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Introduction

A deep understanding of the interaction between matter and radiation (including

electrons and light) is a key issue in order to describe the physical nature and the

properties of materials. This can be achieved with a joint effort of numerical sim-

ulations and experiments. In fact, the physical origin of the experimental spectral

features can often be understood unambiguously with the help of numerical simula-

tions.

Nowadays numerical computation of ground state properties of condensed mat-

ter systems can be successfully treated within the density functional theory (DFT).

In this context, the problem of solving the Schrödinger equation for the ground state

of a many body system can be exactly recast into the variational problem of mini-

mizing an energy functional with respect to the charge density. The success of this

approach has been shown during the last years by ab initio calculations describing

the ground state properties of realistic systems, in particular in case of reconstructed

surfaces. However, ground state properties are not enough to describe those exper-

iments involving excitations of the electronic system. In most cases, an external

probe modifies the charge distribution of the sample, producing excited states and

a dynamical rearrangement of the density.

In the last years, excited state theories providing an overcome of limits of DFT

have been proposed. A particularly fruitful attempt to go beyond the ground state

theory is offered by time dependent density functional theory (TDDFT), providing

an exact reformulation of quantum mechanics in terms of time evolving density.

Within this theory, the complexity of the problem is confined to the exchange–

correlation potential Vxc, whose analytic form is unknown but several approxima-

tions are available in literature, giving correct predictions in many realistic cases.

However, in many interesting applications, the simpliest approximation (as indepen-

dent particle RPA) are successful. This is the case, for example, of the simulation of

the surface optical spectroscopy, such as reflectivity anisotropy (RA) or differential

1



2 Introduction

spectroscopy (SDR).

On the other hand, new experiments require more complete theories includ-

ing, for example, spin degree of freedom in order to treat magnetic systems, or

local field effects in order to describe strong anisotropic systems, or the inclusion

of semicore and core levels in order to obtain information about core and semicore

spectroscopies. It is hence important to implement these more complete theories in

ab initio computational codes in order to describe more realistic condensed matter

systems. In particular, these implementations are fundamental to be able to treat

systems with explicit inclusion of surfaces, or isolates sytems. Moreover, new more

efficient algorithms are essential and the improvement of existing codes is required

in order to extend the range of numerical simulation applicability to systems with

a larger size (in terms of number of atoms).

Theoretical spectroscopy is a successful combination of these quantum theories

and computer simulation intended to describe the fundamental mechanisms of in-

teraction between materials and perturbing external fields.

The present work is an example of what is possible to obtain with the theoretical

and numerical tools we have just mentioned. In particular, we will discuss problems

of numerical efficiency and the inclusion of some aspects neglected up to now, such

as the inclusion of spin variable and semicore levels.

This manuscript contains different parts: a thread can be drawn from the tech-

nical development of methods, to simulations of a variety of physical systems. More-

over, the study of a large variety of complex physical applications helps to point out

the limits and the advantages of the theories adopted.

After a brief review of the theoretical background presented in chapter 1, in chap-

ter 2 we describe in details the methods used to simulate surface spectroscopies and

the main experimental techniques.

From the following chapter, we approach the core of the work developed in this the-

sis, in paticular in chapter 3 we focus on the dynamical response function χ(r, r′, ω)

and we present the developement of an Hilbert transform (HT) based method to

evaluate the independent particle response. The time scaling analysis of the HT–

method on a model shows that it is convenient for large systems. As an application,

we studied the crystal local field effects on the optical spectra of the Si(100)-(2×2)

surface, weakly oxidized. In chapters 4 and 5, we focused RA and EEL spectra of

clean and oxidized Si(100) surfaces. Chapter 4 is devoted to the clean surface, for

which we discuss the spectra calculated on three reconstructions: p(2×1), p(2×2)

and c(4×2). The oxidation process of this surface is then analyzed in chapter 5,



Introduction 3

where several oxygen adsorption sites are studied through geometric optimization

and calculation of EEL spectra.

The following part of this manuscript is devoted to spin polarized systems. The

limits of DFT and TDDFT-LDA approach are highlighted in the case of BeH, a

simple molecule with unpaired number of electrons (see chapter 6). The successful

calculation of the optical conductivity for bulk iron is then presented in chapter 7

and spin resolved electronic properties of this system are provided including the 3s

and 3p semicore states.

In the last part of the manuscript, chapter 8, it is summarized the interesting elec-

tronic and magnetic properties of iron, cobalt and nickel pyrites. These compounds

are complex spin polarized systems that could have stimulating applications in the

new field of spin electronics.
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Part I

Theory
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Chapter 1

Theoretical background

The problem of finding the electronic ground state of a condensed matter system

is equivalent to solve the fundamental equation of quantum mechanics, i.e. the

Schrödinger equation for a set of interacting electrons immersed in an external po-

tential. The Density Functional Theory (DFT) provides a successful tool to treat the

problem giving a variational reformulation of the equations in terms of the electronic

density. In this chapter we briefly review this theory. The fundamental theorems

and its Time Dependent generalization (TDDFT) is reviewed with a presentation

of the methods used in this thesis for the numerical simulation of realistic systems.

1.1 The Schrödinger equation for condensed matter sys-

tems

The non-relativistic time-indipendent Schrödinger equation of a system constisting

of N interacting electrons in an external potential generated by M atomic nuclei is

given by:

ĤΨ(r1, ..., rN ) = EΨ(r1, ..., rN ) (1.1)

where Ψ(r1, ..., rN ) represents the wave function of the N-electron many body sys-

tem. The hamiltonian in eq. 1.1 is the sum of four operators:

Ĥ = T̂e + V̂ee + V̂ei + T̂i + V̂ii (1.2)

=

N∑

i=1


−1

2
∇2

i +
1

2

∑

i6=j

1

|ri − rj|


−

M∑

α=1

Zα

|ri − Rα|
+

M∑

α=1


−1

2
∇2

α +
1

2

M∑

β=1

ZαZβ

Rαβ




where we assumed atomi units ~ = m = e = a0 = 1. The terms in eq. 1.3 are

associated to the kinetic energy and the Coulomb interaction of electrons (Te and

Vee respectively) and nuclei (Ti and Vii respectively), and to the potential energy of

the electrons in the field of the nuclei Vei.

7



8 1.2. The variational formulation

Several approaches can be adopted in order to solve eq. 1.3.

First, the pseudopotental approach assumed in this thesis, simplifies the treatment of

the problem reducing the number of the active electrons just to the valence ones and

describing for each atom the joint effect of the nucleus and the core electrons with

a suitable potential. For this reason in the following we will refer to ions instead of

nuclei in the previous treatment.

Secondly, ions and electrons masses are extremely differents (Mi >> me) deter-

mining different time scale motions. Assuming that ions are allowed to move adia-

batically in the field of the electrons ground state, the problem can be treated per-

turbatively within the Born Oppenheimer approximation. Hencewriting the wave-

function as:

Ψ({r}, {R}) = ψ{R}({r})φ({R}) (1.3)

where {r} = {r1, ..., rN}
and {R} = {R1, ...,RM}

it is possible to decouple the hamiltonian separating the ionic and electronic part:

[Te + Vee + Vei]ψ{R}({r}) = En
e ({R})ψ{R}({r}) (1.4)

[Ti + Vii + En
e ({R})] φ({R}) = Etotφ({R}) (1.5)

where label i refers to ions and En
e ({R}) in eq. 1.4 represents the electronic con-

tribution to the potential energy, i.e. the glue for the nuclei, in fact without this

attractive term, the system would not be bonded. Conversely in eq. 1.5 ions con-

tribute to the potential Vei and are seen by the electrons as fixed point charges.

In conclusion, taking in account the approximations assumed, the eq. 1.3 reduce

to the eigenvalues problem of the operator:

H = −
N∑

i=1

1

2
∇2

i −
N∑

i=1

v(ri) +
∑

i<j

v(ri, rj) (1.6)

where the first term is the kinetic energy of electrons, the second is the external po-

tential due to the ions in which the electons are immersed, the third term represents

the complexity of the problem because it describe the interaction between electrons

and does not allow to decouple the equations in N one particle problems.

1.2 The variational formulation

If we consider a time–indipendent Hamiltonian, as described in the previous section,

and we assume that periodic boundary conditions are applied, the spectrum of
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eigenvalues and eigenfunctions is discrete. For an arbitrary function Ψ with non

vanishing norm, we can define the quantity:

E [Ψ] =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 (1.7)

It is then possible to prove that the Schrödinger equation Ĥ|Ψ〉 = E|Ψ〉 is equivalent

to the variational principle δE [Ψ] = 0.

In fact, taking the variation of eq. (1.7) we obtain:

δ(E [Ψ] 〈Ψ|Ψ〉) = δE [Ψ] 〈Ψ|Ψ〉 + E [Ψ] 〈δΨ|Ψ〉 + E [Ψ] 〈Ψ|δΨ〉
= 〈δΨ|Ĥ |Ψ〉 + 〈Ψ|Ĥ|δΨ〉. (1.8)

and considering that Ĥ is hermitian we can conclude that:

δE [Ψ] = 0 ⇔ 〈δΨ|Ĥ − E|Ψ〉 + 〈Ψ|Ĥ − E|δΨ〉 = 0

⇔
(
Ĥ − E [Ψ]

)
|Ψ〉 = 0 (1.9)

The importance of the functional defined in eq. (1.7) can be seen expanding Ψ over

the wavefunctions {ψn}:

Ψ =
∑

n

cnψn ⇒ E [Ψ] =

∑
n |cn|2En∑

n |cn|2

⇒ E [Ψ] − E0 =

∑
n |cn|2(En − E0)∑

n |cn|2
(1.10)

where E0 = min{En} is the ground state energy.

Hence we can conclude that:

E [Ψ] ≥ E0 ; Ψ = αΨ0 ⇔ E [Ψ] = E0 (1.11)

i.e. the ground state energy E0 is implicitly defined by the minimization (1.11).

1.3 Density functional theory

Density Functional Theory (DFT) is a successful tool largely used in order to study

ground state properties of condensed matter systems. Within this theory the prob-

lem of solving the Schrödinger equation for the ground state can be exactly recast

into the variational problem of minimizing a functional with rispect to the charge

density. The complexity of the problem is reduced in principle from having to deal

with a function of 3N variable to one, the density, that depends only on the 3 spatial
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coordinates. In fact, the key quantity of the theory is the electronic density ρ(r)

that, respect to the many body wavefunction Ψ(r1, ..., rN ), is a real quantity and

has an intuitive physical interpretation. A review of the topic can be found in litera-

ture [1, 2, 3, 4], in this section we will review briefly the most important milestones.

1.3.1 Hohenberg-Kohn theorem

The essential role that is played by the charge density in the search for the electronic

ground state was pointed out for the first time by Hohenberg and Kohn [2].

Let us consider a system of N interacting electrons immersed in an external potential

Vext with hamiltonian:

Ĥ = Ĥint + V̂ext (1.12)

in particular Hint = Te+Vee and the external potential Vext is due to the interaction,

for example, between electrons and ions. Assuming that the ground state is not

degenerate, the first part of the Hohenberg–Kohn theorem asserts that for every

density ρ(r) V-representable1, the external potential Vext is a functional of the charge

density Vext = Vext[ρ(r)], within an additive constant.

Let us assume, ad absurdum, that there exists a different potential V ′
ext with a

ground state Ψ′ corresponding to the same ground state density ρ(r). If E and E′

are the respective ground state energies we can write:

E < 〈Ψ′|Ĥ|Ψ′〉 = 〈Ψ′|Ĥ ′|Ψ′〉 + 〈Ψ′|Ĥ − Ĥ ′|Ψ′〉

= E′ +

∫
ρ(r)[Vext(r) − V ′

ext(r)]dr (1.13)

A similar equation can be written in case of 〈Ψ|Ĥ ′|Ψ〉, in fact:

E′ < 〈Ψ|Ĥ ′|Ψ〉 = 〈Ψ|Ĥ|Ψ〉 + 〈Ψ|Ĥ ′ − Ĥ|Ψ〉

= E +

∫
ρ(r)[V ′

ext(r) − Vext(r)]dr (1.14)

and now adding eq. (1.13) to eq. (1.14):

E + E′ < E + E′ (1.15)

1A density is V-representable if it is positive defined, normalized to a number N, and such that

there exists an external potential V (r) for which there is a non-degenerate ground state correspond-

ing to that density.
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that is the absurdum.

Therefore, the theorem establishes the legitimacy of the charge density as the fun-

damental variable in the electronic problem, demonstrating a one-to-one correspon-

dence between the density and the external potential ρ = ρ[Vext]. Hence, this

relation is invertible so the external potential can be viewed as a functional of the

density Vext = Vext[ρ].

Moreover, since the ground state energy is a function of the external potential

E0 = E0[Vext], it is now possible to write it as a function of the charge density

(HK functional):

EHK [ρ(r)] = T [ρ(r)] + EH [ρ(r)] +

∫
Vextρ(r)dr (1.16)

where EH [ρ(r)] is the Hartree energy given by:

EH [ρ(r)] =
1

2

∫
dr

∫
dr′

ρ(r)ρ(r′)

|r− r′| (1.17)

Once that the existance of the HK functional is established the second part of the

theorem affirms that the minimum of the functional EHK [ρ(r)] is obtained when the

charge density ρ is exactly the ground state density (energy variational principle).

In conclusion, the total energy of an N interacting particles system can be written

as functional of the density. This functional exists, is universal and non depending

on the form of the external potential, however its analytical form is unknown.

1.3.2 The Kohn-Sham equations

The Hohenberg-Kohn theorem provides the theoretical justification to reformulate

the search for the many body ground state as a varational problem on the charge

density. Although the analytical form of the HK functional is unknown, the mini-

mization procedure lead to a set on N associated differential equations:

δEHK [ρ] = δ

[
T [ρ] + VH [ρ] +

∫
Vextρ(r)dr − λ

(∫
ρ(r)dr −N

)]
= 0

δT [ρ]

δρ(r)
+
δVH [ρ]

δρ(r)
+ Vext = λ (1.18)

where VH is the Hatree potential and λ are the Lagrange multipliers required by the

normalization constraint.

The Kohn e Sham approach is based on the introduction of an auxiliary non inter-

acting system of N electrons, having the same density of the real interacting system

in a suitable external potential.
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We can write the ground state density of the interacting system expanded on a basis

of N indipendent orthonormals orbitals:

ρ(r) =
∑

i

fiφ
∗
i (r)φi(r) (1.19)

where fi represents the occupation factor of the orbital i.

Hence, the HK functional can be written in terms of the kinetic energy of the non

interacting system:

EHK
Vext

[ρ] = T0 +EH [ρ] +

∫
Vextρ(r)dr + Exc[ρ] (1.20)

where T0 is the kinetic energy of the non interacting system:

T0[ρ] = T0[φi] =
∑

i

∫
φ∗i (r)

[
−∇2

2
φi(r)

]
dr (1.21)

EH is the Hartree energy and Exc is the sole unknown term:

Exc[ρ] = E − T0 −EH − Vext. (1.22)

In particular the Exc term contains the contributions given by the difference in

the kinetic energy of the interacting and non interacting system, i.e. ∆T [ρ] =

T [ρ] − T0[ρ], the exchange effects (Fermi correlation) and the correlation effects

(Coulomb correlation).

Now, we can calculate the minimum of the HK functional (1.20) for the KS non

interacting system in a fixed external potential Vext and with the N×N constraints

due to the orthonormality of the orbitals:

δ

δφ∗

[
E −

∑

n,m

λN
m,n

(∫
φ∗mφn − δm,n

)]
= 0 (1.23)

where:

δ

δφ∗i
=

δρ

δφ∗i

δ

δρ
= φi

δ

δρ
(1.24)

From eq. (1.23) we can obtain the following set of equations:
[
−1

2
∇2 + V eff

DFT

]
φi = λiφi (1.25)

where HKS = −1
2∇2 + V eff

DFT is the Kohn-Sham Hamiltonian and V eff
DFT is the sum

of three contributions:

V eff
DFT = VH + Vext + Vxc (1.26)
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the Hartree potential VH, the external potential Vext and the exchange-correlation

potential given by:

Vxc =
δExc[ρ]

δρ(r)
(1.27)

Now, if we rewrite the density eq. (1.19) expanded over the N occupied orbitals:

ρ(r) =

N∑

i

|φi(r)|2 (1.28)

we must solve the set of N one particle equations. Now, if we assume that {φi}
diagonalize the N×N hermitian matrix HKS:

λmn = 〈φm|HKS |φn〉 (1.29)

we can write N one-particle equations:
{
−∇2

2
+ Vext +

∫
ρ(r′)

|r − r′|dr
′ + Vxc(r)

}
φi(r) = λiφi(r) (1.30)

where λi are now interpreted as the KS energies ǫKS
i .

Since the last two terms of the hamiltonian depend on the eigenvectors throught

eq. (1.28), the eigenvalues and eigenvectors can be determined self consistently.

The equations (1.28) and (1.30) are called Kohn and Sham equations and provide a

procedure to calculate the total ground state energy of the system:

E = EVext [ρ0] =

N∑

i=1

ǫKS
i − EH [ρ0] + Exc[ρ0] −

∫
ρ0(r)Vxc(r)dr (1.31)

In conclusion it is worth to mention that the KS eigenvalues do not have any physical

meaning, as, for instance, Hartree Fock eigenvalues that are related to real orbital

energies via the Koopmans theorem. However, there exists a number of approx-

imations of the exchange-correlation potential (see sections 1.4.1, 1.4.2 and 1.4.3)

providing good agreements with experimental results in many applications. This

justifies the practical usefullness of the KS scheme.

1.4 Methods

1.4.1 Local density approximation

Once the Kohn-Sham scheme is defined there still exists the problem of the missing

analytical representation of the exchange–correlation energy.
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A commonly used approximation is offered by the Local Density Approximation

(LDA) [5], which makes DFT practically applicable to a wide variety of systems

and provides a correct description for systems in which the density varies slowly in

space. The form of Exc is given by:

ELDA
xc [ρ(r)] =

∫
ǫheg
xc (ρ(r))ρ(r)dr (1.32)

where the local dependence of Exc on the density ǫheg
xc (ρ(r)) is given in terms of the

exchange–correlation energy of the homogeneous electron gas of constant density

ρ = ρ(r). Hence the systems is locally approximated to an homogeneous electrons

system. The function ǫheg
xc can be separated in an exchange part:

ǫx(ρ) = −3

4

(
3

π

)1/3

ρ1/3 (1.33)

and a correlation term ǫc(ρ), a function that can be obtained by Quantum Monte

Carlo simulations (QMC), the most popular form has been given for different den-

sities by Ceperley and Adler [5].

Moreover the exchange–correlation potential can be written as:

V LDA
xc (r) =

δELDA
xc

δn(r)

= ǫxc(ρ(r)) + ρ(r)
dǫxc

dρ
(1.34)

The domain of applicability of LDA has proved to be valid for a large amount of

systems, even not homogeneous. However, it results not appropriate in case of few

electrons systems (see chapter 6). For localized systems self interaction corrections

(SIC [6]) are usually used.

1.4.2 Local spin density approximation

Local Spin Density Approximation (LSDA) provides a generalization of LDA to the

case of spin polarized calculations. Let us define the spin polarization parameter ζ:

ζ =
ρ↑ − ρ↓
ρ↑ + ρ↓

0 ≤ ζ ≤ 1 (1.35)

In the limit case of ζ = 0, ρ↑ = ρ↓ and we will recover LDA for unpolarized systems

(U), conversely, if ζ = 1 the system is completely spin polarized (P) and it is possible

to write the following parametrizations (see Ref. [6]):

ǫPx (ρ) = 21/3ǫUx (ρ) (1.36)

ǫPc (ρ) =
1

2
ǫUc (24/9ρ) (1.37)
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for the exchange and correlation part, respectively. In the intermediate cases the

parametrization for ǫxc is given by:

ǫxc(ρ) = ǫUxc(ρ) + f (ζ)
[
ǫPxc(ρ) − ǫUxc(ρ)

]
(1.38)

where the smooth interpolation function f (ζ) is defined by:

f (ζ) =
(1 + ζ)4/3 + (1 − ζ)4/3 − 2

24/3 − 2
(1.39)

1.4.3 Generalized gradient approximation

A natural way to improve LDA in order to account for the inhomogeneities of the

density is to make a gradient expansion of the exchange-correlation energy with

respect to the density. In this way ǫxc results to be dependent on the local derivative

of the density:

EGGA
xc [ρ↑, ρ↓] =

∫
f (ρ↑, ρ↓,∇ρ↑,∇ρ↓)dr (1.40)

This is the so called Generalized Gradient Approximation (GGA), often used in

terms of the Perdew-Burke-Ernzerhof (PBE) [7, 8] parametrization.

GGA contributes to improve LDA with respect to some application (molecules or

systems with strongly inhomogeneous density distribution) but it does not offer a

systematic advance in the DFT calculation tools.

1.4.4 Brief review of pseudopotential method

Pseudopotential approach allows to treat an all-electron variational calculation of

ground state properties in terms of the only valence wavefunctions immersed in a

modified potential. In this way, core states, being the most localized and expensives

to be represented, are not directly included in the calculations: their effect on valence

electrons is described by a suitable pseudopotential. A review of the topic can be

found in literature ranging from the most influential works [9, 10, 11, 12, 13, 14, 15,

16] to other important but less fundamental papers [17, 18, 19, 20].

In the following we briefly summarize the milestones of the method. All-electron

valence orbitals can be represented as a linear combination of core orbitals |ψc〉 and

a smooth function |φP
v 〉:

|ψv〉 = |φP
v 〉 +

∑

c

αcv|ψc〉 (1.41)

where αcv = 〈ψc′ |φP
v 〉 are coefficients that guarantee the core-valence orthogonality.

By inverting eq. (1.41) with respect to |φP
v 〉 it is possible to write valence pseudo
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wavefunction in terms of all-electron core and valence states. Then, applying the

Hamiltonian to |φP
v 〉 it is possible to show that they are eigenstates of a modified

hamiltonian with the same eigenstates of the all-electron wavefunctions:

[
Ĥ +

∑

c

(ǫv − ǫc)|ψc〉〈ψc|)
]
|φP

v 〉 = ǫv|φP
v 〉 (1.42)

The projector defined in eq. (1.42) by P̂ =
∑

c(ǫv − ǫc)|ψc〉〈ψc| is not local. More-

over, because 〈φv|P̂|φv〉 is positive defined it represents a repulsive and short range

potential, as it should be to correctly describe core orbitals.

In the general scheme, norm conserving pseudopotentials are derived from an

atomic reference state requiring that pseudo and all-electron valence eigenstates

have the same energies and density outside a chosen core cutoff radius. Normaliza-

tion of the pseudo orbitals guarantees that they include the same amount of charge

in the core region. Futhermore pseudo and all-electron logarithmic derivatives agree,

at the reference energies, beyond the cutoff radius. Finally, norm conservation en-

sures that the pseudo and all-electron logarithmic derivatives agree also around each

reference level to first order in the energy.

In this way a pseudopotential exhibits the same scattering properties as a real

potential in a neighboorhood of the atomic eigenvalues [21]. This property provides

a measure of the transferability of the pseudopotential.

1.5 Time dependent density functional theory

Density functional theory is a successful tool for a large range of applications, how-

ever some limits can be underlined.

First, DFT is a ground state theory and it is not obvious how to generalize the KS

eigenvalues in order to represent the quasi particle energies2. Secondly, DFT is a

theory dealing with stationary states, hence it is not possible to apply it to the case

of time dependent hamiltonians.

Part of that limits are overcomed by the Time Dependent Density Functional

Theory (TDDFT) that is an exact reformulation of time dependent quantum me-

chanics where the fundamental variable is the time dependent electronic density

ρ(r, t) instead of the many body function of the system. The first milestone is the

Runge–Gross theorem [22] that provide a generalization of the Hohenberg–Kohn

2For instance, the direct interpretation of the KS eigenvalues as the real energies of the system

leads to the understimation of the bandgap of semiconductors.
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theorem to time dependent densities. The theorem states that there exists a one–

to–one correspondence between the time dependent external potential W (t) and the

time dependent density of an evolving system at a fixed initial state:

W (t) ↔ ρ(r, t) (1.43)

If we consider the Hamiltonian describing an N-electrons system given by:

Ĥ(t) = T̂ + V̂ + Ŵ (t) (1.44)

where, beyond the kinetic and the coulombian term (T and V respectively), a time

dependent external potential W (t) =
∑

i Vext(r, t) appears that can be expandend

around an initial time t0 such as Vext(r, t0) = Vext(r).

The time evolution of the system is described by the Schrödinger equation:

H(t)ψ(t) = i
∂

∂t
ψ(t) (1.45)

Two time dependent densities ρ(r, t) and ρ′(r, t), having a commun initial state

ψ(t0) = ψ0 and influenced by two different external potentials Vext and V ′
ext, ex-

pandable around t0 and such as V ′
ext 6= Vext +c(t), are always different. Hence ρ(r, t)

determines the external potential but for a time dependent function c(t). Conversely

the potential fixes the density but for a time dependent phase:

ψ(t) = e−iα(t)ψ [ρ, ψ0] (t) (1.46)

Hence, for every time dependent observable Ô(t) that is not depending on time

derivative or time integral, is a functional of the density:

〈ψ(t)|Ô(t)|ψ(t)〉 = O [ρ] (t) (1.47)

From the Runge–Kohn theorem it is straightforward to build the Kohn–Sham scheme

for the time dependent case (see Refs. [23] and [24]). We can write the action:

A[ψ] =

∫ t1

t0

dt〈ψ(t)|i ∂
∂t

− Ĥ(t)|ψ(t)〉 (1.48)

where ψ is the many body wavefunction with initial condition ψ(t0) = ψ0. The

time dependent Schrödinger equation corresponds to a stationary point of A[ψ]

similarly to classical mechanics, where the trajectory is a stationary point of the

action A =
∫ t1
t0

L(t)dt with L the Lagrangian of the system. The action in eq. (1.51)
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is the a functional of the density and has a stationary point corresponding to the

correct ρ(r, t), i.e. solving the Euler equations:

δA[ρ]

δρ(r, t)
= 0 (1.49)

it is possible to recover the density.

Similarly to the static case, we can write:

A[ρ] = B[ρ] −
∫ t1

t0

dt

∫
drρ(r, t)Vext(r, t) (1.50)

where B is a universal functional given by:

B[ρ] =

∫ t1

t0

dt〈ψ(t)|i ∂
∂t

− T̂ − V̂ |ψ(t)〉 (1.51)

Now, an auxiliary non interacting system can be associated to the interacting one

in the similar way than the Kohn–Sham scheme. The stationary condition can be

applied to eq. (1.50) with the condition ρ(r, t) =
∑

i |φi(r, t)|2 in order to obtain the

time dependent KS equations:
[
−1

2
∇2 + Vext(r, t) +

∫
V (r, r′)ρ(r′, t)dr′ + Vxc(r, t)

]
φi(r, t) = i

∂

∂t
φi(r, t) (1.52)

In eq. (1.52) it is possible to recognize three contributions to the effective potential:

Veff(r, t) = VH(r, t) + Vext(r, t) + Vxc(r, t) (1.53)

the Hartree and the external potential (VH and Vext respectively) and the exchange–

correlation potential defined by the functional derivative:

Vxc(r, t) =
δAxc

δρ(r, t)
(1.54)

where Axc is the exchange–correlation part of the action (1.51).

1.6 Linear response

Within the TDDFT framework we can calculate the linear response of an N particle

system to an external time dependent perturbation. The response will be related

the excited states of the system and can be defined as the variation of the density

with respect to the variation of the time dependent external potential causing the

perturbation:

χ(r, t, r′, t′) =
δρ(r, t)

δVext(r′, t′)
|Vext=0 (1.55)
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Similarly, the linear response in the case of the auxiliary non interacting KS system

can be expressed by:

χ0(r, t, r′, t′) =
δρ(r, t)

δVeff(r′, t′)
|Veff=0

(1.56)

where the functional derivatives are calculated at the first order in Vext in eq. (1.55)

and in Veff in eq. (1.56).

Now, using the following relation:

δρ

δVext
=

δρ

δVeff

δVeff

δVext
= χ0 δVeff

δVext
(1.57)

we can write:

δVeff(r, t)

δVext(r′, t′)
= δ(r−r′)δ(t− t′)+

∫ [
δ(t− t′′)

|r − r′′| + fxc(r, t, r
′′, t′′)

]
χ(r′′, t′′, r′, t′)dr′′dt′′

(1.58)

where:

fxc(r, t, r
′, t′) =

δVxc[ρ(r, t)]

ρ(r′, t′)
|Vext=0 (1.59)

is the exchange–correlation kernel, the quantity that contains the core of the com-

plexity of the problem. Combining eq. (1.57) and (1.58) it is possible to write a

Dyson equation for χ and χ0:

χ(r, r′, ω) = χ0(r, r′, ω)+

∫
dr1dr2χ

0(r, r1, ω)

[
1

|r1 − r2|
+ fxc(r1, r2, ω)

]
χ(r2, r

′, ω)

(1.60)

The analytical form of the exchange–correlation kernel is unknown, for this reason,

the solution of this integral equation is not trivial.

In case of fxc = 0 the approximation is called independent particle random phase

approximation (IP-RPA) that is equivalent to the Hartree theory but with the ad-

dition of time dependency. In this scheme the density fluctuation at the first order

is written as:

ρ(ω) =

∫
χ0(r, r′, ω)Veff(r′, ω)dr′ =

∫
χ(r, r′, ω)Vext(r

′, ω)dr′ (1.61)

where χ0 is built using the KS eigenvalues and eigenvectors calculated with an

approximation for the exchange–correlation potential Vxc in the KS hamiltonian.

The problem of the efficient evaluation of the response function will be discussed

extensively in chapter 3, where a new method for the calculation of χ(0) will be also

presented. For this reason we postpone to that chapter the details on the analytical

form of this quantity.
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1.6.1 Adiabatic (spin) local density approximation

The adiabatic local density approximation (ALDA) furnishes a way to compute the

excitations energies of a system within the TDDFT. Within this approximation the

exchange–correlation potential defined in eq. (1.54) is written as:

Vxc(r, t) ≃
δExc[ρ]

δρt(r)
(1.62)

where the functional derivative is taken respect to the instantaneous density in such

a way that the exchange–correlation energy depends just on the density at a fixed

time3. By consequence, the exchange–correlation kernel become:

fxc(r, t, r
′, t′) =

δVxc(r, t)

δρ(r′, t′)
≃ δ(t − t′)

δVxc(r, t)

δρ(r′, t′)
(1.63)

and using local density approximation, see eq. (1.34), we can also write:

fALDA
xc (r, t, r′, t′) = δ(t− t′)δ(r − r′)

(
2
dǫheg

xc (ρ)

dρ
+ ρ

d2ǫheg
xc (ρ)

d2ρ

)
(1.64)

Moreover, if we want to include the spin variable (ALSDA) we obtain the following

expression:

fALDA
xc (r, t, r′, t′) = δ(t− t′)δ(r − r′) (1.65)

(
dǫLSDA

xc (ρ, ζ)

dρ↑
+
dǫLSDA

xc (ρ, ζ)

dρ↓
+ ρ

d2ǫLSDA
xc (ρ, ζ)

dρ↑dρ↓

)

where the derivation is defined as:

dǫ(ρ, ζ)

dρ↑
=

∂ǫ(ρ, ζ)

∂ρ
+
∂ǫ(ρ, ζ)

∂ζ

dǫ(ρ, ζ)

dρ↓
=

∂ǫ(ρ, ζ)

∂ρ
− ∂ǫ(ρ, ζ)

∂ζ

1.7 Dielectric function

The key quantity connecting the theories presented in the previous sections and

the experimental spectra is the dynamical dielectric function ε(r, r′, ω). When an

external perturbing field is applied to the sample, the charge density rearrages and

an additional potential Vind is induced by the polarization of the system. The total

3For this reason, in adiabatic LDA memory effects are neglected.
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potential, or screened potential, is due to the contribution of the external and the

induced potential:

Vtot = Vext + Vind (1.66)

and it can be also written in terms of the dielectric function:

Vtot =

∫
ε−1(r, r′)Vext(r

′)dr′ (1.67)

The dynamical dielectric function can be recovered as:

ε(r, r′, ω) = δ(r − r′) −
∫
dr′′v(r − r′)χ(r′′, r′, ω) (1.68)

where v(r − r′) is the bare coulomb interaction. The dynamical dielectric func-

tion ε(ω) takes in account the rearrangement of the charge density presenting hole

and charge accumulation due to the perturbation. However, the screened potential

usually is calculated from the external potential inducing the polarizabilty of the

system (see eq. (1.67)). Hence, the important microscopic quantity is the inverse of

the dielectric function that can be written as:

ε−1(r, r′, ω) = δ(r − r′) +

∫
dr′′v(r − r′′)χ(r′′, r′, ω) (1.69)

In conclusion the response functio χ and the dynamical dielectric function ǫ(r, r′, ω)

represent the key ingredients for theoretical spectroscopy. In the next chapter we

will present the connections between ǫ and the three class of experimental spec-

troscopies considered in the present thesis: energy loss, reflectivity and absorption

spectra.
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Chapter 2

Surface spectroscopies

Every real solid is surrounded by surfaces. Moreover the miniaturization of the

technological devices requires a better understanding of mechanisms at the atom-

istic scale at which surface effects become important 1.

From the experimental point of view, surface atoms are only visible in sensitive

techniques or by studying processes involving atoms at the surface (crystal growth,

adsorption, oxidation, etching, ...).

Under normal conditions (atmospheric pressure and room temperature) a real sur-

face of a solid is different from an ideal truncated bulk because of a reordering of

surface atomic bonds and because prepared surfaces are normally very reactive to

atoms and molecules in the environment. From chemisorption to physisorption, all

kinds of particle adsorption give rise to an adlayer on the topmost atomic layers of

the solid.

Because of this complexity, first principles calculations can be very helpful to

better understand the physics of such a system. In this section we will briefly

review the significant experiments and the theoretical tools devoted to describe

surface physics.

2.1 Experimental issues

Spectroscopy is a useful tool to get information about the physical nature or geo-

metrical reconstruction of surfaces. Many high level experimental technologies has

been developed in the last decades in order to create and analyse the surfaces of

materials, an exhaustive review of the topic can be found in literature [25, 26, 27].

1In effect if we look at the number of surface atoms (NA(S)) respect to the bulk (NA(B)) in a

1 cm3 volume cube we can say that surface effects are negligible because: NA(S)
NA(V )

= 1015

1023 = 10−8.

On the contrary in the case of a 100 Å length cube we write: NA(S)
NA(V )

= 104

106 = 10−2, hence the

surface signals are not negligible anymore.

23
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Here we summarize the highlights to introduce our results presented in the followings

chapters.

2.1.1 Preparation and structural properties

In order to get spectroscopic information, a well defined surface has to be prepared

on a particular solid, using a special preparation process and under well defined

external conditions.

There are several ways to prepare a surface from a crystalline material and they

can be grouped into three categories: (i) cleavage (limitated to cleavage planes), (ii)

treatment of imperfect and contaminated surfaces by ion bombardment and thermal

annealing and (iii) epitaxial growth of a crystal layer by means of evaporation or

molecular beam epitaxy (MBA). In all cases Ultra High Vacuum (UHV), i.e pressure

conditions lower than 10−8Pa (10−10 torr) are required.

However, despite the great care in preparing surfaces, irregular deviations from per-

fect smoothness and purity are always present (steps, terraces or in general surface

roughness) making real surfaces far from the ideal ones.

Surface atoms rearrange with respect to the bulk crystal positions because forces

acting on the on top atoms differ from interactions between atoms inside the vol-

ume, and as a results this difference can be enhanced depending on the bounding

behaviour of the material.

However, the deviation of atom positions from that of an infinite crystal decreases

with increasing distance from the surface.

Hence in our theoretical models we will assume with confidence that positions of

atoms deep inside the bulk are the same as those in an infinite crystal. On the

contrary, the distortions of the atomic configuration due to the termination of the

crystal, are important close to the surface.

In the case of silicon, the main element considered in this work, when a surface is

created tetrahedral bonds are broken, and a non negligible atomic rearrangement is

expected to destroy the translational symmetry of an ideal bulk truncated surface.

Moreover dangling bonds are usually unstable because rebonding lowers the total

energy pushing surface atoms closer to form pairs (dimers). For this reason we can

expect that a silicon surface is a good example of a reconstruction process.

On the contrary, in the case of materials where chemical bonds are less directional

(as the case of metals), surfaces are created by relaxation of the topmost layers

along the direction perpendicular to the surface plane. In this case the changes may

conserve the translational-symmetry of the bulk.
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The main experimental techniques used in the study of surface structure exploit

the diffraction of neutral atomic beams or electrons. With Low-Energy Electron

Diffraction (LEED) the surface periodicity and a reconstruction are observed directly

via the diffraction pattern, which give an image of the reciprocal lattice. The size

and shape of the spots contain information about the extention of domains and

the presence of surface defects. The atomic positions inside the unit cell and the

relaxation can be studied through the intensity profiles of the diffracted beam, i.e.,

by plotting the measured intensity of each diffraction spot as a function of the

energy of the incoming electron. The information of the atomic position is obtained

by comparing the experimental LEED profiles with those obtained by a theoretical

simulation of the electron diffraction in the crystal, where the atomic positions are

the input data. An example of LEED patterns is reported in Fig. 2.1.

Reflection High Energy Electron Diffraction (RHEED) is also used, principally to

monitor the thin film growth. In this technique incident energies of 10 − 100keV

and incident angles of about 3 − 5 degrees are used.

The structural analysis of LEED is often performed togheter with Auger Electron

Spectroscopy (AES) to control the chemical composition of the sample. In AES a

beam of electrons with energies beyond 1keV strikes the surface and the number of

electron backscattered N(E) is analysed as a function of the energy. The dN
dE give

the signature of the elements present in the sample.

Moreover we mention the light-ion Rutherford backscattering (RBS), where

beams of H+ or He2+ ions are used with energies of hundreds of keV (LEIS up

to 20keV, MEIS from 20eV to 200keV and HEIS to 2MeV). The ions are scattered

by the nuclei of the crystal following the dynamics of classical Rutherford scattering

and lose energy along straight trajectories through interaction with the electrons.

Information on the composition and atomic displacements in the surface layers can

be obtained thanks to this method detecting the number of ions as a function of the

energy and the outcoming directions of ions diffused backward.

Another important technique employed to investigate the structural properties

of semiconductors is Scanning Tunnel Microscopy (STM). Due to Binnig and Rohrer

(1982), this technique gives the local density of occupied and empty states integrated

over a given energy range around the Fermi level. This technique does not need

UHV. An example of STM image is reported in Fig. 2.1.

From all these techniques we can get structural information about the system

but a comprehensive interpretation of the data must usually be supported by a

theoretical description which involves the knowledge of the electronic structure [28,
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Figure 2.1: Examples of experimental images obtained by LEED (left) and STM

(right). In particular in a) LEED patterns of a Si(001)-(1 × 2) are reproduced

from [30] in b) an STM image of the Si(100)-(2×1) surface at 61 K, filled (a) and

empty (b) states, from [31].

29].

2.1.2 Electronic properties

In translationally invariant systems the wave vector k defines a set of good quantum

numbers for each type of elementary excitation. In the case of an ordered surface

of a crystal, such a wavevector k̄, is restricted to two dimensions (parallel to the

surface) because in the third direction the system is not translationally invariant

anymore. The Surface Brillouin Zone (SBZ) becomes 2-dimensional and is defined

as the smallest polygon in the 2D reciprocal space situated symmetrically with

respect to a given lattice point (the origin) and bounded by points k̄, satisfying the

equation:

k̄ · g =
1

2
|g|2 (2.1)

where g is a surface reciprocal lattice vector. Figure 2.2 represents three of the

five SBZ, referring to the ones we considered in the next chapters of this thesis:

p-rectangular, c-rectangular and square. Further details on surface theory can be

found in [27]. Among the experimental techniques which allow to inspect directly the

band structure and the electronic structure in the 2-dimensional BZ we mention the

most fundamental: Photoemission (PES), Angle–Resolved Photoemission (ARPES)

and Inverse Photoemission (IPES).

PES is the most important technique able to give a picture of the Density of

States (DOS) at the upper atomic planes. The physics behind the PES technique is

an application of Einstein’s photoelectric effect. The sample is exposed to a beam of
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Figure 2.2: Surface Brillouin Zone for the three surface reconstructions that we

considered in the present thesis: a c-rectangular, a p-square and a p-rectangular.

light inducing photoelectric ionization; syncrotron radiation is the ideal isochromatic

radiation source. The energies of the emitted photoelectrons are characteristic of

their original electronic states. For solids, photoelectrons can escape only from a

depth of the order of nanometers, so that it is the surface layer which is mostly

analyzed. PES can be performed in the infrared region (XPS), E≃20–150eV, where

it is possible to see transitions between surface bands below the edge of the bulk

bandgap (the small cross section can be improved using grazing angles), or in the

ultraviolet range (UPS), E>150eV, where excitations involve localized core levels

and surface empty bands (large cross section) [26].

ARPES gives information about the k-dispersion of bands and allows to separate

the contributions from bulk and surface states. The former connect states with the

same 3D k-vector, the latter involve photoemission processes conserving only the

component parallel to the surface k||. The detected 2D vector connecting surface

states and the continuum can be written as:

kout
|| = kin

|| + g ∀k⊥ (2.2)

where g is a vector of the surface reciprocal lattice. Hence, plotting the electron

energy as a function of the emission angle θ by:

Ekin =
~

2

2m
(k2

|| + k2
⊥)

k||(θ) = k||sinθ =

√
2mE||

~
sinθ (2.3)

we can say that the peaks in the energy distribution curve represent the initial state

of the solid labelled by k||.

IPES (or Bremsstrahlung Isochromat Spectroscopy) is the inverse of PES and

allows to detect the energy of the photon emitted when an electron of an external
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beam of given E and k falls into an empty conduction surface band or an image state.

Even optical adsorption is a useful method to study the occupied and unoccupied

states that in a first approximation can be described by the Joint Density of States

(JDOS) defined by:

JDOS(ω) =

∫
ρ(E)θ(EF − E)ρ(E − ~ω)θ(E + ~ω − EF )dE (2.4)

Finally STM is used to describe electronic states of the surfaces by introducing a

potential difference between the tip and the sample. In this way it is possible to

have a spatial map of the wave function at different energies for both empty and

filled states (see Fig. 2.1).

In conclusion it is worth mentioning that spectroscopies which study the electronic

structure are also an indirect test of the surface atomic structure.

2.1.3 Reflectivity anisotropy experimental spectroscopy

Optical spectroscopy is an important tool to probe surfaces since they allow for in

situ, non–destructive and real–time measurements. Moreover material damage or

contamination associated with charged particle beams are avoided.

However, since the light penetration and wavelength are much larger than typical

surface thicknesses (few Å), optical spectroscopy is poorly sensitive to the surface.

Nevertheless, a trick can be used in order to resolve the surface signal. This

is the case of Reflectivity Anisotropy Spectroscopy (RAS) and Surface Differential

Reflectivity (SDR), optical techinques of great importance for detecting transitions

between surface states. Surface sensitivity is greatly enhanced with the use of ap-

propriate conditions which enhance the contribution of transitions involving surface

states [32].

RAS is defined as the difference between the normalized reflectivities measured at

normal incidence, for two orthogonal polarizations of light belonging to the surface

plane:

RAS = 2
Ry −Rx

Ry +Rx

= 2
(R0 + ∆Ry) − (R0 + ∆Rx)

2R0 + ∆Ry + ∆Rx
(2.5)

where R0 is the isotropic Fresnel reflectivity. Since the bulk of a cubic material

is optically isotropic, any reflectivity anisotropy must be related to the reduced

symmetry of the surface or to another symmetry breaking perturbation, for instance
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Figure 2.3: Experimental RA spectrum of the clean Si(100). We report as an

example, the results taken from Ref. [33] to show how the choice of the surface can

affect a RA spectra: Nominal (a) and vicinal (b) surfaces are considered, and it is

evident how the low energy spectral features are enhanced in the case of the nominal

surface.

an electric field. In the case of ∆Rα

R0
<< 1 we can write:

RAS ≃ ∆Ry − ∆Rx

R0
(2.6)

An example of measured RAS is represented in Fig. 2.3 and geometry scattering is

shown in Fig. 2.6.

On the contrary an SDR spectrum is defined by the difference in the reflectivity

measured on a clean surface before and after passivation (e.g. by adsorbing atoms or

molecules on the surface). Passivation (oxidation, the case we discuss in chapter 5),

removes surface states but does not affect bulk contributions. One hence obtains,

for the optical response specific to the surface:

SDR =
∆Rclean − ∆Rpass

Rclean
(2.7)

In conclusion it is important to mention that all these techinques can be ap-

preciably sensitive to the experimental definition of the surface in the sense that

in some cases (e.g. Si(100) and Si(100):O, as treated in this work: see chapters ??

and 5) the RA signal is modified because of the presence of steps, terrace or dif-

ferent oriented domains. The influence of steps on the reflectance spectra has been
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analysed by Jaloviar et al. [34]; hence Shioda and der Weide [35] use highly oriented

surfaces (with terraces 1000 times larger than vicinal surfaces) in order to obtain

more accurate RA profiles. Finally, a comparison of RA spectra obtained by nomi-

nal and vicinal surfaces is shown as an example in Fig. 2.3 where we reproduce data

from Ref. [33] to illustrate how the use of nominal surfaces improves the spectral

resolution in the low energy region of the spectrum.

2.1.4 Electron energy loss spectroscopy at surfaces

A natural complement to optical spectroscopy is Electron Energy Loss Spectroscopy

(EELS) which, despite some complications in the interpretation of the data, turns

out to be surface sensitive probe, particularly in High Resolution EELS (HREELS),

which uses low energy incoming beams.

Figure 2.4: Schematic repre-

sentation of all kind of excita-

tions that can be detected by

EEL spectroscopy. Figure is

reproduced from [25]

In an EEL experiment a material is exposed to a beam of electrons with a defined

narrow range kinetic energy. Some of the electrons undergo inelastic scattering,

losing part of their energy and having their paths slightly and randomly deflected

from the specular direction. The amount of energy loss can be measured via an

electron spectrometer and interpreted in terms of excitations of the sample. Inelastic

interactions include phonon excitations, inter and intra-band transitions, plasmon

excitations, and inner shell ionizations (see Fig. 2.4).

Usually EELS is performed in transmission, but to be surface sensitive it must

be applied in a reflection geometry (REELS), see Fig. 2.7, and use relatively low

incident energies (around 50–100 eV, versus 1keV for bulk). In HREELS the beam

is highly monochromatic and the energies of the electrons range up to 10 meV.
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2.2 Theoretical surface spectroscopies

A real surface is a complex physical system whose geometry, i.e. atomic positions,

is generally unknown and usually involve many degrees of freedom. This makes

calculations very heavy and can create serious obstacles when fully treating excited

states. For this reason calculations are usually performed at different levels of so-

phistication, involving various simplifications and approximations, according to the

accuracy required and the numerical heaviness.

We assume to be able to calculate the dielectric tensor of a general bulk system (as

discussed in the previous chapters) and we are going to describe how to use it in

order to reproduce and predict surface spectroscopic experiments.

2.2.1 The slab method

The description of the crystal termination is solved here using the slab method, i.e.

representing the surface by means of an atomic slab of suitable thickness (usually 20-

30 Å). Using plane-wave basis sets, the three dimensional periodicity of the system

can be recovered by considering repeated slabs, separated by a sufficiently large

region of empty space.

In Figure 2.5 we illustrate the example of a slab inside a supercell and indicate the

three layers involved (giving the name to the three layers model): a bulk region

(composed by the inner atoms of the slab), a surface layer with thickness d (top

layers of the slab), and a vacuum volume. The thickness of the surface layer must

be smaller than the wavelength λ of the light. The bulk properties are assumed to

be described by an isotropic dielectric function εb(ω) and the surface is described by

a frequency dependent dielectric tensor, where the complex diagonal elements are

defined by εxx(ω), εyy(ω) and εzz(ω).

In practical calculations the vacuum region is chosen large enough to avoid the

interaction between the two surfaces of the slab and careful convergence tests have

to be performed. Figure 2.5 shows the case of a symmetric slab geometry describing

an oxidised silicon surface. The slab method is general; also non symmetric slabs

can be used, even if the case is not treated in this thesis.

2.2.2 Real–Space slicing technique

Within the description of the three-layers model, an electron impinging on the sur-

face feels the potential from this surface layer through its dielectric function εs as

well as the potential of the bulk region. However, microscopic calculations generally
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Figure 2.5: Schematic representation of an oxidised silicon surface whithin the su-

percell approach used in our calculations. 4 oxygen atoms (red circles) and 64 silicon

atoms (yellow circles) form the symmetric slab. The supercell is the union of the

16 layer slab and the vacuum region. In figure (a), the bulk, surface and vacuum

regions of the three-layer model are indicated for the upper half of the slab. On Fig.

(b) blue line represents an example of a cutoff function used in the real-space slicing

technique.

output the dielectric function of the supercell εc. In previous works [36], εs was

extracted from εc by using the expression:

I(ω) = (Nb − 2Ns)dlεb(ω) + 2Nsdlεs(ω) (2.8)

Here dl is the interlayer spacing, Ns (Nb) is the number of layers in each surface

(bulk) region, and I is the integral of the slab RPA dielectric susceptibility ε(ω, z, z′)

over z and z′, i.e., I(ω) = Ncdlεc. However this approach cannot always guarantee

perfect cancellation of the bulklike layers in the supercell, and may even lead to

unphysical negative loss features. A more reliable approach is to extract εs directly
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using a real–space slicing technique, i.e. by projecting out the response of a defined

surface layer using a cut off function in real space (for a detailed treatment see

Ref. [37]).

This technique is usually reported in terms of the polarizibility of the half slab αhs,

which, in case of symmetric slabs, is obtained dividing by 2 the full polarizability α:

Im[4παhs
ii (ω)] =

4π2e2

m2ω2A

∑

k

∑

v,c

|P i
vk,ck|2δ(Eck − Evk − ~ω) (2.9)

where P i
vk,ck are the matrix elements of the momentum operator2.

We introduce now a cutoff function θ(z) aimed at projecting out the optical transi-

tions related to a certain selected region of the slab. The function θ(z) is a sum of

two Heaviside step functions:

θ(z) = H(z − z0) −H(z − (z0 +Dc)) (2.10)

where Dc is the thickness of the cutoff function (see Fig. 2.5).

The cutoff function is introduced into the calculation of the optical properties

through the use of a modified matrix element P̃vk,ck, defined by:

P̃ i
vk,ck = −i~

∫
drψ∗

vk(r)θ(z)
∂

∂ri
ψck(r), (2.11)

and hence the polarizability of the slice is described by the relation:

Im[4παcut
ii (ω)] =

8π2e2

m2ω2A

∑

k

∑

v,c

[P i
vk,ck]∗P̃ i

vk,ckδ(Eck − Evk − ~ω). (2.12)

In the next paragraphs we will show an application of this technique to analyse the

layer-by-layer contribution of the electron energy loss spectra.

2.2.3 Theory of RAS

By exploiting a reflection geometry and the polarizability of the incident wavevector,

certain spectroscopies are able to resolve the surface contribution to the optical

properties of a material. In the case of normal incidence light travelling from a first

medium with ε = ε1 to a second medium with ε = ε2 (see Fig. 2.6) the Fresnel

reflectivity is defined by :

R0 =

∣∣∣∣
N2 −N1

N2 +N1

∣∣∣∣
2

=

∣∣∣∣
√
ε2 −

√
ε1√

ε2 +
√
ε1

∣∣∣∣
2

(2.13)

2If the pseudopotential is non local, v̂m is used instead of the momentum operator
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Figure 2.6: Schematic illustration of the general RAS geometry (left), and assuming

normal incidence (right). The light propagation direction is represented by red lines,

and we indicate the polarization of light in two orthogonal directions belonging to

the surface plane. The bulk is assumed to be isotropic, while the surface is described

by a frequency dependent dielectric tensor with eigenvectors parallel to x and y.

where Ni =
√
εi is the complex refraction index N = n1 + in2.

Accordingly, reflectance is defined as a complex number r for which R = |r|2, From

the experimental point of view, measurements are usually performed with respect

to this quantity by:

I(ω) =
Irif (ω)

Iinc(ω)
=

∣∣∣∣∣
Erif

0

Einc
0

∣∣∣∣∣

2

= |r|2 (2.14)

On the contrary, reflectivity is a real number and R ∈ [0, 1] with special cases

occurring when R = 1 (large difference between N1 and N2), R = 0 (N1 = N2) or

when Ni for the two media are both real or imaginary. Reflectance is a complex

quantity linking the electric field amplitudes:

E = E0e
i(βkx−ωt) = E0e

i ω
c
(Nx−ct) = E0e

i ω
c
(n1x−ct)e−

ω
c
n2x (2.15)

where ω = vk, and hence k = ω
v = ω

cN . From Eq. 2.15 we can write:

|E|2 = |E0|2e−2ω
c

n2x (2.16)

from which we deduce that energy decreases exponentially.

If now we consider the energy density ω̄ and the absorption coefficient α:

∂ω̄

∂x
= −αω̄ (2.17)
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we obtain:

α =
2ω

c
n2 (2.18)

Reε = n2
1 − n2

2 (2.19)

Imε = n1n2 (2.20)

and finally

α =
ε2
n1

ω

c
. (2.21)

In the case of an interface with vacuum, the reflectivity is simplified:

R(ω) =

∣∣∣∣
N − 1

N + 1

∣∣∣∣
2

=

∣∣∣∣
(n1 − 1)2 + n2

(n1 + 1)2 + n2

∣∣∣∣
2

(2.22)

In the case of non normal incidence (see Fig. 2.6) two contributions are distin-

guished:

Rs =

∣∣∣∣∣
cosθ −

√
ε− sin2θ

cosθ +
√
ε− sin2θ

∣∣∣∣∣

2

(2.23)

Rp =

∣∣∣∣∣
εcosθ −

√
ε− sin2θ

εcosθ +
√
ε− sin2θ

∣∣∣∣∣

2

(2.24)

related to p and s waves respectively.

In experiments, the RA spectrum is calculated starting from the knowledge of

the reflectance and hence the reflectivity by means of Eq. 2.5.

Theoretical models link reflectivity to the dielectric tensor. In the particular case

where ∆Ri

R0
<< 1, the relative deviation of the reflectivity with respect to the Fresnel

contribution is given in terms of the surface and bulk dielectric tensor εs, εs by the

equation:

∆Ri

R0
=

4ω

c
cosθIm

(
εsii − εb
εb − 1

)
(2.25)

or, in the case of normal incidence:

∆Ri

R0
=

4ω

c
Im

(
4παii(ω)

εb − 1

)
(2.26)

In Eq. 2.26 we used the slab polarizability instead of the surface and bulk dielectric

function. More details of this theory can be found in reference [32].
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2.2.4 Theory of electron energy loss at surfaces

We use a semiclassical dipole scattering theory that accounts for the long-range

interaction between the incident electrons and the medium under study [25, 38].

Assuming planar scattering, and taking yz as being the scattering plane (z is the

surface normal, see Fig. 2.7) the scattering probability is defined by:

P(k,k′) = A(k,k′) Im g(q||, ω) (2.27)

where k and k′ are the incident and scattered wavevectors respectively. The kine-

matic factor, A(k,k′):

A(k,k′) =
2

(ea0π)2
1

cos θ

k′

k

q||

|q2|| + q2⊥|2
(2.28)

mostly contains the information concerning the scattering geometry (see Fig. 2.7).

The angle θ is the direction of the incident beam with respect to the normal to

Figure 2.7: Schematic representation of the reflection geometry for Electron Energy

Loss Spectroscopy experiments.

the surface plane, and q||, q⊥ are the parallel and perpendicular components of the

transferred momentum q = k− k′.

The loss function is defined by:

g(q||, ω) = − 1

1 + εeff(q||, ω)
(2.29)

and represents the part of Eq. 2.27 involving the approximation of the model and

the separation between bulk and surface contributions to the dielectric function.
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If the surface were to be modelled as a semi-infinite truncated bulk, εeff would be

replaced by εb and we would obtain the familiar expression of Mills [38].

In this work we adopt an anisotropic three-layer model of the surface as derived

by Selloni and Del Sole [39, 40]. The surface is modelled as in Fig. 2.8: a semi-

infinite layer of vacuum, a surface layer of thickness d, represented by the surface

dielectric tensor εs, and a semi-infinite layer of bulk (dielectric function εb). The

effective dielectric function is defined by:

εeff(q||, ω) = εs(q, ω) ×

×εs(q, ω) + εb(q, ω) + ∆(q, ω)e−2q||dεaux(q,ω)

εs(q, ω) + εb(q, ω) − ∆(q, ω)e−2q||dεaux(q,ω)
(2.30)

where d is the thickness of the surface, εb(q, ω) and εs(q, ω) are the bulk and surface

dielectric function and ∆(q, ω) = εb(q, ω) − εs(q, ω).

In particular εs(q, ω) and the auxiliary function εaux(q, ω) are written as a function

of the y, z components of the dielectric tensor: εs(q, ω) =
√
εs,y(q, ω)εs,z(q, ω) and

εaux(q, ω) =
√

εs,y(q,ω)
εs,z(q,ω) .

Although the dielectric functions appearing in Eq. 2.30 are fully dependent on q||

1

ds

b

ε = 

ε = ε

ε = ε

z

Figure 2.8: Schematic representation of the constituent parts of the three-layer

model of the surface.

and ω, such quantities are not easy to calculate, since q and ω are not independent.

Hence we make the approximation of replacing εs(q, ω) with the optical dielectric

function εs(ω) ≈ limq→0 εs(q, ω). This appears to be a reasonable assumption since

for most of the experiments modelled in this work, q is rather small.

Surface dielectric functions are calculated according to Ref. [37] using a cutoff func-

tion (as discussed in the previous sections) in order to select the number of terminal

layers contributing to the surface response.
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Chapter 3

Efficient calculation of the elec-

tronic polarizability

In this section we show the application of an efficient numerical scheme to obtain

the independent–particle dynamic polarizability matrix χ(0)(r, r′, ω), a key quantity

in modern ab initio excited state calculations. The method has been applied to

the study of the optical response of a realistic oxidized silicon surface, including

the effects of crystal local fields. The latter are shown to substantially increase

the surface optical anisotropy in the energy range below the bulk bandgap. Our

implementation in a large–scale ab initio computational code allows us to make a

quantitative study of the CPU time scaling with respect to the system size, and

demonstrates the real potential of the method for the study of excited states in

large systems.

3.1 Motivations

The recent developments of experimental techniques for the non destructive study

of solid surfaces call for a simultaneous improvement of the theoretical tools: the

interpretation and prediction of optical and dielectric properties of surfaces require

more and more quantitative and reliable ab initio calculations, possibly including

many body effects. Such an improvement of the theoretical description can be

achieved, for example, by lifting some of the usual approximations adopted in the

calculation of the optical response. However, making less approximations increases

the computational heaviness, and is only possible if efficient numerical algorithms

can be adopted. A good example is given by the calculation of the independent–

particles dynamical polarizability matrix χ(0)(r, r′, ω), which is often required as the

starting point in Time-Dependent Density Functional Theory (TDDFT) [22] and in

41
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Many-Body Perturbation Theory-based calculations, such as in the GW [41], or

GW+Bethe-Salpeter schemes (for a review, see e.g. ref. [3]). Evaluating the full

response matrix for realistic, many-atoms systems can be a major computational

bottleneck, since it requires a computational effort growing as the fourth power of

the number of atoms, and the availability of efficient numerical schemes becomes a

key issue.

Recently, schemes allowing to decouple the sum-over-states and the frequency depen-

dence have been presented. Miyake and Aryasetiawan [42] and Shishkin and Kresse

[43] have shown that methods based on the Hilbert transform can substantially re-

duce the computational cost of frequency-dependent response functions, making it

comparable to that of the static case. In particular the approach presented in [42]

has been applied to a linear-muffin-tin-orbital (LMTO) calculation of the spectral

function of bulk copper, while in [43], a work focused on the GW implementation

using the Projector Augmented-Wave method (PAW [44]), a similar approach is

used to compute the spectral function of bulk silicon and materials with d electrons

(GaAs and CdS). Another recent work by D. Foerster [45] is focused on the same

issue and demonstrates how the use of a basis of local orbitals can reduce the scaling

of a susceptibility calculation for an N–atom system from N4 to N3 operations for

each frequency, but at the cost of disk space.

However, as a matter of fact, application of such non-traditional methods to large

supercells, such as those involved in real surface calculations, have not been pre-

sented so far.

It may be stressed that for a given application the computational burden is deter-

mined not only by general scaling law, but also by prefactors. In particular, prefac-

tors determine the crossover where one method becomes more convenient than the

other. This crossover has not yet been discussed for the Hilbert transform methods.

In the present work, we demonstrate the application of a scheme -similar to that

introduced in [42] and [43]- based on the efficient use of the Hilbert transforms,

by performing the calculation of the optical properties of a realistic, reconstructed

surface: Si(100)(2×2):O, covered with 1 monolayer (ML) of oxygen.

We provide a quantitative evaluation of the computational gain for this calculation

of the full dynamical independent-particle polarizability. The latter is constructed

from Kohn-Sham eigenvalues and eigenvectors and is then used to compute surface

optical spectra, including for the first time the local field (LF) effects on Reflectance

Anisotropy (RAS) and Surface Differential Reflectivity (SDR) spectra of this surface.
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3.1.1 Local field effects

The impact of local fields on surface optical spectra has been a controversial issue

for decades, specially concerning the so-called intrinsic or bulk–originated effects.

The latter have been measured, for energies above the bulk bandgap, since the sem-

inal works by Aspnes and Studna [46] showing that the normal incidence optical

reflectivity of natural Si(110) and Ge(110) surfaces displays an anisotropy of the

order of 10−3. The effect was called intrinsic since it is not due to the existence of

surface states, nor to surface reconstruction. Early model calculations by Mochan

and Barrera [47] performed for a lattice of polarizable entities and exploiting the

Clausius-Mossotti relation pointed out that intrinsic anisotropies could be due to

LF effects. A subsequent work by Del Sole, Mochan and Barrera [36] based on Tight

Binding (TB) has shown that the RAS spectra calculated for Si(110):H within this

semiempirical scheme did not reproduce well the experimental data, despite the in-

clusion of surface LF effects. However, more recent calculations based on realistic

bandstructures (within DFT-LDA with GW-corrected band gap) [48] have suggested

that intrinsic anisotropies at the bulk critical points for the (almost ideally termi-

nated) Si (110):H surface could arise as a consequence of surface perturbation of

bulk states, without invoking LF effects. Other tight-binding calculations (see, e.g.,

ref. [49]) suggested the existence of intrinsic surface optical anisotropies not due to

surface local fields.

A substantial advance in clarifying the role of local fields has been achieved only

recently by F. Bechstedt and co-workers, who carried out a calculation of the RAS

spectra of Si(110):H [50] and monohydride Si(100)(2x1) [51] including self-energy,

crystal local fields, and excitonic effects from a fully ab initio point of view. In both

the considered surfaces, which have no surface states within the bulk bandgap, the

LF were found to cause a slight decrease of the optical reflectivity; however, the ef-

fect was found to cancel to a large extent in the RAS spectra, being almost identical

for the two polarizations of the incident light. The situation may be different in the

case of extrinsic optical anisotropies, i.e. those directly related to surface states and

surface reconstruction, and appearing below the bulk bandgap. In at least one case

substantial effects due to LF have been reported [52]. However, further calculations

for a wider class of surfaces are necessary in order to assess this point more precisely.

The system we consider here belongs to a widely studied family of surfaces, because

of their importance in the understanding of silicon-silicon dioxide interfaces in semi-

conductor technology. Despite the many experimental [53, 54, 55, 56, 57, 58, 59] and

theoretical [60, 61, 62, 63, 64, 65] works appeared in recent years, the debate on the
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oxidation mechanism of Si(100) is still open. However, the most favorable oxygen

adsorption sites in the first stages of (room-temperature) oxidation process have

been identified as the dimer-bridge position, and a bridge position on the backbond

corresponding to the lower atom of the dimer. This remark is supported by STM

experiments [59] and by a first-principles molecular dynamics calculation [65]. From

the theoretical point of view, ground and excited state properties of Si(100)(2×2):O

at 0.5 and 1ML coverage have been recently studied by some of the authors [66];

however, computational limits prevented till now the inclusion of the local field ef-

fects in the ab initio calculation of optical properties.

In the following paragraphs we brefly summarize the theoretical framework and

the expression of χ(0) usually employed in plane–wave based calculations. Then we

show how the Hilbert transform (HT) technique can be applied, as a generaliza-

tion of the Kramers–Kronig relations, in order to decouple the sum-over-states and

the frequency dependence in χ(0). Moreover an estimation of the accuracy and the

possible computational gain are presented for a model system.

3.2 Theoretical framework

The starting point of our work is a DFT-LDA ground state calculation performed

with the ABINIT code [67] yielding independent-particle eigenvalues and eigenvec-

tors within the Kohn-Sham scheme [1, 2]. Besides to the occupied ones, empty

(conduction) states up to an energy of several eV above the Fermi level are obtained

by means of iterative diagonalization techniques.

However, in order to study the optical and dielectric response, the level of theory

must be brought beyond the ground state one, using, e.g., many body perturbation

theory or TDDFT [22]. The latter is particularly suited for the study of neutral

excitations, as those involved in optical reflectivity and electron energy-loss.

3.2.1 Fundamental ingredients

Within TDDFT, it is possible to obtain the retarded density-density response func-

tion χ(r, r′, ω) from its non-interacting Kohn-Sham counterpart χ(0)(r, r′, ω) through

a Dyson-like equation:

χ = χ(0) + χ(0)Kχ (3.1)
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where the kernelK contains two terms: the Coulomb potential, vc, and the exchange-

correlation kernel, fxc(r, r
′, ω). An explicit expression for χ is then given by

χ = χ(0)
[
1 − (vc + fxc)χ

(0)
]−1

. (3.2)

Eq.s 3.1 and 3.2 are matrix equations, involving two-points functions such as χ and

χ(0). In the present case, working within a plane-waves expansion, χGG′(q, ω) and

χ
(0)
GG′(q, ω) are matrices in reciprocal space, and vc(q+G) = 4π

|q+G|2
is the Coulomb

potential. The exchange-correlation contribution, fxc, is not exactly known. It can

be included in an approximate form, e.g. using the LDA functional [5, 6] in the

adiabatic approximation (ALDA), or in a more sophisticated approximation such

as those described in [68, 69, 70, 71, 72, 73]. In order to compare with optical

experiments, the macroscopic dielectric function εM (ω) must be calculated. The

latter is defined as:

εM (ω) = lim
q→0

1

ε−1
G=G′=0(q, ω)

(3.3)

where the inverse dielectric function ε−1
G,G′(q, ω) is linked to the response function

χ by:

ε−1
G,G′(q, ω) = 1 + vc(q + G)χG,G′(q, ω). (3.4)

When only vc is included in the kernel K of eq. 3.1 exchange and correlation effects

in the response are neglected, while the use of the correct expression 3.3 still consider

the LF effects [74]. Already at this level the calculations can become very heavy

from the computational point of view when the full χ(0)(r, r′, ω) matrix has to be

obtained. In complex systems with large unit cells the only tractable way to proceed

is often to neglect local fields, by assuming that εM (ω) is well approximated by the

average of the microscopic dielectric function:

εNLF
M (ω) = lim

q→0
ε0,0(q, ω) (3.5)

This corresponds to neglecting the off-diagonal elements of ε in reciprocal space 1.

When moreover exchange and correlation effects are neglected, (independent quasi-

particle approximation or IP-RPA) the imaginary part of the macroscopic dielectric

function εNLF
M takes the simple Ehrenreich and Cohen [75] form:

ImεNLF
M (ω) =

16π

ω2

∑

ij

| < ψi|v|ψj > |2δ(ǫj − ǫi − ω) (3.6)

1In real space, this corresponds to assume a dependence of εM (r, r′) only on the difference (r−r
′)
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where v is the velocity operator and j, j stand for occupied and unoccupied states

respectively. The substantial simplification obtained in this case explains why most

of the calculations of the optical properties of real surfaces are done within the

independent quasiparticle approach, neglecting local field effects. On the other

hand, a fast and efficient scheme to compute the full matrix χ(0) represents a key

issue in order to be able to go beyond this approximation, e.g. by including the local

fields, as we do in the present work. Moreover, an efficient method giving access

to the full χ(0) is of paramount importance when the screened coulomb interaction

WGG′(q) is needed, such as in ab-initio GW calculations. In the following, we hence

concentrate on the expression of χ(0) itself, i.e.:

χ(0)(r/r′, ω) = 2
∑

ij

fi(1 − fj)ψ
∗
i (r)ψj(r)ψ

∗
j (r

′)ψi(r
′) ×

×
[

1

ω − (ǫj − ǫi) + iη
− 1

ω + (ǫj − ǫi) + iη

]
(3.7)

where fi are occupation numbers (0 or 1 in the present case), η is an infinitesimal

and the factor 2 is due to the spin degeneracy. Switching to reciprocal space and

focusing on the case of semiconductors, we make valence (v) and conduction (c)

bands to appear explicitly, and rewrite this equation as:

χ
(0)
G,G′(q, ω) =

2

Ω0Nk

∑

k

∑

c,v

[
ρ̃vck(q + G)ρ̃cvk(q + G′)

ω − (ǫck − ǫvk) + iη
− ρ̃cvk(q + G)ρ̃vck(q + G′)

ω + (ǫck − ǫvk) + iη

]

(3.8)

where Ω0 is the volume of the unitary cell and we have also introduced the notation

ρ̃vck(q+G) to indicate the Fourier transform of φ∗vk+q(r)φck(r). From the numerical

point of view the evaluation of these sums for each frequency ω can become very

heavy. Indeed, for a realistic system the evaluation of eq. 3.8 involves, for each

frequency, the summation over a large number of terms, which for a system of 50

atoms typically is of the order of 108.

3.2.2 The Hilbert-transform approach

Since we consider the case of the q → 0 limit to study optical properties, in the

following the label q will be omitted to simplify the notation. The generalization

to the case of finite q is straightforward. Introducing a simplified notation for band

and k-point indexes, we define a single index of transition t to represent the triplet

{v, c,k}. In this way, ωt indicates an (always positive) energy difference, (εc,k−εv,k).
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We also introduce the two complex quantities:

Z1,t = ρ̃vck(G)ρ̃cvk(G′) (3.9)

Z2,t = −ρ̃cvk(G)ρ̃vck(G′) (3.10)

such that:

χ
(0)

GG′(ω) =
∑

t

[
Z1,t

ω − ωt + iη
+

Z2,t

ω + ωt + iη

]
. (3.11)

When G = G′ (diagonal elements) the Zi,t are real, and Z1 = −Z2. Using

lim
η→0+

1

x± iη
= P

(
1

x

)
∓ iπδ(x) (3.12)

one can rewrite the η → 0+ limit of equation 3.11 as the sum of four terms:

χR1
GG′(ω) =

∑

t

Z1,t

ω − ωt
(3.13)

χR2
GG′(ω) = iπ

∑

t

Z1,tδ(ω − ωt) (3.14)

χA1
GG′(ω) =

∑

t

Z2,t

ω + ωt
(3.15)

χA2
GG′(ω) = iπ

∑

t

Z2,tδ(ω + ωt) (3.16)

R and A label resonant and anti resonant contributions, respectively, and the four

terms are general complex quantities. In χR2(ω) and χA2(ω) each term Zt con-

tributes to the function χ only at ω = ωt, and has no effect elsewhere. By dis-

cretizing the frequency axis, the sums over t appearing in χR2 and χA2 can hence be

performed once and for all, at difference with those labeled by R1 and A1 for which

the sums should be calculated for each ω. Thanks to the linearity of the Hilbert

transform, defined as

Hf (t) =
1

π
P
∫ +∞

−∞

f(x)

x− t
dx, (3.17)

one can however directly obtain χA1 and χR1 from χA2 and χR2:

χA1 = H
[
χA2

]
(3.18)

χR1 = H
[
χR2

]
(3.19)

In such a way 2, it is possible to recover the complete χ
(0)
G,G′(ω) in the spec-

tral range of interest from the knowledge of a single sum performed over the poles

2In the case of real matrix elements, Zi,n ∈ R, one recovers the Kramers-Kronig relations linking

real and imaginary parts of the response
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ωt. In other words, one can avoid the explicit summation over t = {c, v,k} to

be repeated for each frequency. The present procedure for the calculation of the

frequency-dependent polarizability matrices is similar to the method of Miyake and

Aryasetiawan [42], with the difference that those authors represented δ-functions

using Gaussians, instead of bare rectangular functions as in our case 3.

3.2.3 Numerical efficiency for a toy system

Our scheme has been first tested on a model system4 in order to check both the

accuracy and the efficiency of the algorithm. Figure 3.1 shows the results of the test,

comparing χ(0)(ω) (real part) as obtained in the traditional way (i.e. by evaluating

expression 3.8 for several frequencies), and by the Hilbert transform (HT) algorithm.

The results are practically indistinguishable on the scale of the plot. Figure 3.2 shows

the growth of the required CPU time as a function of the number of transitions

(number of {v, c,k} triplets). The gain appears to be proportional to the system

size. The possibility to achieve such a large gain, at least in principle and for a

simple system, was also noticed in the previous works describing efficient algorithms

for the calculation of χ(0) [42, 43].

Alternative approaches for efficient TDDFT calculations have also been suggested.

In particular, another promising scheme based on a superoperator approach and

allowing to access TDDFT spectra in a numerically efficient way has been recently

introduced by Walker and coworkers [76]. This approach is however not designed

for the calculation of the whole matrix χ(0), contrary to the method studied here.

In order to know the actual CPU requirements for the calculation of χ(0), and to

Figure 3.1: Accuracy test

for the HT-based algorithm,

shown for the real part of

χ
(0)

GG′(ω) of a model system

(see text). The two curves

turn out to be indistinguish-

able on the scale of the plot

(maximum error less than

0.5% ).

3Similarly, Shishkin and Kresse [43] used triangular functions
4We considered bulk silicon Kohn-Sham energies, increasing the number of transitions to build

χ(0), and randomly redefining the transition matrix elements
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explore the possibilities to study complex systems, such as the impurity levels and

band offsets mentioned in ref. [43], in practice one has to keep into account the time

used to compute the matrix elements (numerators in eq. 3.11), and the time used to

perform the Hilbert transforms, which was not explicitly evaluated in previous works.

In the following, we hence applied our approach, similar in its essence to that used

in [42] and [43], to a large system investigating the actual numerical performances

of the algorithm. As it will be shown below, substantial improvements can actually

be achieved in such realistic calculations.

Therefore, in the following section, we use our implementation of the HT scheme

Figure 3.2: Computational

load requested to evaluate

χ
(0)

GG′(ω) on a model system,

as a function of the number

of transitions (which scales as

the size of the system), for

both the traditional and the

HT-based methods.

in the ab initio DP code [77] to study a real reconstructed surface: the oxidized

Si(100)-(2×2), for which we present the first calculation of its optical reflectivity

spectra (RAS and SDR) with the inclusion of the local field effects.

Finally, we carefully compare the numerical performance of the DP code with and

without the use of HTs, and we draw our conclusions.

3.3 Optical properties of oxidised Si(100)-(2×2)

The HT method has been implemented into the large scale, plane–waves ab ini-

tio TDDFT code named DP, developed by the French node of ETSF [78]. As

mentioned in the previous paragraphs, we used it to calculate the optical prop-

erties of Si(100)(2×2):O. For this surface we adopt the equilibrium structure for

1ML coverage shown in figure (3.4), which is representative of a situation in which

dimer and backbond sites are both occupied by an oxygen atom (structure c3 in

ref. [79, 80] and see chapter 5 for further considerations). The surface is simulated

with a slab composed by 6 layers, containing 48 Si and 8 oxygen atoms, in a repeated

supercell approach. Our structural results agree well with those of previous calcu-

lations [61, 81, 79, 80]. We use standard norm conserving pseudopotentials of the
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Hamann type [20], and an energy cut off of 30 Ry, yielding 15000 plane waves in our

unit cell. Eight special (Monkhorst-Pack, [82]) k-points in the irreducible Brillouin

zone (IBZ) are used for the self-consistent ground state calculation, while a 7×7 grid

is used in the evaluation of χ
(0)

GG′(ω). Kohn-Sham eigenvalues and eigenvectors are

obtained for all occupied states (120) and for empty states up to 15 eV above the

highest occupied state (top valence). Optical properties are computed through the

evaluation of the macroscopic dielectric function with and without the inclusion of

local field effects.

Figure 3.3: Imaginary part of the di-

agonal components of the slab dielec-

tric tensor, calculated with (LF) and

without (IP-RPA) local field effects, for

the three polarizations: (a) parallel to

the surface, along the dimer axis; (b)

parallel to the surface, along the dimer

chains; (c) perpendicular to the sur-

face. The spectra presented in this fig-

ure are not fully converged in the k-

points sampling.

Figure 3.3 shows the imaginary part of the slab dielectric function as a function

of the energy. Local field effects are quite important in the low energy region (0-

2) eV, enhancing εM for light polarized along the direction of the dimers chains (x

direction, see Figure 3.4), and suppressing it for light polarized along the dimers axis

(y direction). This goes in the direction of a better description of the microscopic

inhomogeneities of the system. In the present case, the extrinsic surface optical

anisotropy, as defined in the introduction, is hence found to be visibly affected by
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LF. In the case of the third polarization, i.e. the one perpendicular to the surface

(not experimentally relevant in the case of normally incident light), local field effects

are huge, and introduce a blueshift of the absorption edge as large as 5 eV. This can

be explained by the strong inhomogeneity of the charge distribution in passing from

the slab to the vacuum, leading to a classical depolarization effect. Similar behaviors

have been found for example in GaAs/AlAs superlattices [83], in graphite [84] and

nanowires [85, 86].

Starting from the slab dielectric function, we computed Reflectance Anisotropy

(RAS) and Surface Differential Reflectivity (SDR) Spectra [87], with and without

inclusion of LF effects. We used theoretical models (see chapter 2 or [32]) linking

the RAS and SDR spectra to the dielectric functions evaluated for the bulk crystal

(εb) and for the slab (εii) through the relation:

∆Ri

R0
=

4ω

c
Im

[
εyy(ω) − εxx(ω)

εb(ω)

]
(3.20)

where εxx and εyy are the diagonal components of the surface dielectric tensor. We

show our results for RAS and SDR in figures 4.9 and 3.6 respectively.

Figure 3.4: Surface structure

of Si(100)(2x2):O at 1ML cov-

erage with oxidation of Si

dimers and backbonds. oxy-

gen atoms are depicted in

dark gray (red), while light

gray (yellow) circles represent

bulk and surface Si atoms.

Dimer chains are oriented

along the x direction. (a): top

view of the surface (xy plane),

with the surface unit cell; (b):

lateral view of the half slab

(yz plane).

We first discuss the case of RAS. The effects of local fields on the imaginary part

of the dielectric tensor are most evident in the low-energy region of the spectrum

(below 2 eV), as shown in the inset of Figures 3.3a and 3.3b. In particular, LF are
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Figure 3.5: Calculated RAS spectrum of Si(100)(2x2):O at convergence, for the

structural model shown in figure 3.4. Results including (LF) or neglecting (IP-

RPA) the local field effects are very similar, except for the region between 0.8 and

1.8 eV, where the LF effects strongly enhance the RAS signal. The energy scale has

been shifted by 0.6 eV to compensate for the neglect of self-energy effects.

found to enhance and sharpen the strong ε2 peak at about 1.2 eV for light polarized

along the dimer chains (fig. 3.3b), and to reduce the first three peaks for light

polarized along the dimer axis. As a result, LF induce a strong enhancement in the

surface optical anisotropy (of the order of 100%) in the region between 0.8 eV and

2 eV, as displayed in fig. 4.9. This low-energy region (below the direct gap of bulk

Si) corresponds to surface-localized states, which are expected to carry the surface

anisotropy. The fact that LF evidence this anisotropy is consistent with the fact

that dimer chains realize a structure which is geometrically strongly inhomogeneous

in the direction perpendicular to the dimer chains (see fig. 3.4). At higher energies

(above 2 eV) bulk contributions dominate ε2, and the resulting RAS is mainly due

to surface perturbed bulk states. The latter appear to be less affected by local fields

than the true surface states, and lead to a RAS spectrum which, above 2.0 eV, is

almost insensitive to the inclusion of local field effects. This picture is confirmed

by the analysis of SDR results. The latter are in fact calculated for unpolarized



3. Efficient calculation of the electronic polarizability 53

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5  6

 (
∆R

cl
ea

n 
- 

∆R
pa

ss
)/

R
cl

ea
n 

[%
] 

 Energy [eV]

LF
IP-RPA

Figure 3.6: Calculated SDR spectrum (unpolarized light) of Si(100)(2x2):O, for the

structural model shown in figure 3.4. Results including (LF) or not (IP-RPA) the

local fields are almost indistinguishable, showing that the effects visible in the low-

energy part of figure 3.3 are canceling each other in the SDR spectrum. The same

energy shift as in figure 4.9 has been applied. In polarized SDR the local field effects

would be of the same size as for the RAS spectra.

light, i.e. by averaging εxx and εyy. Since LF enlarge εyy and reduce εxx, their

effects almost completely cancel out when the average is taken. Our calculated

(unpolarized) SDR spectrum, displayed in fig. 3.6, appears in fact to be very little

affected by the local fields, in the whole energy range between 0 and 6 eV. However,

if a polarized SDR spectrum is computed, then local fields are found to influence

the low-energy region (≤ 2 eV), in a way which is very similar to the behavior of

the RAS.

Unfortunately, it is not possible to perform here a comprehensive comparison

with RAS and SDR experimental data, since this would require the calculation of

several possible reconstruction and geometries. In fact, the oxidation mechanism

of Si(100) has been shown to be exceedingly complex, with different mechanisms

playing their role depending on the oxidation temperature: a barrierless oxidation

of the first Si layer [65], or an “active oxidation” involving etching of the surface and
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penetration of oxygen in a layer-by-layer manner at higher temperature [88, 89, 90].

Recently, the Si(100)(2x1):O surface optical anisotropy has been shown to be sen-

sitive to the structural details of the oxygen adsorption by ab–initio calculations of

the atomic geometries and optical response of a large number of Si(110):O struc-

tures [91, 92]. An highly structured potential energy surface has been found, with

minima at the backbonds of the “down” atoms in Si–Si dimers [92]. Moreover, an

appreciable amount of disorder is probably present after oxidation of the first Si

monolayer, and the local strain induced by oxygen adsorption is expected to have a

sizable impact on the optical anisotropy spectra [91].

However, our findings for LF effects in the single case studied here suggest an

important general remark about surface optical spectroscopies. In fact, it is well

known that, due to the large penetration depth of visible and UV photons, the

surface–specific optical reflectivity signal is very small with respect to the bulk con-

tribution. For materials with an isotropic bulk, the RAS spectroscopy has indeed

been developed in order to extract the surface signal, by exploiting its anisotropy. A

correct evaluation of the latter has hence the highest priority in theoretical calcula-

tions of surface optical spectra. The fact that crystal local fields are potentially able

to alter significantly the surface optical anisotropy, at least below the bulk bandgap,

should hence be kept in mind, particularly when the anisotropy of electronic states

is associated with a large structural anisotropy at the surface, such as in the case of

dimer chains on Si(100)(2×1).

3.4 Computational scaling and performances

In this section, we present a quantitative analysis of the numerical performance of the

HT-based approach, as implemented in the large scale code DP [77], with respect to

the traditional approach. Several calculations have been done by varying the three

main convergence parameters: (i) the number of valence–conduction transitions

(Nt = Nk × Nv × Nc); (ii) the number of frequency intervals considered in the

spectrum, i.e. the spectral resolution (number of frequencies, Nω); (iii) the number

of plane–waves considered in the response matrix (NG). Optical properties usually

converge at an NG value which can be substantially smaller than the total number

of plane waves, Ng, used to describe the wavefunctions.

The calculation of χ(0) is expected to scale, in the case of the reference approach,
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as 5:

Tref = Nk

[
αNvNcNglogNg + βNvNcN

2
GNω

]
+ A (3.21)

where Nk is the number of k-points, and α and β are prefactors which are indepen-

dent on Nv, Nc, NG, Nk, Ng, and Nω. The first term in equation (3.21) is due to the

evaluation of the numerators Zn in equations (3.14) and (3.16) by using FFT, and

is present both in the reference and Hilbert approach. The second term stems from

to the evaluation of equation (3.11) in the traditional way. The remaining term A

keeps into account residual parts of the calculation, as the matrix inversions, which

contribute much less to the CPU time than the first two terms.

The expected scaling in the case of the Hilbert-based scheme is instead:

Tnew = Nk

[
αNvNcNglogNg + β′NvNcN

2
G

]
+ γN2

GN
2
ω + A′ (3.22)

In this case, the second term does not contain the factor Nω anymore, and its pref-

actor becomes β′, due to the calculation of χA2 and χR2 (equations 3.14 and 3.16).

The calculation becomes, in this sense, comparable to a static one.

However, the actual evaluation of the Hilbert transforms (equations 3.18 and 3.19)

introduces a new term scaling as N2
GN

2
ω. Due to the small prefactor γ, the latter

term can often be neglected (see, e.g., figure 3 of reference [42]). In the present

work, we found that the CPU time spent inside the Hilbert transform itself can be

made negligible by an optimized algorithm6.

Considering an N-atoms unit cell, the number of transitions Nt is clearly the

parameter growing fastest with the system size, since it is proportional to N2. About

22000 transitions per k-point, corresponding to the inclusion of about 200 empty

bands, are requested to converge the dielectric tensor of the Si(100)(2x2):O slab

up to 12 eV. The number of frequency intervals, Nω, is instead independent on

N, but it grows linearly with the required spectral resolution. In the present case,

300 frequencies have been necessary in order to achieve a 40 meV resolution over

a spectral range of 12 eV. Finally, NG, i.e. the size of χ(0) in reciprocal space,

depends on the requested real-space resolution needed in the description of the

induced density variations. This means that larger NG will be necessary to describe

systems with smaller interatomic distances, or with larger polarizability. The real-

space resolution is independent on the system size; however, for a fixed resolution

5NtN
2
G leads to the N4

at scaling mentioned in the introductory section.
6Exploiting the fact that the principal value numerical integration routine has to be called N2

G

times, always on the same energy intervals, a substantial gain could be achieved by tabulating the

(about 106) required values of the complex logarithm once and for all at the beginning of the double

loop over the number of G vectors in the construction of χ(0).
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Figure 3.7: Quantitative

study of the computational

load required to evaluate

the χ(0) matrix for the 56-

atoms slab representing a

Si(100)(2x2):O surface. The

effects of the three main

parameters determining the

numerical convergence of

the theoretical spectra are

studied separately. (a): num-

ber of valence–conduction

transitions, determined by

the energy cutoff on the

empty (conduction) bands

included in eq. (3.8), the

number of occupied bands

being fixed; (b): number of

frequency intervals taken on

the ω axis, determined by the

requested spectral resolution;

(c): size of the χ(0) matrix

in reciprocal space, roughly

proportional to the system

size (for a fixed real-space

resolution).

NG will grow linearly with the volume of the unit cell in direct space. NG is hence

proportional to the number of atoms (in a bulk system) or to the volume of the

supercell (for a finite or semiinfinite system). In our slab calculation, converging

the spectra with local field effects requires to consider at least 113x113 matrices

(incidentally, we stress that the IP-RPA spectra, requiring just the G = 0, G′ = 0

matrix element of χ(0), do not depend on NG ).
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The HT algorithm turns out to be clearly advantageous with respect to Nt and

NG, as shown in the first and last panels of figure 3.7. Concerning Nω, despite an

unfavorable scaling in the limit of infinite spectral resolution (the CPU time grows

quadratically with the number of frequency intervals), one must notice that, due to

the small prefactor γ, the HT method is largely convenient in whole range of interest

(Nω ≃ 103).

3.5 Conclusions

Two classes of conclusions can be drawn from the presented results. First, the

physics: the study of Si(100)(2x2):O has shown that local field effects, although

playing only a minor role on the surface optical properties above the bulk bandgap,

are able to enhance substantially the surface optical anisotropy in the low–energy

end of the spectra. A similar effect can be expected for other surfaces, when the

anisotropy of electronic states is associated with a large structural anisotropy, such

as in the case of the dimer chains on Si(100)(2x2). Moreover, large local field

effects are found for light polarized normally to the surface. Second, the numerics:

the computational gain achievable by using the Hilbert transform-based algorithm

has been shown to be substantial, both in a model system and in a real, physical

application. A successful implementation of the Hilbert transform method in the

large-scale plane-waves ab initio computer code DP [77] allows us to locate the

crossover (starting from which the Hilbert transform algorithm becomes convenient)

already at medium size systems (less than 50 atoms).
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Chapter 4

The clean Si(100) surface

Surfaces are complex physical systems that are very important from both the fun-

damental and technological point of view. One of the most important surfaces of all

is the (100) surface of silicon, as it appears in most electronic devices. Nevertheless,

in spite of its many applications, a completely unambiguous structural and physical

description of Si(100) is lacking. In this chapter we summarize our results about first

principles calculations of electron energy loss spectra of the Si(100) clean surface.

4.1 Si(100): which reconstruction?

Due to its enormous technological importance, the Si(100) surface has been the sub-

ject of a wide range of experimental and theoretical studies spanning several decades.

In fact, quality publications continue to appear regarding the atomic structure and

electronic properties of the clean surface. Following early LEED experiments [93],

it was understood that Si(100) forms a p(2 × 1) reconstruction. The classic ex-

planation of the LEED observation is that the surface is composed of rows of Si

dimers separated by trenches (Fig. 4.2), as confirmed by various scanning tunnelling

microscopy studies [94, 95]. Although some quantum chemistry studies have found

that a symmetric dimer structure (causing a metallic surface) forms the global min-

imum [96], several total energy calculations based on density functional theory [97]

have found that dimer buckling induces a small energy gain, such that the dimers

adopt an asymmetric configuration and the surface remains semiconducting [98].

Three distinct structures have been proposed for the Si(100) surface: the p(2×1),

whereby all dimers are buckled the same way (see Fig. 4.2(a)); the p(2×2) structure,

where alternating dimers in a row are buckled in opposite directions, and adjacent

rows are buckled in phase (see Fig. 4.2(b)); the c(4×2) phase, being the same as the

p(2× 2) but with adjacent rows buckled out of phase (see Fig. 4.2(c)). Total energy

calculations have found [97] that the p(2×1) reconstruction is prohibitively higher in

61
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energy than the other two (at zero K), and that the c(4×2) is only slightly favoured

over the p(2× 2). Which reconstruction occurs on the surface depends critically on

the temperature. LEED studies have shown that an order-disorder phase transition

occurs at about 200K [99, 100]. Below this critical temperature, a c(4 × 2) phase

is generally observed; above it, a p(2 × 1) periodicity is seen. Direct observation of

the surface structure with STM is complicated by two factors however. Firstly, it

is well established now that the experimental measurement itself can influence the

result, and drive c(4×2)→p(2×2) phase transitions [101, 102]. Charge injection, or

electric fields induced by the STM tip, can cause dimers to flip, according to various

experimental [103, 102] and theoretical works [104, 105]. Nevertheless, the general

consensus is that the c(4 × 2) reconstruction is the more stable structure below the

critical temperature [102, 106].

Above 200K, STM images appear to show a symmetric dimer configuration.

However, at these temperatures the dimer rocking mode is activated, and hence it

is believed that the observed symmetric p(2× 1) structure is merely a time average

of the thermal flip-flop motion of the buckled dimers. Based on molecular dynamics

simulation of the dimer motion, it was suggested that the surface consists of simul-

taneous local presence of asymmetric dimers, and of instantaneously flat symmetric

dimers [107]. More recent studies have suggested that the dimers remain short-range

correlated (see refs. 32–35 in Ref. [108]). In particular, a two photon photoemission

(2PPE) study found minor difference between the surface band dispersion at 90K

and at room temperature [109].

Theoretical simulations of the reflectance anisotropy (RA) spectra confirm that

the p(2 × 1) reconstruction does not reproduce correctly the experimental line-

shape [110, 111, 112]. On the other hand, both c(4 × 2) and p(2 × 2) structures

are quite similar to the experiment, with the c(4 × 2) yielding a slightly better

agreement [110], in particular predicting the observed SDR structure below 1 eV.

Simulation of the surface differential reflectance also favours the c(4×2) surface [113].

In addition to optical techniques such as RAS or SDR, electron energy loss spec-

troscopy (EELS) in the reflection geometry (REELS or RELS) offers an enhanced

surface sensitivity and easy access to a wide energy range (see chapter 2). Although

the majority of literature considering REELS of Si(100) has focused on vibrational

properties [38], several studies have examined the nature of electronic states at the

clean Si(100) surface [114]. Indirect information about surface states was derived

from related studies looking at the changes in the REEL spectrum following oxida-

tion [115, 116, 117]. High resolution (HREELS) measurements were carried out by
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Farrell et al. [118] and Gavioli et al. [119]. In the latter work, tight binding calcula-

tions were performed on the p(2× 1) symmetric and asymmetric dimer models, and

suggested that a mixture of the two structures was necessary to explain the room

temperature EEL spectra. However, the c(4 × 2) structure was not considered in

that work, and therefore some of the conclusions reached are not complete.

In the following sections, we present a computational study of high resolution

EELS for the different reconstructions of Si(100): p(2× 1), p(2× 2) and c(4× 2)Ẇe

consider the energy range that probes the excitation of interband, i.e., about 0–6 eV,

and hence connect the experimental observation directly with the atomic structure

and microscopic electronic response.

4.2 First principle scheme

We use density-functional theory within the local density approxiation (DFT-LDA),

within a plane-wave and pseudopotential framework. The ABINIT [120, 121] and

quantum-espresso/PWSCF [122] codes were used for computing the relaxed atomic

structures, electronic bandstructures, and Kohn-Sham eigenvalues and eigenvectors

required for the evaluation of the optical properties. However, in order to be consis-

tent and since we found only minor differences between spectra computed with the

two codes, we report only the final results obtained using the output of PWSCF.

For all our calculations we used standard norm conserving pseudopotentials of the

Hamann type [20] for both silicon and oxygen generated with FHI98PP package

[123] within DFT-LDA (Perdew-Zunger parametrization [6]) framework.

4.3 Geometric structure

Even if a 7.5 Ha kinetic energy cutoff is rasonable in order to treat the case of a

clean silicon surface, we used a 15 Ha cutoff throughout, as was previously found to

be sufficient for oxidized Si(100) with the same pseudopotential [66]. The effect of

the two cutoff is shown in Fig. 4.1 where it is clear that the minimum of the curve

is not appreciably different.

Therefore we used the theoretical lattice constant of 5.393 Å, as determined at

15 Ha A standard repeated-slab and supercell approach was adopted in order to

model the surface structure.

We use relatively thick slabs (16 atomic layers) separated by 8 layers of vacuum

(about 10 Å). During the geometry optimization, the central four layers were fixed at
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Figure 4.1: Optimization of the lattice parameter of bulk silicon at 7.5 Ha and 15 Ha

cutoff energy.

Figure 4.2: Ball and stick model of p(2 × 1), p(2 × 2) and c(4 × 2) surface recon-

structions. Large circles indicate “up” silicon dimer atoms. Unit cells are indicated

by shaded regions.

the bulk positions and structures were relaxed until the cartesian force components

were less than 20 meV/Å. Our obtained structural parameters are similar to those

obtained previously for this surface (see for example Ref. [110]) such as a dimer

buckling of 0.755 Å and a dimer length of 2.33 Å.
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4.4 Computational aspect

Optical spectra and energy loss spectra were calculated using the YAMBO code

[124], taking Kohn-Sham eigenvalues and eigenvectors from a non-self-consistent

run of the PWSCF code [122]. We carried out convergence tests on the optical and

energy loss properties with respect to the number of bands and the number of k-

points. For the calculation of energy loss we included up to 320 unoccupied bands,

corresponding to minimum e–h transition energy of ∼ 13.5 eV. Further convergence

Figure 4.3: EEL spectrum of the clean Si(100)-p(2×2) surface calculated for incident

energy Ei=100eV and θ = 42. The height of the surface plasmon peak is mostly

affected by the convergence respect to the number of bands.

tests were carried out regarding k-point sampling. For the most converged calcula-

tions, we used roughly equivalent density sets for the three reconstructions: for the

c(4 × 2), 72 k-points in the irreducible Brillouin zone (IBZ), which is equivalent to

1152 points in the (1 × 1) BZ (for both clean and oxidized cells, see next chapter);

for the p(2×2), 64 k-points in the IBZ (equivalent to 1024 points in the (1×1) BZ);

for the p(2×1), 100 k-points in the IBZ (equivalent to 800 points in the (1×1) BZ).

All spectra reported in this work were obtained using the non-interacting particle

(RPA) level of theory. Many-body effects, including local field and excitonic effects,

were compensated for by applying a scissors operator of +0.5 eV to the unoccupied

states, following the recipe of Del Sole and Girlanda [36]. In this way we account for

the well-known underestimation of the DFT band-gap, and partially include self-

energy and excitonic shifts in energy. The value of +0.5 eV was determined in other

works on Si(100) as giving best agreement with the experimental RAS [66].

In the following subsection we present some discussion of major technical tools used
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in order to compute REELS.

4.4.1 Broadening

Inspection of Eq. 2.28 reveals that the cross section goes as 1/q3 as ω → 0. Hence any

features appearing in the loss function Im g(q‖, ω) at low energy can be dramatically

enhanced by the kinematic factor. From the computational point of view this means

that unphysical features may appear close to the origin if a Lorentzian broadening

is used when calculating the surface dielectric function of a system with a small

band gap. We adopt therefore a tiny Lorentzian broadening of δL = 0.006 eV when

calculating the dielectric function, and afterwards convolute the loss spectra with a

Gaussian (FWHM = 0.3 eV) to approach the experimental resolution.

4.4.2 Slicing methods

A crucial adjustable parameter present within the three-layer model of energy loss is

the thickness d of the surface layer, as used in Eq. 2.30. According to the model, an

electron impinging on the surface feels the potential from this surface layer through

its dielectric function εs as well as that of the bulk layer εb. Obtaining εs from the

dielectric function of the slab or supercell εc is not trivial. However early efforts

used a simple subtraction of the computed bulk dielectric function [36]:

I(ω) = (Nb − 2Ns)dlεb(ω) + 2Nsdlεs(ω) (4.1)

where I is the integral of the slab RPA dielectric susceptibility ε(ω, z, z′) over z and z’,

dl is the interlayer spacing, Ns is the number of layers at each surface with dielectric

function ǫs(ω) and Nb is the number of inner layers with bulk dielectric constant

εb(ω). Unfortunatly this approach cannot always guarantee perfect cancellation of

the bulklike layers in the supercell, and may lead to unphysical negative loss features.

A better approach is to extract εs directly using a “cut off” function as described in

chapter 2 or in Ref. [37]. Nevertheless, the choice of d remains somewhat arbitrary.

In this work we define the lower bound of the surface layer corresponding to the

actual penetration depth of the electron for the chosen incident kinetic energy, with

the upper bound defined by the maximum extent of the slab charge density or a

typical surface state wavefunction (see Fig. 4.5). This turns out to be roughly one

atomic layer. We then checked that varying d by an atomic layer did not change

the results too much. The dependence of the REEL spectra on the parameter d is

illustrated in Fig. 4.5.
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Figure 4.4: Effect of the Lorenzian broadening (top), effect of the gaussian convolu-

tion (bottom) on the EEL spectra of a Si(100)-c(4×2) surface (Ei=7 eV and θ =60).

4.4.3 Detector integration

In experimental EEL spectroscopy the detector has a finite acceptance angle for

collecting the scattered electrons. Hence, in order to improve the quantitative es-

timation of the EEL spectra at the surface, we implemented a method to perform

a numerical integration over the circular detector. In particular we account better

for the finite size of the detector window through a random sampling of the circular
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averaged charge density (left); atomic layers are marked with horizontal lines. De-

pendence of REELS spectrum on the chosen surface layer (right).

area and in the computation of the following integral:
∫
A(k, k′)Img(q||, ω)dΩ (4.2)

We implemented the method in the Yambo code [125], the code we used for all fur-

ther calculations. In Fig. 4.7 an illustration of the importance of numerical detector

Figure 4.6: Integration geom-

etry.

integration scheme with regard to relative intensity of peaks is shown. A frequently

used technique is to approximate the integral by an averaged value of the transferred

momentum q.
∫
dΩ →

∫
dq

∫
f (q)dq ≃ f (q̄)
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Figure 4.7: Dependence of REEL spectra on detector integration method: numerical

Monte Carlo, mean value scheme, and single point sampling. Example shown for

c(4 × 2) surface, E0 = 40 eV; θ0 = 60◦; θdet = 1◦.

Figure 4.8: Dependence of

REEL spectra on the detector

size.

A comparaison between the two methods is shown in figure 4.7 where relative in-

tensity of the low energy peaks is corrected with converged numerical integration.

We also add a figure showing the effect of the detector size on the EEL spectrum.

4.5 Calculated spectra for Si(100)

A review of the current understanding of the structure of the clean Si(100) surface

was given in the introduction and a schematic diagram of the three basic surface

reconstructions (the p(2× 1), p(2× 2)and c(4× 2)) is given in Fig. 4.2. Throughout

this work we will refer to the [011] direction as x and the [011] direction as y, with

[100] being the surface normal z. Here we present our results concerning optical and

electronic spectroscopic study of the clean Si(100) surface.
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4.5.1 Reflectivity anisotropy spectra

Several theoretical studies of the RA spectra for the Si(100) surface have previously

been carried out, including tight binding calculations [126], discrete-dipole models

[127, 128], ab initio calculations at the independent particle level [129, 130, 131, 113,

66, 111, 112] as well as more recent studies including many-body effects [91, 132].

Generally it was found that the best agreement with the experimental RA data [35]

is obtained when the c(4 × 2) or p(2 × 2) models are used in the calculations, while

the p(2 × 1) gives poor agreement.

Since we will use the same optical dielectric functions when computing the energy

loss spectra, we show for completeness (in Fig. 4.9) the results of our own supercell

calculations for the c(4×2), p(2×2) and p(2×1) reconstructions at the independent

particle level. The reflectance anistropy (see chapter 2) is defined as

RAS =
∆Rx

R
− ∆Ry

R
, (4.3)

where ∆Ri/R (i = x, y) is the normalized reflectivity (i.e., relative to the Fresnel

reflectivity).

As expected, we find that both c(4×2) and p(2×2) spectra yield a good agreement

with the experimental data.

The p(2×1) reproduces the low energy peak at 1.5 eV rather well, but the comparison

worsens at higher energy. Unfortunately, no experimental data is available for the

RAS of Si(100) in the near-IR range, and is hence limited to >1.1 eV.

4.5.2 Calculated REELS spectra at E0 = 40 eV

We now contrast the RAS results with the theoretical simulation of the HREELS

experiment of Farrell et al. [118] with incident energy of E0 = 40 eV, which roughly

covers the same spectral range as the available RAS data. Experimental results

refers to specular geometry with incident angle of θ = 60◦.

There exists a one-to-one correspondence between RAS and HREELS that can

be justified with theoretical arguemnts when we consider a spectral range below E1.

In fact it can be written that RAS is proportional to Imεs when Imεb is close to

zero. On the other hand:

Img(q, ω) ≃ Im

[
1

1 + εs

]
≃ Imεs

(1 + Reεs)2 + Imε2s
(4.4)

giving a direct proportionality of REEL respect to Imεs. This correspondence is

evident in Fig. 4.14 where HREEL peaks and Imεs are represented. The experi-

mental one-to-one correspondance between RAS and HREELS was also previously
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Si(100), compared with the experimental spectrum of the nominal surface (scaled

by a factor of 5). Experimental data are taken from Ref. [35].

illustrated by Arciprete et al. [133] for the case of GaAs(001)-c(4 × 4).

The experimental data, which are reproduced in Fig. 4.10, are characterized by

surface-derived soulder at 0.9 eV (S0) and a broad peak at 1.4-2.0 eV (S1), and

bulk-derived peaks at about 3.5 eV and 5 eV. The latter peaks have also been iden-

tified in second-derivative off specular geometry spectra at E0=100eV by Rowe and

Ibach [114] as deriving from the bulk critical points, E1 and E2. In the experimental

spectrum of Fig. 4.10 we have subtracted a background signal, taken to be that of

the monohydride Si(100)-p(2 × 1):H surface, also reported in Ref. [118].

The results of our first principles calculations of HREELS are shown in Fig. 4.10

for the p(2 × 1), p(2 × 2) and c(4 × 2) reconstructions of Si(100). From the com-

parison with experiment it is clear that the p(2 × 1) alone cannot reproduce the

experimental signal since the shoulder at 0.8 eV (S0) is missing from its theoretical

spectrum. A similar observation was made by Gavioli et al. [119] based on tight

binding calculations of the HREEL spectrum.

Moreover we observe that, as in the case of the RAS, it is difficult to distinguish

between the c(4 × 2) and p(2 × 2) calculations. The S0 peak appears at a slightly

lower energy (by 0.1 eV) in the p(2 × 2) calculation; however, considering the ap-

proximations used in the present calculations (scissors shift), it is not sufficient to
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allow us to prefer the c(4 × 2) over the p(2 × 2).
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Figure 4.10: REEL spectra

of c(4 × 2), p(2 × 2) and

p(2 × 1) reconstructions of

clean Si(100), and compari-

son with experiment (Farrell

et al. [118]): E0 = 40 eV;

θ0 = 60◦. The surface thick-

ness is assumed to be d =

8 layers (plus one vacuum),

i.e., the half slab. A back-

ground signal has been sub-

tracted from the experimental

spectrum (see text).

As discussed in Section 2.2.4, the three-layer model of energy loss is based on

the assumption that the electron does not penetrate the surface, so that losses occur

from scattering off long range potentials above the surface.

In reality, electrons with a 40 eV kinetic energy actually penetrate the surface by

several atomic layers before elastic scattering occurs. As a result, features in the

loss which arise from scattering within the crystal itself (as occurs naturally in

transmission EELS) are missing from our theory. Hence the calculated lineshape

differs significantly from the experimental one above 2.5 eV.

To counteract this deficiency of the theory, we augment the reflection loss term

with a second loss term that represents the trasmission loss, or “bulk” loss within

the subsurface layers:

g(q, ω) = g3L(q, ω) +K|q|−1

εb
(4.5)

The result is shown in Fig. 4.11. Since the three-layer model already accounts well
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for losses in the surface layer (the spectra presented here actually do not change

much if a loss function of the form −1/εs is used), we find we only need to increase

the proportion of bulklike losses below the surface to improve the agreement with

experiment.

In spite of the agreement reached it is clear from the relative intensity of the

S0 and S1 peaks that one single reconstruction cannot reproduce the experimental

spectra.
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Figure 4.11: REELS spectra of c(4 × 2) calculated using a mixture of long range

reflection and short range transmittion loss functions, compared with experiment

(Farrell et al. [118]): E0 = 40 eV; θ0 = 60◦.

4.5.3 Calculated REELS spectra at low energy

Although many REEL spectra are present in the literature that study the Si(100)

surface, only a few high resolution spectra that probe the interband transitions of

Si(100) are available.

We reproduce in Fig. 4.12 the HREELS data for low-energy incident electrons

reported by Farrell et al. [118] (E0 = 7 eV; θ0 = 60◦ specular scattering; probably

at T=300 K) and Gavioli et al. [119] (for a slightly different experimental setup:

E0 = 6.8 eV; θ0 = 62.5◦; T=120–500 K).

In both works, two main structures are identified in the spectra below 2 eV. Farrell

reports an adsorption edge at 0.4 eV with a peak at 0.75 eV (termed S0), and
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Figure 4.12: HREELS ex-

perimental data from Farrell

(solid line: E0 = 7 eV; θ0 =

60◦; 300 K) and Gavioli (dots:

E0 = 7.8 eV; θ0 = 62.5◦;

150 K and 300 K).

a second edge at 1.1 eV with a peak at 1.65 eV (termed S1). We note that the

S1 peak was identified by Farrell as being the peak observed by Ibach and Rowe

[114, 116] at 1.7 ± 0.5 eV and by Maruno et al. [134] at about 2.0 eV. In the more

recent work by Gavioli et al., various HREELS data were reported at temperatures

ranging from 120 to 300 K, and at different analyzer focalizations (see Fig. 4.12).

At low temperature a shoulder is found at 0.68 eV, as well as two main structures

at 0.9 eV and 1.15–1.35 eV. It is not clear, however, if the latter feature corresponds

to the S1 structures reported elsewhere, as any peaks appearing at around 1.7 eV

in Gavioli’s data seem to be obscured by the background noise. Note that the main

low energy peak occuring in the RAS is at 1.6 eV, as seen in Fig. 4.9, which would

appear to agree with the peak positions of Farrell et al..

In Fig. 4.13 we report the results of our ab initio simulation of this HREELS

experiment. As noted for the E0 = 40 eV data, it is clear that the p(2 × 1) model

does not yield the correct lineshape, as the S0 peak is missing. Both c(4 × 2) and

p(2 × 2) structures succeed in reproducing the double-peaked structure observed in

the experiments. In particular, the S0 peak is well reproduced by the c(4×2) model,

and it is possible that the shoulder observed at 0.68 eV points to the coexistence

of some p(2 × 2) on the predominantly c(4 × 2) surface. The calculated energetic

position of the S1 peak is in reasonable agreement with the data of Farrell, but not
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Figure 4.13: REEL spectra of p(2×1), p(2×2) and c(4×2) reconstructions of clean

Si(100), for low energy incident beam (E0 = 7 eV; θ0 = 60◦). Left: Surface thickness

d = 4 atomic layers; Lorenztian broadening δL = 0.006 eV; Gaussian broadening of

δG = 0.3 eV. Right: Surface thickness d = 2 atomic layers.

so much with that of Gavioli. However, it is worth to mention that Farrell’s data

beyond 1.5 eV can be affected to background and are not completly relible because

some fit of experimental data has been performed and in the original paper the

dashed line at that energies give us some doubts on the exact position of that peak.

For this reason we feel more confident in the more recent Gavioli’s data.

4.5.4 Analysis of spectra

In the following two sections we concern ourselves with interpreting the experimental

peaks observed in the HREEL spectra below 3 eV for the kinematic setup of Farrell

and Gavioli at E0 ≈ 7 eV.

Fig. 4.14 compares the calculated surface dielectric function with the calculated

HREEL spectra.

It is clear that there is a one-to-one correspondance between peaks in the energy loss

and peaks in the imaginary part of the dielectric function. Hence we can analyse ε2



76 4.5. Calculated spectra for Si(100)

to characterize peaks in the HREEL spectra. The experimental spectra feature two
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Figure 4.14: HREEL (along x, y) spectra (top) and surface dielectric functions

(x, y, z) for E0 = 7 eV, θ0 = 60◦.

main peaks, termed S0 and S1 in the literature [118]. The microscopic origins of

these peaks is now analysed for the c(4 × 2) reconstruction. Figures 4.15 and 4.16

show the total oscillator strength PE(k), as a function of k, corresponding to an

energy window of width 2δ centred around a chosen peak energy E:

PE(k) =
∑

v,c

|Pv,c,k|2 (4.6)

for E − δ < Eck − Evk < E + δ.

It is clear that S0 arises from transitions located around the Γ point for both po-

larizations (see Fig. 4.15) On the contrary S1 arises mostly from transitions along

Ȳ –Ȳ ′ direction.

The location of these transitions with respect to the surface band structure

is shown in Fig. 4.18. Our bandstructure calculation for the clean c(4 × 2) surface

compares well with that previously published by Fuchs [112]. In particular, a surface

state is present at about 0.8 eV above the valence band maximum.

Finally, we looked at |ψn,k|2 for the valence and conduction band states taking

part in the strongest transitions. These are plotted in Fig. 4.17 using Xcrysden

package [135]. We found that S1 derives from transitions between surface states:
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dangling bonds and sp2-hydridized pz orbitals, or π to π∗ orbitals as shown on

Fig. 4.17. To have a confirmation of this statement an analysis of Fig. 4.16 and of

the band structure (top of Fig. 4.18) is required. In fact, Fig. 4.16 shows that the

most part of transitions contributing to S1 comes from k points along Ȳ –Ȳ ′ path in

the SBZ and the band structure clarify which bands are involved. In fact, looking

at the band structure in Fig. 4.18 it is clear that S1 peak comes from transitions

between the flat bands in the Ȳ –Ȳ ′ direction (blue arrows).

On the other hand, S0 is due to transitions between bulk states at the valence

band maximum (in Γ) and unoccupied surface states within the fundamental bulk

bandgap. A representative pair of states involved in this kind of excitation is shown

in Fig. 4.17 (top). Moreover, with a similar analysis as done for S1, band structure

and Fig. 4.15 (red arrow) give a confirmation of the fact that S0 is more symetric

involving transitions around the Γ point.

Figure 4.15: Total oscillator strenght PE(k)(δE = 0.1 eV) as a function of k con-

tributing to S0 peak. In particular we considered two perpendicular directions of

polarization belonging the surface plane: X and Y respectively and we analysed 3

energy windows centred around the position of the peak in the surface epsilon (see

Fig. 4.14). In particular 0.32 eV for x polarization (left) and 0.285 eV (center) and

0.44 eV (right) for y polarization, namely S0,A, S0,B and S0,C respectively.

4.5.5 Discussion

We now show how our HREELS calculations can be used to better understand the

structure of the Si(100) surface as a function of temperature. Si(100) exhibits a p(2×
1) LEED pattern above the order–disorder transition temperature of about 200K.

Our findings (Fig. 4.13)—that the p(2 × 1) surface alone model cannot reproduce

the experimental HREELS data—are consistent with current understanding of the
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Figure 4.16: Total oscillator strenght PE(k) (δE = 0.1 eV) as a function of k

contributing to S1 peak. In particular we considered two perpendicular directions

of polarization belonging the surface plane: X (top) and Y (bottom) respectively and

we analysed 3 energy windows centred around the position of the peak in the surface

epsilon (see Fig. 4.14). We considered 3 energy windows centred at 1.11 eV (top),

for x (left) and y (right) polarization respectively, and at slightly highier energies

(bottom) 1.18 eV (left) and 1.29 eV (right) for y polarization, namely S1,A,S1,B ,

S1,C and S1,D respectively.

surface at this temperature (rapid dimer flipping). At lower temperatures, the

surface should be predominantly c(4 × 2).

The experimental dependence of the HREEL spectra of Si(100) was studied by

Gavioli et al. [119], and their results are reproduced in Fig. 4.12. In that work,

the observed spectrum was explained as being due to a mixture of symmetric and

asymmetric p(2× 1) structures. However, there is much evidence to show that sym-

metric dimers do not exist at 150 K. Furthermore, they did not consider the c(4×2)

structural model, which we find is sufficient to produce a double-peaked HREEL

spectrum (Fig. 4.13 and 4.10).

Increasing the temperature, the S0 peak is found to decrease by 5% and the S1

peak by 40%. As described previously, we took care to ensure that the calculated

relative intensities of the peaks are not artefacts of our calculation, as we checked
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Figure 4.17: Isosurface plots of |ψnk(r)|2 for represetative states involved in transi-

tions responsible for peaks in the low energy HREELS peaks S0 at 0.8 eV (top) and

S1 at 1.6 eV (bottom). Plots are obtained using Xcrysden [135] package.

Figure 4.18: Band structure of the c(4 × 2) (left) with indication of surface peaks.

Compare with p(2× 1) (right) to show absence of surface band. A rigid scissor shift

of 0.5 eV has been applied to unoccupied bands.

their consistency with respect to the lorentzian and gaussian broadenings, the sur-

face layer thickness, detector integration settings, k-point sampling.We can only

conclude, therefore, that the c(4 × 2) is not the sole reconstruction present at the

surface.

Furthermore, we note that the p(2 × 1) spectrum does not contribute to the

S0 peak, on the contrary c(4 × 2) and p(2 × 2) have both some structure at that
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energies. Moreover, looking carefully at Fig. 4.13, it is possible to link the 0.68 eV

shoulder in Gavioli’s data at T = 150◦ to the first peak of the p(2 × 2) structure

and the 0.9 eV peak, present also in the T = 300◦ curve, to the c(4 × 2) structure.

At the end we mention that the position of the S1 peak needs a correction in or-

der to predict Gavioli’s experimental value between 1.15 eV and 1.35 eV for the

p(2 × 2) c(4 × 2) and p(2 × 1) structures. Spectra reported in this work, and the

subsequent analysis, were carried out within the approximation of non-interacting

particles (RPA), using the DFT-LDA eigenvalues and wavefunctions. A straight-

forward scheme for incorporating many-body effects is to apply a scissor operator

to the unoccupied states, following the recipe of Del Sole and Girlanda [36]. In

this way we compensate for the well known understimation of the DFT-LDA band

gap, and partially account for self energy and excitonic shifts in energy. A scissor

shift of +0.5 eV has previously been determined in other works on Si(100) [66] as

giving the best agreement with the experimental RA spectra. We also confirm this

result from a fit to the experimental data (see Fig. 4.9). Nevertheless, this value

may not consistently describe the energetic positions of all surface state features,

which generally undergo many body corrections different from bulk ones. In order

to determine the correct correspondance between surface-related experimental and

theoretical energy loss peak, we performed some preliminary calculations including

many body effects on a smaller (12 layers) c(4×2) slab at a lower cutoff (12 Ry). Self

energy corrections were computed within the so called GW approximation. Within

this approach it is possible to solve self consistently a closed set of five equations

(Hedin’s equations [41]) connecting the Green function (G), the polarizability (Π),

the screened Coulomb and vertex interactions (W and Γ) and the self energy (Σ).

with the assumption Σ = iGW and Γ = 1. Excitonic and local field effects were

accounted for by means of solving the Bethe Salpeter equation (BSE), connecting

the full Π with the non interacting Π0 via a 4-points kernel.

Details of the approach are beyond the scope of this thesis, and can be found in

Ref. [3]. Our preliminary calculations on HREEL spectra below 2.5 eV show in

fact that GW+BSE approach give a better agreement with the experimental data

of Gavioli et al. [119] while the RPA+scissor calculation give a misleadingly good

comparison with the S1 peak of Farrell et al. [118]. Thus the combined GW+BSE

approach is nowadays the state of the art for computing precise optical spectra,

nevertheless it is very expensive from the computational point of view.
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4.6 Conclusions

We studied the RA and REEL spectra of the Si(100) surface modeling the surface

with p(2× 1) p(2× 2) and c(4× 2) reconstructions. Our calculations of RA spectra

are in agreement with previous works.

REEL spectra has been calculated for two experimental setup according to the

available experimental data from Gavioli et al. [119] and Farrell et al. [118]. We

confirmed that p(2×1) cannot be the only reconstruction of the real surface because

S0 peak is completely missing in spectra and from a band structure analysis.

The origin of the S0 and S1 peaks has been carefully analysed considering the c(4×
2) model more rapresentative of the surface. We have seen that S0 arises from

transitions involving bulk states around Γ and surface states below the bandgap.

On the contrary S1 involves only surface states.

Moreover the 0.68 eV feature in Gavioli’s data suggest some p(2× 2) present, along

with c(4 × 2) but the experimental analysis also suggests that temperature can

largely change the structural reconstruction because termal motion can easly induce

a flip-flop of the dimers.

In summary, we obtained several informations on the nature of the low energy

excitations of the Si(100) surface and the joint theoretical and experimental REEL

spectroscopy contributed to clarify the structural composition of this still debated

surface.
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Chapter 5

The oxidized Si(100) surface

There are two reasons why the investigation of REEL spectra of oxidized Si(100)

is important. First of all, studying the changes in the experimental spectrum that

occur after absorption of a foreign substance, such as oxygen or hydrogen, is a

widely used technique for elucidating the character of spectroscopic features in the

clean surface. From a theoretical point of view, it is not immediately apparent

how spectral features related to surface states are modified following atomic scale

modifications.

Secondly, a thorough understanding of the oxidation process on Si(100) at the atomic

scale is of huge technological importance for the development of electronic devices

and nanodevices [136].

In spite of an extensive study over several decades, including electron energy

loss [115, 116] photoemission, RAS [137, 80, 79] and several theoretical investiga-

tions [66, 111, 112], there remains some controversy about the reaction pathways,

with different works suggesting dimer breaking, insertion of O into dimer backbonds,

as well as silanone bound (O)Si=O formation [31, 63].

In the present section we aim to identify “fingerprints” in the REEL spectrum

that can help to distinguish between different adsorption sites during the initial

stages of oxidation, and to obtain further information about the surface states of

the clean surface.

5.1 Atomic structure

Among the vast experimental and theoretical work on oxidized Si(100), a number of

recent theoretical studies [66, 111, 112] proposed various possible adsorption sites at

low and intermediate coverages, and investigated the optical (RAS) and electronic

properties of these systems.

In this work we considered a wide range of oxygen adsorption sites that we can

83
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Figure 5.1: Schematic diagram of the 1E′, 1D models of the oxidized Si(100) surface.

Large circles indicate “up” silicon dimer atoms; small filled circles are oxygen atoms.

The c(4 × 2) unit cells is indicated by shaded regions.

Structure dimer bridge [Å] dimer backbond [Å]

c(4 × 2) 1D 1.61 1.61

c(4 × 2) 1E’ 1.78 1.75

Structure dimer bridge [Å] Si=O [Å]

c(4 × 2) 1D Si=O 1.61 , 1.70 1.53

p(2 × 2) 1D Si=O 1.63 , 1.73 1.55

Table 5.1: Structural lengths of the oxidized Si(100) surface referring to the config-

urations studied. All calculations are performed in LDA. 1D refers to oxygen in the

bridge, 1E′ refers to oxygen in the backbond, Si=O refers to the silanone structure

created on the top silicon atom of the dimer.

group according to the number of atomic oxygens involved: those with two atomic

oxygens in the elementary cell will be referred to as low-coverage (0.5ML) structures;

on the other hand, a coverage of 1ML will be described in our model by four oxygen

atoms for cell.

Among the possible low-coverage structures, we choose to compute the REELS

for three characteristic local structural motifs (nomenclature follows that of Ref. [111,

112]): structure 1D, with an oxygen inserted into the surface Si dimer, and struc-

ture 1E’, in which oxygen inserts into the dimer backbond and a silanone structure,

whereby oxygen is bonded via a double bond to the silicon dimer. A schematic

representation of these structures is given in Fig. 5.1. Both surfaces have a low

total energy (see Table 5.2 and Refs. [91, 112, 138]) and for this reason they are
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good candidates to represent the real system. Regarding the silanone structure, we

studied a configuration where oxygen is bonded to one silicon atom, as proposed by

Hemerick et al. in [31] showing a critical formation of silanone species (O)Si=O dur-

ing initial oxidation. Anyway, we found silanone structures being higher in energy

when only two atomic oxygens for cell are considered (see structure “Si=O” with

just two oxygens added to the clean c(4 × 2) base on top of a silicon atom of the

dimer in Table 5.2).

Moreover, in the case of 1ML coverage, we considered several structures appeared

in litterature, starting from both 1D or 1E’ base configuration. First we studied the

1D base adding the oxygen on the backbond, resulting a c(4× 2) 1D+1E’ structure.

Furthemore we considered one oxygen in the bridge and one added in the silanone

bound because suggested in Refs. [31, 63], finding a relaxed structure with two

silanone species, one free and the second connected to another silicon by a dative

bond. We analyzed this “1D Si=O” structure built on both the c(4×2) and p(2×2)

bases. The latter case is considered because the two oxygens on silanone bounds of

adjacent dimers on the c(4 × 2) reconstruction are very close (see black circles in

the central picture of Fig. 5.2). This is unlikely to occur in nature, because there

would be extra strain on the surface since steric interaction pushes away adjacent

oxygens. The p(2 × 2) Si=O structure (see Fig. 5.2) seems to be more reasonable

for these reasons.

Table 5.2 shows a summary of the studied structures with corresponding total ener-

gies calculated. In order to compare the results, in case of the clean reconstructed

surfaces we calculated the surface energy:

Esurf =
1

2S
(Etot(N) −NEbulk) (5.1)

where N is the number of atoms in the slab, S is the surface cell area, Etot is the

total energy and Ebulk the total energy per atom of bulk Si. The surface with the

smallest surface energy is the most stable one.

In case of the oxidized surface we reported the adsorption energy, i.e. the energy

gain for adsorbing atom at the surface. This quantity is calculated as:

Eads = −Etot − Eclean −NOEfree(O)

NO
(5.2)

where Etot is the total energy of the slab, Eclean is the total energy of the correspond-

ing clean surface, Efree(O) is the energy of the free oxygen and NO is the number of

oxygen atoms.

For all structures the inner four layers are fixed to the bulk positions, assuming
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they are not influenced by the surface distortions. Optimization is hence performed

on the outer slab layers using the Broyden-Fletcher-Goldfarb-Shanno minimization

(BFGS) [139, 140, 141, 142]. Crosschecks of results have been performed with PWscf

and ABINIT codes [122, 121]. Because of complexity, the case of one oxygen in the

Figure 5.2: Schematic diagram of the Si–O related models of the 1ML oxidized

Si(100) considered in this work. Left: c(4 × 2) with backbond and dative bonded

silanone; Middle: c(4 × 2) bridge bond and silanone; Right: p(2 × 2) bridge bond

and silanone. Large circles indicate “up” silicon dimer atoms; small filled circles are

oxygen atoms. The c(4 × 2) and p(2 × 2) unit cells is indicated by shaded regions.

backbond and one added in the silanone bond on top of the lower silicon atom of

the dimer, needs a separate discussion. In spite of the fact that silanone structures

have been suggested in the litterature (see Refs. [63, 31]), both from theoretical and

experimental grounds, in the present work the total energies founded are relatively

high for the structures reported up to now. Hence we tried to identify a low en-

ergy structure for a 1ML coverage that contains the silanone motif. Although there

are specific techniques for doing such simulations, such as Car-Parrinello molecu-

lar dynamics, nudged elastic band simulations or potential energy surface mapping,

we was able to identify one such structure by following a straightforward BFGS

relaxation, starting from an undimerized Si(100) surface with Si=O bonds in the

vertical plane. The eventual purpose is to identify any fingerprints in the REEL

spectra that might correspond to such Si=O bonds (see sec. 5.3). In Fig. 5.3 the

evolution of the total energy as this fictitious structure relaxes is shown. We started

from the undimerized Si(100) with Si-O-Si=O bonds staying in the vertical plane

(perpendicular to the surface). After some BFGS steps, the Si-Si dimers are formed,

but the Si-O-Si=O bonds are still both present. In configuration “A” (see Fig. 5.3),
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base structure Esurf[eV/Å2] Ne− NO Nk

c(4 × 2) clean 0.0903 256 0 6

p(2 × 2) clean 0.0905 256 0 4

base structure Eads [eV] Ne− NO Nk

c(4 × 2) 1D -7.14 280 2 6

c(4 × 2) 1E’ -7.22 280 2 8

c(4 × 2) Si=O -5.73 280 2 2

c(4 × 2) 1D+1E’ -7.17 304 4 2

c(4 × 2) 1D Si=O -6.76 304 4 2

p(2 × 2) 1D Si=O -7.04 304 4 4

c(4 × 2) “A” in Fig. 5.3 -6.74 304 4 2

c(4 × 2) “B” in Fig. 5.3 -6.82 304 4 2

c(4 × 2) “C” in Fig. 5.3 -7.45 304 4 2

Table 5.2: A summary of energetics of all stable and metastable configurations

found after BFGS relaxation for the oxidized Si(100) surface. Structures are listed

with their total energies, each force component is relaxed below the threshold of

0.13 eV/Å.

one of the Si=O starts to bond the dimer until the metastable structure “B” where

there is still the Si-O-Si=O bond in the plane (see blue arrows in Fig. 5.3), but the

other oxygen is bonded in a Si-O-Si-O-Si chain, similar to a part of the SiO2 crystal

lattice. Leaving this structure to relax we found the configuration “C” without any

silanone bonds and characterized by a silicon atom bonded to 3 oxygens. In this

last configuration Si(100):O (1ML) reaches the lowest total energy.
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Figure 5.3: Total energy of configurations generated by relaxing Si(100) with one

oxygen on the backbond and one oxygen on top of the higher silicon atom of the

dimer.

5.2 Electronic structure and the effect of oxidation

We present here the computed Kohn-Sham band structure of three models of ox-

idized Si(100). The electronic structure of the 1D and 1E’ surfaces is shown in

Fig. 5.4 along a standard path in the surface brillouin zone: Γ-X̄-Ȳ ′-Ȳ -Γ (see Fig. 2.2

in chapter 2). Mostly, modifications respect to the clean Si(100)–c(4×2) concern a

change of surface states inside the bandgap. In fact, comparing Fig. 4.18 to Fig. 5.4,

it is evident that oxygens move the surface states visible in the Γ-X̄ direction, states

that are responsible of the S0 EEL peak of the clean surface, (see Fig. 4.13 and

Fig. 4.12 in Chapter 4). The oxygen adsorbed modifies also bands in the Ȳ ′-Ȳ path.

Moreover, we present in Fig. 5.5 the computation of the electronic states for the

surface including a silanone (O)Si=O bound. In Fig. 5.5 it is possible to see the flat

bands in the Ȳ ’-Ȳ path due to the presence of oxygen doubly bonded to the top

silicon of the dimer. Furthermore we performed a test on the p(2 × 1) structure to

better analyse the effect of the isolated Si=O bond. For this system we report the

bands compared to that of the clean p(2 × 1) surface (see Fig. 5.6). The bandgap

typical of a semiconductor is closed by the presence of oxygen, hence the system is

metallic.

All calculations are performed within the DFT-LDA and a scissor shift of +0.5 eV
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Figure 5.4: Band structures of the 1E′ (top), 1D (bottom). models of the oxidized

Si(100) surface. A rigid upward shift +0.5eV (scissor shift) has been applied to the

unoccupied bands.

(see sec. 4.5.5) has been applied to the unoccupied bands in order to mimic the

many body effects. Band structure calculations are performed with the ABINIT
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Figure 5.5: Bandstructure of the 1D Si=O model of the oxidized Si(100) surface. A

rigid upward shift +0.5eV has been applied to the unoccupied bands. Flat bands

along the Ȳ ’-Ȳ direction are due to the presence oxygen double bonded to the top

silicon in the dimer.

package [121].
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Figure 5.6: Bandstructure of the clean Si(100)-p(2×1) (black line) compared with

the ones of p(2 × 1) Si=O (atomic oxygen) (red dashed line).

5.3 Experimental energy loss data

Experimental EEL spectra of the oxidised Si(100) surface are not so numerous in

literature, at least in the range of energy we are studying (i.e in general up to ≃8-

10 eV and in particular up to ≃3 eV). In this work we are refering to not-so-recent

data from Ibach et al. [115, 116] and at the subsequent paper of Ludeke et al. [117]

where experimental REELS are reported in terms of the second derivative of the

spectrum respect to the energy in order to cut the large contribution of the elastic

peak and evidence spectral features.

In Fig. 5.7 all experimental data are collected. The spectra from Ibach et al. are

reported for the clean (black circles) and oxidized (red circles) surface. In particular,

Ibach used high incident energy of the electrons, (Ei=100 eV) and an off specular

geometry with normal incidence and collecting electrons at 42.5◦ respect to the

perpendicular direction to the surface plane.

From the analysis of Ibach’s data we can conclude that there are two features

that seems to be due to the oxygen adsorption: a peak at around 7 eV, which

appears in the oxidized surface, and the surface plasmon at around 12 eV which

is splitted in two. Moreover, the bulk plasmon, appearing at 17 eV in the clean
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Figure 5.7: Experimental data from Ibach et al. and Ludeke et al. for the clean

(black) and oxidized (red and blue) Si(100) surface.

surface, is lowered and slightly blueshifted.

The other experimental data reproduced in Figure 5.7 are from Ludeke et al.

[117] (green, blue and violet circles in Fig. 5.7) and refer to specular scattering

geometry: backscattered electrons are detected and analyzed. The three sets refers

to different incident energies: 24 eV (violet), 50 eV (blue) and 100 eV (green). Peaks

at 3 eV and 5 eV (E1 and E2 respectively) appear in all those sets of data. From

the comparison of the three sets it is possible to conclude that the two main peaks

around 5 eV and 7 eV are in agreement with Ibach’s results. Moreover the 7 eV peak

increases with increasing incident electrons energy and is interpreted by Ludeke et

al. as an excitation of the SiO or SiO2 molecules [143, 144] in the Schumann region.

We will comment this assignement in the following paragraphs, where we will show

that our results do not support it.

5.4 Theoretical energy loss spectra

In the following paragraphs we present REEL spectra calculations of the oxidized

Si(100) surface using the code YAMBO [125].
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5.4.1 Clean versus oxidized Si(100): the low-energy part of the

spectrum

REEL spectra are often presented in literature in terms of the second derivative

of the energy loss. Moreover we start presenting here our computed bare REEL

spectra for the clean and oxidized Si(100). In particular we considered the clean

and the 0.5 ML oxygen-covered surfaces with oxygen inserted into the bridge (1D)

or the backbond (1E′). We compare the REEL spectra computed for the experi-

mental setup of Farrell (Ref. [118]: specular scattering at 60◦ with incident energy

Ei=40 eV) with measured spectra for the clean Si(100). All results are shown in

Fig. 5.8 where theoretical spectra for x and y polarization directions are also pre-

sented separately. In the bottom panel of Fig. 5.8 a comparison of the (unpolarized)

experimental data with computed spectra averaged over the two polarization direc-

tions is shown.

It is evident that the two main peaks, namely the S0 shoulder at 0.8 eV and the peak

S1 at 1.3 eV in the experiments, appear also in the calculated spectra for both the

clean (black line) and the oxidized 1E′ configurations (blue line). On the contrary,

oxygen in the bridge position (1D structure-red line) completely kills the first peak

of the spectrum. Unfortunatly we did not find experimental data for this surface at

low oxygen coverage in the low energy range (< 3 eV), but a similar behaviour is

shown in the case of a coverage of H2O in Ref. [118]. In conclusion of this section

we can say that REEL provide a useful tool able to distinghuish between oxidized

surface configurations, in particular in the low energy spectral region.

5.4.2 Clean versus oxidized Si(100): REEL spectra in a wider spec-

tral region

In this section we present computed REEL in terms of the second derivative spec-

trum. In Fig. 5.9 (top panel) we show the bare REEL spectra for the clean, the 1D

and 1E′ structures (0.5 ML coverage) computed for the experimental setup used by

Ibach and Ludeke in their works [115, 117] (i.e. incident energy Ei=100 eV with

slightly different geometry scattering1). In the middle panel of Fig. 5.9 we show

the computed second derivative spectrum. Neglecting oscillations for energies below

3 eV, and except for the intensity of the surface plasmon peak calculated around

1Ibach used off specular experimental geometry instead of backscattering geometry form a normal

incident beam of electrons used by Ludeke et al. in Ref. [117]. However, at this level of approximation

we did not find appreciable differences in case of spectra calculated with specular or off specular

geometry.
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Figure 5.8: Experimental and computed REELS at E0 = 40 eV for clean Si(100)-

c(4 × 2) is compared with the calculated spectra of 1D, 1E′ and 1D Si=O oxidized

reconstructions. Experiments for the clean are taken from Farrell et al. in Ref. [118].

15 eV, the clean and the other two oxidized surfaces do not show any important

differences. This is in contrast with experiments (bottom panel of Fig. 5.9) where

a peak centred at around 7 eV appears after oxidation. In order to understand the

origin of this peak, we analysed the EEL spectra of all configurations presented in

Section 5.1. Following arguments presented in Ref. [117] about the origin of the

7 eV peak, we show theoretical results for surfaces including a silanone bond on the

c(4 × 2) and p(2 × 2) reconstructions of the clean Si(100) and an oxygen inserted

in the dimer bridge (Fig. 5.10). We found slight differences with respect to the
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Figure 5.9: Computed bare

REEL spectrum (top panel)

for clean Si(100)-c(4×2) com-

pared with the 1D (oxygen in

the bridge) and 1E’ (oxygen in

the backbond) oxidized recon-

structions. Calculated neg-

ative second derivative spec-

tra of the same surfaces (mid-

dle panel) shows slight dif-

ferences in the spectral re-

gion above 3 eV. Experimen-

tal data (bottom panel) are

also reported from Refs. [116]

and [117] showing an impor-

tant peak at around 7 eV, be-

yond the main peaks at 3 eV

and 5 eV, interpreted as the

E1 and E2 bulk silicon transi-

tions. The 7 eV peak is absent

in the experimental spectrum

of the clean (black circles) and

is hence interpreted as due to

oxidation (red and green cir-

cles).

previous calculations: the 7 eV peak still does not appear and the spectral features

are similar for the clean and the oxidized surfaces. Unfortunatly, large differences

between c(4 × 2) and p(2 × 2) structures appear in the low region of the spectrum

where experimental data are not available. However we can observe that the surface

plasmon is slightly lowered and blueshifted when a silanone bound is included in the

surface configuration. Moreover we report in Fig. 5.10 (left) the results concerning

the stable “C” structure and his metastable precursor “B” containing one (O)Si=O
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Figure 5.10: Left:REELS for clean Si(100)-c(4×2) compared with the 1D Si=O and

the p(2×2) 1D Si=O reconstructions. Right: REELS for clean Si(100)-c(4×2) com-

pared with the B structure (metastable precursor) and C structure For comparison,

experimental data from Refs. [117, 116] are reported.

bound depicted in Fig. 5.32.

Once more we can see that no features at 7 eV comparable to the experimental

peak appears in our calculations, and even if Hemerick et al. [31] suggests similar

structures on small clusters as energetically favorable, we can not conclude that

silanone bond or siloxane structures on Si(100) are representative of the real sur-

face. Moreover, Ludeke et al. guessed that the 7 eV peak was related to molecular

excitations of Si=O bond or silicon monoxyde molecule. Calculations performed in

the present work, however, rule out Si=O structures bonded to the surface. It can

2For c(4 × 2) silanone structures we used 72 k points in the IBZ and 450 bands, corresponding

to minimum e–h transition energy of 13.27 eV p(2× 2) required 64 k points and 500 bands, corre-

sponding to 15.09 eV, for the “B” and “C” structures 72 k points and 500 bands, corresponding to

15.09 eV, have been considered in order to fully converge.
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be worth to mention that, taking as a reference the surface plasmon peak of the

clean Si(100) (represented by the black continuous line in Figs. 5.9, 5.10), oxygen

added into 1D and 1E′ positions lowers the peak (see Fig. 5.9), while oxygen added

into the silanone bonds lowers and redshifts the position (see Fig. 5.10 left panel).

Conversely, calculated spectra for B or C configuration show a shift of the peak

position to the opposite direction (see Fig. 5.10 right).

At this point, several speculations can be done in order to explain the origin

of the peak measured at 7.0 eV, which does not appear in theoretical spectra for

the considered structures. From the point of view of calculations we must underline

that they are performed only at the RPA level. A further analysis could call for the

use of approximations beyond RPA in order to describe eventually strong excitonic

effects. Moreovoer, we mention that the oxidation process of Si(100) is still under

debate, for example, we can not exclude the formation of clusters of SiO2 during

oxidation. In addition, looking at the intensity dependence of the peak, increasing

with the energy of the incident electrons (see Fig. 5.7), we could interpret the peak

as due to transitions from states originating from structures below the surface level,

in fact, higher energy electrons are expected to penetrate deeper in the sample.

Within these hypotesis the present theory could not be adeguate to treat, for exam-

ple, multiscattering processes. In addition we note that the experimental data are

old and it is not clear how well characterized and clean the surfaces are. However

we conclude that our calculations does not support Ludeke’s interpretation about

the origin of the 7 eV peak, because does not appear in all the considered model

surfaces (including Si=O or O-Si-O bonds).

5.5 Conclusions

In the present section we draw a summary of the previous analysis, and some conclu-

sions. We calculated the relaxed atomic position of several oxidized Si(100) surface

reconstructions at 0.5ML (1D and 1E’) of coverage. Moreover we analyzed 1ML

coverage structures with a silanone bund and an oxygen in the bridge of the dimer

(1D Si=O), with a p(2 × 2) and a c(4 × 2) base. Finally we found a structure “B”

characterized by a silanone bond and Si-O-Si-O-Si chains, to be the metastable pre-

cursore of the “C” structure, the most stable, with one silicon atom bonded to three

oxygens (see Fig. 5.3).

We calculated the bare REEL spectrum in the cases of the oxidized Si(100) pre-

viously considered. We has been able to relate the change in the spectra with the
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changes in the band structure in the case of both prototypical configuration (oxygen

in the bridge and oxygen in the backbond). Furthermore we calculated the second

derivative spectra thanks to the implementation of the SG method in the YAMBO

code [125]. This allowed us to compare EELS results with the experimental data.

We have shown that the excitation at 7 eV can not be related to a molecular exci-

tation of Si=O or O-Si-O, as suggested by Ludeke et al., because the configuration

with an oxygen on top of the higher silicon atom in the dimer does not reproduce

that structure. At the moment we are not able to give an alternative explanation

for the origin of this spectral feature, but we can confirm that the reconstruction

studied in this paper (including the most stable structures 1D, 1E′, 1D Si=O p(2×2)

and c(4 × 2) “C” and the metastable precursor with Si–O and Si=O molecule) do

not reproduce this peak. Still, recent works by Hemerick et al. and Chabal et al.

have pointed out the critic presence of silanone bonds during the oxidation process.

We can only guess that including many body effects in the calculations could pro-

vide more accurate theoretical results, taking into account self-energy and excitonic

effects, in order to help in shedding light on that problem.



Chapter 6

Subtleties in electronic excitations

of open shell molecules

In this chapter we present a theoretical study of BeH, a simple heteronuclear di-

atomic molecule with an unpaired electron. We considered BeH molecule as the

simplest exemple of an isolated open shell system for which the ground state is ex-

pected to be spin polarized. We present calculations of energy levels and density of

states. Convergence studies and problems arising up in order to correctly describe

excitation spectra are also underlined. At the end some excitation energies calcu-

lated for this system are compared to available experimental data and the agreement

is discussed.

6.1 Brief review of TDDFT for isolated systems

In this section we briefly review the Casida’s approach to treat the molecular exci-

tation of isolated systems. This framework is a reformulation of the TDDFT in the

configuration space and the details can be found in Ref. [145, 146]. In fact all the

observables are represented using the DFT–KS eigenvectors in such a way that the

non–interacting response function results to be diagonal.

We note that in case of isolated systems the physical quantity we deal with is the

polarizability of the system α(ω) that is defined when an external perturbation

δV ext(t) = zδEz(t) is applied to the system. In this case the x component of the

dipole momentum is defined by: δdx = −qδx where q is the charge of the electron

and δx =
∫
d3xδρ(x, t)x.

Hence, the polarizability is defined by:

αxz(ω) = −
∫
d3x

qδx

Ez(x)
(6.1)

99
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and using the Lehmann representation it can be written by:

αxz(ω) =
∑

I

2(EI − E0)
〈Ψ0|x̂|ΨI〉〈ΨI |ẑ|Ψ0〉

(EI − E0)2 − ω2
(6.2)

Where EI , E0,ΨI ,Ψ0 are the energies and the many body wavefunctions of the

excited and ground state respectively. Using the basis set of operators {â†nσ , âmσ}
we can define the quantity:

Pijσ(t) = 〈ΨKS|â†iσ(t)âjσ(t)|ΨKS〉 (6.3)

corresponding to the density in the configuration space, for which the following

relations held:

δPijσ(t1) =

∫
dt′χKS

ijσ,hkτ (t1 − t2)δVhkτ (t2) (6.4)

δPijσ(t1) =

∫
dt′χijσ,hkτ (t1 − t2)δV

ext
hkτ (t2) (6.5)

where the KS response function is written over this basis set:

χKS
ijσ,hkτ(ω) =

∑

I

〈ΨKS
0 |â†jσâiσ|ΨKS

I 〉〈ΨKS
I |â†hτ âkτ |ΨKS

0 〉
ω − (EI − E0) + iη

−
〈ΨKS

0 |â†hτ âkτ |ΨKS
I 〉〈ΨKS

I |â†jσâiσ|ΨKS
0 〉

ω + (EI − E0) + iη
(6.6)

In case of independent particles and applying the â and a† operators we obtain the

reduced expression for the response function:

χKS
ijσ,hkτ (ω) = δστ δjkδih

fjσ − fiσ

ω − (εKS
i − εKS

j )
(6.7)

Hence, in the configuration space the TDDFT equation held the form (see Ref. [145,

146]):

fkτ−fhτ 6=0∑

klτ

[
δστ δjhδik

ω − (εhτ − εkτ )

fkτ − fhτ
−Kijσ,hkτ (ω)

]
δPhkτ (ω) = δV ext

ijσ (ω) (6.8)

This equation can be reorganized and written as a matrix equation (see Ref. [145,

146] for mathematical details) exploiting the hermitian nature of the kernel Kijσ,hkτ .

Moreover assuming that the KS orbitals and the kernel are real quantities (infinite

lifetime of the excitations) and after some algebra we can write:
[(

A(ω) +B(ω) 0

0 A(ω) −B(ω)

)
− ω

(
0 −C

−C 0

)]



6. Subtleties in electronic excitations of open shell molecules 101

(
Re δP (ω)

−iIm δP (ω)

)
=

(
Re δV ext(ω)

−iIm δV ext(ω)

)

where:

Aijσ,hkτ (ω) = δστ δihδjk
εhτ − εkτ

fhk − fkτ
−Kijσ,hkτ (ω) (6.9)

Bijσ,hkτ (ω) = −Kijσ,khτ (ω) (6.10)

Cijσ,hkτ (ω) =
δστ δihδjk
fhτ − fkτ

(6.11)

and the polarizability as:

αxz(ω) = 2~x†S−1/2(Ω(ω) − ω2)−1S−2~z (6.12)

where S(ω) = C(A−B)−1C and Ω(ω) = S−1/2(A+B)S−1/2. Finally, comparing this

last expression (6.12) with eq. (6.2) it is possible to write the eigenvalue equation:

Ω(ωI)FI = ω2
IFI (6.13)

where:

Ω(ωI)ijσ,hkτ (ω) = δi,hδj,kδσ,τ (εk,σ − εhσ)2 + (6.14)

+2
√

(fiσ − fjσ)(εjσ − εiσ)Kijσ,hkτ

√
(fhτ − fkτ )(εkτ − εhτ )

Eq. (6.13) is called Casida equation (see Ref. [145, 146]) and allows to map the

problem of finding the excitation spectrum of a system too an eigenvalue problem

for the matrix Ω(ω).

6.2 Closed and open shell systems: the problem of the

correct counting of excitations

We divide now the discussion to the case of closed and open shell systems. In the

first case the approach presented in the previous section predicts, in principle, the

correct excitation energies. However, in the second case some problem limits its

straightforward applicability. In the next paragraphs we present the problem with

an example.

6.2.1 Closed shell systems

Let us start with the case of the closed shell systems, i.e. systems having the same

wavefunction for the two spin channels. In this case it is possible to diagonalize the Ω
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of excitations

Figure 6.1: Schematic representation of the possible excitations generated in a 3

levels system with 2 electrons with opposite spins.

matrix, presented in the previous section, exploiting the symmetries resulting from

the adiabatic approximation. Let us consider a three levels system consisting of two

electrons (see Fig. 6.1), the ground state is characterized by two coupled electrons

both occuping the i level, two additional unoccupied levels j and k are available to

the excitations. A spin–unpolarized ground state is expected and the Ω matrix has

important symmetry properties, so that its eigenvectors will be either symmetric

or anti-symmetric with rispect to spin flip. Assuming the adiabatic approximation,

the Ω matrix, can be written as:
(

Ω↑↑ Ω↑↓

Ω↑↓ Ω↓↓

)

such that :

Ω↑↑ = Ω↓↓ and Ω↑↓ = Ω↓↑

The eq. (6.13) is decoupled in:

FI↑ = FI↓ , (Ω↑↑ + Ω↑↓)FI↑ = ω2
IFI↑ (6.15)

FI↑ = −FI↓ , (Ω↑↑ − Ω↑↓)FI↑ = ω2
IFI↑ (6.16)

In case of eq. (6.15) for a given electron–hole pair, both spin channels interfere con-

structively, TD total charge changes, but not the TD magnetization (Spin-singlet
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excited state). Conversely in case of eq. (6.16) both spin channels interfere destruc-

tively, no TD total charge change, TD magnetization change (Spin-triplet excited

state). In this case the resulting eigenvectors are written in the form:
(

1

1

)
,

(
1

−1

)

Hence, summarizing, it is possible to group the results in two kind of excitations:

φ
1/2
0 =

1√
2

(|j ↑ i ↓〉 + |i ↑ j ↓〉) singlet (6.17)

and

φ1
−1 = |i ↑ j ↓〉 (6.18)

φ1
0 =

1√
2

(|j ↑ i ↓〉 − |i ↑ j ↓〉) triplet (6.19)

φ1
1 = |i ↓ j ↓〉 (6.20)

This states are simultaneous eigenvectors of HKS, S2 and Sz.

6.2.2 The problem of the open shell systems

The simplest case of a system with spin–polarized ground state consists of three

electrons that can be arranged within three levels. Fig. (6.2) describe the ground

state configuration and the possible spin–collinear excitations. In this case the Ω

matrix does not have the same symmetries presented in the previous section. This

time it contains the elements related to the excitations jk ↑, ij ↓, ik ↑ and ik ↓
resulting with 4 × 4 dimension. Moreover any symmetry does not allow to divide

by blocks the whole Ω. However the selection rules allow to group the excitations

in two sets: conserving the spin ∆S = 0 and those for which ∆S = 1.

Diagonalizing HKS, S2 and Sz simultaneously we obtain the following doublet

for the ground state:

φ2
0 = |̄iij〉

and the excited states (doublet):

φ2
1/2 = |īik〉 (6.21)

φ2
1/2 = |ij̄j〉 (6.22)

φ2
1/2 =

1√
2

(
|̄ijk〉 + |ijk̄〉

)
(6.23)

φ2
1/2 =

1√
6

(
|̄ijk〉 + |ijk̄〉 − 2|ij̄k〉

)
(6.24)
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Figure 6.2: Schematic representation of the possible excitations generated in a 3

levels system consisting of 3 electrons. The yellow square represents the double

excitation missed by the Casida’s framework.

and the quadruplet:

φ4
1/2 =

1√
3

(
|̄ijk〉 + |ijk̄〉 + |ij̄k〉

)
(6.25)

where we adopted the notation ī to indicate the ↓ spin occupation of the i state. The

double excitation |ij̄k〉, represented by the yellow square in fig. 6.2, is present because

the eigenvectors must be simultaneous solutions of the eigenvalue problem for HKS

and S2. The excitations of this system present states with three half occupied levels

(see Fig. 6.2) that are mixed by the S2 operator with similar states with inverted

spins.

It is worth to note that this kind of excitations are missing when we attempt to

build the eigenstates of HKS, S2 and Sz starting from the single particle excitations.

In this case we obtain three doublet:

φ2
1/2 = |īik〉 (6.26)

φ2
1/2 = |ij̄j〉 (6.27)

φ2
1/2 =

1√
2

(
|̄ijk〉 + |ijk̄〉

)
(6.28)
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and a triplet:

φ3
1/2 =

1√
2

(
|̄ijk〉 + |ijk̄〉

)
(6.29)

As the theory is exact and the sole quantity requiring an approximation is the

kernel the lack of the excitations description is due to the adiabatic assumption.

The research of an improved kernel able to correctly describe the missed excitations

is beyond the scope of this thesis.

However, in the following paragraphs an application to the case of the calculations

of the excitation energies of the BeH molecule is presented.

6.3 A simple open shell molecule: BeH

A BeH molecule consists of five electrons, four due to Beryllium and one to Hy-

drogen. Configuration of the Beryllium atom (4Be: 1s22s2) suggests his divalent

nature, in fact usually the two electrons in the 1s level are not involved in chemical

bonds. Therefore we describe the joint effect of the core and the inner electrons

of Beryllium with a suitable pseudopotential. In particular we used a Troullier–

Martins LDA pseudopotential available in the on line repository of the ABINIT

code [67, 121]. Following this recipe, only three valence electrons of the molecule

are involved in DFT calculations and are expected to determine the main properties

of BeH, including the spin polarization of its ground state.

Bond length between Beryllium and Hydrogen is assumed to be Req = 1.3426 Å

(see Ref. [147]) and the cubic supercell is centred in the middle point of the line

joining the centers of the two atoms. A schematic representation of the molecule

is depicted in Figure 6.3 where the active electrons (blue and red circles) are un-

derlined and distinguished respect to the spectator electrons (white circles). Spin

variable is also shown in order to evidence that spin is not compensated.

In the following paragraphs we will show our results about spin resolved calcu-

lations performed with the ABINIT package [67].
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Figure 6.3: Schematic view of the atoms in the cell used to represent the BeH

molecule (acell is not on scale). Red and blue circles represent active electrons,

white circles represent Beryllium 1s electrons. The effect of these core electrons is

described by a suitable pseudopotential (see text).

6.4 Energy levels and density of states

In order to obtain converged energy levels and the spin resolved density of states

of BeH, we performed total energy minimization within DFT in local spin density

approximation.

We obtained the theoretical energy levels (see Fig. 6.4) imposing a conver-

gence tolerance of 1015 Ha2 for the largest squared residual defined by: 〈nk|(H −
E)2|nk〉, where E = 〈nk|H|nk〉. In order to establish reliable results we performed

convergence tests on the supercell size (see Sec. 6.4.1). Here we comment the results

summarized in Table 6.1. We compared our results with theoretical calculations

reported in Ref. [147] and experiments from Ref. [148]. We obtained a satisfactory

agreement of the Kohn and Sham energy of the highest occupied orbital with respect

to calculations performed in Ref. [147] with localized basis orbital.

Even if there is not analogous of the Koopmans theorem, providing a physical

interpretation of the Hartree Fock eigenenergies, for the KS eigenvalues, it is possi-

ble to interpret the highest occupied molecular orbital (HOMO) energy calculated

within DFT as the ionization energy of the system (see ref. [149]).

However in the present case of the BeH molecule, if we assume that the E3σ↑ energy

referred to the vacuum should be the ionization energy of the system, we face with
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Figure 6.4: Spin resolved Kohn-Sham energy levels for the BeH molecule calculated

within DFT–LSDA. Energy levels are calculated for a 55 Bohr cubic unit supercell

with a plane–wave cutoff energy Ecut=18 Ha and 20 Kohn–Sham states..
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Figure 6.5: Spin resolved density of states for BeH calculated within DFT–LSDA

with the code ABINIT [67]. Red and blue lines represent the spin up and down

components. A smearing of 0.008 Ha is applied and a 55 Bohr length unit cell is

considered.

a discrepancy with respect to the experimental value reported in Ref. [148]. In fact,

the experimental value of 8.21 eV disagrees with −ǫHOMO = 4.62 eV, calculated

within DFT-LSDA, and also with 4.60 eV obtained in Ref. [147]. This discrep-

ancy is due to the inadequacy of the LDA exchange and correlation potential (see

Ref. [150, 151]) that does not have an asymptotic −1/r required behaviour. This

fact lead to the lack in the description of the levels staying close to the vacuum

region and the excitation energies of the molecule involving these levels.

Figure 6.5 represents the distribution of the density of states obtained after con-

vergence tests, discussed in detail in Sec. 6.4.1 and, in Figure 6.5, we report the

density of states (DOS) calculated within the same approximations. When spin

symmetry is broken, BeH molecule shows an asymmetric distribution of DOS (see

Fig. 6.5) with respect to the two spin channels. We considered a cutoff energy

Ecutoff = 18 Ha and a cell size a0 = 55 Ha as converged values. The first three

peaks, centred at −8.35 eV, −8.01 eV and −4.62 eV represent the occupied states,

also depicted in Fig. 6.4, moreover 3σ↓ and 1π orbitals are shown, in particular

the height of peaks related to 1π orbitals is doubled with respect to the σ orbitals

bacause of their degenerancy giving contributions to the DOS peak coming from a

double number of states. A smearing of 0.008 Ha is applied to both distributions.
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Figure 6.6: Top view of the BeH molecule (black circles) inside a cubic cell, grey

zone represents the vacuum region around the molecule (cell is not on scale). As

an exemple we report a comparison between two possible choices of the molecule

placement inside the cell: distance between atoms of the replicas is larger in case

(a) than (b).

6.4.1 Convergence issues

Convergence tests have been performed respect to two quantities: (i) the cutoff

energy Ecut determining the number of plane wave of the basis set and (ii) the

supercell dimension acell.

In order to determine a suitable value for Ecut we checked the values of the

KS-eigenvalues: E2σ↑ , E2σ↓ and E3σ↑ , corresponding to the occupied states (see

Figure 6.4 and Table 6.1). Since we used a Troullier–Martin (TM) pseudopotential

for Be, we found a resonable converged value of Ecut = 18Ha (corresponding to

36Ry) see Table 6.1 and Fig. 6.4. However we verified that Ecut = 10 Ha can

be considered a converged value in order to calculate the first excited states of the

molecule, in fact, the HOMO–LUMO distance for each spin channel does not change

significantly. Table 6.1 summarize the converged values for ∆↑↑ = 1π↑ − 3σ↑ and

∆↓↓ = 3σ↓ − 2σ↓, that distances are also evidenced in Fig. 6.4. Moreover, a set

of tests with respect to the cell size have been performed in order to find the best

compromise between accuracy and practical feasibility of calculations. In fact, a

large vacuum region around the molecule is required in order to obtain the correct

behaviour of continuum states above the vacuum level (see Fig. 6.7) and to avoid

spurious interactions between replicas, however this request can increase significantly

the computational workload.

It is worth to mention that a good choice of the cell shape (see Fig. 6.6) can slightly

optimize the numerical convergence. We considered the molecule placed in the
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Level present work Ref. [152] Ref. [147] Exp. Ref. [148]

2σ↑ -8.35 -8.35 - -

2σ↓ -8.01 -7.99 - -

3σ↑ -4.62 -4.63 -4.60 8.21

HOMO–LUMO present work Ref [152]

∆↑↑ 2.28 2.29

∆↓↓ 5.07 5.16

Table 6.1: Theoretical spin resolved energy levels and HOMO-LUMO distance for

BeH molecule calculated within DFT-LDA using the code ABINIT [67]. A 55 Bohr

cell, Ecut =18 Ha and 20 bands have been used and considered converged values.

middle of a cube of length a0 (acell) with the straight line joining Beryllium and

Hydrogen atoms parallel to one face of the cube (Fig. 6.6(b)).

We performed several tests increasing a0 for a fixed cutoff energy and number

of bands. In Fig. 6.7 a summary of the results is depicted: in the actual range

of a0 considered, occupied states slightly change because of the dimension of the

supercell, on the contrary the unoccupied levels are strongly influenced and require

a large cell size (a0 > 50 Bohr). This fact can be important if we want to calcuate

excited energies involving higher energy levels. In Fig. 6.4 we can distinguish discrete

unoccupied states (1π, 3σ, 4σ) and a thick serie of states above the vacuum level (grey

region). In fact, increasing the cell size, the upper levels become closer and closer

with each other (see Fig. 6.7) and a continuum of states, in the limit case of an

infinite supercell. In conclusion we assumed that a cell size of 55 Bohr is required

in order to correctly calculate the three lowest eigenvalues. On the contrary, for

excited states calculations, involving higher energy levels in the vacuum, a larger

cell is recommended. Our conclusions are in agreement with a slightly different

treatment discussed in Ref. [152].
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Figure 6.7: Energies of the molecular orbitals of BeH as a function of the cell size.

Spin up (right panel, red circles) and down (left panel, blue circle) are distinguished.

Unoccupied states are strongly influenced to the cell size and require a0 > 50 Bohr.

Tests are performed with a cutoff energy of 10 Ha.

6.5 Excitation energies

In this section we report results concerning excited state calculations within the

TDLSDA formalism. For that we used a recent implementation of the method in

the ABINIT software [67, 121, 152]. In Table 6.2 we summarize the results about

the main excitation energies calculated. We did not consider excitations involving

continuum states because they are extremely influenced by the countour conditions.

However, in order to have more reliable results we used a larger supercell with respect

to the case of ground state calculations, in particular a 70×70×70 Bohr cubic cell

is considered with a cutoff energy of 10 Ha and 50 bands.

Even if the ionization energy disagrees with respect to experimental data making

a shorter distance between occupied states and vacuum level, our first calculated

excitation energy Π connecting the spin-collinear states 3σ → 1π is comparable with

experimental value reported in Ref. [153]. The TDLSDA theoretical value (2.39 eV)

understimates the experimental measure (2.48 eV) but improves the DFT-LSDA

HOMO-LUMO distance (2.27 eV) calculated as a bare difference between Kohn-

Sham eigenvalues (see Table 6.1 and 6.2).

However we observed that every excitation involving states higher than the 4σ
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Excitation elec. conf. this work Ref. [147] Ref. [154] Exp.a Exp.b

Π : 3σ↑ → 1π↑ 2σ21π1 2.37 2.391 2.2479 2.56 2.48

Σ : 3σ↑ → 4σ↑ 2σ24π1 4.51 4.593 4.5103 5.51 -

Σ : 3σ↑ → 5σ↑ 2σ25σ1 4.62 - 4.6300 5.61 -

Π : 3σ↑ → 2π↑ 2σ22π1 4.70 - 4.7047 6.31 6.317

Σ : 2σ↓ → 3σ↓ 2σ13σ2 5.41 5.129 4.8049 - -

Π : 2σ↑↓ → 1π↑↓ 2σ13σ11π1 5.66 - 5.1685 - -

Π : 2σ↑↓ → 1π↑↓ 2σ13σ11π1 7.15 - - - 7.46

Σ : 2σ↓ → 4σ↓ 2σ13σ14σ1 8.01 - - - -

Table 6.2: Theoretical excitation energies for BeH molecule calculated within the

TDDFT framework and ALDA approximation using the code ABINIT [67]. Energy

values are reported in eV. Converged results are obtained with a cutoff energy of

Ecut=10 Ha, 70×70×70 Bohr and 50 bands. We compare our results with calculated

values within two TDDFT implementations in the code DeMon2K (see Ref. [147,

154]). Exp.a are reproduced from Tab. I of Ref. [155] and Exp.b from Ref. [153].

level are strongly influence by the cell size. For this reason we evidenced with bold

carachter in Table 6.2 the more reliable results, i.e. excitations excluding states

above 4σ. Moreover we underline that the Π excitations, involving three half occu-

pied states (2σ13σ11π1), appear at two excitation energies (5.66 eV and 7.15 eV) and

with the same orbital configuration. These Π-excitations are distinguished by their

total spin, i.e. S= 1/2 in one case and higer total spin in the other. Thanks to the

Hund’s rule we can identify the excitation with S= 1/2 with higer energy (7.15 eV),

and this lead us to discard the 5.66 eV excitation. A different argument leads Casida

et al. to reject the same excitation identifying the same excitation we discarded as

spin contaminated. Comparison with experiments available in Ref. [153, 155] are sat-

isfactory, in particular with respect to the case of Π : 3σ↑ → 1π↑ and Π : 2σ↑↓ → 1π↑↓

excitations. Discrepancy about Π : 3σ↑ → 2π↑ excitation is due to the problem pre-

viously underlined: in fact 2π states are higer than 4σ level.

Comparison with results obtained in Ref. [147, 154] are also aligned with our con-

clusions.
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6.6 Conclusions

We studied the BeH molecule as the simplest exemple of open shell system. In our

pseudopotential approach only three valence electrons are involved in the eigenvalue

problem, for this reason total spin is not compensate and the electronic ground state

is spin polarized.

Spin resolved density of states and energy levels have been computed within

DFT–LDA approach. Convergence tests with respect to the supercell size have

shown the sensitivity of the unoccupied states above the vacuum level to the cell

dimension. Moreover we found a discrepancy between the energy of the HOMO or-

bital calculated (in agreement with others theoretical works, see ref. [147] and [154])

and the ionization energy measured. This is due to the well known inadequacy of

the asimptotic behaviour of the LDA exchange and correlations potential.

In conclusion we calculated the first excitation energies of the molecule using

TDDFT within the adiabatic approximation. We compared our reliable results with

experimental data finding a satisfactory agreement even if a part of the excitations

can not be reproduced by frequency–independent kernels such as the ALDA one.
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Chapter 7

A paradigmatic case for semicore

and spin-polarization effects

in electronic spectra of solids:

bulk iron

Semicore states of transition metals such as iron are outside the reach of “standard”

pseudopotential of DFT which, even when non linear core corrections are adopted,

include them in the frozen atomic core. In this work we present an analysis of several

pseudopotentials for iron generated in the Troullier Martins and Hamann scheme

assuming both local density and generalized gradient approximations (LDA, GGA)

for the exchange–correlation functional and considering core-valence partitions with

and without including semicore orbitals among valence states. Non linear core cor-

rections are considered and the pseudopotential transferability has been checked. We

calculate structural and electronic properties of the α phase of iron and we present

a comparison between calculated optical conductivity and experimental data.

7.1 Pseudopotentials for iron

Pseudopotentials (PP) are a well-established tool in ab initio structure calculations

of solids. A review of the topic can be found in literature ranging from the most in-

fluential works [9, 10, 11, 12, 13, 14, 15, 16] to other important but less fundamental

papers [17, 18, 19, 20]. Important advantages of the pseudopotential approach can

be summarized in the following two points: first, by replacing the atom by a pseu-

doatom, the number of orbitals which have to be calculated is reduced, and, second,

using plane waves, the size of the basis set can be substantially reduced, because

115



116 7.1. Pseudopotentials for iron

the pseudo-wavefunctions are smoother than their all-electron counterparts.

However in all cases where an overlap between valence and core wave functions

exists, the frozen core approximation underlying the construction of all pseudopo-

tentials is not well satisfied. One way to overcome this problem is the inclusion of

a core correction considering the non linear contribution of the core charge to the

exchange-correlation potential (NLCC). Another more straightforward solution is

the explicit inclusion of the semicore electrons into the valence shell.

In this work we considered both these approaches in order to build pseudopotentials

for the specific case of iron. Such pseudopotentials are used to calculate the struc-

tural and electronic properties of the α phase of bulk iron. In conclusion we report

our results for the optical conductivity compared with experimental data. The 3d

wavefunctions of iron are strongly localized and show a significant overlap with the

3s3p orbitals, although the latter are much lower in energy. Looking at Fig. 7.1, it

is evident that the separation of the electronic system into well-isolated core and

valence shells is ambiguous, because of the large overlap between 3s and 3d states.

For this reason, we considered two electronic configurations: one with 8 (3d64s2

states) and the other with 16 (3s23p63d64s2 states) valence electrons. We used two

schemes for pseudopotential generation, referring to Hamann [20] and Troullier–

Martins [19] works respectively. In the former scheme a fixed cutoff radius rcl by

an exponential function exp[−(r/rcl)λ], in the latter scheme wavefunctions are built

with a parametric form rl exp[ρ(r)] below rcl, where ρ(r) is a polynomial of order

six in r2.

In the case of a standard pseudoatom with 8 valence electrons we verified the impor-

tance of including non linear core corrections (NLCC) to correct GGA pseudopo-

tentials presenting fake wiggles in the r → 0 limit due to the gradient dependence

of the exchange-correlation approximation.

In the case of a 16 electrons pseudoatom we could not generate a transferable pseu-

dopotential in generalized gradient approximation, neither in the Troullier-Martins

nor in the Hamann scheme. The only pseudopotential with good transferability was

generated within the local density approximation following the Hamann scheme.

In order to check the pseudopotential transferability we studied logarithmic

derivatives and compared them to the their all-electrons counterpart.

Figure 7.2 shows logarithmic derivatives in case of Troullier–Martins (left) and
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their different localization. The not-negligible overlap between 3d and 3s leads to an
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Figure 7.2: Logarithmic derivatives in the case of a 16 electrons pseudoatom. Left:

Pseudopotentials generated according to the Troullier-Martins scheme show discrep-

ancies between the differents curves, and are less transferable. Right: Pseudopoten-

tials generated within the Hamann scheme are more transferables and consequently

more accurate in reproducing scattering properties.

Hamann (right) pseudopotentials respectively. Hamann pseudopotential are clearly

more transferable, and therefore more accurate in describing scattering properties.
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However we should be aware that Hamann pseudopotentials are usually much more

expensive in terms of plane waves required for convergence than the ones generated

within the Troullier Martins scheme. As a general rule, depending on the specific

system and properties we want to describe, a compromise between accuracy and

efficiency should guide the choice of the suitable pseudopotential.

7.2 Properties of bulk iron

In this section we report the results of DFT calculations of structural and electronic

properties of bulk iron. We also show a Time Dependent DFT calculation of the

optical conductivity, and we compare our results with experimental data.

7.2.1 Structural properties

An useful comparison between the generated PP can be based on the evaluation of

physical quantities. In particular we calculated the lattice parameter a0 of iron. We

considered iron in his α phase, the most stable at normal temperatures, where the

metal presents a body centred cubic (BCC) crystal structure.

The optimized value of a0 has been obtained by an estimation of the minimum

of the Birch–Murnaghan [156, 157] equation of state for solids:

E(V ) =
B0V

B′
0(B

′
0 − 1)

[
B′

0

(
1 − V0

V

)
+

(
V0

V

)B′
0

− 1

]
(7.1)

whereB0 is the bulk modulus and V0 is the cell volume at the minimum. We used the

ABINIT package [67, 121] to compute converged total energy for different values of

the cell parameter a0, and we fitted the obtainted points with Eq. 7.1 (see Fig. 7.3).

Pseudopotential a0 B0 µ

[Bohr] [GPa] [µB]

8e- TM GGA NLCC 5.56 67.86 2.47

8e- TM LDA NLCC 5.34 106.31 2.11

16e- H LDA NLCC 5.27 101.23 2.19

Exp.(a) 5.42 168 2.22

Table 7.1: Comparison of lattice parameter for iron calculated with different pseu-

dopotentials. Exp.(a) are experimental data reproduced from Ref. [158, 159].

In Tab. 7.1 we report a summary of the lattice parameters and bulk moduli obtained
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Figure 7.3: Birch–Murnaghan fit of DFT total energy calculations for iron (8 valence

electrons) performed within local density (continuous line) and generalized gradient

(dotted line) approximations. Lattice parameter calculated within LDA are lower

than the experimental value, and GGA partially correct this understimation.

with the fitting procedure. Moreover Fig. 7.3 shows a comparison between LDA and

GGA results, confirming a well known understimation of the experimental value by

LDA, that can be partially corrected using GGA.

7.3 Electronic properties

7.3.1 Electronic properties

We present here our results for the density of states (DOS) around the Fermi en-

ergy and the electronic band structure including semicore states. These calculations

have been performed with the ABINIT package [67] in local spin density approx-

imation (LSDA). We verified that a random sampling of k points in the Brillouin

Zone (BZ) is more efficient than the use of a regular grid, in fact with 5000 k DOS

is converged. In Fig. 7.4 two curves represent converged DOS where the two spin

channels show an asymmetric distribution allowing to identify the majority and mi-

nority component. The corresponding band structure is presented in Fig. 7.5, where

high symmetry crystallographic directions are chosen in agreement with previous

literature [160, 161, 162]. We used Hamann LDA pseudopotentials generated in-

cluding semicore states in order to describe the core bands 3p and 3s bands. We

obtain band energies of Fe-3s (85 eV) and Fe-3p (52 eV) as depicted in Fig. 7.5. In
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Figure 7.4: Spin resolved density of states of BCC iron calculated within DFT–LDA

with ABINIT [67]. Majority (red line) and minority (blue line) spin channels are

presented. The Fermi energy is set to zero for clarity.

the same figure we show the effect of the spin on the electronic properties, removing

most of the accidental degenerancies of band structure and splitting the flat core

states. In addition we report in Fig. 7.6 (top panel) a comparison between bands

calculated within LDA or GGA, concluding that the GGA corrections do not change

dramatically the electronic structure making LDA a satisfactory approximation for

our scope. Even the use of semicore PP (bottom panel in Fig. 7.6) do not influence

considerably the estimation of valence states, therefore it is possible to conclude that

our approximations are reasonable in order to predict correctly the optical proper-

ties of bulk iron.

On the contrary, the case of 3p levels is more subtle. In fact, because the angular

momentum ~l is not zero for p levels (i.e. l=1), the total quantum number ~j = ~s+~l

must be considered, and the spin orbit coupling can influence the exact degenerancy

and position of the bands. Even if this case will not be treated in the present work,

because beyond the aim of the thesis, it is worth to mention that a fully relativistic

approach is required in order to obtain reliable results for this kind of states. Con-

versely, the 3s states are correctly predicted within the DFT–LSDA approach and

the up–down splitting ∆↑↓ = 3s↑ − 3s↓ is comparable with the available experimen-

tal data [159]. For completeness, we report in Tab. 7.2 the calculated splitting and

dispersion of both the 3s and 3p levels.
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state ∆E↑↓ Dispersion ∆Eexp.
↑↓

[eV] [meV] [eV]

3p 3.03 360 (at N) -

3s 3.15 120 (at Γ) 4.9

Table 7.2: Calculated splitting of the core states compared with available experi-

mental data and calculated dispersion.
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Figure 7.5: Spin resolved band structure of BCC iron along standard high sim-

metry directions of the Brillouin zone, calculated in LDA approximation with the

ABINIT [67] code. Valence (top) and semicore (bottom) states are distinguished in

different panels in order to evidence energy scales.

In conclusion we also report an analysis of the relation between total magnetiza-

tion µ of iron and the 3s splitting. It was suggested in the past [163, 164] that s core-

level splitting could be used to monitor the magnetic moment or the hyperfine field,
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because the splitting should vary linearly with the spin state of the unfilled inner

shell. X-ray photoelectron spectroscopy (XPS) measurements for nonmetallic tran-

sition metal compounds, on rare-earth metals and ionic compounds [163, 164, 165]

are compatible with this scheme.

However, Fe-3s XPS splitting studied in crystalline and amorphous alloys have

shown a poor correlation between the 3s splitting and the magnetic moment of

the solid (see Fig. 3 in Ref. [159]). Our calculations show a linear relation of such a

splitting with respect to the total magnetization of bulk iron (see Fig. 7.7 top panel),

giving some basis to better investigate the apparent disagreement with experimental

data.

We calculated the total magnetization defined as the difference between the ma-

jority and minority spin density integrated over the unit cell µ =
∫
Ω ρ↑(r) − ρ↓(r).

This quantities has been evaluated for several lattice parameter values of bulk Fe,

centred around the experimental one (5.42 Bohr). Changes of the lattice parameter

influence the local distance between atoms, reproducing the effect of a change of

pressure. Moreover changes on lattice geometry affect total magnetization. The

dependence of the splitting with respect to the pressure is shown in Fig. 7.7 bottom

panel.
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Figure 7.6: Spin resolved band structure (valence states) of BCC iron calculated at

the experimental lattice paramter. Top: comparaison between GGA and LDA calcu-

lation; Bottom: comparaison between LDA calculations with and without semicore

states.
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Figure 7.7: Splitting of 3s levels as a function of the lattice parameter (top panel)

and the magnetization (bottom panel).
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7.4 Optical conductivity

In this last section we report the calculations of the dielectric function (ε = ε1 +

iε2) obtained within the indipendent particle random phase approximation (IP-

RPA) and including crystal local fields effects (RPA-LF). This quantity is closely

related to the electronic structure and follows straightforward from theory, however

experiments are often presented in terms of the optical conductivity (σ = σ1 + iσ2,

see Refs. [166]). However, ε and σ are connected by the well known relations:

σ1 =
ε2ω

4π
(7.2)

σ2 =
(1 − ε1)ω

4π
(7.3)

In Fig. 7.8 we show the optical conductivity of bulk iron calculated with the DP

code [77]. There is a nice agreement between the calculated curves and the experi-

mental data reported in Ref. [166] with respect to the general shape and the position

of the maxima. We have not included any intraband contribution in our calculation

and this is the reason why the sharp structure in the low–energy region of the ex-

perimental spectra is not reproduced (Fig. 7.8). We report, for comparison, a recent

calculation of the optical conductivity including the Drude peak (see Ref. [167] for

details about the treatment of the intraband transitions), in order to show that only

the low energy part of the spectum is affected by this approximation.

Spin flip is also not allowed and this bring us to conclude that the maximum of

the computed conductivity near 2.5 eV results from transitions between collinear

spin states, in particular between states of the majority spin channel. It is easy to

identify these excitations looking at Fig. 7.4: transitions connect occupied states

and the unoccupied states just above the Fermi energy for the same spin channel

(dashed line). Crystal local fields have negligible effects, and this is in agreement

with the cases of others metals. As shown in Fig. 7.8 by the red and blue lines.
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Figure 7.8: Comparison between optical conductivity experimental data from

Refs. [166] and RPA calculation performed with the DP code [77]. Results with

and without the inclusion of crystal local field effects (LF) are shown by the red and

blue lines, respectively.

7.5 Conclusions

We succeeded in generating a set of pseudopotentials for iron, a prototypical tran-

sition metal for which an obvious separation between core and valence orbitals does

not exist.

Semicore states have been either explicitly included in the valence set, or treated

within the usual non linear core corrections scheme. Our set of PP has been tested

against structural and electronic properties of BCC bulk iron, including the lattice

constant, spin resolved density of states, band structure.

We also reported an analysis of the Fe-3s splitting with respect to the total

magnetization. We found a linear dependence between these two quantities and

between splitting and the lattice parameter. This results support the use of the

s core-level splitting as a monitor of magnetization, and are compatible with a

similar behaviour presented by non metallic transition metal compounds, rare earth

metals and ionic compounds. Moreover we found that the 3s splitting calculated at

the experimental value of the lattice parameter substantially agrees with XPS core
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level measurements reported in Ref. [159]. However the linear trend theoretically

predicted is in apparent disagreement with experimental results where 3s XPS peak

splittings do not correlate with the Fe magnetic moments.

Concerning the optical conductivity good agreement between RPA results and

the experimental data is found. This allows one to conclude that the main spectral

feature are well reproduecd by spin-collinear excitations.
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Chapter 8

Iron, cobalt and nickel pyrites

Transition-metal pyrites form a series of compounds with a large variety in elec-

trical, magnetic and optical properties. In particular, recently there has been a

renewed interest in iron, cobalt and nickel disulfides because of their potential in

future technological applications. Iron and nickel-controlled doping of CoS2 gives

rise to a tunable source of highly spin-polarized electrons [168]. This property is

extremely interesting to design new devices exploiting the spin character of the elec-

trons in addition to their charge. In fact the essence of the current focus area termed

spintronic, or spin-electronics, is to use the electron’s spin, as well as its charge in

creating new devices or enhancing the functionality of the existing ones [169, 170].

In this section we will present structural, magnetic and electronic properties of

FeS2, CoS2 and NiS2 calculated within the density functional theory framework. A

comparison of our results with respect to experimental data and to previous calcu-

lations is also discussed.

8.1 Motivations

The rapid developement of spin valve-based magnetic read heads and the emergence

of spintronic [169, 170] has thrown up a need for a better understanding of spin-

polarized materials [171].

Spintronic is based on the up or down spin of the carriers rather than on electrons

or holes as in traditional semiconductors electronics. In particular spin-polarized

transport will occur naturally in any material for which there is an imbalance of

the spin populations at the Fermi level. This imbalance is present in ferromagnetic

metals where the density of states for spin up and down electrons are shifted in

energy with respect to each other. Commonly in these materials there is an unequal

filling of the bands, which is the source of the net magnetic moment, and causing

the up and down carriers at the Fermi level to be different in number, character,

129
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Figure 8.1: Schematic representation of the density of states in case of a metal (left)

and an half metal (right).

and mobility. This inequality produces a net spin polarization but the sign and

magnitude of that polarization depends on the specific material. Materials having

at the Fermi level only one occupied spin band are usually called half metals (see

Fig. 8.1).

A fundamental component in any spintronic device is a ferromagnetic electrode

which is used as a source of polarized electrons, and an high value of spin polariza-

tion P=(N↑-N↓)/(N↑+N↓) at the Fermi level can provide significant benefits. When

the spin polarized electron current crosses a sample having a non zero total magneti-

zation the only states that are available to the carriers are those for which the spins

of the carriers are parallel to the spin direction of those states at the Fermi level. If

the magnetization of the material is reversed, the spin direction of those states also

reverses. Thus, depending on the direction of magnetization of a material relative

to the spin polarization of the current, a material can be either a conductor or an

insulator for electrons of a specific spin polarization (see Fig. 8.2).

The largest effect is generally seen for the most highly polarized currents, there-

fore, there are continuing efforts to find 100% spin-polarized conducting materi-

als. However, partially polarized materials (such as Fe, Co, Ni and their alloys),

are adequate to develop technologically useful devices and can show unexpected

properties. For example, transition metal compounds have beed attracting ex-

tensive attention for that reason. Among them, FeS2, CoS2 and NiS2 have been

studied from the experimental [172, 173, 174, 175] and theoretical [176, 177, 178]

point of view. Moreover these compounds have been used to build and to study
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Figure 8.2: Schematic rep-

resentation of spin polarized

transport from a FM material

to a metal and a FM mate-

rial again. According to the

reciprocal configuration of the

spins, transport is allowed or

forbidden.

Co1−xFexS2 and Ni1−xCoxS2 compounds, recently predicted to be tunable half met-

als (see Refs. [179, 175, 180, 181, 182] for a review of works on Co1−xFexS2 and

Ref. [183] for Ni1−xCoxS2).

In the following sections we will focus on structural and magnetic properties of

FeS2 and CoS2, as a first step to be able in the future to describe more complex

compounds.

8.2 Structural and magnetic properties

All transition metal disulfides (MS2 with M a 3d–transition metal atom), crystallize

in a cubic pyrite structure of space group T 6
h (Pa3) in which metal atoms are located

in face-centred postions. Structure can be considered as an NaCl-like grouping of

metal and chalcogen atom pairs (sulfurs). In Fig. 8.3 the atoms arrangement is

shown from three perpendicular views. Every metal atoms (dark grey circles) is

surrounded by six nearest-neighbour sulfurs in a distorted octahedral environment,

while each sulfur (light grey circles) bonds to one sulfur (S-S bond) and three metals

in a distorted tetrahedral arrangement. Distance of sulfur–sulfur pairs (S–S) is short

because of a covalent bond. The formation of S–S pairs is characteristic feature of

these structures.

In particular metal atoms are located at the positions (0,0,0), (0,1/2,1/2), (1/2,0,1/2)

and (1/2,1/2,0), the eight sulfur atoms instead are located at position ±(u, u, u),

±(u+ 1/2, 1/2 − u, ū), ±(ū, u+ 1/2, 1/2 − u), ±(1/2− u, ū, u+ 1/2). The values of

u and a (the lattice parameter) are taken from Wyckoff [184], in particular we used

u = 0.386 and a = 5.407 Å in case of FeS2, u = 0.389 and a = 5.524 Å in case of

CoS2 and u = 0.395 and a = 5.677 Å in case of NiS2.

We performed a geometric optimization using the BFGS algorithm [139, 140,
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Figure 8.3: Atoms rearrangement in pyrite structure along three orthogonal direc-

tions. Dark grey circles represent metal atoms, smaller light grey circles depict sulfur

atoms. Graphs are generated with Xcrysden package [135].

System a0 [Å] S–S [Å] S–S [Å] µ/at. [µB] µ/at. [µB ]

Ref. [184] this work from Ref. [176] this work Ref. [172, 179]

FeS2 5.407 2.18 2.14 ≃ 0 ≃ 0

CoS2 5.524 2.29 2.12 0.98 0.9

NiS2 5.677 2.06 2.06 0 -

Table 8.1: Optimized S–S distances calcluated for FeS2, CoS2 and NiS2 are compared

with values reported in Ref. [176]. The calculated ground state magnetization per

metal atom is compared to experimental values reproduced from Ref. [172, 179]

141, 142] with the ABINIT [67] code. The optimized S–S distances of FeS2, CoS2 and

NiS2 are reported in Tab. 8.1, and compared with values reported in Ref. [176]. All

the ground state calculations have been performed within the DFT-GGA frame-

work (Perdew-Burke-Ernzerhof (PBE) parametrization [8]) with a cutoff energy

Ecut = 34 Ha. The geometry relaxation is performed by setting a tolerance of

0.02 on the ratio of differences of forces to maximum force, reached twice succes-

sively, will cause a self consistent cycle to stop. The agreement of the computed S–S

distance with respect to previous calculations is reasonable, as listed in Tab. 8.1.

Moreover, Figure 8.4 shows the electronic density distribution for a suitable value of

the chosen isosurfaces in order to evidence the formation of the characteristic S–S

bond in the center of the crystal structure.

The magnetic character of the electronic ground state of all the compounds has
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Figure 8.4: Isosurfaces

of electronic density

(grey regions) around

the atoms of CoS2.

Cobalt atoms (light

blue) and sulfur atoms

(yellow) are represented

inside the crystal struc-

ture. The point of view

is chosen in order to

evidence the character-

istic S–S bond in the

center of the crystal

(red arrows). Graphs

are generated with the

Xcrysden package [135].

been also analyzed. The values of total magnetization per metal atom are reported

in Tab. 8.1 with experimental reference values reproduced from literature.

The three compounds display different behaviours: FeS2 presents a total magnetiza-

tion close to zero, CoS2 has a ferromagnetic ground state with total magnetization

per cobalt atom close to 1 µB, and NiS2 is non–magnetic. Experimental studies on

transition metal disulfides (see Ref. [172]) revealed the non magnetic nature of all

this class of compounds, except for the case of CoS2. Experiments indicate that FeS2

as well as NiS2 are paramagnetic semiconductors. In addition, at low temperature

NiS2 presents a transition to an antiferromagnetic phase.

Our calculations predict correctly this behaviour. In particular for CoS2 we find a

ground state electronic configuration with a total magnetic moment µ =0.98 µB per

cobalt atom at T=0◦ K, which is close to the experimental value µ =0.9 µB (see

Ref. [172]).

In addition we report in Fig. 8.5 the electronic density isosurfaces that evidences

the distribution of spin up and spin down components. In the case of FeS2 the spin

up and down charge distributions are located at the same positions without any

motif distinguishig between the two components. On the contrary, in case of CoS2

it is possible to appreciate a regular ordering of the electronic density distribution
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according to the two spin components (red and blue respectively in Fig. 8.5). The

maxima of the distributions are located at the metal sites of the crystal and the

up-down spin density is alternated in adiacent sites.

NiS2 still presents a regular ordering of the spin density distributions but, as the

total magnetization is found to be zero, suggests an antiferromagnetic character.

Even if the study of NiS2 is beyond the scope of this thesis, we notice that this

result is in agreement with Ref. [172].

Figure 8.5: Electronic density isosurfaces for the up (red) and down (blue) spin

component for FeS2 (left), CoS2 (center) and NiS2 (right). Graphs are generated

with the Xcrysden package [135].

8.3 Electronic properties

In order to analyze the electronic properties of FeS2, CoS2 and NiS2 we calculated

the spin resolved density of state (DOS) within DFT-GGA (PBE parametrization).

The software ABINIT [67] has been used in order to perform convergence study

and calculate the final distribution. For FeS2 we used a Monkorst Pack [82] grid of

12 × 12 × 12 k points in the Brillouin zone (BZ), corresponding to 76 k, applying

a rigid shift of 0.5 in the three spatial directions. For CoS2 the grid consisted of

10× 10× 10 k points and 6× 6× 6 for NiS2. A thermal broadening (cold smearing)

tsmear = 0.007 Ha is applied to simulate the metallic occupation of levels following

the recipe of Ref. [185]1.

1The smeared delta function is defined by: δs = 1√
π
e−x2 `

ax3
− x2

−
3
2
ax + 3

2

´

where a =

−0.5634, this choice minimizes the bump.
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Density of states are calculated using the thetraedron method giving a faster conver-

gence over the number of k poins required with respect to the standard integration

over the Brillouin zone.

In Fig. 8.6 the DOS of FeS2, CoS2 and NiS2 are shown. The three compounds

present a similar density of states but different electronic behaviour. We discuss now

our results that are in general agreement with experimental works [173, 174, 186]

and theoretical calculations based on linear combination of atomic orbital (LCAO)

or semiempirical and self-consistent tight-binding (TB) approach [176, 177, 187].

The first two lowest energy bands are associated with bonding and antibonding pairs

of orbitals of the sulfur atom dimers (sσ and sσ∗ orbitals). The following complex

structure is due to sulfur 3p and the metal 3d orbitals. Then the crystal field of

the disulfide anions (sulfurs) splits the cation (metal) 3d non–bonding orbitals into

three low-lying 3d(t2j) and two higher-energy 3d(eg) levels (see Fig. 8.6).

All the disulfides studied have completely filled 3d(t2j) orbitals, and as the atomic

number increases the additional electrons (none for iron, one for cobalt and two for

nickel) fill in the 3d(eg) orbitals. The different filling of these bands determine the

electronic nature of the three compounds studied.

In particular, our calculations predict FeS2 as a small band gap semiconductor,

in agreement with experiments (optical and conductivity measurements [174] and

X–ray photoemission spectoscopy [173, 188]) and theoretical works [176, 177]. From

our calculations the value of the FeS2 band gap turns out to be 1.2 eV and 0.98 eV

for the spin-up and spin-down components respectively (Fig. 8.6, top panel). Even

if a more detailed analysis including band structure calculations is required, we can

already conclude that the calculated values are close to the experimental ones rang-

ing from 0.9 eV to 1.2 eV (see Ref. [174]) and for which there is no general consensus.

Difficulties in the exact experimental determination of the band gap of FeS2 could

rise because of a large difference between the indirect and direct gap as pointed out

by Zhao et al. [177]. In fact in that work all calculations in the local density ap-

proximation lead to a minimum indirect gap Eig = 0.59 eV and to a smallest direct

gap Edg = 0.74 eV.

Concerning CoS2, we found similar structures for low-energy states with respect

to FeS2, but shifted to lower energies (see Fig. 8.6, central panel). Moreover our

DFT-GGA calculations confirm the half metallic nature of CoS2, where the two spin

components present density of states characteristic of a semiconductor (red line) or

a metal (blue line). In Fig. 8.6 the Fermi energy is set to zero for clarity.

It is worth to mention that half–metallicity of CoS2 has been recently discussed in
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literature from both the experimental and theoretical points of view. Direct mea-

surements of spin polarization and magnetotransport [168] show that CoS2 is not

completely polarized (i.e. P =
N↑(EF )+N↓(EF )
N↑(EF )−N↓(EF ) is not large). On the contrary, the

temperature variation of the electronic structure, studied by means of optical re-

flectivity measurements confirms the half metallicity of the compound. From the

theoretical point of view Shishidou et al. [178] presented a detailed comparison be-

tween LDA and GGA electronic structure calculations within density functional, full

potential linearized augmented plane waves calculations. In that work the authors

conclude that GGA greatly modifies the LDA band structure from metallic to half

metallic. These conclusions are in agreement with our finding displayed in Fig. 8.6.

In the case of NiS2 the spin density of states presents a simmetric behaviour that
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Figure 8.6: Spin resolved density of states of FeS2, CoS2, NiS2 calculated with

tethraedron method with the software ABINIT [67].

confirm the apparently non magnetic nature of that compound and the zero total

magnetization obtained from our calculations (see sec. 8.2). However, as underlined

preivously, NiS2 presents a local regular ordering of the spin density distribution jus-

tifying its antiferromagnetic nature (see Refs. [189]). Among the transition metal
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disulfides, NiS2 is considered to be a Mott-Hubbard insulator [190]. For that reason

more specific theories are required in order to correctly describe NiS2 properties.

8.4 Conclusions

We presented a systematic study of structural, magnetic and electronic properties

of FeS2, CoS2 and NiS2, three examples of 3d-transition metal sulphides with cubic

pyrite structure. As anticipated in the introduction of this chapter, the interest on

these systems is recenlty renewed, due to the great potential of such systems for

spintronic applications.

From our calculations we obtained the S–S relaxed distance, characteristic of

these compounds, the ground state total magnetization and the spin resolved den-

sity of states. We correctly predict that CoS2 is the sole magnetic system of this

class of compounds, with a total magnetization per metal atom µ =0.98µB , in agree-

ment with experimental values. On the contrary FeS2 and NiS2 do not show any

total magnetization, the former being non–magnetic and the latter presenting lo-

cally a regular arrangement of the two spin components of the electronic density

distribution, typical of an antiferromagnetic material. Moreover DOS calculated for

CoS2 is typical of an half metal, while FeS2 and NiS2 typical of small band gap

semiconductors.

All these results are in nice agreement with experimental data and previous theo-

retical calculations.

These results now open the way to study also the optical properties of such com-

pounds.

In conclusion, as anticipated in the introduction of this chapter, the interest on

these systems is recenlty renewed due to the great potential for the emerging spin-

tronic technological applications. In fact, when CoS2 is doped with iron or nickel

in a solid solution like Co1−xFexS2 or Co1−xNixS2. the metal to semiconduc-

tor transition can be tuned increasing the iron or nichel concentration. More-

over the spin polarization can be controlled generating an highly polarized electron

source [175, 179, 180, 181, 182, 183].
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Conclusions

This thesis is devoted to ab initio calculations of ground state and excited state

properties of realistic systems within the density functional theory (DFT) and its

Time Dependent generalisation (TDDFT).

We used theoretical spectroscopy tools in order to study several systems with

different dimensionality (surfaces, molecules, bulk crystals). Starting with the di-

electric function ε(ω), obtained by the response function in linear regime, we cal-

culated the anisotropy reflectivity (RA) spectra and the reflectance electron energy

loss (REEL) spectra for the Si(100) clean and oxidized surfaces. In the case of the

clean surface, we considered three surface reconstructions p(2 × 1), p(2 × 2) and

c(4× 2). Thanks to the comparison between experiments and numerical simulation,

we were able to rule out the p(2 × 1) reconstruction and to define the origin of the

REEL peaks without ambiguity.

In the second part of the work, we evidenced the problem of the correct description

of excitation spectra of open shell molecules within DFT–LDA. We calculated the

energy levels and the first excitation energies for the BeH molecule in the TDDFT

framework. These calculations have been a first step in order to approach the case

of magnetic metals and half metals. In fact, this part of the work was dedicated

to the study of optical properties of magnetic iron alloys, that are very interesting

materials for new applications in the spintronic domain.

In this framework we evaluated ground state properties and conductivity of the bcc

crystal phase of iron in order to validate the theoretical approach comparing the

results with experimental data.

Finally we studied the ground state properties of some 3d–transition metal disul-

fides, i.e. FeS2, CoS2 and NiS2, having a commun cubic pyrite structure but different

electronic and magnetic properties. Starting from these compounds it is possible

to create more complex systems such as iron or nickel doped CoS2 alloys, that are

interesting for the design of new technological devices based on spin electronics.
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From the numerical point of view, we implemented an original method in the

large scale ab initio code DP in order to calculate the indipendent particle dynami-

cal response function χ0(r, r′, ω), built from the eigenvalues and eigenvectors of the

Kohn and Sham hamiltonian. We have demostrated that the method, based on

the Hilbert transform, is efficient for large size systems, as in the case of surfaces.

Moreover, we have generalized the code to spin variable in order to study magnetic

properties of realistic applications.

Milano, December 2008
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• International School of Solid State Physics - Epioptics-9, 20–26, July 2006,

Erice (Italy):Application of an efficient numerical scheme for the computation

of response functions to study the optical properties of the oxidized Si(100)(2×2)

surface.

• 10th Nanoquanta General Meeting, 12–15, September 2005, Bad Honnef (Ger-

many):A Hilbert transform–based scheme for the efficient computation of re-

sponse functions and its application to study the optical properties of the oxi-

dized Si(100)(2×2) surface.



Appendix A

Determination of second deriva-

tive spectra

We implemented a Savitski–Golay (SG) smoothing algorithm [191] in order to com-

pute the derivative spectra.

The SG algorithm fits the EEL curve with polynomials preserving spectral features:

gi =

nR∑

n=−nL

cNfi+N (A.1)

where gi represents the smoothed function, and cN the coefficients obtained by the

coefficient matrix of polynomial of degree M by the relation:

cN = (ATA)−1(AT en)0 (A.2)

where Aij = ij is the coefficient matrix of polynomial of degree M and en is the

unit vector. Then SG algorithm returns the derivative of k-degree of the smoothed

curve. When k > 1 the coefficients in equation A.1 have to be normalized replacing

cN with cNk!.

Smoothing step is required to correctly identify the physical EEL peaks, in fact,

derivative can dramatically enhance the noise of the EEL spectra due to the discrete

k point sampling. See Fig. A.1 for an example of the method.
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Figure A.1: Computation of the second derivative spectra (blue line) of a typical

EEL spectrum. The bare EEL spectrum (black line) and the resulting fit with

polynomials (red line) are also shown.
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