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ESTIMATION FOR THE DISCRETELY OBSERVED

TELEGRAPH PROCESS
UDC 519.21

S. M. IACUS AND N. YOSHIDA

Abstract. The telegraph process {X(t), t > 0} is supposed to be observed at n+ 1
equidistant time points ti = i∆n, i = 0, 1, . . . , n. The unknown value of λ, the un-
derlying rate of the Poisson process, is a parameter to be estimated. The asymptotic
framework considered is the following: ∆n → 0, n∆n = T → ∞ as n → ∞. We
show that previously proposed moment type estimators are consistent and asymp-
totically normal but not efficient. We study further an approximated moment type
estimator which is still not efficient but comes in explicit form. For this estimator the
additional assumption n∆3

n → 0 is required in order to obtain asymptotic normality.
Finally, we propose a new estimator which is consistent, asymptotically normal and
asymptotically efficient under no additional hypotheses.

1. Introduction

The telegraph process (see Goldstein [8] and Kac [12]) models a random motion with
finite velocity, and it is usually proposed as an alternative to diffusion models. The process
describes the position of a particle moving on the real line, alternatively with constant
velocity +v or −v. The changes of direction are governed by a homogeneous Poisson
process with rate λ > 0. The telegraph process or telegrapher’s process is defined as

(1) X(t) = x0 + V (0)

∫ t

0

(−1)N(s) ds, t > 0,

where V (0) is the initial velocity taking values ±v with equal probability and inde-
pendently of the Poisson process {N(t), t > 0}. Many authors analyzed probabilistic
properties of the process over the years (see e.g. Orsingher [16] and [17]; Pinsky [18];
Fong and Kanno [7]; Stadje and Zacks [21]). Di Crescenzo and Pellerey [4] proposed the
geometric telegraph process as a model to describe the dynamics of the price of risky
assets, i.e. S(t) = s0 exp{αt + σX(t)}, t > 0, where X(t) replaces the standard Brown-
ian motion of the original Black–Scholes [1] and Merton [15] model. Conversely to the
geometric Brownian motion, given that X(t) is of bounded variation, so is the geometric
telegraph process. This seems a realistic way to model paths of assets in the financial
markets. Mazza and Rullière [14] linked the process (1) and the ruin processes in the
context of risk theory. Di Masi, Y. Kabanov, and W. Runggaldier [5] proposed to model
the volatility of financial markets in terms of the telegraph process. Ratanov [19, 20]
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proposed to model financial markets using a telegraph process with two intensities λ±
and two velocities v±. The telegraph process has also been used in ecology to model
population dynamics (see Holmes et al. [10]) and the displacement of wild animals on
the soil. In particular, this model is chosen since it preserves the property of animals to
move at finite velocity and for a certain period along one direction (see e.g. Holmes [9],
for an account).

It is worth mentioning that, up to now, only a few references about estimation prob-
lems for the telegrapher’s process are known. Yao [22] considers the problem of state
estimation of the telegrapher’s process under white noise perturbation and studies per-
formance of nonlinear filters. Iacus [11] considers the estimation of the parameter θ of
the non-constant rate λθ(t) from continuous observations of the process. More recently,
De Gregorio and Iacus [2] proposed pseudo-maximum likelihood and moment-based es-
timators for the telegraph process under discrete observations on a fixed time interval
[0, T ] when the process is observed with a mesh decreasing to zero.

The aim of this paper is the estimation of the parameter λ when {X(t), 0 ≤ t ≤ T} is
observed at equidistant times 0 = t0 < · · · < tn. We assume that ti = i∆n, i = 0, . . . , n;
hence n∆n = T . The asymptotic framework is the following: ∆n → 0 and n∆n = T → ∞
as n → ∞.

If the telegraph process X(t) is observed continuously, then N(T )/T is the optimal
estimator of the parameter λ and the statistical experiment is equivalent to the one of
the observation of the whole Poisson process on [0, T ] (see e.g. Kutoyants [13]). This
situation also corresponds to the limiting experiment in our asymptotic framework.

The paper is organized as follows. Section 2 reviews some results on the telegraph
process and presents an explicit formula of the moments of the process. This result is
interesting in itself because it gives new information about this model. Section 3 presents
estimators previously introduced in the literature such as pseudo-maximum likelihood
estimators and moment type estimators. In particular, for the moment type estimator
it is shown that it is consistent and asymptotically normal but not efficient. Another
approximated moment type estimator is given in explicit form, and it is shown that
the estimator is consistent and asymptotically Gaussian but still not efficient. Finally,
Section 4 presents a new estimator which is consistent, asymptotically Gaussian and
asymptotically efficient.

2. Moments of the telegraph process

The process X(t) is not Markovian. Conversely, the two-dimensional process

(X(t), V (t)), V (t) = V (0)(−1)N(t)

has the Markov property but a scheme of observation in which one is able to observe both
the position and the velocity of the process at discrete time instants is not admissible, so
statistical procedures should rely only on the observation of the X(t) component. The
distribution of the position of the particle at time t, i.e. the distribution of X(t), is a
mixture of continuous and discrete components. This distribution has been obtained by
Goldstein [8], Orsingher [17], and Pinsky [18] with different techniques. The transition
density is given by

(2)

p(x, t;x0, 0) =
e−λt

2v

{
λI0

(
λ

v

√
v2 t2 − (x− x0)2

)

+
∂

∂t
I0

(
λ

v

√
v2 t2 − (x− x0)2

)}
1{|x−x0|<vt}

+
e−λt

2
{δ(x− x0 − vt) + δ(x− x0 + vt)}
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for any |x − x0| ≤ vt, where Iν(x) is the modified Bessel function of order ν, 1A is the
indicator function of a set A and δ is the Dirac delta function. Note that the last term
in equation (2) represents the singular component of the distribution of (1). Indeed, if
no Poisson event occurs in the interval [0, t], we have that

P {X(t) = +vt} = P {X(t) = −vt} =
1

2
e−λt.

In the sequel, we consider the telegraph process starting from the origin at t = 0, i.e.,
X(0) = x0 = 0, unless otherwise mentioned. The first two moments of the process are
well known:

(3) EX(t) = 0

and

(4) E{X(t)}2 =
v2

λ

(
t− 1− e−2λt

2λ

)

(see Orsingher [17]). Di Crescenzo and Martinucci [3] derived the moment generating
function for the telegraph process; i.e., for all s ∈ R and t ≥ 0,

(5) E
{
esX(t)

}
= e−λ t

{
cosh

(
t
√
λ2 + s2v2

)
+

λ√
λ2 + s2v2

sinh
(
t
√
λ2 + s2v2

)}
.

Theorem 2.1 below gives the general explicit derivation of the moments of the telegraph
process. In some sense, the above and the following result integrate Section 3 of Ors-
ingher [17]. It is trivially true that the odd moments of the telegraph process are all zero,
hence we present the formula for the moments of even order.

Theorem 2.1. For every positive integer q,

(6) E{X(t)}2q = (vt)2q
(

2

λt

)q− 1
2

Γ

(
q +

1

2

){
Iq+ 1

2
(λt) + Iq− 1

2
(λt)

}
e−λt.

Proof. We start by rewriting the 2q-th moment of X(t) as the sum of the two terms
emerging from the discrete and the absolutely continuous part of its density (2). There-
fore we have the following representation:

(7) E{X(t)}2q =
∫ +vt

−vt

x2qp(x, t; 0, 0) dx+ (vt)2qe−λt.

The term e−λt will also appear in the above integral, so we consider separately the two
identities

(8)
1

2

λ

v

∫ +vt

−vt

x2qI0

(
λ

v

√
v2t2 − x2

)
dx =

(
2

λt

)q− 1
2

(vt)2q Γ

(
q +

1

2

)
Iq+ 1

2
(λt)

and

(9)
1

2
λt

∫ +vt

−vt

x2q I1
(
λ
v

√
v2t2 − x2

)
√
v2t2 − x2

dx = (vt)2q

{
Γ

(
q +

1

2

) (
2

λt

)q− 1
2

Iq− 1
2
(λt)− 1

}
.

After multiplication of both (8) and (9) by the factor e−λt, direct substitution in (7)
gives the result of the theorem. So we need to prove the above identities and we start
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with formula (8):

1

2

λ

v

∫ +vt

−vt

x2qI0

(
λ

v

√
v2t2 − x2

)
dx =

1

2

λ

v

∫ +vt

−vt

x2q
∞∑
k=0

1

(k!)2

(
λ

2v

√
v2t2 − x2

)2k

dx

=
1

2

λ

v

∞∑
k=0

1

(k!)2

(
λ

2v

)2k ∫ +vt

−vt

x2q
(
v2t2 − x2

)k
dx

=
1

2

λ

v

∞∑
k=0

1

(k!)2

(
λ

2v

)2k

(vt)2(q+k)+1B

(
k + 1, q +

1

2

)

=

(
2

λt

)q− 1
2

(vt)2q Γ

(
q +

1

2

)
Iq+ 1

2
(λt),

where we used the relations B(a, b) = Γ(a)Γ(b)/Γ(a + b), Γ(x) =
∫ ∞
0

e−ttx−1 dt, n! =
Γ(n+ 1),

Iν(x) =

∞∑
k=0

1

Γ(k + 1 + ν)k!

(x

2

)2k+ν

,

and ∫ +vt

−vt

x2q
(
v2t2 − x2

)k
dx = (vt)2(k+q)+1B

(
k + 1, q +

1

2

)
.

We now calculate (9):

1

2
λt

∫ +vt

−vt

x2q I1
(
λ
v

√
v2t2 − x2

)
√
v2t2 − x2

dx

=
1

2
λt

∞∑
k=0

1

Γ(k + 2)k!

(
λ

2v

)2k+1 ∫ +vt

−vt

x2q
(
v2t2 − x2

)k
dx

=
1

2
λt

∞∑
k=0

1

Γ(k + 2)k!

(
λ

2v

)2k+1

(vt)2(k+q)+1B

(
k + 1, q +

1

2

)

=
1

2
(vt)2qΓ

(
q +

1

2

) {
2q+

1
2 (λt)

1
2−q Iq− 1

2
(λt)− (1 + 2q)

Γ
(
3
2 + q

)
}

= (vt)2q

{
Γ

(
q +

1

2

) (
2

λt

)q− 1
2

Iq− 1
2
(λt)− 1

}

because Γ(q + 1/2)/Γ(q + 3/2) = 2/(1 + 2q). �

Remark 2.1. The modified Bessel functions admit the following expansion:

Iν(x) =
1

Γ(ν + 1)

(x

2

)ν
(
1 +

x2

4(ν + 1)
+

x4

32(ν + 1)(ν + 2)
+ · · ·

)
,

from which we obtain that E{X(t)}2q is of order t2q as t → 0. The following expansion,
for t → 0, will be useful in the following:

E{X(t)}2 = v2t2 − 2

3
v2λt3 +

1

3
v2λ2t4 + o

(
t4

)
,(10)

E{X(t)}4 = v4t4 − 4

5
v4λt5 +

2

5
v4λ2t6 + o

(
t6

)
,(11)

E{X(t)}6 = v6t6 − 6

7
v6λt7 +

3

7
v6λ2t8 + o

(
t8

)
.(12)
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We now check that for q = 1 we recover formula (4), which has been derived in two
different ways in Orsingher [17]. Indeed, for q = 1 we have

E{X(t)}2 = (vt)2
(

2

λt

) 1
2
√
π

2
e−λt

{
I 3

2
(λt) + I 1

2
(λt)

}

and noticing that

I 1
2
(x) =

√
2

π

sinh(x)√
x

, I 3
2
(x) =

√
2

π

x cosh(x)− sinh(x)√
x3

,

direct substitution gives (4).

Remark 2.2. The formula of the fourth moment also has a relatively simple expression,
so we present it here. To derive the result, it is useful to know that

I 5
2
(x) =

√
2

π

(x2 + 3) sinh(x)− 3x cosh(x)√
x5

.

Thus,

E{X(t)}4 = (vt)4
(

2

λt

) 3
2 3

4

√
π

{
I 5

2
(λt) + I 3

2
(λt)

}
e−λt

= 3
( v

λ

)4

e−λt
{
λt (λt− 3) cosh(λt) + (3 + λt (λt− 1)) sinh(λt)

}
.

One can easily calculate the same moments starting from the moment generating
function in (5) in the usual way, i.e.

E{X(t)}k =
∂k

∂sk
E

{
esX(t)

}∣∣∣∣
s=0

,

but formula (6) seems a little easier to use.

3. Previous results on the estimation of λ and asymptotic properties

As mentioned in the Introduction, we assume that the telegraph process

{X(t), 0 ≤ t ≤ T},

with X(0) = x0 = 0, is observed only at discrete times 0 < t1 < · · · < tn = T , with
ti = i∆n, i = 0, . . . , n; hence n∆n = T . We use the following notation to simplify the
formulas: X(ti) = X(i∆n) = Xi. The interest is in the estimation of the parameter λ
whilst v is assumed to be known. If the whole trajectory can be observed, λ can be
estimated by N(T )/T , where N(T ) is the number of Poisson events counted in [0, T ] or
the number of times the process switches its velocity in [0, T ]. The estimation of v is
always an uninteresting problem as, if there are no switchings in ((i − 1)∆n, i∆n], then
Xi−Xi−1 = v∆n; hence if ∆n is sufficiently small, there is a high probability to observe
N(ti+1)−N(ti) = 0 and then v can be estimated (actually calculated) without error.

We now review some estimators for this process already available in the literature and
study some new properties of one of them. De Gregorio and Iacus [2] considered the
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following approximated likelihood:

(13)

Ln(λ) = Ln(λ|X0, X1, . . . , Xn) =
n∏

i=1

p(Xi,∆n;Xi−1, ti−1)

=

n∏
i=1

{
e−λ∆n

2v

{
λI0

(
λ

v

√
un,i

)
+

vλ∆nI1
(
λ
v

√
un,i

)
√
un,i

}
1{un,i>0}

+
e−λ∆n

2
δ(un,i)

}
,

where un,i = un(Xi, Xi−1) = v2∆2
n − (Xi − Xi−1)

2. The density p(Xi,∆n;Xi−1, ti−1)
appearing in (13) is a version of formula (2), and it is the probability law of a telegraph
process initially located in Xi−1 that reaches the position Xi at time ti. The above
approximate likelihood is just the product of the laws of the increments Xi − Xi−1

which are considered as if they were n independent copies of the process X(∆n). In
this sense (13) is only an approximate likelihood function. The increments ηi can be
expressed as follows:

ηi = Xi −Xi−1 = V (0)

∫ ti

ti−1

(−1)N(s) ds = V (0)(−1)N(ti−1)

∫ ti

ti−1

(−1)N(s)−N(ti−1) ds,

and they are stationary but not independent. Conversely, the squared increments

η2i = v2

(∫ ti

ti−1

(−1)N(s)−N(ti−1) ds

)2

(or the absolute increments |ηi|) are independent. In their paper, the authors proposed
the following estimator:

λ̂n = argmax
λ>0

Ln(λ).(14)

The estimator is proved to exist uniquely (not so evident given the uncommon form

of Ln) and such that λ̂n → N(T )/T under the condition n∆n = T , ∆n → 0 as n → ∞
but T fixed. The limiting estimator N(T )/T is the natural estimator, but λ̂n is not
consistent for all values of λ because time T is fixed. In the same paper, the authors
present numerical results about a least squares estimator of the following form:

(15) λ̌n = argmin
λ>0

{
1

n

n∑
i=1

η2i −
v2

λ

(
∆n − 1− e−2λ∆n

2λ

)}2

.

In order to have consistency and asymptotic normality of estimators (14) and (15),
it is necessary to consider the asymptotics as n∆n = T → ∞. The asymptotic minimal
variance of all the estimators for the continuous time experiment is the value of λ itself
because, as said, it is just the problem of estimating the intensity of a homogeneous
Poisson process. We will prove that the estimator λ̌n is a true moment type estimator
which is consistent and asymptotically Gaussian but not efficient because its asymptotic
variance is 6

5λ > λ. The estimator λ̌n is given in implicit form. Therefore we also study
an approximate moment type estimator which is given in explicit form and prove that it
is consistent and asymptotically normal (under the additional condition n∆3

n → 0) but
still not efficient. A new asymptotically efficient estimator will be presented in Section 4.
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3.1. The moment type estimator. Consider the original estimator in (15). The statis-
tic

Vn =
1

n

n∑
i=1

η2i
∆2

n

is an unbiased estimator of

gn(λ) =
v2

λ∆2
n

(
∆n − 1− e−2λ∆n

2λ

)
.

Observe now that gn(λ) is a monotone decreasing function of λ such that

lim
λ→0

gn(λ) = v2, lim
λ→∞

gn(λ) = 0.

On the other hand, Vn is in [0, v2] a.s.; hence the minimal value of (15) λ̌n is also a
unique solution to the equation

(16)
1

n

n∑
i=1

η2i −
v2

λ

(
∆n − 1− e−2λ∆n

2λ

)
= 0,

which means that λ̌n is a true moment type estimator. Let λ0 denote the true value
of the parameter λ, and let E0 and V0 indicate respectively the expected value and the
variance operator under P0, the law corresponding to the true value of the parameter
λ = λ0.

Theorem 3.1. Let λ̌n be the moment type estimator satisfying (16) and suppose that
n∆n → ∞, ∆n → 0 as n → ∞. Then, λ̌n is a consistent estimator of λ0 and√

n∆n(λ̌n − λ0)
d→ N

(
0,

6

5
λ0

)

as n → ∞, where
d→ denotes the convergence in distribution.

Proof. From (10), (11), and (12), we have

E
{
η2i

}
= E(Xi −Xi−1)

2 = v2∆2
n − 2

3
v2λ∆3

n +O
(
∆4

n

)
,

E
{
η4i

}
= v4∆4

n − 4

5
v4λ∆5

n +O
(
∆6

n

)
,

E
{
η6i

}
= O

(
∆6

n

)
so that

V0

{
η2i

}
= E0 η

4
i −

(
E0

{
η2i

})2
=

8

15
v4λ0∆

5
n +O

(
∆6

n

)
.

Therefore, by the central limit theorem,

(17)

√
n

∆n
(Vn − gn(λ0))

d→ N

(
0,

8

15
v4λ0

)

as n → ∞; the Lindeberg condition is obviously satisfied, since |η2i /∆2
n|, gn(λ) ≤ v2,

which follows from the representation

gn(λ) = 2v2
∫ 1

0

(1− s)e−2λ∆ns ds.

For ε > 0, let

γ(ε) = 2v2
∫ 1

0

(1− s)e−2εs ds < v2.
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Then

P0

{
λ̌n > ε∆−1

n

}
≤ P0

{
gn(λ̌n) < γ(ε)

}
= P0 {Vn < γ(ε)}

≤ P0

{
|Vn − gn(λ0)| >

v2 − γ(ε)

2

}
(for large n)

→ 0

as n → ∞, since |Vn − gn(λ0)|
p→ 0 due to (17), so that

λ̌n∆n
p→ 0.(18)

Let hn(λ) = −∆−1
n g′n(λ). Then hn(λ) = δ(λ∆n) with

δ(t) = 4v2
∫ 1

0

s(1− s)e−2ts ds.

Set

Ṽn(s) = gn(λ0) + s(Vn − gn(λ0)).

Since Ṽn(s) is between gn(λ0) and Vn, g
−1
n (Ṽn(s)) is between λ0 and λ̌n. By (18),

Γn :=

∫ 1

0

[
hn

(
g−1
n (Ṽn(s))

)]−1

ds
p→

[
4v2

∫ 1

0

s(1− s) ds

]−1

=
3

2v2
.

Finally,

√
n∆n(λ̌n − λ0) =

√
n∆n

(
g−1
n (Vn)− g−1

n (gn(λ0))
)
= −

√
n

∆n
(Vn − gn(λ0)) Γn

d→ N

(
0,

6

5
λ0

)

as n → ∞. �

3.2. An approximate (but explicit) moment type estimator. Consider again (4).
Some algebra, or Remark 2.1, gives the following expansion:

E {Xi −Xi−1}2 =
v2

λ

(
∆n − 1− e−2λ∆n

2λ

)

=
v2

λ

(
∆n −

2λ∆n − 1
2 (−2λ∆n)

2 − 1
6 (−2λ∆n)

3 + o
(
∆3

n

)
2λ

)

= v2∆2
n − 2

3
v2λ∆3

n + o
(
∆3

n

)
.

Therefore, an approximate moment type estimator is the following:

(19) λ∗
n =

3

2

1

nv2∆3
n

n∑
i=1

{
v2∆2

n − (Xi −Xi−1)
2
}
=

3

2

1

n∆n

n∑
i=1

{
1− η2i

v2∆2
n

}

and λ∗
n is a weighted sum of the independent random variables η2i .

Note that v2∆2
n − (Xi −Xi−1)

2 is exactly zero if no Poisson event occurs in the time
interval (ti, ti+1]. This fact will be used to evaluate expected values of related quantities
in the following. This estimator is qualitatively not different from the estimator λ̌n in
equation (15); we assume the additional condition n∆3

n → 0 in order to obtain asymptotic
normality. This hypothesis has also been used in the “high frequency” sampling for
discretely observed diffusion processes (see e.g. Florens-Zmirou [6]; Yoshida [23]).
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Theorem 3.2. Under the condition ∆n → 0, n∆n → ∞ as n → ∞ the statistic λ∗
n

in (19) is a consistent estimator of λ0. Moreover, under the condition n∆3
n → 0 it is

asymptotically normal, i.e. √
n∆n(λ

∗
n − λ0)

d→ N

(
0,

6

5
λ0

)
.

Proof. We use the same notation introduced above. By Taylor’s formula and the tightness
of the sequence {λ̌n}, we have

Vn = gn(λ̌n) = v2
(
1− 2

3
λ̌n∆n +Op

(
∆2

n

))
.

Therefore,

λ̌n +Op(∆n) =
3

2∆n

(
1− Vn

v2

)
= λ∗

n,

which completes the proof. �

4. An asymptotically efficient estimator

In the previous section we have seen that the estimators λ∗
n and λ̌n are not efficient

because their asymptotic variance is 6
5λ which is strictly greater than λ. We now present

an asymptotically efficient estimator. Consider the following statistic:

(20) λ̃n =
1

n∆n

n∑
i=1

1{|ηi|<v∆n} =
1

n∆n

n∑
i=1

1{N([ti−1,ti))≥1}.

The statistic λ̃n is not a good estimator of λ for fixed ∆n. Indeed,

E0{λ̃n} =
1

n∆n

n∑
i=1

E0

{
1{|ηi|<v∆n}

}
=

1− e−λ0∆n

∆n
.

Instead, we propose the following estimator:

(21) λ̂n = − 1

∆n
log

(
1−∆nλ̃n

)
,

and Theorem 4.1 proves that it is the efficient estimator in this context.

Theorem 4.1. Let ∆n → 0, n∆n → ∞ as n → ∞. Then the estimator λ̂n in (21) is
consistent, asymptotically normal, and attains the minimal variance, i.e. it is asymptot-
ically efficient: √

n∆n(λ̂n − λ0)
d−→ N(0, λ0).

Proof. In order to prove consistency and asymptotic normality of λ̂n we first prove the
same properties for λ̃n. Let us consider the following quantity:

Un =
√
n∆n

(
λ̃n − E0{λ̃n}

)

=
1√
n∆n

n∑
i=1

{
1{|ηi|<v∆n} − E0

{
1{|ηi|<v∆n}

}}

=
1√
n∆n

n∑
i=1

{
1{|ηi|<v∆n} −

(
1− e−λ0∆n

)}
=

n∑
i=1

ξi

with

ξi =
1√
n∆n

{
1{|ηi|<v∆n} −

(
1− e−λ0∆n

)}
.
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We have that E0{ξi} = 0; thus E0{Un} = 0. Moreover,

n∆nV0{ξi} = V0

{
1{|ηi|<v∆n}

}
= E0

{
1{|ηi|<v∆n}

} (
1− E0

{
1{|ηi|<v∆n}

})
=

(
1− e−λ0∆n

)
e−λ0∆n

= λ0∆n + o(λ0∆n);

hence

V0{Un} =
1

n∆n
n(λ0∆n + o(λ0∆n)) = λ0 + o(1).

Finally, the random variables ξi are independent because they only involve the absolute
value of the increments ηi. Since |ξi| ≤ 1/

√
n∆n, the Lindeberg condition easily follows:

n∑
i=1

E0

{
1{|ξi|≥ε}ξ

2
i

}
→ 0

and thus

Un
d→ N(0, λ0).

Now we need to prove the asymptotic normality of λ̂n in (21). Let

fn(u) = − 1

∆n
log(1− u∆n).

Then

f ′
n(u) =

d

du
fn(u) =

1

1− u∆n
,

λ̂n = fn(λ̃n),

and

λ0 = fn(λ̃0), where λ̃0 =
1− e−λ0∆n

∆n
≡ E0{λ̃n}.

By using the δ-method, we obtain√
n∆n(λ̂n − λ0) =

√
n∆n

(
fn(λ̃n)− fn(λ̃0)

)
=

√
n∆n(λ̃n − λ̃0)f

′
n(λ̃0) + op

(√
n∆n|λ̃n − λ̃0|

)
= Un

1

1− λ0∆n
+ op(1);

hence √
n∆n(λ̂n − λ0)

d→ N(0, λ0). �
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