
 

DIPARTIMENTO DI SCIENZE ECONOMICHE AZIENDALI E STATISTICHE 

Via Conservatorio 7 
20122 Milano 

tel. ++39 02 503 21501 (21522)  -  fax ++39 02 503 21450 (21505) 
http://www.economia.unimi.it 

E Mail: dipeco@unimi.it 

First Milan Workshop on Dynamics, Optimal Growth and Population Change: Theory and Applications 
Università degli Studi di Milano, 18-19 settembre, 2008 

Pubblicazione depositata ai sensi della L. 106/15.4.2004 e del DPR 252/3.5.2006 

 
 

ON HUMAN CAPITAL AND ECONOMIC GROWTH 

WITH RANDOM TECHNOLOGY SHOCKS 

 
ALBERTO BUCCI       CINZIA COLAPINTO       MARTIN FORSTER       DAVIDE LA TORRE 

 

Working Paper n. 2008-36 
NOVEMBRE 2008 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187834673?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ON HUMAN CAPITAL AND ECONOMIC 

GROWTH WITH RANDOM TECHNOLOGY 

SHOCKS† 
 

A. Bucci,* C. Colapinto,* M. Forster,** D. La Torre* 
 

* Department of Economics, Business and Statistics, State University of Milan (Italy) 

** Department of Economics and Related Studies, University of York (UK) 

 

Abstract 
We embed the Uzawa-Lucas human capital accumulation technology into the 

Mankiw-Romer-Weil exogenous growth model. The paper is divided into two parts. In 
the first part we assume that the rate of technological progress is exogenous and 
deterministic and study the local dynamics of the model around its steady-state 
equilibrium. The first order conditions lead to a system of four nonlinear differential 
equations. By reducing the dimension of the system to three, we find that the 
equilibrium is a saddle point. If the equations system is attacked in its original 
dimension, and by making use of an arbitrage condition, we prove that the 
equilibrium is unstable. In the second part of the paper technology is assumed to be 
subject to random shocks driven by a geometric Brownian motion. Using the 
Hamilton-Jacobi-Bellman equation, and through numerical simulations, we discuss 
the effects of technology shocks on the optimal policies of consumption and the 
allocation of human capital across sectors. 
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1. INTRODUCTION 
 
Since Uzawa (1965), and more recently Lucas (1988) and Mankiw et al. (1992), the 

importance of human capital accumulation in explaining economic growth both at the 

theoretical and empirical level is widely recognized.  

Mankiw et al. (1992) were the first to suggest that international differences in income 

per-capita are best understood using a Solow-type growth model augmented with the 

inclusion of human capital investment. On the other hand, Uzawa (1965) and later on 

Lucas (1988) –henceforth simply Uzawa-Lucas– have showed that purposeful 

accumulation of human capital by rational, forward-looking agents represents an 

important engine of growth in real per-capita incomes. The reason why the Uzawa-Lucas 

model continues to be one of the most studied growth models is twofold (see Boucekkine 

and Ruiz-Tamarit, 2008 for a deeper discussion). First of all it is a two-sector, rather than 

one-sector, growth model and, as such, it differs from the AK-type endogenous growth 

models. In more detail, it is postulated that agents have to allocate their human capital 

across two production activities: a final output sector that produces, with constant returns 

to scale, a homogeneous good (that can be, in turn, either consumed or invested in 

physical capital) and an education sector (being relatively intensive in human capital), 

where individuals can augment their own level of skills. Secondly, it gives rise to a 

sophisticated dynamical system with two control variables (consumption and the share of 

human capital to be allocated across sectors) and two state variables (human and physical 

capital). 

In this paper we embed the Uzawa-Lucas human capital accumulation technology into the 

Mankiw et al. exogenous growth model. In so doing, we extend both approaches along different 

directions. The first departure from Uzawa-Lucas consists in adding (exogenous) 

technological progress to that model. In this respect we postulate that aggregate output is 

obtained by combining not only human and physical capital (as in the original version of 

Uzawa-Lucas), but also ideas, a proxy of an economy's level of technology, whose 

evolution over time is taken as exogenous in our paper. Secondly, we also assume that 

technology might be subject to random shocks. In its original formulation the Uzawa-
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Lucas model was set in a purely deterministic framework.1 The differences between 

Mankiw et al. (1992) and our contribution are equally clear. The first is that, unlike 

Mankiw et al., the objective of this paper is not empirical. In other words, we are not 

interested in a better understanding of cross-country international differences in income 

per-capita. On the contrary, our analysis here is rather motivated by theoretical aims, one 

of which is, as just mentioned, to extend the human capital-based growth theory of 

Uzawa-Lucas by including exogenous technological progress (both deterministic and 

stochastic). Secondly, we explicitly consider the case of different depreciation rates for 

human and physical capital. Furthermore, the choice of how much income to save and 

invest in physical capital accumulation is endogenous in our model. Finally, and this is 

probably the most salient departure from Mankiw et al. (1992), we assume that the 

production of human capital is an economic activity being relatively intensive in human 

capital (in their original formulation they consider the case where human capital is built 

from final output2). However, like in Mankiw et al. (1992, p. 417, equation 11), the 

steady-state growth rate of our model economy turns out to be equal to the (exogenous) 

rate of technological progress.    

Our paper is divided into two parts. In the first part we assume that the rate of 

technical change is not only exogenous, but also deterministic. Under a particular 

parameterization, our model allows recasting the original deterministic Uzawa-Lucas 

approach. In this sense our contribution represents a generalization of that model. The 

main objective of this part of our work is to study the local dynamics of the model around 

its steady-state equilibrium. Indeed, the first order conditions of the intertemporal 

optimization problem we analyze lead to a system of four nonlinear differential 

equations. By reducing the dimension of the system to three, we find that the equilibrium 

is a saddle point. If the equations system is attacked in its original dimension, by making 

use of an arbitrage condition, we prove that the equilibrium is unstable. In the second part 

                                                 
1 The seminal paper in stochastic growth is Brock and Mirman (1972). Olson and Roy (2006) provide an 
excellent recent survey of this literature. 
2 “…We are assuming that the same production function applies to human capital, physical capital, and 
consumption. In other words, one unit of consumption can be transformed costlessly into either one unit of 
physical capital or one unit of human capital. …Lucas (1988) models the production function for human 
capital as fundamentally different from that for other goods. We believe that, at least for an initial 
examination, it is natural to assume that the two types of production functions are similar” (Mankiw et al., 
1992, p. 416). 
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of the article we formally introduce the hypothesis that technology might be subject to 

random shocks driven by a geometric Brownian motion. Using the Hamilton-Jacobi-

Bellman equation, and through numerical simulations, our aim is to discuss the effects of 

technology shocks on the optimal policies of consumption and the sectoral allocation of 

human capital, respectively. 

As far as we know there are only a few attempts at characterizing the solution to a 

stochastic growth model. Two among the most recent are represented, respectively, by 

Bethmann (2007) and Smith (2007). Bethmann (2007) extends the basic stochastic one-

sector growth model with logarithmic preferences and full depreciation of physical 

capital (that is, the textbook McCallum (1989) real business cycle model) to the case with 

two capital goods (physical and human capital). The theoretical model we analyze in the 

present paper differs from Bethmann (2007) in three main respects. First of all, it is set in 

continuous time. Secondly, the level of technology evolves according to a geometric 

Brownian motion (in Bethmann, 2007 the logarithm of total factor productivity follows a 

first-order autoregressive process). Finally, we do not assume full depreciation of human 

and physical capital. With respect to Smith (2007), instead, the most significant 

difference is that in our paper we add a human capital accumulation sector, completely 

missing in the Smith’s work.  

The article is structured as follows. In section 2 we specify the general model. In 

section 3 we analyze and characterize the local dynamics of it with exogenous and 

deterministic technological progress. In section 4 we introduce the assumption that 

technical change might follow a stochastic Brownian motion. In this section we study the 

effects of technology shocks on the optimal policies of consumption ( *C ) and the sectoral 

allocation of human capital ( *u ). As usual, the last section summarizes, concludes and 

proposes possible paths for future research. 

 
 
 
2. THE GENERAL MODEL 
 
The economy is closed. Output is the numeraire good (its price is normalized to one) 

and is produced competitively by combining physical capital, human capital and labor in 
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efficiency units. Aggregate income is allocated either to consumption or to (gross) 

physical capital investment. The aggregate production function is similar to the one used 

by Mankiw et al. (1992, p.416, Eq. 8): 
 

( ) ( )( ) ( )( ) ( )1YY t A t L H t K t
γ α α γ− −= ,   ( )0;1α ∈ ,  ( )0;1γ ∈ ,  ( )0;1α γ+ ∈ , 

 

with ( )K t , ( )YH t  and ( )( )A t L  being, respectively, the stock of physical and human 

capital and the number of effective units of labor employed at time t in the production of 

the homogeneous consumption good (Y ). The aggregate production function written 

above displays constant returns to scale to the three factor-inputs, jointly considered. 

Moreover, since output is produced under perfect competition conditions, each input is 

remunerated according to its own marginal productivity. Therefore, α , ( )1 α γ− −  and γ  

are the shares of income accruing to human capital ( )YH t , physical capital ( )K t  and 

labor in efficiency units ( )A t L , respectively. Note that we are treating the size of 

population (or raw labor, L ) as a constant. This is done because, unlike Mankiw et al. 

(1992), we are not interested in the effects of population (labor-force) growth. Instead, it 

is one of the objective of (the second part of) this paper to analyze the impact of 

technology shocks on the optimal policies of consumption and the sectoral allocation of 

human capital. Hence, for the sake of simplicity and without any loss of generality, 

throughout the entire paper we set 1L = . Under this hypothesis, the technology for the 

production of output becomes: 

( ) ( ) ( ) ( )( ) ( )1Y t A t u t H t K t
αγ α γ− −= ,                      (1) 

( )0;1α ∈ , ( )0;1γ ∈ , ( )0;1α γ+ ∈ ,  ( ) [ ]0,1u t ∈ ,           ( ) ( ) ( )Yu t H t H t≡  
 

In (1) we depart from Mankiw et al. (1992) and follow Uzawa-Lucas in postulating 

that the total stock of human capital, ( )H t , be allocated partially (i.e., in the proportion 

( )u t ) to the production of goods and partially (in the proportion 1 ( )u t− ) to the 
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acquisition of new human capital. This sectoral allocation of human capital is 

endogenous to our model.3 

Even though we explicitly consider the more general case where ( )0;1γ ∈ , it is still 

interesting to see what the aggregate production function (1) would be like to in two 

extremely specific situations (respectively, 0γ =  and 1γ = ). When 0γ =  our model 

gives rise  to the Uzawa-Lucas one. In this case there would be no disembodied 

technological progress ( ( ) 1A t A= =  for each t) and the aggregate production function 

would display constant returns to scale to human and physical capital, only. On the other 

hand, when 1γ =  the aggregate technology would read as: 

t t
t t

t

u HY A
K

α
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

,   ( )0;1α ∈            (2) 

Following Howitt (1999), the term ( )/t t tu H K α  could be interpreted as capturing the 

fact that production tends to become more human capital intensive through time as 

physical capital accumulates. In other words, for given A , the economy would need to 

accumulate human capital ( ( )YH t ) when physical capital ( )K t  increases in order for 

economic growth to be sustainable in the long run. 

The laws of motion of physical and human capital are the following: 

( ) ( ) ( ) ( )( ) ( )1 ( ) ( )KK t A t u t H t K t K t C t
αγ α γ β

• − −= − −            (3) 

  ( ) ( )1 ( ) ( ) ( )HH t u t H t H tη β
•

= − − ,   0η >             (4) 

with the initial conditions ( ) 00K K=  and ( ) 00H H=  given. It is evident from (4) that 

the growth of human capital does not depend on the physical capital stock, but depends 

solely on the effort devoted to the accumulation of human capital, 1 ( )u t− , as well as on 

the already attained human capital stock, ( )H t . In the same equation η  represents the 

productivity of human capital in the (gross) production of new human capital. Instead, in 

Eq. (3) ( )C t  is the stream of real consumption of the single good. Both physical and 

                                                 
3 In Mankiw et al. (1992, p. 416) a constant and exogenous fraction of income ( hs ) is invested in human 
capital and another constant and exogenous fraction of it ( ks ) is invested in physical capital. 
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human capital depreciate at constant rates ( [ ]0;1Kβ ∈  and [ ]0;1Hβ ∈ , respectively). As 

already mentioned, we also assume that the two depreciation rates differ for both types of 

capital ( H Kβ β≠ ). 

As for the level of technology, we maintain that ( )A t  might be a stochastic variable 

evolving over time according to the following geometric Brownian motion: 

( ) ( ) ( ) ( )dA t A t dt A t dW tμ σ= + , ( ) 00A A= ,     0μ > ,  0σ ≥           (5) 

In (5) ( )A tμ  is the expected instantaneous drift rate and ( )dW t  is the increment of a 

Wiener process such that ( ) 0E dW t =⎡ ⎤⎣ ⎦  and ( )var dW t dt=⎡ ⎤⎣ ⎦ .  

The optimal decision problem can be formulated as: 

( ) ( )
( )( )

,
0

max ln t

C t u t
E C t e dtρ

∞

−∫ ,   0ρ >            (6) 

subject to (3), (4) and (5) and the initial conditions. Individuals get utility from the 

consumption of the homogeneous final good. We also assume that the instantaneous 

utility function is logarithmic. Finally, the parameter ρ  measures the rate of time-

preference, or discount rate. 

 
 
 

3. THE DETERMINISTIC MODEL 
 
In this section it is our objective to study the local dynamics of the model under the 

assumption that technological progress (i.e., ( )( ) /A t A t
•

) is both exogenous and 

deterministic. This is the case when we set 0σ =  in Eq. (5). Accordingly, in the 

deterministic model we have: 

    ( ) ( )A t A tμ
•

= ,               (7) 

The Hamiltonian function ( ), , , , , , ,K H AC u K H A λ λ λΗ  associated with the 

intertemporal optimization problem formulated in the previous section is: 

( ) ( ) ( ) ( )1ln 1t
K K H H AC e A K uH K C u H Aαρ γ α γλ β λ η β λ μ− − −⎡ ⎤Η ⋅ = + − − + − − +⎡ ⎤⎣ ⎦⎣ ⎦      (8) 

where Kλ , Hλ  and Aλ are the co-state variables for K , H  and A , respectively. 
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The necessary first order conditions read as: 

0
t

K
e
C

ρ

λ
−

− =                       (9) 

              ( )1

0K
H

A K uH
H

u

αγ α γαλ
ηλ

− −

− =          (10) 

    ( ) ( )11
K K K

A K uH
K

αγ α γα γ
λ λ β

− −• ⎡ ⎤− −
= − −⎢ ⎥

⎢ ⎥⎣ ⎦
         (11) 

( ) ( )
1

1K
H H H

A K uH
u

H

αγ α γαλ
λ λ η β

− −•

= − − − −⎡ ⎤⎣ ⎦         (12) 

( )1
K

A A

A K uH
A

αγ α γγλ
λ λ μ

− −•

= − −          (13) 

together with the initial conditions 0K , 0H  and 0A , the dynamic constraints: 

( ) 1
KK A uH K K Cαγ α γ β

•
− −= − −  

( )1 HH u H Hη β
•

= − −  

A Aμ
•

=  

and the transversality conditions: 

lim 0Kt
Kλ

→∞
=  

lim 0Ht
Hλ

→∞
=  

lim 0At
Aλ

→∞
= . 

If we combine (9) and (11) we obtain: 

( ) ( )1 K
C A K uH
C

αγ α γα γ ρ β
•

− −= − − − − . 

By introducing the intensive variables ( ) ( ) / ( )x t H t K t≡ , ( ) ( ) / ( )y t C t K t≡  and 

( ) ( ) / ( )z t A t K t≡ , it is possible to write the following system of equations of motion:4 
 

                                                 
4 In (14), the growth rate of u is obtained by combining the dynamic constraints and equations (10), (11) 
and (12). 
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( )
( ) ( )( ) ( ) ( ) ( ) ( )1 H K

x t
u t z t u t x t y t

x t
γ α αη β β

•

= − − − + +          

( )
( ) ( ) ( ) ( ) ( ) ( )y t

z t u t x t y t
y t

γ α αα γ ρ

•

= − + − +                    (14) 

( )
( ) ( ) ( ) ( ) ( )K

z t
z t u t x t y t

z t
γ α αμ β

•

= − + +  

( )
( ) ( ) ( ) ( ) ( ) ( )1 1 1

1 K H

u t
y t u t

u t
γμ α γ β α γ ηα η α αβ

α

•

⎛ ⎞= − − + + − − − + − +⎡ ⎤⎜ ⎟ ⎣ ⎦−⎝ ⎠
. 

 

With ( ) ( ) ( ) ( )t z t u t x tγ α αφ ≡ , the previous equations-system simplifies to: 
 

( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )

1 1
1

1

K

K H

H K

t
t y t

t

y t u t

u t t y t

φ
γ μ φ β

φ
α γμ α γ β α γ ηα η α αβ

α
α η β φ β

•

= − + + +⎡ ⎤⎣ ⎦

− − + + − − − + − + +⎡ ⎤⎣ ⎦−
⎡ ⎤− − − + +⎣ ⎦

 

( )
( ) ( ) ( ) ( )y t

t y t
y t

α γ φ ρ

•

= − + − +               (15) 

( )
( ) ( ) ( ) ( ) ( ) ( )1 1 1

1 K H

u t
y t u t

u t
γμ α γ β α γ ηα η α αβ

α

•

⎛ ⎞= − − + + − − − + − +⎡ ⎤⎜ ⎟ ⎣ ⎦−⎝ ⎠
. 

 

In what follows we characterize the steady-state equilibrium (to be defined in a 

moment) of the deterministic model and develop the analysis of local dynamics 

separately for both equation-systems (14) and (15). The main difference between the two 

systems is that the first one (14) will turn out to be not fully determined (since we need an 

extra-condition in order to obtain a solution for the steady-state equilibrium). The second 

system (15), instead, is fully determined since  variable ( )tφ  wholly describes the 

behavior of ( ) ( ) ( )z t u t x tγ α α . Economically, ( )tφ  represents the gross average product of 

physical capital in the production of goods ( /t tY K ). 
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3.1.  STEADY-STATE ANALYSIS AND LOCAL DYNAMICS OF 
EQUATIONS- SYSTEM (15) 
 

We start our analysis by studying the local dynamics of equations-system (15). 

However, before proceeding we introduce a formal definition of steady-state equilibrium. 

 

DEFINITION 3.1.: ( )* * *, ,y uφ  is said to be a steady-state equilibrium of equations-

system (15) if it solves 0tt ty uφ
• • •

= = = . 
 
On applying the definition given above, in the steady-state equilibrium we have:5 
 

( ) ( ) ( )

( )

* *

* *

* * *

0

1 1
1

1

K

K H

H K

y

y u

u y

γ μ φ β

α γμ α γ β α γ ηα η α αβ
α
α η β φ β

⎡ ⎤= − + + +⎣ ⎦

⎡ ⎤− − + + − − − + − + +⎣ ⎦−
⎡ ⎤− − − + +⎣ ⎦

 

( ) * *0 yα γ φ ρ= − + − +                       (16) 

( ) ( ) ( )* *10 1 1
1 K Hy uγμ α γ β α γ ηα η α αβ

α
⎡ ⎤= − − + + − − − + − +⎣ ⎦−

. 

 
Solving this three-equations system leads to the following steady-state values for φ , 

y  and u : 

( ) ( ) ( )
( ) ( )

*

1
K Hγ ρ μ α γ β α η β

φ
α γ α γ

+ + + + −
=

+ − −
            

( ) ( )
( )

*

1
K Hy

ρ γμ α γ β α η ρ αβ
α γ

+ + + + − −
=

− −
            (17) 

*u ρ
η

= . 

Notice that, with our parameter values, a (sufficient) condition for *y  and *φ  to be 

strictly positive is: 

Hη ρ β≥ + . 

                                                 
5 As it is economically plausible, we assume 0t

t
t

C
y

K
≡ > , 0t

t
t

Y
K

φ ≡ >  and ( )0;1tu ∈  for each t in the 

steady-state. 
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This condition, requiring that the productivity of education technology (η ) is 

relatively large compared with the sum of the discount rate for future utility ( ρ ) and the 

depreciation rate of human capital ( Hβ ), is standard in models with human capital supply 

functions à la Uzawa-Lucas.6 Moreover, in the presence of a positive depreciation rate 

for human capital ( 0Hβ > ) the condition Hη ρ β ρ≥ + >  is surely satisfied and, hence, 

an interior solution for *u  ( *0 1u< < ) does exist in the steady-state. 

The Jacobian matrix associated with the log-linearized system of differential equations 

in (15) is the following: 

  

( )

( )
( )

1
0

1
0

1
0

1

y
y y

y
y

u

α α γ
γφ φα γ α

α
α γ φ

α γ
η

α

− −⎛ ⎞
− − + +⎜ ⎟−⎜ ⎟
− +⎜ ⎟

⎜ ⎟− −⎜ ⎟⎜ ⎟−⎝ ⎠

         (18) 

Evaluating the determinant of the Jacobian at the steady state values of variables 

( )tφ , ( )y t  and ( )u t  given in (17) yields: 

( ) ( )1 1
BDρ

α α γ
−

− − +
           (19) 

where: 

 ( ) ( ) ( )1 0K HB α γ β μγ ρ α α η β≡ + + + − + − >  

 ( ) ( ) ( ) 0K HD α γ β γ μ ρ α η β≡ + + + + − > . 

Given our parameter values, it follows from (19) that the determinant of the Jacobian 

is negative. Since one eigenvalue equals ρ , which is strictly positive, and the 

determinant is strictly negative, by Theorem 23.9 of Simon and Blume (1994), there 

exists one negative eigenvalue and hence the equilibrium is a saddle point (Figure 1 

shows the saddle-path in the ( ) ( )( ),t y tφ  space). 

 

                                                 
6 See, among others,  Arnold, 1998, p. 85 (equation 1) and Strulik, 2005, p. 135 (equation 24). 
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3.2. NUMERICAL SIMULATION 
 
In this section we perform a numerical simulation concerning equations-system (15). 

We use the following parameter values: 4 /100ρ = , 12 /100η = , 5 /100Kβ = , 

2 /100μ = , 1/ 3α γ= = , 6 /100Hβ = . These parameter values can be explained as 

follows. The first three ( 4 /100ρ = , 12 /100η =  and 5 /100Kβ = ) are taken from 

Mulligan and Sala-i-Martin (1993, p. 761). The value of μ  (i.e., 2 /100μ = ) represents 

the long-term growth rate of real GDP for the US economy (Barro and Sala-i-Martin, 

2004, p. 58). We shall show in a moment that the restriction Hμ η ρ β= − −  must be 

checked (see next section). Given 2 /100μ = , 4 /100ρ =  and 12 /100η = , it follows 

that Hβ  should be set equal to 6/100.7 Finally, our assumption of 1/ 3α γ= =  is 

consistent with the empirical evidence of a share of physical and human capital in income 

equal, respectively, to 1/3 (Mankiw et al., 1992, p. 432). Under these parameterization, 

we have the following steady-state values: 

 * 13 / 50y = , * 33 /100φ =  and * 1/ 3u = . Moreover, the Jacobian matrix becomes: 

                                                 
7 Note that, with 0μ >  and Hη μ ρ β= + + , the requirement Hη ρ β≥ +  is clearly satisfied. Moreover, 
note that we are using parameter values such that H Kβ β≠ , as mentioned earlier. 
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11 13 0
50 100
11 13 0
50 50

13 10
100 25

⎛ ⎞−⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

           (20) 

The eigenvalues are 1/ 25  and 1/ 50 1/100 290±  and the determinant is 0.001− . 

Figure 2 shows a three-dimensional plot of the direction field of the system, rendered in 

the ( ), yφ  space in Figure 3. 

S

0.32

0.325

0.33

0.335

0.34

phi

0.035

0.04

0.045

0.05

u

0.24
0.25

0.26
0.27

0.28
y  

Figure 2: Phase Diagram in the ( ) ( ) ( )( ), ,t y t u tφ  space 
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Figure 3: Phase Diagram in the ( ) ( )( ),t y tφ  space 

 
  
3.3.  STEADY-STATE ANALYSIS AND LOCAL DYNAMICS OF 

EQUATIONS- SYSTEM (14) 
 

We now turn to the analysis of local dynamics of equations-system (14). Unlike (15), 

this is a system of four (rather than three) differential equations in intensive variables x , 

y , z  and in u . Again, and before proceeding, we introduce a formal definition of 

steady-state equilibrium. 

 

DEFINITION 3.2.: ( ), , ,x y z u  is said to be a steady-state equilibrium of equations-

system (14) if it solves 0tt ttx y z u
• • • •

= = = = . 
 
On applying the definition given above to (14), we have:8 

( ) ( ) ( ) ( )0 1 H Ku z u x y
γ α α

η β β= − − − + +                     (21) 

( )( ) ( ) ( )0 z u x y
γ α α

α γ ρ= − + − +                      (22) 

( ) ( ) ( )0 Kz u x y
γ α α

μ β= − + +                      (23) 

                                                 
8 We continue to assume 0t

t
t

C
y

K
≡ > , 0t

t
t

A
z

K
≡ > , ( )0;1tu ∈  and 0t

t
t

H
x

K
≡ >  for each t in the steady-

state. 
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( ) ( ) ( )10 1 1
1 K Hy uγμ α γ β α γ ηα η α αβ

α
⎛ ⎞ ⎡ ⎤= − − + + − − − + − +⎜ ⎟ ⎣ ⎦−⎝ ⎠

         (24) 

It is possible to prove that the restriction Hμ η ρ β= − −  must be checked in the 

steady-state equilibrium. Under this constraint, the system of nonlinear equations written 

above has a steady-state equilibrium given by (see Appendix A): 

( )( )
( )

( ) ( )
( )

1

1

K

K

u

y

z x
γ α

α

ρ
η

α γ μ β ρ
α γ
μ ρ β

ρ α γ
η

=

+ + +
=

− −

+ +
=
⎛ ⎞

− −⎜ ⎟
⎝ ⎠

                  (25) 

It is clear from (25) that we need one more condition in order to get a solution for 

intensive variables z  and x , separately. For this reason, we look for a steady-state 

equilibrium that satisfies some arbitrage condition. At this aim we know that, unlike 

physical capital (that is used exclusively in the goods sector), human capital may be 

employed either in the production of goods or in the production of new human capital. 

Therefore, we first of all need computing the (shadow) price of human capital in units of 

goods. This price ( p ) is obtained (see Barro and Sala-i-Martin, 2004, pp. 249-250) by 

taking the ratio of the marginal product of H in the production sector9 (i.e. the wage rate, 
1 1

YA H Kγ α α γα − − − ) to its marginal product in the education sector, η :10  

( ) 1 1A uH K
p

αγ α γα
η

− − −

= ,           (26) 

In words, equation (26) says that at the margin it should be indifferent for a decision-

maker to invest one more unit of the available human capital stock in goods production or 

in the production of new (gross) human capital. This solves the first allocation-problem 

(whether to put one more unit of H into the production or education sector). As for the 

second allocation-problem (whether to invest in physical or human capital), we notice 

                                                 
9 Recall that in this economy final output, Y , acts as the numeraire good (the price of one unit of output 
equals one). 
10 From (4), gross investment in human capital is: ( )1HH H u Hβ η

•

+ = − . 
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that if the markets for the two forms of capital are competitive (as we assume) in the very 

long-run the rates of return to K and H in terms of goods (respectively, the net marginal 

product of physical capital in the goods sector and the net shadow price of human capital 

in units of final output) be equalized, that is:11 

 

( )
1 1

1 Y
Y K H

A H KA H K
γ α α γ

γ α α γ αα γ β β
η

− − −
− −− − − = −          (27) 

 
Recalling the definitions of intensive variables ( )x t  and ( )z t , in the steady-state 

equilibrium Eq. (27) leads to: 

    ( ) ( )
( ) ( ) ( ) ( ) ( )1 1
1

K Hz
u x u x

γ

α α α α

η β β

η α γ α
− −

−
=
⎡ ⎤− − −⎢ ⎥⎣ ⎦

          (28) 

Therefore, in the steady-state, we have: 

      

( )( )
( )

( ) ( )
( )

( ) ( )
( )( ) ( ) ( ) ( )1 1

1

1

1

K

K

K H

u

y

z x

z
u x u x

γ α

α

γ

α α α α

ρ
η

α γ μ β ρ
α γ
μ ρ β

ρ α γ
η

η β β

η α γ α
− −

=

+ + +
=

− −

+ +
=
⎛ ⎞

− −⎜ ⎟
⎝ ⎠

−
=
⎡ ⎤− − −⎢ ⎥⎣ ⎦

         (29) 

That is: 

                                                 
11 If this condition were not checked, it would always be preferable to invest in only one type of capital 
(physical or human). We look at a steady-state equilibrium where both forms of capital are essential in 
goods production (Y). See Barro and Sala-i-Martin (2004, p. 28) for a formal definition of essentiality 
within a neoclassical production function. 
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( )( )
( )
( )

( )( )

( )
( )

1

11

1

1

K

K

H

H

u

y

x

z
x

γ
α

αα

ρ
η
α γ μ β ρ

α γ

α μ ρ β
ρ α γ μ ρ β

η μ ρ β

αρ
−−

=

+ + +
=

− −

+ +
=

− − + +

⎡ ⎤+ +⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

          (30) 

The Jacobian matrix associated with the 4 X 4 system of differential equations in (14) 

is the following: 

 

( ) ( ) ( )

( )

1 1

1
0 0

1

xz u x z u xz u x x x
z u

y z u x y z u x y z u x
y

x z u
z u x z u xz z u x

x u
u

u

γ α α γ α α
γ α α

γ α α γ α α γ α α

γ α α γ α α
γ α α

γ αα η

α γ α α γ γ α γ α

α αγ

α γ
η

α

+ +

⎛ ⎞⎛ ⎞
− − − −⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟
⎜ ⎟+ + +⎜ ⎟− − −
⎜ ⎟
⎜ ⎟
⎜ ⎟− − −
⎜ ⎟
⎜ ⎟− −
⎜ ⎟

−⎝ ⎠

 

 

Evaluating the Jacobian at the steady-state values of intensive variables ( )x t , ( )z t  

and ( )y t  and control ( )u t  given in (30) implies that the determinant is equal to zero. 

Moreover, out of the four eigenvalues, one equals zero and another equals 0ρ > . Since 

at least one real eigenvalue is positive, by Theorem 25.5 of Simon and Blume (1994) we 

can conclude that the steady-state equilibrium is unstable. 

 
 
 
4. THE STOCHASTIC MODEL  
We now move to the analysis of the following stochastic model: 

( ) ( )
( )( )

,
0

max ln t

C t u t
C t e dtρ

+∞

−Ε∫            (31) 
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subject to: 

( ) ( ) ( ) ( )( ) ( )1 ( ) ( )KK t A t u t H t K t K t C t
αγ α γ β

• − −= − −            (32) 

( ) ( )1 ( ) ( ) ( )HH t u t H t H tη β
•

= − −                      

(33) 

( ) ( ) ( ) ( )dA t A t dt A t dW tμ σ= + ,   0σ >                    (34) 

and the initial conditions ( ) 00K K= , ( ) 00H H=  and ( ) 00A A= . 

Let J  be the value function associated to this stochastic optimization problem. The 

Hamilton-Jacobi-Bellman (HJB) equation can be written as: 

( )

( ) ( )( ) ( )( )

2 2

,

2 2
1

,

0 max ln
2

max ln 1
2

AA
K H AC u

AA
K K H H AC u

J AC J J K J H J

J AC J J A uH K K C J u H H Jαγ α γ

σρ μ

σρ β η β μ

• •

− −

⎡ ⎤
= − + + + +⎢ ⎥

⎣ ⎦
⎡ ⎤

= − + − − + − − + +⎢ ⎥
⎣ ⎦

                  (35) 

where KJ , HJ , AJ  and AAJ  are the partial derivatives of J  with respect to the relevant 

variables. The first order conditions associated with the problem (35) lead to: 

* 1

K

C
J

=            (36) 

and 

      

1 1
1 1

* K

H

A JKu
H J

α γ
γα αα

η

− −
− −⎡ ⎤

= ⎢ ⎥
⎣ ⎦

          (37) 

 
By substituting these expressions into (35) we get: 

( )
1 111 11 1

1 1

2 2

0 ln 1

2

K K
K K K H H

H H

AA
A

A J A JJ J J A K K J H K H
J J

J AJ

α γ α γγ γα α
γ α αα αρ β η η β

η η

σμ

−− − − −− −
− −

⎛ ⎞ ⎛ ⎞
⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟= − − + − − + − − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

+

                   (38) 
We now look for a solution of this form: 
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  ( ) ( ) ( ) ( ), , lnA KJ H K A f H g A
H

γ α γ
α α α

ρ α γ

+
−⎛ ⎞

⎜ ⎟= + +⎜ ⎟ +⎜ ⎟
⎝ ⎠

         (39) 

 

where f  and g  are two unknown functions to be determined. After some algebraic 

computations (see Appendix B), the equation (38) can be split into the following ordinary 

differential equations: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

1 1
1

1

2
2

2

'1ln ' ln 1 '
'

' 1 ' ' "
2

1 ' 0
2

K H

f x
f x f x x f x x

f x x

f x x f x x f x x f x x

f x x

α

η γ αγ α γρ γ α αα γ α α
ρ α γ

α γ α γμ σγβ η β
α ρ α γ α α

σ γ γ
α α

−
−

−
⎡ ⎤
⎢ ⎥+⎛ + ⎞⎛ ⎞ ⎛ ⎞ ⎢ ⎥− − − + + − −⎜ ⎟ ⎜ ⎟⎜ ⎟ + ⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠ − +⎢ ⎥+⎣ ⎦

⎛ ⎞+ ⎛ ⎞⎛ ⎞ − + − + − − + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞− − =⎜ ⎟
⎝ ⎠

                   (40) 
 
and 
 

  ( ) ( ) ( ) ( ) 2 2"
ln ' 0

2
g y y

y g y g y y
σγ ρ μ

γ α
⎛ ⎞

− + + =⎜ ⎟+⎝ ⎠
           (41) 

 

where A Kx
H

γ γ α
α α

+
−

≡  and y A≡ . 

For a numerical simulation, we continue to use the following parameter values: 

4 /100ρ = , 1/ 3α γ= = , 12 /100η = , 6 /100Hβ = , 5 /100Kβ = , 2 /100μ = . 

Moreover, we set 0.0148σ = . This value has been recently suggested by Francis et al. 

(2008). The behavior of ( )f x  against x  is shown in Figure 4, 
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Figure 4: ( )f x  against x  

 
while the plot ( )'xf x  against x  is shown in Figure 5. 
 

 
Figure 5: ( )'xf x  against x  

 
The values of *C  and *u  can be rewritten in terms of f and x as follows: 
 

       
( ) ( )

*

'
KHC

xf x
α

γ α
=

+
                  (42) 

and 
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       ( ) ( )

( ) ( )

1
1

1 1
* '

'

x f x
u

xf x

α

αη α γ
α

ρ α γ

−

− −
⎡ ⎤
⎢ ⎥+
⎢ ⎥=
⎢ ⎥−⎢ ⎥+⎣ ⎦

                 

(43) 
 
The behavior of *u  as a function of x  is shown in Figure 6 
 

 
Figure 6: ( )*u x  against x  

 
The following table summarizes the behavior of *C  and *u  following an increase of 

A : 
 

A↑  x ↓  ( )'xf x ↓  ( )*u x ↓  ( )*C x ↑  
 

 
As one can easily see from the table when a positive perturbation of A  occurs, *u  

decreases and *C  increases The intuition behind this result is the following: if the 

increase in A  is positive then, ceteris paribus, the variation in the marginal productivities 

of both forms of capital in goods production ( K  and YH ), respectively 

( )1Y A uH
K K K

γ α

α γ∂ ⎛ ⎞ ⎛ ⎞= − − ⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠
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and 
1

Y

Y A K
H K uH

γ α

α
−∂ ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

 

will be positive. Therefore, there will be an incentive to accumulate human capital faster 

( *u  decreases). At the same time, given the increase in factor-inputs productivities and in 

the level of technology as well, there will be a likely increase in total output and therefore 

in *C . 

 
 
 
5.  SUMMARY AND CONCLUDING REMARKS 
 
This paper has embedded an Uzawa-Lucas-type supply function of human capital into 

the framework traced by the model of Mankiw et al. (1992). Thus, we extended the latter 

model both by considering the investment in education as an economic activity relatively 

intensive in human capital and by endogenizing the rate at which agents save and invest 

in physical capital accumulation. With respect to the first model (Uzawa-Lucas) we 

considered the possibility that the technology level might grow over time, though at an 

exogenous rate. 

In the first part of the article we postulated that technology grows deterministically 

and studied the local dynamics of the model around its steady-state equilibrium. The first 

order conditions of the intertemporal problem we have analyzed led to a system of four 

nonlinear differential equations. We split the analysis into two separate steps. In the first, 

by aggregating some of the intensive key-variables involved in the model, we considered 

a system of three differential equations. We found that the equilibrium is a saddle-point. 

In the second one, by making use of an arbitrage condition, we solved the system of 

equations in its original dimension and proved that in this case the equilibrium is 

unstable.  

In the second part of the paper, instead, we allowed for random technology shocks 

driven by a geometric Brownian motion. We developed the analysis through the 

Hamilton-Jacobi-Bellman (HJB) equation. First of all we reduced the HJB partial 

differential equation to a system of nonlinear separated differential equations. Next, by 

using Maple 12 we showed a numerical simulation of the solutions. We used it to discuss 
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the effects of technology shocks on the optimal policies of consumption ( *C ) and the 

sectoral distribution of human capital ( *u ). We found that, following a positive variation 

in technology, *C  increases and *u  decreases. The reason is that a positive technology 

noise increases marginal productivities of inputs used into production and, therefore, 

fosters both consumption and human capital investment.  

For future research it would be interesting to analyze how the results we obtained in 

this paper (both in its deterministic and stochastic sections) might ultimately change in 

the presence of endogenous, rather than exogenous, technological progress driven by 

human capital. In this case skills would be employed not only to produce goods and to 

accumulate new human capital (as we have been arguing in the present work) but also to 

advance further the level of technology, an activity definitely human capital intensive. 

 
 
 
 
Appendix A 
In this appendix we prove formally the set of results written in equation (25) in the 

body text. For convenience, we re-write below the system (14) in the steady-state 

equilibrium (i.e., with 0tt ttx y z u
• • • •

= = = = ): 
 

( ) ( ) ( ) ( )0 1 H Ku z u x y
γ α α

η β β= − − − + +                    (A1) 

( )( ) ( ) ( )0 z u x y
γ α α

α γ ρ= − + − +                     (A2) 

( ) ( ) ( )0 Kz u x y
γ α α

μ β= − + +                     (A3) 

( ) ( ) ( )10 1 1
1 K Hy uγμ α γ β α γ ηα η α αβ

α
⎛ ⎞ ⎡ ⎤= − − + + − − − + − +⎜ ⎟ ⎣ ⎦−⎝ ⎠

        (A4) 

 
Above we continue to assume that in the steady-state tx , ty  and tz  are positive for 

each t  and that ( )0;1tu ∈ . We denoted by x , y , z  and u  the steady-state values of tx , 

ty , tz  and tu , respectively. 
From (A1): 

( ) ( ) ( ) ( )1K Hz u x y u
γ α α

β η β− − = − − .           (A1’) 

Instead, by using (A3): 
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( ) ( ) ( ) Kz u x y
γ α α

β μ− − = .            (A3’) 

If we combine (A1’) and (A3’) we get: 

( )1 Huη β μ− − = .              (A5) 

Plugging (A5) into (A4), after easy computations, yields: 
( ) ( )

( )1
K Hy u

α γ η β β
η

α γ
+ + −

= +
− −

.                   (A6) 

Use now (A2): 

( ) ( ) ( ) ( )y z u x
γ α α

α γ ρ= + + .            (A2’) 

Plugging (A3’) into (A2’) in the end leads to: 

 ( ) ( )
( )1

Ky
α γ μ β ρ

α γ
+ + +

=
− −

.             (A7) 

Equalization of (A6) and (A7), and using (A5), implies: 

 u ρ
η

= .                     (A8) 

Given u , (A5) delivers: 
 Hμ η ρ β= − −                 (A9) 
This is the restriction on some of the key-parameters of the model that must be met in 
order for the equations-system (14) to have a steady-state equilibrium where 

0tt ttx y z u
• • • •

= = = = . 
From (A1’): 

( ) ( ) ( )
( )

1 H Ku y
z x

u

γ α

α

η β β⎡ ⎤− − + +⎣ ⎦= .          (A10) 

Using (A7), (A8) and (A9) into (A10) leads to: 

( ) ( ) ( )

( ) ( )1 1

H K Kz x
γ α

α α

η β β μ ρ β

ρ ρα γ α γ
η η

− + + +
= =
⎛ ⎞ ⎛ ⎞

− − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. g       (A10’) 

 
 

Appendix B 
In this appendix we derive equations (40) and (41) in the main text. 

By easy computations, we have: 

'
2

( ) ( )
( ) ( ) ( ) ( )H

A K t A K tJ f
H t H t H t

γ γ α γ γ α
α α α α α

ρ γ α

+ +− −⎛ ⎞
= − +⎜ ⎟

⎜ ⎟ +⎝ ⎠
                                                     (B1) 
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' ( ) ( )
( ) ( )K

A K t A K tJ f
H t H t

γ γ α γ γ
α α α αγ α

α

+− −⎛ ⎞+⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
                        (B2) 

1
' ( ) ( ) '( ( ))

( ) ( )A
A K t A K tJ f g A t

H t H t

γ γ α γ γ α
α α α αγ

α

+ +− − −⎛ ⎞
= − +⎜ ⎟

⎜ ⎟
⎝ ⎠

                                                       (B3) 

22 1
''

2
' ''

( ) ( )
( ) ( )

( ) ( )1 ( ( ))
( ) ( )

AA
A K t A K tJ f

H t H t

A K t A K tf g A t
H t H t

γ γ α γ γ α
α α α α

γ γ α
α α

γ γ α
α α

γ
α

γ γ
α α

+ +

+

− − −

+
− −−

⎛ ⎞ ⎛ ⎞⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞− − − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

                                             (B4) 

By substituting these derivatives into 38 in the text leads to: 

( ) ( )

( )

'

1 '

'

( ) ( )
0 ln ( ) ( )

( ) ln ( ) ( ( ))
( )

( ) ( )
( )

( ) ( )
( )

k

A K t A K tf
H t H t

A K tf H t g A t
H t

A t K tf
H t

J K
A t K tf

H t

γ γ α γ γ
α α α α

γ γ α
α α

γ γ α
α α

γ γ α
α α

γ α
γ α γ

αρ
ρ γ α

η γ α

+

+

− −

−

+
−

−

+
−

⎛ ⎞⎛ ⎞⎛ ⎞+⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟= − ++ −⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟⎜ ⎟−⎝ ⎠
⎛ ⎞⎛ ⎞
⎜ ⎟− + + +⎜ ⎟

⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟+ ⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟− ⎜ ⎟⎜
⎝ ⎠

1 1
1

1 '

'

1
( ) ( )

( ) ( )

( )( )
( )

( ) ( )
( ) ( ) ( )

K

H

A t K t
H t

A K tf
H t

A KJ H
H

A K t A K tf
H t H t

α

γ γ α
α α

γ γ α
α α

γ γ α
α α

γ γ α γ γ α
α α α α

β
α

ρ γ α

η γ α

η η
α

ρ γ α

−
−

+
−

+
−

−
+

−

+ +
− −

⎛ ⎞
⎡ ⎤⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟− − +⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟+⎢ ⎥⎜ ⎟+⎢ ⎥⎟⎜ ⎟⎣ ⎦⎜ ⎟

⎝ ⎠

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟+⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠− ⎢ ⎥⎛ ⎞⎢ ⎜ ⎟− +⎢ ⎜ ⎟ +⎢ ⎜ ⎟

⎝ ⎠⎣ ⎦

1
1

2 2

.
2

H

AA
A

J AJ A

α

β

σμ

−
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜ ⎟

⎥⎜ ⎟
⎥⎜ ⎟
⎥⎜ ⎟⎜ ⎟

⎝ ⎠

+ +
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Now let A Kx
H

γ γ α
α α

+−

≡  and ( )y A t≡ . We get 

( ) ( ) ( ) ( )

( ) ( )
( )

( )
( )

'

1 1
1

1 '

'

1
1

1 '

'

0 ln ln

( ) 1

( )

( )
( )

( )
( )

K

H

f x f x x

f x
f x x

f x x

f x
f x x x

f x x

α

α

γ α γρ
α γ α

η γ αγ α βαα
ρ γ α

η γ αα η η βαρ γ α
ρ γ α

γμ
α

−
−

−

−

−

⎛ + ⎞⎛ ⎞= − − − +⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠

⎛ ⎞
⎡ ⎤⎜ ⎟
⎢ ⎥+⎜ ⎟+⎛ ⎞ ′ − − +⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎢ ⎥− +⎜ ⎟
⎢ ⎥+⎜ ⎟⎣ ⎦

⎝ ⎠
⎛ ⎞

⎡ ⎤⎜ ⎟
⎢ ⎥+⎛ ⎞ ⎜ ⎟′− + − −⎢ ⎥⎜ ⎟ ⎜ ⎟+ ⎢ ⎥⎝ ⎠ − +⎜ ⎟
⎢ ⎥+⎜ ⎟⎣ ⎦

⎝ ⎠

′−
2 2

2

2 2

( ) ( ) 1 ( )
22

( )ln( ) ( ) ( ) .
2

f x x f x x f x x

g y yy g y g y y

σγ σ γ γ
α αα

γ σρ μ
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⎛ ⎞ ⎛ ⎞′′ ′+ − − −⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
′′⎛ ⎞ ′+ − + +⎜ ⎟+⎝ ⎠

 

We can then split this equation into two differential equations to be solved 
separately in the variables x and y. We get 
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−
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⎢ ⎥+⎜ ⎟⎣ ⎦

⎝ ⎠
⎛ ⎞

⎡ ⎤⎜ ⎟
⎢ ⎥+⎛ ⎞ ⎜ ⎟′− + − −⎢ ⎥⎜ ⎟ ⎜ ⎟+ ⎢ ⎥⎝ ⎠ − +⎜ ⎟
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and 
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2 2( )0 ln( ) ( ) ( ) .
2

g y yy g y g y yγ σρ μ
γ α

′′⎛ ⎞ ′= − + +⎜ ⎟+⎝ ⎠
                                            (B5) 

 
It is easy to prove that the solution to equation (B5) is 

21( ) ln( ) .
1 (1 ) 2 (1 )

yg y yγ μ γσ
ρ α ρ α ρ α
⎛ ⎞

= + −⎜ ⎟− − −⎝ ⎠
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