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conjugated and unconjugated alkynyl ketenes are described. The reactions provide some interesting 

azetidinones and dihydropyrimidinones bearing an alkynyl moiety. The regiochemistry of 

cycloadduct is related with the degree of conjugation of the alkynyl ketene. Moreover, two 

alternative approaches to "all-carbon" 1,3-diazabuta-1,3-dienes are reported.  
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Introduction 

Cycloaddition reactions involving 1,3-diazabuta-1,3-dienes represent a useful strategy for the 

preparation of a number of four, five and six member nitrogen-containing heterocycles.1 A wide 

variety of different reaction partners were tested and a lot of example of cycloaddition reactions 

with different partners, such as isocyanides,2 phosphoric compounds,3 the Simmons-Smith reagent,4 

acetylenes,5 enamines,6 sulfenes,7 oxazolinones,8 acrylates,9 the Reformatsky reagent,10 nitriles11 

and -nitrostyrenes12 have been reported. However, cycloaddition reactions between differently 

substituted 1,3-diazabuta-1,3-dienes and ketenes represent the most studied application of these 

compounds in heterocyclic synthesis, leading up to several different azetidinones and 

pyrimidinones.13 In connection with our ongoing interest in the synthesis of heterocyclic compounds 

starting from amidines and their derivatives,14 we widely investigated the cycloaddition reactions of 

a few 2,4-diphenyl-1,3-diazabuta-1,3-dienes characterized by (1) the mono-substitution on C-4 and 

(2) the "all-carbon" substitution on the diazadiene scaffold. We explored the reactivity of these 

substrates with mono and di-substituted ketenes15 and the thermal and photochemical 

cycloreversion of the [2+2] cycloadduct into the corresponding [4+2] adduct.16 We extended our 

study to the cycloaddition reactions with some chiral ketenes leading up to optically active 

azetidinones.17 Furthermore, we investigated the cycloaddition reactions with isocyanates and 

isothiocyanates to give triazin-2-ones and triazin-2-thiones.18 

The aim of this work is to conclude our investigation on the cycloaddition between 1,3-diazabuta-

1,3-dienes and ketenes testing the reactivity of some unusual alkynyl ketenes. To our knowledge, 

this feature of the chemistry of 1,3-diazabuta-1,3-dienes was never previously investigated and only 

a few researchers have explored the reactivity of some alkynyl ketenes with imines.19 –21 For 

example, in a more extensive study on the reactivity of cyanoketenes with imines,19 Moore and co-

workers investigated the cycloaddition of cinnamylideneamines and benzylideneamines with the 
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strongly activate hexynylcyanoketene, generated in situ by the thermolysis of 2,5-diazido-3,6-

dihexynyl-1,4-benzoquinone.20 Alcaide and co-workers reported the first example of a cycloaddition 

of a diimine with an unconjugated alkynyl ketene generated in situ from the corresponding acyl 

chloride.21 More recently, Rosemblum et al. prepared some 3-alkynyl azetidinones in low to 

moderate yields, through the cycloaddition of aryl alkynyl ketenes and (4-methoxy-benzylidene)-

phenyl-amine.22 In this paper we report two new favourable strategies to prepare "all-carbon" 1,3-

diazabuta-1,3-dienes and the results of our experimental studies on their cycloaddition reactions 

with simple acetylenic ketenes. 

 

Results and discussion 

Some years ago, we described a new useful synthetic approach to the 1,3-diazabuta-1,3-diene 

framework starting from dibutylphosphoramidates and aryl aldehydes.14b Despite the method 

working well for the preparation of N-aryl diazadienes, the overall yield for the synthesis of the 1-

benzyl-2,4-diphenyl-1,3-diazabuta-1,3-diene 1a15 was improvable (Scheme 1). 
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Scheme 1. 

 

An alternative approach was developed through the optimisation of a method previously reported by 

Hunter and Sim.23 The synthesis of 1-benzyl-2,4-diphenyl-1,3-diazabuta-1,3-diene 1a was achieved 

in 51% yield by a base-promoted prototropic rearrangement of the corresponding hydrobenzamide.24 

The latter was easily obtained in almost quantitative yield through the condensation of benzaldehyde 

with concentrated aqueous ammonia. Although a significant amount of the by-product amarine 6 

was obtained besides the desired product 1a, the number of steps, the cheapness of reagents, the 

easy product isolation and the overall process yields (50%) made this synthetic strategy useful 

(Scheme 2). Moreover, this method was successfully used to prepare the new diazadiene 1b in 43% 

yield starting from p-tolyl-benzaldehyde (Scheme 2). Clearly, the drawback of this approach is to 

allow only the synthesis of homo-substituted 2,4-diaza-1,3-pentadienes.  
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Scheme 2. 

 

An alternative synthesis was developed on the basis of Würthwein’s findings.25 It is well-known 

that titanium tetrachloride can promote imine intermediate formation through its vigorous water 

scavenger and useful Lewis acid double activity.26 Thus, 1a was prepared by direct condensation of 

N-benzyl benzamidine with benzaldehyde in the presence of half eq. TiCl4 in toluene and an excess 

of triethylamine (Scheme 3). The greatest strengths of this approach is the ease of product isolation. 

With respect to the standard method the overall process yield was increased to 48%. 
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Scheme 3. 

 

Regarding the dienophile reaction partner, alkynyl ketenes were generated in situ by 

dehydrohalogenation of the corresponding acyl chloride 3a–d. The latter were easily prepared in 

good yields according to the standard methods by reacting the corresponding acids 2a–d with 

thionyl chloride or oxalyl chloride. Alkynoic acids 2a–d were synthesised in good yields starting 

from the corresponding alkynols by an "inverse addition" Jones oxidation.27 Finally, 5-aryl-4-

pentyn-1-ols 2c,d were obtained by mean of Sonogashira coupling28 of 4-pentynol with the 

appropriate aryl iodide29 (Scheme 4). 
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Scheme 4. 

 

Cycloaddition reactions of diazadienes 1a,b and alkynyl ketenes were initially performed following 

the standard procedure reported in our previous works15 (method A), by slow addition of a solution 

of the appropriate acyl chloride 3a–d (1.1 mmol) in dry toluene to an ice cooled diluted (about 

0.085 molar) solution of 1,3-diaza-1,3-diene (1 mmol) and triethylamine (2.3 mmol) in dry toluene. 

Unexpectedly, under these conditions the reactions failed or gave very poor yields. It has been 

reported that reaction between an acid halide and an imine in the presence of triethylamine to give 

the azetidinone nuclei only works well if the acid halide have an electron-withdrawing substituent in 

the -position.30a  On the other hand, it has been demonstrated that a suitable choice of the reaction 

conditions (solvent, base, temperature, concentration) can affect both the yields and stereoselectivity 

in the cycloaddition reactions involving base-generated ketenes.30b Thus, better results were 

obtained by optimizing the reaction conditions suggested by Vaccaro30b for inactivated ketenes 

(method B), i.e. by slow addition of a solution of the acyl chloride (1.5 mmol) in dry toluene to a 

well stirred solution of 1,3-diaza-1,3-butadiene (1 mmol) and tributylamine (2.5 mmol) in dry 

toluene at rt under a nitrogen atmosphere, as reported in Scheme 5. 
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Scheme 5. 

 

The reaction of the conjugated alkynyl ketene, obtained in situ by slow addition of 3a to a toluene 

solution of 1a in the presence of 2.5 eq. of tributylamine at room temperature (method B), gave the 

desired azetidinone 4a in moderate yields. The regiochemical preference of reactions performed in 

the presence of conjugated alkynyl ketenes was confirmed by the results of the cycloaddition 

reactions with diazadiene 1b. As previously reported,16 the diastereoselectivity of this [2+2] 

cycloaddition was demonstrated by 1H NMR spectroscopic analysis and NOE experiments showing 

the presence of a single diastereoisomer with a cis relationship between the benzylideneimino group 

at C–4 and the hydrogen on C–3. Unexpectedly, unconjugated ketenes derived from acyl chlorides 

3b–d showed different behaviour. Under standard conditions (method A), the reaction of 1a with 

the ketene derived from 3b failed, giving rise to a complex mixture of unidentified products besides 

traces of 1-benzyl-2,4,6-triphenyl-1,2-dihydro-[1,3,5]triazine.31 On the contrary, the reaction 

performed under the new conditions (method B) resulted in a diastereoisomeric mixture of 

dihydropyrimidinones 5b(trans) and 5’b(cis) in 3:2 ratio. Despite the unsatisfactory reaction yield, 

no trace of azetidinone 4b was detected by TLC in the reaction crude. Moreover, an identical regio- 

and stereochemical outcome, but in better yield, was observed reacting 1a with ketenes arising from 

acyl chloride 3c,d. 
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As reported in the literature, 5, 13(c), 13(f) the most widely accepted mechanism for the cycloaddition 

reactions of 1,3-diaza-1,3-dienes and ketenes involves the nucleophilic attack of N–1 of the diene 

upon the carbonyl group of ketene, thus leading to the formation of a zwitterionic intermediate. 

Subsequent intramolecular attack of the nucleophilic –C of carbonyl group on C–2 or C–4 of the 

diene system can lead to the formation of β-lactams or dihydropyrimidinones, respectively (Scheme 

6).  
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Scheme 6. 

 

Mahajan and co-workers32 have also recently published the results of ab-initio calculations 

performed on the [2+2] cycloaddition reaction between the unsubstituted 1,3-diazabuta-1,3-diene 

and ketene that confirm the intermediacy of a zwitterionic compound. Moreover, these results are in 

concordance with the ab initio study on the mechanism of imine-ketene cycloaddition (Staudinger 

reaction) reported by Sordo,33 which confirmed the experimental data obtained by Moore and co-

workers.19 Finally, Chemouri and Mekelleche recently reported a theoretical study dealing with the 

mechanism and the regiochemistry of the cycloaddition of 1,3-diazabuta-1,3-dienes with ketenes 

using DFT-based reactivity indexes.34 

With the aim to clarify the different outcome observed by reacting conjugated versus unconjugated 

ketenes, the problem was tentatively approached from a theoretical point of view. The investigation 

was restricted to all potential products arising from the [2+2] and [4+2] cycloaddition reaction of 

diazadiene 1a with alkynyl ketenes derived from 3a and 3b. We calculated the minima energies of 

geometric isomers of azetidinones 4a,b/4’a,b and dihydropyrimidinones 5a,b/5’a,b at ground state. 

The minimisations were performed at the DFT level using the B3LYP functional and the 6–

31+G(d,p) basis-set.35 Calculations were performed on isolated molecules in the gas phase and the 

character of minima was confirmed by the absence of imaginary frequencies. Selected E among 

isolated and hypothetical isomers are reported in Table 1. 

 

 

 

 

 

 

 

 



 

7 

Table 1. Selected E (kcal/mol) among isolated and hypothetical isomers. 

 

entry compounds Ea 

1 4’a(cis) – 4a(trans) – 0.1 

2 4’b(cis) – 4b(trans) – 0.4 

3 5’a(cis) – 5a(trans) –0.7 

4 5’b(cis) – 5b(trans) 1.0 

5 4’a(cis) – 5a(trans) 13.7 

6 4’b(cis) – 5b(trans) 20.0 

a ZPE corrected energy differences  

 

The energetic difference between trans and cis form of both azetidinones 4a/4’a and 4b/4’b was 

very low (0.1 and 0.4 kcal/mol, respectively, in favour of product cis), according to the statement 

that configurational preferences in such cycloaddition are controlled by orbital symmetry and 

torquoselectivity considerations36 rather than relative stability of isomeric products (entries 1 and 2). 

The not isolated cis isomer 5’a was slightly favoured over the trans isomer 5a (ΔEcistrans=  0.7 

kcal/mol), while an opposite relationship was observed for the couple 5b/5’b (derived from the 

reaction with the unconjugated ketenes) where the trans isomer 5b was 1 kcal/mol more stable than 

5’b, in concordance with the ratio trans:cis = 3:2 experimentally observed (see Scheme 5). Finally, 

no substantial differences were observed among the E between the more stable isomeric forms of 

the couples azetidinone/dihydropyrimidinone 4’a/5a and 4’b/5b: in both cases, the calculated E 

were high, confirming that azetidinones can only arise under kinetic control whereas 

dihydropyrimidinones are the thermodynamic products. 

Despite these computational results providing insights into the reaction thermodynamics, they were 

unable to explain the regiochemical behaviour observed and probably only an in-depth theoretical 

investigation on the transition states involved could clarify the relationship between specificity 

observed and the degree of conjugation of the ketene, but this is beyond the scope of this paper. A 

simple comparison between the structures of the two possible zwitterions shows that the 

intermediate derived from the reaction of azadiene 1a with the ketene 3a could be stabilized by the 

presence of a conjugated -system on the ketene moiety capable of delocalizing the negative charge. 

As already reported,15 this would theoretically increase the tendency to give the thermodynamically 

controlled cycloadduct. On contrary, we observed an opposite experimental behaviour. These 

evidences suggest that the regiochemical outcome is not controlled by simple and intuitive 

electronic factors. Probably the mode of cyclization is determined by steric reasons and/or some 

kind of specific -interaction between the different alkynyl moieties and the benzylidene framework 

in the zwitterionic intermediates. 

 

Conclusions 

In conclusion, two alternative approaches to "all-carbon" 1,3-diazabuta-1,3-dienes have been 

reported. Some examples of regiospecific cycloaddition reactions of these substrates with 

conjugated and unconjugated alkynyl ketenes have been presented. These reactions gave rise in 

modest to good yields to some interesting azetidinones and dihydropyrimidinones bearing an 

alkynyl moiety susceptible to further modification.  
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Experimental 

 

General Details: 

All chemicals and solvents are commercially available and were used after distillation or treatment 

with drying agents. Fluka silica gel F254 thin-layer plates were employed for thin layer 

chromatography (TLC). Davisil silica gel LC 60A was employed for flash column chromatography. 

Melting points, measured with a Stuart Scientific SMP3 apparatus, are uncorrected. Infrared spectra 

were recorded on a FT-IR Perkin Elmer Spectrum One spectrophotometer using KBr tablets. Proton 

NMR spectra were recorded at room temperature in CDCl3, on Varian-Gemini 200 at 200 MHz, 

with residual chloroform as the internal reference (H = 7.27 ppm). 13C NMR spectra were recorded 

at room temperature in CDCl3, on the same spectrometer, at 50.3 MHz, with the central peak of 

chloroform as the internal reference (C = 77.3 ppm). The APT or DEPT sequences were used to 

distinguish the methine and methyl carbon signals from those due to methylene and quaternary 

carbons. Two-dimensional NMR experiments (NOESY) were used, where appropriate, to aid in the 

assignment of signals in the proton spectra. “PE” refers to the fraction of petroleum ether with 

boiling point of 40–60 °C. “EtOAc” means ethyl acetate. TEA means triethylamine. 1,3,5-Triaryl-

2,4-diaza-1,4-pentadienes23, 24 (hydrobenzamides), diazadiene 1a,15, 23 3-pentynoic acid,35 4-

pentynoic acid,27 3-pentynoic acyl chloride37 4-pentynoic acyl chloride,38 5-phenyl-4-pentyn-1-ol,29 

5-phenyl-4-pentynoic acid,22 and 5-phenyl-4-pentynoic acyl chloride22 are known compounds. 

 

Synthesis of hydrobenzamides: A mixture of benzaldehyde or 4-methyl-benzaldehyde (83.0 

mmol) and aqueous ammonia 30% (60.0 mL) was stirred for 3 days at rt. The white solid in filtered 

over a Buchner funnel and dried under vacuum over CaCl2. 

1,3,5-Triphenyl-2,4-diaza-1,4-pentadiene: 8.09 g, 98%. White solid. 

1,3,5-Tri-(4-methyl-phenyl)-2,4-diaza-1,4-pentadiene: 9.04 g, 96%. White solid. 

 

Base-promoted prototropic rearrangement of the hydrobenzamides: The appropriate 

hydrobenzamide (7 mmol) was stirred for 3 days at 40 °C in 0.5 M sodium methoxide-methanol (20 

mL). The solvent was quickly removed under reduced pressure. The residue was dissolved in 

EtOAc (20 mL) and washed with NaH2PO4 (2  20 mL). The organic layer was dried over 

anhydrous sodium sulfate and the solvent removed at reduced pressure. To completely remove the 

by-product (amarine), the residue was purified through a rapid flash chromatography over a short 

silica gel column (eluent: PE/TEA = 8:2).  

N-Benzyl-N'-benzylidene-benzamidine 1a: 1.06 g, 51%. White-yellowish solid. Mp: 87–90 °C 

(lit.15 89–90 °C). 

4-Methyl-N-(4-methyl-benzyl)-N'-(4-methyl-benzylidene)-benzamidine 1b: 1.02 g, 43%. White 

solid. Mp: 67–68 °C. IR (KBr) ν = 1637, 1605 (C=C/C=N) cm–1. 1H NMR: δ = 2.35 (s, 3H, CH3), 

2.39 (s, 3H, CH3), 2.47 (s, 3H, CH3), 4.59 (s, 2H, CH2), 7.12–7.38 (m, 8H, arom.), 7.76–7.83 (m, 

4H, arom.), 8.15 (s, 1H, CH=N) ppm. 13C NMR:  = 21.4, 21.6, 21.9 (CH3), 53.1 (CH2), 127.9, 

128.0, 129.1, 129.2, 129.9 (CH arom., one signal obscured), 132.7, 133.5, 136.0, 138.6, 140.6, 

143.3 (C quat. arom.) 161.9 (CH=N), 164.2 (N–C=N) ppm. C24H24N2 (340.46): calcd. C 84.67, H 

7.11, N 8.23; found C 84.58, H 7.05, N 8.28. 
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TiCl4 promoted synthesis of 1a: To a stirred solution of N-benzyl-benzamidine (2.0 g, 9.5 mmol), 

benzaldehyde (1.1 g, 10.4 mmol) and triethylamine (2.4 g, 23.8 mmol) in dry toluene (56 mL) at 0 

°C, a solution of TiCl4 (0.90 g, 4.8 mmol) in dry toluene (18 mL) was slowly added (90 min) 

dropwise under a nitrogen atmosphere. After that, the mixture was stirred for additional 5 h at rt. 

The resulting white-yellow suspension was rapidly filtered under vacuum over a celite pad and the 

clear liquid was stored in a sealed flask overnight at 4–6 °C. The cold cloudy solution was re-

filtered under vacuum over a well-pressed celite pad and freed from solvent under reduced pressure 

without heating to give 1a. Yield: 2.1 g, 74%. White solid, mp 88–90 °C. 

 

Synthesis of 5-aryl-4-pentyn-1-ols: Under a nitrogen atmosphere, a solution of 4-pentyn-1-ol (2.0 

g, 23.8 mmol), the appropriate aryl-halide (23.8 mmol), CuI (23 mg, 0.12 mmol), and PdCl2(PPh3)2 

(170 mg, 0.24 mmol) in dry diethylamine (40 mL) was stirred overnight at rt, until no more starting 

product was detectable by tlc analysis. The excess diethylamine was removed under reduced 

pressure, the residue diluted with brine (150 mL) and extracted with EtOAc (3  40 mL). The 

organic layer, dried over anhydrous sodium sulfate, was evaporated to dryness and the crude 

purified by flash chromatography over a silica gel column (eluent: PE/EtOAc = 8:2). 

 

5-(4-Chlorophenyl)-4-pentyn-1-ol: 3.71 g, 83%. Yellow oil. IR (NaCl) ν = 3339 (OH), 2234 

(CC), 1489 (C=C), 1060 (COH) cm–1. 1H NMR: δ = 1.61 (bs, 1H, OH), 1.88 (quin., 2H, CH2–

CH2 CH2–OH, J = 6.6 Hz), 2.55 (t, 2H, CH2–CH2 CH2–OH, J = 6.6 Hz), 3.84 (t, 2H, CH2–CH2 

CH2–OH, J = 6.5 Hz), 7.30 (m, 4H, arom.) ppm. 13C NMR:  = 16.2, 31.5, 61.7 (CH2), 80.3, 90.7 

(CC), 128.7, 133.0 (CH arom.), 122.5, 133.8 (C quat. arom.) ppm. 

 

General method for the oxidation of alcohols: A solution of the appropriate alcohol (15 mmol) in 

acetone (50 mL) was added dropwise (2 h) to a cooled solution of Cr2O3 (3.0 g, 30 mmol) in H2SO4 

10 M (37.5 mL), maintaining a temperature of 5–10 °C. The reaction mixture was stirred for 

additional 2 h at rt. After concentration under reduced pressure, the residue was dissolved in water 

(100 mL) and extracted with diethyl ether (4  50 mL). The combined organic layers were washed 

with water (50 mL) and the volume was reduced by half under reduced pressure. Then, the ether 

solution was extracted with 3 M NaOH (2  50 mL). The combined basic solution were cooled and 

acidified by dropping HCl 37%. The acidic solution was finally extracted with diethyl ether (3  50 

mL). The organic layer, dried over sodium sulfate, was evaporated to dryness to give yellowish oil. 

The acids were sufficiently pure to be transformed into the corresponding acyl chlorides by standard 

methods without further purification. 

5-(4-Chlorophenyl)-4-pentynoic acid 2d: 89%. Yellow oil. IR (NaCl) ν = 3435 (OH), 1694 

(C=O), 1093 (CCl) cm–1. 1H NMR: δ = 2.73 (m, 4H, CH2–CH2 ), 7.31 (m, 4H, arom), 10.50 (bs, 

1H, COOH, exchange with D2O) ppm. 13C NMR:  = 15.3, 33.6 (CH2), 80.6, 88.8 (CC), 122.1, 

134.1 (C quat. arom.), 128.8, 133.1 (CH arom.), 178.6 (C=O) ppm. ESI-MS m/z (%): 209 [M++1] 

(100). 

5-(4-Chlorophenyl)-4-pentynoyl chloride 3d: 98%. Light-brown solid. 1H NMR: δ = 2.80 (t, 2H, 

CH2 J = 7.2 Hz), 3.22 (t, 2H, CH2 J = 7.2 Hz), 7.28, 7.34 (AA'BB' system, 4H, arom. J = 9.2 Hz) 

ppm. 
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Reactions of 1,3-diaza-1,3-butadienes 1a-b with ketenes 3a–d.  

Method A: A solution of the appropriate acyl chloride (1.1 mmol) in dry toluene (8 ml) was slowly 

added (1h) to a nitrogen flushed, well stirred and ice-water cooled solution of 1,3-diaza-1,3-

butadiene 1a or 1b (1.0 mmol) and triethylamine (2.3 mmol) in dry toluene (14 ml). After complete 

addition of the acyl chloride, the reaction mixture was stirred at 25 °C until no starting material was 

detected by tlc analysis. It was then washed with a cold saturated solution of NaHCO3 (1  70 mL) 

and cold water (1  70 mL). The organic layer was dried over anhydrous sodium sulfate and freed 

from solvent under reduced pressure at 40 °C. The crude product was purified by flash 

chromatography over silica gel column. 

 

Method B: A solution of the appropriate acyl chloride (1.5 mmol) in dry toluene (8 ml) was slowly 

added (1h) to a nitrogen flushed, well stirred solution of 1,3-diaza-1,3-butadiene 1a or 1b (1.0 

mmol) and tributylamine (2.5 mmol) in dry toluene (20 ml) at rt. After complete addition of the acyl 

chloride, the reaction mixture was stirred until no starting material was detected by tlc analysis. The 

reaction mixture was washed with 1 M HCl (1  70 mL) and NH4Cl 2N (1  70 mL). The organic 

layer was dried over anhydrous sodium sulfate and freed from solvent under reduced pressure at 40 

°C. The crude product was purified by flash chromatography over silica gel column. 

 

1-Benzyl-4-(benzylidene-amino)-4-phenyl-3-prop-1-ynyl-azetidin-2-one 4a: Eluent for 

chromatography: PE/EtOAc (95:5). Orange oil. IR (KBr) ν = 1765 (C=O), 1647 (C=C/C=N) cm–1. 
1H NMR: δ = 1.62 (d, 3H, CH3, 

5J = 2.7 Hz), 3.83 (d, 1H, CH2, 
2J = 15.0 Hz), 3.96 (q, 1H, C3H , 5J 

= 2.7 Hz), 4.84 (d, 1H, CH2, 
2J = 15.0 Hz), 7.26–7.64 (m, 15H, arom.), 7.95 (s, 1H, CH=N) ppm. 

13C NMR:  = 3.9 (CH3), 45.5 (CH2), 58.5 (C3–H), 70.4 (C4) 86.3, 86.4 (CC), 128.0, 128.2, 128.5, 

128.6, 128.8, 128.9, 129.0, 129.5, 131.8 (CH arom.), 135.4, 136.5, 137.0 (C quat. arom.) 159.3 

(CH=N), 165.6 (C=O) ppm. ESI-MS m/z (%): 379 [M++1] (100). C26H22N2O (378.47): calcd. C 

82.51, H 5.86, N 7.40; found C 82.42, H 5.84, N 7.38. 

1-(4-Methyl-benzyl)-4-[(4-methyl-benzylidene)-amino]-3-prop-1-ynyl-4-(4-methyl-phenyl)-

azetidin-2-one 4e: Eluent for chromatography: PE/TEA (98:2).Yellow oil. IR (KBr) ν = 1766 

(C=O), 1645 (C=C/C=N) cm–1. 1H NMR: δ = 1.63 (d, 3H, CC–CH3, 
5J = 2.7 Hz), 2.32 (s, 3H, 

CH3), 2.38(s, 3H, CH3), 2.39(s, 3H, CH3), 3.77 (d, 1H, CH2, 
2J = 14.6 Hz), 3.92 (q, 1H, C3H , 5J = 

2.7 Hz), 4.77 (d, 1H, CH2, 
2J = 14.6 Hz), 7.06–7.27 (m, 8H, arom.), 7.42 (m, 4H, arom.), 7.85 (s, 

1H, CH=N) ppm. 13C NMR:  = 4.0 (CC–CH3), 21.3, 21.4, 21.7 (CH3), 45.1 (CH2), 58.3 (C3–H), 

70.7 (C4) 80.0, 80.2 (CC), 128.5, 128.9, 129.2, 129.4, 129.5, 129.6 (CH arom.), 132.9, 133.6, 

133.7, 137.6, 138.4, 142.1 (C quat. arom.) 159.0 (CH=N), 165.6 (C=O) ppm. C29H28N2O (420.55): 

calcd. C 82.82, H 6.71, N 6.66; found C 82.59, H 6.74, N 6.61. 

(trans)-3-Benzyl-2,6-diphenyl-5-prop-2-ynyl-5,6-dihydro-3H-pyrimidin-4-one 5b(trans): 

Eluent for chromatography: PE/TEA (95:5).Yellow oil. IR (KBr) ν = 1698 (C=O), 1647 (C=C/C=N) 

cm–1. 1H NMR: δ = 2.04–2.20 (m, 2H, CC–H and CH2–CC), 2.79–2.94 (m, 2H, C5–H and CH2–

CC), 4.52 (d, 1H, Ph–CH2, 
2J = 15.4 Hz), 4.89 (d, 1H, C6–H , 3J = 11.7 Hz), 5.29 (d, 1H, Ph–CH2, 

2J = 15.4 Hz), 6.89 (m, 2H, arom.), 7.17–7.49 (m, 13H, arom) ppm. 13C NMR:  = 17.4 (CH2–

CC), 45.5 (C5–H), 47.4 (Ph–CH2), 61.2 (C6–H), 70.7 (CC–H), 80.9 (CC–H), 127.6, 127.7, 

127.8, 127.9, 128.4, 128.6, 128.7, 128.9, 130.3 (CH arom.), 134.9, 137.2, 140.8 (C quat. arom.) 

156.4 (CH=N), 170.8 (C=O) ppm. C26H22N2O (378.47): calcd. C 82.51, H 5.86, N 7.40; found C 

82.65, H 5.89, N 7.37. 
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(cis)-3-Benzyl-2,6-diphenyl-5-prop-2-ynyl-5,6-dihydro-3H-pyrimidin-4-one 5’b(cis): Eluent for 

chromatography: PE/TEA (95:5).Yellow oil. IR (KBr) ν = 1698 (C=O), 1639 (C=C/C=N) cm–1. 1H 

NMR: δ = 2.05–2.18 (m, 2H, CC–H and CH2–CC), 2.62–2.84 (m, 1H, CH2–CC), 3.20 (dt, 1H, 

C5–H, 3J = 8.4, 6.2 Hz), 4.86 (d, 1H, Ph–CH2, 
2J = 15.0 Hz), 4.96 (d, (d, 1H, Ph–CH2, 

2J = 15.0 

Hz), 5.24 (1H, C6–H , 3J = 6.2 Hz), 6.92 (m, 2H, arom.), 7.15–7.66 (m, 13H, arom) ppm. 13C NMR: 

 = 15.4 (CH2–CC), 44.7 (C5–H), 47.6 (Ph–CH2), 60.1 (C6–H), 70.9 (CC–H), 81.4 (CC–H), 

127.8, 127.9, 128.4, 128.6, 128.7, 128.8, 128.9, 129.0, 130.4 (CH arom.), 135.1, 136.3, 136.8 (C 

quat. arom.) 156.9 (CH=N), 170.9 (C=O) ppm. C26H22N2O (378.47): calcd. C 82.51, H 5.86, N 

7.40; found C 82.49, H 5.84, N 7.41. 

(trans)-3-Benzyl-2,6-diphenyl-5-(3-phenyl-prop-2-ynyl)-5,6-dihydro-3H-pyrimidin-4-one 

5c(trans): Eluent for chromatography: PE/TEA (9:1).Yellow solid. Pf 141–143 °C. IR (KBr) ν = 

1690 (C=O), 1635 (C=C/C=N) cm–1. 1H NMR: δ = 2.39 (dd, 1H, CH2–CC, 2J = 16.5 Hz, 3J = 4.4 

Hz), 2.93 (dt, 1H, C5–H, 3J = 4.4, 12.1 Hz), 3.18 (dd, 1H, CH2–CC, 2J = 16.5 Hz, 3J = 4.4 Hz), 

4.52 (d, 1H, Ph–CH2, 
2J = 15.4 Hz), 5.04 (d, 1H, C6–H , 3J = 12.1 Hz), 5.39 (d, 1H, Ph–CH2, 

2J = 

15.4 Hz), 6.94 (d, 2H, arom., 3J = 7.0 Hz), 7.13 (m, 3H, arom.), 7.25–7.51 (m, 15H, arom) ppm. 13C 

NMR:  = 18.4 (CH2–CC), 45.8 (C5–H), 47.4 (Ph–CH2), 61.5 (C6–H), 83.1, 86.6 (CC), 127.6, 

127.7, 127.9, 128.1, 128.4, 128.5, 128.7, 128.9, 130.3 132.0 (CH arom., two signals obscured), 

123.8, 134.9, 137.4, 141.0 (C quat. arom.) 156.5 (CH=N), 171.0 (C=O) ppm. ESI-MS m/z (%): 455 

[M++1] (35). C32H26N2O (454.56): calcd. C 84.55, H 5.77, N 6.16; found C 84.68, H 5.79, N 6.19. 

(cis)-3-Benzyl-2,6-diphenyl-5-(3-phenyl-prop-2-ynyl)-5,6-dihydro-3H-pyrimidin-4-one 

5’c(cis): Eluent for chromatography: PE/TEA (9:1).Yellow solid. Pf 105–107 °C. IR (KBr) ν = 

1701 (C=O), 1638 (C=C/C=N) cm–1. 1H NMR: δ = 2.38 (dd, 1H, CH2–CC, 2J = 17.6 Hz, 3J = 8.8 

Hz), 2.96 (dd, 1H, CH2–CC, 2J = 17.6 Hz, 3J = 6.2 Hz), 3.33 (dt, 1H, C5–H, 3J = 6.2, 8.8 Hz), 4.87 

(d, 1H, Ph–CH2, 
2J = 15.0 Hz), 5.01 (d, 1H, Ph–CH2, 

2J = 15.0 Hz), 5.35 (d, 1H, C6–H , 3J = 6.2 

Hz), 6.98 (m, 2H, arom.), 7.30–7.54 (m, 18H, arom) ppm. 13C NMR:  = 16.5 (CH2–CC), 44.9 

(C5–H), 47.7 (Ph–CH2), 60.3 (C6–H), 83.2, 86.9 (CC), 127.9, 128.1, 128.5, 128.6, 128.7, 128.8, 

130.4, 131.9 (CH arom., four signals obscured), 123.7, 135.1, 136.5, 136.8 (C quat. arom.) 157.1 

(CH=N), 171.2 (C=O) ppm. EI-MS m/z (%): 454 [M+] (33). C32H26N2O (454.56): calcd. C 84.55, H 

5.77, N 6.16; found C 84.50, H 5.74, N 6.18. 

(trans)-3-Benzyl-5-[3-(4-chloro-phenyl)-prop-2-ynyl]-2,6-diphenyl-5,6-dihydro-3H-pyrimidin-

4-one 5d(trans): Eluent for chromatography: PE/TEA (8:2).Yellow oil. IR (KBr) ν = 1698 (C=O), 

1638 (C=C/C=N) cm–1. 1H NMR: δ = 2.32 (dd, 1H, CH2–CC, 2J = 16.6 Hz, 3J = 4.4 Hz), 2.88 (dt, 

1H, C5–H, 3J = 4.4, 12.3 Hz), 3.10 (dd, 1H, CH2–CC, 2J = 16.6 Hz, 3J = 4.4 Hz), 4.49 (d, 1H, Ph–

CH2, 
2J = 15.0 Hz), 4.93 (d, 1H, C6–H , 3J = 12.3 Hz), 5.33 (d, 1H, Ph–CH2, 

2J = 15.0 Hz), 6.90 (d, 

2H, arom., 3J = 6.6 Hz), 7.13 (m, 3H, arom.), 7.26–7.44 (m, 14H, arom) ppm. 13C NMR:  = 18.3 

(CH2–CC), 45.7 (C5–H), 47.5 (Ph–CH2), 61.5 (C6–H), 81.8, 87.7 (CC), 127.6, 127.7, 127.9, 

128.0, 128.5, 128.7, 128.9, 130.3, 133.2 (CH arom., two signals obscured), 122.2, 134.0, 134.8, 

137.4, 140.9 (C quat. arom.) 156.5 (CH=N), 170.9 (C=O) ppm. ESI-MS m/z (%): 489 [M++1] (100). 

C32H25ClN2O (489.01): calcd. C 78.60, H 5.15, N 5.73; found C 78.48, H 5.17, N 5.70. 

(cis)-3-Benzyl-5-[3-(4-chloro-phenyl)-prop-2-ynyl]-2,6-diphenyl-5,6-dihydro-3H-pyrimidin-4-

one 5’d(cis): Eluent for chromatography: PE/TEA (8:2).Yellow oil. IR (KBr) ν = 1699 (C=O), 1639 

(C=C/C=N) cm–1. 1H NMR: δ = 2.32 (dd, 1H, CH2–CC, 2J = 17.4 Hz, 3J = 8.4 Hz), 2.86 (dd, 1H, 

CH2–CC, 2J = 17.4 Hz, 3J = 6.0 Hz), 3.28 (dt, 1H, C5–H, 3J = 6.0, 8.4 Hz), 4.86 (d, 1H, Ph–CH2, 
2J = 15.0 Hz), 4.96 (d, 1H, Ph–CH2, 

2J = 15.0 Hz), 5.28 (d, 1H, C6–H , 3J = 6.0 Hz), 6.96 (m, 2H, 
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arom.), 7.21–7.47 (m, 17H, arom) ppm. 13C NMR:  = 16.4 (CH2–CC), 44.9 (C5–H), 47.6 (Ph–

CH2), 60.3 (C6–H), 82.0, 88.0 (CC), 127.8, 127.9, 128.0, 128.2, 128.5, 128.6, 128.7, 128.8, 128.9, 

130.4, 133.1 (CH arom.), 122.2, 134.1, 135.0, 136.6, 136.8 (C quat. arom.) 157.1 (CH=N), 171.1 

(C=O) ppm. ESI-MS m/z (%): 489 [M++1] (100). C32H25ClN2O (489.01): calcd. C 78.60, H 5.15, N 

5.73; found C 78.69, H 5.12, N 5.73. 
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