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Demonstration of a programmable source of two-photon multiqubit entangled states
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We suggest and demonstrate a novel source of two-photon multipartite entangled states which exploits the
transverse spatial structure of spontaneous parametric down-conversion together with a programmable spatial
light modulator (SLM). The one-dimensional SLM is used to perform polarization entanglement purification
and to realize arbitrary phase gates between polarization and momentum degrees of freedom of photons. We
experimentally demonstrate our scheme by generating two-photon three-qubit linear cluster states with high
fidelity using a diode laser pump with a limited coherence time and power on the crystal as low as ∼2.5 mW.
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I. INTRODUCTION

Multiqubit entangled states (e.g., cluster states) are key
resources to realize several protocols of quantum-information
processing, including measurement-based quantum computa-
tion [1–3], quantum communication [4], and quantum error
correction [5]. Moreover, earlier work identified applications
in advanced fundamental tests of quantum nonlocality [6–9].
Basically, there are two ways to generate multiqubit entangled
states (e.g., cluster states). On one hand, one may increase
the number of entangled photons [10–13]. On the other hand,
one may use different degrees of freedom of the same pair
of photons [3,14–16] achieving so-called hyperentanglement.
The second method offers a larger robustness against decoher-
ence and nonunit detector efficiency. Four and six multiphoton
cluster states have been experimentally created [10–12] as
well as two-photon four- [3,14,15,17–25] and six-qubit cluster
states [26].

In this paper we suggest and demonstrate a scheme to gen-
erate two-photon multipartite entangled states which exploits
the transverse spatial structure of spontaneous parametric
down-conversion (PDC) and a one-dimensional programable
spatial light modulator (SLM) based on a liquid crystal
display. These kinds of devices have already been used as
pulse shapers for Bell state generation [27], as amplitude
modulators for momentum imaging and qudit generation [28]
as well as diffractive elements to operate on orbital angular
momentum [29]. Here, we employ SLM in an innovative
way to realize two-photon multiqubit or multiqudit entangled
states and demonstrate its use in the generation of two-photon
three-qubit linear cluster states with high fidelity.

The novelty of our setup is twofold. On the one hand, we
use the SLM for purification, and this allows us to dramatically
decrease the spectral and angular filtering of down-converted
photons, which is the method generally used to prevent
the degradation of the purity. Moreover, the SLM may be
externally controlled, via software, and this makes our method
more easily adjustable for the different implementations,
compared to purification schemes that involve the use of
suitably prepared crystals along the path of the down-converted
photons [30]. On the other hand, we fully exploit the properties
of the SLM to realize arbitrary phase gates between polar-
ization and momentum degrees of freedom. In this way, we

obtain an effective, low-cost, source of two-photon multipartite
entanglement using a pump with low power and a limited
coherence time.

The paper is structured as follows. In Sec. II we describe
our PDC system in some details and illustrate the purification
method based on the use of SLM. In Sec. III we address the
generation of two-photon multiqubit or multiqudit entangled
states and describe our experimental setup, used to demonstrate
the generation of two-photon three-qubit linear cluster states
with high fidelity. Sec. IV closes the paper with some
concluding remarks.

II. POLARIZATION ENTANGLEMENT AND
PURIFICATION

The first step in our scheme is the generation of polarization
entangled states by spontaneous parametric down-conversion
(SPDC) in two adjacent BBO crystals oriented with their
optical axes aligned in perpendicular planes [31–33]. The state
at the output of the two crystals may be written as

|!〉 = 1√
2

∫
dθ dωs dωpf (ωp,ωs ,θ )A(ωp)

×
[
eıko

p(ωp)Leıφ(θ)+ıφ′(θ ′)|H,θ,ωs〉|H,θ ′,ωp − ωs〉
+ eık2‖(ωp,ωs ,θ)L|V,θ,ωs〉|V,θ ′,ωp − ωs〉

]
, (1)

where L is the crystals’ length and |P,θ,ω〉 denotes a single
photon state with polarization P = H,V , emitted at angle θ
and frequency ω. The complex amplitude spectrum of the
pump laser is A(ωp) whereas the down-converted photons
are generated with the two photons’ spectral and angular
amplitude f (ωp,ωs ,θ), as defined in [33]. We call ωp = ω0

p +
ωp and ωs = ω0

p/2 + ωs the frequencies of the pump laser and
of the signal, where ωp and ωs are the shift from the central
frequenciesω0

p andω0
p/2. Likewise, signal and idler generation

angles are, respectively, θ = θ0 + θ and θ ′ = −θ0 + θ ′, with
θ0 the central angle and θ ′ = −θ + γωs + γ ′ωp. Within the
spectral width of our pump the dependence on ωp is negligible
and thus we have θ ′ ( −θ + γωs , with γ = ∂θ ′/∂ωs .

The phase term ko
p(ωp)L is due to the pump traversing the

first crystal before it generates photons in the second one,
whereas the term k2‖(ωp,ωs ,θ)L appears because the photons
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generated in the first crystal must traverse the second one.
The perpendicular part k2⊥ disappears for conservation of the
transverse momentum, as it is guaranteed by the large pump
spot on the crystals (∼1.5 mm). The other phase terms are
common and are grouped out. The phase shifts φ(θ ) and φ′(θ ′)
are introduced by a spatial light modulator, respectively, on the
signal and on the idler and depend on the generation angles
θ̄ and θ̄ ′. These will be discussed in detail in the following.
It can be shown numerically that f (ωp,ωs ,θ) ≈ f (0,ωs ,θ) ≡
f (ωs ,θ) for crystals’ length L ! 1 mm. Upon expanding all
the contributions to the optical paths to first order and after
some algebra we arrive at

|!〉 = 1√
2

∫ 'θ/2

−'θ/2
dθ

∫ ωs2(θ)

ωs1(θ)
dωs

×
∫

dωpf (ωs ,θ)A(ωp) · [|H,θ,ωs〉|H,θ ′,ωp − ωs〉

+ eıϕ(ωp,ωs ,θ)|V,θ,ωs〉|V,θ ′,ωp − ωs〉], (2)

where 'θ is the angular acceptance and ωs1,2 = (1/γ )(θ ∓
'θ/2) are the integration limits for ωs , as determined by 'θ
and γ . The phase function between the H and the V component
is given by

ϕ(ωp,ωs ,θ) = φ0 + αLωp + βLωs − δLθ − φ(θ ) − φ′(θ ′),

where φ0 includes all the zero-order terms of the expansion.
The phase term αLωp accounts for the delay time between
horizontal and vertical down-converted photons. The two
subsequent terms rise for conservation of the transverse
momentum. The termβLωs may be understood by considering
the signal at the fixed angle θ : For different ωs the idler sweeps
different θ ′ and this means different optical path. Likewise,
fixing ωs , a positive variation of θ , corresponds to a negative
variation of θ ′ and this introduces an optical path dependent
on θ (i.e., the phase shift δLθ ). The delay time between the
photons may be compensated upon the introduction of a proper
combination of birefringent crystals on the pump path, as
already demonstrated in [32] (see Fig. 2). Let us now focus
attention on the action of the SLM [i.e., on the phase function
φ(θ ) and φ′(θ ′)]. At first, since θ ′ ( −θ + γωs , we note that
the choice,

φ′(θ ′) = βLθ ′/γ + ε′ φ(θ ) = −βLθ/γ + ε,

with ε′ + ε = φ0 allows one to compensate all the remaining
phase terms in ϕ(ωp,ωs ,θ) and to achieve purification of the
state. In this way, we may generate polarization entangled
states as in Eq. (2) with ϕ(ωp,ωs ,θ) = 0. Experimentally, we
obtain a visibility of about ∼0.9 starting from ∼0.42.

III. TWO-PHOTON MULTIPARTITE ENTANGLEMENT

In order to generate multipartite entangled states, and in
particular cluster states, purification is just the first step. Here,
we propose a technique based on the use of the SLM. We
consider the signal and the idler beams divided in N and
M subdivisions [see Fig. 1(d)], which individuate different

momentum qudits, and write the signal and idler momentum
state as

|s〉 =
N∑

n

an|n〉s , |i〉 =
M∑

m

am|m〉i ,

with n = 0,1, . . . ,N − 1 and m = 0,1, . . . ,M − 1. The total
momentum state is |-〉 = |s〉 ⊗ |i〉. This is not an entangled
state in the momentum since for a certain signal angle θ ,
the idler sweeps a wide interval of θ ′, actually covering all
the angular acceptance 'θ due to the broad down-conversion
spectrum. The global state is thus given by |!〉 ⊗ |-〉, where
polarization provides two qubits, and the rest of informa-
tion is encoded onto the momentum degrees of freedom
[34–36].

The action of the SLM corresponds to impose a phase shift
only on the horizontal component of polarization, leaving the
vertical part undisturbed. We exploit this property to add a
different constant phase, besides the purification ones φ(θ ) and
φ′(θ ′), for each portion of signal and idler. This corresponds
to the action of a set of controlled phase gates Cφ , φ =
{φ0i , . . . ,φM−1i ,φ0s , . . . ,φN−1s} to the state |!〉 ⊗ |-〉. Using
a suitable number of sectors (power of two) one may generate
multiqubit entangled states of the form |.〉 = Cφ|!〉 ⊗ |-〉.

The simplest example, which we implemented experimen-
tally, is obtained using M = 1 and N = 2 (i.e., by dividing
the signal beams in two parts exploiting the SLM to apply a
phase φ to only one of them); see Figs. 1(a) and 1(b). This
leads to the generation of a two-photon three-qubit entangled
state of the form 1

2 [|000〉 + |110〉 + eıφ|001〉 + |111〉] where,
for the first two qubits, |0〉 ≡ |H 〉 and |1〉 ≡ |V 〉 whereas the

FIG. 1. (Color online) Generation of multipartite entangled or
cluster states by the use of SLM. The overall output from SPDC is
divided in spatial sections, and a different phase may be imposed to
each portion in a programmable way, corresponding to the application
of controlled phase gates. Each spatial section includes several
pixels. In (b) we report the momentum state in our experimental
implementation |-〉 = 1√

2
|0〉i(|0〉s + |1〉s); in (c) the state configura-

tion to achieve |-〉 = 1
2 (|0〉i + |1〉i)(|0〉s + |1〉s) (which may become

|-〉 = 1√
2
(|0〉|1〉 + |1〉|0〉) upon the use of a spectral filter, bandpass

of 10 nm). In (d) the generic configuration leads to the momentum
state |-〉 = |s〉 ⊗ |i〉.
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third qubit is the signal momentum. For φ = π one obtains a
two-photon three-qubit linear cluster state,

|C3〉 = 1√
2

[|!+〉|0〉 − |!−〉|1〉],

where |!±〉 are standard Bell states. In order to highlight the
power of our method let us consider another example, with
four qubits: for M = N = 2 [see Fig. 1(c)] and applying φ0s =
−φ0i ,φ1i = π − φ1s we achieve the four-qubit entangled state,

|.4〉 = 1
2 [|!+〉|00〉 − |!−〉|11〉
+ |'+(φt )〉|01〉 − |'−(φt )〉|10〉],

where φt = φ0i + φ1s and |'±(φt )〉 = 1√
2
[|00〉 ± e∓ıφt |11〉].

We foresee that using a narrower spectral filter for the down-
converted photons it is possible to select different regions of
the angular distribution in a way that allows us to engineer
entanglement also for the momentum degrees of freedom.
Using a 10-nm bandpass filter and coupling 'θ ( 1.6 mrad on
the momentum channels |n〉s ,|m〉i , for N,M = 2, we would
have |-〉 = 1√

2
(|0〉|1〉 + |1〉|0〉). In such a way the total state

would be the two-photon four-qubit cluster state reported
in [14,15].

A. Experiment

The experimental setup is shown in Fig. 2. The pump de-
rives from a 405-nm cw laser diode (Newport LQC 405-40P).
After a half-wave plate (HWP) that rotates its polarization
in order to balance the generated state, the pump passes
through two BBO crystals that compensate the delay time αL
between |H 〉 and |V 〉 generated photons. Two BBO crystals,
each cut for type-I down-conversion, stacked back-to-back
and oriented with their optical axes aligned in perpendicular
planes, are used to generate the polarization entangled state.

FIG. 2. (Color online) Experimental setup. Polarization entan-
gled states are generated by down-conversion in type-I BBO crystals
pumped at 405 nm by a Newport LQC 405-40P cw laser diode.
Then, a spatial section of the output cones passes through the SLM
which (at the same time) i) provides purification of polarization
entanglement and ii) introduces a position- (i.e., generation angle)
dependent phase shift between the two polarizations. After SLM,
there are (on both paths) a slit, an iris, two long-pass filters (cut-on
wavelength = 715 nm), a coupler with an 1/e2 output beam diameter
of 7.14 mm, and a multimode optical fiber that directs the photons
to the detector. The detectors are homemade single-photon counting
modules (D1,D2), based on an avalanche photodiode operated in
Geiger mode with passive quenching. For tomographic reconstruction
we insert a quarter-wave plate, a half-wave plate, and a polarizer and
for the optimization of the phase functions only the polarizers.

As shown in Fig. 1(a), a portion of the output cones passes
through the SLM, which is a crystal liquid phase mask
(64 × 10 mm) divided in 640 horizontal pixels, each wide
d = 100 µm and with the liquid crystal 10-µm deep. The
SLM is set at a distance D = 500 mm from the two generating
crystals. Driven by a voltage, the liquid crystal orientation
in correspondence of a certain pixel changes. The photons
with a horizontal polarization feel an extraordinary index of
refraction, depending on the orientation, and this introduces
a phase shift between the two polarizations. Since each pixel
is driven independently we can introduce a phase function
dependent on the position on the SLM (i.e., on the generation
angle θ and θ ′).

It is worth noting that the SLM also replaces the birefringent
plate used for the optimal generation of photon pairs [31].
After SLM, on the signal and the idler paths, there are
a slit, an iris, two long-pass filters (cut-on wavelength =
715 nm), a coupler with an 1/e2 output beam diameter of
7.14 mm, and a multimode optical fiber that directs the photons
to the detector. The detectors are homemade single-photon
counting modules (D1,D2), based on an avalanche photodiode
operated in Geiger mode with passive quenching. For the
tomographic reconstruction we insert, on both paths after the
iris, a quarter-wave plate, a half-wave plate, and a polarizer.
For the optimization of the phase functions (see below) we
insert only the polarizers.

Our experimental setup allows us to collect the down-
converted photons within a wide spectrum and angular
distribution. In order to underline this fact the pump power on
the crystals has been intentionally left very low (2.5 mW) by
using an amplitude modulator. To collect as many photons as
possible we make the imaging of the pump spot on the crystals
((1.5 mm) into the optical fiber’s core (diameter of 62.5 µm)
using the coupler lenses. Setting the slits at 4 mm ('θ ( 6.5
mrad) and the iris with a diameter of 9 mm we collect up
to 100 coincidence counts per second. It is worthwhile to
note that such an angular acceptance 'θ acts as a 100-nm
bandpass spectral filter for the down-converted photons. In
order to purify the state we insert the phase functions,

φ(x) = a2(x − xc2) + b2 φ′(x) = a1(x − xc1) + b1,

where x is the pixel number, x − xc2 = D
d
θ and x − xc1 =

D
d
θ ′, xc1, and xc2 are the central pixels on idler and signal (i.e.,

the pixels corresponding to the central angles θ ′ = −θ0 and
θ = θ0). The values of the parameters a1,b1,a2, and b2 have
been optimized upon inserting two polarizers set at α1 = 45◦

and α2 = −45◦ in front of the couplers and then searching
for the minima in the coincidence counts, corresponding to
the values of b1,2 compensating the constant phase difference
φ0 and a1,2, removing the angular dependence on θ and on
θ ′, and, in turn, on ωs . For our configuration, we have a1 =
−a2 = βLd/γD ( −0.05, b1 + b2 = φ0.

In Fig. 3(a) we report the coincidence counts on a time
window equal to 30 s as a function of b1 (b2) as blue circles
(red squares) with b2 = 0 (b1 = 0) and with a1,2 set to their
optimal values. In Fig. 3(b) we report the coincidence counts on
a time window of 30 s as a function of a1 = −a2 with b2 = 0
and b1 = φ0. The agreement with the theoretical model is
excellent. In turn, the purification of the state works as follows:
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FIG. 3. (Color online) Coincidence counts on a time window of
30 s with the polarizers in front of the couplers set at 45◦ and −45◦.
(a) Coincidences as a function of b1 (blue) and b2 (red) with b2,1 = 0
and optimal a1,2; (b) coincidences as a function of a1 = −a2 with
optimal b1 and b2 = 0.

Starting from a visibility equal to 0.423 ± 0.016 we achieve
0.616 ± 0.012 after the delay compensation with the crystals
and 0.886 ± 0.012 after the spatial compensation with the
SLM. Finally, by closing the iris at the same width of the slits
we obtain 0.899 ± 0.008. Actually, we verified experimentally
that variations of the phase in the azimuthal direction have only
a minor effect. The residual lack of visibility is in turn due
to the low spatial coherence of the pump, which is spatially
multimode.

B. State reconstruction

Upon properly programming the SLM [i.e., by setting
M = 1, N = 2, and φ = π as in Fig. 1(b)], our scheme
may be set to generate, in ideal conditions, the cluster state
|C3〉. In order to characterize the output state, denoted by
R3, and to check the effects of the decoherence processes,
we have performed state reconstruction by (polarization)
quantum tomography [37,38]. The experimental procedure
goes as follows: upon measuring a set of independent two-qubit
projectors Pµ = |ψµ〉〈ψµ| (µ = 1, . . . ,16) corresponding to
different combinations of polarizers and phase shifters, the
density matrix may be reconstructed as 1 =

∑
µ pµ 2µ, where

pµ = Tr[1 Pµ] are the probabilities of getting a count when
measuring Pµ and 2µ is the corresponding dual basis (i.e., the
set of operators satisfying Tr[Pµ 2ν] = δµν [39]). Of course,
in the experimental reconstruction, the probabilities pµ are
substituted by their experimental samples (i.e., the frequencies
of counts obtained when measuring Pµ). In order to minimize
the effects of fluctuations and avoid nonphysical results, we
use maximum-likelihood reconstruction of two-qubit states
[37,38].

(b)(a)

(d)(c)

FIG. 4. (Color online) Characterization of the output state. In
(a) we report the tomographic reconstruction (real part) of the global
purified polarization entangled state prior to the action of the phase
gate, whereas in (b) we show the corresponding visibility curve and
the fit with the curve cos2(α2 − 45◦) (solid line). In (c) and (d) we
report the tomographic reconstructions (real part) of the reduced states
10 and 11.

At first we reconstruct the purified state prior to the
action of the SLM phase gate (i.e., without addressing the
momentum qubit). Then, we reconstruct the two reduced
states 1j = 1

pj
Tr3[|j 〉s s〈j | R3] obtained by measuring the

momentum qubit after the phase gate. This is obtained by
moving the slit on the signal to select the corresponding portion
of the beam. Results are summarized in Fig. 4.

As is apparent from the plots, our scheme provides
a reliable generation of the target states. Fidelity of the
purified polarization state is about F ( 0.90 ± 0.01, whereas
fidelities of the conditional states F0 = 〈!+|10|!+〉 and
F1 = 〈!−|11|!−〉 are given by F0 = 0.92 ± 0.01 and F1 =
0.90 ± 0.01, respectively. In order to achieve this precision,
we have employed a long acquisition time (∼60 s), thus,
also demonstrating the overall stability of our scheme. We
also report the visibility of the state prior to the action of the
SLM phase gate, which confirms the entanglement purification
process [40].

IV. CONCLUSIONS

We have suggested and implemented a scheme for the
generation of two-photon multipartite entangled states. In
our device, a programmable spatial light modulator acts on
different spatial sections of the overall down-conversion output
and provides polarization entanglement purification as well
as arbitrary phase gates between polarization and momentum
qubits. It should also be mentioned that measurements on
the momentum qubits benefit from our configuration. In fact,
addressing momentum is equivalent to selecting portions of
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the signal (idler) beam and then making them interact, say by
a beam splitter and other linear optical elements, to perform
arbitrary momentum measurements. In our scheme this may
be implemented in a compact form since the portions of
the beam are quite close to each other, and we may work
with the beam splitter at non-normal incidence. Overall, our
scheme represents an effective, low-cost, source of two-photon

multiqubit or qudit entanglement. We foresee applications in
one-way quantum computation and quantum error correction.
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