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A Gini and Concentration Index Decomposition with an 
Application to the APK Reranking Measure 

Achille Vernizzi, Maria Giovanna Monti and Mauro Mussini  

Abstract In this paper, we suggest an alternative way to calculate the concentration 
index and a new matrix form approach, which can be applied both to the Gini and to 
the concentration index. For both indices, this approach yields expressions that are 
decomposable by groups and easily comparable. Our findings are illustrated by 
applying them to the Atkinson Plotnick Kakwani (APK) reranking measure. 

Keywords Inequality Measure Decomposition, Reranking, Reranking Decomposition. 

JEL D63, H23. 

1 Introduction 

Consider two attributes of population units, the concentration index for one of the two 
attributes with respect to the other can be calculated by lining up the values of the first 
characteristic by the ordering of the second one. If the values of an attribute are ranked 
according to their own ordering, the concentration index is then the Gini index 
(Lambert, 2001). The literature offers a number of alternative ways to express the Gini 
index. In particular, Pyatt (1976), Silber (1989) and Yao (1999) endorse matrix form 
approaches. Differently from the Gini index, the concentration index is usually 
evaluated in terms of Lorenz curve. In this paper, we suggest an alternative expression 
of the concentration index and a new matrix form approach that can be applied both to 
Gini and to concentration index. This approach yields easily comparable expressions 
for the two indices. This is our first result. Moreover, we show that the matrix form 
expressions we propose for the two indices are decomposable into the sum of three 
components. The overall indices and their components are expressed as functions of a 
same matrix. This is our second result. Representing the Gini index, the concentration 
index and their components as functions of a same basic matrix facilitates comparisons 
among indices and fit to several problems. Here we illustrate our results analysing the 
reranking induced by a tax system, then from the beginning of the paper we consider 
income units with two attributes: their before and after-tax values. When a population 
is not homogenous, the reranking measure can be decomposed following the suggestion 
of the conventional Gini index decomposition. We show that reranking within groups 
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and the reranking related with the overlapping term cannot be considered as measures 
of the unfairness of the tax system. This is our third result.The paper is organized as 
follows. In Section 2, we present the matrix form for the Gini and the concentration 
index. In the same Section, the decomposition of the two indices is obtained. In Section 
3, we present the matrix form of the reranking index RAPK and discuss its 
decompositions. Section 4 concludes. 

2 Gini and concentration index in matrix form  

Let be X and Y the before and the after-tax income distribution for a population of K 
individuals, K ∈N . We denote by xi and by yi the before and the after-tax income of 

the ith  individual (i=1, 2……, K). The weight pi, 1

K
ii

p N
=

=∑ , is associated to the pair 

( ix , yi). X-ordering denotes the ordering of the ( ), ,i i ix y p sequence when all elements 
are lined up in the non-decreasing ordering of X. Y-ordering denotes the ordering of the 
( ), ,i i ix y p sequence when all elements are sorted in the non-decreasing ordering of Y. 

Given the expression of the Gini index (GY) in terms of Mean Difference, we write 
(GY) and the concentration index for after-tax incomes w.r.t before-tax incomes (CY|X) 2 
as in expressions (1) and (2). 

 

 ( ) ( ) ( ){ }2

1 1
2

K K

Y Y i j i j Y i Y j
i j

N G y y p p I r y r yµ
= =

= − ⋅ −∑ ∑ , (1) 

 ( ) ( ) ( ){ }2
| 1 1

2 K K
Y Y X i j i j X i X ji j

N C y y p p I r y r yµ
= =

= − ⋅ −∑ ∑ , (2) 
 

where µY  denotes the after-tax weighed average income, ( )Y ir y  3 is the rank of yi in 

the Y-ordering ordering, ( )X ir y  is the rank of yi in the X-ordering and { }I z  is an 

indicator function 4 such that { }I z =1 if z>0, { }I z =0 if z=0 and { }I z =-1 if z<0. 
Let us introduce the following notation: 

y  is the K×1 vector where after-tax incomes are stacked in Y-ordering;  
yX  is the K×1 vector where after-tax incomes are stacked in X-ordering;  
pY  is the K×1 vector containing weights stacked as the elements of y ; 
pX  is the K×1 vector containing weights stacked as the elements of yX; 
E is a K×K permutation matrix, 5 such that X Yp =Ep , Y Xp = E'p , Xy = Ey , Xy = E'y ; 
S  denotes a K×K emi-symmetric matrix with diagonal elements equal to zero, super-
diagonal elements equal to 1 and sub-diagonal elements equal to -1; 
j is a K×1 vector with entries equal to 1; 

                                                           
2 The concentration index for after-tax incomes is calculated lining up after-tax incomes according 
to the corresponding before-tax ordering. 
3 When two subjects have the same after-tax income value, their relative positions in the after-tax 
ranking remain as in the before-tax income parade. 
4 On the indicator function, see Faliva (2000). 
5 Observe that 1−E = E' ; for definitions concerning permutation matrices, see Faliva (1996). 
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DY and DY|X denote the K×K matrices ( )Y = −D jy' yj'  and ( )|Y X X X= −D jy ' y j' . 

Using the Hadamard product , 6 we rewrite expression (1) as 
 ( )22 Y Y Y Y YN Gµ = p ' S D p . (3) 
Then, following the definition of the concentration index one has 
 ( )2

| |2 Y Y X X Y X XN Cµ = p ' S D p . (4) 

Observing that |Y X =E'D E ( )X X Y− =jy 'E E'y j' D  and applying Hadamard product 
properties, expression (4) rewrites as (see Vernizzi 2009) 
 ( )2

|2 Y Y X Y Y YN Cµ = p ' E'SE D p . (5) 
Expression (5) is the matrix form for expression (2). Equations (3) and (5) pave the 
way for a representation of both indices as functions of the same difference matrix DY. 

In a non-homogeneous population, income earners can be partitioned into H 
groups, H ∈ . The Gini index decomposes by groups as a sum of three components: 
the within, the between and the overlapping component. The between component is 
represented as a function of the difference between the means of the groups and the 
overlapping is generally obtained as a residual. Dagum (1997), as defined in Monti 
(2008), rewrites the Gini coefficient as the sum of within-groups component, W

YG , and 

across-groups component, AG
YG , 

 2
, , , ,

1 1 1
2

h hK KH
W

Y Y h i h j h i h j
h i j

N G y y p pµ
= = =

= −∑∑∑ , (6) 

 2
, , , ,

1 1 1 1
2

gh KKH H
AG

Y Y h i g j h i g j
h g i j

h g

N G y y p pµ
= = = =

≠

 
= −  

 
∑∑ ∑∑ . (7) 

Then, by sorting the H groups according to the ranking of their averages and lining up 
incomes in non-decreasing order within each group, the AG component decomposes 
into the sum of the between and overlapping components. The overlapping component, 

T
YG , can be expressed as the weighed sum of transvariations as in (8) (see Monti 2008, 

Monti and Santoro 2007) 

 ( )
1

2
, , , , , ,

2 1 1 1
2 0

gh KKH h
T

Y Y h i g j h i g j h i g j
h g i j

N G y y p p y yµ
−

= = = =

 
= − ∀ − <  

 
∑∑ ∑∑  (8) 

and the between-group component, B
YG , can be written as 

 ( )
1

2
, , , ,

2 1 1 1

gh KKH h
B

Y Y h i g j h i g j
h g i j

N G y y p pµ
−

= = = =

 
= −  

 
∑∑ ∑∑ . (9) 

Expression (9) defines B
YG  as a function of the differences between incomes rather than 

as a function of the group mean differences. Expressions (7), (8) and (9) allow us to 
express the three terms of the Gini decomposition as a function of DY. To show the 
latter, we introduce the matrices WY and  (J-WY). The matrix , ,1

H
Y Y h Y hh=
= ∑W w w '  is a 

K×K matrix where hw  denotes a K×1 column vector: the j-th entry of hw  can be equal 
to 1 or to 0. The j-th entry equals 1 if the income with rank j in the Y-ordering belongs 
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to group h, equals zero otherwise. The matrix, WY, applied to DY by the Hadamard 
product, can be used to detect the 2

1

H
hh

K
=∑  differences belonging to the same group 

from the whole set of K2 income differences. Defining J as a K×K matrix with all 
elements equal to one, the matrix (J─WY), when applied to DY, identifies the set of the 

( )2 2
1

H
hh

K K
=

−∑  differences between incomes belonging to different groups. Using WY 

and (J−WY) in (3), we obtain 
 ( )22 W

Y Y Y Y Y YN Gµ = p ' W S D p , (10) 

 ( )22 AG
Y Y Y Y Y YN Gµ  = − p ' J W S D p . (11) 

Then, introducing the permutation matrix AY, 7 the matrix form for B
YG  becomes 

 ( )22 B
Y Y Y Y Y Y Y YN Gµ  = − p ' J W A 'SA D p . (12) 

Subtracting (12) from AG
YG  as in (11), we obtain 

 ( ) ( ){ }22 T
Y Y Y Y Y Y Y YN Gµ = − −p ' J W S A 'SA D p . (13) 

Expression (13) represents the matrix form of the overlapping component expressed as 
weighed sum of transvariations, as in equation (8).  

We decompose the concentration index following the same approach used for GY. 
By first, we decompose this index into two terms |

W
Y XC  and |

AG
Y XC , respectively 

analogous to W
YG and AG

YG . |
W
Y XC  and |

AG
Y XC  are calculated substituting in the 

expression of the before-tax Gini index the values of the after-tax incomes. In order to 
formalize the matrix form for |

AG
Y XC  and |

W
Y XC , we introduce the selection 

matrix , ,1

H
X X h X hh=
= ∑W w w ' . Applying the matrix WX to the matrix |Y XD  one detects 

the differences belonging to a same group from the whole set of K2 income differences. 
Conversely, applying to |Y XD  the matrix (J-WX) one detects the 2 2

1

H
hh

K K
=

−∑  
differences between incomes belonging to different groups. Remembering that 

( )|Y X X X= −D jy ' y j' , Xy = Ey  and Xy = E'y , after some manipulations one obtains 

 2
|2 W

Y Y X Y Y Y YN Cµ =   p ' W E'SE D p , (14) 

 ( )2
|2 AG

Y Y X Y Y Y YN Cµ  = − p ' J W E'SE D p . (15) 

Analogously to AG
YG , the across-group concentration index |

AG
Y XC  decomposes as 

the sum of |
B
Y XC  and |

T
Y XC . They are calculated substituting in the between component 

and in the overlapping component of the before-tax Gini index the values of the after-
tax incomes. 
Introducing the permutation matrix AX

8 we obtain  

                                                           
7 In YA y , after-tax incomes are lined up in a non decreasing ordering within each group and 

groups follow the non decreasing ordering of their mean. Given 1Yh Yhµ µ +≤ , one has 

( ) ( ) ( ) ( )
11,1 1,2 1, ,1 ,2 , ,1 ,2 ,, ,... ,..., , ,... ,..., , ,...

h HY K h h h K H H H Ky y y y y y y y y =  A y ' , , , 1h i h iy y +≤ . 

8 ( ) ( ) ( ) ( )
11,1 1,2 1, ,1 ,2 , ,1 ,2 , , ,.. ,.., , ,.. ,.., , ,..

h HX K h h h K H H H Kx x x x x x x x x =  A x ' , , , 1h i h ix x +≤ and 1Xh Xhµ µ +≤ . 
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 ( ){ }2

|2 B
Y Y X Y Y X X Y YN Cµ = −p ' J W E'A 'SA E D p . (16) 

Then subtracting (16) from |
AG

Y XC  (expression (15)) one has 

 ( ) ( ){ }2
|2 T

Y Y X Y Y X X Y YN Cµ = − −p ' J W E'SE E'A 'SA E D p . (17) 

3 The reranking index RAPK and its decomposition 

A tax system induces reranking when the rank ordering of after-tax incomes is different 
from that of before-tax incomes. For a homogeneous population, Atkinson (1980), 
Plotnick (1981) and Kakwani (1984) proposed a reranking measure given by the 
difference between the after-tax (a.t.) Gini index and the concentration index for after-
tax incomes w.r.t before-tax (b.t.) incomes. Using (3) and (5) we write the APK 
reranking index RAPK in matrix form as 
 ( )22 APK APK

Y Y Y Y Y Y YN Rµ   = − =   p ' S E'SE D p p ' S D p . (18) 

When a population is not homogeneous, (18) can be decomposed by groups. The 
difference between expressions (10) and (14) yields the reranking within each group, 
RW. 
 ( )22 W W

Y Y Y Y Y Y Y YN Rµ   = − =   p ' W S E'SE D p p ' S D p . (19) 

The difference between expressions (11) and (15) yields the reranking across the 
groups, RAG. RAG evaluates the whole reranking between incomes belonging to different 
groups  
 ( ) ( )22 AG AG

Y Y Y Y Y Y Y YN Rµ   = − − =   p ' J W S E'SE D p p ' S D p . (20) 

To show how (18) yields the reranking index RAPK, we analyze the effects of the 
permutation matrices E on the matrix of signs ijs =  S : the matrix e

ijs = E'SE  maps the 

permutation of each income from the X-ordering to the Y-ordering. If we consider only 
the super-diagonal elements of DY

Y
ijd =   , 0Y

ij j id y y= − ≥ , e
ijs  is +1 if both yj ≥ yi and 

xj > xi, conversely e
ijs  is −1 if yj > yi but xj < xi; as a consequence, in (18) the elements 

( )e
ij ijs s−  are +2 whenever a reranking occurs, otherwise they are zero. 9 So, as the 

super-diagonal elements, 0Y
ij j id y y= − ≥ , can be associated either to 0 or to 2, 

expression (18) confirms the well-known result 0 2APK
YR G≤ ≤ .   Moreover, as (18) 

splits into RW and RAG, we obtain 0 2W W
YR G≤ ≤  and 0 2AG AG

YR G≤ ≤ .  

The across-group reranking RAG decomposes as sum of two terms: |
B B B

Y Y XR G C= −  

and |
T T T

Y Y XR G C= − . We obtain RB subtracting (16) from (12)  

( ) ( )22 B B
Y Y Y Y Y X X Y Y Y Y YN Rµ   = − − =   p ' J W A 'SA E'A 'SA E D p p ' S D p .(21) 

                                                           
9 We observe that, in case of reranking, in the sub-diagonal part of DY we have 0Y

ji i jd y y= − ≤ . 

Then, these terms are multiplied by ( ) 2e
ji jis s− = − . 
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We obtain RT subtracting (17) from (13) 
 

( ) ( ){ }22 T
Y Y Y Y Y X X Y YN Rµ = − − − + =p ' J W S A 'SA E'SE E'A 'SA E D p  

                        { }T
Y Y Y= p ' S D p .  (22) 

If after tax group averages do not change their ranking w.r.t. their before tax ranking, it 
can be verified that Y X=A A E  and then it follows immediately that RB is zero and 

that, consequently RAG≡RT. In order to evaluate the effect of the matrices APKS , WS , 
AGS  BS on DY, we give the following example. 

Consider two groups (denoted by the subscripts $ and £) containing, respectively, 
three and four incomes 

 

y' = £ $ $ £ £ $ £4 5 8 9 10 24 32   ;   Xy ' = $ £ £ $ £ $ £5 4 10 8 9 24 32    
 

If  both µY$<µY£ and µX$<µX£, one has e.g. 
 

[ ]$ $ $ £ £ £ £5 8 24 4 9 10 32Y =y'A ' ; X Xy 'A ' = $ $ $ £ £ £ £5 8 24 4 10 9 32    
 

As the two group averages do not rerank, RB is zero and B =S 0. Matrices APKS , WS  
and AGS  are 
 

APKS =

0 2 0 0 0 0 0
2 0 0 0 0 0 0

0 0 0 0 2 0 0
0 0 0 0 2 0 0
0 0 2 2 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 
 − 
 
 
 
 − − 
 
 
  

, W =S

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 2 0 0
0 0 0 2 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 
 
 
 
 
 
 − 
 
 
  

, AG =S

0 2 0 0 0 0 0
2 0 0 0 0 0 0

0 0 0 0 2 0 0
0 0 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 
 − 
 
 
 
 − 
 
 
  

. (23) 

 
Let’s now consider group means reranking.  

In this case, we have 0 2B B
YR G< ≤  , with 2B B

YR G=  when all group averages permute 
their reciprocal positions.  
In Table 1 we summarize the super-diagonal elements in AG AG

ijs =  S , B B
ijs =  S  and 

T T
ijs =  S , (associated to the non-negative differences in DY  that belong to different 

groups). We observe what follows: 
1) (row a, column a) AG

ijs =0, B
ijs =+2, T

ijs =−2: b.t. the inequality between group 
means, expressed by µG(xj)–µG(xi), has an opposite sign w.r.t. xj–xi. a.t. group means 
inequality assumes the same direction as yj–yi.  

2) (row b, column a) AG
ijs =+2, B

ijs =+2, T
ijs =0: a.t. and b.t. inequalities between 

incomes and between group means have the same sign, that is, both incomes and group 
means rerank towards the same direction;  

3) (row a, column b) AG
ijs =0, B

ijs =−2, T
ijs =+2: b.t. income inequalities and between 

group means have the same sign; conversely a.t. inequality between incomes yj–yi 
maintains the same sign as xj–xi, while µG(yj)–µG(yi) changes its sign w.r.t. that of 
µG(xj)–µG(xi). In this case a.t incomes do not rerank w.r.t. the b.t. situation.  
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4) (row b, column b) AG
ijs =+2, B

ijs =−2, T
ijs =+4: both b.t. and a.t. inequalities 

between incomes are opposite w.r.t. inequalities between their group means. Both 
incomes and their averages rerank, but towards opposite directions. 
 

 Table 1 Group means re-rank. AG
ijs , B

ijs , T
ijs . 

 

 
The income pairs that contribute positively to RB are those that fall in cases 1 or in 

case 2. The income pairs that falls in cases 3 and 4 smooth RB. If all income pairs falls 
in 1 and in 3, group means reranking occurs without any across-group income 
reranking, consequently RAG=0 and –RB = RT. If income pair behaviour is as in case 2 
for all income pairs, RAG=RB and RT=0. Cases 3 and 4, that oppose to average reranking 
effect, and case 1 cannot occur by themselves. If only cases 1 and 3 occur, one has 
average reranking without any income reranking. From this it derives that neither RB 
nor RT can be considered as unfairness indicators.  

The term RB measures the reranking (in average) of the entire groups. The term RT 
captures how differences between incomes belonging to different groups react to 
inequality direction changes of their group means. An interpretation of RT may be 
given by considering specific cases, however a global interpretation of RT seems more 
difficult. In what follows, we give an example when group averages rerank. 
In this example, we suppose two groups with µY$<µY£ and µX$>µX£:  
 

y' = [ ]£ $ $ £ £ $ £4 5 8 9 10 24 32 ;   Xy ' = [ ]$ £ £ $ £ £ $5 4 10 8 9 32 24  

Yy'A ' = [ ]$ $ $ £ £ £ £5 8 24 4 9 10 32 ;  X Xy 'A ' = [ ]£ £ £ £ $ $ $4 10 9 32 5 8 24  

AG =S

0 2 0 0 0 0 0
2 0 0 0 0 0 0

0 0 0 0 2 0 0
0 0 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 0 0 0 2
0 0 0 0 0 2 0

 
 − 
 
 
 
 − 
 
 

−  

, B =S

0 2 2 0 0 2 0
2 0 0 2 2 0 2
2 0 0 2 2 0 2
0 2 2 0 0 2 0
0 2 2 0 0 2 0
2 0 0 2 2 0 2
0 2 2 0 0 2 0

− − − 
 
 
 
 

− − − 
 − − − 
 
 

− − −  

, T =S

0 4 2 0 0 2 0
4 0 0 2 2 0 2
2 0 0 2 0 0 2

0 2 2 0 0 2 0
0 2 0 0 0 2 0
2 0 0 2 2 0 0

0 2 2 0 0 0 0

 
 − − − − 
 − − −
 
 
 
 
 − − −
 
  

. 

WS  is the same as in (23). 
Case 1 is represented by pairs (9£−5$), (10£−5$), (32£−5$), (9£−8$) and (32£−8$); case 2 
is represented by pairs (10£−8$) and (32£−24$); case 3 is represented by pairs (8$−4£), 
(24$−4£), (24$−9£) and (24$−10£); case 4 is represented by the pair (5$−4£). 

 ( ) ( )Y j Y ir y r y>  

a 

( ) ( )G iG j
Y Y yyr rµµ

>  

( ) ( )G iG j
X X yy

r rµµ
<  

b 

( ) ( )G iG j
Y Y yyr rµµ

<  

( ) ( )G iG j
X X yy

r rµµ
>  

  AG
ijs  B

ijs  T
ijs  AG

ijs  B
ijs  T

ijs  

a ( ) ( )X j X ir y r y>  0 +2 −2 0 −2 +2 

b ( ) ( )X j X ir y r y<  +2 +2 0 +2 −2 +4 
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4 Conclusions 

This paper has accomplished two tasks. First, it has provided a matrix-based approach 
for the decomposition of the Gini and the concentration indices. These matrix form 
expressions are decomposable into the sum of three components, each of them 
expressed as a function of a same matrix. Second, this matrix approach enables to 
further analyse the reranking effect of taxation. It decomposes the overall reranking 
index, RAPK, as a sum of within and across-groups reranking. The across group 
reranking can be further decomposed yielding two components: a component capturing 
the entire group reranking, plus a residual which is both an adjusting term of RB and a 
measure of the extent to which pairs of incomes belonging to different groups do not 
present a rank change analogous to the one of their group averages. In any cases, 
neither RB nor RT can be considered as unfairness indicators. 
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