its linear span 〈S〉 is 4 and

S is contained in a 3-dimensional cone having a line l as vertex,
- a plane cutting 〈S〉 along l.

Note that 6) is a particular case of Example 2.
By using our results it is possible to get a reasonable classification also for J-

embeddable surfaces having at least three irreducible components. However the
classification is very involved, consisting in a long list of cases and subcases, so that
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we have only given some information about them in section 6. A longer version of
this paper will be sent to ArXiv e-prints.

2. Notation-Definitions

If M ⊂ Pn is any scheme, M ' Pk means that M is a k-dimensional linear
subspace of Pn.

Vreg := subset of V consisting of smooth points.
〈V1 ∪ ... ∪ Vr〉 := linear span in Pn of the subvarieties Vi ⊂ Pn, i = 1, ..., r.

Sec(V ) := { ⋃
v1 6=v2∈V

〈v1 ∪ v2〉} ⊂ Pn for any irreducible subvariety V ⊂ Pn.

[V ; W ] := { ⋃
v∈V,w∈W,v 6=w

〈v ∪ w〉} ⊂ PN for any pair of distinct irreducible sub-

varieties V, W ⊂ Pn.
In case V = W, [V ; V ] = Sec(V ). In case V = W is a unique point P we put

[V ;W ] = P .

In case V is reducible, V = V1 ∪ ... ∪ Vr, Sec(V ) := {
r⋃

i=1

r⋃
j=1

[Vi; Vj ]}.
In case V and W are reducible, without common components, V = V1 ∪ ...∪ Vr,

W = W1 ∪ ... ∪ Ws, we put [V ; W ] :=
r⋃

i=1

s⋃
j=1

[Vi;Wj ] (with the reduced scheme

structure).
TP (V ) := embedded tangent space at a smooth point P of V.
Tv(V ) := tangent star to V at v : it is the union of all lines l in Pn passing

through v such that there exists afamily of lines 〈v′ ∪ v′′〉 → l when v′, v′′ → v with
v′, v′′ ∈ V. (see [J] page. 54).

V ert(V ) := {P ∈ V | [P ;V ] = V }.
Let us recall that V ert(V ) is always a linear space, moreover

V ert(V ) =
⋂

P∈V

(TP (V )), (see [A2], page. 17).

We say that V is a cone of vertex V ert(V ) if and only if V is not a linear space
and V ert(V ) 6= ∅. If V is a cone the codimension in V of V ert(V ) is at least two.

Remark 1. If V is an irreducible surface, not a plane, for which there exists a
linear space L, such that for any generic point P ∈ V, TP (V ) ⊇ L, then L is a point
and V is a cone over an irreducible curve with vertex L (see [A2], page. 17).

Caution: in this paper we distinguish among two dimensional cones and planes,
so that a two dimensional cone will have a well determined point as vertex.

For any subvariety V ⊂ Pn let us denote by
V ∗ := {H ∈ Pn∗| H ⊇ TP (V ) for some point P ∈ Vreg}

the dual variety of V, where Pn∗ is the dual projective space of Pn and H is a
generic hyperplane of Pn. Let us recall that (V ∗)∗ = V .

3. Background material

In this section we collect a few easy remarks about the previous definitions and
some known results which will be useful in the sequel.

Proposition 1. Let V be any subvariety of Pn and let P be a generic point of Pn.
If P /∈ [V ;V ] then πP |V is a J-embedding of V .

Proof. See Proposition 1.5 c) of [Z], chapter II, page 37.
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Corollary 1. Let V be any surface of Pn, n ≥ 5, and let Λ be a generic 4-
dimensional linear space of Pn. There exists a J-embedding πP |V for V, from a
suitable (n− 5)-dimensional linear space of Pn into Λ ' P4 , if and only if
dim[Sec(V )] ≤ 4.

Proof. Apply Proposition 1. See also Theorem 1.13 c) of [Z], chapter II, page 40.

Corollary 2. Let V = V1 ∪ ... ∪ Vr be a reducible surface in Pn, n ≥ 5, and let Λ
be a generic 4-dimensional linear space of Pn. There exists a J-embedding πP |V for
V, from a suitable (n− 5)-dimensional linear space of Pn into Λ ' P4, if and only
if dim([Vi;Vj ]) ≤ 4 for all i, j = 1, ..., r, including cases i = j.

Proof. Look at the definition of Sec(V ) and apply Corollary 1.

Lemma 1. For any pair of distinct irreducible subvarieties V, W ⊂ Pn :
1) if V and W are linear spaces [V ;W ] = 〈V, W 〉 ;
2) if V is a linear space, [V ; W ] is a cone, having V as vertex;
3) 〈[V ; W ]〉 = 〈〈V 〉 ∪ 〈W 〉〉 ;
4) 〈V 〉 =

〈 ⋃
P∈V

TP (V )
〉

, P generic point of V ;

5) [V ; [W ; U ]] = [[V ; W ];U ] = { ⋃
v∈V,w∈W,u∈U,v 6=w,v 6=u,u6=w

〈v ∪ w ∪ u〉}, for any

other irreducible subvariety U distinct from V and W.

Proof. Immediate consequences of the definitions of [V ; W ] and 〈V 〉 .
Let us recall the Terracini’s lemma:

Lemma 2. Let us consider a pair of irreducible subvarieties V, W ⊂ Pn and a
generic point R ∈ [V ; W ] such that R ∈ 〈P ∪Q〉 , with P ∈ V and Q ∈ W. Then
TR([V ; W ]) = 〈TP (V ) ∪ TQ(W )〉 and dim([V ; W ]) = dim(〈TP (V ) ∪ TQ(W )〉).
Proof. See Corollary 1.11 of [A1].

The following lemmas consider the join of two irreducible varieties of low dimen-
sions.

Lemma 3. Let C, C ′ be irreducible distinct curves in Pn, n ≥ 2, then dim([C;C ′]) =
3 unless C and C ′ are plane curves, lying on the same plane, in this case
dim([C;C ′]) = 2.

Proof. The claim follows from Corollary 1.5 of [A1] with r = 2.

Lemma 4. Let C be an irreducible curve, not a line, and let B be an irreducible
surface in Pn, n ≥ 2. Then:

i) dim([C;B]) ≤ 4;
ii) dim([C; B]) = 3 if and only if 〈C ∪B〉 ' P3;
iii) dim([C; B]) = 2 if and only if B is a plane and C ⊂ B.

Proof. i) Obvious.
ii) If dim([C; B]) = 3 = 1 + dim(B), by Proposition 1.3 of [A1], we have C ⊆

V ert([C;B]). If [C;B] ' P3 then 〈C ∪B〉 ' P3 and we are done. If not the
codimension of V ert([C; B]) in [C; B] is at least 2 (see [A1] page. 214), hence
dim{V ert([C;B])} ≤ 1, hence V ert([C; B]) = C, but this is a contradiction as C is
not a line and V ert([C; B]) is a linear space.
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iii) If dim([C; B]) = 2 = 1 + dim(C), then Proposition 1.3 of [A1] implies
B ⊆ V ert([C; B]). In this case V ert([C; B]) = [C;B] = B. Hence B is a plane and
necessarily C ⊂ B by Lemma 3.

Lemma 5. Let B be an irreducible surface and l any line in Pn, n ≥ 2. Then:
i) dim([l; B]) ≤ 4;
ii) dim([l; B]) = 3 if and only if 〈l ∪B〉 ' P3 or B is contained in a cone Ξ

having l as vertex and an irreducible curve C as a basis.
iii) dim([l;B]) = 2 if and only if B is a plane and l ⊂ B.

Proof. i) Obvious.
ii) If dim([l;B]) = 3 = 1 + dim(B), by Proposition 1.3 of [A1], we have l ⊂

V ert([l; B]). If [l; B] ' P3 we have 〈l ∪B〉 ' P3, if not the codimension of V ert([l;B])
in [l;B] is at least 2 (see [A1] page. 214). Hence dim{V ert([l; B])} ≤ 1, hence
V ert([l; B]) = l and Ξ is exactly [l; B]. Note that dim([l;B]) = 3 if and only if
l ∩ TP (B) 6= ∅ for any generic point P ∈ B.

iii) If dim([l; B]) = 2 = 1 + dim(l), by Proposition 1.3 of [A1], we have B ⊂
V ert([l; B]). We can argue as in the proof of Lemma 4, iii).

The following Lemmas consider the possible dimensions for the join of two sur-
faces according to the dimension of the intersection of their linear spans. Firstly
we consider the case in which one of the two surface is a plane.

Lemma 6. Let A be an irreducible, non degenerate surface in Pn, n ≥ 3, and let
B be any fixed plane in Pn. Let A′ be the tangent plane at a generic point of Areg.
Then:

i) dim([A;B]) = 5 if and only if A′ ∩B = ∅;
ii) dim([A;B]) = 4 if and only if dim(A′ ∩B) = 0;
iii) dim([A; B]) = 3 if and only if dim(A′ ∩B) = 1;
iv) dim([A; B]) = 3 if and only if 〈A,B〉 ' P3.

Proof. As n ≥ 3, dim([A; B]) ≥ 3 and i), ii) and iii) are consequences of lemma
2. If 〈A,B〉 ' P3 obviously dim(A′ ∩ B) = 1. On the other hand, let us assume
that dim(A′ ∩B) = 1 and let us consider two different generic points P, Q ∈ A\B;
we have [A;B] ⊇ [P ; B] ∪ [Q; B] and [P ;B] ' [Q;B] ' P3. If P /∈ [Q; B] we have
dim([A;B]) ≥ 4, because [A; B] is irreducible and it cannot contain the union of
two distinct copies of P3, intersecting along a plane, unless dim([A; B]) ≥ 4, but
this is a contradiction with dim(A′ ∩ B) = 1 by ii). Hence P ∈ [Q; B] ' P3 and
A ⊆ [Q;B] ' P3 as P is a generic point of A.

Lemma 7. Let A,B be two irreducible, surfaces in Pn, n ≥ 5. Let us assume that
neither A nor B is a plane. Set L := 〈A〉 ∩ 〈B〉, M := 〈A ∪B〉 , m := dim(M).
Then:

i) if L = ∅, then dim([A; B]) = 5;
ii) if L is a point P, dim([A;B]) ≤ 4 if and only if A and B are cones with vertex

P ;
iii) if dim(L) = 1, dim([A; B]) ≤ 4 if and only if:
- there exists a point P ∈ L such that A and B are cones with vertex P, or
- m ≤ 4;
iv) if dim(L) = 2, dim([A; B]) ≤ 4 if and only if:
- there exists a point P ∈ L such that A and B are cones with vertex P, or
- dim(〈A〉) = dim(〈B〉) = 3 and m = 4.
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Proof. i) let A′ be the tangent plane at a generic point of Areg. Let B′ be the
tangent plane at a generic point of Breg. We have A′ ∩ B′ = ∅ so that i) follows
from Lemma 2.

ii) Obviously, in any case, if A and B are cones with a common vertex P , A′

and B′ contain P so that dim([A;B]) ≤ 4 by Lemma 2. On the other hand, if
L = P, A′ ∩B′ 6= ∅ only if A′ ∩B′ = P and this implies that the tangent planes at
the generic points of A and B contain P. Hence A and B are cones with common
vertex P.

iii) If m ≤ 4 obviously dim([A;B]) ≤ 4. Let us assume that m ≥ 5 and
dim([A;B]) ≤ 4. Lemma 2 implies A′ ∩ B′ 6= ∅, while, obviously, A′ ∩ B′ ⊆ L.
Neither A′ nor B′ can contain L because A and B are not planes. Hence A′ ∩ B′

is a point P ∈ L and we can argue as in ii).
iv) Let us assume that dim([A;B]) ≤ 4 and that A and B are not cones with a

common vertex P. By Lemma 2 we have A′∩B′ 6= ∅, and, obviously, A′∩B′ ⊆ L. As
A and B are not cones with a common vertex it is not possible that A′∩B′ is a fixed
point and it is not possible that A′∩B′ is a fixed line because A and B are not planes.
Hence dim(A′∩L) = dim(B′∩L) = 1 and in this case dim([A;L]) = dim([B;L] = 3
by Lemma 6 iii). It follows that dim(〈A〉) = dim(〈B〉) = 3 by Lemma 6 iv), hence
m = 4.

Lemma 8. Let A,B be two irreducible surfaces in Pn, n ≥ 5. Set L := 〈A〉 ∩ 〈B〉,
M := 〈A ∪B〉 , m := dim(M). Let us assume that dim(〈A〉) = dim(〈B〉) = 4,
dim(L) = 3, m = 5, dim([A;B]) ≤ 4. Then A and B are cones with the same
vertex.

Proof. By Lemma 2 we know that for any pair of points (P,Q) ∈ Areg × Breg,
∅ 6= TP (A)∩TQ(B) ⊆ L. As (P, Q) are generic, we can assume that P ∈ A\(A∩L)
and Q ∈ B\(B ∩ L), so that lP := TP (A) ∩ L and lQ := TQ(B) ∩ L are lines,
intersecting somewhere in L.

(a) Let us assume that lP ∩ lP ′ = ∅ for any generic pair of points (P, P ′) ∈
A\(A ∩ L). Then the lines {lP |P ∈ A\(A ∩ L), P ∈ Areg} give rise to a smooth
quadric Q in L ' P3 in such a way that the lines {lP } all belong to one of the two
rulings of Q. Note that Q 6= A, because they have different spans. Now, for any
smooth point P ∈ A\(A∩L), let us consider a generic tangent hyperplane HP ⊂ M
at P. Obviously HP ⊃ TP (A) and, as HP is generic, it cuts L only along a plane
and this plane contains lP . Hence it is a tangent plane for Q. It follows that HP

is also a tangent hyperplane for Q in M. Therefore A∗ ⊆ Q∗ in M∗. If A is not a
developable, ruled surface we have A∗ = Q∗ by looking at the dimension. Hence A
= (A∗)∗ = (Q∗)∗ = Q : contradiction.

Now let us assume that A is a developable, ruled surface and let us consider the
curve C := A∩L, which is a hyperplane section of A. We claim that the support of
C is not a line. In fact C must contain a directrix for A because C is a hyperplane
section of A. So that if the support of C is a line l this line must be a directrix for A.
Hence a direct local calculation shows that l is contained in every tangent plane at
points of Areg. It follows that lP = l for any point P ∈ Areg : contradiction. Thus
the claim is proved. On the other hand, for a fixed line lQ we can consider [lQ; C].
Since the support of C is not a line [lQ;C] = L, moreover [lQ; C] ( [lQ; A]. Hence
dim([lQ; A]) ≥ 4. This inequality contradicts Lemma 2 because lQ ∩TP (A) 6= ∅, for
any point P ∈ Areg.
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(b) From (a) it follows that lP ∩ lP ′ 6= ∅ for any generic pair of points (P, P ′) ∈
A\(A ∩ L). It is known (and a very easy exercise) that this is possible only if
all lines {lP } pass through a fixed point VA ∈ L or all lines {lP } lie on a fixed
plane UA ⊂ L. In the same way we get lQ ∩ lQ′ 6= ∅ for any generic pair of points
(Q,Q′) ∈ B\(B ∩ L) and that all lines {lQ} pass through a fixed point VB ∈ L or
all lines {lQ} lie on a fixed plane UB ⊂ L.

As for any pairs of points (P, Q) ∈ Areg × Breg, ∅ 6= TP (A) ∩ TQ(B) ⊆ L, we
have only four possibilities:

1) VA = VB , hence A and B are cones having the same vertex (recall that
TP (A) ⊃ lP ⊃ VA and TQ(B) ⊃ lQ ⊃ VB) and we are done;

2) VA ∈ UB , and all lines {lQ} ⊂ UB pass necessarily through VA, so that A and
B are cones having the same vertex in this case too;

3) VB ∈ UA and we can argue as in case 2);
4) there exist two planes UA and UB .
If UA ∩ UB is a line l, then the generic tangent planes TP (A) and TQ(B) would

contain l and both A and B would be planes: contradiction. If UA = UB , by Lemma
2 we get dim([UA; A]) = dim([UB ;B]) = 3 and they are (irreducible) cones as UA

and UB are linear spaces. Hence they are 3-dimensional linear spaces containing A
and B, respectively: contradiction.

4. Examples of J-embeddable surfaces

In Section 4 we give some examples of J-embeddable surfaces and we prove a
result concerning the Veronese surface which will be useful for the classification.

Example 1. Let W be a fixed 2-dimensional linear subspace in Pn, n ≥ 5. Let m be
a positive integer such that 1 ≤ m ≤ n−2. Let us consider m distinct 3-dimensional
linear subspaces Mi ⊂ Pn, 1 ≤ i ≤ m, such that W ⊂ Mi for i = 1, ..., m and
〈M1 ∪ ... ∪Mm〉 = Pn. For each i = 1, . . . , m fix a reduced surface Di of Mi in
such a way that X := ∪m

i=1Di spans Pn. We claim that X can be J-projected into
a suitable P4. By Corollary 1 it suffices to show that dim[Sec(X)] ≤ 4. Indeed,
dim[Sec(Di)] ≤ 3 for all i, while dim([Di; Dj ]) ≤ 4 for all i 6= j, because every
Di ∪Dj is contained in the 4-dimensional linear space 〈Mi ∪Mj〉.
Example 2. Let N be a fixed 4-dimensional linear subspace in Pn, n ≥ 5. Let
Ai ⊂ N be irreducible surfaces, i = 1, ..., s. Assume that every Ai is contained in
the intersection of some 3-dimensional cones Ej ⊂ N having a line lj as vertex and
let {Bjkj} be a set of pairwise intersecting planes in Pn such that Bjkj ∩ N = lj,
with j, kj ≥ 1. Set X := {Ai ∪ Bjkj}. We claim that X can be J-projected into a
suitable P4.

By Corollary 1, it suffices to show that dim[Sec(X)] ≤ 4 and the only non trivial
check is that dim([Ai; Bjkj ]) ≤ 4 for any Ai and for any plane Bjkj . But this follows
from Lemma 2 because for any j and for any point P ∈ (Ai)reg∩(Ej)reg the tangent
plane TP (Ai) is contained in TP (Ej) ' P3, hence TP (Ai) ∩ lj 6= ∅.
Example 3. Let Y ⊂ P5 be a Veronese surface. Fix a point P ∈ Y and set
X := Y ∪TP (Y ). Let us recall that dim[Sec(Y )] = 4. Hence, by Terracini’s lemma,
we know that TP (Y ) ∩ TQ(Y ) 6= ∅ for any pair of points P, Q ∈ Y. Therefore
dim[Y, Tp(Y )] = 4 and dim[Sec(X)] = 4 too. Then we can apply Corollary 1.
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The following proposition shows that the above example is in fact the only possi-
bility for a surface X = Y ∪B to have dim[Sec(X)] = 4, where B is any irreducible
surface.

Proposition 2. Let Y ⊂ Pn be a Veronese surface embedded in 〈Y 〉 ' P5, n ≥ 5,
and let B ⊂ Pn be any irreducible surface. Set X := Y ∪B. Thus dim[Sec(X)] = 4
if and only if B is a plane in 〈Y 〉, tangent to Y at some point P.

Proof. For the proof it is useful to choose a plane Π such that 〈Y 〉 ' P5 is the
linear space parametrizing conics of Π, i.e. 〈Y 〉 ' P[H0(Π,OΠ(2))]. Then Y can
be considered as the subvariety of 〈Y 〉 parametrizing double lines of Π, moreover
Y can be also considered as the 2-Veronese embedding of Π∗ via a map we call ν.

Firstly, let us consider the case in which B is a plane in 〈Y 〉. Obviously
dim[Sec(X)] = 4 if and only if dim[Y ; B] = 4. Note that dim[Y ;B] = 5 if B∩Y = ∅,
because every point P ∈ P5 is contained in at least a line intersecting both B and
Y. Then we have to consider all other possibilities for B ∩ Y.

Let us remark that dim[Y ;B] = 4, if and only if the linear projection πB :
P5 − −− > Λ is such that dim[πB(Y \B)] = 1, where Λ ' P2 is a generic plane,
disjoint from B. In fact dim[Sec(X)] = 4, if and only if dim([B;Y ]) = 4, if and
only if dim(

⋃
y∈Y \B

〈B ∪ y〉) = 4, if and only if dim[(
⋃

y∈Y \B
〈B ∪ y〉) ∩ Λ] = 1. But

(
⋃

y∈Y \B
〈B ∪ y〉) ∩ Λ = πB(Y \B).

Let us assume that dim(B ∩ Y ) = 1. It is well known that Y does not contain
lines or other plane curves different from smooth conics. If the scheme B ∩ Y
contains a smooth conic γ, it is easy to see that the generic fibres of any linear
projection as πB are 0 -dimensional. Indeed, by considering the identification 〈Y 〉 '
P[H0(Π,OΠ(2))], for any point P ∈ Y, TP (Y ) parametrizes the reducible conics
of Π whose components are: a fixed line r of Π (such that P ↔ r2) and any
line of Π. While B parametrizes the reducible conics of Π having a singular point
Q ∈ Π such that the dual line l ∈ Π∗ corresponding to Q is such that ν(l) = γ.

Therefore, for generic P ∈ Y, TP (Y ) ∩ B = ∅. It follows that dim[πB(Y \B)] = 2
and dim[Y, B] = 5. This fact can also be checked by a direct computation with a
computer algebra system, for instance Macaulay, taking into account that Y is a
homogeneous variety, so that the computation can be made by using a particular
smooth conic of Y.

Let us assume that dim(B ∩ Y ) = 0 and that B ∩ Y is supported at a point
P ∈ Y. We have to consider three cases:

i) B does not contain any line l ∈ TP (Y ); in this case the intersection is transver-
sal at P and the projection of Y from P into a generic P4 gives rise to a smooth
cubic surface YP , (recall that Y has no trisecant lines). The projection of YP from
a line to a generic plane has generic 0-dimensional fibres. Hence dim[πB(Y \B)] = 2
for any generic projection πB as above and dim[Y ; B] = 5.

ii) B contains only a line l ∈ TP (Y ); in this case the generic fibres of any linear
projection as πB are 0-dimensional. This fact can be proved by a direct computation
with a computer algebra, for instance Macaulay; as above the computation can be
made by using a particular line of Y . Hence dim [πB(Y \B)] = 2 and dim[Y ; B] = 5.

iii) B contains all lines l ∈ TP (Y ), i.e. B = TP (Y ). In this case example 3 shows
that dim[Sec(X)] = 4.
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Let us assume that dim(B ∩Y ) = 0 and that B ∩Y is supported at two distinct
points P,Q ∈ Y, at least. By the above analysis we have only to consider the case
in which the intersection is transversal at P and at Q. In this case the projection
of Y from the line 〈P, Q〉 into a generic P3 gives rise to a smooth quadric, (recall
that Y has no trisecant lines), and any linear projection of a smooth quadric from
a point of P3 has P2 as its image. Hence dim[ πB(Y \B)] = 2 and dim[Y,B] = 5.

Now let us consider the case in which B is a plane, but B * 〈Y 〉 . Note that
dim[Sec(X)] = 4 implies that dim[Y ;B] ≤ 4. Hence TP (Y )∩B 6= ∅ for any generic
point P ∈ Y by Lemma 2. Let us consider B ∩ 〈Y 〉. If B ∩ 〈Y 〉 is a point R, we
would have: R ∈ TP (Y ) for any generic P ∈ Y and this is not possible as Y is not
a cone (recall Remark 1). If B ∩ 〈Y 〉 is a line L, it is not possible that L ⊆ TP (Y )
for any generic P ∈ Y as Y is not a cone (recall Remark 1). Then we would have:
dim[TP (Y )∩L] = 0 for any generic P ∈ Y and for a fixed line L ⊂ 〈Y 〉. This is not
possible: 〈Y 〉 can be considered as the space of conics lying on some P2, L is a fixed
pencil of conics, TP (Y ) is the web of conics reducible as a fixed line lP and another
line. For generic, fixed, lP , the web does not contain any conic of the pencil L.

Now let us consider the case in which B is not a plane. As above, dim[Sec(X)] =
4 implies that dim([Y ;B]) ≤ 4. Let us consider M := 〈Y ∪ B〉 and let us consider
the dual varieties Y ∗ and B∗ in M∗. As Y 6= B we get Y ∗ 6= B∗ (otherwise
Y ∗ = B∗ would imply Y = B). Hence the tangent plane B′ at a generic point
of B is not tangent to Y. By the above arguments we get dim([Y ;B′]) = 5. It
follows that TP (Y ) ∩ B′ = ∅ for the generic point P ∈ Y by Lemma 2. Therefore
TP (Y ) ∩ TQ(B) = ∅ for generic points P ∈ Y and Q ∈ B and dim([Y ; B]) = 5 by
Lemma 2.

Remark 2. A priori, if dim[ πB(Y \B)] = 1 for a generic πB as above, πB(Y \B)
is a smooth conic. In fact πB(Y \B) is an integral plane curve Γ. Let f : P1 → Γ be
the normalization map given by a line bundle OP1(e), e ≥ 1, and let u : Y ′ → Y be
the birational map such that πB◦u is a morphism; we can assume that Y ′ is normal.
The morphism u induces a morphism v : Y ′ → P1, set D := v∗[OP1(1)]. We have
h0(Y ′, D) = 6 because Y is linearly normal and the restriction of D to the fibres of u
is trivial. On the other hand, the map f induces an injection from H0(P1,OP1(e))
into a 3-codimensional linear subspace of H0(Y ′, D). Hence h0(P1,OP1(e)) = 3,
hence e = 2 and Γ is a conic, necessarily smooth.

5. Surfaces having at most two irreducible components

In this section we study the cases in which dim([A;B]) ≤ 4, where A and B are
irreducible surfaces, eventually A = B. The following lemma, proved by Dale in
[D], is the first step, concerning the case A = B.

Lemma 9. Let A be an irreducible surface in Pn, then dim[Sec(A)] ≤ 4 if and only
if one of the following cases occurs:

i) dim(〈A〉) ≤ 4;
ii) A is the Veronese surface in 〈A〉 ' P5;
iii) A is a cone.

Proof. Firstly let us prove that in all cases i), ii), iii) we have dim[Sec(A)] ≤ 4.
For i) and ii) it is obvious. In case iii) A is a cone over a curve C and vertex P ,
then [A;A] is a cone over [C; C] and vertex P having dimension 1 + dim([C;C])
and dim([C; C]) ≤ 3. Note that, in case iii), dim(〈A〉) could be very big.
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Now let us assume that dim[Sec(A)] ≤ 4 and that dim(〈A〉) ≥ 5. If Sec(A) is a
linear space then dim(〈A〉) ≤ 4. Hence we can assume that Sec(A) is not a linear
space. By [A2], page. 17, we have dim[Sec(A)] − dim(A) ≥ 2, on the other hand
dim[Sec(A)] − dim(A) ≤ 2 in any case, so that dim[Sec(A)] − dim(A) = 2. By
Proposition 2.6 of [A2] we have V ert[Sec(A)] = V ert(A). Hence A is a cone if and
only if Sec(A) is a cone.

Let us assume that A is not a cone, by the previous argument we know that
Sec(A) is not a cone. Hence A is an E2,1 variety according to Definition 2.4 of [A2].
Now Lemma 9 follows from Definition 2.7 and Theorem 3.10 of [A2].

Lemma 10. Let A,B be two distinct, irreducible surfaces in Pn, n ≥ 3, such
that A is a cone over an irreducible curve C and vertex P. Then dim([A; B]) =
1 + dim([C; B]) unless:

i) dim(〈A ∪B〉) ≤ 4;
ii) B is a cone over an irreducible curve C ′ and vertex P or a plane passing

through P.

Proof. Note that C is not a line as A is not a plane. By Lemma 1, 5) we have
[A; B] = [[P ;C]; B] = [P ; [C; B]] which is a cone over [C; B] having vertex P. If
dim([P ; [C; B]]) = 1 + dim([C; B]) we are done. If not, we have dim([P ; [C;B]])
= dim([C; B]). Hence [P ; [C; B]] = [C; B] because [P ; [C; B]] ⊇ [B; C] and they are
irreducible with the same dimension. In this case we have P ∈ V ert([C; B]) by
Proposition 1.3 of [A1].

If dim([C; B]) = 2, by Lemma 4 we know that V ert([C;B]) = [C; B] = B is
a plane, but this is a contradiction as P ∈ V ert([C;B]) and A is not a plane.
Assume dim([C; B]) = 3. Lemma 4 gives that V ert([C; B]) = [C;B] ' P3. Hence
A = [P ; C] ⊂ [C; B] ' P3 and we are in case i).

We can assume that dim([C;B]) = 4. Hence dim([A; B]) = dim([P ; [C; B]]) =
dim([C;B]) = 4. If dim(〈A ∪B〉) = 4 we are in case i), otherwise dim(〈A ∪B〉) ≥ 5.

Now let us consider generic pairs of points c ∈ C and b ∈ B. As [P ; [C; B]]
= [C;B] we have, for generic (c, b) ∈ C ×B, the union

⋃
c∈C,b∈B

(〈P ∪ c ∪ b〉) is con-

tained in [C; B] and has dimension 4, i.e. [C;B] =
⋃

c∈C,b∈B,generic

(〈P ∪ c ∪ b〉). If,

for generic (c, b) ∈ C × B, dim(〈P ∪ c ∪ b〉) = 1, then the lines 〈P ∪ b〉 are con-
tained in A = [P ; C] for any generic b ∈ B, it would imply B ⊆ A : contradiction.
Hence dim(〈P ∪ c ∪ b〉) = 2 for generic (c, b) ∈ C × B. As dim([C; B]) = 4 to have⋃
c∈C,b∈B,generic

(〈P ∪ c ∪ b〉) of dimension 4, necessarily 〈P ∪ c ∪ b〉 = 〈P ∪ c′ ∪ b′〉

for infinitely many (c′, b′) ∈ C × B. Let us fix a generic pair (c, b), it is not pos-
sible that infinitely many points c′ ∈ C belong to

〈
P ∪ c ∪ b

〉
, otherwise C would

be a plane curve and A would be a plane, so there is only a finite number of
points c′ ∈ C ∩ 〈

P ∪ c ∪ b
〉
. Let us choose one of them; there exist infinitely

many points b′ ∈ B such that
〈
P ∪ c ∪ b

〉
=

〈
P ∪ c′ ∪ b′

〉
. Hence there exists

at least one plane curve Bc ⊂ B, corresponding to c, such that
〈
P ∪ c ∪ b

〉
=〈

P ∪ c′ ∪Bc

〉
= 〈P ∪ c ∪Bc〉 . As c ∈ C was a generic point, we can say that,

for any generic point c ∈ C, there exists a plane curve Bc ⊂ B such that, for
generic (c, b) ∈ C × B, 〈P ∪ c ∪ b〉 = 〈P ∪ c ∪Bc〉 . If, for generic c ∈ C, Bc is
not a line we have [C; B] =

⋃
c∈C,b∈B,generic

(〈P ∪ c ∪ b〉) =
⋃

c∈C,generic

(〈P ∪ c ∪Bc〉)
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and dim{ ⋃
c∈C,generic

(〈P ∪ c ∪Bc〉)} ≤ 3, because 〈P ∪ c ∪Bc〉 = 〈Bc〉 and the set of

plane curves {Bc|c generic, c ∈ C} would determine a family of planes of dimension
at most 1. But this is not possible as dim([B; C]) = 4, then Bc must be a line for
generic c ∈ C and B =

⋃
c∈C,generic

(Bc).

Note that [C;B] must contain
⋃

c∈C,fixed,c∈C,generic

(〈P ∪ c ∪Bc〉 for any generic

point c ∈ C : if [C; B] would contain only
⋃

c∈C,generic

(〈P ∪ c ∪Bc〉 it would have

dimension at most 3. Moreover it is not possible that the lines {Bc|c generic, c ∈ C}
cut the generic line 〈P ∪ c〉 ⊂ A at different points, otherwise A ⊂ B. Hence they
cut 〈P ∪ c〉 at one point P (c) and all lines {Bc|c generic, c ∈ C} pass through P (c).
By letting c vary in C we get a contradiction unless P (c) = P (or B is a plane
cutting a curve on A, but we are assuming dim(〈A ∪B〉) ≥ 5). Hence B is covered
by lines passing through P and we are in case ii).

Proposition 3. Let V = A∪B be the union of two irreducible surfaces in Pn such
that dim[Sec(V )] ≤ 4 and dim(〈V 〉) ≥ 5. Then:

i) B is the tangent plane at a point P ∈ Areg and A is a Veronese surface in
〈A〉 ' P5 (or viceversa), in this case dim[Sec(A ∪B)] = 4;

ii) A and B are cones having the same vertex;
iii) A is a cone of vertex P and B is a plane passing through P ;
iv) A is a surface, not a cone, such that 〈A〉 ' P4 and such that A is contained in

a 3-dimensional cone having a line l as vertex, B is a plane such that B ∩ 〈A〉 = l.

Proof. Obviously if dim[Sec(A ∪B)] ≤ 4 we have dim[Sec(A)] ≤ 4 and
dim[Sec(B)] ≤ 4, so that, for both A and B, one of the conditions i), ii), iii) of
Lemma 9 holds.

If A (or B) is a Veronese surface, Proposition 2 tells us that we are in case i).
From now on we can assume that neither A nor B is a Veronese surface.

Let us assume that A is a cone of vertex P, over an irreducible curve C. If B is a
cone of vertex P we are in case ii). Let us assume that B is a cone of vertex P ′ 6= P,
over an irreducible curve C ′, we can assume that P ′ /∈ C by changing C if necessary.
By Lemma 10 and Lemma 1, 5), we have: dim([A; B]) = 1 + dim([C; [C ′; P ′]]) =
1 + dim([[C;C ′];P ′] = 2 + dim([C; C ′] ≥ 5 unless C and C ′ are plane curves
lying on the same plane (see Lemma 3), but in this case dim(〈A = [P ;C]〉) ≤
3,dim(〈B = [P ′; C ′]〉) ≤ 3 and dim(〈A ∪B〉) ≤ 4.

Hence we can assume that B is not a cone and therefore dim(〈B〉) ≤ 4 by Lemma
9. If B is a plane passing through P we are in case iii), in all other cases we have
dim([A;B]) = 1+dim([C;B]) ≤ 4 by Lemma 10, hence dim([C;B]) ≤ 3. By Lemma
4 we know that, in this case, dim(〈C ∪B〉) ≤ 3 and this is not possible, otherwise
dim(〈A ∪B〉) ≤ 4.

By the above arguments we can assume that A is not a cone. For the same
reason we can also assume that B is not a cone. Hence, by Lemma 9 we have
dim(〈A〉) ≤ 4 and dim(〈B〉) ≤ 4 and −1 ≤ dim(〈A〉 ∩ 〈B〉) ≤ 3. If neither A
nor B is a plane, by Lemma 7, we have dim(〈A〉 ∩ 〈B〉) = 3. This implies that
dim(〈A〉) = dim(〈B〉) = 4, otherwise we would have 〈A〉 ⊆ 〈B〉 (or 〈A〉 ⊇ 〈B〉)
and this is not possible as dim(〈A〉 ∪ 〈B〉) = dim(〈A ∪B〉) ≥ 5. Then we can apply
Lemma 8 and we are done.
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Hence we can assume that B, for instance, is a plane, dim(〈B〉) = dim(B) =
2 and dim(〈A〉) ≤ 4. If dim(〈A〉) = 2, A is a plane and it is not possible that
dim(〈A ∪B〉) ≥ 5 and dim([A; B]) ≤ 4. If dim(〈A〉) = 3 we have 〈A〉 ∩B is a point
R as dim(〈A ∪B〉) = dim(〈〈A〉 ∪B〉) ≥ 5, then for any point P ∈ Areg, TP (A)
passes through R, because TP (A) ∩B 6= ∅ by Lemma 6 ii). Hence A would be a
cone with vertex R and this is not possible. If dim(〈A〉) = 4 we have 〈A〉 ∩ B is a
line l, as dim(〈A ∪B〉) = dim(〈〈A〉 ∪B〉) ≥ 5, and for any generic point P ∈ Areg,
TP (A) ∩ l 6= ∅ by arguing as above. Let us choose a generic plane Π ⊂ 〈A〉 and
let us consider the rational map ϕ : A − −− > Π given by the projection from
l. ϕ cannot be constant, because A is not a plane, on the other hand the rank of
the differential of ϕ is at most one by the assumption on TP (A), P ∈ Areg. Hence
Im(ϕ) is a plane curve Γ and A is contained in the 3-dimensional cone generated
by the planes 〈l ∪Q〉, where Q is any point of Γ. We get case iv).

Remark 3. Lemma 9 and Proposition 3 give the proof of Theorem 1.

6. Surfaces having at least three irreducible components

In this section we want to give some information about the classification of J-
embeddable surfaces V = V1 ∪ ... ∪ Vr, r ≥ 3. By Corollary 1 this property is
equivalent to assume that dim[Sec(V )] ≤ 4. As any surface V is J-embeddable if
dim(〈V 〉) ≤ 4 we will assume that dim(〈V 〉) ≥ 5. Note that V is J-embeddable if
and only if dim([Vi;Vj ]) ≤ 4 for any i, j = 1, ..., r, by Corollary 2.

Let us prove the following.

Lemma 11. Let V = V1 ∪ ... ∪ Vr, r ≥ 3, be a reducible surface in Pn such that
dim[Sec(V )] ≤ 4. Assume that there exists an irreducible component, say V1, for
which dim(〈V1 ∪ Vj〉) ≥ 5 for any j = 2, ..., r. Then we have only one of the following
cases:

i) V1 is a Veronese surface and the other components are tangent planes to V1

at different points;
ii) V1 is a cone, with vertex a point P, and every Vj , j ≥ 2, is a plane passing

through P or a cone having vertex at P ;
iii) V1 is a surface, not a cone, such that dim(〈V1〉) = 4 and V2, ..., Vr are planes

as in case s = 1 of example 2.

Proof. Let us consider V1 and V2. By assumption dim[Sec(V1 ∪ V2)] ≤ 4 and
dim(〈V1 ∪ V2〉) ≥ 5. By Proposition 3 we know that one possibility is that V1 is
a Veronese surface and V2 is a tangent plane to V1. In this case let us look at the
pairs V1, Vj , j ≥ 3; we can argue analogously and we have i).

In the other two possibilities ii) and iii) of Proposition 3 for V1 and V2 we can
assume that V1 is a cone of vertex P. Now, by looking at the pairs V1, Vj , j ≥ 3
and by applying Proposition 3 to any pair, we have ii).

In the last case of Proposition 3 we can assume that V1 is a surface, not a cone,
such that dim(〈V1〉) = 4. By looking at the pairs V1, Vj , j ≥ 2 and by applying
Proposition 3 to any pair, we have any Vj , j ≥ 2, is a plane cutting 〈V1〉 along a
line lj which is the vertex of some 3-dimensional cone Ej ⊂ 〈V1〉 , Ej ⊃ V1. Hence
V is a surface as X in case s = 1 of Example 2.

Thanks to Lemma 11 it is easy to give the classification of V when there exists
an irreducible component Vi for which dim(〈Vi〉) ≥ 5



12 ALBERTO ALZATI AND EDOARDO BALLICO

Corollary 3. Let V = V1 ∪ ... ∪ Vr, r ≥ 3, be a reducible surface in Pn such that
dim[Sec(V )] ≤ 4. Assume that there exists an irreducible component, say V1, for
which dim(〈V1〉) ≥ 5. Then we have case i) or case ii) of Lemma 11.

Proof. As dim(〈V1〉) ≥ 5 we have dim(〈V1 ∪ Vj〉) ≥ 5 for any j = 2, ..., r, so we can
apply Lemma 11, obviously case iii) cannot occur.

To complete the classification we would have to consider:
- the case in which all components Vi of V are such that dim(〈Vi〉) ≤ 4 and there

exists at least an irreducible component Vi such that dim(〈Vi〉) = 4;
- the case in which all components Vi of V are such that dim(〈Vi〉) ≤ 3 and there

exist at least two components Vi and Vj such that dim(
〈
Vi ∪ Vj

〉
) ≥ 5;

- the case in which all components Vi of V are such that dim(〈Vi〉) ≤ 3 and for
any pair Vi, Vj , dim(

〈
Vi ∪ Vj

〉
) ≤ 4.

The complete analysys of the first two cases is very long and intricated and we
think that it is not suitable to give it here. However we plan to present it in a
separated enlarged version of this paper.

On the contrary, the last case can be studied very quickly and we give the
following result in order to recover Example 1.

Theorem 2. Let V = V1 ∪ ... ∪ Vr, r ≥ 3, be a reducible surface in Pn such
that dim[Sec(V )] ≤ 4 and dim(〈V 〉) ≥ 5. Assume that dim(〈Vi〉) ≤ 3 for i =
1, ..., r and dim(〈Vi ∪ Vj〉) ≤ 4 for any i, j = 1, ..., r. Then either V is an union
of planes pairwise intersecting at least at a point or the following conditions hold:
V1 ∪ ... ∪ Vt ∪ ... ∪ Vr with 1 ≤ t ≤ r such that

i) dim(〈Vi〉) = 3 for any 1 ≤ i ≤ t and Vi is a plane for t + 1 ≤ i ≤ r (if any);
ii) 2 ≤ dim(〈Vi〉∩〈Vj〉) for any i, j = 1, ..., t; 1 ≤ dim(〈Vi〉∩Vj) for any i = 1, ..., t

and j = t + 1, ..., r; 0 ≤ dim(Vi ∩ Vj) for any i, j = t + 1, ..., r.
Let V = V1 ∪ ...∪Vr, r ≥ 3, be a reducible surface in Pn such that dim(〈V 〉) ≥ 5.

Assume that dim(〈Vi〉) ≤ 3 for i = 1, ..., r and that V is either an union of planes,
pairwise intersecting at least at a point, or V1 ∪ ... ∪ Vt ∪ ... ∪ Vr, with 1 ≤ t ≤ r,
satisfying conditions i), ii) above. Then dim[Sec(V )] ≤ 4.

Proof. Firstly let us assume that V is an union of planes. In this case, obviously,
dim[Sec(V )] ≤ 4 if and only if every pair of planes intersects. From now on we can
assume that V is not an union of planes.

Under our assumprtions V is as in i). ii) follows from the fact that, for any pair
Vi, Vj ∈ V, dim(〈Vi ∪ Vj〉) = dim(〈Vi〉 ∪ 〈Vj〉) ≤ 4.

Conversely: if V is as in i), condition ii) implies that dim(〈Vi〉 ∪ 〈Vj〉) =
dim(〈Vi ∪ Vj〉) ≤ 4 for any i, j = 1, ..., r. Hence dim([Vi; Vj ]) ≤ 4 by Lemma 7;
in any case dim[Sec(V )] ≤ 4.

Remark 4. Example 1 is a J-embeddable surface V considered by Theorem 2.

To end the paper we give the following particular result in order to recover
Example 2.

Theorem 3. Let V = V1 ∪ ... ∪ Vr, r ≥ 3, be a reducible surface in Pn such that
dim[Sec(V )] ≤ 4 and dim(〈V 〉) ≥ 5. Assume that dim(〈Vi〉) ≤ 4 for i = 1, ..., r and
that there exists a component, say V1, such that dim(〈V1〉) = 4 and V1 is a surface,
not a cone, contained in a 3-dimensional cone E2 ⊂ 〈V1〉 having a line l2 as vertex.
Then:
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i) if E2 is the unique 3-dimensional cone having a line as vertex and containing
V1, then V is the union of V1, planes of Pn cutting 〈V1〉 along l2, cones in 〈V1〉
whose vertex belongs to l2, planes in 〈V1〉 intersecting l2, surfaces in 〈V1〉 contained
in 3-dimensional cones having l2 as vertex;

ii) if there exist other cones as E2, say E3, ..., Ek, with lines l3, ..., lk as vertices,
then V is the union of V1, other surfaces contained in E2 ∩ ...∩Ek (if any), planes
pairwise intersecting and cutting 〈V1〉 along at least some line lj , cones in 〈V1〉
having vertex belonging to l2 ∩ ... ∩ lk (if not empty), planes in 〈V1〉 intersecting
l2 ∩ ... ∩ lk (if not empty).

Proof. Note that it is not possible that dim(〈V1 ∪ Vj〉) ≤ 4 for all j = 2, ..., r,
otherwise dim(〈V 〉) = 4, then there exists at least a component, say V2, such that
dim(〈V1 ∪ V2〉) ≥ 5. By applying Proposition 3 to V1 and V2 we have V2 is a plane
cutting 〈V1〉 along l2. Let us consider Vj , j ≥ 3.

If dim(〈V1 ∪ Vj〉) ≥ 5 then, by Proposition 3, Vj is a plane cutting 〈V1〉 along a
line lj which is the vertex of some 3 -dimensional cone Ej ⊂ 〈V1〉, Ej ⊃ V1.

If dim(〈V1 ∪ Vj〉) ≤ 4 then Vj ⊂ 〈V1〉 ; in this case, to get dim([Vj ; V2]) ≤ 4, it
must be TP (Vj)∩ l2 6= ∅ for any point P ∈ (Vj)reg (recall that V2 is a plane). Hence,
either Vj is a cone whose vertex belong to l2, or Vj is a plane intersecting l2 or Vj

is a surface contained in some 3-dimensional cone having l2 as vertex.
Now, if E2 is the unique cone of its type containing V1, then V is as in case i),

otherwise we are in case ii).

Remark 5. Example 2 is a J-embeddable surface V considered by Theorem 3.
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