
Surgically returning to randomized lib(c)

Giampaolo Fresi Roglia† Lorenzo Martignoni‡ Roberto Paleari† Danilo Bruschi†

Dipartimento di Informatica e Comunicazione† Dipartimento di Fisica‡

Università degli Studi di Milano Università degli Studi di Udine
{roberto,gianz,bruschi}@security.dico.unimi.it lorenzo.martignoni@uniud.it

Abstract—To strengthen systems against code injection attacks,
the write or execute only policy (W⊕X) and address space layout
randomization (ASLR) are typically used in combination. The
former separates data and code, while the latter randomizes
the layout of a process. In this paper we present a new attack
to bypass W⊕X and ASLR. The state-of-the-art attack against
this combination of protections is based on brute-force, while
ours is based on the leakage of sensitive information about the
memory layout of the process. Using our attack an attacker can
exploit the majority of programs vulnerable to stack-based buffer
overflows surgically, i.e., in a single attempt. We have estimated
that our attack is feasible on 95.6% and 61.8% executables (of
medium size) for Intel x86 and x86-64 architectures, respectively.
We also analyze the effectiveness of other existing protections at
preventing our attack. We conclude that position independent
executables (PIE) are essential to complement ASLR and to
prevent our attack. However, PIE requires recompilation, it is
often not adopted even when supported, and it is not available
on all ASLR-capable operating systems. To overcome these
limitations, we propose a new protection that is as effective
as PIE, does not require recompilation, and introduces only a
minimal overhead.

I. INTRODUCTION

In 1988 the first buffer overflow vulnerability was used to
compromise thousands of systems [1]. After twenty years,
applications are still vulnerable to the same type of vulnerabil-
ities, although today it is more difficult to abuse them because
of the advances in the defensive technology. However, well
motivated attackers still succeed in their intent.

Write or execute only memory pages (W⊕X) and address-
space layout randomization (ASLR) are two strategies nowa-
days adopted in combination on most UNIX distributions [2],
[3]. The former ensures that no memory page is writable and
executable at the same time. The latter randomizes, at runtime,
the address of certain components of a process (e.g., the stack,
the heap, and shared objects). Although their combination is
believed to provide a good protection against code injection
attacks, the belief is not completely true. Researchers have
demonstrated that these protections can be defeated by patient
attackers [4]. The state-of-the-art approach to exploit stack-
based buffer overflows on systems protected with W⊕X and
ASLR involves mounting a return-to-lib(c) attack [5] repeat-
edly, in a brute-force fashion. Indeed, on 32-bit architectures
(e.g., Intel x86) ASLR is weak because of low randomization
entropy. Hence, with a relatively small number of attempts
an attacker can guess the base random address at which
a certain library is loaded and then successfully mount a
return-to-lib(c) attack. However, a brute-force attack can easily
rise alarms (e.g., because of a large number of crashes) and

automatic mechanisms can be used to impede the attacker [6].
Furthermore, it is unfeasible to perform such an attack on a 64-
bit architecture, because the number of address bits available
for randomization is too high.

In this paper, we present a new approach to exploit stack-
based buffer overflows in programs protected with both W⊕X
and ASLR. Our attack is an information leakage attack that
exploits information about the random base address at which a
library is loaded, available directly in the address space of the
process, and is not avoidable. Contrarily to the aforementioned
brute-force attack, with ours an attacker can subvert the exe-
cution of a vulnerable program and perform a return-to-lib(c)
with surgical precision, i.e., in a single shot. Furthermore, our
attack works independently of the strength of randomization
(i.e., it works on 32 and on 64-bit architecture), and it is
applicable to any position dependent executable. The impact of
our attack is not negligible, since the majority of executables
found in modern UNIX distributions belong to this class.

In the second part of the paper we analyze the effectiveness
of other existing protections, that complement W⊕X and
ASLR, at mitigating our attack. Our conclusion is that ASLR
is really effective only when used in combination with position
independent executables (PIE) [7], and therefore the address
space of both shared objects and executables is randomized.
Unfortunately, modern UNIX distributions still do not widely
adopt position independent executables. We believe the reason
is to avoid performance penalties, but there are no commonly
understood motivations. Since recompilation is necessary to
transform a position dependent executable into a position in-
dependent one, we propose a new protection that is as effective
as PIE at stopping our attack, does not require recompilation of
any executable, and introduces only negligible overhead. The
proposed mitigation technique can be used to protect users of
operating systems with ASLR and PIE, but that still have to
adopt PIE on large scale (e.g., all GNU/Linux distributions).
Moreover, our protection can be used by users of operating
systems with ASLR, but lacking PIE (e.g., OpenBSD), and
by users of programs with no possibility of recompilation.

In summary, the paper makes the following contributions.
1) A new attack to exploit stack-based buffer overflows on

systems protected by ASLR and W⊕X.
2) An analysis of the executables found in some of the

most popular UNIX distributions to demonstrate the
wide applicability of the attack.

3) A study of the effectiveness of existing protections,
complementary to W⊕X and ASLR, at mitigating our
attack.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187836398?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

void sanitize(char *str, int len) {
char newstr[128];
int newlen = 0;

for (int i = 0; i < len; i++) {
if (str[i] != ...)

newstr[newlen++] = str[i];
}
...

}

Fig. 1. Sample vulnerable program

deadbeef

address of "sh"
deadbeef

address of system()
deadbeef

deadbeef

deadbeef

Stack
grow

th
→

Saved EIP →
Saved EBP →

Local variable 1 →
Local variable 2 →

Fig. 2. Stack of the vulnerable process during a return-to-libc attack

4) A new protection that can be used to block our attack
without recompiling the executables that incurs low
overhead (about 2.69% with respect to the unprotected
execution).

The remainder of the paper is organized as follows. Sec-
tion II gives some background on the protections our attack
bypasses. Section III presents the details of the attack. Sec-
tion IV analyzes the effectiveness of existing solutions and
presents a new technique to mitigate the attack. Section V
evaluates our attack and the defense proposed. Section VI
discusses the related work. Section VII concludes the paper.

II. BACKGROUND

Figure 1 shows a sample program vulnerable to a traditional
stack-based overflow. An attacker can exploit the buffer over-
flow to overwrite the stack with arbitrary data, thus forcing the
program to execute arbitrary code. Modern operating systems
mitigate this class of attacks with W⊕X, a policy that prevents
memory pages containing executable data from being writable
and vice versa. With such a policy in place, the only way for
an attacker to execute arbitrary code is to mount a return-
to-lib(c) attack [5], which consists of overwriting the return
address of the vulnerable function and the following words of
the stack with the address of a lib(c) function (e.g., system)
and the arguments to pass to this function (e.g., the address of
the string "sh"). Figure 2 shows the stack of the vulnerable
process after the overflow, prepared to mount the return-to-
lib(c) attack.

When address-space layout randomization (ASLR) is used
in tandem with W⊕X, the attack becomes much more difficult.
At every execution, the stack, the heap, and shared libraries
(such as libc), are loaded at different random addresses. Conse-
quently the attacker does not know the address of the function
to return to. Nevertheless, Shacham et al. demonstrated that

return-to-lib(c) attacks are still feasible in systems protected
with address- space layout randomization using brute force [4].
The expected number of attempts for the brute force attack to
succeed is 2n, where n is the number of bits of randomness
in the address-space. As an example, on GNU/Linux on IA-
32 (where n is at most 16) 65,536 attempts are sufficient to
successfully mount the attack.

III. ATTACK

A. Overview of the attack

Our attack against address-space layout randomization suc-
cessfully returns to lib(c) in a single attempt, while Shacham
et al.’s attack instead requires 2n attempts (where n is the
number of bits of the address-space subject to randomization).
We propose an information leakage attack. Contrarily to the
information leakage attack suggested by Durden [8], ours
requires neither information about the current layout of the
process, nor the ability to access arbitrary stack elements
(e.g., to retrieve the address of main()). Instead, our attack
exploits information about the base address of the lib(c),
which is directly available in the memory of the process.
The attack is built on an exploit technique [9], [10], that was
previously thought to be inapplicable with ASLR. Our idea
is to combine few code fragments that, despite ASLR, are
available at absolute fixed addresses in the memory of the
vulnerable process and to use these fragments to discover the
base address of a dynamic library. Once the library has been
de-randomized, we can return to any of its functions.

Figure 3 shows the layout in memory of our sample
vulnerable program1. To ease the presentation, the layout
is simplified: the stack and the heap are omitted and we
assume that dynamic binding between the executable and the
shared library has already been performed. The vulnerable
program is loaded at address 0x8048000. We assume the
vulnerable program is compiled to be position dependent (that
is the default compiler configuration) and consequently that
its base address is fixed. This assumption is well-grounded
because supported by empirical evidence: the large majority
of executables found in modern UNIX distributions are not
position independent (about 92.9%), only shared libraries are.
The lib(c) instead is loaded at address 0xb7f50000, but the
address varies from execution to execution. The figure also
shows the mechanism used to invoke the functions exported
by the shared library, which is essentially an indirect jump
table [11]. When the executable is loaded in memory, the
linker transfers in memory all the requested libraries and then
performs the relocation. The executable contains two special
data structures (or sections) used specifically for the purpose of
linking the executable with shared objects: the Global Offset
Table (GOT) and the Procedure Linkage Table (PLT). The
former is an array containing the address of the various library
functions used by the program. The latter is an array of jump

1All the examples in the paper are specific for the x86 architecture,
GNU/Linux (2.6.x), and ELF-32 executables. We use the AT&T assembly
syntax.

Text
RX

PLTRX

GOTRW

0x8048000

0x8070000

V
ul

ne
ra

bl
e

pr
oc

es
s

Text
RXlib

c

0xb7f50000

0xb7f80000

805b127 call 0x805f7d8

805c028 call 0x805f7e8

Text

<open>:

80600a4 0xb7f53204

<opendir>:

80600a8 0xb753408

GOT (Global Offset Table)

<open>:

805f7d8 jmp *0x80600a4

<opendir>:

805f7e8 jmp *0x80600a8

PLT (Procedure Linkage Table)

<open>:

b7f53204 push %ebp

<opendir>:

b7f53408 push %ebp

Text (libc)

1

2

3

Fig. 3. Layout of a sample process and overview of the mechanism used to invoke functions residing in shared libraries

stubs. The ith PLT entry contains a jump instruction that
jumps to the address stored in the ith GOT entry. The linker,
at load time (assuming preemptive binding), fills the GOT
with the addresses of the imported functions, updated to be
consistent with the current base address of the library. The
separation between PLT and GOT is for improved security:
the former is executable but not writable, the latter is writable
but not executable, thus preventing an attacker from writing
and executing arbitrary code. For example, to invoke the libc
function open our sample program performs a function call
(instruction 0x805b127), but instead of invoking a normal
function, it invokes the stub for open in the PLT (located at
address 0x805f7d8). In turn, the stub of the PLT jumps to
the code of the function inside the libc. The jump is indirect
and the target of the jump is the address stored in the GOT
entry of the open function (at address 0x80600a4). In
summary, through the call and the indirect jump the execution
flows to open in the libc (in our sample process, the absolute
address of open is 0xb7f53204).

The knowledge of the absolute address of a single function
exported by the lib(c) is sufficient to mount a successful
attack, enabling any function in the library (including those not
exported) to be invoked. Our attack exploits the information
found in the GOT of the process to calculate the base address
of the library, calculate the absolute address of an arbitrary
function of the library, and subsequently invoke that function.
Let offset(s) be a function that computes the virtual offset,
relative to the base address of the library, of the symbol s. It
is worth noting that the virtual offset can be computed off-line
from the library file and that the offset is constant. To ease
the presentation, we use open to denote any function used
by the attacker to de-randomize the library, and system to
denote any function whose absolute address the attacker wants
to compute. Given the absolute address of a library function,
the base address of the library (libc) can be computed as
follows:

libc = open− offset(open)

Similarly, the absolute address of any function of the library
can be computed as follows:

system = open− offset(open) + offset(system)

Even though the math is trivial, it is very complex to
perform in our context. Indeed, despite the stack overflow
vulnerability, we cannot inject and execute our own code
because the stack and all other data pages are not executable. A
solution to overcome this limitation is to borrow code chunks,
that is, to use code already available in the executable section
of the process [9], [10]. Practically speaking, a code chunk is a
sequence of bytes representing a sequence of one or more valid
instructions that is terminated by a ret instruction. Although
code chunks available are typically very simple and short,
they can be combined, using return-oriented programming,
by constructing powerful gadgets, i.e., short blocks placed
on the stack that chain several code chunks together and that
perform a predetermined computation [10]. An example of a
code chunk is the string 8b 50 64 c3, corresponding to the
sequence of instructions mov 0x64(%eax),%edx; ret.
The ret instruction ending each code chunk allows the
construction of gadgets that link multiple chunks together.
Figure 4 shows a sample stack configuration containing two
gadgets that combine a 3-byte code chunk (the sequence of
instructions pop %eax; pop %edx; ret) with another
one, to read the content of arbitrary memory locations. During
the overflow, the stack frames of the vulnerable function
and the callers are overwritten with gadgets (see Figure 4).
The first gadget starts exactly where the return address of
the vulnerable function was stored before the overflow. It is
composed of three double-words: the address of the first code
chunk (0x08055453), and two integers (0x8049167 and
0x80491a1) that will be consumed during the execution
of the code chunk. When the vulnerable function returns,
the first code chunk is executed, and its execution results
in the initialization of the two registers (i.e., eax and edx)
with the values specified in the gadget (the second and third
double-words of the gadget). The second gadget, being stored

08050948
08051946
080491a1
08049167
08055453

deadbeef

Stack

Saved EIP Chunk 1 →
Saved EBP →

Chunk 2 →
Chunk 3 →

eax →
edx →

8050948 . . .

8051946 mov 0x64(%eax),%edx
805194b mov %ebx,%eax
805194d ret

8055453 pop %eax
8055454 pop %edx
8055455 ret

C
hunk

1
C

hunk
2

3

1

2

Stack
grow

th
→

Text

Fig. 4. Sample stack configuration with three gadgets, to chain the code chunks available in the vulnerable process

adjacently to the first one, causes the execution to flow from
the first to the second code chunk. Indeed the ret instruction
terminating the first code chunk references the double-word
belonging to the subsequent gadget and representing the start
address of the second chunk (0x08051946). The second
code chunk reads the content of the memory location pointed
by eax and stores the result in edx. Additional operations
could be chained to perform more complex computations by
writing other gadgets to the stack during the overflow.

The x86 architecture has a very dense and rich instruction
set, instructions have variable length and do not need to be
aligned. Therefore, code chunks are typically very frequent.
However, those usable by an attacker are just a few. The
numerous code chunks available in libc and other libraries
cannot be used because of ASLR. As the executable is position
dependent, only a few constant-address chunks in the code
section can be used.

B. Details of the attack

Our attack uses the code chunks available in the code section
of the vulnerable process to determine the base address of the
lib(c), and uses this information to execute any function of the
library. More precisely, our attack works as follows.

1) Identify the code chunks available in the vulnerable
process.

2) Combine these code chunks to retrieve from the GOT of
the vulnerable process the absolute address of a function
of the lib(c).

3) Compute, again using the available code chunks, the
absolute address of the function of the library we want
to invoke.

4) Transfer the control of the execution to the latter func-
tion.

We present two variants of the attack. The first one is a
straightforward application of the four steps described above.
The second one has been developed to operate in situations
where the first variant cannot, because the required code
chunks are not available. The second variant indeed uses more
common code chunks that allow to modify any entry of the
GOT, without reading it explicitly.

1) Attack 1 – GOT dereferencing: The first attack combines
gadgets to read the absolute address of any lib(c) function
(e.g., open) from the GOT of the process, uses this address to
compute the absolute address of another function of the library
(e.g., system), and jumps to the address just computed. To do

that we need the following gadgets: a load, an addition, and an
indirect control transfer. Each of these gadgets can be obtained
by combining one or more code chunks available in the
code section of the vulnerable program. The x86 architecture
facilitates the attack because it can perform complex tasks,
such as a load and an arithmetic operation, with a single
instruction. Therefore, the number of code chunks required
to mount the attack is very small.

An example of a code chunk that constitutes one of
the building blocks of our attack is the sequence of bytes
03 83 c4 5d 00 00 5f c3, encoding the instructions
add 0x5dc4(%ebx),%eax; pop %edi; ret. To turn
such a code chunk into a dangerous gadget, it is sufficient to
properly initialize the registers eax and ebx. Indeed, a proper
configuration of the two registers enables to load the absolute
address of open, and to compute the address of system.
Let got(s) be the address of the GOT entry of the symbol s.
Like for the virtual offset of a symbol, the addresses of the
various GOT entries of the program are constant, and can be
computed off-line from the program file. The assignment to
the two registers necessary to compute the absolute address of
system is:

eax = offset(system)− offset(open)
ebx = got(open)− 0x5dc4

With this register configuration the instruction loads from
the GOT the absolute address of open (the −0x5dc4 delta
is necessary because the instruction loads the data at address
ebx + 0x5dc4) and sums it to the offset stored in eax.
The result is saved in eax, and corresponds to the absolute
address of system. To complete the attack, the attacker just
needs a code chunk that transfers the execution to the address
in eax. For example, the instruction jmp *%eax can be used
for this purpose.

Figure 5 shows the stack of the sample vulnerable process
during the attack and illustrates how the various code chunks
are combined in gadgets by the attacker to perform the exploit.
Overall, during the attack, the stack contains five different
gadgets. The number can vary slightly, depending on the type
of code chunks available in the vulnerable program2. The first
code chunk (at address 0x8054126) pops two double-words
from the stack and stores them in edi and ebp respectively.
The attacker uses the first gadget to initialize edi with the

2The gadgets used to illustrate the attack resembles the ones more common
on GNU/Linux (x86) systems.

08051173

deadbeef
08051240

deadbeef
0805a2e0
08052341

deadbeef
08053873

deadbeef
00005124
08054126

deadbeef

Stack

Saved EIP Chunk 1 →
Saved EBP →

offset(system)− offset(open) →

got(open)− 0x5dc4 →

Chunk 2 →

Chunk 3 →

Chunk 4 →

Chunk 5 →
8051173 jmp *%eax

8051240 add 0x5dc4(%ebx),%eax
8051246 pop %edi
8051247 ret

8052341 pop %ebx
8052342 pop %ebp
8052343 ret

8053873 mov %edi,%eax
8053875 pop %esi
8053876 ret

8054126 pop %edi
8054127 pop %ebp
8054128 ret

C
hunk

1
C

hunk
2

C
hunk

3
C

hunk
4

C
hunk

5

1

2

3

4

5

Stack
grow

th
→

Text

Fig. 5. Sample stack configuration for the GOT dereferencing attack, where the address of system is assumed to be 0xb7f58328 (instructions and
elements of the stack irrelevant for the attack are shaded).

distance between system and open. The register ebp is
irrelevant for the attack and its initialization is just a side
effect of the code chunk. Indeed, the code chunk resembles
a standard function epilogue, which restores callee saved
registers. The ret instruction terminating the first code chunk
triggers the second gadget, stored in the stack right above
the element previously popped into ebp. The gadget uses
the second code chunk (at address 0x8053873) to copy the
value of edi to eax. This operation is needed because we
are assuming that no code chunks exists to directly initialize
eax. Again, the pop instruction found in the chunk is a side
effect. The third chunk (at address 0x8052341) is used by
the attacker to initialize ebx with the address of the GOT
entry of open. The code fragment pops the value from the
stack and saves in ebx. After the execution of the first three
gadgets both eax and ebx are initialized as described earlier
and the attacker has completed the preparation of the context
for the execution of the gadget that computes the desired
absolute address of system. The fourth gadget is used for
the computation and to store the address in eax, and the
fifth gadget is used to jump at the beginning of the system
function, completing the attack.

2) Attack 2 – GOT overwriting: The second attack over-
writes an entry of the GOT (e.g., the entry of open) with
the address of another library function (e.g., the address
of system), and transfers control to the selected function
through the modified GOT entry. The attack is possible be-
cause, in the default setup, binding is performed lazily, and the
GOT must be filled on demand. Hence, it must be writable.

The attacker needs the following gadgets: a load, an addi-
tion, a store, and an indirect control transfer (with a mem-
ory operand). Although apparently more gadgets are needed
to perform this variant of the attack than to perform the
previous one, in practice the first three operations can be
performed using a single machine instruction; that is, an
arithmetic operation with a destination memory operand, such
as add %eax,0x83d8(%ebx). This kind of code chunk
is increasingly frequent in executables, relative to the type of

chunk on which the GOT dereferencing attack is based. Fur-
thermore, no particular control transfer instruction is requested
to invoke the chosen library function as the PLT stub of the
function whose GOT entry has been modified can be used for
the attacker’s purpose.

Figure 6 shows the stack of the sample vulnerable pro-
cess during the attack, and illustrates how the various code
chunks are combined in gadgets by the attacker to exploit
the vulnerability. In total the attacker combines three gadgets,
two of which perform two operations instead of a single one.
The return address of the vulnerable function is overwritten
with the address of the first gadget and the previous double-
word in the stack contains the distance between system
and open. The first gadget (using the code chunk at address
0x8054341) initializes the value of ebx with the distance
stored in the stack. The second gadget (using the chunk at
0x8053123) copies the value from ebx to eax and then
initializes ebx with the address of the GOT entry of open
that will be overwritten. The third gadget (using the chunk
at 0x8052313) computes the absolute address of system,
as in the first attack, but with the operands in the inverse
order, such that the computed address is stored directly in the
dereferenced entry of the GOT. Finally, the ret instruction of
the gadget is used to return directly to the PLT entry of open,
in order to use its jump stub to invoke the function through
the GOT.

IV. ATTACK MITIGATION

This section presents various protections mechanisms pro-
posed in literature, and discusses their effectiveness at pre-
venting our attack, when used in combination with W⊕X and
ASLR. Furthermore, this section presents a new protection that
can be used to block both variants of our attack.

A. Existing mitigation strategies

Table I reports the existing protections included in our analysis
and compares them against the two variants of the attack we
have developed. The highlighted row of the table is relative to
the new mitigation technique proposed in the paper.

0805f7d8
08052313

deadbeef

deadbeef
08057ccc
08053123

deadbeef
00005124
08054341

deadbeef

Stack

Saved EIP Chunk 1 →
Saved EBP →

Chunk 2 →

Chunk 3 →
PLT of open() →

got(open)− 0x83d8 →

offset(system)− offset(open) →

8052313 add %eax,0x83d8(%ebx)
8052319 ret

8053123 mov %ebx,%eax
8053125 pop %ebx
8053126 pop %esi
8053127 pop %ebp
8053128 ret

8054341 pop %ebx
8054342 pop %ebp
8052343 ret

C
hunk

1
C

hunk
2

C
hunk

3

1

2

3

Stack
grow

th
→

Text

Fig. 6. Sample stack configuration for the GOT overwriting attack

Bhaktar et al. [12] proposed a randomization scheme that
uses binary rewriting to periodically re-obfuscate an exe-
cutable, including the layout of the code section. The ran-
domization of the code section could prevent an attacker from
using the chunks available in the executable. However, since
re-obfuscation is periodic, a local attacker that can access the
executable on disk can successfully mount both variants of
our attack, within the time window in which the executable
does not change. Xu et al. [13] designed a runtime system
that randomizes the location of the GOT and patches the PLT
accordingly. This system essentially just adds a fake layer of
security: the sensitive information (the content of the GOT) is
stored at a random location, but the address of this location
remains accessible in memory (in the PLT). Through our attack
it is possible to dereference the PLT, discover the address
of the GOT, and then overwrite or dereference any GOT
entry. However, to perform GOT overwriting, the code chunks
necessary for a dereference must be available in the executable.
Recent versions of binutils include support for producing
executables with a read-only GOT [14]. A similar protection
could also be implemented at runtime, by adopting a system
like the one proposed by Xu et al. Clearly such protection
prevents our GOT overwriting attack, but it cannot mitigate
the first variant of the attack. Unfortunately, despite the fact
that this protection has been available in binutils for years,
our experimental analysis demonstrated that this protection is
not yet adopted by any distribution (numbers are reported in
Section V).

RedHat extended the idea of position independent code to
executables. Like shared objects, position independent exe-
cutables (PIE) can be loaded at arbitrary memory locations [7].
None of the variants of our attack can be applied to position
independent executables because, as for randomized libraries,
the address of code chunks varies from one execution to
another. Therefore, guessing the absolute address of a code
chunk in an executable becomes as hard as reusing the code
of a shared library. To further complicate the exploitation,
position independent executables can also be used to construct
self-randomizing executables [15], executables that rearrange
automatically, at each execution, the disposition of their func-
tions.

B. Preventing unsafe accesses to GOT

Our attack is not possible on position independent executables
for the aforementioned reasons. However, this feature is not
yet widely adopted by modern UNIX distribution, but the
motivations for such a choice are not clear (numbers are given
in Section V). We speculate that vendors are afraid of the
performance penalties PIE could introduce and are also not
aware of its real importance. Although we strongly encourage
vendors to move to position independent executables, we
propose a new runtime solution that, being applicable without
recompilation, can be used during the transition to PIE-enabled
distributions and on operating systems where PIE is not yet
available, but ASLR is (e.g., OpenBSD).

Our solution is inspired by the randomized GOT protection
proposed by Xu et al. [13], and relies on encrypting the content
of the GOT. The idea is to encrypt GOT entries, to prevent
all but legitimate accesses. With the exception of the accesses
performed by the dynamic linker to bind the executable with
the shared libraries, all further accesses to the GOT are reads
and occur only from the PLT (see Figure 3). Therefore,
besides the linker, only the accesses originating from the PLT
should be considered legitimate and authorized to access to
unencrypted content of the GOT and to transfer the execution
to the functions in shared libraries. To ease the presentation
we assume preemptive binding (i.e., LD_BIND_NOW is set).
In such a situation all legitimate accesses to the GOT originate
from the PLT. However, the approach we are proposing could
be extended to work also with lazy binding, by customizing
the dynamic linker.

In more detail, our scheme operates as follows. We encrypt
all the entries of the GOT such that attacker’s attempts to read
the content of the GOT to guess the random base address of the
library fail; without the decryption key, the retrieved content
of the GOT is meaningless. Similarly, attempts to modify the
GOT fail as well. Obviously, encryption interferes with the
correct execution of the program. For this reason, we rewrite
the program to make it able to decrypt the protected data when
it legitimately accesses the GOT. As all legitimate accesses
go through the PLT, it is sufficient to patch each stub of the
PLT to dereference and decrypt the corresponding GOT entry,
and then to transfer the execution to the decrypted address.
The weakness of the randomized GOT protection proposed

GOT dereferencing GOT overwriting Requires recompilation
W⊕X and ASLR − − No
Periodic re-randomization [12] − − Yes
GOT randomization [13] − − No
GOT read-only [14] − X No
PIE [7] X X Yes
Self-randomization [15] X X Yes
Encrypted GOT X X No

TABLE I
COMPARISON OF EXISTING PROTECTIONS WITH RESPECT TO OUR ATTACK AND TO THE NEW PROPOSED PROTECTION (X DENOTES THAT THE DEFENSE

TECHNIQUE PREVENTS THE ATTACK)

by Xu et al. is that the PLT leaks the address of the GOT, and
consequently an attacker can mount both a GOT dereferencing
and GOT overwriting attacks. As we adopt a similar strategy,
we are exposed to the same risk. Therefore, we have to protect
the patched PLT to avoid any information leak that can be
exploited by the attacker.

Each PLT entry is patched to perform the following opera-
tions: (I) to read the corresponding GOT entry, (II) to decrypt
the address read, (III) and to jump to the decrypted address.
Because of the aforementioned problem, the decryption key
cannot be stored directly in the code of the patched jump
stub, nor can it be referenced explicitly from the code. The
solution we adopt inlines in the ith jump stub a key generation
function that computes dynamically the decryption key to use
for the decryption of the ith entry of the GOT. Encryption
keys and key generation functions are generated at runtime
and differ from one GOT/PLT entry to another. The rationale
behind this choice is that, although an attacker could read
(using our GOT dereferencing attack) the code of the patched
jump stub that performs the decryption, and try to “borrow”
the decryption code, he does not know how to use this code.
Indeed, this code is generated randomly at each execution,
and to construct useful gadgets from it the attacker would
have to analyze (i.e., disassemble) the code, and the only
way to do that is to use other gadgets. Although that is
theoretically possible, such a complex analysis requires an
arsenal of gadgets that are practically impossible to construct
even from a large executable.

We have developed a prototype implementation of the pro-
posed protection, for GNU/Linux (x86). For simplicity the pro-
totype requires preemptive binding of shared libraries and does
not support dynamic loading of shared objects (e.g., dlopen).
However, the dynamic linker could be extended to support our
protection also with lazy binding and dynamic library loading.
Lazy binding typically introduces less overhead and reduces
startup costs, and consequently the overhead introduced by
our protection could be reduced by completing the prototype.
Our prototype consists of a shared library that is injected in the
address space of the program to protect (using LD_PRELOAD).
The library encrypts all the entries of the GOT and then
patches the jump stubs of the PLT as described above. Since
the size of PLT entries is insufficient to hold our patched
code and cannot be enlarged without breaking the functionality
of the program, we allocate a new executable section, and

store in it the new patched entries. Additionally, we update
PLT entries to redirect the execution to the corresponding
entries in PLT ENC. Keys generation functions are constituted
of a random number (up to a dozen) of different assembly
instructions, and are crafted to be unpredictable. Figure 7
shows the memory layout of our sample process with the
randomized GOT protection in action. The extra section called
PLT ENC is the section created to hold the new encryption-
aware jump stubs. When the program calls the open function,
the execution flows, through the patched PLT, to the jump stub
of open in the PLT ENC section (at address 0x08078177).
The code we use to decrypt the GOT entry of open and then
to invoke the function looks like the code in the figure, but
it is different in each entry and execution. The code performs
the three operations necessary to invoke the function (load,
decryption, and control transfer) and takes the precaution of
preserving all registers.

V. EVALUATION

We evaluated the proposed attack and solution. Overall, the
evaluation demonstrated the wide-scale applicability of our
attack, and the effectiveness of the proposed protection. Details
of the evaluation are reported separately in the following
sections.

A. Evaluation of the attack

We performed two independent evaluations for our attack.
First, we tested our attack against a version of Ghostscript vul-
nerable to a stack-based overflow. We successfully exploited
the vulnerable program with both variations of our attack.
Second, we tested a large corpus of programs, collected from
different UNIX distributions for the x86 and x86-64 architec-
tures and supporting both W⊕X and ASLR, to measure how
many of them were predisposed to the attack (i.e., whether the
attack would be possible if the programs were vulnerable to
a stack-based buffer overflow). For the x86 architecture, the
majority of the programs tested, about 95.6%, were found to
be predisposed to the attack. For the x86-64 architecture we
found less predisposed programs, only about 61.8%. This is
due to the fact that on x86-64 instructions with 64-bit operands
requires a special prefix, and consequently the code chunks
needed for the attack are less frequent.

Text
RX

PLTRX

GOTRO

PLT ENCRX

0x8048000

0x8080000

V
ul

ne
ra

bl
e

pr
oc

es
s

<open>:

80497d8 jmp 0x8078177

<opendir>:

80497e8 jmp 0x807838d

PLT

<open>:

80600a4 0xf3b67045

<opendir>:

80600a8 0x87489732

GOT

<open>:

8078177 push %eax

8078378 mov 0x4443,%ax

807837c shl $0x10,%eax

807837f mov $0x4241,%ax

8078383 xor 0x80600a4,%eax

8078389 xchg %eax,(%esp)

807838c ret

PLT ENC

Text
RX

lib
c

0xb7f50000

0xb7f80000

1

2

3

4

Fig. 7. Layout of the sample vulnerable process with our of GOT encryption protection enabled

1) Automation of the attack: For the evaluation we have
implemented a prototype tool, called SARATOGA, that auto-
matically analyzes a ELF-32 or ELF-64 executable (for x86
and x86-64 architectures respectively), detects whether the
program is predisposed to any of the two variations of the
attack, and generates a stack configuration that can be used to
exploit a vulnerability in the program. To find code chunks
in an executable, SARATOGA uses the algorithm presented
by Shacham et al. [10]. SARATOGA combines available code
chunks using a custom algorithm we have developed. Our
algorithm is goal-oriented and rule-based. Given a code chunk
that either allows to dereference or to overwrite a GOT entry,
the algorithm assigns a predetermined value to each possible
use of the code chunk (e.g., the source operands of the instruc-
tions in the chunk). The algorithm uses a set of combination
rules and tries to apply them recursively, to combine the
available code chunks to perform the requested assignments.
If multiple combinations are possible, the algorithm selects
the one consuming less stack space. For output, SARATOGA
produces a stack configuration containing the gadgets for the
exploitation.

2) Exploiting a real vulnerability: We tested our attack
against a vulnerable version of Ghostscript [16]. We initially
developed a conventional exploit and tested it against the
program with W⊕X and ASLR disabled. The exploit worked
correctly and gave us a shell. Subsequently, we enabled the
two protections and verified that the exploit stopped working.
We run SARATOGA on the image of the program under attack
and, in few seconds, obtained two stack configurations for the
two variants of the attack. We constructed two exploits using
the results provided by SARATOGA, and successfully exploited
the vulnerability and obtained a shell with both.

3) Wide-scale applicability of the attack: The evalua-
tion targeted the executables found in the directories /bin,
/sbin, /usr/bin, and /usr/sbin of the following distri-
butions: GNU/Debian “Squeeze” (x86), GNU/Debian “Lenny”
(x86-64), Fedora “Cambridge” (x86), OpenBSD 4.5 (x86-64).

For the total set of executables found in each distributions
we selected for the evaluation only those whose code size
was greater than 20Kb. The rationale was that excessively
small executables have a limited functionality and very seldom
attract attackers. On the contrary, commonly-attacked executa-
bles (e.g., Ghostscript, Samba, Apache) are bigger, of the order
of tens or hundreds of kilobytes.

The results of our evaluation are reported in Table II.
For each distribution, the table reports the total number of
executables analyzed, the percentage of position dependent
executables, the percentage of executables with writable GOT,
the percentage of executables vulnerable to the GOT deref-
erencing attack, the percentage of executables vulnerable to
the GOT overwriting attack, and the percentage of executables
vulnerable to any of the two attacks. All three tested Linux dis-
tributions support PIE and non-writable GOT. Unfortunately,
our results testify that these mitigation techniques are not yet
widely used. As the table shows, the large majority of the
executables for x86 are predisposed to at least one of the two
variants of the attack. The second variant has much larger
applicability, because the requested code chunks are more
common. The attack is not as effective on x86-64 executa-
bles, but still, more than half of the tested executables are
predisposed to it. With the exception of OpenBSD executables
(where PIE is not available), all the executables found in the
other distribution would not be predisposed to the attack if
they were PIE. Furthermore, considering that the number of
programs predisposed to the GOT dereferencing attack is much
smaller that the percentage of programs predisposed to at least
one of the two attacks, the read-only GOT protection would
give non-negligible benefits.

It is worth noting that the a vulnerability found in an
executable predisposed to our attack might not be exploitable.
For example, the vulnerability might not expose a large enough
portion of the stack, or it might not provide the needed stack
manipulation operations (e.g., to inject null bytes). These

Debian (x86) Debian (x86-64) Fedora (x86) OpenBSD (x86-64)
Executables 509 333 590 174
non-PIE 95.7% 97.3% 85.8% 100%
Writable GOT 99.8% 100% 99.0% 100%
Attack 1 64.0% 17.8% 49.5% 58.6%
Attack 2 96.1% 57.4% 95.0% 68.4%
Any attack 96.3% 58.3% 95.0% 68.4%

TABLE II
EXPERIMENTAL EVALUATION OF THE EFFECTIVENESS OF THE ATTACK ON X86 AND X86-64 EXECUTABLES

bc bogofilter bzip2 clamscan convert grep oggenc tar Avg.
PIE 10.55% 3.46% 0% 0.12% 0% 1.41% 0.16% 0.12% 1.98%
Encrypted GOT 0.21% 15.49% 0.63% 0.11% 0.32% 4.54% 0.02% 0.20% 2.69%

TABLE III
OVERHEAD INTRODUCED BY PIE AND BY OUR PROTECTION (THE BASELINE FOR COMPARISON ARE THE NON-PIE EXECUTABLES)

situations are not considered a limitation of our attack but
rather a limitation of the vulnerability itself.

B. Evaluation of the proposed defense

We evaluated the efficacy our encrypted GOT protection, as
well as the overhead it imposes. Our results demonstrate the
effectiveness of our solution at stopping both attack variations,
as with a small runtime overhead (about 2.69%).

To evaluate the effectiveness of the proposed mitigation
strategy we tested the two exploits constructed with the help
of our tool against the vulnerable version of Ghostscript, with
our GOT protection, W⊕X, and ASLR enabled. Both exploits
failed to work. The vulnerable process terminated with a page
fault exception caused by an access to an invalid memory page.

We evaluated the overhead introduced by our protection and
compared with the overhead introduced by PIE. For the evalu-
ation we used the following applications: bc, bogofilter,
bzip2, clamscan , convert, grep, oggenc, and tar.
These applications are CPU-bound and make frequent use of
functions in shared libraries. Experiments were performed on
an x86 system running GNU/Linux 2.6.27. As our protection
works entirely in user-space, for each application we measured
the user-time requested to complete a batch job, averaged
over multiple runs, in three different configurations: (I) with
a version of the executable compiled with default options
(position dependent executables), (II) with a version of the
executable complied with the default options as PIE, and (III)
with the first version of the executable but with our runtime
protection enabled. Table III reports the overhead measured
with each application and the average. The percentages in the
table represent the relative increment of user-time, with respect
to configuration (I). From these results we can draw two main
conclusions. First, the average overhead introduced by PIE
is very small, 1.98%, and a maximum of 10.55% with bc,
and can be further reduced with more aggressive compilers
optimizations (e.g., by omitting the frame pointer). Second,
the overhead introduced by our encrypted GOT protection is
also very small and comparable to that introduced by PIE.
The average overhead observed was 2.69% and a maximum of
15.49% with bogofilter, which invokes library functions

with a very high frequency. The small overhead implies
practical adoption of our protection on both end-users and
production systems.

VI. RELATED WORK

Since the traditional technique for exploiting stack-based
buffer overflows was first disclosed [17], several other exploit-
ing techniques have been invented and classes of vulnerabili-
ties have been discovered. The techniques mostly related to our
work have been already presented in great detail in the main
sections of the paper. The most important vulnerabilities to
mention instead are heap-based overflows [18], format string
vulnerabilities [19] and integer overflows [20].

We observed a parallel development of techniques to protect
applications from memory error exploits. In Section IV we
discussed the main attack mitigation strategies related to our
work, such as W⊕X, ASLR, the various protections exten-
sions to ASRL and the protections for the GOT. Aside from
these techniques, other approaches have been proposed. Stack-
Guard [21] is a compile-time solution that protects programs
from stack-based overflows by placing canary values between
a function’s local variables and its return address. Canaries
are used to detect corruptions of the stack. ProPolice extends
StackGuard by reordering functions and local variables and
relocating code pointers in the stack items preceding dan-
gerous buffers to impede overwrites [22]. PointGuard uses
encryption to protect pointers [23]. As in the protection for the
GOT we propose, pointers are decrypted at dereference time.
StackShield uses a shadow stack to save the return addresses
and to check that they have not been tampered at function
returns. For a survey of traditional mitigation techniques, the
interested reader can refer to [24].

A completely different approach to detect memory cor-
ruptions is the N-Variant system [25]. The idea is to run n
different instances of the same program with diverse memory
layouts, obtained using ASLR. Any successful attack will
work only on one of the instances and will cause all the other
instances to crash because the attack must be tailored to a
particular process layout. This idea has been further extended
in [26].

VII. CONCLUSIONS

We presented a new attack against programs vulnerable to
stack-based buffer overflows that bypasses two of the most
widely adopted protection techniques, namely write or execute
only (W⊕X) and address space layout randomization (ASLR).
With our attack we extract from the address space of the
vulnerable process information about the random base address
at which a library is loaded and then use this information
to mount a return-to-lib(c) attack. Contrary to the state-of-
the-art attack for this scenario, which is based on brute-
force and requires a number of attempts proportional to the
size of the address space, using our attack the vulnerable
program can be subverted in a single shot. We analyzed
the executables found in different UNIX distributions and
observed that the attack would be successful on the majority
of them. We also analyzed several existing protections that
can be combined with W⊕X and ASLR. Our finding was
that ASLR is effective against our attack only when used
in combination with position independent executables (PIE).
Unfortunately the latter approach is not yet very popular and
requires recompilation. We proposed a new runtime protection
that impedes our attack without having to recompile programs
and introduces a small overhead.

REFERENCES

[1] E. H. Spafford, “The Internet Worm Program: an Analysis,” SIGCOMM
Computer Communication Review, vol. 19, no. 1, pp. 17–57, 1989.

[2] The PaX Team, “PaX non-executable pages.” [Online]. Available:
http://pax.grsecurity.net/docs/noexec.txt

[3] ——, “Address space layout randomization.” [Online]. Available:
http://pax.grsecurity.net/docs/aslr.txt

[4] H. Shacham, M. Page, B. Pfaff, E. Goh, N. Modadugu, and D. Boneh,
“On the Effectiveness of Address-Space Randomization,” in Proceedings
of the 11th ACM Conference on Computer and Communications Security
(CCS), 2004, pp. 298–307.

[5] S. Designer, “”return-to-libc” attack,” Bugtraq, 1997.
[6] “grsecurity.” [Online]. Available: http://grsecurity.net
[7] A. van de Ven, “New Security Enhancements in Red Hat Enterprise

Linux v.3, update 3,” Aug. 2004.
[8] T. Durden, “Bypassing PaX ASLR protection,” Jul. 2002.
[9] S. Krahmer, “x86-64 buffer overflow exploits and the borrowed code

chunks exploitation technique,” 2005.
[10] H. Shacham, “The Geometry of Innocent Flesh on the Bone: Return-

into-libc without Function Calls (on the x86),” in Proceedings of the 14th
ACM Conference on Computer and Communications Security (CCS),
Oct. 2007, pp. 552–561.

[11] J. Levine, Linkers and Loaders. Morgan Kaufmann, 2000.
[12] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Address Obfuscation:

an Efficient Approach to Combat a Broad Range of Memory Error
Exploits,” in Proceedings of the 12th USENIX Security Symposium,
2003, pp. 105–120.

[13] J. Xu, Z. Kalbarczyk, and R. Iyer, “Transparent Runtime Randomization
for Security,” University of Illinois at Urbana-Champaign, Tech. Rep.
UILU-ENG-03-2207, May 2003.

[14] “GNU binutils,” http://www.gnu.org/software/binutils/.
[15] S. Bhatkar, R. Sekar, and D. C. DuVarney, “Efficient Techniques for

Comprehensive Protection from Memory Error Exploits,” in Proceedings
of the 14th USENIX Security Symposium, Aug. 2005.

[16] CVE-2008-0411, “Ghostscript zseticcspace() Function Buffer Overflow
Vulnerability.”

[17] Aleph One, “Smashing The Stack For Fun And Profit,” Phrack Maga-
zine, vol. 7, no. 49, 1996.

[18] Michel Kaempf, “Smashing The Heap For Fun And Profit,” Phrack
Magazine, vol. 11, no. 57, 2001.

[19] Scut, Team Teso, “Exploiting Format String Vulnerabilities,” March
2001.

[20] blexim, “Basic Integer Overflows,” Phrack Magazine, vol. 11, no. 60,
2002.

[21] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, Q. Zhang, and H. Hinton, “StackGuard: Automatic adaptive
detection and prevention of buffer-overflow attacks,” in Proceedings of
the 7th USENIX Security Symposium, 1998, pp. 63–78.

[22] H. Etoh, “GCC extension for protecting applications from stack-
smashing attacks (ProPolice),” 2003. [Online]. Available: http:
//www.trl.ibm.com/projects/security/ssp/

[23] C. Cowan, S. Beattie, J. Johansen, and P. Wagle, “PointGuard: Protecting
Pointers from Buffer Overflow Vulnerabilities,” in Proceedings of the
12th Usenix Security Symposium, 2003.

[24] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole, “Buffer overflows:
Attacks and defenses for the vulnerability of the decade,” in Proceedings
of the DARPA Information Survivability Conference and Exposition, Jan.
2000, pp. 11–19.

[25] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight,
A. Nguyen-Tuong, and J. Hiser, “N-Variant Systems: A Secretless
Framework for Security through Diversity,” in Proceedings of the 15th
USENIX Security Symposium, 2006, pp. 105–120.

[26] D. Bruschi, L. Cavallaro, and A. Lanzi, “Diversified Process Replicae
for Defeating Memory Error Exploits,” in Proceedings of the 3rd
International Workshop on Information Assurance, 2007, pp. 434–441.

